

VISUALIZATION OF SURFACES AND 3D VECTOR FIELDS

Wentong Li, M. Sc.

Thesis Prepared for the Degree of

MASTER OF SCIENCE

APPROVED:

Robert J. Renka, Major Professor
Tom Jacob, Committee Member
Karl Steiner, Committee Member
Robert Brazile, Chair of Graduate

Studies in the Department of Computer
Science

Krishna Kavi, Chair of the Department of
Computer Science

C. Neal Tate, Dean of the Robert B.
Toulouse School of Graduate Studies

UNIVERSITY OF NORTH TEXAS

August 2002

Li, Wentong, Visualization of Surfaces and 3D Vector

Fields. Master of Science (Computer Science), August 2002,

43 pp., 3 tables, 10 illustrations, 9 references.

 Visualization of trivariate functions and vector

fields with three components in scientific computation is

still a hard problem in compute graphic area. People build

their own visualization packages for their special

purposes. And there exist some general-purpose packages

(MatLab, Vis5D), but they all require extensive user

experience on setting all the parameters in order to

generate images. We present a simple package to produce

simplified but productive images of 3-D vector fields. We

used this method to render the magnetic field and current

as solutions of the Ginzburg-Landau equations on a 3-D

domain.

 ii

ACKNOWLEDGMENTS

I thank the University of North Texas for financial

support.

 iii

TABLE OF CONTENTS

 Page

ACKNOWLEDGMENTS.. iii

LIST OF TABLES... v

LIST OF ILLUSTRATIONS.................................... vi

Chapter

1. INTRODUCTION .. 1

2. BACKGROUND .. 3

2.1 Vector graphics vs. raster graphics
2.2 Scientific visualization
2.3 Human perceptions and the visibility of information

in the data
2.4 Overview of OpenGL

3. IMPLEMENTATION .. 19

3.1 Overall design
3.2 Input data format
3.3 Data structures
3.4 Techniques and algorithms

4. VISUALIZATION RESULTS 38

5. CONCLUSION .. 42

REFERENCE LIST... 43

 iv

LIST OF TABLES

Table Page

1. A comparison between vector graphics and raster graphics

... 4

2. Functions that associated with the keyboard and mouse

... 19

3. Major functions in the system 82

 v

LIST OF ILLUSTRATIONS

Figure Page

1. The color-coded image of function

in domain D=[0,1]*[0,1] 9

2. The Surface image of function

in domain D=[0,1]*[0,1] 10

3. Rendering pipeline of OpenGL 17

4. Indices of grid points at the axis 24

5. Partition of a triangle 28

6. A color-coded image of the current with grids 38

7. A non-color-coded image of the current with grids 39

8. A non-color-coded image of the current without grids . 39

9. A color-coded image of the current with grids 40

10. A non-color-coded image of the current with streamlines

... 40

 1

1. INTRODUCTION

A three-dimensional(3D) vector field in R3 is a mapping

from R3 to R3. Visualization of a 3D object requires

projecting the object to a 2D domain before we can visualize

it by the monitors or the plotters. Visualization of 3D

vector fields is a hard problem. A global view of a 3D

vector field means an image that contains all the

information of a 3D vector field data set. A local view of a

3D vector field means an image that contains only the

information of a subset of a 3D vector field data set. It is

nearly impossible to provide a global view of a 3D vector

field. Scientists are still developing methods to display 3D

vector fields.

In this thesis, we present a simple method that can give

both the local view and the global view of 3D vector fields.

The local view of a 3D vector field can be provided by

displaying the cross-sections within the domain. An

efficient way of displaying the cross-sections is to

restrict the cross-sections to the planes with the

coordinate axes as normals. We add the color-filled contour

 2

plots to the surfaces to represent the magnitudes of the

vectors in the planes. We also add the arrow plots to the

surfaces to represent the directions of the vectors in the

planes. The global view of a 3D vector field is given by

animating the surfaces moving along the normal directions

and by adding the streamlines into the 3D vector fields. The

animation of the surfaces will give global magnitude

information of the 3D vector fields. The streamlines can

illustrate the global directional information of a vector

field.

The data sets that we use in this method are the 3D

vector data sets that are associated with the regular grid

points in a cubic domain.

We begin the thesis by giving an overview of the

background of visualization in the scientific computation.

Then, we will review the OpenGL library that is used in the

implementation of the software. After that, we will

introduce the design, the data structures and some

algorithms in the implementation. Finally, we will give some

visualization results.

 3

2. BACKGROUND

Computer graphics started with the display of data on

hardcopy plotters and cathode ray tube (CRT) screens as

early as the introduction of computer. Scientific

visualization date back to the start of computer graphics,

and it is a major sub-field in computer graphics.

