
THE DESIGN AND IMPLEMENTATION OF A PROLOG PARSER

USING JAVACC

Pankaj Gupta, B.S.

Thesis Prepared for the Degree of

MASTER OF SCIENCE

UNIVERSITY OF NORTH TEXAS

August 2002

APPROVED:

Paul Tarau, Major Professor
Armin Mikler, Committee Member
Roy Jacob, Committee Member
Robert Brazille, Graduate Coordinator
Krishna Kavi, Chair of the Department of Computer

Sciences
C. Neal Tate, Dean of the Robert B. Toulouse School of

Graduate Studies

Gupta, Pankaj, The Design and Implementation of a Prolog parser using javacc.
Master of Science (Computer Science), August 2002, 66 pp., 6 tables, 11 figures,
19 references.

Operatorless Prolog text is LL(1) in nature and any standard LL parser generator

tool can be used to parse it. However, the Prolog text that conforms to the ISO Prolog

standard allows the definition of dynamic operators. Since Prolog operators can be

defined at run-time, operator symbols are not present in the grammar rules of the

language. Unless the parser generator allows for some flexibility in the specification

of the grammar rules, it is very difficult to generate a parser for such text.

In this thesis we discuss the existing parsing methods and their modified versions

to parse languages with dynamic operator capabilities. Implementation details of

a parser using Javacc as a parser generator tool to parse standard Prolog text is

provided. The output of the parser is an “Abstract Syntax Tree” that reflects the

correct precedence and associativity rules among the various operators (static and

dynamic) of the language. Empirical results are provided that show that a Prolog

parser that is generated by a parser generator like Javacc is comparable in efficiency

to a hand-coded parser.

c© Copyright 2002

by

Gupta Pankaj, B.S.

ii

CONTENTS

1 INTRODUCTION 1

2 JAVACC 6

2.1 JAVACC OVERVIEW . 6

2.2 JAVACC GRAMMAR FILE STRUCTURE 7

2.3 LOOKAHEAD MECHANISM . 11

2.4 TOKEN MANAGER . 13

3 BUILDING PROLOG PARSER USING JAVACC 14

3.1 PROLOG GRAMMAR . 14

3.2 ABSTRACT SYNTAX TREE . 24

3.3 DYNAMIC OPERATORS IN PROLOG 32

3.4 LL PARSING . 33

3.5 ERROR REPORTING . 47

3.6 EMPIRICAL RESULTS . 48

4 OTHER PARSING TECHNIQUES AND THEIR ADAPTABILITY TO DY-

NAMIC SYNTAX 56

4.1 OPERATOR PRECEDENCE PARSING 56

4.2 LR PARSING . 58

4.3 DEFERRED DECISION PARSING 60

5 CONCLUSION AND FUTURE WORK 64

BIBLIOGRAPHY 65

iii

LIST OF TABLES

3.1 Lexical tokens . 18

3.2 Operator fixity determination table 38

3.3 Timing results for Javacc’s generated parser 50

3.4 Comparison of Javacc’s generated parser with Jinni for clauses that do

not contain dynamic operators . 52

3.5 Comparison of Javacc’s generated parser with Jinni for clauses that

contain dynamic operators . 53

3.6 Comparison of Javacc’s generated parser with Jinni for clauses that

have embedded Prolog compound terms 55

iv

LIST OF FIGURES

1.1 Taxonomy . 3

3.1 Prolog syntax for Javacc specification file 17

3.2 Parser . 22

3.3 Hierarchy of Classes for Building an Abstract Syntax Tree 25

3.4 Step by step building of the Operator tree based on their precedences 46

3.5 General structure of a Prolog clause 49

3.6 Graph showing the parsing time curves of Javacc’s generated parser

for clauses with (dynamic curve) and without (static curve) dynamic

operators . 51

3.7 Graph that compares Javacc generated parser with Jinni’s hand-coded

parser for Prolog terms that do not contain dynamic operators 52

3.8 Graph that compares the Javacc generated parser with that of Jinni’s

hand-coded parser for clauses that contain dynamic operator 54

3.9 Graph showing the comparison of Javacc generated parser with Jinni’s

hand-coded parser for Prolog clauses that have embedded Prolog com-

pound terms . 55

4.1 LR parser . 58

v

CHAPTER 1

INTRODUCTION

Every programming language has a set grammar rules associated with it. These

grammar rules define the syntax of the language. Based on these grammar rules, a

parser for the programming language can be constructed. There are two approaches

that could be taken for the construction of the parser. The parser could either be

hand-coded or a parser generator tool could be used for its construction. There are

a variety of parser generator tools (bottom-up and top-down) available that take a

grammar specification in the Backus-Naur format as their input and generate code

that would parse the language defined by the grammar. The use of a parser generator

provides us with the advantage of faster development time and efficient code that

could be easily maintained. However these parser generators require that the language

grammar is fixed and does not change during program execution.

In programming languages like Prolog and ML, new operators with arbitrary

precedence and associativity rules could be defined at run-time. Since these operators

are defined at run-time, they are not present in the grammar specification of the

language. Due to this, it becomes difficult to use standard parser generator tools to

generate a parser for these languages. In programming languages like C, C++ and

Java, there are fixed sets of operators that are hard-coded in the grammar specification

of the language. Thus it is favorable to use a parser generator to generate the parser

for these languages.

There are various public domain implementations of hand coded Prolog parsers.

In this thesis, an implementation scenario to parse standard Prolog text using Javacc,

1

which is a parser generator tool, is presented. The syntax definition of Prolog used

in this thesis is a subset of the ISO Prolog standard. The choice to use Javacc as the

parser generator tool is based on the following reasons: Javacc produces a top-down

(recursive-descent) parser. As the Prolog grammar is LL in nature, a top-down parser

would be a natural way of parsing Prolog. Since Javacc produces parser in Java, this

parser can be easily integrated with Java based Prolog compilers like Jinni [1]. Javacc

also provides extreme flexibility in its token definition and grammar specification

structures that help in the parsing of a language like Prolog with dynamic operator

capabilities.

OVERVIEW

Chapter 2 introduces Javacc[5] and discusses its advantages and capabilities as com-

pared to the other parser generators. It briefly describes the structure of the grammar

file that Javacc expects as its input. The look-ahead mechanism that is provided by

Javacc that helps in the resolution of ambiguities at choice points in the grammar

specification is explained next. This chapter concludes with the brief discussion of

the “Token Manager” (lexer) in Javacc. The lexical states and lexical actions that

can be specified in the “Token Manager” section of the grammar specification file are

well suited for tokenizing standard Prolog text.

Chapter 3 describes the syntax of Prolog as adapted for the Javacc specification

file. Though the tokens of the grammar remain the same as in the ISO Prolog stan-

dard, the grammar itself has been modified to incorporate the parsing of dynamic

Prolog constructs. The inheritance hierarchy of classes that are used to build the

“Abstract Syntax Tree” (AST) is discussed next followed by an introduction to dy-

namic operators in Prolog. For an operator both the syntax and semantics associated

2

with it can be overloaded. This leads to a taxonomy along two axes, syntax and

semantics [2] as seen in the following figure.

overloading
static

overloading
dynamic

overloading
static

overloading
dynamic C++ Prolog

syntax

semantics

C, Java

Figure 1.1: Taxonomy

Syntax overloading implies that an operator can be overloaded as unary and bi-

nary. Semantics overloading implies that the operator can be applied to different data

types. Programming languages like C and Java have static overloading of operators.

Therefore the number of operators in such languages are fixed. Also the data types

on which these operators can be applied is also fixed by the language specification.

C++ provides more flexibility as compared to the languages like C and Java. In

C++, operators can be semantically overloaded for new data types. Operator defini-

tion in Prolog provides for the maximum flexibility in this taxonomy. Thus in Prolog

new operators can be introduced and these can be overloaded syntactically and se-

mantically. This flexibility leads to added complexity in the generation of the parser.

However there are certain restrictions put forth by the ISO standard that help in the

3

deterministic parsing of Prolog text with dynamic operators.

Chapter 4 overviews the existing parsing methods and briefly discusses the favor-

ableness of these methods for parsing languages with dynamic syntax. A variation of

LR parsing technique called the “Deferred Decision Parsing” [4] is discussed that is

used to parse languages with dynamic syntax.

The key contribution of this thesis is the adaptation of Javacc’s syntax tree genera-

tor to support dynamic operators. This can be seen as a transformational component

which reorganizes a list of terms into a new term incorporating operators as func-

tional components. An algorithm to do the above task is presented. This module is a

plug-in to the Javacc generated parser and is called by the parser when a Prolog com-

pound term in the operator notation is identified by the parser. This module returns

the term (compound term in the functional notation) to the main parser which then

continues parsing further. The output of the parser is the term tree that represents

the AST according to the precedence and associativity rules of the given operators.

Following is a listing of the most common terms and phrases used in this thesis.

1. LL: Left to right parse, left most derivation

2. LR: Left to right parse, right most derivation

3. Operator Notation: Infix, prefix or postfix style of representing expressions with

operators.

For example, representing a + b as opposed to +(a, b).

4. Functional notation: Representation of operators in the functional style.

For example, representing +(a ,b) as opposed to a + b.

4

5. Fixity: Fixity of an operator can be infix, prefix or postfix. Although these

fixities can apply to both unary and binary operators, in this text infix is applied

only to binary operators, postfix is applied to unary operators that occur after

the operand and prefix is applied only to unary operators that occur before the

operand.

