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     Visualization of trivariate functions and vector 

fields with three components in scientific computation is 

still a hard problem in compute graphic area. People build 

their own visualization packages for their special 

purposes. And there exist some general-purpose packages 

(MatLab, Vis5D), but they all require extensive user 

experience on setting all the parameters in order to 

generate images. We present a simple package to produce 

simplified but productive images of 3-D vector fields. We 

used this method to render the magnetic field and current 

as solutions of the Ginzburg-Landau equations on a 3-D 

domain.  
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1. INTRODUCTION 

 
A three-dimensional(3D) vector field in R3 is a mapping 

from R3 to R3. Visualization of a 3D object requires 

projecting the object to a 2D domain before we can visualize 

it by the monitors or the plotters. Visualization of 3D 

vector fields is a hard problem. A global view of a 3D 

vector field means an image that contains all the 

information of a 3D vector field data set. A local view of a 

3D vector field means an image that contains only the 

information of a subset of a 3D vector field data set. It is 

nearly impossible to provide a global view of a 3D vector 

field. Scientists are still developing methods to display 3D 

vector fields. 

In this thesis, we present a simple method that can give 

both the local view and the global view of 3D vector fields. 

The local view of a 3D vector field can be provided by 

displaying the cross-sections within the domain. An 

efficient way of displaying the cross-sections is to 

restrict the cross-sections to the planes with the 

coordinate axes as normals. We add the color-filled contour 



 2 
 

plots to the surfaces to represent the magnitudes of the 

vectors in the planes. We also add the arrow plots to the 

surfaces to represent the directions of the vectors in the 

planes. The global view of a 3D vector field is given by 

animating the surfaces moving along the normal directions 

and by adding the streamlines into the 3D vector fields. The 

animation of the surfaces will give global magnitude 

information of the 3D vector fields. The streamlines can 

illustrate the global directional information of a vector 

field.  

The data sets that we use in this method are the 3D 

vector data sets that are associated with the regular grid 

points in a cubic domain. 

We begin the thesis by giving an overview of the 

background of visualization in the scientific computation. 

Then, we will review the OpenGL library that is used in the 

implementation of the software. After that, we will 

introduce the design, the data structures and some 

algorithms in the implementation. Finally, we will give some 

visualization results.   
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2. BACKGROUND 

 

Computer graphics started with the display of data on 

hardcopy plotters and cathode ray tube (CRT) screens as 

early as the introduction of computer. Scientific 

visualization date back to the start of computer graphics, 

and it is a major sub-field in computer graphics. 

Visualization can be defined as a method of extracting 

meaningful information from complex data sets through the 

use of interaction graphics and image. Visualization in 

scientific computing deals with techniques that allow 

scientists and engineers to extract knowledge and to 

formulate their results from complex simulations and 

computations. “As a tool for applying computers to science, 

visualization offers a way to see the unseen. As a 

technology, visualization in scientific computing promises 

radical improvements in the human/computer interface and may 

make human-in-the-loop problems approachable”[1].  

 
2.1 Vector graphics vs. raster graphics 

    The display of graphics in the sixties and seventies was 

based on vector drawing devices. A vector drawing system is 

one that stores instances of graphic primitives as 

parametric types and data values. It performs an object-



 4 
 

based approach to scene representation, manipulation, and 

display. A geometric representation of the objects 

comprising the scene is stored in a display-list. Screen 

refreshing is accomplished by redrawing the vectors 

comprising the objects in the display list. The major 

advantages of vector graphics are its ability to perform 

object-related operations on the display list and its 

ability to draw vectors continuously, thus exhibiting no 

aliasing. This technology, however, offers calligraphic 

drawing only while the interior shaded areas are extremely 

hard to render. The vector based display devices were also 

very expensive at that time. 

With the development of CRT-based raster graphic devices, 

display devices became cheaper in the late seventies, and 

since then, raster graphic devices have dominated the 

graphic devices market. The algorithms that are used in 

vector graphic have been modified to be used on the raster 

devices. Raster graphic devices use a 2D frame-buffer, a 

raster, of pixels for scene representation and a pixel-based 

rendering for coloring those pixels that correspond to the 

discrete representation of the geometric objects. A video 

controller performs screen refreshing, which repeatedly 

displays the frame-buffer onto the screen [2]. 
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Table 1 compares vector graphics with raster graphics.   