Visualization can be defined as a method of extracting

meaningful information from complex data sets through the

use of interaction graphics and image. Visualization in

scientific computing deals with techniques that allow

scientists and engineers to extract knowledge and to

formulate their results from complex simulations and

computations. “As a tool for applying computers to science,

visualization offers a way to see the unseen. As a

technology, visualization in scientific computing promises

radical improvements in the human/computer interface and may

make human-in-the-loop problems approachable”[1].

2.1 Vector graphics vs. raster graphics

 The display of graphics in the sixties and seventies was

based on vector drawing devices. A vector drawing system is

one that stores instances of graphic primitives as

parametric types and data values. It performs an object-

 4

based approach to scene representation, manipulation, and

display. A geometric representation of the objects

comprising the scene is stored in a display-list. Screen

refreshing is accomplished by redrawing the vectors

comprising the objects in the display list. The major

advantages of vector graphics are its ability to perform

object-related operations on the display list and its

ability to draw vectors continuously, thus exhibiting no

aliasing. This technology, however, offers calligraphic

drawing only while the interior shaded areas are extremely

hard to render. The vector based display devices were also

very expensive at that time.

With the development of CRT-based raster graphic devices,

display devices became cheaper in the late seventies, and

since then, raster graphic devices have dominated the

graphic devices market. The algorithms that are used in

vector graphic have been modified to be used on the raster

devices. Raster graphic devices use a 2D frame-buffer, a

raster, of pixels for scene representation and a pixel-based

rendering for coloring those pixels that correspond to the

discrete representation of the geometric objects. A video

controller performs screen refreshing, which repeatedly

displays the frame-buffer onto the screen [2].

 5

Table 1 compares vector graphics with raster graphics.

Capability Vector-Graphics Raster-graphics

1. Rendering and

 Screen-refresh

Rendering is

embedded in

screen

refreshing

Scan-conversion

decoupled from

screen-refreshing

2. Refreshing

performance

Sensitive to

scene complexity

Insensitive to

scene complexity

3. Memory and

processing

requirement

Depends on the

scene and object

complexity

Constant often

very large

4. Screen space

Aliasing

None Yes

5. Transformation Performs on

objects

Perform on the

pixels

6. Rendering of

interior

No, boundary

only

Colored, shaded

and textured

surface

7. For scientific

 computing data

 sets

Not enough Very good

8. Measurements(e.g.,

distance, area)

Analytical, but

often complex

Approximation,

simple

Table 1. A comparison between vector graphics and raster graphics

From Table 1, we can see the major advantage of raster

devices is that they separate the image generation process

 6

from screen refreshing, thus making the refreshing of the

screen independent from the complexity of the scene. With

the advances in hardware development and the development of

antialiasing methods, raster graphic devices have replaced

vector graphic devices as the primary technology for

computer graphics. The CRT-based raster graphic devices are

used by nearly all PCs and workstations today.

2.2 Scientific visualization

Scientists, engineers, and medical workers often need to

analyze large amounts of information or to study the

behavior of certain processes. Generating and processing

graphical representation for scientific, engineering and

medical data sets are generally referred to as scientific

visualization. The data sets can be gathered from

instruments or the results of simulations. Nowadays, the

data sets are becoming larger and larger. The purpose of the

visualization in scientific computation is to help the user

get a better understanding of the meaning of the data.

The data sets of scalar fields and vector fields are very

common in the scientific computation. Scalar fields are data

sets that have only magnitudes over the domain (time or

 7

spatial). Vector fields are data sets that have both

magnitude and directional information over the domain.

Generally, we can divide the problem into two categories:

scalar field visualization and vector field visualization.

According to the dimension of the domain, we can divide the

problem into 0D, 1D, 2D, 3D, and high dimensions. 0D and 1D

problems are trivial because we already have 2D domains to

display the data sets -- screens or plotters. Most problems

in the scientific computation area are 2D or 3D.

2D scalar field visualization

A two-dimensional scalar field is a function of two

variables:

 z = f (x, y) x, y∈N.

The display devices(screens or plotters) have the same

domain dimension as 2D scalar fields, so we have two methods

to represent 2D vector fields.

The first method is the color-mapping (color-coding)

method. We map discrete or continuous colors to the scalar

fields according to the magnitude of the scalar. Figure 1

shows an example of color mapping.

The second method uses a 3D surface to represent a 2D

scalar data set. We interpolate the data values to display a

 8

smooth surface, and we can use the light reflection of the

surfaces to distinguish the scalar magnitude on the surface.

Figure 2 shows an example of the surface representation of

2D scalar fields.