For example,

In a + b “+” is an infix operator.

In +a “+” is a prefix operator.

In a++ “++” is a postfix operator.

5

CHAPTER 2

JAVACC

2.1 JAVACC OVERVIEW

Javacc is a java based parser generator that generates a top-down parser. Top-down

parsers or recursive decent parsers allow the use of more general grammars. The

only limitation of these parsers is that left recursion is not allowed because this could

lead to infinite recursion. The top-down parsers have a structure that is identical to

the grammar specification and are thus easier to debug. Embedding code to build

abstract syntax tree in a top down parser is simpler because of the ease of passing

arguments and values across the nodes of the parse tree.

In a javacc specification file since the lexical specifications and the grammar spec-

ifications are written in the same file, it is easier to read and maintain. Javacc

provides different option settings that are used to customize the behavior of the gen-

erated parsers. As an example the option of Unicode processing can be turned on

which will enable the generated parser to read Unicode characters. The number of

tokens to look-ahead can be globally specified to resolve ambiguity at choice points.

Javacc also provides extensive debugging capabilities. The DEBUG PARSER, DE-

BUG TOKEN MANAGER, DEBUG LOOKAHEAD options can be set to output

extensive debug and diagnostic information at every stage of parsing.

By default javacc has a mechanism that looks ahead one token in the input stream

to resolve ambiguity in the grammar. However there might be situations where a

look-ahead of one token in the input stream does not resolve ambiguity. In such cases

6

javacc provides a capability whereby for certain parts of the grammar more than one

token can be looked ahead. Javacc provides both syntactic and semantic lookahead

capabilities to resolve such ambiguities. Thus the generated parser is LL(k) at these

points but remains LL(1) else where. This results in better performance.

Javacc also provides “lex” like lexical state and action capabilities. The “Token

Manager” is the component of Javacc that is used to recognize tokens of the grammar.

The “Token Manager” can be in any one of these lexical states and can execute user

defined lexical actions for these states. The “Token Manager” is a component of javacc

that is used to recognize and return the tokens of the grammar to the parser. It is

an implementation of a non-deterministic finite automaton. The “Token Manager”

can be in any one of these lexical states. Every lexical state could have user defined

actions assigned. These lexical actions for the state get executed once the “Token

Manager” enters that state.

2.2 JAVACC GRAMMAR FILE STRUCTURE

Javacc options

Parser Begin(Identifier)

Javacc Compilation Unit

Parser End(Identifier)

Productions

Javacc options

The options section is the section where the various settings that customize the be-

havior of the generated parser are specified. This section is optional. It starts with

7

the reserve word “option” followed by a list of one or more option bindings within

braces. Some of the most widely used option settings and their descriptions are listed

below.

1. LOOKAHEAD

The default value of this option is 1. This option specifies the number of to-

kens to lookahead before making a decision at the choice point. Setting this

option here affects the parser globally. However the local LOOKAHEAD option

overrides the global one.

2. STATIC

This is a boolean option whose default value is true. This implies that all meth-

ods and class variables are specified as static in the generated Token Manager

and parser. To perform multiple passes during one run of the Java program,

a call to ReInit() must be made to re-initialize the parser. If the parser is

non-static, we could construct many objects with the new operator which could

execute simultaneously from different threads.

3. DEBUG PARSER,DEBUG TOKEN MANAGER, DEBUG LOOKAHEAD

The default values of these boolean options is false. When set to true, these

options because the parser to provide debug information at runtime.

4. JAVA UNICODE ESCAPE

The default value of this boolean option is false. When set to true, the generated

parser uses an input stream object that processes Java Unicode escapes before

sending them to the Token Manager.

8

Java Compilation Unit

The Java Compilation Unit is enclosed between the PARSER BEGIN(Identifier) and

PARSER END(Identifier). The Identifier that follows the PARSER BEGIN and

PARSER END must be the same and this identifies the name of the generated parser.

The java compilation unit can contain java code so long as it contains a class dec-

laration whose name is the same as the name of the generated parser. Javacc does

not perform any detailed checks on the compilation unit. Thus the Javacc generated

parser might not compile. The generated parser contains a public method correspond-

ing to each non-terminal in the grammar file. Unlike Yacc [6] there is no single start

symbol and one may parse with respect to any non-terminal in the grammar.

Productions

A grammar that is used to specify the syntax of a programming language consists of

a set of productions. A production is a rule by which a sequence of terminals and

non-terminals get reduced to a non-terminal. In Javacc, one can define four kinds of

productions as explained below:

1. Javacode production: This is a way to write Java code for some productions

instead of the usual EBNF productions. This is specially useful when it becomes

necessary to recognize something that is not context free or is difficult to write

a grammar for.

2. Regular Expression production: These productions are used to define the lexi-

cal entities or tokens for the grammar. These tokens get processed by the Token

9

Manager. In javacc, all regular expressions belong to one or many lexical states.

A lexical state list can be explicitly defined for a particular regular expression

or if there is not lexical state defined for a regular expression, then that regular

expression belongs to the DEFAULT lexical state. In javacc there can be four

kinds of regular expressions: TOKEN, SPECIAL TOKEN, SKIP and MORE.

The TOKEN type regular expressions are used to describe the tokens in the

grammar. SPECIAL TOKEN type tokens are tokens that are simply ignored

by the parser. This is useful when identifying certain constructs of the language

that have no significance during parsing. For example, commented code within

a program. SKIP type tokens are simply ignored by the parser. The difference

between SKIP and SPECIAL TOKEN regular expression is that the later is

available at parse time for extra processing, however the former is not. MORE

type regular expressions are used to gradually build up a token to be passed to

the parser.

3. BNF production: This is the standard way of specifying Javacc grammars.

The BNF production has a format:

NT → α

where,

NT is a single non-terminal and

α is a sequence of zero or more terminals/non-terminals.

In javacc a non-terminal is written exactly like a method declaration. Since each

non-terminal is translated into a method in the generated parser, this style of

10

writing the non-terminals makes the association obvious. The name of the non-

terminal is the name of the method and the parameters and the return values

declared are the means of passing values up and down the parse tree.

4. Token Manager declarations: The declarations and statements in this section

are written into the generated Token Manager and are accessible from within

lexical actions. See the Section ”Working of Token Manager” for complete

details.

2.3 LOOKAHEAD MECHANISM

The job of the parser is to read an input stream of characters and determine if

these sequence of characters conform to the grammar. However there are situations

when there could be multiple productions of the grammar that could match up with

the sequence of characters read. If the parser had backtracking capabilities, then

it would choose the first production and if that failed then if would try the second

production and so on. The process of backtracking is very time consuming and the

performance hit from such backtracking is unacceptable for most systems including

a parser. Parsers generated by Javacc make decisions at choice points based on some

exploration of tokens further ahead in the input stream and once they make such a

decision, they commit to it. The process of exploring tokens further ahead in the

input stream is termed as “look ahead”.

A grammar should not have left recursion in it for Javacc to produce a parser.

There are known methods by which left recursion could be eliminated. Also whenever

there is ambiguity in the grammar there can be two things that could be done. Either

we modify the grammar to make it unambiguous or we insert certain lookahead hints

11

that would enable the parser to make the right choice at the choice points. For simpler

grammars changing it to make it unambiguous is certainly a better choice. However

when the grammars get complicated the second choice of introducing a lookahead

mechanism is a better choice because it makes the grammar readable and easier to

maintain without any serious performance hit.

By default Javacc looks ahead one token in the input stream to resolve ambigu-

ity. However more than one token could be specified for look ahead purpose. Javacc

provides syntactic and semantic look ahead mechanisms besides the one mentioned

above. In syntactic lookahead one particular choice at the choice point is tried out.

If that choice does not succeed then the other choices are tried out. With semantic

lookahead one could specify any arbitrary boolean expression whose evaluation deter-

mines which choice to take at the choice point. For example, consider the following

grammar

A → aBc

B → b [c]

The above grammar recognizes two strings “abc” and “abcc”. The default lookahead

mechanism would choose “[c]” from the second production every time it sees a “b”

followed by a “c”. Thus the Javacc parser with the default lookahead mechanism

would not recognize “abc” as a valid string. The second choice should be taken if

the next token is “c” and the token after that is not “c”. Since this is a negative

statement, syntactic lookahead cannot be used in this case. This could easily be

expressed using semantic lookahead.

One could specify the global look-ahead in the options section or one could specify

local look ahead at the choice points in the grammar file. The former should be

12

avoided as it would hit the performance of the parser. The later is better as the

grammar remains LL(1) for most parts and has a better performance.

2.4 TOKEN MANAGER

The “Token Manager” is used to manage the tokens specified in the grammar. It

returns the tokens found in the input stream to the parser. Just like the finite

automata has a finite set of states, similarly the javacc specification file is organized

into a set of lexical states. The “Token Manager” at any moment is in one of the

lexical states. Each lexical state has an ordered list of regular expressions. This

order is determined from the order in the input file. All the regular expressions in

the current lexical state are considered as potential match candidates. The “Token

Manager” prefers the longest match possible. If there are multiple longest matches

(same length), then the regular expression that is matched is the one with the earliest

order of occurrence in the grammar file. Once the regular expression is matched,

lexical action associated with that lexical state is executed. In the lexical action one

could change the characters thus matched or perform any other processing.