Capability Vector-Graphics Raster-graphics 

1. Rendering and 

     Screen-refresh 

Rendering is 

embedded in 

screen 

refreshing 

Scan-conversion 

decoupled from 

screen-refreshing

2. Refreshing 

performance 

Sensitive to 

scene complexity 

Insensitive to 

scene complexity 

3. Memory and 

processing 

requirement 

Depends on the 

scene and object 

complexity 

Constant often 

very large 

4. Screen space 

Aliasing 

None Yes 

5. Transformation Performs on 

objects 

Perform on the 

pixels 

6. Rendering of 

interior 

No, boundary 

only 

Colored, shaded 

and textured 

surface 

7. For scientific  

     computing data 

     sets 

Not enough Very good 

8. Measurements(e.g., 

distance, area) 

Analytical, but 

often complex 

Approximation, 

simple 

 

Table 1. A comparison between vector graphics and raster graphics 

 

From Table 1, we can see the major advantage of raster 

devices is that they separate the image generation process 
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from screen refreshing, thus making the refreshing of the 

screen independent from the complexity of the scene. With 

the advances in hardware development and the development of 

antialiasing methods, raster graphic devices have replaced 

vector graphic devices as the primary technology for 

computer graphics. The CRT-based raster graphic devices are 

used by nearly all PCs and workstations today.   

 

2.2 Scientific visualization 

Scientists, engineers, and medical workers often need to 

analyze large amounts of information or to study the 

behavior of certain processes. Generating and processing 

graphical representation for scientific, engineering and 

medical data sets are generally referred to as scientific 

visualization. The data sets can be gathered from 

instruments or the results of simulations. Nowadays, the 

data sets are becoming larger and larger. The purpose of the 

visualization in scientific computation is to help the user 

get a better understanding of the meaning of the data.   

The data sets of scalar fields and vector fields are very 

common in the scientific computation. Scalar fields are data 

sets that have only magnitudes over the domain (time or 
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spatial). Vector fields are data sets that have both 

magnitude and directional information over the domain.   

Generally, we can divide the problem into two categories: 

scalar field visualization and vector field visualization. 

According to the dimension of the domain, we can divide the 

problem into 0D, 1D, 2D, 3D, and high dimensions. 0D and 1D 

problems are trivial because we already have 2D domains to 

display the data sets -- screens or plotters. Most problems 

in the scientific computation area are 2D or 3D. 

 

2D scalar field visualization      

A two-dimensional scalar field is a function of two 

variables: 

           z = f (x, y)      x, y∈N.   

The display devices(screens or plotters) have the same 

domain dimension as 2D scalar fields, so we have two methods 

to represent 2D vector fields. 

The first method is the color-mapping (color-coding) 

method. We map discrete or continuous colors to the scalar 

fields according to the magnitude of the scalar. Figure 1 

shows an example of color mapping.  

The second method uses a 3D surface to represent a 2D 

scalar data set. We interpolate the data values to display a 
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smooth surface, and we can use the light reflection of the 

surfaces to distinguish the scalar magnitude on the surface. 

Figure 2 shows an example of the surface representation of 

2D scalar fields.     

 

Figure 1. The color-coded image of function 

 
in domain D=[0,1]*[0,1] 
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Figure 2. The surface image of function 

 
in domain D=[0,1]*[0,1] 

 

 

2D vector field visualization      

A vector field in R2 is a mapping from R2 to R2; i.e., an 

ordered pair of functions (u(x,y), v(x,y)): 

  m: R2 -> R2  
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  The vector field value at a point (x,y) is represented by 

an arrow from (x,y) to(x+s*u(x,y),y+s*v(x,y)), where s is a 

scale factor chosen so that we can display the vectors 

reasonably within the domain. We can also combine the color-

mapping method with the arrow plot method to represent 2D 

vector fields.  

In the above 2D scalar field and vector field 

visualization methods, we can represent all the information 

of a data set in one picture.  

