KINETIC STUDIES OF HYDROXYL AND HYDROGEN ATOM REACTIONS

Xiaohua Hu, B.S., M.S.

Dissertation Prepared for the Degree of

DOCTOR OF PHILOSOPHY

UNIVERSITY OF NORTH TEXAS

May 2002

APPROVED:

Paul Marshall, Major Professor
Oliver Chyan, Committee Member
Teresa Golden, Committee Member
Richard Timmons, Committee Member
Martin Schwartz, Committee Member and Coordinator of the Graduate Studies Program
Ruthanne D. Thomas, Chair of the Department of Chemistry
C. Neal Tate, Dean of the Robert B. Toulouse School of Graduate Studies Hu, Xiaohua, <u>Kinetic Studies of Hydroxyl and Hydrogen Atom Reactions.</u> Doctor of Philosophy (Chemistry), May 2002, 173 pp., 33 tables, 32 illustrations, references, 165 titles.

Gas phase kinetics of the reactions involving hydroxyl radical and hydrogen atom were studied using experimental and *ab initio* theoretical techniques.

The rate constant for the H + H₂S reaction has been measured from 298 to 598 K by the laser photolysis / resonance fluorescence (LP-RF) technique. The transition state theory (TST) analysis coupled with the measurements support the suggestion that the reaction shows significant curvature in the Arrhenius plot. Combination with literature data reveals an expression for 190-2237 K is $k_{3.1} = 5.8^{+11.1}_{-3.8} \times 10^{-17} \text{ T}^{1.94 \pm 0.15} \exp[(-455 \pm 67)/\text{T}] \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}.$

The LP-RF technique was also used to measure the rate constant of the H + CH₃Br reaction over the temperature range 400-813 K. TST and density functional theory (DFT) calculations show that the dominant reaction channel is Br-abstraction. Combined the literature data, the flexible TST (FTST) calculations with modified G2//QCISD/6-31G(d,p) barrier height $V^{\dagger} = 26.8$ kJ mol⁻¹ yielded $k_{4.1} = 4.61 \times 10^{-15}$ T^{1.532} exp(-2631 K/T) cm³ molecule⁻¹ s⁻¹ over 298 - 2000 K.

The reaction H + $CF_2=CF-CF=CF_2$ was first studied by Flash Photolysis / Resonance Fluorescence (FP-RF) Method. The experiments of this work revealed distinctly non-Arrhenius behavior, which was interpreted in terms of a change in mechanism. DFT calculations suggest that the adduct is $CF_2H-CF\bullet-CF=CF_2$. At lower temperatures a mixture of this molecule and $CF_2 \bullet - CFH - CF = CF_2$ is likely. The theoretical calculations show that H atom migrates in the fluoroethyl radicals through a bridging intermediate, and the barrier height for this process is lower in the less fluorinated ethyl radical.

High level computations were also employed in studies of the rate constants of OH + chloroethylenes reactions. VTST calculations indicate that, except the reaction of $OH + C_2Cl_4$, these reactions present a complex behavior. For $OH + C_2Cl_4$, conventional TST calculation shows a simple positive temperature-dependence behavior.

ACKNOWLEDGMENTS

I wish to express my very sincere gratitude to my Ph.D. advisor, Dr. Paul Marshall, for his kind guidance, great patience, and never-ending encouragement. I am especially grateful to Dr. Marshall for his rich knowledge and great enthusiasm, both of which are benefits that will assist me in my future endeavors.

I would like to thank Dr. Jingping Peng for his extreme help in the experimental and computational works. I am also grateful to Dr. Abdell Goumri for his assistance with some of the experiments. The help from my colleagues, both graduate and undergraduate, is also appreciated.

Finally, I would like to thank the Robert A. Welch Foundation (Grant B-1174), the Environmental Protection Agency and the University of North Texas for financial support in the form of a research assistantship and teaching assistantship.