13

CHAPTER 3

BUILDING PROLOG PARSER USING JAVACC

Prolog which stands for PROgramming in LOGic is one of the most widely used

language for programming in logic. Prolog is a declarative, relational programming

language. It differs from the procedural languages like C in the fact that it is used

to describe problems rather than describe algorithms to solve the problem. Prolog

describes “what” rather than “how”.

A Prolog program does not contain statements or instructions, rather it contains

facts and rules. Facts state the properties that are true of the system we are describ-

ing. Rules give us ways of deducing new facts from existing ones. Since the Prolog

program gives us information about a system, it is often called as a knowledge base.

Working from the knowledge base the Prolog program will then answer “yes” or “no”

to our query and provides bindings to variables of the query.

Procedural programming languages contain functions that return a particular an-

swer for a given set of inputs. Relational languages define relations that can return

many different answers for one set of inputs. Prolog is relational in the fact that it

not only tells us if the relation is true but also lists all the situations that make the

relation true.

3.1 PROLOG GRAMMAR

Subset of the Prolog grammar as defined by the ISO standard for Prolog language

[7] has been used. The complete Prolog language syntax can be found in [7, 8]. The

14

basic data object of the language is called a “Term”. A “Term” can either be a

“Constant”, “Variable” or a “Compound Term”. A “Constant” includes “Numbers”

and “Atoms”. A “Number” can either an “Integer” or a “Real”. “Atoms” can be

any of the following:

1. Quoted item : An arbitrary sequence of characters enclosed in single quotes.

For example ‘USA’, ‘India’, ‘12345’, ‘The Logic’, ‘ !@#$ˆ&*’.

2. Word : A string of characters made up of upper-case letters, lower-case letters,

digits, and the underscore character, that begins with the lower-case character.

For example , aBigProgram, a1, java bean.

3. Special characters : These are defined in the table 3.1 for the token SPE-

CIAL CHAR.

Variables may be written as any sequence of alpha-numeric characters (including “ ”)

starting with either a capital letter or an underscore.

Structured data objects of the language are “Compound Terms”. A “Compound

Term” comprises of a functor (called the principal functor) of the term and a sequence

of one or more terms called the arguments. A “Functor” is characterized by its name

which is an “Atom” and its arity or the number of arguments. Thus, an “Atom” on

its own is a “Functor” of arity 0.

A logic program simply consists of a sequence of statements called sentences. A

“Sentence” comprises of a “Head” and a “Body”. A “Head” consists of a single

“Term” or can be empty. The “Body” consists of a sequence of zero or more goals.

If the “Head” is not empty then the sentence is called a “Clause”. If the “Body” of

15

the clause is empty then the “Clause” is called a “Unit clause”. If the “Body” of the

clause is not empty then the clause is called a “Non- unit clause”.

JAVACC IMPLEMENTATION OF PROLOG SYNTAX

The Prolog language syntax that is implemented is not the entire prolog language

set as described by the ISO Prolog standard [7]. The representations of numbers as

octal and hexadecimal values has been omitted in the current version. The listing

in fig 3.1 uses the Extended Backus Naur format (EBNF) for representing grammar

productions which uses the following notation:

1. [...] or (...)? implies 0 or 1 occurrence of anything within the brackets.

2. (...)+ implies 1 or more occurrence of anything within the brackets.

3. (...)* implies 0 or more occurrence of anything within the brackets.

The words with all letters in uppercase denote terminals. Any word with the mixed

case letters denotes non-terminals. The brackets (square, curly or parenthesis) when

enclosed within double quotes denote grammar tokens otherwise they are a part of

the EBNF grammar notation.

Figure 3.1 describes the syntax of Prolog as used for the Javacc input in the EBNF

format.

16

program −> skip_spaces prog EOF

prog −> (sentence skip_spaces)+

sentence −> clause skip_spaces eoc

head −> term1

body −> conjSeparatedTerms

variable −> VARIABLE

functor −> atom

atom −> UQ_CONSTANT_STRING | Q_CONSTANT_STRING | (SPECIAL_CHAR)+

eoc −> EOC

clause −> head skip_spaces (":−" skip_spaces body)?

conjSeparatedTerms −> term1 skip_spaces ("," skip_spaces term1 skip_spaces)*

term −> compoundTerm | list | variable | atom | "(" skip_spaces body skip_spaces ")"

compoundTerm −> functor "(" arguments ")"

arguments −> term1 skip_spaces ("," skip_spaces term1 skip_spaces)*

list −> "[" skip_spaces (term1 skip_spaces ("," skip_spaces term1 skip_spaces) *

 ("|" skip_spaces term1 skip_spaces)?)* "]"

term1 −> (term skip_spaces)+

Figure 3.1: Prolog syntax for Javacc specification file

17

All the entities in the above productions in capital letters are terminals. These are

defined in the “Token Manager” 1 section of the Javacc specification file and their

definition is as follows:-

Token Definition
EOF end of file token
EOC end of clause “.” (LAYOUT CHAR)+
LAYOUT CHAR “\n” | “\r” | “\t” | “ ”
FLOAT ([“0”-“9”])* “.” ([“0”-“9”])+
INTEGER [“1”-“9”]
SMALL LETTER [“a”-“z”]
CAPITAL LETTER [“A”-“Z”]
UNDERSCORE “ ”
TRAIL STRING CAPITAL LETTER |

SMALL LETTER |
INTEGER |
FLOAT |
UNDERSCORE

UQ CONSTANT STRING SMALL LETTER
(TRAIL STRING)* |
(INTEGER | FLOAT)

SPECIAL CHAR “+” | “-” | “*” | “/” |
“\” | “ˆ” | “[” | “]” |
“=” | “∼” | “:” | “.” |
“?” | “@” | “#” | “$” |
“&” | “!” | “[]” | “{ }” | “;”

Table 3.1: Lexical tokens

1This is the section where the regular expressions that describe the tokens of the language are
defined.

18

The Q CONSTANT STRING terminal is represented as a MORE regular expres-

sion in Javacc’s terminology and its definition is as follows:-

MORE:
{

“ ‘ ” : QUOTED
}
<QUOTED>
TOKEN
{

<Q CONSTANT STRING : (∼ [“ ’ ”])* “ ’ ” > : DEFAULT
}

If a single quote is encountered in the input stream, it is matched against the

single quote in the “MORE” section and enters into a “QUOTED” lexical state. The

Token Manager keeps appending all the characters that are matched in this state. The

Token Manager exists this state when an ending single quote is encountered in the

input stream and enters the “DEFAULT” lexical state. All the appended characters

(including the quotes) are returned to the parser as a “Q CONSTANT STRING”

token.

In the present implementation, both the single line and multi line comments can be

recognized. The single line comments start with a “%” sign and multi line comments

start with a “*” and end in a “*\”. These are matched by the Token Manager as

“SPECIAL TOKEN” regular expression. The special tokens are passed to the parser

but are not matched against any production rules.

The following paragraphs explains some of the important details about the gram-

mar productions in the figure 3.1.

skip spaces :

This is a Javacode production which in Javacc terminology is a black box production.

19

In the Javacc specification file we could globally specify to skip the white spaces in the

“SKIP” section. However, there are certain places in the grammar where the white

space decides the kind of token to be matched by the Token manager. The dot “.”

token when followed by a white space becomes an “end of clause” (EOC) token. For

example “f(X). ”. However when the dot is not followed by a white space there might

be different interpretations for it. The dot might be a decimal point in a floating

point number or it might be a functor in the list definition. For example in the num-

ber 4.5 the dot is the decimal point and in .(4,5) it is the functor. The skip spaces

non-terminal is used in productions where the white spaces must be ignored.

As stated in the ISO Prolog standard [7] if, in the compound term definition,

there is a white space between the atom and the left parenthesis then it would not

be interpreted as a compound term. Thus we must not skip spaces here because

then +(x,y) and + (x,y) would mean the same thing. In the former term “+” is a

functor of arity 2 while in the later it is a functor of arity 1. In further discussion,

the skip spaces non-terminal will be omitted for reasons of clarity.

Lookahead :

Although the Prolog grammar is predominantly LL(1) in nature, there are certain

constructs that are not LL(1) in nature. Consider the following set of productions.

term → compoundTerm | atom | ...

compoundTerm → functor “(” term “)”

functor → atom

From the above set of productions the parser would not be able to decide be-

tween an atom and a compound term without looking ahead until it finds a left

parenthesis token (“(”). Also productions like “atom → (SPECIAL CHAR)+”

20

require a lookahead of 2. This helps the parser decide whether to match another

SPECIAL CHAR token or to return an atom. Similar argument can be given for

the production “term → term(term)∗” where a look-ahead of 2 is introduced. Thus

these look-ahead values help in resolving the ambiguities that arise at the various

choice points.

Term’ :

The production “term1 → term(term)∗” has been introduced to identify the Prolog

constructs that contain dynamic operators in operator notation. The introduction of

new non-terminal term1 also avoids the left-recursion which is not valid in a recursive

descent parser. Consider the valid Prolog sentence “joe is a boy..” Assume that is a

is an infix operator with a precedence of 800. Each of the words in the previous

sentence is an atom and thus a form of a term. Thus all the Prolog constructs that

are in the operator notation is a sequence of terms. The above listed rule with non-

terminal term1 on the left hand side is introduced that identifies a sequence of terms.

