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Mobile agents require an appropriate platform that can facilitate their migration and execution. In 
particular, the design and implementation of such a system must balance several factors that will 
ensure that its constituent agents are executed without problems. Besides the basic requirements 
of migration and execution, an agent system must also provide mechanisms to ensure the 
security and survivability of an agent when it migrates between hosts. In addition, the system 
should be simple enough to facilitate its widespread use across large scale networks (i.e Internet). 
 
To address these issues, this thesis discusses the design and implementation of the Distributed 
Agent Delivery System (DADS). The DADS provides a de-coupled design that separates agent 
acceptance from agent execution. Using functional modules, the DADS provides services 
ranging from language execution and security to fault-tolerance and compression.  Modules 
allow the administrator(s) of hosts to declare, at run-time, the services that they want to provide. 
Since each administrative domain is different, the DADS provides a platform that can be adapted 
to exchange heterogeneous blends of agents across large scale networks. 
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CHAPTER 1

INTRODUCTION

The concept of an intelligent agent has been around for quite some time. First

described in the literature of artificial intelligence, an agent is code that acts on

behalf of a user [20]. In addition to code, an agent carries some associated data.

This facilitates autonomy, where an agent can perform tasks with little to no user

interaction. Since they are programs, agents require a platform that will execute

their instructions. In the context of an operating system, an agent may execute as a

running process or as code executing in an interpreter. For an interpreted agent, code

executes within the context of an interpreter and uses the functionality provided by

it. Regardless of how an agent is executed, the underlying platform that makes agent

execution possible is defined as the agent’s infrastructure. Unless an infrastructure

provides conventions for code mobility, agents remain on the local host, making them

static. Therefore, before an infrastructure can support code mobility, it must first

provide functionality that will facilitate the transfer of an agent’s code and data to

other hosts.

An infrastructure facilitates the execution of the instructions that are carried by
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an agent. In addition, it makes resources available to the agents that use it. Given

the intimate relationship between an agent’s code and execution platform, many

infrastructures employ a virtual machine (e.g., Java1 Virtual Machine) where agent

functionality is incorporated into the execution platform directly, making it agent-

oriented. In this context, agents are written in a high level language and compiled

into a byte-code that is specific to the virtual machine. This facilitates portability

since the virtual machine provides an execution platform that is independent of a

host’s architecture. However, the virtual machine model has its disadvantages. For

instance, virtual machines place a number of limitations on the agents that it can

support. Since it must use the byte-code dictated by the particular virtual machine,

an agent is subject to the fundamental principles of the virtual machine core design

(i.e., security, performance). This may lead to a design that reduces the overall

effectiveness of the agent paradigm since it creates an environment that may be

geared toward certain applications. Also, since there is no universal virtual machine

that recognizes all languages [26], the choice of language is limited when developers

need to select a language for agent development.

Our goal is to move agents away from the limitations of a single virtual machine

architecture, making the availability of the agent paradigm more widespread. Similar

1
�

Sun Microsystems Inc., Java, December 7 1999, http://java.sun.com
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to standard network services such as Telnet or the File Transfer Protocol (FTP), hosts

within a network could offer a standard service designed specifically for agents. When

a host executes an FTP daemon, that host makes file transfer service available for all

to use. Similarly, we would like to see the agent paradigm follow this same principle.

Instead of an infrastructure that supports one specific type of an agent, we would

like to see a system that can accept and execute a heterogeneous blend of agents.

Since it is not designed around the specifications of one particular virtual machine,

such a platform can encompass a larger set of hosts, thereby providing access to

an extended number of computing resources. However, increased access to resources

introduces several new issues that must be considered. First, a security model must be

developed that is flexible enough to secure both a host and agent. Since heterogeneous

agents may be accepted, different agents will inevitably use different forms of security.

Second, to facilitate heterogeneity, an agent infrastructure must be multi-lingual.

That is, compilers and interpreters for different languages must be made available

at the constituent sites. And third, the agent infrastructure must support robust

mechanisms for fault tolerance. Since an agent executes autonomously, it is the

responsibility of the underlying agent platform to provide methods for recovery in the

event of a fatal error. In general, different hosts may be configured with dissimilar

services, thus, it is imperative that the availability of a particular service be advertised
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to incoming agents. This provides an agent with sufficient information to determine

whether the host meets its resource requirements. To facilitate the communication of

this information, a protocol must be developed.

In order to build an agent platform it is necessary to review the requirements

of an agent and the environment in which it executes. With important issues such

as performance, security, and fault tolerance, an infrastructure must balance several

factors to obtain efficient and secure agent delivery across heterogeneous networks.

Unfortunately, diversity among existing agent systems has made the adoption of an

agent standard difficult. As a result, many infrastructures have used agents and

protocols of their own design, thereby reducing some of the potential for interaction

between infrastructures. To address some of these issues, we introduce the Distributed

Agent Delivery System (DADS).

Executed as a daemon process that listens for incoming agents on a network, the

DADS acts as a portal to computing resources. Using a plug-in style interface, these

resources are made available as loadable services, referred to asmodules. Influenced by

the organization of AgentTcl [12], a module can be used to provide language services.

In addition, DADS modules also provide services such as compilation, security, fault

tolerance, and data compression. In general, modules facilitate the dynamic loading

of services, hence, they can be brought online when they are needed and taken off-line
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when they are idle. When compared to systems that define their services at build

time, a dynamic configuration is much more attractive.

Influenced by the agent design introduced in the Tromsø And COrnell Moving

Agents (TACOMA) system [19], a DADS agent consists of three segments: code, data,

and properties. Using the terminology of TACOMA, a DADS agent is comparable to

a briefcase containing three folders. The code segment stores the instructions that are

executed by an agent. The contents of the data segment represent the agent’s state.

And the properties segment stores a description of both the code and data segments.

Combined, these three segments make up the network transmittable structure referred

to as a DADS agent.

The code and data segments are designed to store arbitrary sequences of bytes,

hence, a DADS agent is inherently multi-lingual. As an autonomous entity, an agent

must be able interact with other hosts. Since autonomy dictates no user interaction,

it is imperative that the agent maintain a description of itself (i.e., language, security,

etc.) to communicate. Without a description, agents would not be able to decide

which hosts can facilitate execution and guarantee the agent’s survival. To address

this, a DADS agent uses a properties segment to describe its contents. Influenced by

the concept of a badge in Mole [4], the properties segment is designed to facilitate

agent migration and agent-to-agent interaction. That is, it provides an agent with a
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description of itself (i.e., language, security, etc.) that can be used during the transfer

protocol or when agents meet. As work on an agent standard continues[10, 7], the

properties segment can be easily adapted to conform to a standards based description.

Related Work

In recent years, many discoveries have been made in agent based computing. Most

important have been the advancements made in the area of agent systems. Building

on some of the basic principles discussed above, research in agent systems has intro-

duced many new and interesting concepts to the area of code mobility. In addition,

ongoing research has promoted the exchange of ideas, creating a new generation of

hybrid systems. Subscribing to a hybrid model, the DADS expands upon some of the

concepts found in some of today’s systems. In this section, we introduce some of the

systems that have influenced the DADS design. In addition, we briefly describe some

of today’s proposed agent standards.

Telescript Designed primarily for a proprietary hand-held device, Telescript2 [27] is

one of the first mobile agent systems ever developed. A pioneer in the field, Telescript

is one of the first systems to support agents using a virtual machine architecture. A

predecessor to the Java Virtual Machine (JVM), Telescript uses a Telescript Engine

2
�

General Magic Inc., Telescript, June 4 1996, http://www.genmagic.com
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to execute byte-code instructions that are compiled from the Telescript language.

Similar to Java, Telescript uses an object model to facilitate the implementation of

what is known as its agents and places. Comparable to the initial agent definition

given above, an agent is an entity that encompasses the code mobility aspect of the

Telescript system. Utilizing a secure virtual machine architecture, Telescript restricts

its agents from directly accessing the underlying operating system on a host. Instead,

it makes the agents interact with what is referred to as a place. In contrast to an agent,

a place is delegated access to certain resources on a host. Coincidentally, a place is

simply a static agent that is used as a proxy to resources. A host may offer multiple

places, hence, each place may offer a different service. Further, multiple agents can

interact with any number of places concurrently. Thus, whenever a Telescript agent

migrates, the agent does not access resources on the host directly. Instead, an agent

interacts with other agents and places via meetings, which facilitate the setup and

execution of inter-agent communication and information exchange. Best described as

an electronic marketplace [27], the principles of agents and places is analogous to the

interactions of humans in the physical world.

Telescript has introduced several concepts to the mobile agent paradigm. In ad-

dition to places and meetings, Telescript is the first agent system to introduce the

concept of single-instruction agent migration. That is, an agent can migrate with a
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simple call to the go function. This suspends agent execution, packages the agent, and

transmits it to a destination. This avoids having an agent provide its own transfer

functionality, thereby reducing its overall complexity.

Aglets An Application Programming Interface (API) for Java, Aglets3 [18, 1] offer

an agent infrastructure designed around the Java object model. Similar to Telescript,

Aglets also use a virtual machine architecture, the JVM, to execute mobile objects.

Developed under the name of an Aglet, these mobile objects execute as Java threads.

In the Aglet system, a running Aglet (thread) is referred to as a context, where it

is subject to all of the advantages (i.e., security, portability) offered by the JVM.

Built upon the Java object model, Aglets are fairly easy to implement since many

developers are already familiar with Java.

Using the same principles as the go instruction available in Telescript, Aglets

provide mobility through a dispatch function. This function suspends a context,

packages it, and transmits it to a destination host. At the destination, an object called

a listener waits for an incoming agent transmission. Nothing more than specialized

Aglets, listeners read the incoming contexts from the network, unpackages them, and

resumes their execution on the host.

3
�

Internation Business Machines Corporation (IBM), Aglets, June 29 1999,
http://www.trl.ibm.com/aglets/index e.htm
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The popularity, simplicity, and security of Java has made the Aglet infrastructure

a popular choice within the agent research community. However, as mentioned by

Jim White, one of the lead developers of Telescript:

Telescript and Java virtual machines share one important trait; they in-

stitutionalize a particular object model...A better approach is a virtual

machine that is language neutral. [26]

A disadvantage of the virtual machine, predefined object models require that all agent

execution ultimately use the byte-code of that particular virtual machine. Since each

agent system is designed to function with its own agents, predefined object models

enforce a structured agent design. In addition, it reduces the interoperability of the

agent with other systems since the byte-code cannot execute without the particular

virtual machine. Also, developers are limited in their choice of agent language, hence,

if the developer needs to use certain functionality of a language and it does not compile

down to JVM byte-code, the developer might not be able to use the Aglet system at

all.

AgentTcl One of the most flexible of today’s mobile agent infrastructures, AgentTcl

[12] (currently D’Agents) introduces several refreshing concepts to the area of agent

mobility. Moving away from the single virtual machine design, AgentTcl employs
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a collection of loadable interpreters for agent execution. Since different interpreters

are made available concurrently, AgentTcl can handle multi-lingual agents. Further,

since certain languages may be specialized for certain applications (i.e., speed, secu-

rity, portability). The choice of language gives developers the flexibility to use an

agent that fits the needs of their applications. In addition, a developer may choose a

familiar language, thereby decreasing development time.

The AgentTcl infrastructure is divided into two halves. The first half consists of a

single daemon process referred to as agentd. This daemon listens on the network for

agents that wish to migrate. When a migration request is received, agentd accepts

the transmitted agent. The second half, a collection of interpreters, is responsible for

agent execution. Thus, when agentd receives an agent from the network, it forwards

the agent to a loaded interpreter for execution.