 

3D scalar fields visualization      

A three-dimensional scalar field is a function of three 

variables; i.e., 

           w = f (x, y, z)      x, y, z∈N.   

In this case, the data set we are going to represent has 

a higher dimension than the domain that is used to represent 

it, so there must be some strategy to reduce the dimension 

of the data set or to create a new mapping method to force 

the 3D scalar data set to be represented on the 2D screen or 

plotter. 
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The following methods have been used to represent a 3D 

scalar field.  

Method a) represents the partial information of the data 

sets by rendering the cross-section surfaces in the domain.        

Method b) renders one or more isosurfaces in the domain 

to give a global view of the data set. 

Method c) uses the volumetric rendering method. Volume 

rendering is a technique for directly displaying a sampled 

3D scalar field without first fitting geometric primitives 

to the samples. There are many algorithms for volume 

rendering [3][4]. 

There are advantages and disadvantages of these methods. 

Method a) can give a precise representation of a cross 

section, but it can’t give a global view of the data set. 

Method b) can give a kind of global view of the whole data 

set, but it take much computation to construct the surface 

and it also can only give partial information about the data 

set. Method c) can give a global view of the data set, but 

for a single point in the domain it does not give an 

accurate representation. It works very well for the data set 

generated by the CT or MRI, but for a computational data 

set, sometimes it does not provide meaningful information. 
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3D vector field visualization      

A vector field in R3 is a mapping from R3 to R3; i.e., an 

ordered triple of functions (u(x,y,z), v(x,y,z), w(x,y,z)): 

m: R3 -> R3  
 

 

The visualization of 3D vector fields is very difficult. 

There is no general method used in the display of 3D vector 

fields. There are some methods used to represent the partial 

information of 3D vector fields: using arrow plots to 

represent the directional information of the cross sections 

in the vector fields or using texture mapping along with 

volume rendering to provide both the directional and 

magnitude information of the whole data set. Adding 

streamline, streamribbon, and streamtube to the 3D vector 

fields can help give the global directional information. 

However, 3D vector fields are too complicated such that 

one technique works well with some data sets but not others.  
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2.3 Human perception and the visibility of information in the data 

The understanding of human perception could help improve 

the visibility of information in the displayed data. For 

example, using a suitable color scale to depict data values 

and an appropriate brightness contrast between adjacent 

regions in an image could improve the visibility of 

information embedded in 2D and 3D data. 

In the color-coding visualization system, color is a 

perceived sensation rather than a wavelength. Color 

perception is a complicated process for which there is no 

complete theory. However, there are some guidelines that 

could help the user improve the visibility of information 

embedded in the displayed data. One example is the use of 

pseudo-color to represent the magnitudes of the data points.   

In a pseudo-color representation, each value or a range 

of values is associated with a color. The rainbow color 

scale, in which the assignment of a color to a data value or 

to a range of value is determined by the position of the 

color in the visible spectrum, is the most commonly used 

scale. A color scale based on the brightness contrast is 

recommended rather than on the hue contrast [5]. In this 

scheme, the higher the data value the brighter is the color 

(where the brightness is determined by the perceived 
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brightness rather than the physical value of the 

brightness). Using a brightness contrast-based color scale 

will help in discriminating not only data values but also 

the overall shape of the object.       

     When we represent data using colors, we should be aware 

that the bright objects on the dark background look bigger 

than the same objects depicted using darker color on bright 

background. This phenomenon is called irradiation [6]. 

However, under most circumstances the perceived size of an 

object is not very important. We could employ this 

phenomenon to make a small object look larger by using a 

bright color on a dark background. 

     The perception of the distance of an object to the user 

is also affected by the use of color scheme. For example, a 

rectangular button on the window with bottom- and right-

black edges and upper- and left-white edges appears closer 

to the user. And the same button with bottom- and right-

white edges and upper- and left-black edges looks far from 

the user. People use this to implement the press and release 

of buttons in a window system.  
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2.4    Overview of OpenGL 

We use OpenGL as our graphic programming interface in 

implementing the package we present. 

OpenGL is the premier environment for developing 

portable, interactive 2D and 3D graphics applications. The 

OpenGL programming interface (API) was first developed at 

Silicon Graphics and has become the most widely used and 

supported 2D and 3D graphics standard. The OpenGL libraries 

contain about 150 distinct commands that programmer can use 

to specify the objects and operations needed to produce 

interactive three-dimensional graphic applications. 