This sequence of terms is then passed on to the dynamic operator parser module that

builds a term tree with the help of operator table that contains the precedence and

fixity information of all the operators. In the above example the dynamic operator

parser would return is a(joe,boy) to the main parser. This is interpreted by the main

parser as a compound term.

Parenthesis have the highest precedence irrespective of the operators contained

within them. This situation is handled by the Javacc generated parser. It recognizes

the sequence within the parenthesis first and passes them to the dynamic operator

parser. After this sequence is transformed into the functional notation it is returned

by the dynamic parser to the Javacc generated parser. For example, consider the

21

following Prolog construct joe is a (boy is not tall). Assume that is not and is a are

dynamically defined infix operators with valid precedence values. The sequence of

terms that would be passed to the dynamic operator parser first would be boy is not

tall. The dynamic operator parser will return is not(boy,tall) to the parser. Thus

the parser will have joe is a is not(boy, tall). This sequence of terms would again

be passed on to the dynamic operator parser which would finally return is a(joe,

is not(boy, tall)) to the main parser. Thus the parser flips back and forth from the

dynamic parser and itself as shown in figure 3.2.

Javacc
generated
Parser

Syntax Tree
Abstract

sequence of terms

term

Operator Table

Prolog clause
Dynamic
Operator
Parser

Figure 3.2: Parser

22

The Javacc generated parser referred to as parser in the remainder of this section,

parses and constructs the term tree for operator-less Prolog terms. For constructs

that contain dynamic operators which is a sequence of terms as we have seen earlier,

the parser passes this sequence to the dynamic operator parser. This term creation

process by the dynamic operator parser requires the precedence and associativity

rules of the operators contained in it. This information is acquired via the Operator

table. The Operator table contains the precedence and associativity values of the

predefined operators along with any dynamically defined operators. The Operator

table is implemented as a hashtable. The key in the hashtable is the string represen-

tation of the operator and the value is an array of 3 operator objects. Each operator

object contains the name, fixity and precedence value of the operator. The value of

the hashtable is an array of 3 objects for the case of operator overloading, as a single

operator can be overloaded as an infix, prefix and a postfix operator.2 The terms

passed on to the dynamic operator parser retain their type information. This helps

the dynamic parser in recognizing the dynamic operators in the term sequence. This

will be explained further in section 3.2 which deals with building the Abstract Syntax

Tree.

The following example shows the sequence of reductions. The part in bold is the

part that is getting reduced to the functional notation.

f(X) : −g(a + (b - d / e), Y).

f(X) : −g(a + -(b, /(d,e)), Y).

f(X) :- g(+(a, -(b, /(d, e)), Y).

2Though ISO Prolog standard allows an operator to be overloaded only as an (infix, prefix) or a
(postfix, prefix) combination but not as a (infix, postfix) combination, we still allow an operator to
be defined in all 3 fixities. An error is generated when an ambiguity arises during parsing.

23

: −(f(X), g(+(a,−(b, /(d, e)), Y).

Thus the parser identifies the innermost sequence of terms to be reduced. The dy-

namic operator parser simply accepts this sequence of terms and returns the term

tree to the parser or reports an error if the term tree cannot be constructed.

3.2 ABSTRACT SYNTAX TREE

The context free grammar listed in the previous section is used to verify if a program

conforms to the Prolog syntax. In addition to this the parser must also build an

internal tree representation of the program. This internal tree representation is called

the Abstract syntax tree(AST) and is used by the later stages of the compiler. In

a recursive descent parser like the one generated by Javacc, the parsing and the

generation of the abstract syntax tree are done simultaneously. This means that

when a certain group of tokens is reduced by a certain rule, the code associated with

that production for building the AST is executed.

The object oriented style of building an abstract syntax tree is to make an abstract

class for each of the grammar symbols as stated in [9]. A concrete class is made for

each of the grammar rules which extends the abstract class. This rule is more or less

followed for designing an abstract syntax tree for Prolog. In Prolog since every data

structure is a kind of “term”, all the abstract classes due to the grammar symbols

get inherited from a universal abstract class “Term”. The hierarchy of classes to

represent the AST is shown in figure 3.3.

24

NonVar

Number

RealIntegerDyOp Functor Nil

Clause Cons FunBuiltin

Conj

Var

Term

Constant

Figure 3.3: Hierarchy of Classes for Building an Abstract Syntax Tree

25

A term can be a variable, constant or a compound term. A compound term is rep-

resented as f/n where f is the name of the principle functor and n is it’s arity (the

number of arguments). A constant is a functor of arity 0. In other words a constant

(if not a number) is a special kind of compound term. Therefore it is more appropri-

ate to have a more generic var and nonvar classes which represent the variables and

the non-variables respectively, as a subclass of the term class. The nonvar forms the

base class of constant and compound term classes. As stated earlier, though numbers

are constants, they are not functors of arity zero. Thus instead of having constant

and a compound term as subclasses of the nonvar object, number and a constant

form the subclasses of the nonvar class. The compound terms are represented by

the generic Functor class, which inherits from the Constant class. There is a special

constant term ([]) in Prolog that represents the end of the list. This special term is

represented by the nil class. Thus the nil and the fun class form the sub-classes of

the Const class. The Prolog clauses are special cases of the compound terms whose

functor name is “:-” and its arity is the number of body terms in the clause. The lists

in Prolog are also special cases of the compound term. The functor name for list is

represented by “.” and its arity is the number of items in the lists. All the Prolog

built-ins are also functors. Thus, there are three classes: clauses, cons and FunBuiltin

representing the clauses, lists and built-ins respectively that form the sub-class of the

Functor class.

Every structure in Prolog is of the form f(a,b,...) where f is the name of the

functor and a, b and so on are the terms. Though the structure of the clause is of the

format head :- body., it could also be written as :-(head,body).. Thus :- is a functor

of arity 2 with head and body as its arguments. cons is a class that represents a

26

list. Lists are usually represented within square brackets as [a,b,...]. They too have

an alternate representation using the “.” (dot) functor. Thus the list above could

also be represented as .(a,.(b,.(c,nil))).. The class cons takes care of the internal

representation of the list. Notice that the inner most dot functor has as its second

argument “nil” which represents an empty list ([]). All the built-in predicates derive

from the class funbuiltin.

Following are the functions that are used to generate the abstract syntax tree.

1. makeVar

Return value: Term

Argument: String s

This function is responsible for making a Var object out of the string passed

to it. This function is called from the production variable → VARIABLE. This

Var object is added to a global dictionary that acts like the symbol table. This

dictionary holds the identifier name along with the number of occurrences of it

in a clause. In the makeVar function, the string s is searched in the dictionary.

If the string is present in the dictionary, its occurrence count is increased by 1.

If the string is not present in the dictionary, then a new entry is created with

an occurrence count of 1. Anonymous variables represented by “ ” are treated

specially and are not entered in the dictionary.

2. makeConst

Return value: Term

Arguments: String s, Boolean checkDynamic

The boolean value of checkDynamic indicates to the function whether or not to

consult the Operator table. If the Boolean argument checkDynamic is true, this

27

function first consults the Operator table to find out if string s is an operator.

If it is an operator then an instance of class DyOp is created. If checkDynamic

is false, this function creates an instance of a Constant class. This function is

called from the code (Procedure 3.1) that gets executed once the production

functor → atom is matched. The checkDynamic boolean variable is a global

variable and is set to true when any of the following reductions occur:-

Term → “(” Term “)”

Atom → UQ CONSTANT STRING

Atom → (SPECIAL CHAR)+

3. makeFun

Return value: Term

Arguments: String s

This function is responsible for creating the Functor object out of the string

passed to it. This function is called from the production functor → atom. As

stated earlier the Functor object represents the functor and thus has an arity

associated with it. The arity of the functor is the number of arguments passed

to it. The arity of the Functor object is set from the production

argument → term1(,term1)*.

4. makeInt

Return value: Term

Arguments: String s

This function is responsible for creating the Integer object out of the string

passed to it. This function is called from the production term → atom. As

28

seen from figure 3.1 an atom can be a UQ CONSTANT STRING. This token

can be matched against an integer, real or a constant string starting with a

lower case letter. The pseudo-code listed in Procedure 3.1 gets executed once

the above production is matched. This procedure is used to decide the type of

UQ CONSTANT STRING (Integer, Real or a Const).

Procedure 3.1 Pseudo-code for deciding whether UQ CONSTANT STRING is an
integer, real of a constant string.

try {
int is = Integer.parseInt(s);
term = makeInt(is);
} catch(NumberFormatException e) {
isConst = true;
}
if isConst then

try {
float fs = Float.parseFloat(s);
term = makeReal(fs);
isConst = false;
} catch(NumberFormatException e) {
isConst = true;
}

end if
if isConst then

term = makeConst(s, checkDynamic);
end if
return term;

5. makeReal

Return value: Term

Argument: String s

This function is responsible for creating the Real object out of the string passed

to it. This function gets called from the code (Procedure 3.1) that gets executed

29

Procedure 3.2 Pseudo-code for generating a term tree out of comma separated terms

Term curr = (Term)v.elementAt(i);
Term t = null;
i++;
if i >= size then

t = curr;
return t;

end if
Term next = (Term)v.elementAt(i);
if next instanceof Const then

String s = ((Const)next).name();
if s.equals(”,”) then

t = new Conj(curr,makeConjCont(v,++i,size));
end if

end if
return t;

once the production term → atom is matched. If the string is not an integer

then it is checked to see if it is real. If it is found to be real, then the makeReal

function gets called an a Real object is created.