TABLE OF CONTENTS

P	age
ACKNOWLEDGMENTS	ii
LIST OF TABLES	v
LIST OF ILLUSTRATIONS	viii
Chapter	
1. INTRODUCTION	1
2. EXPERIMENTAL METHODS	15
A. FLASH PHOTOLYSIS / RESONANCE FLUORESCENCE	1.5
(FP-RF) METHOD B. LASER PHOTOLYSIS / RESONANCE FLUORESCENCE	15
(LP-RF) METHOD	19
D. EXPERIMENTAL PROCEDURE	20 20
3. REACTION OF $H + H_2S$	23
A. METHODOLOGY	23
EXPERIMENTAL TECHNIQUE	23
THEORETICAL CALCULATIONS	24
B. RESULTS C. DISCUSSION	26 35
4. REACTION OF H + CH ₃ Br	41
A. METHODOLOGY	41
EXPERIMENTAL TECHNIQUE	41
THEORETICAL CALCULATIONS	42
B. RESULTS AND DISCUSSION	47
5. REACTION OF $H + C_4F_6$	66
A. EXPERIMENTAL METHOD	66

_		
	B. RESULTS	67
	C. DISCUSSION	73
	LOW TEMPERATURE REGIME: $T < 620$ K	73
	LICH TEMPEDATUDE DECIME $T > 700 V$	75
	HIGH TEMPERATURE REGIME, $1 > 100$ K	15
	INTERMEDIATE TEMPERATURE REGIME, 620 K < T < 700 K	76
6.	COMPUTATIONAL STUDIES OF OH + CHLOROETHLENES	88
	A. COMPUTATIONAL METHODOLOGY	90
	$OH + C_2H_4$	91
	$OH + C_2H_4 \times C_1 \times (X-1, 2, 3)$	91
	$OII + C_2 II_{(4-X)} OI_X (X-1, 2, 3)$	02
	$OH + C_2 Cl_4$	92
_	B. RESULTS AND DISCUSSION	93
	$OH + C_2H_4$	93
	$OH + C_2H_3Cl$	94
	$OH + C_2H_2Cl_2$	98
	$OH + C_2HCl_3$	103
	$OH + C_2Cl_4$	109
7.	CONCLUSIONS	119
APPENDIX	ζ1	123
	ADUV	161
DIDLIOOK	AI 111	104

LIST OF TABLES

Table Page		
3.1	Measurements of the rate constants $k_{3,1}$ for the reaction $H + H_2S$	
3.2	Geometry, Barrier Height, and Enthalpy for the Reaction $H + H_2S$	
3.3	Harmonic frequencies and fundamentals for species of reaction $H + H_2S$	
4.1	Rate constant measurements of the reaction $H + CH_3Br$ and the gas flows	
4.2	Transition state geometries and barrier heights for the reaction $H + CH_3Br$	
4.3	Calculated frequencies of transition states for the reaction $H + CH_3Br55$	
4.4	Geometry, barrier height and enthalpy for the reaction $H + CH_3Br$ $\rightarrow CH_3 + HBr$	
4.5	Harmonic frequencies and fundamentals for species of reaction $H + CH_3Br$	
	\rightarrow CH ₃ + HBr	
5.1	Rate constant measurements of the reaction $H + C_4 F_6$	
5.2	Thermochemical information for adduct formation between H and C_4F_6 79	
5.3	Structures of ethyl radical, fluoroethyl radicals, and transition states for the 1,2- hydrogen atom migration	
5.4	Total energy of ethyl radical, fluoroethyl radicals and TSs, and barrier heights for the 1,2-hydrogen atom migration at various levels of theory	
6.1	Optimized geometrical parameters for reactants and transition state of the reaction $OH + C_2H_4$ at the HF/6-31G(d,p) level	
6.2	Optimized geometrical parameters for reactants and transition states of the reaction $OH + C_2H_3Cl$ at the HF/6-31G(d,p) level	
6.3	Rate constants for OH addition to vinyl chloride	