OpenGL provides a layer of abstraction between graphics 

hardware and an application program. OpenGL is an open 

interface that is designed to be streamlined and hardware 

independent, and which is implemented by many companies and 

organizations. There are commercial ports of OpenGL to 

Linux, but in this program we use a high-quality public 

domain OpenGL-like implementation called Mesa. Mesa cannot 

be called OpenGL because it is not licensed from Silicon 

Graphics, but it is an effective implementation of the 

OpenGL API in Linux.  

     In OpenGL, the objects are built up with a set of 

geometric primitives – points, lines, and polygons. The 



 16 
 

OpenGL routines render the primitives onto a frame buffer 

and generate high-quality color images of 3D objects.  

     OpenGL is a state machine. The user puts it into 

various states or modes that then remain in effect until 

they are changed. Figure 3 shows the rendering pipeline of 

OpenGL. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Rendering pipeline of OpenGL [7] 
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The client-server model is used for interpretation of 

OpenGL commands. This is just an abstract model; it does not 

demand that OpenGL be implemented as distinct client and 

server processes. A client-server approach means that the 

boundary between a program and the OpenGL implementation is 

well defined. This allows OpenGL to operate over a wire 

protocol, the way the X protocol operates, but OpenGL does 

not require that OpenGL rendering take place in a separate 

process. Using a wire protocol means that all OpenGL 

operations can be encoded in a stream of bytes that can be 

sent across a network. In case of the X window system, an X 

program using OpenGL can run on a remote computer while the 

results are displayed on a local workstation. 
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3. IMPLEMENTATION 

3.1 Overall Design 

The system we presented was designed to display the 3D 

vector field data sets that are associated with regular 

grids in the 3D rectangular domains.  

It is very important for a scientific visualization 

system to have the ability to interact with the users. We 

add the interactive functions such as zoom, animation, 

rotation, and etc. into the system. These functions can help 

the users to get a comprehensive view of the data sets and 

to get a better understanding of the data. We enable the 

users to interact with the system by using the mouse and the 

keyboard. Table 2 shows the functions associated with the 

mouse and the keyboard.    

Device Name Function 

Keyboard Add name, functions associated with keys   

Mouse Rotation, Zoom , Add or delete streamlines, show the menu, choose 

menu item. 

Table 2. Functions that associated with the keyboard and mouse 

 

Table 3 shows some important functions that are included 

in the software. 

 



 19 
 

 Major functions in the system Control keys Mouse Control 

1 Zoom in PgUp middle mouse button 

2 Zoom out PgDn shifted middle mouse 
button 

3 Set current animation direction to x axis F1  

4 Set current animation direction to y axis F2  

5 Set current animation direction to z axis F3  

6 Move the surface forward >  

7 Move the surface backward <  

8 Compute bench mark B  

9 Toggle color-filled contour plot c  

10 Toggle color-coding of arrows C  

11 Increase the streamline step-size D  

12 Decrease the streamline step-size d  

13 Toggle display of arrow grid g  

14 Toggle display of grid lines G  

15 Toggle antialiasing j  

16 Increase line width K  

17 Decrease line width k  

18 Increase the vector length cut off M  

19 Decrease the vector length cut off m  

20 Increase the signed distance to the 
center P  
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21 Decrease the signed distance to the 
center p  

22 Query current state q  

23 Dump current window into a postscript 
file w  

24 Increase arrow density in x direction X  

25 Decrease arrow density in x direction x  

26 Increase arrow density in y direction Y  

27 Decrease arrow density in y direction y  

28 Increase arrow density in z direction Z  

29 Decrease arrow density in z direction z  

30 Add streamlines to the image + Use mouse button 

31 Delete streamlines from the image - Use mouse button 

32 Remove all streamlines R  

33 Restore defaults r  

32 Rotation  Left button down and 
mouse movement  

33 Add title to the image t  

34 Toggle arrowhead fill mode f  

35 Terminate the program ‘Esc’  

Table 3.  Software main Functionalities 

In this system, most functions are accessible by both the 

keyboard and the mouse except the rotation, which can only 

be controlled with the mouse. 
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Because the OpenGL library routines will delegate the 

clipping, view port mapping, and projection, we only need 

specify some parameters that we used by these processes. 