6. makeConjCont

Return value: Term

Argument: Vector v, int i, int size

This function is responsible for creating a tree structure out of the comma

separated terms as is present in the body section of the clause. The vector v

contains the comma separated terms, size is number of elements in the vector.

This is a recursive function and the argument i represents the current index in

vector. This function is called from the production body → conjSeparatedTerms.

The pseudo-code listed under Procedure 3.2 is executed once the above rule is

matched.

30

7. makeListCont

Return value: Term

Arguments: Vector v, int i, int size

This function is responsible for creating the tree structure out of the list. The

vector contains all the terms of the list, i is the index of the current term in the

list and size is the number of elements in the list. This function is called from

the production list → [(term (,term)* | term)*]. The pseudo-code listed

under procedure 3.3 is executed once the above rule is matched.

Procedure 3.3 Pseudo-code for generating term tree out of the list definition.

Term curr = (Term)v.elementAt(i);
Term t = null;
i++;
Term next = (Term)v.elementAt(i);
if next instanceof Const) then

String s = ((Const)next).name();
if s.equals(“|”) then

t = new Cons(curr,(Term)v.elementAt(++i));
else if s.equals(“,”) then

t = new Cons(curr, makeListCont(v, ++i, size));
else if s.equals(“]”) then

t = new Cons(curr,Const.aNil);
end if

end if
return t;

8. buildDynamicTerms

Return value: Term

Arguments: Vector v

Exception: ParseException

This function is responsible for creating a term tree out of the Prolog constructs

31

that contains dynamic operators. This function is called from the production

term’ → (term)+. This term tree building process out of a prolog construct

containing dynamic operators will be discussed in detail in section 3.3.

3.3 DYNAMIC OPERATORS IN PROLOG

Prolog language provides us with the ability to define and use dynamic operators.

This ability allows us to have a syntax that is more like Natural Language than a

programming language. In Prolog an operator could be defined at run-time with its

precedence and associativity information. The built-in that is used to define dynamic

operator is “op”. For example,

we define two arbitrary operators “is a” and “is not” as follows:

op(500, yfx, is a).

op(600, yfx, is not).

Then the following statements are valid Prolog rules.

joe is a boy. and

joe is not tall.

These two operators can be combined in a single statement as

joe is a boy is not tall.

This built-in functor takes three arguments: precedence, associativity and the

operator name. The precedence of a dynamic operator is an integer value from 1 to

1200. The higher the numeric value for precedence of an operator, the lower is its

precedence. Thus an operator with a precedence value of 500 has a higher precedence

than an operator with the precedence value of 600. In the above example, the operator

32

is a will bind more tightly than the operator is not. The statement joe is a boy is not

tall. will bind as ((joe is a boy) is not tall.). The second argument is the associativity

of the operator. The associativity of an operator can have the following values:

1. fx : Unary non-associative prefix operator.

2. fy : Unary right associative prefix operator.

3. xf : Unary non-associative postfix operator.

4. yf : Unary left-associative postfix operator.

5. xfx : Binary non-associative infix operator.

6. xfy : Binary right-associative infix operator.

7. yfx : Binary left-associative infix operator.

Associativity of “yfy” is not a permissible value because an operator cannot be left

and right associative at the same time.

A Prolog term in operator notation can be interchangeably used for a Prolog term

in the functional notation. Thus the statement “joe is a man” can also be written

as “is a(joe, man)”. The arity of terms containing operators can be either 1 or 2 as

operators can only be unary or binary.

3.4 LL PARSING

LL(k) parsers are top-down or recursive descent parsers which require 1 to k token

look-ahead. “LL” stands for left to right parse, leftmost derivation. These parsers

scan the input stream of tokens from left to right and try to match them against the

33

terminals of the grammar. LL parsers are easier to understand than the LR parsers

(discussed in section 4.2) since the grammar rules get translated to recursive function

calls in these parsers, unlike the LR parsers where the grammar rules are encoded in a

table. The LL parsers are easier to debug and have a better error recovery semantics.

Javacc as discussed in Chapter 1 is an LL(k) parser generator. Left-recursion is not

allowed in these parsers as they can go into an infinite loop.

ADAPTABILITY OF LL PARSERS TO DYNAMIC SYNTAX

In this section we will show that it is not feasible to have productions in a LL gram-

mar that correctly identify the infix, prefix or postfix form of operators. A set of

production rules is presented that could be used to identify the operators with dif-

ferent fixities. These productions have left recursion in them and so they cannot be

used as an input to the LL parser generator. Therefore to make these productions

LL grammar compatible, they are modified to eliminate the left recursion in them by

the introduction of a new non-terminal. These LL grammar compatible productions

will still not be able to identify the operator fixities as will be shown with the help

of an example. After this discussion we will present our solution to this problem.

THE PROBLEM

They set of grammar rules that can be used to identify the infix, prefix and postfix

operators are as follows:-

1. term → term OP term

2. term → OP term

3. term → term OP

34

In the above productions “OP” represents the dynamic operator. These produc-

tions are used to identify the infix, prefix and the postfix operators respectively. There

is left recursion in the first and the third productions and thus these productions need

to be modified. A new non-terminal term’ is introduced for this purpose and the rules

are rewritten as follows:-

1. term’ → term OP term’

2. term’ → OP term’

3. term’ → term OP

In the above productions though the left recursion is eliminated, there is ambiguity

in the grammar. The right hand side of productions 1 and 3 both start with the same

symbols and thus the parser will not be able to choose the correct production. The

first and the third productions are combined together as production 4. After this

reduction we have the following productions:-

4. term’ → term OP (term’)*

5. term’ → OP term’

This process is called “left factoring” and is done so that the grammar is unambigu-

ous at the choice point. However with the above reduction we loose the ability to

determine the fixity of the matched operator.

Consider the following Prolog construct:-

a && + b.

Here we assume that && is a postfix operator and + is an infix operator. a would

be returned as a term. && would be matched against the OP in rule 4. Next the +

symbol would be matched against the OP in rule 5 and b would be matched against

35

term’ of rule 5. Thus the && operator would be treated as an infix operator when

it is actually a postfix operator and + would be treated as an prefix operator when

it is actually an infix operator. Given just the productions 4 and 5, it is not possible

to correctly identify the fixities of operators. Also in order to apply the correct

productions to the input string we must know before hand the fixities of operators.

The next section explains a solution to this problem.

THE SOLUTION

Thus to correctly identify the fixities of operators in clauses with operator notation

and build a tree, we do the following 3 sub-tasks.

1. Recognize the clauses in the operator notation in the Prolog text.

2. Identify the fixities of the operators in case of overloaded operators.

3. Construct the term tree based on the operators fixities determined in step 2.

36

SUB-TASK 1:

The sub-task 1 is done by the parser and the sub-tasks 2 and 3 are done by the

dynamic parser. Sub-task 1 is done by introducing a new production rule term’ →
term (term)*. Since all operators are atoms by definition which is again a form

of term, the production above can recognize the clauses in operator notation. This

sequence is passed on to the dynamic operator for further processing.

SUB-TASK 2:

There are certain restrictions that are put forth by the ISO Prolog standard [7] on

the overloading of dynamic operators in Prolog. The restrictions are as follows :-

1. Two operators cannot have the same name and fixity.

2. An operator cannot be overloaded as an infix and a postfix operator. This

restriction is necessary for the parser to decide the fixity of the operator by just

looking ahead 1 token in the input stream. For example, consider the following

sequence of terms and operators: t1 op1 op2 op3 t2.

Here t1 and t2 are terms and op1, op2 and op3 are operators. Assume op1 is

overloaded as infix and postfix operator and op2, op3 are prefix operators. The

fixity of op1 as an infix operator can be determined only until the term t2 is

read which is looking ahead more than one token.

The table 3.2 helps us determine the type of fixity of the dynamic operator given the

type of adjacent terms. In this table, the columns represent the type of the next term

and the rows indicate the type of the previous term. Since the ISO Prolog standard

disallows overloading an operator as infix and postfix, the infix and the postfix forms

are together referred to as non-prefix.

37

Term DyOp null

Term infix non-prefix postfix
prefix prefix prefix postfix
infix prefix prefix postfix

postfix infix non-prefix postfix
null prefix prefix postfix

Table 3.2: Operator fixity determination table

The algorithm to decide the fixity of the operator is shown in the algorithm listing

3.4. The variables prev, curr and next point to the previous, current and the next

element in the sequence of terms.

38

Algorithm 3.4 Operator fixity determination algorithm

Require: Vector of Terms (vTerms), Operator table (opTable), Fixity table (opFix).
Ensure: Vector of Terms with fixities of dynamic operator’s decided.

n = size of vTerms
Term prev = null
Term next = null
Term curr = null
for i = 0 to n-1 do

curr = vTerms[i]
next = (i+1 <= n−1) ? vTerms[i+1] : null
if curr is not an instance of DyOp then

prev = curr
continue;

else
if DyOp is not overloaded then

vTerms[i] = corresponding Operator object from the opTable
else

fixity = opFix[previous][next]
vTerms[i] = corresponding Operator object from the opTable

end if
end if
prev = curr

end for

SUB-TASK 3:

The algorithm listing 3.5 describes the algorithm to build a term tree from a sequence

of terms. This algorithm is recursive in nature. It finds the operator with the widest

scope (highest precedence value) and splits the sequence of terms from that point.