During its execution, an interpreter maintains a context (i.e., code, stack, vari-

ables) that correlate to a program’s execution. Also known as state, this information

contains all of the data needed to execute the program within the particular inter-

preter. In AgentTcl, this state information constitutes an agent. That is, if we were

to take a snapshot of a running program in an interpreter, the suspended context

contains program code and data, which follows our definition for an agent. To fa-

cilitate mobility, AgentTcl uses a method known as state-capture. Using a modified
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interpreter, agents can perform state-capture by making a function call similar to the

go and dispatch functions used in Telescript and Aglets, respectively. In general, this

call suspends execution, takes a snapshot of the current context, opens a connection

to a remote AgentTcl host, and transmits it. At the remote host, this information is

read and used to create a new context for continued execution.

The modular design offered by AgentTcl makes it a very attractive infrastructure

for experimental agent research. Supporting languages such as Tcl, Python, Scheme,

and Lisp, AgentTcl provides a flexible platform for multi-lingual agents. State-capture

allows AgentTcl to be as efficient as possible by reducing the amount of time consumed

during agent transfer, however, it also requires the addition of special functionality to

an interpreter. That is, an interpreter must be modified in order to support the state-

capture routines. Since there are many interpreted languages that do not support

this functionality, users must wait for the AgentTcl development team to provide

support. While it is possible for an AgentTcl user to add this support themselves,

modification of an interpreter requires time and resources. Further, not all interpreters

are open source, hence, code modification may not be possible without direct vendor

involvement.
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Mole Built upon the JVM, Mole [4] also uses a virtual machine architecture. Similar

to Aglets, a Mole agent is simply a Java thread. In addition, Mole incorporates some

of the features introduced by Telescript, namely the concept of an agent and a place.

Similar to Telescript, agents are restricted direct access to a host’s resources. Instead,

Mole also uses a collection of places (i.e., static agents) to act as proxies to resources.

Similar to a meeting, Mole agents initiate sessions to interact with places. Sessions

facilitate the exchange of information between an agent and place.

Unique identification of an agent is important. Since many agents may exist

concurrently across a large domain, it is advantageous to be able to identify one agent

from another. Further, it would be advantageous for an agent to engage in sessions

with agents that are performing similar tasks. Before a session can be established,

an agent must know what service is provided by a particular place. Likewise, a

unique identifier allows every agent and place to be accounted for. To address this,

Mole uses a unique identification scheme. Designed to facilitate session setup, Mole’s

identification scheme combines the concept of a globally unique agent-id with an

application specific identifier, known as a badge. Geared specifically for its mobile

agents, a badge allows an agent to advertise its application specific properties. Thus,

when an agent wants to engage in a session with another agent or place, the parties

involved can use the badge information to determine which agents are performing
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similar tasks.

TACOMA One of the earliest implementations of a mobile agent infrastructure,

TACOMA [19] introduces some very interesting concepts to agent mobility. In its

earliest version, TACOMA defines its agent as a Tcl procedure. Unlike systems that

use virtual machine threads or captured state information, a TACOMA agent uses the

code from a high level programming language. This means that state information is

not implicitly coupled with the code as it is with a state-captured image. Instead, this

information must be explicitly programmed and stored with the agent. To facilitate

this, TACOMA employs a system of briefcases and folders. Forming a two level

hierarchy, a briefcase may contain several folders, whereas a folder contains agent

data. A folder may contain any arbitrary sequence of bits, thereby avoiding any

limitations on the data that it contains. Further, a folder is referenced through a

descriptive name. For instance, an agent may carry a briefcase that contains a folder

labelled CODE. This folder may include the Tcl procedure defining the actions of

that particular agent. Likewise, before an agent migrates, it must reference the folder

labelled HOST to determine its destination.

Parallel to other infrastructures, TACOMA agents require interaction with other
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agents for execution. Using a meet operation, a TACOMA agent exchanges its brief-

case with another agent. The receiver opens the briefcase, references the CODE

folder, and executes the associated code. The simplicity of this model is very in-

triguing. Since the contents of a folder are not restricted, an agent’s contents are

no longer bound to the specifications of the underlying infrastructure (i.e., language,

architecture).

FIPA As more agent systems are developed, system interoperability becomes a

problem. Since a host may execute more than one infrastructure concurrently, it

would be advantageous for the agents of the concurrent infrastructures to commu-

nicate. Unfortunately, agents of one infrastructure may not understand the context

in which other agents execute. To interact, one of the systems must be modified.

Inevitably, this leads to the question of which system to modify. Since some systems

are not open-source, modification of a system to fit the needs of another may be

impossible. Also, many agent systems exist, hence, it would also be impractical to

support the requirements of each. Consequently, a standard for interoperability has

become imperative.

Designed to promote an open standard for agent system design, the FIPA spec-

ification is one of the most comprehensive specifications for agent systems thus far.
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Described best by its mission statement, FIPA’s mission is:

The promotion of technologies and interoperability specifications that fa-

cilitate the end-to-end interworking of intelligent agent systems in modern

commercial and industrial settings. [10]

FIPA provides an extensive collection of specifications designed to aid developers in

building inter-operable infrastructures. Unfortunately, many of today’s infrastruc-

tures do not support the FIPA standard, or for that matter, any standard at all.

This not only reduces the effectiveness of a particular system, but it also reduces the

effectiveness of the agent paradigm itself.

MASIF Developed by the Object Management Group (OMG4) [21], MASIF [7]

provides another standard for interoperability among agent systems. Intended as

an open standard, MASIF is built on top of the CORBA5 system. Best stated by

its specification, MASIF is “a collection of definitions and interfaces that provide an

interoperable interface for mobile agent systems” [7]. MASIF does this by offering a

standard definition for agent naming, management, and transfer which could be used

across agent systems to accommodate interoperability.

4
�

Object Management Group Inc., OMG, September 29 1992, http://www.omg.org
5

�
Object Management Group Inc. CORBA, April 7 1998, http://www.omg.org
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Grasshopper Grasshopper [5] is the first MASIF and FIPA compliant agent sys-

tem ever developed. As discussed by the developers, “Grasshopper is in principle a

MASIF conformant mobile agent platform, which has been enhanced recently with a

FIPA add on, in order to give the application developer total flexibility” [5]. Written

in Java, the Grasshopper platform is designed to provide a completely distributed

agent environment capable of handling agents of varying complexities. Using the

proposed definitions found in MASIF and FIPA (i.e., agent naming, management,

transfer, etc.), Grasshopper offers a comprehensive, standards based solution to agent

systems. Hence, it has been accepted for use in many applications including telecom-

munications and e-commerce.

DADS

Influenced heavily by the design and implementation of the systems above, the

DADS provides an agent platform for the acceptance and execution of heterogeneous

agents. Using a modular design, the DADS provides a virtual gateway to services.

Similar to the concept of a place, DADS services are realized in the form of modules,

where a module provides any number of services ranging from language execution and

security to fault-tolerance and compression. Modules separate agent services from the

core delivery functionality, thereby offering a platform that can support a wider range

16



of agents. Coupled with an agent structure that acts as a mobile container for code

and data, the DADS is an agent system focused on flexibility. As a result, the DADS

uses a unique agent delivery protocol to facilitate heterogeneous agent delivery across

multiple domains (i.e., corporations, universities). Further, when it is needed, this

flexibility allows the DADS to support the proposed standards discussed above.

In what follows, we present the design and implementation of the DADS system.

Beginning with Chapter 2, we discuss some of the pertinent issues encountered during

the design of the DADS. Further, it presents a brief overview of the DADS organiza-

tion, as well as a discussion of how today’s agent systems have influenced the DADS

design.

Following this discussion, the DADS agent is introduced. Specifically, we discuss

its structure, which leads into a description of the property structure used throughout

the DADS system. Further, a development strategy for the DADS agent is presented.

Next, Chapter 2 introduces the DADS daemon. In particular, we discuss the

requirements of a host that would like to participate in an agent system, focusing pri-

marily on how it must facilitate agent migration and execution. Next, a development

strategy for the DADS daemon is presented.

The DADS uses a modular design to provide services. Managed directly by the

DADS daemon, modules are an important feature of the DADS system. Consequently,
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we also discuss the module system, focusing on its design and use. Further, we

supplement this discussion with a concept referred to as module chaining, and follow

up with suggestions for future module development. Finally, a development strategy

for a basic module is presented.

Chapter 2 concludes with a discussion of the agent transfer protocol. Since an

agent and host can use any language, it is imperative that a protocol exist to facili-

tate agent migration. Specifically, we discuss some of the issues involved with agent

migration and illustrate how the DADS solves some of these issues using function-

ality provided by the module system. Last, a development strategy for the transfer

protocol is presented.

In addition to the development strategies discussed for each part of the DADS,

Chapter 3 provides a detailed discussion of its current implementation. This includes

an in-depth view of the dispatching system and state-machine implementations that

make the overall DADS daemon, and module system work.

Chapter 4 presents a simple example to illustrate the operation of an agent in the

context of the DADS system. In particular, it presents a detailed look at a simple

intrusion detection agent executed within the DADS infrastructure.

To conclude, Chapter 5 presents a summary and some proposed advancements to

the DADS.
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CHAPTER 2

DADS DESIGN

There are many issues to consider in the design of a new agent system. For

some systems, speed is preferred over portability. Similarly, security may be more

important than speed. Regardless of how the underlying system is optimized, it

must facilitate the execution and migration of agents across networks. For migration

to occur between unrelated network domains (i.e., corporations, universities, etc.)

the agent system must be portable enough to execute on a variety of architectures.

Further, it must use a security model that can guarantee a secure environment for

all entities involved (i.e., agents, hosts). In general, an agent system addresses the

issues specific to the applications they are designed for. For instance, agent based

e-commerce favors security. Likewise, scientific computing would benefit from fast

and efficient agents. To address these issues, the DADS is designed to offer an agent

system that facilitates agent execution and migration, while at the same time offering

a customizable platform that can adjust to fit the needs of its applications. This

chapter describes the organization of the DADS, focusing primarily on the major

parts that contribute to its operation.
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DADS Organization

The DADS is designed to accept a heterogeneous blend of agents on a variety of

hosts that span unrelated network domains. Illustrated in Figure 2.1, the DADS is

made up of several interrelated parts, namely a daemon and a set of loadable modules.

Described in further detail later, each part contributes to the overall operation of the

DADS, allowing it to perform its primary goal, the acceptance and execution of mobile

agents.

Service
Module

Service
Module

Service
Module

DADSD DADSM

.

.

.

Incoming
Agent

Host

DADS Daemon

Figure 2.1: DADS Architecture

To participate in a mobile agent infrastructure, a host must provide an entry point

for incoming agents. This requires a network access point, generally a TCP network

port, which is understood by all agents and hosts that participate in the particular

agent system. To achieve this, the DADS relies on a daemon process, labelled DADS

daemon in Figure 2.1, which is designed to listen on a standard TCP network port for
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incoming agents. As we discuss in Chapter 3, the DADS can be adapted to support

other network protocols, not just TCP/IP.

In addition to network access, the DADS is also responsible for two other impor-

tant functions. The first is the management of the service module system. Discussed

in further detail later, modules provide a limitless library of services ranging from lan-

guage availability and security to fault tolerance. Consequently, a host may offer any

combination of services. That is, it is likely that different hosts on different networks

will offer their own selection of services. Hence, an agent cannot presume certain

properties (i.e., language, security) will be available on every host that it attempts

to migrate to. Since an agent is autonomous, it must be able to determine whether

the available resources on a remote host will allow it to execute after it migrates.