 

3.2 Input Data format 

The input data of the program is in the following format: 

nx ny nz   -- numbers of the grid points in each 

direction 

xmin xmax  –- range of x values (xmin < xmax) 

ymin yamx  –- range of y values (ymin < ymax) 

zmin zmax  -- range of z values (zmin < zmax) 

vx vy vz   -- components of first vector 

vx vy vz   -- components of second vector 

. . . 

vx vy vz   -- components of last vector. 

For l = 0 to nx*ny*nz-1, the l-th vector (vx(l), vy(l), 

vz(l)) is the value at grid point (x(i),y(j),z(k)) for x(i) 

= xmin + i*(xmax-xmin)/(nx-1), y(j) = ymin + j*(ymax-

ymin)/(ny-1), z(k) = zmin + k*(zmax-zmin)/(nz-1), where l = 

k*nx*ny + j*nx + i, for i = 0 to nx-1, j = 0 to ny-1, and k 

= 0 to nz-1. 
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3.3 Data structure 

The data structure involved in this system is made up of 

several one-dimensional arrays. 

a) Data Array 

The array “vectors” is an array used to store the vector 

data set correspondent with its grid point in the domain. 

This array is of length 4*nx*ny*nz (nx, ny and nz are the 

grids points in the x, y and z direction) containing the u, 

v, and w components of the vector and is followed by the 

vector magnitude. According to the format of the input data, 

the u, v, and w components of l-th vector are stored at 

index 4*l, 4*l+1, 4*l+2 of the array, and the magnitude of 

the l-th vector stored at index 4*l+3.  Therefore, the index 

of the i-th element of the array is a component of (i/4)-th 

vector and the position of the vector data in the domain can 

be computed as:  

x = xmin + ((i/4)%nx)*(xmax-xmin)/(nx-1)           

y = ymin + ((i/4)/nx)*(ymax-ymin)/(ny-1) 

z = zmin + ((i/4)/(nx*ny))*(zmax-zmin)/(nz-1) 

where nx, ny, nz are the value of grids points in the x, y, 

z direction. 

The array “indc” is an array of size nx*ny*nz that stores 

the contour level of the grid points.  
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b) Triangle list 

There are three arrays used to save the triangle lists of 

the surfaces parallel to x-y, y-z, and z-x planes. The size 

of the arrays are 6*(nx-1)*(ny-1), 6*(ny-1)*(nz-1), and 

6*(nz-1)*(nx-1). The triangle lists are stored before the 

rendering process begins. According to the input data 

format, we can index the grid points at the axis as figure 

4. 

      

 

 

 

 

 

 

 

 

 

Figure 4.  Indices of Grid points at the axis 

From Figure 4, we can see that the triangle lists of the 

surfaces parallel to x-y plane can be easily computed by 

adding the index of the grid point at the z-axis of the 

corresponding surface to the triangle list of x-y plane. The 
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triangle lists of the surfaces that parallel the y-z or x-z 

plane can also be computed similarly.  

The triangle list of the surface in the xy-plane can be 

computed as follows: 

k=0; 

for( i= 0 to ngy-1 ){ 

 for( j = 0 to ngx-1 ){ 

  index[k++]= ngx*i + j;  

index[k++]= ngx*i + j + 1;  

index[k++]= ngx*(i+1) + j + 1;  

index[k++]= ngx*i + j;  

index[k++]= ngx*(i+1) + j + 1;  

index[k++]= ngx*(i+1) + j;  

 } 

} 

The triangle list of the surface in the yz-plane can be 

computed as follows: 

k=0; 

for( i= 0 to ngz-1 ){ 

 m = i*ngxy;   

 for( j = 0 to ngy-1 ){ 

  index[k++]= m;  

index[k++]= m + ngx;  



 25 
 

index[k++]= m + ngx + ngxy;  

index[k++]= m;  

index[k++]= m + ngx + ngxy;  

index[k++]= m + ngxy; 

m = m + ngx;  