This procedure is again applied to the split sequences. Thus the complexity of this

algorithm is nlogn.

The algorithm to find the operator with the widest scope is listed in algorithm

listing 3.6. This algorithm takes into account the case when there is more than one

operator with the same precedence and fixity adjacent to each other. Two operators

39

Algorithm 3.5 Algorithm to create a term tree that reflects the correct operator
associativity and precedence

Require: Vector of Terms (vTerms) with correct fixities of operators, sIdx (start
index of the sub-vector), eIdx (end index of sub-vector)

Ensure: Term tree representing the correct precedence of the operators.
if sIdx >= eIdx then

return term
end if
int idx = findRootIndex(sIdx, eIdx)
Operator o = vTerms[idx]
if o is Prefix then

right subtree of o = buildTreeBySplitting(idx+1, eIdx)
end if
if o is Infix then

left subtree of o = buildTreeBySplitting(sIdx, index−1)
right subtree of o = buildTreeBySplitting(idx+1, eIdx)

end if
if o is Postfix then

left subtree of o = buildTreeBySplitting(sIdx, index−1)
end if

40

are said to be adjacent to each other if there is not a single operator with a different

precedence value and fixity separating the two. If there is a sequence of operators

adjacent to each other then the determination of the operator with the widest scope

depends on the associativity of the operators.

The following examples describe the operators that are adjacent to each other

and the operators that are not. The precedence values and fixity of the operators are

shown in brackets. For example,

1. op1(N,infix) t1 op2(N,infix)

op1 and op2 are adjacent to each other.

2. op1(N,prefix) op2(N,prefix) op3(N,prefix)

All the three operators are adjacent to each other.

3. op1(N,prefix) t1 op2(N-1,prefix) op3(N-1,prefix) t2

op1 and op2 are not adjacent to each other because they have different prece-

dence values.

4. op1(N,postfix) op2(N-1,infix) op3(N,prefix)

None of the three operators are adjacent to each other.

5. t1 op1(N,infix) op2(N,prefix) t2

Although op1 and op2 have the same precedence values, they are not adjacent

to each other as one is infix and the other is prefix.

Algorithm 3.6 is described as follows:-

If there is just one operator with the highest precedence then the index of that opera-

tor is returned. However, if there is more than one operator with the same precedence

41

value and these operators are adjacent to each other, then the index returned would

depend on the associativity of the operators. If they are left associative, then the

index returned is the one of the right most operator in the sequence of adjacent oper-

ators. If they are right associative then the index returned is of the left most operator

in the sequence of adjacent operators. If they are non-associative then an error is re-

ported. If the operators are not adjacent to each other, then the index of the first

operator with the highest precedence is returned.

42

Algorithm 3.6 Agorithm to find the operator with the widest scope

Require: Sub-vector of Terms (vTerms) from the buildTreeBySplitting function, sIdx
(start index of the sub-vector), eIdx (end index of sub-vector)

Ensure: index of the operator with the widest scope (lowest precedence)
int indexOfRoot = -1
int maxPrecedence = -1 {The precedence value of the operators are stored as (1200
- value + 1). This is done so that the precedence of an operator does not have an
inverse relation with it’s precedence value as is the case while defining the operator.}
for i = sIdx to eIdx do

curr = vTerms[i]
if curr is not an instance of Operator then

continue
else

if maxPrecedence < precedence of curr then
maxPrecedence = precedence of curr
indexOfRoot = i
continue

end if
if maxPrecedence = precedence of curr then

rootOperator = vTerms[indexOfRoot]
if rootOperator and curr are adjacent to each other then

if associativity of curr = left associative then
indexOfRoot = i

end if
if associativity of curr = right associative then

continue
end if
if associativity of curr = non- associative then

throw ParseException {Non-associative operators cannot be adjacent
to each other}

end if
end if

end if
end if

end for

43

Example for algorithm 3.4

Input : a + - b $ * c / e.

Curr Operator Prev Next opFix[Prev][Next]

a No

+ Yes Term Op non-prefix (Infix)

− Yes Infix Term Prefix

b No

$ Yes Term Op non-prefix (Postfix)

∗ Yes Postfix Term Infix

c No

/ Yes Term Term Infix

e No

In the table above we use the precedence values of the predefined operators as listed

in the ISO Prolog standard [7]. An extra operator “$” has been dynamically added

with a precedence value of 100. The final column in the table above contains the

evaluated fixity of the operators present in the input string. As discussed before

this is obtained by indexing into the table 3.2 with the previous and next types of

terms. The fixity information got from the previous query is used to retrieve the

correct Operator object from the Operator table. The name of the Operator is used

as the key and the fixity is used as an index into the Operator array. If the Operator

object cannot be retrieved because an operator with the determined fixity was not

defined, then a parse exception is thrown. Thus at this point the fixity and the

precedence values of the operators are known. After this step, it is trivial to build a

tree representation which will represent the correct precedences of the operators.

44

In the following line the dynamic operator symbols are annotated with their evaluated

fixity and precedence values.

a +(yfx, 500) -(fy, 200) b $(xf,100) *(yfx, 400) c /(yfx,400) e.

The following figure shows the step by step formation of the tree based on the

precedence values of the operators. As stated in the algorithm 3.5 we find the operator

with the highest precedence value and then split the terms from that point. The

operator becomes the functor and the left and right sequences become it’s arguments.

Note in this case the left or the right split could be empty denoting a prefix or a postfix

operator. This process is repeated until no more splits are possible.

45

+

*a

− b $ c / e

a − b $ * c / e

+

c d

/

c d

/

a

+

*

−

b

1

2

3

4

5

+

*

−

b $

a

$

+

*

−

b $

c / e

Figure 3.4: Step by step building of the Operator tree based on their precedences

46

3.5 ERROR REPORTING

Whenever there is a syntax error encountered in the Prolog text, an exception is

thrown. This exception gets propagated to the top level production “prog → (sen-

tence)+”. This production occurs within the try catch block and the exception gets

caught here. This exception is called “ParseException” and is provided by Javacc. It

contains information about the type of token expected instead of the token encoun-

tered at the place of syntax error. It also contains information about the line and

column number where the error occurred. Once the exception is caught, the function

“skip to eoc” is called which as the name suggests skips all the tokens until the end of

clause token is reached. Thus the parser recovers from the error, displays the syntax

error, skips to the end of the clause and starts parsing the next clause. Following is

a listing of some typical errors and messages printed out by the parser.

1. Prolog sentence: add(X :- a + b.
Encountered “:-” at line 1, column 10.
Was expecting one of:
“)” ...
“,” ...
<UQ CONSTANT STRING> ...
<Q CONSTANT STRING> ...
<SPECIAL CHAR> ...
“[” ...
<VARIABLE> ...
“(” ...

2. Prolog sentence: a b c d e f.
LINE: 1
SYNTAX ERROR: OPERATOR EXPECTED
a
*** HERE ****

47

b c d e f

3. Prolog sentence: a * ? c.
LINE: 1
SYNTAX ERROR: OPERATOR PRIORITY CLASH
a ‘*’
*** HERE ****
‘?’ c

4. Prolog sentence: ? ? a
LINE: 1
SYNTAX ERROR: NON-ASSOCIATIVE OPERATORS FOUND TOGETHER
‘?’
*** HERE ****
‘?’ a

5. Prolog sentence: a + .
LINE: 7
SYNTAX ERROR: UNBALANCED OPERATOR
a ‘+’
*** HERE ****

3.6 EMPIRICAL RESULTS

This section measures the parsing time for the Javacc generated parser for parsing

clauses that with and without dynamic operators. These results are then compared

to that of Jinni’s parser that is hand coded. The expected time complexity of Javacc’s

generated parser depends on the number of dynamic operators contained in the clause.

The general structure of a Prolog clause can be visualized from the following figure.

The dotted line is the part of the clause that contains dynamic operators and the

solid line indicates regular prolog terms, that is,. terms in the functional notation

48

Terms in
functional
notation

Terms in
functional
notation

Terms in
Operator
notation

Terms in
Operator
notation

Figure 3.5: General structure of a Prolog clause

. The complexity for the parser to parse regular prolog terms is N where N is the

number of terms and is k log k for terms that contain dynamic operators where k is

the number of operators present in the clause. For small k, k log k tend to k and

the overall complexity of the parser tends towards N. However for large k, k log k is

significant and the complexity of the parser tends towards N log N. The worst case

is when the entire clause is made up of dynamic operators. However, long operator

sequences are unlikely and the frequent operators like the “,” are hard-coded in the

syntax. In the Javacc generated parser, the price for dynamic operator constructs is

paid only when they are present and not other wise. This is not the case for some

of the hand-coded parsers. There is always an extra overhead introduced in these

parsers if they had to account for dynamic operators.

Table 4.1 shows the parsing time information for the Javacc-generated parser. The

nTerms column represents the number of terms for the case where the clause contains

terms without dynamic operators and it represents the number of operators for the

case where the clause contains terms with dynamic operators. The format of the

clauses without dynamic operators is a() :- b() where b() is repeated 1 to nTerms

times. The format of the clauses with dynamic operators is “a(A) :- A * A + 1”. In

this case the part “* A + 1” is repeated 1 to nTerms times.