6.4	Optimized geometrical parameters for reactants and transition States of the reaction OH with dichloroethylene at the HF/6-31G(d,p) level 105
6.5	Rate constants for OH addition to dichloroethylene 108
6.6	Optimized geometrical parameters for reactants and transition states of the reaction $OH + C_2HCl_3$ at the HF/6-31G(d,p) level 110
6.7	Rate constants for OH addition to trichloroethylene
6.8	Optimized geometrical parameters for reactants and transition state of the reaction $OH + C_2Cl_4$ at the HF/6-31G(d) level
8.1	Optimized geometries (in cartesian coordinates) and harmonic vibrational frequencies of C_4F_6 , five C_4F_6 isomers and two transition states for $H + C_4F_6$ addition at the HF/6-31G(d) levels of theory
8.2	Optimized geometries (in cartesian coordinates) and harmonic vibrational frequencies of ethyl radical, fluoroethyl radicals, and transition states for the 1,2-hydrogen atom migration at various levels of theory
8.3	Optimized geometries (in cartesian coordinates) and harmonic vibrational frequencies of the transition state for the addition reaction of hydroxyl radical with ethylene at Various Levels of Theory
8.4	Optimized geometries (in cartesian coordinates) and harmonic vibrational frequencies of OH, chloroethylenes and transition states for the reaction of hydroxyl radical with chloroethylenes at the HF/6-31G(d,p) level of theory 149
8.5	Optimized geometries (in cartesian coordinates) and harmonic vibrational frequencies of OH, tetrachloroethylene and transition state for the reaction of OH with tetrachloroethylene at the HF/6-31G(d) level of theory154
8.6	Sum of rate constants (k_{TST}) at each point along with the reaction path at various temperatures for the reaction OH + CH ₂ =CHCl \rightarrow adduct (OH at CH ₂ end) 156
8.7	Sum of rate constants (k_{TST}) at each point along with the reaction path at various temperatures for the reaction OH + CH ₂ =CHCl \rightarrow adduct (OH at CHCl end) 157
8.8	Sum of rate constants (k_{TST}) at each point along with the reaction path at various temperatures for the reaction OH + CH ₂ =CCl ₂ \rightarrow adduct (OH at CH ₂ end)158
8.9	Sum of rate constants (k_{TST}) at each point along with the reaction path at various temperatures for the reaction OH + CH ₂ =CCl ₂ \rightarrow adduct (OH at CCl ₂ end) 159

- 8.12 Sum of rate constants (k_{TST}) at each point along with the reaction path at various temperatures for the reaction OH + CCl₂=CHCl \rightarrow adduct (OH at CCl₂ end) 162
- 8.13 Sum of rate constants (k_{TST}) at each point along with the reaction path at various temperatures for the reaction OH + CCl₂=CHCl \rightarrow adduct (OH at CHCl end) 163

LIST OF ILLUSTRATIONS

Figu	ire	Page
2.1	Schematic diagram of the apparatus	18
3.1	Plot of pseudo-first-order rate constant $k_{ps3.1}$ vs [H ₂ S] at P = 33 mbar and T = 491 K	25
3.2	$k_{3.1}$ for the H + H ₂ S reaction in the range 293 - 600 K	31
3.3	Comparison of k_1 value for the H + H ₂ S reaction	34
4.1	Geometries of transition states for reaction H + CH ₃ Br optimized at BHandH 311G(d,p) level	/6- 45
4.2	Diagram of two internal angles in TS	46
4.3	Plot of pseudo-first-order rate constant $k_{ps4.1}$ vs [CH ₃ Br] at P = 67 mbar and T = 571 K	50
4.4	$k_{4.1}$ of H + CH ₃ Br reaction in the range of 296 - 996K	52
4.5	Ratio of rate constants vs. temperature for reaction $H + CH_3Br$	56
4.6	Barrier height of the transitional / external-rotation modes of the TS relative t CH ₃ Br at the QCISD/6-31G(d,p) level of theory	to H + 60
4.7	Comparison of $k_{4,1}$ of $H + CH_3Br$ reaction	63
5.1	Plots of pseudo-first-order rate constant $k_{ps5.1}$ vs. $[C_4F_6]$	68
5.2	Arrhenius plot for the $H + C_4F_6$ reaction	72
5.3	Geometries for C_4F_6 , five C_4F_6H isomers and two transition states for $H + C_4$ addition, calculated at the HF/6-31G(d) level of theory	F ₆ 74
5.4	Van't Hoff plot for addition of H to C_4F_6	77
6.1	Schematic diagram of the potential energy surface of the reactions with: a. positive barrier; b. negative barrier	89