Therefore, the second function of the DADS is to provide a transfer protocol (TP) to

facilitate this decision making process. An integral part of the DADS system, the TP

is an important mechanism in the acceptance and execution of heterogeneous agents.

Just like any other agent system, the DADS has its own definition of an agent.

Since the DADS supports a wide range of services through its module system, it can

potentially support a wide range of agent languages and functionality. Consequently,

for an agent to take advantage of these available services, it must be flexible in its

implementation. That is, the agent must be able to support a heterogeneous blend
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of data, regardless of the structure and content. To do this, DADS agents are similar

to the agents used in TACOMA, hence, they act as descriptive containers which

alleviates the limitation on content. Described later, a DADS agent facilitates code

mobility for a wide variety of languages.

The DADS is heavily influenced by the design of today’s agent infrastructures.

Instead of contradicting the many ideas that have been introduced by these systems,

the DADS combines aspects of these concepts into a single agent platform.

DADS Agent Design

Traditionally, there are many different definitions of an agent. For AgentTcl, an

agent is a state-captured image of an interpreter context, whereas Aglets and Mole

agents are suspended JVM threads. TACOMA agents are high-level Tcl Procedures.

Regardless of the system, the common property shared among the agents is that

they contain a set of instructions and data. The instructions define the actions and

behavior of an agent, whereas the data stores agent state.

Without a supporting infrastructure, agent mobility is impossible. In AgentTcl,

agents cannot transfer unless they migrate to hosts running the AgentTcl system.

Likewise, Telescript agents are unable to execute remotely unless a Telescript engine

is available. In general, agents are dependent on their infrastructure for mobility and

22



execution. Frequently, mobility is achieved through special functionality that is built

into the infrastructure core. Thus, when an agent requires transfer, it calls functions

that package and transmit an agent to another host. In general, this functionality is

placed directly into a language execution environment (i.e., modified virtual machine),

thereby limiting the agent language to that of the execution platform. This creates

an agent that is subject to all of the (dis)advantages of that particular language

platform (i.e., speed, security, portability). Consequently, dependencies lead to niche

infrastructures that work solely with agents of their own design.

In the context of DADS, an agent uses a design that is influenced by the TACOMA

system. Expanding on its briefcase and folder concept, DADS agents act as containers

(i.e., briefcase) for three distinct segments (i.e., folders). Unlike TACOMA where

a briefcase can contain any number of folders, a DADS agent always contains the

following three segments:

Code: Stores instructions that are used to determine the behavior of an agent. This

segment can contain any arbitrary sequence of bits. Thus, it can store any

language, byte-code, or state-captured image.

Data: Stores state information and gathered data used by an agent during execution.

This segment may also contain any arbitrary sequence of bits.
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Properties: Stores a description of the code and data segments. Thus, the proper-

ties (i.e., language, security, fault-tolerance requirements) of an agent can be

identified.

.

.

.

.

.

.

Code
Action = NULL
Foreach $action in Task

$result = Execute ( $action )

Transfer ( Itinerary[$index] )

$index = Evaluate( $result )

Language = pseudocode
Compression = Burrows−Wheeler
Authentication = Proxy Certificate
Fault Tolerance = None

Data
Itinerary[0] = node_1
Itinerary[1] = node_2

Itinerary[n] = node_n

Task[0] = Action_0
Task[1] = Action_1

Task[m] = Action_m

Properties

Figure 2.2: A DADS Agent

Further illustrated in Figure 2.2, code and data segments are complemented by

the descriptive information found in the properties segment. This properties segment

is very important to the operation of the DADS. Since the DADS does not limit the

contents of an agent’s code and data segments, DADS agents are free-form. This

means agents can use any format for their language and data. When they are mobile,

agents become free-form autonomous entities. If they are used across heterogeneous

networks, it is impractical to assume that computing resources on every host are the
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same. Nevertheless, an agent must be able to migrate, hence, it must be able to deter-

mine whether it can execute on a remote host. Without some form of identification,

an agent cannot compare the available resources on a host with its requirements for

migration and execution. To address this, DADS agents are equipped with a prop-

erties segment. Similar to a badge in Mole, the properties segment enables an agent

to have knowledge about itself (i.e., language, security, fault-tolerance requirements).

When used in conjunction with a transfer protocol, this knowledge allows us to ex-

ploit the specifications of an agent in terms of its requirements and its capabilities.

As a result, an agent can map knowledge of itself onto its knowledge of a host (i.e.,

language platforms, security, fault-tolerance mechanisms). This allows it to make an

informed decision about whether it can migrate and execute on a remote host. Simi-

larly, when a host requires authentication, this properties segment allows the host to

be able to understand whether the agent is capable of supporting the authentication

it requires. Further, it avoids an agent format that is dictated by the implementation

details of the infrastructure.

Properties

In contrast to the format used with the code and data segments, the format of

the properties segment is fairly restrictive. A restrictive format is imperative since an
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agent must be able to reference knowledge of itself quickly. Further, the format must

facilitate a concise description that can succinctly describe all relevant information

about the agent. To do this, the DADS uses a descriptive element which we refer to as

a property structure. In general, a property structure contains four distinct elements:

Property Label: An identifier which labels the property as a capability (c), require-

ment (r), or both (b). This field facilitates the construction of requirement and

capability sub-trees used with the transfer protocol.

Property ID: A standard number used to refer to a particular service. This number

could be defined according to a local administrative domain or it could refer

to a standardized number similar to the management information base (MIB)

used for SNMP [6]. When moved to a global scale, this would require a globally

accepted standard defined by a centralized unit, such as the Internet Assigned

Numbers Authority (IANA) [14].

Property Name: A string used to describe the particular property. For instance, the

Perl interpreter may use a Property Name of “Perl”. In general, this would be

used whenever the property ID cannot be matched.

Sub-Properties: A list of properties that further describe the particular property. For
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instance, an agent may have an “Interpreter” property that consists of the sub-

property “Perl”. Further, the “Perl” sub-property may contain a “Version”

sub-property.

Continued
Properties

Continued
Properties

Continued
Properties

sub_prop[0]:
sub_prop[1]:
sub_prop[2]:

prop_id:  0.0.0.0

prop_name:  "Compression"
sub_prop[0]:

prop_name:  "Security"
sub_prop[0]:

sub_prop[0]:

sub_prop[0]:

prop_id:  0.0.2.0

prop_id:  0.0.3.0

prop_id:  0.0.1.1
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Figure 2.3: Property Hierarchy

Further illustrated in Figure 2.3, the property structure uses its sub-property element

to form a hierarchical description of an agent, which we refer to as a property hierarchy.

In this particular example, the agent’s description is simple. The root represents the

Property property from which a language, security, and compression sub-property

are contained. As we descend the branches of this hierarchy, the agent description

becomes more specific.
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In addition to the description of an agent, property structures are also used by

the DADS daemon to describe its loaded modules. Thus, property structures can be

exchanged to determine whether agents can migrate and execute on remote hosts.

Since an agent and a remote DADS-enabled host would use the same hierarchical

format, it is possible to execute fast search algorithms to determine whether an agent’s

property hierarchy can match a subtree in the hosts property hierarchy.

In general, a property hierarchy contains descriptive paths that describe the re-

quirements and capabilities of an entity (i.e., host, agent). In the context of the

DADS, a requirement is defined as the functional service that is needed by an entity

to successfully perform its tasks, whereas a capability is defined as a service that an

entity can support. For instance, if an agent is written in the Perl language, it needs

a Perl interpreter to execute, hence, the agent property hierarchy would contain a

path in the property hierarchy that specifies the Perl interpreter as a requirement.

Juxtaposed, a host does not need the Perl interpreter to execute, however, it needs

to know that this service is available for agents to use. As a result, the host’s prop-

erty hierarchy would contain a path in its property hierarchy that indicates the Perl

language interpreter as a capability.

Similarly, it is common for a host to use a form of authentication that will verify

an agent’s authenticity. In order to perform its task, an agent may not need to
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authenticate, however, it is imperative that the agent understand that it can support

a form of authentication if it is required by a host. Consequently, the agent’s property

hierarchy will contain a path to a capability that indicates that it can support the

desired form of authentication. Likewise, a host may want authentication to occur

before an agent is allowed to execute, hence, it will contain a path to a requirement

that indicates the form of authentication that must be satisfied.

In the context of a property hierarchy, the delineation between a capability and a

requirement is determined by the agent and host. That is, when an agent engages in

the transfer protocol, it sends a subtree of properties derived from the paths in the

property hierarchy that it has marked as capabilities. When this subtree is received

by a host, it is compared to the requirements subtree on the host. This allows the

host to select, from the agent’s capability tree, the service it wants the agent to use.

Similarly, after the host has made a decision, it sends its capability subtree to the

agent, thereby allowing it to decide which service (i.e., authentication) it would like

to use. In general, an agent and host do not send their complete property hierarchy

across the wire, instead they send subtrees that have been derived from it.
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Development Strategy

A DADS agent is best described as a mobile container for code and data. It

provides a containment structure used to organize and describe arbitrary sequences

of code and data. A DADS agent is separated into three segments. As discussed

above, each of these segments hold a piece of information that is integral to an agent’s

operation. Since there are no limitations on code and data, a DADS agent provides

a general vehicle for code and data transfer. This generality motivates a simple

implementation. Illustrated in Figure 2.4, we present the basic format for an agent

as it is used within the DADS infrastructure. As the code exhibits, an agent contains

three distinct pointers, namely Code, Data, and a list of Property structures. In our

initial implementation, the property structure has been kept relatively simple. If

further attributes are needed to describe a property, they can be added. For now,

we have included the four fields: a label label, a property id prop id, a property

name prop name, and a property pointer *sub prop which facilitates the creation of

a property hierarchy.

It is interesting to note how simple a DADS agent is. As discussed above, one

of the main goals is to avoid an agent that is far too dependent on its underlying

infrastructure. An agent system should facilitate mobility without placing a high

number of restrictions on its agents. As Figure 2.4 shows, a DADS agent offers an

30



/* A Property Structure */
typedef struct service prop {

enum { B,C,R } label; // b = both, c = capability, r = requirement
long prop id;
char prop name[MAXNAMELEN];
struct service prop *sub prop[MAXSUBPROPS];

} Property;

/* An Agent */
class Agent { 10

public:
enum agent field { CODE, DATA, PROPERTY };
void *getField(agent field af);
void setField(agent field af, void *val);

private:
int PropLength;
int CodeLength;
int DataLength;
Property *Properties; 20

char *Code;
char *Data;

};

Figure 2.4: Agent Structure
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interface to the contents of the agent without limiting its contents. This allows any

segment of the agent to be easily referenced when it is needed.

The structure illustrated in Figure 2.4 is transparent to the user of a DADS agent.

Instead of writing the agent to fit this format, a user writes an agent in the language

of his/her choice and uses a special program called an injector to bootstrap an agent

into the DADS system. Consequently, this program creates the structure described

in Figure 2.4 by combining the code, data, and description of the agent. In addition,

the injector transmits the agent according to the transfer protocol to a remote DADS

enabled host for execution.