 } 

} 

The triangle list of the surface in the xz-plane can be 

computed as follows: 

k=0; 

for( i= 0 to ngz-1 ){ 

 m = i*ngxy;   

 for( j = 0 to ngx-1 ){ 

  index[k++]= m;  

index[k++]= m + 1;  

index[k++]= m + 1 + ngxy;  

index[k++]= m;  

index[k++]= m + 1 + ngxy;  

index[k++]= m + ngxy; 

m = m + 1;  

 } 

} 
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C) Color table 

A pre-stored RGB color table is used to specify the 

different contour colors. The color table starts with only a 

pure blue component, then we increase the red component. 

After that, we decrease the blue component and the coloe 

table ends at a pure red component. There is no green 

component used in this color table. The color bar is the 

same as in Figure 1.   

 

3.4 Techniques and Algorithms 

a) Data Interpolation 

There are three types of data interpolation involved in 

the system -- linear interpolation, bilinear interpolation, 

and trilinear interpolation of data. The linear 

interpolation is used in making the color-filled contour 

plot of the surfaces. The bilinear interpolation is used in 

adding the arrow plots into the surfaces, and the trilinear 

interpolation is used in calculating the streamlines.  

 

b) Color-filled contour plot 

In this program, we provide a color-filled contour plot 

by filling each of the triangles in the surfaces. Each grid 

of the surface is divided into two triangles. We fill the 
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triangles by linear interpolating the magnitude of the 

vectors at the vertices of the triangles, and then, fill the 

polygons with colors according to then contour value. For 

the surface that parallels the x-y plane there are 2(nx-

1)(ny-1) triangles that need to be filled, for the surface 

parallel to y-z plane, 2(ny-1)(nz-1) triangles, and for the 

surface parallel to zx-plane, 2(nz-1)(nx-1) triangles.  

 

 

 

 

 

 

 

Figure 5.  Partition of a triangle 

There are some pre-defined arrays that are used in this 

algorithm: 

Colors[NC][3] – Array of size NC*3 that stores the RGB  

                components of  each contour level. 

Contours[NC] – Array of length NC that stores an increasing  

               sequence of vector magnitude values defining 

               the upper limits of the contour levels. 

By observing Figure 5, we can see using two lines to 

partition a triangle linearly into polygons so that the 

p2(x2, y2, z2) p1(x1, y1, z1) 

p3(x3, y3, z3) 

Q(xq, yq, zq) 

P(xp, yp, zp) 
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largest number of vertices of the polygons is five. 

Therefore, we allocate an array vertex of size 5 by 3 as 

working space. The algorithm for color-filling a contour 

surface is as follows: 

 

CfillTriangle(int i1, int i2, int i3)    

// i1, i2, i3 are the indices of the triangle 

permute(i1, i2, i3) so that indc[i1]<=indc[i2] &&  

                            indc[i1]<= indc[i3];  

ic1 = indc[i1], ic2 = indc[i2], ic3 = indc[i3]; 

m1 = vector[4*i1+3];  

m2 = vector[4*i2+3];  

m3 = vector[4*i3+3];  

compute the coordinates(x1,y1,z1) of index i1 vertex; 

compute the coordinates(x2,y2,z2) of index i2 vertex; 

compute the coordinates(x3,y3,z3) of index i3 vertex; 

set n = 0;  

//n is used to count the vertices number of a polygon. 

vertex[n++] = (x1,y1,z1);  

for(ic = ic1; ic < ic2 ; ++ic){ 

m = contour[ic]; 

s = (m-m1)/(m2-m1); 

xp = x1 + s*(x2 – x1);  
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yp = y1 + s*(y2 – y1);  

zp = z1 + s*(z2 – z1);  

if(ic < ic3){ // q is at p1-p3 (see figure 5.) 

s = (m-m1)/(m3-m1); 

xq = x1 + s*(x3 – x1);  

yq = y1 + s*(y3 – y1);  

zq = z1 + s*(z3 – z1);  

} else {// q is at p2-p3 (see figure 5.) 

s = (m-m3)/(m2-m3); 

xq = x3 + s*(x2 – x1);  

yq = y3 + s*(y2 – y1);  

zq = z3 + s*(z2 – z1); 