Figure 1. The color-coded image of function

in domain D=[0,1]*[0,1]

 9

Figure 2. The surface image of function

in domain D=[0,1]*[0,1]

2D vector field visualization

A vector field in R2 is a mapping from R2 to R2; i.e., an

ordered pair of functions (u(x,y), v(x,y)):

 m: R2 -> R2

 10

 The vector field value at a point (x,y) is represented by

an arrow from (x,y) to(x+s*u(x,y),y+s*v(x,y)), where s is a

scale factor chosen so that we can display the vectors

reasonably within the domain. We can also combine the color-

mapping method with the arrow plot method to represent 2D

vector fields.

In the above 2D scalar field and vector field

visualization methods, we can represent all the information

of a data set in one picture.

3D scalar fields visualization

A three-dimensional scalar field is a function of three

variables; i.e.,

 w = f (x, y, z) x, y, z∈N.

In this case, the data set we are going to represent has

a higher dimension than the domain that is used to represent

it, so there must be some strategy to reduce the dimension

of the data set or to create a new mapping method to force

the 3D scalar data set to be represented on the 2D screen or

plotter.

 11

The following methods have been used to represent a 3D

scalar field.

Method a) represents the partial information of the data

sets by rendering the cross-section surfaces in the domain.

Method b) renders one or more isosurfaces in the domain

to give a global view of the data set.

Method c) uses the volumetric rendering method. Volume

rendering is a technique for directly displaying a sampled

3D scalar field without first fitting geometric primitives

to the samples. There are many algorithms for volume

rendering [3][4].

There are advantages and disadvantages of these methods.

Method a) can give a precise representation of a cross

section, but it can’t give a global view of the data set.

Method b) can give a kind of global view of the whole data

set, but it take much computation to construct the surface

and it also can only give partial information about the data

set. Method c) can give a global view of the data set, but

for a single point in the domain it does not give an

accurate representation. It works very well for the data set

generated by the CT or MRI, but for a computational data

set, sometimes it does not provide meaningful information.

 12

3D vector field visualization

A vector field in R3 is a mapping from R3 to R3; i.e., an

ordered triple of functions (u(x,y,z), v(x,y,z), w(x,y,z)):

m: R3 -> R3

The visualization of 3D vector fields is very difficult.

There is no general method used in the display of 3D vector

fields. There are some methods used to represent the partial

information of 3D vector fields: using arrow plots to

represent the directional information of the cross sections

in the vector fields or using texture mapping along with

volume rendering to provide both the directional and

magnitude information of the whole data set. Adding

streamline, streamribbon, and streamtube to the 3D vector

fields can help give the global directional information.

However, 3D vector fields are too complicated such that

one technique works well with some data sets but not others.

 13

2.3 Human perception and the visibility of information in the data

The understanding of human perception could help improve

the visibility of information in the displayed data. For

example, using a suitable color scale to depict data values

and an appropriate brightness contrast between adjacent

regions in an image could improve the visibility of

information embedded in 2D and 3D data.

In the color-coding visualization system, color is a

perceived sensation rather than a wavelength. Color

perception is a complicated process for which there is no

complete theory. However, there are some guidelines that

could help the user improve the visibility of information

embedded in the displayed data. One example is the use of

pseudo-color to represent the magnitudes of the data points.

In a pseudo-color representation, each value or a range

of values is associated with a color. The rainbow color

scale, in which the assignment of a color to a data value or

to a range of value is determined by the position of the

color in the visible spectrum, is the most commonly used

scale. A color scale based on the brightness contrast is

recommended rather than on the hue contrast [5]. In this

scheme, the higher the data value the brighter is the color

(where the brightness is determined by the perceived

 14

brightness rather than the physical value of the

brightness). Using a brightness contrast-based color scale

will help in discriminating not only data values but also

the overall shape of the object.

 When we represent data using colors, we should be aware

that the bright objects on the dark background look bigger

than the same objects depicted using darker color on bright

background. This phenomenon is called irradiation [6].

However, under most circumstances the perceived size of an

object is not very important. We could employ this

phenomenon to make a small object look larger by using a

bright color on a dark background.

 The perception of the distance of an object to the user

is also affected by the use of color scheme. For example, a

rectangular button on the window with bottom- and right-

black edges and upper- and left-white edges appears closer

to the user. And the same button with bottom- and right-

white edges and upper- and left-black edges looks far from

the user. People use this to implement the press and release

of buttons in a window system.

 15

2.4 Overview of OpenGL

We use OpenGL as our graphic programming interface in

implementing the package we present.

OpenGL is the premier environment for developing

portable, interactive 2D and 3D graphics applications. The

OpenGL programming interface (API) was first developed at

Silicon Graphics and has become the most widely used and

supported 2D and 3D graphics standard. The OpenGL libraries

contain about 150 distinct commands that programmer can use

to specify the objects and operations needed to produce

interactive three-dimensional graphic applications.