In the following text the parsing time for clauses without operators is referred to

as static time and the parsing time for clauses with dynamic operators is referred to

49

as dynamic time.

Number of
terms/Operators

Without opera-
tors

With dynamic
operators

nlog n curve

1 0.979 1.384 0
2 1.098 1.777 2
4 1.248 2.767 8
8 1.924 4.932 24
16 3.128 12.277 64
32 4.904 29.157 160
64 10.612 79.898 384
128 22.016 250.81 896
256 47.125 830.5 2048
512 107.4 3312 4608

Table 3.3: Timing results for Javacc’s generated parser

The static time curve as seen in figure 3.6 is bounded by n. This is the time

complexity of the Javacc generated parser alone without the dynamic operator parser

involved during parsing. The time complexity when there are dynamic operators

present in the clause is bounded by nlogn where n is the number of dynamic operators

in the clause. This is the expected time complexity as the dynamic operator first

goes through all the operators to decide the operator with the widest scope and then

divided the clause from that point onwards and again repeats the same process on

the divided terms. If we used a stack-based approach for the evaluation of dynamic

operators, the complexity would have been n. However, this is an experimental parser,

generated from a parser generator tool. A module that has a better time complexity

can always replace the dynamic operator module. The focus here was to get dynamic

operator capabilities out of a parser that was not hand-coded and get a performance

that was closer to or better than that of a hand-coded parser.

The time information in every row is an average of a 1000 iterations of the same

50

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 100 200 300 400 500 600

T
im

e(
m

s)

Number of Terms

Static curve(functional notation)
Dynamic curve (Operator notation)

nlogn curve

Figure 3.6: Graph showing the parsing time curves of Javacc’s generated parser for
clauses with (dynamic curve) and without (static curve) dynamic operators

clause. This is to get a more accurate time information so that the operating sys-

tem factors such as process scheduling, available memory cache, etc are reduced. In

calculating the average timings, the first parse time was ignored. This is because

it took about 10 times more time to parse the clause first time as compared to the

subsequent times. This is attributed to the Java JIT (Just In Time) compiler that

introduces an extra overhead of compiling the class files to the native code the first

time.

COMPARISON OF JAVACC GENERATED PARSER WITH JINNI’S PARSER

The results in this section compare the Javacc generated parser with that of Jinni’s

parser. First we compare the two parser’s in their ability to parse Prolog clauses that

do not contain dynamic operators. Then we compare them in their ability to parse

Prolog clauses that contain dynamic operators.

51

Number of terms/Operators Javacc Jinni
1 0.609 10.5
2 0.834 10.01
4 0.884 10.19
8 1.152 10.38
16 1.668 12.22
32 2.998 12.49
64 4.086 14.83
128 10.934 19.25
256 25.018 30.36
512 61.07 56.78

Table 3.4: Comparison of Javacc’s generated parser with Jinni for clauses that do not
contain dynamic operators

 0

 10

 20

 30

 40

 50

 60

 70

 0 100 200 300 400 500 600

T
im

e(
m

s)

Number of Terms

Javacc
Jinni

Figure 3.7: Graph that compares Javacc generated parser with Jinni’s hand-coded
parser for Prolog terms that do not contain dynamic operators

52

As seen from figure 3.6 the Javacc curve and the Jinni curve are both bounded by

n where n is the number of terms. However Javacc takes more time as compared to

Jinni at higher nTerms values. This is because Jinni has higher initialization cost as

compared to Javacc which are visible at small data sets. Thus the Javacc generated

parser performs better than Jinni’s parser at smaller data sets.

Number of terms/Operators Javacc Jinni
1 0.979 9.84
2 1.098 9.97
4 1.248 10.00
8 1.924 10.16
16 3.128 10.33
32 4.904 10.94
64 10.612 12.64
128 22.016 15.55
256 47.125 22.22
512 107.4 40.04

Table 3.5: Comparison of Javacc’s generated parser with Jinni for clauses that contain
dynamic operators

Jinni does not provide support for dynamic operators. However it does have a

fixed set of operators that are hard-coded in the grammar syntax. Thus there is no

overhead of looking up the operator table, determining the operator’s fixity and finally

constructing the operator tree based on these results. Hence for Jinni, the static and

the dynamic curve are similar as compared to the static and dynamic curves of javacc

generated parser.

The comparison’s between the generated and hand coded parser were done on

flat clause structures of the form “a:-b,c,d,c ...”. However the way certain parsers

are written may affect their performance when it comes to parsing embedded terms

of the format “a : −b(b(c(d(...)))...” . The table 3.6 lists the timing information for

53

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 100 200 300 400 500 600

T
im

e(
m

s)

Number of Terms

Javacc
Jinni

Figure 3.8: Graph that compares the Javacc generated parser with that of Jinni’s
hand-coded parser for clauses that contain dynamic operator

clause structure having the above form.

As seen from the figure 3.6 the hand coded parser actually does worse than a tool

generated parser.

The parser generated with Javacc and enhanced for Dynamic operator capabilities

is simple. It is open ended in the sense that a new module that can parse the dynamic

operator text more efficiently can easily replace the current one without any changes

to the existing parser.

54

Number of embedded terms Javacc Jinni
1 0.6 6
2 0.7 6
4 0.7 6
8 0.7 7
16 0.8 8
32 0.8 10
64 1.1 12
128 2.3 15
256 4.48 23
512 12.06 48

Table 3.6: Comparison of Javacc’s generated parser with Jinni for clauses that have
embedded Prolog compound terms

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 100 200 300 400 500 600

T
im

e(
m

s)

Number of Terms

Javacc
Jinni

Figure 3.9: Graph showing the comparison of Javacc generated parser with Jinni’s
hand-coded parser for Prolog clauses that have embedded Prolog compound terms

55

CHAPTER 4

OTHER PARSING TECHNIQUES AND THEIR ADAPTABILITY TO

DYNAMIC SYNTAX

4.1 OPERATOR PRECEDENCE PARSING

Operator precedence parsing is a bottom up parsing technique [10, 9]. The set of

grammars for which the operator precedence parsing can be applied have the property

that no productions right hand side is empty and no productions can contain adjacent

non-terminals.

In operator precedence parsing, there are three disjoint precedence relations:
.
=,

<, > between any pairs of terminals. These relations have the following meaning.

Relation Meaning

a > b a yields precedence to b

a
.
= b a has the same precedence as b

a < b a takes precedence over b

There are two ways of determining the operator relations between the pair of

terminals. The first one is based on the fact that the precedence relations between all

the pair of terminals is known. For example, if “∗” has higher precedence than the

“+” operator, then we can write “∗ > +” and “+ < ∗” in the parse table. The second

method is to construct an unambiguous grammar for the language. This grammar

automatically reflects the correct associativity and precedence relationships in the

parse tree.

56

For example, consider the following two representations of a grammar,

Representation 1:

E → E + E

E → E ∗ E

E → (E)

E → id

From the above grammar representation there is no information about the precedence

and associativity of the operators “+” and “∗” and hence we have to supply to the

parser the associativity and precedence information about these operators.

Representation 2:

E → E + T

T → T ∗ F

F → (E)

F → id

This representation of grammar is identical to representation 1 in the sense that both

of them would recognize the same set of strings. However, representation 2 has the

precedence and associativity information about the operators “+” and “∗” embedded

in it.

Operator precedence parsing technique is not very conducive to dynamic operator

parsing. The parse table can grow very large as new operators can be introduced at

run-time. The parse table would have to be rebuild each time a precedence or associa-

tivity of an operator is changed. Operator overloading cannot be easily represented

with this parsing method [10]. The operator precedence parser would have to rely on

the lexical analyzer to return a different token for every overloaded operator [10].

57

4.2 LR PARSING

LR parser is the most general bottom up parsing method used to construct shift-

reduce parsers. “LR” stands for left to right parse, right most derivation in reverse.

The following figure explains the LR parsing method. These parsers encode the gram-

matical knowledge in tables.

Scanner

Stack

Action and
Goto tables

Output
Table−driven

Parser

Figure 4.1: LR parser

The scanner provides the parser with the tokens of the language. Every item on

the stack has two entities: the state and the symbol. The state represents the current

state of the of the non-deterministic finite automata that is used to recognize the

viable prefixes of the right sentential form. The symbol can either be a terminal of a

non-terminal of the grammar. The parser reads the next token from the scanner and

also reads the state on top of the stack. These two values are used as index into the

58

two dimensional parse table. The parse table has two parts: action and goto. There

can be four possible actions:

1. shift n: “n” denotes the state of the NFA. This action shifts the next input

token from the scanner onto the stack and the top of the stack becomes the

state n.

2. reduce n: “n” denotes the rule by which to reduce. This action means that

right hand of a handle is on top of the stack. Thus “2n” symbols are popped

from the top of the stack. Let m be the current state on top of the stack. The

new state on top of the stack is determined by by goto(m, X). “X” is the left

hand side non-terminal of production “n” in the grammar.

3. accept : This action signals successful parsing of the string.

4. error : This action indicates that the string does not conform to the grammar.

There can be shift-reduce and reduce-reduce type conflicts in an LR parser. A

shift-reduce conflict arises when a parse table entry has both shift and reduce actions

assigned to it. A reduce-reduce conflict arises when a parse table entry has two

different reduce entries in it. The shift-reduce conflict can be eliminated by modifying

the grammar or one could favor the “shift” action over the “reduce” action. There is

no simple solution for the reduce-reduce conflict.