6.2	Comparison between IRC and DCP of the reaction OH with C ₂ H ₄ at different theory levels
6.3	Results of IRC at different levels and DCP at Mp4sdq(fc)/6-311+G(d,p) level96
6.4	Optimized TS structure of the reaction $OH + C_2H_4$ at the HF/6-31G(d,p) level97
6.5	Optimized TS structures of the reaction $OH + C_2H_3Cl$ at the HF/6-31G(d,p) level
6.6	Classical energies (no ZPE) relative to $OH + CH_2$ =CHCl for addition of OH at the CH ₂ end (β site, squares) and the CHCl end (α site, circles)100
6.7	Ab initio high-pressure limit rate constants for OH addition to CH ₂ =CHCl101
6.8	Optimized TS structures of the reaction OH with dichloroethylene at the HF/6- 31G(d,p) level
6.9	Classical energies (no ZPE) relative to $OH + CH_2$ -CCl ₂ for addition of OH at the CH ₂ end (β site, open circles) and the CCl ₂ end (α site, solid circles)106
6.10	Classical energies (no ZPE) relative to OH + 1,2-CHCLCHCl for addition of OH at the cis- structure (open circles) and the trans- structure (solid circles)107
6.11	Ab initio high-pressure limit rate constants for OH addition to dichloroethylene.108
6.12	Optimized TS structures of the reaction $OH + C_2HCl_3$ at the HF/6-31G(d,p) level
6.13	Classical energies (no ZPE) relative to $OH + C_2HCl_3$ for addition of OH at the CHCl end (α , squares) and the CCl ₂ end (β , circles)
6.14	Ab initio high-pressure limit rate constants for OH addition to C_2HCl_3 : circle, at the CCl_2 end (β channel); square, at the CHCl end (α channel)112
6.15	Optimized TS structure of the reaction $OH + C_2Cl_4$ at the HF/6-31G(d) level114
6.16	Barrier height for CCl_2 rotation of the TS relative to $OH + C_2Cl_4$ at the $HF/6-31G(d)$ level of theory
6.17	Ab initio rate constants for OH addition to C ₂ Cl ₄ , the OH and CCl ₂ rotations were treated as hindered rotors

CHAPTER 1

INTRODUCTION

Hydroxyl radicals play important roles in both atmospheric chemistry and combustion processes, 1-7 and H atoms are typically the most abundant radicals in flames. 5,6

In the stratosphere, OH is one of several important catalysts in the chain reaction of ozone loss:¹

$$OH + O_3 \rightarrow HO_2 + O_2 \tag{1.1}$$

$$\mathrm{HO}_2 + \mathrm{O} \to \mathrm{OH} + \mathrm{O}_2 \tag{1.2}$$

Net
$$O + O_3 \rightarrow 2O_2$$
 (1.3)

OH radicals are mainly formed by following reactions at wavelengths less than \sim 310 nm in the troposphere:¹

$$O_3 + hv \to O^*({}^1D) + O_2^*({}^1\Delta_g)$$
 (1.4)

$$O^*(^1D) + H_2O \to OH + OH$$
(1.5)

The reaction

$$OH + NO_2 + M \rightarrow HNO_3 + M \tag{1.6}$$

is the major loss of NO_x in the troposphere. HNO_3 can dissolve in cloud droplets and be removed in the form of rain. The main step in the atmospheric chemistry of methane is the hydrogen abstraction by the OH radical,

$$OH + CH_4 \rightarrow CH_3 + H_2O \tag{1.7}$$

CH₃ is an active radical, and mainly removed by following reactions,

$$CH_3 + O_2 + M \rightarrow CH_3O_2 + H_2O + M$$
(1.8)

$$CH_3O_2 + HO_2 \rightarrow CH_3OOH + O_2$$
(1.9)