OpenGL provides a layer of abstraction between graphics

hardware and an application program. OpenGL is an open

interface that is designed to be streamlined and hardware

independent, and which is implemented by many companies and

organizations. There are commercial ports of OpenGL to

Linux, but in this program we use a high-quality public

domain OpenGL-like implementation called Mesa. Mesa cannot

be called OpenGL because it is not licensed from Silicon

Graphics, but it is an effective implementation of the

OpenGL API in Linux.

 In OpenGL, the objects are built up with a set of

geometric primitives – points, lines, and polygons. The

 16

OpenGL routines render the primitives onto a frame buffer

and generate high-quality color images of 3D objects.

 OpenGL is a state machine. The user puts it into

various states or modes that then remain in effect until

they are changed. Figure 3 shows the rendering pipeline of

OpenGL.

Figure 3. Rendering pipeline of OpenGL [7]

Vertex Data Pixel Data

Display List

Evaluators

Per-Vertex Operations
And Primitive
Assembly

Pixel
Operations

Rasterization Texture
Assembly

Per-Fragment
Operations

FrameBuffer

 17

The client-server model is used for interpretation of

OpenGL commands. This is just an abstract model; it does not

demand that OpenGL be implemented as distinct client and

server processes. A client-server approach means that the

boundary between a program and the OpenGL implementation is

well defined. This allows OpenGL to operate over a wire

protocol, the way the X protocol operates, but OpenGL does

not require that OpenGL rendering take place in a separate

process. Using a wire protocol means that all OpenGL

operations can be encoded in a stream of bytes that can be

sent across a network. In case of the X window system, an X

program using OpenGL can run on a remote computer while the

results are displayed on a local workstation.

 18

3. IMPLEMENTATION

3.1 Overall Design

The system we presented was designed to display the 3D

vector field data sets that are associated with regular

grids in the 3D rectangular domains.

It is very important for a scientific visualization

system to have the ability to interact with the users. We

add the interactive functions such as zoom, animation,

rotation, and etc. into the system. These functions can help

the users to get a comprehensive view of the data sets and

to get a better understanding of the data. We enable the

users to interact with the system by using the mouse and the

keyboard. Table 2 shows the functions associated with the

mouse and the keyboard.

Device Name Function

Keyboard Add name, functions associated with keys

Mouse Rotation, Zoom , Add or delete streamlines, show the menu, choose

menu item.

Table 2. Functions that associated with the keyboard and mouse

Table 3 shows some important functions that are included

in the software.

 19

 Major functions in the system Control keys Mouse Control

1 Zoom in PgUp middle mouse button

2 Zoom out PgDn shifted middle mouse
button

3 Set current animation direction to x axis F1

4 Set current animation direction to y axis F2

5 Set current animation direction to z axis F3

6 Move the surface forward >

7 Move the surface backward <

8 Compute bench mark B

9 Toggle color-filled contour plot c

10 Toggle color-coding of arrows C

11 Increase the streamline step-size D

12 Decrease the streamline step-size d

13 Toggle display of arrow grid g

14 Toggle display of grid lines G

15 Toggle antialiasing j

16 Increase line width K

17 Decrease line width k

18 Increase the vector length cut off M

19 Decrease the vector length cut off m

20 Increase the signed distance to the
center P

 20

21 Decrease the signed distance to the
center p

22 Query current state q

23 Dump current window into a postscript
file w

24 Increase arrow density in x direction X

25 Decrease arrow density in x direction x

26 Increase arrow density in y direction Y

27 Decrease arrow density in y direction y

28 Increase arrow density in z direction Z

29 Decrease arrow density in z direction z

30 Add streamlines to the image + Use mouse button

31 Delete streamlines from the image - Use mouse button

32 Remove all streamlines R

33 Restore defaults r

32 Rotation Left button down and
mouse movement

33 Add title to the image t

34 Toggle arrowhead fill mode f

35 Terminate the program ‘Esc’

Table 3. Software main Functionalities

In this system, most functions are accessible by both the

keyboard and the mouse except the rotation, which can only

be controlled with the mouse.

 21

Because the OpenGL library routines will delegate the

clipping, view port mapping, and projection, we only need

specify some parameters that we used by these processes.

3.2 Input Data format

The input data of the program is in the following format:

nx ny nz -- numbers of the grid points in each

direction

xmin xmax –- range of x values (xmin < xmax)

ymin yamx –- range of y values (ymin < ymax)

zmin zmax -- range of z values (zmin < zmax)

vx vy vz -- components of first vector

vx vy vz -- components of second vector

. . .

vx vy vz -- components of last vector.