DADS Daemon

In order to participate in an agent system, a host must provide an entry point (i.e.,

TCP port) for agent acceptance. In addition, it must facilitate agent execution. In

Telescript, a virtual machine provides this functionality, handling both agent migra-

tion and execution directly. In contrast, AgentTcl uses a dedicated process (agentd)

which is responsible for accepting new agents and delegates them to independent

processes (i.e., interpreters) for execution. In general, a host participates in an agent

system by executing a daemon that can accept incoming agents. This daemon may

be directly involved in the execution of the agent, or it may off-load the execution

32



somewhere else. Regardless of how the agent is executed, it is the responsibility of

the daemon to define how the resources (i.e., languages, security, etc.) are used.

In a centrally managed network, node homogeneity is achievable. Since each

host is administered by a central authority, installation of a uniformly configured

agent system is possible. As discussed by Karnik and Tripathi [17], “In a completely

closed local area network...it is possible to trust all machines and the software installed

on them”. This level of trust is lost when an agent system is distributed across

heterogeneous networks. Since different institutions may employ orthogonal policies

(i.e., security, resource usage), it may not be possible to install a uniform configuration

across all hosts. Therefore, it is imperative that an agent system allow the network

administrator(s) to customize their hosts according to their own policies.

There are several issues to consider in the design of the DADS daemon. First,

it must be able to accept and execute migrating agents from remote hosts. When

we consider how general the DADS agent is, it is clear that an agent may contain

any form of code and data. Hence, the DADS daemon must be able to handle

any of the agent languages of its constituent agents. And second, it must provide a

customizable platform that can adjust to the policies of an institution. To do this, the

DADS daemon employs a design where the functionality for migration and language

execution are separated. Parallel to AgentTcl, this design allows the DADS daemon
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to focus on agent migration, allowing language execution to be off-loaded to other

processes.

Development Strategy

The main focus of the DADS daemon is to provide two services, namely the

acceptance of agents and the management of modules. Both of these services require

a clean and efficient interface that can handle high volumes of agent interaction.

Further, in order to run as a system level service, the final product must be simple.

The implementation of the DADS daemon is focused on an object oriented design.

Built using the object model found in Figure 2.5, the DADS daemon is organized such

that higher level objects provide simplistic interfaces to lower-level functionality. That

is, higher level objects are controllers of their encapsulated objects.

DADSD DADSM

Module

DADS

Service Objects

Controller Objects

Network

ASP MSP

Figure 2.5: DADS Daemon Object Hierarchy
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Located at the bottom of the object hierarchy, service objects encapsulate the low-

level functionality specific to a particular management function. Labelled Network

and Module, these objects provide an interface to functionality such as connection

handling, name resolution, and I/O. Hence, it is within these objects that the code

for socket manipulation (i.e., pipe, accept, read, write) is found.

At the next level up, we encounter two intermediate controller objects, namely

the Agent Service Protocol (ASP) and Module Service Protocol (MSP) objects. It is

within these objects that the protocols specific to DADS (i.e., agent delivery, module

loading) are defined. In particular, methods provided by the Network object are used

by the ASP object to execute the delivery protocol. Similarly, methods provided by

the Module object are used by the MSP object to execute the loading protocol. As

Chapter 3 explains, the ASP and MSP objects encapsulate the state-machines that

facilitate execution of the particular protocols.

Next, the ASP and MSP objects are placed within a DADS Delivery (DADSD)

and DADS Module (DADSM) object, respectively. As an added layer of control,

the DADSD and DADSM objects provide a layer of abstraction where a list of ASP

and MSP objects can be managed. This is advantageous for future development

since we can derive other ASP objects with services other than the agent transfer

protocol. For instance, we could create an ASP object that listens for management
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data, or an ASP object that interacts with remote DADS daemons to handle faults.

Further, this allows the DADSM to maintain functionality that could be used to do

dynamic shutdown and loading of modules in the event that a service has been idle

for an extended period of time. In general, this added layer of abstraction separates

the dispatch functionality of the DADS object from the more in-depth protocol level

functionality provided by the ASP and MSP objects.

Finally, the top of the object hierarchy contains the DADS object. Further dis-

cussed in Chapter 3, this object is designed to dispatch service among its member

DADSD and DADSM objects. It is designed to wait for a request (i.e., connection,

data available) from both the network and from the modules, and dispatch service

accordingly. Consequently, the DADS object is responsible for calling the appropri-

ate member functions within the DADSD and DADSM to handle requests. They, in

turn, call member functions that perform the specific protocol defined within the ASP

and MSP objects, which use the functionality provided by the Network and Module

objects, respectively.

Modules

As discussed above, the DADS daemon is responsible for the management of its

service modules. A module is a process that is started by the main DADS daemon,
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hence, it can communicate with the DADS daemon using various forms of interprocess

communication (i.e., pipes, FIFO, sockets). A module can read data sent to it by

the DADS daemon from a standard input channel (see Figure 2.6) and it can use

its standard output channel to write data back. Consequently, a DADS module is

designed to read data, perform a function on that data (i.e., agents), and possibly

rewrite the processed data back to the DADS daemon.

From
DADS stdout

Specific Module
Functionality

stdin
To
DADS

Generic Module

Figure 2.6: A Generic Module

When a module is started, it is not immediately recognized by the DADS daemon.

Instead, the module must engage in a loading protocol, thereby providing a description

of the service offered. In general, the loading protocol facilitates the construction of

a property hierarchy that is recorded within the DADS daemon. Further, the loading

protocol facilitates integrity checks to ensure that a module is authentic.
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When a module is loaded, it is described using the loading protocol, thereby facil-

itating the construction of a property hierarchy. For a host, this property hierarchy

contains a root property, referred to as Property. Similar to the agent’s root property,

this property serves as an initial search point for property comparison. As modules

are loaded, they are registered as sub-properties of the host’s root property. Thus, if

a security module is loaded, it is loaded as a security sub-property and could contain

further sub-properties that are more specific to that particular service. Likewise, if

language and fault-tolerance services are loaded, they would be included as language

and fault-tolerance sub-properties, respectively.

Module Chains

A major advantage of modules is realized through a DADS-specific concept re-

ferred to as chaining. Thus far, a module is described as a single process that interacts

with the DADS daemon. With chaining, a module can interact with other modules,

using one of two methods. The first method, illustrated in Figure 2.8, allows one

module to load another module. For instance, a fault-tolerance module may load a

language module. In this example, the fault-tolerance module receives data directly

from the DADS daemon from its stdin where the data is processed and immediately

written to stdout. The language module, which reads its stdin, receives this data for
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execution. Consequently, the module chain forces the data to be pre-processed by the

fault-tolerance module before it is handed over to the language module for execution.

In contrast, the second chaining method allows each module to be loaded indepen-

dently by the DADS and the loading protocol is used to indicate that a chain exists.

In the example above, the loading protocol would flag the language module as being

dependent on the fault-tolerance module. This dictates that the data intended for

the language module must first be sent through the fault-tolerance module. Since the

two modules input and output channels are not connected, they are unable to talk

to each other directly. Instead, the modules route the data back through the DADS

daemon. Hence, incoming data is sent to the fault-tolerance module first. Once it is

processed, the data is sent back to the DADS daemon, which then routes the data to

the appropriate language module for execution. In general, chaining is limited only by

the imagination of a module’s developers. Further, module implementations should

be kept simple, whereas chains should be used to create more complex functionality.

Module Functionality

As independent processes, modules allow the DADS to offer concurrent services.

This is advantageous since there are many issues to address in an agent system [17].

For the DADS, we can build a module to address each of these issues, however, in
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this thesis we focus primarily on the following:

� Security

� Fault Tolerance

� Language Availability

Security Mobile agents require a secure environment that can guarantee that an

agent is safe from data tampering during both execution and migration. In contrast,

hosts must be able to trust that incoming agents will not pose a serious threat to

the host (i.e., cause a crash, destroy files, etc.). In general, both the agent and

host must be safe from malicious action, hence, an important aspect of any mobile

agent system is security. Fortunately, a great deal of research is being done in this

area [9, 15], thereby offering several philosophies regarding how agent security should

be managed. Even though the design and implementation of these philosophies far

exceed the scope of this thesis, it is important to recognize that an agent system

must be able to incorporate new ideas as efficiently as possible. To accomplish this,

the DADS module system is designed for quick integration of the latest technologies,

including security. As illustrated in Figure 2.7, the DADS can handle any type of

security service, given that the module is written according to the design principles

stated above.
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It is important to authenticate agents before they are allowed to execute. If an

agent does not authenticate, a host cannot determine an agent’s source. Further, if

the agent is malicious, it is imperative that the agent be traceable back to its author.

Simple issues such as these are what drive an agent system to support a method

for agent authentication. For the DADS, authentication can be realized using one

or more authentication modules. This may include methods that support public-key

cryptography, etc.

In addition to authentication, the integrity of an agent is extremely important to

the success of the agent paradigm. Unless there are mechanisms designed to prevent

it, agent tampering (i.e., modification of an agent) is an effective way to destroy the

integrity of an agent. In particular, no entity (i.e., host, another agent) should be

able to modify an agent’s contents without its permission. In general, it is difficult
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to prevent tampering, however, it is relatively simple to detect when a change has

occurred [23]. Therefore, it would also be advantageous for DADS to include a set of

modules that can detect when agent tampering has occurred.

Any agent system must provide a robust model for security. In AgentTcl, certain

aspects of agent security are addressed using PGP [13]. Other systems, such as

TACOMA, employ a security model based on the concept of electronic cash [16]. In

general, agent systems use security models that best fit the applications they are

designed for. The DADS is no different, yet its modular design allows additional

security mechanisms to be loaded as they are needed.

Fault Tolerance In addition to security, agents must be able to recover from fatal

errors. Since an agent executes code on a remote host, agent failure may introduce

data loss. Worse, fatal error could destroy an agent, losing it altogether. Nevertheless,

if agents cannot survive in a relatively hostile environment (i.e., the Internet), the

success of agent based computing is hindered. Similar to its dependence on a platform

for execution, an agent is fully dependent on its underlying infrastructure for fault

tolerance. However, just as there are modules to support several mechanism for

security, a module like the one shown in Figure 2.8 can be added, thereby adding

mechanisms to address fault-tolerance.
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Figure 2.8: Fault Tolerance Module

To further illustrate the need for fault-tolerance, consider an agent that has exe-

cuted for several hours gathering stock information in order to make buy/sell deci-

sions. If this agent migrates to a host experiencing hardware problems, there is a high

probability that a fatal error will occur. If an error occurs, the agent along with all

of its gathered data could be lost. From a user standpoint, fatal errors could directly

result in monetary loss.

There are several solutions that could be integrated into a module. One solution

suggests that it may be possible to require the agent to send a backup of its data, at

regular intervals, to a stable and secured host. However, a problem exists if the agent

is delayed and not terminated. If timeout mechanisms are used, the host on which

the agent was created may consider the delayed agent as dead. In response, the host
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might create a new agent to pick up where its predecessor left off. Generally, this new

agent will probably follow a strategy similar to the original agent. Thus, when the

original agent is no longer delayed, two agents will be working on the same problem,

which could result in an inconsistency.

In general, it is the responsibility of the infrastructure to recover from agent error.

In the example above, neither the agent nor the infrastructure is capable of detecting

a hardware failure. However, if the infrastructure communicates with other agent

systems, crashes and agent terminations could be monitored.

There are many techniques that could address the issue of fault tolerance. Instead

of implementing all of them, the DADS allows certain fault tolerant modules to be

loaded. When used in conjunction with the transfer protocol, agents can better decide

whether the available level of fault-tolerance can guarantee the survival of the agent.