The shift-reduce type of conflicts can also be resolved if there were precedence

and associativity rules between the terminals. The parser would prefer shifting if the

precedence of the symbol on the stack was less than that of the next symbol to be read

and it would prefer reducing if the precedence of the symbol on the stack was more

59

than that of the next symbol to be read. In case the precedences of the stack symbol

and the input symbol are the same then the parser would check the associativities of

the symbols. If the symbol is left associative, then the parser would reduce and if it

is right associative then the parser would shift.

The above discussion assumed that the precedence and associativity values of

symbols are present at compile-time. However, for the case of dynamic operator

parsing such information is not present at compile-time. In Prolog, the operators

with different precedence and associativities can be defined at run-time. Thus, the

shift-reduce conflicts that arise in an LR parser table cannot be resolved. However,

for dynamic parsing these conflicts could be left as it is during compile-time and

resolved only at run-time. Such a variation of LR parser is called as the “Deferred

Decision Parser” and is discussed in the next section.

4.3 DEFERRED DECISION PARSING

Deferred decision parsing [4] postpones the resolution of conflicts involving dynamic

operators until run-time. This parser consists of an operator table that stores the

operators defined during run-time along with their precedence and associativity. This

operator table is available to the parser at run-time to resolve conflicts involving

dynamic operators. The scanner returns a special token for dynamic operators. This

token is declared to the parser generator and appears in the production rules of

the grammar. Given below is a subset of the prolog grammar involving dynamic

operators. The first production is used to match prefix operators, the second to

match infix and the third to match postfix operators.

60

term(T) → op(Name), term(T1)

term(T) → term(T1), op(Name), term(T2)

term(T) → term(T1), op(Name)

term(T) → op(Name)

The scanner can identify a dynamic operator token due to the fact that there

could be at most one symbol on either side of it. For the above grammar, the parse

table has 11 states out of which 4 have shift reduce conflicts.

The shift-reduce conflicts that arise due to the dynamic operators are turned into

a new type of action called resolve which has two arguments: the state to enter if the

conflict is resolved in favor of shift and the rule by which to reduce if a reduction is

selected. Conflicts between an operator and a non-operator can be resolved at table

construction time because non-operators have a precedence value of 0 and operators

have positive precedence values. Thus non-operators take precedence over operators.

The parser driver for Deferred Decision parser is similar to that of LR parser ex-

cept that the entries in the parse table are accessed through the procedure parse action(S,

X) where S is the current state of the parser and X is the look-ahead token. This

returns any one of the following actions: shift, reduce, accept or error. The pseudo

code for parse action is as follows:

action parse action {
If parse table(S,X) = resolve(S’, A → α opA β)

then return do resolve(A → α opA β,X)

else return parse table(S,X)

}

61

The do resolve function can return a shift action or a reduce action. If this function

returns a shift action, then the parser would shift the look-ahead token ‘X’and if it

returns a reduce action then the parser would reduce using the rule A → α opA β.

Operator Overloading Issues

Operator overloading poses serious difficulties in the parser design. There could be

explicit overloading of operators or there could be implicit overloading of operators.

Explicit overloading occurs when the same operator is defined for different fixities. For

example, “+” can be defined as a unary and a binary operator. Implicit overloading

occurs between the operators and the nullary operators. Nullary operators are nothing

but constants.

The nullary operators are defined to have a precedence value greater than the

maximum possible value. This guarantees a deterministic grammar if there is no

declared overloading and retains the flexibility of allowing operators to appear as

terms.

If there is declared overloading then there could be multiple interpretations of a

string that contains overloaded operators. Consider the string “· · · α opA β opB · · · ”

where α and β are symbols of the grammar and opA and opB are operators. Since the

Prolog grammar does not generate sentential forms with two adjacent expressions,

there are only four fixity combinations to consider.

Form of α opA β Possible fixity combinations (opA, opB)

α �= ε, β �= ε (infix,infix), (infix, postfix)

α �= ε, β = ε (infix, prefix), (infix,null), (postfix, infix), (postfix,postfix)

α = ε, β �= ε (prefix,infix), (prefix,postfix)

α = ε, β = ε (prefix,prefix), (prefix, null), (null,infix), (null,postfix)

62

The following rules are evaluated for each fixity combinations and collected in a

set.

1. If opA and opB have equal scope then

if opA is right-associative, shift

if opB is left-associative, reduce.

2. if opA is either infix or prefix, with wider scope than opB, shift

3. if opB is either infix or postfix with wider scope than opB, reduce.

The parser enters an error state if the set is empty - signifying a precedence error

- or contains both shift and reduce actions - signifying an ambiguous input. If there

is a unique action, then the conflict is resolved.

As stated in [2] this modified version of the LR parser is too powerful to parse

Prolog text that conforms to the ISO Prolog standard. Many of the situations that

result in ambiguity have been removed from the standard. A parser that is less

complex as the deferred decision parser would still be able to parse Prolog text.

63

CHAPTER 5

CONCLUSION AND FUTURE WORK

The process of building a Prolog parser which is LL in nature out of a parser generator

like Javacc is fairly simple. However to get dynamic operator capabilities out of the

generated parser is not simple due to the fact that these operators are not present in

the grammar of the language.

A Javacc based Prolog parser that can also handle dynamic operators has been

designed and implemented. The syntax used was subset of the ISO Prolog grammar.

This parser can successfully parse and build abstract syntax tree for Prolog clauses

that are either in the functional notation or in the operator notation. Our parser

compares well with the hand-coded parsers as it is seen in the section on empirical

results. It can be enhanced to cover the complete ISO Prolog syntax. This parser can

be used as a front end for any Java based Prolog compiler. The Dynamic operator

parser has been designed in a modular way such that a different implementation can

be plugged in with ease. Thus by using a parser generator to build a parser for

Prolog we have exploited simplicity without compromising much on the efficiency of

the parser.

Javacc like parser generators could use our technique to cover languages with

dynamic operator capabilities. The Javacc grammar specification could be extended

to provide inbuilt dynamic operator support. The functionality of dynamic operator

parser could be abstracted such that it becomes language independent.

64

BIBLIOGRAPHY

[1] P. Tarau, “Inference and Computation Mobility with Jinni”, Available on the
Internet at http://www.binnetcorp.com/Jinni/index.html.

[2] Koen De Bosschere, “An Operator Precedence Parser for Standard PrologText”,
Software - Practice and Experience, 26(7):763-779, July 1996.

[3] Kjell Post and Allen Van Gelder. Parsing Prolog. Technical Report UCSC-CRL-
93-22, University of California, Santa Cruz, 1993.

[4] Kjell Post, Allen Van Gelder, and James Kerr. Deterministic Parsing of Lan-
guages with Dynamic Operators. Technical Report UCSC-CRL-91-31, University
of California, Santa Cruz, 1991.

[5] Complete documentation for Javacc can be found on the Internet at
http://www.webgain.com/products/java cc/documentation.html

[6] Yacc - Yet another compiler compiler. Technical Report CSTR 32, AT&T Bell
Laboratories, Murray Hill, NJ, 1975.

[7] R. S. Scowen, ‘Draft prolog standard’, Technical Report ISO/IEC JTC1 SC22
WG17 N110, International Organization for Standardization, 1993

[8] http://www.cs.bham.ac.uk/∼pjh/prolog course/sicstus manual v3 5/sicstus 42.html

[9] Andrew W. Appel. Modern Compiler Implementation in Java. Published by Cam-
bridge University Press, ISBN 0-521-588388-8, 1998

[10] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers, Principles, Techniques, and
Tools. Addixon Wesley, ISBN 0-201-10088-6, 1985

[11] A. V. Aho and S. C. Johnson. LR parsing. Computing Surveys, June 1974.

[12] A. V. Aho, S.C. Johnson, and J. D. Ullman. Deterministic Parsing of Ambiguous
grammars. Communications of the ACM, 18(8):441-52, 1975

[13] Jay Earley. An Efficient Context-Free Parsing Algorithm. Communications of
the ACM, 13(2), 1970.

[14] Charley N. Fishcher and Richard J. LeBlanc Jr. Crafting a Compiler. Ben-
jamin/Cummings Publishing Company, Inc, 1988.

[15] Jan Heering, Paul Klint, and Jan Rekers. Incremental Generation of Parsers.
IEEE Transactions on Software Engineering, 16(12):1344-1351, Dec 1990.

[16] R. Nigel Horspool. Incremental Generation of LR parsers. Computer Languages,
15(4):205-233, 1990.

65

[17] James Kerr. On LR Parsing of Languages with Dynamic Operators. Technical
Report UCSC-CRL-89-13, UC Santa Cruz, 1989.

[18] W. R. LaLonde and J. des Rivieres. Handling Operator Precedence in Arithmetic
Expressions with Tree Transformations. ACM TOPLAS, 3(1), 1981.

[19] Masaru Tomita. Efficient Parsing of Natural Languages. Kluwer Academic Pub-
lishers, Boston, 1986.

66

	Untitled.pdf
	THE DESIGN AND IMPLEMENTATION OF A PROLOG PARSER
	UNIVERSITY OF NORTH TEXAS
	Paul Tarau, Major Professor