For l = 0 to nx*ny*nz-1, the l-th vector (vx(l), vy(l),

vz(l)) is the value at grid point (x(i),y(j),z(k)) for x(i)

= xmin + i*(xmax-xmin)/(nx-1), y(j) = ymin + j*(ymax-

ymin)/(ny-1), z(k) = zmin + k*(zmax-zmin)/(nz-1), where l =

k*nx*ny + j*nx + i, for i = 0 to nx-1, j = 0 to ny-1, and k

= 0 to nz-1.

 22

3.3 Data structure

The data structure involved in this system is made up of

several one-dimensional arrays.

a) Data Array

The array “vectors” is an array used to store the vector

data set correspondent with its grid point in the domain.

This array is of length 4*nx*ny*nz (nx, ny and nz are the

grids points in the x, y and z direction) containing the u,

v, and w components of the vector and is followed by the

vector magnitude. According to the format of the input data,

the u, v, and w components of l-th vector are stored at

index 4*l, 4*l+1, 4*l+2 of the array, and the magnitude of

the l-th vector stored at index 4*l+3. Therefore, the index

of the i-th element of the array is a component of (i/4)-th

vector and the position of the vector data in the domain can

be computed as:

x = xmin + ((i/4)%nx)*(xmax-xmin)/(nx-1)

y = ymin + ((i/4)/nx)*(ymax-ymin)/(ny-1)

z = zmin + ((i/4)/(nx*ny))*(zmax-zmin)/(nz-1)

where nx, ny, nz are the value of grids points in the x, y,

z direction.

The array “indc” is an array of size nx*ny*nz that stores

the contour level of the grid points.

 23

b) Triangle list

There are three arrays used to save the triangle lists of

the surfaces parallel to x-y, y-z, and z-x planes. The size

of the arrays are 6*(nx-1)*(ny-1), 6*(ny-1)*(nz-1), and

6*(nz-1)*(nx-1). The triangle lists are stored before the

rendering process begins. According to the input data

format, we can index the grid points at the axis as figure

4.

Figure 4. Indices of Grid points at the axis

From Figure 4, we can see that the triangle lists of the

surfaces parallel to x-y plane can be easily computed by

adding the index of the grid point at the z-axis of the

corresponding surface to the triangle list of x-y plane. The

X

Y

Z

 3nx*ny

 2nx*ny

 nx*ny

 0 nx 2nx 3nx

 1

 2

 3

 24

triangle lists of the surfaces that parallel the y-z or x-z

plane can also be computed similarly.

The triangle list of the surface in the xy-plane can be

computed as follows:

k=0;

for(i= 0 to ngy-1){

 for(j = 0 to ngx-1){

 index[k++]= ngx*i + j;

index[k++]= ngx*i + j + 1;

index[k++]= ngx*(i+1) + j + 1;

index[k++]= ngx*i + j;

index[k++]= ngx*(i+1) + j + 1;

index[k++]= ngx*(i+1) + j;

 }

}

The triangle list of the surface in the yz-plane can be

computed as follows:

k=0;

for(i= 0 to ngz-1){

 m = i*ngxy;

 for(j = 0 to ngy-1){

 index[k++]= m;

index[k++]= m + ngx;

 25

index[k++]= m + ngx + ngxy;

index[k++]= m;

index[k++]= m + ngx + ngxy;

index[k++]= m + ngxy;

m = m + ngx;

 }

}

The triangle list of the surface in the xz-plane can be

computed as follows:

k=0;

for(i= 0 to ngz-1){

 m = i*ngxy;

 for(j = 0 to ngx-1){

 index[k++]= m;

index[k++]= m + 1;

index[k++]= m + 1 + ngxy;

index[k++]= m;

index[k++]= m + 1 + ngxy;

index[k++]= m + ngxy;

m = m + 1;

 }

}

 26

C) Color table

A pre-stored RGB color table is used to specify the

different contour colors. The color table starts with only a

pure blue component, then we increase the red component.

After that, we decrease the blue component and the coloe

table ends at a pure red component. There is no green

component used in this color table. The color bar is the

same as in Figure 1.

3.4 Techniques and Algorithms

a) Data Interpolation

There are three types of data interpolation involved in

the system -- linear interpolation, bilinear interpolation,

and trilinear interpolation of data. The linear

interpolation is used in making the color-filled contour

plot of the surfaces. The bilinear interpolation is used in

adding the arrow plots into the surfaces, and the trilinear

interpolation is used in calculating the streamlines.

b) Color-filled contour plot

In this program, we provide a color-filled contour plot

by filling each of the triangles in the surfaces. Each grid

of the surface is divided into two triangles. We fill the

 27

triangles by linear interpolating the magnitude of the

vectors at the vertices of the triangles, and then, fill the

polygons with colors according to then contour value. For

the surface that parallels the x-y plane there are 2(nx-

1)(ny-1) triangles that need to be filled, for the surface

parallel to y-z plane, 2(ny-1)(nz-1) triangles, and for the

surface parallel to zx-plane, 2(nz-1)(nx-1) triangles.