Language Availability An agent infrastructure must provide a language environ-

ment to execute its constituent agents. Since many platforms exist, it is impractical

to assume that a multi-lingual agent system will support all known languages. Nev-

ertheless, to successfully execute agents, the agent system must make a subset of

these languages available. As discussed above, data is transferred from the DADS

daemon to its modules through standard input. Illustrated in Figure 2.9, several
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language modules can be available concurrently, making the DADS a multi-lingual

agent system.
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Perl Agent

C Agent
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Figure 2.9: Language Modules

In the DADS, language modules act as wrappers for more advanced language ser-

vices. In general, a module that is geared towards language availability will commonly

provide one or more of the following services:

Compilation: An agent is sent to the module from the DADS daemon as textual

C code. This code may require compilation before it is executed. Generally,

code compilation is used where execution speed is a concern and mobility is

infrequent.
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Interpreted Execution: An agent is sent to the module from the DADS daemon as

textual code or as a snapshot of an interpreter context. Most similar to the

agents used in TACOMA and AgentTcl, these agents are generally executed by

an interpreter.

Direct Execution: An agent is sent to the module from the DADS daemon as a snap-

shot of an operating-system process. These agents are highly dependent on the

underlying host architecture and are commonly used in environments that are

under a single administrative domain (i.e., LAN).

It is important to note that a language module is not limited to one of the above

services. If developers require other services, they are free to add a new module that

fits the needs of their application. However, as soon as a module is specialized for

speed (i.e., direct execution), the number of hosts that can execute agents within this

environment are limited. Likewise, when a module is designed for portability (i.e.,

interpreted execution) the speed of execution is degraded. Consequently, a tradeoff

exists between speed and portability. In other agent systems, this tradeoff is typically

decided by the system developers at build time.

In contrast, the DADS is a customizable agent system that allows the system

administrator(s) to decide at run-time, how resources are used to facilitate the agent
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paradigm. Using modules, the DADS is easily modified to support speed and/or

portability when it is needed. Further, since there are no limitations to the services

that can be offered as modules, the DADS acts as a portal to resources.

Development Strategy

The requirements of a module are simple. To be used with the DADS daemon,

a module must provide read and write capability on a standard input and output

channel, respectively. In addition, the module must be able to engage in a basic

protocol that allows the DADS daemon to load, unload, and manage the module.

As long as a module supports these functions, it can be written for any purpose.

Consequently, it is impossible for this thesis to list every possible path to building a

module, thus, we present a basic strategy for a module’s construction.

As discussed above, the code segment of an agent can take many forms. In partic-

ular, agent instructions can be text or they can be contained within a state-captured

image. Regardless of the format, the ultimate goal of an agent’s code is execution.

Therefore, a module must be loaded to execute the code of the agent. Illustrated in

Figure 2.10, we present a simple module which reads and executes agents written in

Perl.

To begin, the module code illustrated in Figure 2.10 loads an agent functionality
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#!/usr/bin/perl

use AF;

AF::Register();

while(1){
agent = AF::Read();
AF::Process(agent);

} 10

Figure 2.10: A Basic Perl Module

(AF) library which contains the functionality required to interact with the DADS.

Described later, libraries like this facilitate a concept referred to as platform migration.

In addition, the library may contain functionality, such as status routines, that may

be useful to an agent. Once the library is loaded, the module registers itself with

the DADS using the AF::Register subroutine. This function engages in the loading

protocol, which sends a description of the module (i.e., property structure) to the

DADS. Once it is registered, the module enters an infinite loop where it calls and

blocks on the AF::Read subroutine. When an incoming agent is sent to the module,

it records a reference to the agent in the agent variable. Next, this reference is

used as an argument to the AF::Process subroutine, which ultimately executes the

agent code. For this type of agent, the code could be executed using the Perl eval

function. If required, modules could also support mechanisms for state-capture. In
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this environment, the module may use a design parallel to AgentTcl where a modified

interpreter reads state-captured images from standard input.

In the example above, we ignore several important issues. First, there are no

mechanisms built into the module for multi-agent execution. When an agent is sent

to the module, it is given full control of the interpreter. This means that any new

agents will have to wait until the module has finished executing a prior agent. Further,

this module offers absolutely no security. Since it is using the normal Perl interpreter,

the agent can perform any function that is available in the Perl language. In general,

modules will use more advanced techniques than what we have displayed, however,

the basic principles stay the same.

Infrastructure Protocol

A free-form agent presents an interesting dilemma when it migrates. The DADS

cannot assume that certain resources are used by an agent. Likewise, an agent cannot

assume that the DADS has made certain resources available on a host. Therefore,

before migration can occur, it is imperative to have a facility that can communicate

the properties of both agent and host. To accomplish this, the DADS uses a special

transfer protocol (TP).

The TP is a multi-step exchange that is executed between an agent and a remote
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DADS daemon. As discussed above, agents require the availability of certain language

platforms, forms of security, and/or fault-tolerant mechanisms. Further, agents may

use a data format (i.e., compression) that requires pre-processing before the agent can

be executed. From a host standpoint, security is extremely important. In a secure

setting, a host may require an agent to verify, authenticate, and/or pass integrity

checkpoints before the agent is allowed to migrate. In general, the requirements of

both an agent and host must be met before migration can occur. Since a DADS agent

contains a properties segment, it is aware of what it must communicate. Similarly,

the DADS manages the loaded modules, hence, it is aware of the services it provides.

When an agent is ready to migrate, it contacts a remote DADS enabled host and

engages in a dialogue according to the TP. Figure 2.11 illustrates this process.

Agent

(3)Agent Migration

DADS Daemon DADS Daemon

Module
Manager

Network
&

Protocol
System

Security
Module

Language
Module

(1)Agent Properties

(2)Host Properties

Figure 2.11: The Transfer Protocol

In general, there are three phases to the TP. The first phase, labelled (1) in Figure

2.11 occurs when a connection is made to a DADS daemon. Once connected, an agent

50



transmits a subset of the information stored in its properties segment. This is received

by the DADS, allowing it to decide which services, if they are available, it would like

the agent to use. If the DADS is unable to support the agent, the TP protocol dictates

that the DADS return a negative reply and terminate the connection. On the other

hand, if the DADS can support the agent, the TP moves to phase (2). At this point,

the DADS replies with a property hierarchy that describes its selections from phase

(1). In addition, the host transmits its capabilities (i.e., authentication methods,

etc.). Similar to host’s decision making process, this information allows the agent to

decide which services, if they are available, it would like the host to use. Finally, if

the agent supports the host’s requirements, the TP moves into the agent migration

phase (3) where authentication, and the final transmission of the agent takes place.

Similar to how an AgentTcl agent executes, a DADS agent executes within the

context of a language module. If an agent is written in Perl, it will execute within a

module that supports the Perl language. Likewise, if the agent is written in C and

requires compilation, a module is written to provide this service. If state-capture

services are needed, modules can be written with state-capture support included.

Regardless of how an agent executes, it can engage in the DADS TP using one of

three methods.

The first method, shown in Figure 2.12a is referred to as direct migration. This
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method requires an agent to carry the code used to perform the TP. Thus, instead of

using special functionality provided by its language platform, agents reference their

own functionality. This avoids having to modify a language platform. Further, it

increases the self-sufficiency of the agent. However, direct migration increases an

agent’s size, making this form of migration less efficient.

The second method, shown in Figure 2.12b is referred to as platform migration.

This method is most similar to the forms of migration found in today’s agent systems.

Using a modified language platform, agents make function calls to special subroutines

that perform the TP. By moving the migration functionality into the language en-

vironment, agent size is reduced, hence, the agents are more efficient. In general,

platform migration is the fastest migration technique, however, it may require the

modification of a language platform.

Finally, the third method, shown in Figure 2.12c is referred to as proxy migration.

This method addresses the burden of extra code in direct migration. In addition, it

addresses the modified language environment requirement in platform-migration. In

this method, the TP is integrated into the DADS daemon. As discussed above, an

agent executes within the context of a language module. Further, all DADS modules

have the ability to interact with the DADS daemon. This allows a module to send

and receive data through an interface connected to the DADS. Proxy migration takes
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advantage of this interface, allowing an agent to send its image and data back to the

DADS. Thus, when an agent decides to migrate, it can contact the daemon and send

an agent image along with a destination address. The daemon then contacts a remote

DADS and performs the TP. If the transfer is successful, the agent on the local host

is terminated.

A tendency of today’s agent systems is to use some variant of platform migration.

While this facilitates faster and more efficient agents, it also tends to limit an agent

to a single methodology for code mobility. With the DADS, agents can supply their

own mobility functionality (direct migration), or use the DADS daemon to facilitate

migration (proxy migration).

Development Strategy

Autonomy introduces a significant burden on an agent. As discussed above, a

DADS agent is free-form and it is not limited to a standard system-wide language,

security model, or fault tolerance system. Similarly, the DADS daemon is also free-

form in that different hosts may provide different types of services. Therefore, we

have developed the TP to facilitate agent migration to remote DADS hosts.

The TP is responsible for the exchange of property hierarchies between an agent

and host. That is, it defines how to transmit a description regarding a host’s available
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resources to an an agent and vice-versa. Since both an agent and host are aware

of their properties, each can decide if migration should take place, based on the

properties of the other. Described in detail by Figure 2.13, the TP does not define

the content of the exchange. Instead, it defines the decision making process, which is

used by an agent and host to make a migration decision.

Illustrated in Figure 2.13, the TP also includes mechanisms for authentication.

In the DADS, an agent can migrate without performing any form of authentication.

While it may pose a security risk, we feel that this, along with many other config-

uration decisions, should be left to a hosts administrator(s). However, if security is

important, then authentication is facilitated by the TP. It is important to note that

the TP does not define the authentication method. This is provided by a security

module designed for that purpose. Instead, the TP calls the authentication service,

which ultimately returns a positive or negative response. This reply alters the TP

flow accordingly (i.e., accept or deny the agent).

In the context of the DADS daemon implementation, the TP code is encapsulated

within the DADSD object. As discussed above, the DADSD is responsible for agent

acceptance, hence, it follows that it is responsible for the TP. To be more specific,

the TP code is further encapsulated within an ASP object (see Figure 3.1). In the

initial DADS implementation, the ASP object is designed to handle agents using
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the TCP/IP protocol suite. Further, it provides a simple interface that the DADSD

object understands. The primary advantage of this is the expandability for future

protocols. If support for future protocols is required, the protocol definition and

functionality is simply placed in additional ASP objects. Therefore, as long as the

ASP object provides a standard interface, protocols can be added without having to

modify our core daemon code.
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CHAPTER 3

IMPLEMENTATION DETAILS

The focus of the DADS implementation is simple; an efficient, low resource foot-

print, system level application that can handle high numbers of incoming agents.

Further, it must be portable and robust enough to facilitate future development. To

accomplish this, we have used the C++ language to develop the major portions of

the DADS system. Supporting object orientation, C++ is a language that can sup-

port the proposed development strategies discussed above. In addition, it avoids the

overhead of using a virtual machine such as Java. This chapter discusses the details

concerning the implementation of the DADS system. In particular, it discusses the

DADS daemon and its dispatching system. Further, this chapter discusses the state-

machines that control and perform the transfer and module loading protocols. And

finally, it discusses the necessary functionality that is needed for a module to operate.