the formed methyl hydroperoxide can be removed by wet deposition. In fact, the reaction with OH is almost exclusively the tropospheric chemical loss process for alkanes and alkenes.¹ And, attack by OH radical is also the primarily initial step in the atmospheric oxidation of aromatic hydrocarbons,

$$OH + C_6H_5CH_3 \rightarrow C_6H_5(OH)CH_3$$
(1.10)

$$\rightarrow C_6H_5CH_2 + H_2O \tag{1.11}$$

OH radical is important in sulfur chemistry, where it seems to initiate the dominant oxidation route by addition to SO_2 ,

$$OH + SO_2 + M \rightarrow HOSO_2 + M$$
 (1.12)

Actually, almost all the oxidizing reactions of the trace gases are initiated by the reaction with OH radical, which in most cases is the rate-determining step.² Thus the chemical fates of almost all the trace gases are controlled by OH, which breaks down and converts the emitted gases to water-soluble products that are physically removed from the atmosphere by precipitation.

In the combustion processes, H and OH radicals play key roles too. H atom leads to chain branching through the reaction 1.13, which determines the rate of chain branching in the H_2 - O_2 system,

$$H + O_2 \rightarrow OH + O \tag{1.13}$$

$$O + H_2 \rightarrow OH + H \tag{1.14}$$

$$OH + H_2 \rightarrow H + H_2O \tag{1.15}$$

It is found that the higher the temperature is, the larger role the reaction 1.13 acts as in governing the rate of chain reactions.⁵ The reactions 1.13 and 1.16

$$OH + CO \rightarrow H + CO_2 \tag{1.16}$$

are the main elementary reactions in the oxidation process of CO, which is an important intermediate in hydrocarbon combustion. In combustion chemistry of ammonia, sulfur compounds and halogen-containing species, H and OH radicals are also involved in the main elementary reactions.⁵ In brief, in hydrogen-oxygen flames, reactions with H and OH radicals are important steps in the combustion processes of almost all species.

Sulfur is one of the most abundant elements in the Earth's crust and is one of the essential elements to all life on Earth. In the atmosphere, sulfur impacts regional and global chemistry, climate change, and the health of various living beings. Acid rain has led to a great deal of research on the atmospheric and combustion chemistry of sulfur.⁸⁻¹⁵ Hydrogen sulfide (H₂S) is one of the major reduced sulfur gases in the atmospheric sulfur circle. The lifetime for H₂S is usually from a few hours to a few days. The reaction with OH radical is the major step which destroys H₂S,

$$OH + H_2S \to H_2O + SH \tag{1.17}$$

and has been well studied at low temperatures, where it was found to be fast and to have little or no activation energy.¹⁶ The reaction

$$H + H_2 S \rightarrow H_2 + SH \tag{1.18}$$

has been identified by Hynes and Wine as important in sulfur combustion under rich conditions.¹⁷ An earlier review proposed a simple Arrhenius temperature dependence for the rate constant,¹⁸ but the recent measurements of Yoshimura et al. over 1053-2237 K and at 293 K were rationalized in terms of ab initio theoretical calculations and transition state theory (TST) with significant curvature in the Arrhenius plot.¹⁹ To predict the combustion behavior of H₂S accurately, new data for the rate constant of the reaction 1.18 in the intermediate temperature regime are essential. In this research, new measurements of rate constant of this reaction, up to 600 K, were made, the transition state (TS) for this reaction was reexamined at high levels of ab initio theory, and the results were employed in conventional TST. The laser photolysis / resonance fluorescence (LP-RF) technique was applied in this study. A variety of techniques are available for studying radical kinetics in the gas phase. They are discussed in chapter 2.