Figure 5. Partition of a triangle

There are some pre-defined arrays that are used in this

algorithm:

Colors[NC][3] – Array of size NC*3 that stores the RGB

 components of each contour level.

Contours[NC] – Array of length NC that stores an increasing

 sequence of vector magnitude values defining

 the upper limits of the contour levels.

By observing Figure 5, we can see using two lines to

partition a triangle linearly into polygons so that the

p2(x2, y2, z2) p1(x1, y1, z1)

p3(x3, y3, z3)

Q(xq, yq, zq)

P(xp, yp, zp)

 28

largest number of vertices of the polygons is five.

Therefore, we allocate an array vertex of size 5 by 3 as

working space. The algorithm for color-filling a contour

surface is as follows:

CfillTriangle(int i1, int i2, int i3)

// i1, i2, i3 are the indices of the triangle

permute(i1, i2, i3) so that indc[i1]<=indc[i2] &&

 indc[i1]<= indc[i3];

ic1 = indc[i1], ic2 = indc[i2], ic3 = indc[i3];

m1 = vector[4*i1+3];

m2 = vector[4*i2+3];

m3 = vector[4*i3+3];

compute the coordinates(x1,y1,z1) of index i1 vertex;

compute the coordinates(x2,y2,z2) of index i2 vertex;

compute the coordinates(x3,y3,z3) of index i3 vertex;

set n = 0;

//n is used to count the vertices number of a polygon.

vertex[n++] = (x1,y1,z1);

for(ic = ic1; ic < ic2 ; ++ic){

m = contour[ic];

s = (m-m1)/(m2-m1);

xp = x1 + s*(x2 – x1);

 29

yp = y1 + s*(y2 – y1);

zp = z1 + s*(z2 – z1);

if(ic < ic3){ // q is at p1-p3 (see figure 5.)

s = (m-m1)/(m3-m1);

xq = x1 + s*(x3 – x1);

yq = y1 + s*(y3 – y1);

zq = z1 + s*(z3 – z1);

} else {// q is at p2-p3 (see figure 5.)

s = (m-m3)/(m2-m3);

xq = x3 + s*(x2 – x1);

yq = y3 + s*(y2 – y1);

zq = z3 + s*(z2 – z1);

}

vertex[n++] = (xp,yp,zp);

vertex[n++] = (xq,yq,zq);

if(ic == ic3) vertex[n++] = (x3,y3,z3);

fill_Polygon(vertex , n, ic);

n = 2;

vertex[0] = (xq,yq,zq);

vertex[1] = (xp,yp,zp);

}

vertex[n++] = (x2,y2,z2);

if(ic3 >= ic2){

 30

for(ic=ic2 ; ic<ic3 ; ic++){

m = contour[ic];

s = (m-m2)/(m3-m2);

xp = x2 + s*(x3 – x2);

yp = y2 + s*(y3 – y2);

zp = z2 + s*(z3 – z2);

s = (m-m1)/(m3-m1);

xq = x1 + s*(x3 – x1);

yq = y1 + s*(y3 – y1);

zq = z1 + s*(z3 – z1);

vertex[n++] = (xp,yp,zp);

vertex[n++] = (xq,yq,zq);

fill_Polygon(vertex , n, ic);

n = 2;

vertex[0] = (xq,yq,zq);

vertex[1] = (xp,yp,zp);

}

vertex[n++] = (x3,y3,z3);

ic = ic3;

}

fill_Polygon(vertex , n, ic);

end.

 31

This algorithm fills a triangle each time it is called.

In order to render a picture, 2*(ngx-1)*(ngy-1)+2*(ngy-

1)*(ngz-1)+2*(ngz-1)*(ngx-1) triangles need to be filled.

c) Arrow plot

We add arrow plots into the current active surfaces in

the x, y, and z directions. The tails of the arrows are at

the surfaces. The components of the arrows are computed by

piecewise-bilinear interpolation of the four corner grid

points that contain the tail of the arrow. The number of

arrows is at least 2 in each direction.

The following is an example of piecewise-bilinear

interpolation of the data in the x-y plane.