DADS Daemon

Probably the most important piece of the DADS system, the DADS Daemon

is responsible for incoming agents and the modules that execute them. Illustrated
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in Figure 2.5, the main DADS object is a container object designed to encapsulate

both the network (DADSD) and module (DADSM) systems. Since these services are

maintained in separate objects, it is also the responsibility of the DADS object to

coordinate and control them. In other words, the DADS object is responsible for

dispatching control to the DADSD and DADSM when they require attention (e.g.,

connection, data available). Hence, it is imperative that the DADS be able to detect

when one of its constituent objects require attention. This is accomplished using a

mechanism referred to as a hook, which, in its initial implementation is simply a file

descriptor (i.e., socket). Illustrated in Figure 3.1, when a DADS object is instantiated,

its constructor instantiates its member objects, dadsd and dadsm. Using the methods

provided by these objects, the DADS object retrieves a set of hooks from its members,

using the ReturnHooks method, which allows it to place the returned values into its

member array labelled hooks.

The DADS daemon is designed to run as a single process, hence, it must be

able to process data quickly and without any delay. Thus, if the DADS object is

a single daemon that dispatches service to the network and module systems, then

how does it give one side attention without introducing delays on the other? More

specifically, what happens if a connection becomes idle while sending large amounts

of data, while at the same moment a module requests service? If the logic waits until
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class DADS {
public:

void ServiceLoop();

private:
HOOK hooks[MAXHOOKS];
DADSD *dadsd;
DADSM *dadsm;

};
10

class DADSD {
public:

void ProcessRequest();
HOOK *ReturnHooks();

private:
ASP *asp;

};

class DADSM { 20

public:
void ProcessRequest();
HOOK *ReturnHooks();

private:
MSP *msp;

};

Figure 3.1: DADS Objects
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the connection has sent its full payload, the module may have to wait a significant

amount of time (maybe forever) before it is processed. Consequently, this is where

hooks are important.

Since they are descriptors, hooks can indicate when they are ready to perform I/O.

If they are set non-blocking [25], the functions that use the descriptors will return

if there is nothing to do (i.e., idle connection, full read/write buffer). When used in

conjunction with a multiplexing system call such as poll or select, the DADS dispatch

logic can sit and listen to the various hooks until I/O service is requested. Since

the descriptors are non-blocking, system calls such as read or write will only return

as much data as is available at that time. However, this comes at a price. Since

the system calls can return without reading or writing a complete payload, it is the

responsibility of the higher-level code to keep track of where the last operation left off.

To address this, the DADSD and DADSM objects maintain ASP and MSP objects.

These objects encapsulate independent state-machines that track the progress of the

protocol for each module and connection.

In general, the DADS daemon begins to service requests (i.e., listen on network,

load modules) when its ServiceLoop method is called. This function enters an infinite

service loop which listens for I/O activity, via the hooks, using the select system call.

If a request from the DADSD is detected (i.e., connection, data), the DADS processes
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the request with a call to the DADSD ProcessRequest method. Likewise, if a request

comes from the DADSM (i.e., load a module, module error, etc.), the DADS handles

the event in a similar fashion. While it can be argued that the DADSD and DADSM

objects are extraneous, their presence allows future developers to add ASP and MSP

objects that encapsulate state-machines for services that supplement the transfer and

module-loading protocols.

ASP

The ASP object provides the functionality used to engage in the agent transfer

protocol. As such, it is responsible for setting up a server which listens on the network

for incoming connections. In addition, since the daemon uses non-blocking descrip-

tors, the ASP object must maintain state for each connection. To accomplish this, the

ASP object maintains two very important member variables, namely a TCPServer

object and a list of Connection objects.

Derived from the Network service object, a TCPServer object encapsulates all the

functionality necessary to setup and maintain a TCP server. In addition, it provides

an Accept method, which accepts a connection and returns a TCPClient object. De-

signed to make the DADS networking code clear and concise, the objects provided

by the Network service object help to reduce code redundancy (see Appendix).
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class Connection {
public:

TCPClient *incoming;
Session *session;
Agent *agent;
int hook;
enum { IDLE,

CODE SPEC,
DATA SPEC,
PROP SPEC, 10

CODE CONTENT,
DATA CONTENT,
PROP CONTENT,
PROP CHECK,
AUTH INIT,
AUTH ENGAGE,
ACCEPTANCE

} p state;
unsigned int b read;
unsigned int b written; 20

};

Figure 3.2: Connection Object
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In order to track the state of each connected client, the ASP object also maintains

a list of connection objects. Illustrated in Figure 3.2, a connection object is used

to record client-specific information, where each member variable is used for the

following:

TCPClient *incoming: Tracks the network connection information, this is used to

communicate with the client.

Session *session: When a client engages in I/O with a module, a Session is created.

Thus, when a client sends data to a module, it uses the Session to determine

the module it is supposed to write to.

Agent *agent: Information that is gathered from the client is placed within this

Agent object (see Figure 2.4).

enum {...} p state: Records the current state of the connection as it relates to the

protocol of the particular ASP object.

unsigned int b read: Tracks how many bytes have been read in the current state.

unsigned int b written: Tracks how many bytes have been written in the current

state.
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As clients connect, new connection objects are created to track their progress

through the transfer protocol, hence, these objects are maintained for the duration

of the connection. If the client terminates the connection or is idle for an extended

period of time, the corresponding object is removed from the list, thereby closing the

connection.

With the connection data structure, it is possible to keep state for multiple connec-

tions and track their progress as they engage in the transfer protocol. In particular,

state is needed since non-blocking code must assume that a connection is sending

one-byte at a time (i.e., a latent connection). To better understand how the protocol

works, Table 3.1 defines each state and discusses how they interpret the incoming

data. It is important to note that at any point, the state can return to IDLE, which

indicates that some part of the protocol was violated (e.g DATA SPEC indicates an

agent size that is too large), thereby causing the connection to be terminated.

A particularly interesting feature of the protocol is located in the AUTH INIT

and AUTH ENGAGE phases of the protocol. Up to this point, an incoming agent

has sent all three of its segments to the DADS, however, the agent has not yet been

accepted. The reasoning behind this lies in the fact that some authentication pro-

tocols, particularly hashing and public-key mechanisms, may require that the agent

information already be present on the host. That is, in order for the authentication
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State Next State Description

IDLE CODE SPEC New connections begin in an IDLE
state. State transitions after the object
has initialized.

CODE SPEC DATA SPEC State transitions when the size (4 bytes)
of the code segment has been received.

DATA SPEC PROP SPEC State transitions when the size (4 bytes)
of the data segment has been received.

PROP SPEC CODE CONTENT State transitions when the size (4 bytes)
of the property segment has been re-
ceived.

CODE CONTENT DATA CONTENT State transitions when CODE SPEC
number of bytes have been received.

DATA CONTENT PROP CONTENT State transitions when DATA SPEC
number of bytes have been received.

PROP CONTENT PROP CHECK State transitions when PROP SPEC
number of bytes have been received.

PROP CHECK AUTH INIT or AC-
CEPTANCE

State transitions when the services are
selected from the incoming property hi-
erarchy.

AUTH INIT AUTH ENGAGE If authentication is required, state tran-
sitions when a positive reply is obtained
from authentication module.

AUTH ENGAGE ACCEPTANCE State transitions when agent has been
notified that it has been accepted.

ACCEPTANCE IDLE Return to IDLE state, and terminate
connection.

Table 3.1: ASP State Descriptions
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to occur, the module needs to have access to the complete agent. If we were to de-

lay the transmission of the agent until after authentication, then it is possible for

a remote agent to provide false information and perhaps send contents that do not

match the authentication. By sending the contents of the agent first, the particular

module can use the local copy instead of having to trust that the remote agent will

send valid data. Further, if interaction is required, the module can communicate with

the remote agent and use the local copy for verification.

MSP

The efficient implementation of a module management system creates a very inter-

esting problem. Since the DADS daemon can support simultaneous client connections,

a problem arises when multiple clients want to use the services of a single module.

For instance, several clients may need to participate in authentication. If only a single

authentication module is loaded, only one client can use that service at a time. This

is a problem since it not only degrades the performance of the DADS system, but it

also potentially makes the DADS vulnerable to a denial-of-service attack. Therefore,

it is imperative that the DADS employ a mechanism that can provide module service

for more than one incoming client. To address this, we have created the MSP object.

In practice, when the DADS loads a module, it create an MSP object. This object
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takes two parameters, namely a module name (i.e., filename to load) and a number

which dictates how many copies of the module to start. By starting multiple copies

of the module, the MSP object is able to manage a set of identical modules which

can be used to service concurrent connections. Thus, when a connection requires

service from a module, it creates a relationship between itself and one of the available

modules managed by the MSP object. This relationship, referred to as a session,

binds the client to the module for the duration of the client connection. By default,

an MSP object supports only one session per module. That is, no other connections

can interact with the module until the current session is terminated. In general,

the single session per module approach is not a panacea to the concurrent connection

problem (i.e., more connections than available modules); however, it provides a better

solution than having only a single available module.

To fully address the problem, an MSP object also supports a multiple sessions per

module mode. In this mode, only a single module copy is loaded, however, the module

is written to handle concurrent connections. Therefore, when multiple connections

require service from the module, separate sessions are created for each connection.

These sessions employ unique identifiers that are used to tag data. Thus, when a

module receives data from the DADS, it can use the tag to determine the source.

While this may complicate the implementation of a module, it avoids the overhead

68



of loading multiple modules.

class Session {
public:

Connection *client;
Module *module;
enum { IDLE,

BUSY
} s state;
MSP *msp;

};

Figure 3.3: Session Object

In order to track its sessions, the MSP object maintains a list of Session objects.

Illustrated in Figure 3.3, a session object uses its member variables to achieve the

following

Connection *client: Tracks the incoming connection so that information can be

written back to the connected client. This is similar to how a connection object

uses a session object to determine which module it needs to write to.

Module *module: Tracks which module the connected client is currently using.

enum {...} p state: Records the current state of the session. Currently only two

states exist: IDLE, which indicates that the module is available for use, and

BUSY, which indicates that it is being used.
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MSP *msp: Since a connection object maintains a session, this pointer allows the

connection object to directly reference the MSP that this session is a part of.

As discussed above, the MSP object, by default, maintains only a single session

per module. However, if the module is designed to support it, it can specify during

the loading protocol, that the MSP object should use multiple sessions per module.

Therefore, using these MSP objects, the DADS can provide a flexible interface that

allows its modules to decide on how they are used.

Module

A module is an independent process that is attached, via a pipe, to the main

DADS daemon. As such, the daemon must be able to organize module information

(i.e., state, pid, pipe information), into a single object that can be easily managed by

an MSP object. Introduced in Figure 2.5, the DADS daemon uses a Module service

object to encapsulate this module information. Further, this object is responsible

for loading and executing (i.e., fork and exec) an executable file. Therefore, when a

module object is instantiated, it takes a filename as a parameter and creates a child

process of the DADS daemon.

As soon as the child process is loaded, the code that has been started must im-

mediately engage in the loading protocol. In general, the loading protocol is a two
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step process, where the state of the protocol is maintained within the module object

discussed above. The first step, registers the module with the DADS daemon. In par-

ticular, this step facilitates the merging of the module’s property description into the

daemon’s main property hierarchy. Thus, in its most basic form, the loading protocol

only requests that a module send its property description to the DADS daemon. For

the loading protocol, this requires that a module object only keep track of two states,

namely a LOAD and READY state. When this object is in the LOAD state, data

coming from the child process is used for creating a property description. When the

full property description is received by the daemon, the module object transitions its

state to READY. At this point, incoming data from the module is either forwarded

to a client engaged in a session, or it is forwarded to another module (i.e., module

chain).

In practice, modules will most likely be written to load standard libraries that

incoming agents can use. In the event that an agent uses a form of direct migration,

no library is necessary since the agent contains all the functionality that it needs.