} 

vertex[n++] = (xp,yp,zp); 

vertex[n++] = (xq,yq,zq); 

if(ic == ic3) vertex[n++] = (x3,y3,z3); 

fill_Polygon(vertex , n, ic); 

n = 2; 

vertex[0] = (xq,yq,zq); 

vertex[1] = (xp,yp,zp); 

} 

vertex[n++] = (x2,y2,z2); 

if(ic3 >= ic2){  
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for( ic=ic2 ; ic<ic3 ; ic++ ){ 

m = contour[ic]; 

s = (m-m2)/(m3-m2); 

xp = x2 + s*(x3 – x2);  

yp = y2 + s*(y3 – y2);  

zp = z2 + s*(z3 – z2); 

s = (m-m1)/(m3-m1); 

xq = x1 + s*(x3 – x1);  

yq = y1 + s*(y3 – y1);  

zq = z1 + s*(z3 – z1); 

vertex[n++] = (xp,yp,zp); 

vertex[n++] = (xq,yq,zq); 

fill_Polygon(vertex , n, ic); 

n = 2; 

vertex[0] = (xq,yq,zq); 

vertex[1] = (xp,yp,zp); 

} 

vertex[n++] = (x3,y3,z3); 

ic = ic3; 

} 

fill_Polygon(vertex , n, ic); 

end. 
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This algorithm fills a triangle each time it is called. 

In order to render a picture, 2*(ngx-1)*(ngy-1)+2*(ngy-

1)*(ngz-1)+2*(ngz-1)*(ngx-1) triangles need to be filled. 

 

c) Arrow plot 

We add arrow plots into the current active surfaces in 

the x, y, and z directions. The tails of the arrows are at 

the surfaces. The components of the arrows are computed by 

piecewise-bilinear interpolation of the four corner grid 

points that contain the tail of the arrow. The number of 

arrows is at least 2 in each direction. 

The following is an example of piecewise-bilinear 

interpolation of the data in the x-y plane.  
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b1 = (xi+dx-x)*(yi+dy-y)/(dx*dy); 

b2 = (xi-x)*(yi+dy-y)/(dx*dy); 

b3 = (xi+dx-x)*(yi-y)/(dx*dy); 

b4 = (xi-x)*(yi-y)/(dx*dy); 

The psuedo-code to add the arrow plots to the surface 

parallel to xy-plane is as follows: 

 

DrawField(double hx, double hy) 

//hx, hy are the distances between arrow tails  

  in x, y direction 

  int ngx, ngy; // number of grids in x,y direction  

x = xmin, y = ymin; //lower left corner of the domain   

xg = dx, yg = dy;  // dx, dy are the data grid width 

int jcnt = 0; // counter in y direction 

for(j=0; j<nay; j++){ 

x=xmin; 

p1(xi,yi) p2(xi+dx,yi) 

p3(xi,yi+dy) p4(xi+dx,yi+dy)

p(x, y) 

p1(xi,yi) 
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icnt = 0; 

for(i=0; i<nax; i++){ 

Compute the vecctor at(x,y,z); 

drawArrow(x,y,z,vx,vy,vz); 

x = x+hx; 

advance to next grid in x direction; 

} 

hg = hxg ; 

y = y+hy; 

advance to next grid in y direction; 

  } 

end. 

 

d) Streamline 

A streamline is the path of a massless particle that is 

released in a steady flow. The plotting of the particle 

paths produces a streamline picture, which is of both 

qualitative and quantitative value to an engineer. 

We compute a sequence of points that define a streamline 

beginning at (x0,y0,z0) by using Euler’s method. 

The sequence of points u = (ux, uy ,uz) is computed by 

integrating the system of ODE’s:  
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u’(t) = V(u(t))/(|V(u(t))|)= (vx, vy, vz)/sqrt(vx2+vy2+vz2), 

where u(0) = (x0, y0, z0); vx(ux, uy, uz), vy(ux, uy, uz),  

and vz(ux, uy, uz) are obtained by piecewise trilinear 

interpolation of the gridpoint vectors. Therefore,   

 

i>1 and dt is the step size.  