 32

b1 = (xi+dx-x)*(yi+dy-y)/(dx*dy);

b2 = (xi-x)*(yi+dy-y)/(dx*dy);

b3 = (xi+dx-x)*(yi-y)/(dx*dy);

b4 = (xi-x)*(yi-y)/(dx*dy);

The psuedo-code to add the arrow plots to the surface

parallel to xy-plane is as follows:

DrawField(double hx, double hy)

//hx, hy are the distances between arrow tails

 in x, y direction

 int ngx, ngy; // number of grids in x,y direction

x = xmin, y = ymin; //lower left corner of the domain

xg = dx, yg = dy; // dx, dy are the data grid width

int jcnt = 0; // counter in y direction

for(j=0; j<nay; j++){

x=xmin;

p1(xi,yi) p2(xi+dx,yi)

p3(xi,yi+dy) p4(xi+dx,yi+dy)

p(x, y)

p1(xi,yi)

 33

icnt = 0;

for(i=0; i<nax; i++){

Compute the vecctor at(x,y,z);

drawArrow(x,y,z,vx,vy,vz);

x = x+hx;

advance to next grid in x direction;

}

hg = hxg ;

y = y+hy;

advance to next grid in y direction;

 }

end.

d) Streamline

A streamline is the path of a massless particle that is

released in a steady flow. The plotting of the particle

paths produces a streamline picture, which is of both

qualitative and quantitative value to an engineer.

We compute a sequence of points that define a streamline

beginning at (x0,y0,z0) by using Euler’s method.

The sequence of points u = (ux, uy ,uz) is computed by

integrating the system of ODE’s:

 34

u’(t) = V(u(t))/(|V(u(t))|)= (vx, vy, vz)/sqrt(vx2+vy2+vz2),

where u(0) = (x0, y0, z0); vx(ux, uy, uz), vy(ux, uy, uz),

and vz(ux, uy, uz) are obtained by piecewise trilinear

interpolation of the gridpoint vectors. Therefore,

i>1 and dt is the step size.

In this program, the streamline is terminated when it

intersects itself (enters a cell previously encountered),

hits the boundary of the domain pointing outward, encounters

a point where the magnitude of the vector is less than a

threshold value, or reaches the maximum number of points in

a streamline.

The starting point of the streamline is obtained from the

mouse position in the domain.

The following is an example of the piecewise trilinear-

interpolation of the data in a cell.

p1(xi,yi,zi)

p2(xi+dx,yi,zi) p3(xi+dx,yi+dy,zi)

p4(xi,yi+dy,zi)

p5(xi,yi,zi+dz) p8(xi,yi+dy,zi+dz)

p7(xi+dx,yi+dy,zi+dz) p6(xi+dx,yi,zi+dz)

p(x,y,z)

 35

b1 = (xi+dx-x)*(yi+dy-y)*(zi+dz-z)/(dx*dy*dz);

b2 = (x-xi)*(yi+dy-y)*(zi+dz-z)/(dx*dy*dz);

b3 = (x-xi)*(y-yi)(zi+dz-z)/(dx*dy*dz);

b4 = (xi+dx-x)*(y-yi)*(zi+dz-z)/(dx*dy*dz);

b5 = (xi+dx-x)*(yi+dy-y)*(z-zi)/(dx*dy*dz);

b6 = (x-xi)*(yi+dy-y)*(z-zi)/(dx*dy*dz);

b7 = (x-xi)*(y-yi)(z-zi)/(dx*dy*dz);

b8 = (xi+dx-x)*(y-yi)*(z-zi)/(dx*dy*dz);

The psuedo-code of computing a streamline is as follows:

ComputeStreamline(double x0, double y0, double z0)

//x0, y0 and z0 are the coordinates of the starting point

append the (x0, y0, z0) into the streamline;

copy (x0 , y0 , z0) to (x1, y1, z1);

compute the cell contains (x1, y1, z1);

 n = 1;

 while(n < max value){

 36

compute the V at (x1,y1,z1) by trilinear interpolation

of the grid point;

if(|V| < vmin) return;

x2 = x1 + dt*vx , y2 = y1 + dt*vy, z2 = z1 + dt*vz;

compute the cell contain(x2, y2 , z2);

append (x2, y2, z2) to streamline;

test the termination condition;

copy (x2, y2, z2) to x1, y1, z1

}

end.

 37

4. RESULTS

We have used our method to visualize the results

(magnetic field and current) of the Ginzburg-Landau equation

in a 3D rectangular domain. The Ginzburg-Landau equation is

used to compute the critical point of a super conductor[8].

The approximated results of this function are provided by

Dr.R.J.Renka[9]. The following figures are of the magnetic

fields and currents.

Figure 6. A color-coded image of the current (cross-sections at the

x-y, y-z, z-x planes)

 38

Figure 7. A non-color coded image of the current (cross-sections at the

x-y, y-z, z-x planes)

Figure 8. A non-color coded image of the current without grids(cross-sections

at the x-y, y-z, z-x planes)

 39

Figure 9. A color-coded image of the current with grids (cross-sections at the y-z,

z-x plans, and the cross section in the center of the domain parallel to x-y plane)

Figure 10. A non-color-coded image of the current with streamlines

 40

From the above figures, we can see that the grids can

help the users to establish the concept of a 3D domain.