However, as soon as an agent uses platform migration, the agent assumes that certain

functionality is provided by the underlying execution platform. For a simple module

like the one described in Figure 2.10, the code loads a library (AF) to make a set

of functions and variables available for an agent to use when it executes. To better
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understand what is provided by such a library, Table 3.2 gives a description of the

functions and variables that are available to any agent that executes within this

environment. For this particular module, we assume that the module supports the

Name Context Purpose

Code Variable Holds the agent code. Could be modified by the
agent to create self-modifying code.

Data Variable Holds the agent data. Stores information such as
itinerary and agent state.

Prop Variable Holds the agent properties string. Stores informa-
tion such as itinerary and agent state.

Move Function Functionality used migrate an agent.
Register Function Registers the module with the DADS daemon.
Read Function Used to read an agent from the DADS daemon.
Post Function Used to write data, if necessary, to the DADS dae-

mon.
Process Function Used to execute the agent (i.e., eval).

Table 3.2: AF Library Functionality

single session per module mode, as described above. That is, only one agent will

execute in this environment at a time. Consequently, this allows the library to provide

the global variables: Code, Data, and Prop which can be used by the agent to access

its respective segments. When multiple agents are allowed to execute within a single

module environment, certain aspects of the library must change.
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CHAPTER 4

APPLICATION

The agent paradigm introduces an alternative method for solving problems in

distributed computing. Agents add a layer of intelligence to the more traditional

forms of remote programming, such as RPC and Mobile Objects. Further, agents

provide a level of autonomy not realized in other forms of remote programming sys-

tems. When combined, these qualities can be exploited to offer effective solutions to

many problems. In this chapter we provide an example application of the DADS. In

particular, the following example is designed to illustrate the migration and execution

of an agent, the operation of the transfer protocol, and the use of the DADS module

system. It is important to note that this example illustrates the operation of a simple

agent within a basic DADS environment, hence, we make certain assumptions about

the network in which the agent(s) exist.

Application - Intrusion Detector

The security of a network and its constituent hosts is an important responsibility

for any system administrator. Further, as the number of hosts on a network increase,
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so too does the overhead of monitoring each system for a potential compromise. When

network growth exceeds the monitoring abilities of its network administrators, some

systems may be ignored in favor of more mission-critical ones.

In many ways, this problem lends itself to a solution founded in traditional client-

server methods, where a centralized server listens as systems report, via the network,

their current security status. If the status of these systems is polled frequently,

a significant amount of network bandwidth may be wasted. To address this, the

administrator(s) could employ an agent based solution. That is, instead of introducing

large amounts of network traffic where clients repeatedly report normal status, an

agent may be deployed which can migrate to each host and take appropriate action

when abnormal status is detected. Illustrated in Figure 4.1, we present a Perl agent for

the detection of an abnormal process. Also, for this example, it is assumed that each

participating host has loaded the Perl module that has been discussed throughout

this thesis. For this example, an agent of this type may also contain additional

mechanisms for log-file analysis and file-system inspection. However, agent based

intrusion detection is beyond the scope of this thesis, hence, we focus on a simple

agent implementation to exemplify basic DADS principles.

In addition to code, the agent contains a segment for data. During execution,

this data may change according to how the agent perceives its environment. Before
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�
hostname = ‘hostname‘; // Retrieve the systems name

�
process list = ‘ps −axu‘; // Retrieve a list of running processes

@data fields = split(":",
�
AF::data); // Separate the fields in our data segment

�
home =

�
data fields[0]; // The first field is the initial host

if (
�
home eq

�
hostname ) {

// If we have been sent back to the original host,
// alert the administrator, because something is amiss!
print stderr "A system has been hacked!\n"; 10

return;
}

// Are any of these malicious programs running?
SWITCH: {

if (/ircd/) {
�
compromised = 1; last SWITCH; }

if (/DOS−master/) {
�
compromised = 1; last SWITCH; }

if (/hackedprogram/) {
�
compromised = 1; last SWITCH; }

�
compromised = 0;

} 20

// Uh oh, one of the malicious programs were running.
// Get a snapshot of the running process and migrate home.
if (

�
compromised ) {

�
AF::data .= ":" .

�
hostname . ":" .

�
process list;

AF::Move(
�
home)

}

@itinerary = split(",",
�
data fields[1]); // Retrieve our itinerary

�
to =

�
itinerary[rand

�
#itinerary+1]; // Select a random host to migrate to 30

AF::Move(
�
to); // This system is clean, move to the next host

Figure 4.1: Intrusion Detection Agent
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injection, the agent data segment contains the following information:

injector.nrl.csci.unt.edu: <--- (Injector Host)

alpha.ameslab.gov, <--- (Itinerary)

beta.nrl.csci.unt.edu,

gamma.csci.unt.edu,

delta.unt.edu

In general, an agent would contain more detailed data. For instance, it might reference

the data segment for known signatures of malicious programs. However, we have

reduced the data size for brevity.

The purpose of this agent is simple, detect and report when a host is execut-

ing one or more malicious programs. For this example, the agent assumes that the

ps, and hostname executables have not been replaced with trojaned versions. More

specifically, the programs return correct data when they are executed.

When this agent migrates to a host, it begins by retrieving a list of running

processes on the host. In addition, it records the name of the host that it resides

on. In order to perform its task, the agent retrieves data from its data segment, via

the global AF::data variable. Since the agent is written to understand the format of

its data segment, it knows how to parse the AF::data variable in order to retrieve

information.
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Once the agent determines the name of the host on which it currently resides, the

agent retrieves the name of the host that initially injected it. For this example, the

agent migrates between the hosts in its itinerary until it has found a compromised

host. Once it has found a host that fits the compromise criteria, the agent returns to

the host from which it was injected. Thus, as the agent code illustrates, if the current

host is identical to the injector host, then the agent has found a compromised host

and has returned home to alert the administrator.

When the agent migrates between hosts in its itinerary, it engages in a series of

checks to determine whether a system that it currently resides on has been compro-

mised. This involves a regular expression match that searches for particular strings

within a process listing (i.e., ps). If it finds a match, the agent flags a variable to

indicate that the host has been compromised. If a compromised host is found, the

agent records some basic information about the host (i.e., process listing and host-

name) and returns to the injector to report the status. Otherwise, the agent selects

a random host from its itinerary and migrates, repeating the process forever.

Thus far, we have described the goals and actions that the agent will take to

complete its task. If the agent was static, its execution would be simple; however,

our agent must be able to migrate randomly between four hosts found in its itinerary.

This means that at some point, the agent will have to engage in the transfer protocol.
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For this particular example, the agent uses platform migration, where functionality

to engage in the transfer protocol is provided by the library loaded by the module.

In order for the transfer protocol to work, the agent and the hosts listed in its

itinerary must provide property hierarchies that describe their capabilities and re-

quirements. Illustrated in Figure 4.2a, the agent’s property hierarchy is rooted with

the standard Property property which contains a sub-property path that describes its

only requirement, a version 5.6.1 Perl interpreter.

Similar to other data structures, a property hierarchy can easily be represented

using a textual string. This greatly simplifies transmission since it allows the agent

to carry its description as a text string. In its current implementation, the textual

format uses the same fields that were introduced with the property data structure

discussed earlier. Thus, to represent the agent’s property hierarchy, the textual string

appears as follows (newlines added for clarity):

(b 0.0.0.0 Property

(r 0.0.1.0 Language

(r 0.0.1.1 Perl

(r 0.0.1.1.1.5.6.1 v5.6.1)

)

)
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sub_prop[0]:

prop_id:  0.0.0.0

prop_id:  0.0.1.0
prop_name:  "Language"
sub_prop[0]:

prop_name:  "v5.6.1"

prop_id:  0.0.1.1
prop_name:  "Perl"
sub_prop[0]:

prop_id:  0.0.1.1.1.5.6.1

prop_name:  "Property"

r

b

r

r

(a) Agent Properties

sub_prop[0]:

prop_id:  0.0.1.1
prop_name:  "Perl"

sub_prop[0]:

prop_id:  0.0.2.1
prop_name:  "Python"

sub_prop[0]:

prop_id:  0.0.3.1
prop_name:  "Tcl"

prop_name:  "v2.1.3"
prop_id:  0.0.2.1.2.1.3

prop_id:  0.0.3.1.8.0.1
prop_name:  "v8.0.1"prop_name:  "v5.6.1"

prop_id:  0.0.1.1.5.6.1

prop_id:  0.0.1.0
prop_name:  "Language"sub

_p
ro

p
[0]:

sub
_p

ro
p

[2]:

sub
_p

ro
p

[1]:

sub_prop[0]:

prop_id:  0.0.0.0
prop_name:  "Property"

c

c

b

c

cc

c c

(b) Host Properties

Figure 4.2: Property Hierarchies
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)

To make this example interesting, suppose that in addition to a Perl module, each of

the hosts have also loaded two other language modules, namely Python and Tcl. Thus,

after the module loading protocol has occurred, each host should contain a property

hierarchy similar to the one displayed in Figure 4.2b. Similar to the agent, the host

also maintains a textual representation of its property hierarchy for transmission.

At this point, our environment consists of an agent and five hosts that are execut-

ing the DADS daemon. Each host has loaded the Perl, Python, and Tcl modules and

each are ready to accept incoming agents. Therefore, to begin agent execution, we

use the special injector program to build the agent and boot-strap it into the DADS

infrastructure. In particular, our injector program:

1. Reads the agent code.

2. Reads the agent data.

3. Reads the agent property description.

4. Connects to a remote DADS host.

5. Engages in the transfer protocol.
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As soon as the agent has been successfully injected, the agent is forwarded to a module

for execution. The agent is now fully autonomous, thus, the agent should not return

to the injector host until it has discovered that a malicious program is running on

one of the hosts in its itinerary.

An agent must engage in the transfer protocol to migrate to a remote host. For

the example agent, the transfer protocol informs a remote DADS that an incoming

agent would like to use the Perl interpreter. To accomplish this, both the agent and

host use their property hierarchy information to make decisions about the services

that are provided. This requires the exchange of property information, which is used

to initialize an environment for agent authentication (not used in this example) and

execution.

To better understand the transfer protocol, assume that our agent is to be in-

jected from the host, injector.nrl.csci.unt.edu, to a remote DADS-enabled host, al-

pha.ameslab.gov. Therefore, to inject the agent, we execute the injection program

which engages in an information exchange similar to what is displayed in Figure

4.3. For this agent, the exchange occurs in four steps. The first step transmits

the entire agent to the remote host. The complete agent is transmitted since many

forms of authentication (i.e., hashing, PKI, etc.) may require a complete image of

the agent. Discussed earlier, the host cannot trust that an agent is sending correct
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delta.unt.edu

The agent has no capabilities

the agent would be rejected.

agent + capabilities

Yes + requirements + capabilities

Yes + requirements

No requirements from host
thus, select from the host
capabilities, the execution
environment to use

Setup environment,
and indicate that the
agent is accepted

thus, if authentication was required

ACCEPTED

Terminate or continue
to execute in parallel
with the migrated image

injector.nrl.csci.unt.edu

Figure 4.3: Transfer Protocol Exchange
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authentication information, thus, a local copy is kept for verification. It is important

to note that this initial copy of the agent is the only copy that is sent during the

entire protocol. If the protocol results in agent acceptance, then the copy is sent to

a module for further execution and the remote agent is informed that the agent was

accepted. However, if at any point during the protocol the agent is not accepted (i.e.,

fails authentication, host cannot support agent), then this copy is deleted and the

remote agent is informed that migration was denied.