In this program, the streamline is terminated when it 

intersects itself (enters a cell previously encountered), 

hits the boundary of the domain pointing outward, encounters 

a point where the magnitude of the vector is less than a 

threshold value, or reaches the maximum number of points in 

a streamline. 

The starting point of the streamline is obtained from the 

mouse position in the domain.    

The following is an example of the piecewise trilinear-

interpolation of the data in a cell.  

 

 

 

 

 

 

p1(xi,yi,zi) 

p2(xi+dx,yi,zi) p3(xi+dx,yi+dy,zi) 

p4(xi,yi+dy,zi) 

p5(xi,yi,zi+dz) p8(xi,yi+dy,zi+dz) 

p7(xi+dx,yi+dy,zi+dz) p6(xi+dx,yi,zi+dz) 

p(x,y,z)
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b1 = (xi+dx-x)*(yi+dy-y)*(zi+dz-z)/(dx*dy*dz); 

b2 = (x-xi)*(yi+dy-y)*(zi+dz-z)/(dx*dy*dz); 

b3 = (x-xi)*(y-yi)(zi+dz-z)/(dx*dy*dz); 

b4 = (xi+dx-x)*(y-yi)*(zi+dz-z)/(dx*dy*dz); 

b5 = (xi+dx-x)*(yi+dy-y)*(z-zi)/(dx*dy*dz); 

b6 = (x-xi)*(yi+dy-y)*(z-zi)/(dx*dy*dz); 

b7 = (x-xi)*(y-yi)(z-zi)/(dx*dy*dz); 

b8 = (xi+dx-x)*(y-yi)*(z-zi)/(dx*dy*dz); 

The psuedo-code of computing a streamline is as follows: 

ComputeStreamline(double x0, double y0, double z0) 

//x0, y0 and z0 are the coordinates of the starting point 

append the (x0, y0, z0) into the streamline; 

copy (x0 , y0 , z0) to (x1, y1, z1); 

compute the cell contains (x1, y1, z1); 

 

  n = 1; 

  while( n < max value){ 
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compute the V at (x1,y1,z1) by trilinear interpolation 

of the grid point; 

if(|V| < vmin) return; 

x2 = x1 + dt*vx , y2 = y1 + dt*vy, z2 = z1 + dt*vz; 

compute the cell contain(x2, y2 , z2); 

append (x2, y2, z2) to streamline; 

test the termination condition; 

copy (x2, y2, z2) to x1, y1, z1 

} 

end. 
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4. RESULTS 

We have used our method to visualize the results 

(magnetic field and current) of the Ginzburg-Landau equation 

in a 3D rectangular domain. The Ginzburg-Landau equation is 

used to compute the critical point of a super conductor[8]. 

The approximated results of this function are provided by 

Dr.R.J.Renka[9]. The following figures are of the magnetic 

fields and currents.   

 

Figure 6.  A color-coded image of the current (cross-sections at the  

x-y, y-z, z-x planes)  
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Figure 7.  A non-color coded image of the current (cross-sections at the 

x-y, y-z, z-x planes) 

 

Figure 8.  A non-color coded image of the current without grids(cross-sections  

at the x-y, y-z, z-x planes) 
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Figure 9.  A color-coded image of the current with grids (cross-sections at the y-z,  

z-x  plans, and the cross section in the  center of the domain parallel to x-y plane) 

 

 
 
 

Figure 10.  A non-color-coded image of the current with streamlines  
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From the above figures, we can see that the grids can 

help the users to establish the concept of a 3D domain. 

Also, the animation of the cross sections can provide the 

users with precise information about any grid point in the 

domain. The streamlines can help users to derive useful 

information from the data set and give them an overall trend 

of the vector fields.   
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5. CONCLUSION 

We have presented a simple method to visualize 3D vector 

fields by displaying the color-coded cross-sections of the 

3D vector fields, animating the cross-sections along the 

axis, and adding arrows and streamlines into the domain. In 

the implementation of this method, bilinear and the tri-

linear interpolation of the grid data have been used.    

This method can give us both the local information and 

part of the global information about the 3D vector field 

data set.  This method, implemented with the interactive 

user interface, can help users to get a better understanding 

of the data sets they deal with.    
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