Combustion can be affected physically, such as changing the pressure. It also can be adjusted by chemical methods, such as adding promoters to accelerate it or inhibitors to slow it. Halogen-containing compounds have been widely used as flame inhibitors. The reactions of these species with H atom are primary reason of the slowing effect on the combustion. H atom reacts faster with halogen-containing compounds than with O_2 , especially at low temperatures. For example, the rate constant of

$$H + HCl \rightarrow H_2 + Cl \tag{1.19}$$

is about 50 times larger than the rate constant of the $H + O_2$ reaction at 1000 K.⁵ Thus the chemical basis of the inhibitors is removing H atom from the reaction zone, as a result, the rate of chain branching by $H + O_2 \rightarrow OH + O$ decreases. Bromine-containing species

are considered to be the most effective combustion inhibitors because Br atom is more effective than the other halogen atoms in removing active species from the flame zone. Although different classes of bromine-containing compounds such as Br_2 , HBr, CH₃Br, and CF₃Br present slightly different inhibiting effectiveness, the basic mechanism of their influence on combustion is the same: fast decomposition of the inhibitor and subsequent reactions of HBr with radicals in the combustion zone. For CF₃Br, the elementary reactions are

$$H + CF_3Br \rightarrow HBr + CF_3 \tag{1.20}$$

$$H + HBr \rightarrow H_2 + Br \tag{1.21}$$

$$H + Br_2 \rightarrow HBr + Br \tag{1.22}$$

$$Br + Br + M \rightarrow Br_2 + M \tag{1.23}$$

CH₃Br has the similar elementary reactions mainly responsible for suppressing flame propagation. However, the reaction

$$H + CH_3Br \rightarrow CH_3 + HBr \tag{1.24}$$

has not been well studied because of measurement difficulties. In this work, the rate constant of this reaction was measured from 400 K to 813 K; conventional TST and the Flexible TST (FTST) were used in the kinetic modeling to test the agreement between the measurements and the theoretical calculations. The LP-RF technique was employed here too.

The first kinetic studies of the reaction of atomic hydrogen with 1,1,2,3,4,4hexafluoro-1,3-butadiene or perfluoro-1,3-butadiene (C₄F₆)

$$H + CF_2 = CF - CF = CF_2 \rightarrow \text{products}$$
(1.25)

were also included in this research. The work was motivated by the possible application of C_4F_6 as a non-global warming fluorine precursor for plasma etching and chamber, where reaction 1.25 may be significant when hydrogen species are present. Reaction 1.25 is a likely consumption path if the effluent stream is subject to incineration. C_4F_6 may also serve as a surrogate for perfluoroisobutene, a highly toxic product of incomplete fluorocarbon combustion,²⁰ in the context of the design of effective incineration processes. Flash photolysis / resonance fluorescence (FP-RF) technique was employed in this study. Chapter 2 will be dedicated to the details of this technique.

Since chlorine-containing compounds are widely found in consumer and industrial wastes, the interest in the treatment of these hazardous chemical materials is growing. In industry, vinyl chloride (CH₂=CHCl) is mainly used for the production of polyvinyl chloride (PVC). The current vinyl chloride production rate is 27 million tons/year worldwide.²¹ The dichloroethylenes represent significant organochlorine emissions to the environment. Like vinyl chloride, vinylidene chloride (1,1-C₂H₂Cl₂) is used industrially for the production of poly(vinyl dichloroethylene) (PVDC) and 1,1,1-trichloroethane. It was produced at a worldwide rate of 200,000 metric tons in 1985.²² 1,2-dichloroethylene is not as important as vinylidene chloride industrially. However, it has a significant effect on the environment as a byproduct of chloroethylene manufacture.²² Trichloroethylene (C₂HCl₃) is a widely used chlorinated solvent with an annual global emission rate of 200,000 metric tons.^{23,24} Past and present manufacturing and disposal practices have resulted in the release of tetrachloroethylene into the atmosphere at significant rates. The annual amount of this highly volatile compound

emitted in the US alone was estimated to be about 100,000 metric tons.²⁵ The Integrated Risk Information System of the EPA ^{26,27} and the International Agency for Research on Cancer (IARC)²⁸ have classified chloroethylenes as human carcinogens or possible human carcinogens.