In addition to a copy of the agent, the first step of the protocol dictates that

the agent send a property hierarchy comprised of the agent’s capabilities. As Figure

4.2a illustrates, the example agent has no capabilities, only requirements. When the

host receives this information, it selects from the agent’s capabilities the services that

it wants the agent to use. If the host determines that the agent is not capable of

supporting a service which the host requires, the host denies the migration request.

In this example, the host does not have any requirements (see Figure 4.2b), hence,

the protocol moves to the next step.

Next, the host sends a reply containing two separate property hierarchies. The

first hierarchy describes the capabilities that were selected by the host for the agent to

use (in this case none). The second hierarchy contains the host’s capabilities. Similar

to how the host selected capabilities that it wanted the agent to use, the agent now
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uses this second property hierarchy to select the services it wants to use on the host.

If the agent determines that the host cannot support the services it requires, the

connection is terminated and the protocol is reset. In this example, the agent’s only

requirement is the Perl interpreter, which is supported by the host. Therefore, the

protocol moves to the third step where it replies with the selections that it made.

Finally, as soon as both sides of the protocol have agreed that they can support

each other, the host replies with ACCEPTED. This lets the remote agent know that

the copy (already local to the DADS) is being forwarded to a module for execution. In

general, when an ACCEPTED reply is received, the agent that initiated the migration

has two options. The first option is to terminate, allowing the recently migrated code

to continue the agent’s legacy. The second option is to continue execution, thereby

allowing the migrated code to execute in parallel with itself.

There are several issues that we ignore in this example. First, if a language module

crashes during agent execution, the agent is lost. Second, there are no mechanisms

for security, hence, neither a host nor agent can be fully trusted. While they are both

important issues, each of these problems could be solved as described earlier with the

fault tolerance and security modules.
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CHAPTER 5

SUMMARY

The application of an agent-based solution requires a system that provides delivery

and execution services for mobile code and data. In addition, such a system should

be efficient and secure. There are many agent systems that answer this demand, how-

ever, many of them are based in virtual machine architectures as well as proprietary

designs. Not only has this impeded the advancement of the agent paradigm, but it

has also created a library of agent systems that use fairly complex methods which are

incompatible with other systems. While standards such as FIPA and MASIF have

been developed to address issues such as system interoperability, many systems still

do not conform to them.

To address some of these issues, this thesis has presented the design and imple-

mentation of a Distributed Agent Delivery System (DADS). Designed for simplicity

and flexibility, the DADS is an agent platform focused on the delivery and execution

of multi-lingual agents. Using a modular design similar to AgentTcl, the DADS uses

its module system to act as a gateway to resources. In addition to language execu-

tion, the DADS module system potentially provides access to an unlimited range of
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services.

This thesis has discussed some of the advantages and disadvantages found in many

of todays mobile agent systems. This included a review of several infrastructures,

ranging from those that use a strictly virtual machine design (i.e., Telescript, Aglets)

to systems designed for multi-lingual agents (i.e., AgentTcl). Each of these systems

offer new concepts that have influenced the DADS design in one form or another.

In addition, this thesis has discussed the issues that are encountered when design-

ing an agent for a mobile agent infrastructure. As described above, agent systems

commonly use an agent design that has been developed to fit the needs of their own,

sometimes proprietary, infrastructure. More specifically, the agent is defined to fit a

set of particular requirements (i.e., language, security, etc.) which optimize proper-

ties of that system. Commonly, this limits the portability and interoperability of the

system when it is used in conjunction with other agent systems.

In contrast to a proprietary design, the DADS uses an agent that exists solely

as a container for code mobility. Strongly influenced by the agents of TACOMA,

a DADS agent relies on a three segment model which is used to store code, data,

and a set of descriptive properties. Without limiting an agent’s content, code and

data segments store arbitrary sequences of bits. This means that DADS agents are

inherently multi-lingual, hence, they can use any language and format for their data.
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However, it is imperative for this type of free-form agent to understand its capabilities

and requirements. Thus, DADS agents also contain a specially designed property

segment to maintain a concise description of the agent’s code and data segments.

A DADS daemon addresses the requirements of a host by allowing it to participate

in agent based solutions. In particular, the DADS satisfies a host’s obligation to

accept and execute mobile agents from a network. Since a host ultimately executes

an agent using its resources, it is imperative for that host to provide an entry point.

As a result, the DADS uses its daemon to listen on the network for incoming agents.

When an agent has been accepted, it is forwarded by the daemon to its collection of

loadable service modules. In the DADS, modules are responsible for providing agent

services.

Influenced heavily by AgentTcl, modules allow the DADS to support a hetero-

geneous blend of agents. Supporting services ranging from language execution and

security to fault-tolerance, modules provide agents with access to resources. In addi-

tion, this thesis discussed the design and implementation of a generic module, which

can be used as a model for the design of future modules. In general, modules provide

the system administrator(s) with a customizable agent system that can be adjusted

to fit the policies of an institution.

As a binding mechanism between the free-form DADS agent and the customizable
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DADS daemon, the DADS system uses a special transfer protocol to facilitate agent

migration across heterogenous systems. More specifically, it defines the procedure

used to exchange information from an agent’s property segment, which allows each

entity to decide whether it can support the services of the other.

Agents are autonomous entities. Further, if an agent creates another agent,

through a process referred to as cloning, then it is possible to have a very large

number of agents in a network. If left unchecked, this could potentially lead to an

excessive population causing degradation in network performance. In general, agent

population control is an important topic to consider in an agent system. However,

since it is a fairly new topic, there are many new ideas that have been proposed to

solve this problem. In particular, a naming system could be used where new agents

are registered with a central naming authority [22]. Thus, before a new agent is cre-

ated, the naming authority could be queried facilitating a decision whether too many

agents already exist. Second, a biological model based on pheromones could also be

used [2]. Thus, as agents move from host to host, they leave a virtual residue that

decays over time. As new agents migrate to this host, they use the residue to deter-

mine the last time an agent visited that host. In general, this will enable an agent

to make a more informed decisions about cloning. Regardless of its implementation,

experiments in population control require an agent platform that can emulate new
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concepts without sweeping redesigns of the supporting infrastructure. In the DADS,

concepts like this can be added using new modules, making it a very attractive system

for experimental agent research.

Future Work

Conforming to the strategies discussed throughout this thesis, the implementation

of a stable version of the DADS system is almost complete. Having developed the

foundation code for the DADS daemon, future development is now focused on the

creation of a library of service modules. Since they provide the core agent services, the

development of additional modules will hopefully increase the viability and usefulness

of the DADS system. In particular, it is imperative that the initial focus for module

development be placed on mechanisms for security and fault-tolerance. Currently,

work is being done to adapt the security model used for Grid computing [11] using

proxy-certificates [24] into a module based agent-authentication mechanism. Further,

development has already begun on modules that support the Python, Perl, and C

language.

Future development will address the design of tools that can be used for the

management and visualization of agents executing within the DADS system. In

particular, tools that can graphically monitor the status of DADS-enabled hosts and
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report the identities of resident agents would benefit both administrators and users

alike.

As soon as a stable module base has been established, DADS development will

move into a performance analysis phase. This phase will provide a review of the

DADS as it stands in comparison to other agent systems. Since it provides a generic

platform for agent execution, it is expected that the DADS will perform slower when

compared to systems such as AgentTcl. In particular, the transfer protocol will have

a significant effect on the amount of time required by an agent migration. Since the

AgentTcl system knows the exact format of the agents that it receives, it will not need

to engage in an agreement protocol like that of the DADS. Consequently, this creates

another area for future work, optimizing the transfer protocol. In addition, work will

be done to migrate certains aspects of the transfer protocol to use a standards based

format, such as the eXtended Markup Language (XML).

In its current implementation, the DADS has been developed using the libraries

and functionality provided by the Linux1 operating system. In the future, the DADS

will be ported to other operating systems, making it cross-platform.

The DADS is an extendable agent system designed for flexibility. As such, it

provides a solid base for future work in agent research.

1Linux is a trademark of Linus Torvalds
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APPENDIX A

NETWORKING OBJECTS
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//////////////////////////////////////////////////////////////////

//

// The following is a declaration of the Network class.

// This class is designed to encapsulate all information

// related to networking. It provides a super class from

// which Client and Server objects will derive methods.

//

//////////////////////////////////////////////////////////////////

#ifndef __NETWORK_H__

#define __NETWORK_H__

class Network {

public:

Network();

~Network();

struct hostent *GetHostByName(char *hostname);

int GetServiceByName(char *servname);

int GetSocketNumber();

int Read(char *buf,int buflen);

int Write(char *buf,int buflen);

int SetSockOpt(int optname, const void *optval,

socklen_t len);

int SetNonBlock();

void SetSocketNumber(int sd);

void SetTimeout(int seconds);

int IsTimedOut();

protected:

int timeout;

int sockdesc;

struct sockaddr_in sockinfo;

timeval last_activity;

};

#endif __NETWORK_H__
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//////////////////////////////////////////////////////////////////

//

// The following is a declaration of the Server class

// This class is designed to encapsulate all information

// related to a tcp/ip server. This class is derived from

// the Network class which contains a wide variety of network

// functionality not specifically restricted to a server.

//

//////////////////////////////////////////////////////////////////

#ifndef __SERVER_H__

#define __SERVER_H__

#include "Network.h"

#include "Client.h"

class Server : public Network {

public:

Server(int domain, int type, int proto, int port);

~Server();

void Bind();

void Listen();

Client *Accept();

void Close();

void Shutdown(int how);

protected:

};

#endif __SERVER_H__
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//////////////////////////////////////////////////////////////////

//

// The following is the declaration of the Client class

// This class is designed to encapsulate all information

// related to a tcp/ip client. This class is derived from

// the Network class which contains a wide variety of network

// functionality not specifically restricted to a client.

//

//////////////////////////////////////////////////////////////////

#ifndef __CLIENT_H__

#define __CLIENT_H__

#include "Network.h"

class Client : public Network {

public:

Client(int cs, const sockaddr_in *addr,

socklen_t len);

Client(int domain, int type, int proto, char *host,

int port);

~Client();

void Connect();

void Close();

void Shutdown(int how);

protected:

socklen_t socklen;

};

#endif __CLIENT_H__
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//////////////////////////////////////////////////////////////////

//

// The following is a declaration of the TCPClient and

// TCPServer class. These classes are designed to

// encapsulate all information related to TCP specific

// client and servers. These classes are derived directly

// from the Client and Server classes.

//

//////////////////////////////////////////////////////////////////

#ifndef __TCP_H__

#define __TCP_H__

#include "Client.h"

#include "Server.h"

class TCPClient : public Client {

public:

TCPClient(char *host, int port);

~TCPClient();

};

class TCPServer : public Server {

public:

TCPServer(int port);

~TCPServer();

};

#endif __TCP_H__
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//////////////////////////////////////////////////////////////////

//

// The following is a declaration of the UDPClient and

// UDPServer class. These classes are designed to

// encapsulate all information related to UDP specific

// client and servers. These classes are derived directly

// from the Client and Server classes.

//

//////////////////////////////////////////////////////////////////

#ifndef __UDP_H__

#define __UDP_H__

#include "Client.h"

#include "Server.h"

class UDPClient : public Client {

public:

UDPClient(char *host, int port);

~UDPClient();

};

class UDPServer : public Server {

public:

UDPServer(int port);

~UDPServer();

};

#endif __UDP_H__
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