Also, the animation of the cross sections can provide the

users with precise information about any grid point in the

domain. The streamlines can help users to derive useful

information from the data set and give them an overall trend

of the vector fields.

 41

5. CONCLUSION

We have presented a simple method to visualize 3D vector

fields by displaying the color-coded cross-sections of the

3D vector fields, animating the cross-sections along the

axis, and adding arrows and streamlines into the domain. In

the implementation of this method, bilinear and the tri-

linear interpolation of the grid data have been used.

This method can give us both the local information and

part of the global information about the 3D vector field

data set. This method, implemented with the interactive

user interface, can help users to get a better understanding

of the data sets they deal with.

 42

REFERENCES

[1] L. Rosenblum, “Scientific Visualization Advances and

Challenges”, Academic Press, 1995, foreword

[2] C. M. Eastman, "Vector versus Raster: A Functional

Comparison of Drawing Technologies", IEEE Computer

Graphics & Applications, 10, 5 (September 1990), pp. 68-80.

[3] Marce Levoy , "Display of Surfaces from Volume Data",

IEEE Computer Graphics and Applications, Vol. 8, No. 3, May,

1988, pp. 29-37.

[4] Roberto Grosso and Thomas Ertl, "Biorthogonal Wavelet

Filters for Frenquency Domain Volume Rendering",

Visualization in Scientific computing ’95, Springer Computer

Science, pp. 81- 95.

[5] M. S. Livingstone, "Arts, Illusion and the Visual

System", Scientific American, Vol.258, 1988, pp. 78-85.

[6] M. Luckiesh, "Visual Illusions", Dover publication, 1965

[7] Mason. Woo, "OpenGL Programming Guide", Addison Wesley,

1997, pp.594.

[8] Qiang Du, "Analysis and Approximation of the Ginzburg-

Landau Model of Superconductivity", Society for Industry and

Applied Mathematics, Vol.34, No.1, March, 1992, pp.54-81.

 43

[9] J.W.Neuberger and R.J.Renka, "Critical Points of the

Ginzburg-Landau Functional on Multiply-connected Domains",

Experimental Mathematics, Vol.9, No.4, 2000, pp.523-533.

	Body.pdf
	INTRODUCTION
	
	
	We begin the thesis by giving an overview of the background of visualization in the scientific computation. Then, we will review the OpenGL library that is used in the implementation of the software. After that, we will introduce the design, the data str

	BACKGROUND
	
	
	Computer graphics started with the display of data on hardcopy plotters and cathode ray tube (CRT) screens as early as the introduction of computer. Scientific visualization date back to the start of computer graphics, and it is a major sub-field in co
	Visualization can be defined as a method of extracting meaningful information from complex data sets through the use of interaction graphics and image. Visualization in scientific computing deals with techniques that allow scientists and engineers to ext
	2.1Vector graphics vs. raster graphics
	The display of graphics in the sixties and seventies was based on vector drawing devices. A vector drawing system is one that stores instances of graphic primitives as parametric types and data values. It performs an object-based approach to scene repres
	2D scalar field visualization
	A two-dimensional scalar field is a function of two variables:
	
	z = f (x, y) x, y(N.

	2D vector field visualization
	
	The vector field value at a point (x,y) is represented by an arrow from (x,y) to(x+s*u(x,y),y+s*v(x,y)), where s is a scale factor chosen so that we can display the vectors reasonably within the domain. We can also combine the color-mapping met

	3D scalar fields visualization
	A three-dimensional scalar field is a function of three variables; i.e.,
	
	w = f (x, y, z) x, y, z(N.
	The following methods have been used to represent a 3D scalar field.
	Method a) represents the partial information of the data sets by rendering the cross-section surfaces in the domain.

	Method b) renders one or more isosurfaces in the domain to give a global view of the data set.
	Method c) uses the volumetric rendering method. Volume rendering is a technique for directly displaying a sampled 3D scalar field without first fitting geometric primitives to the samples. There are many algorithms for volume rendering [3][4].
	3D vector field visualization

	Figure 3. Rendering pipeline of OpenGL [7]

	IMPLEMENTATION
	
	
	
	Major functions in the system
	Control keys
	Mouse Control
	PgUp
	middle mouse button
	PgDn
	shifted middle mouse button
	F1
	F2
	F3
	>
	<
	B
	c
	C
	D
	d
	g
	G
	j
	K
	k
	M
	m
	P
	p
	q
	w
	X
	x
	Y
	y
	Z
	z
	+
	Use mouse button
	-
	Use mouse button
	R
	r
	Left button down and mouse movement
	t
	f
	‘Esc’

	RESULTS
	CONCLUSION