Knowledge of reactions facilitating the breakdown of these toxic compounds is essential to both predict the natural decomposition that is occurring in the atmosphere and determine appropriate disposal practices. The dominant atmospheric chloroethylene loss reaction is expected to be the reaction with OH radical since they do not absorb radiation at wavelengths of > 300 nm (because the atmosphere acts as a filter to cut out short wavelength radiation, only radiation with wavelength > 300 nm remains near the ground), nor do they react significantly with O₃ or NO₃ in the gas phase.^{29,30} The standard technology for the complete and permanent disposal of these dangerous compounds is high temperature incineration. The reaction with OH radical is an important process contributing to the initial destruction of halogenated hydrocarbons.^{31,32} The reaction mechanism is presumed to be addition to the π electrons associated with the C = C double bond

$$OH + C_2H_{(4-x)}Cl_x \rightarrow adduct \quad (x=1,2,3,4)$$
 (1.26)

Experimentally and theoretically, it is difficult to study radical addition reactions, because they are very fast and present the low-energy barriers, which require a very high theory level to be accurately described.³³⁻³⁵ Previous studies of the reactions with OH were limited to low temperatures (220-460 K).^{22,36-44} To predict the combustion

behavior of these compounds accurately, information on the reaction rate constants and reaction mechanisms over an extended temperature range is necessary. In this work, high level computations were employed in a series of kinetic studies of the reactions of OH radical with ethylene and chloroethylenes. The results were applied for further investigation of the reaction mechanisms by our co-workers.⁴⁵⁻⁴⁹

Conventional transition state theory (TST) and its modifications were employed in the kinetic modeling of these works. TST was first introduced in 1935,^{50,51} in which reactants pass through a transition state (TS) to become products along the reaction path. The fundamental assumption of the theory is that products can not turn around and recross the TS to reform reactants. For reactions which have big barriers, TST usually provides reasonable estimation of rate constant. However, for reactions which have small or negative barriers, there is a non-zero possibility of the recrossing of products, and TST results will be too high.

An alternative method is to consider different positions for the TS along the reaction path and calculate the rate constant at each position. Then the minimum rate is picked up. This procedure is called variational transition state theory.⁵²⁻⁵⁷ VTST is preferred for reactions without a significant chemical barrier. For bimolecular elementary reactions which have small or negative energy barriers, the simple two-parameter Arrhenius expression

$$k_{VTST} = A \ e^{-Ea/RT} \tag{1.27}$$

where A is the pre-exponential factor and Ea is the activation energy, is insufficient to describe the temperature dependence of rate coefficients over a broad temperature

range.^{58,59} An empirical three-parameter equation is invoked to represent the rate expressions

$$k_{VTST} = B T^n e^{-E/RT}$$
(1.28)

where *R* is the gas constant, *B* and *E* ($E \neq E_{\alpha}$) are two variables, and *n* is the temperature exponent. It yields

$$\ln k_{VTST} = \ln B + n \ln T - E/RT \tag{1.29}$$

By fitting the *T* and k_{VTST} , *B*, *n* and *E*/*R* can be obtained.

Flexible transition state theory (FTST) is a specific version of VTST, introduced by Wardlaw and Marcus.^{60,61} The further development of the theory has been made by several authors.⁶²⁻⁷³ In FTST, the internal modes of motion are divided into two types: 1. conserved modes, which do not change too much between reactants and products, typically vibrations; 2. transitional modes, which are free rotors in the reactants but become vibrations in the products. Thus a free rotor description along the entire reaction coordinate is not appropriate, especially for a low frequency mode, which has a large contribution to the vibrational partition function. Since a realistic representation of the transitional mode potential is included, FTST may accurately describe the contribution of the transitional modes to the TS, especially in the radical recombination reactions.⁷⁴

REFERENCES

- Wayne, R. P. *Chemistry of Atmospheres*, 3rd ed.; Oxford University Press Inc.: New York, 2000.
- (2) Atmospheric Chemistry and Global Change; Brasseur, G. P.; Orlando, J. J.;
 Tyndall, G. S., Eds.; Oxford University Press: New York, 1999.
- (3) Finlayson-Potts, B. J.; Pitts, J. N., Jr. Atmospheric Chemistry: Fundamentals and Experimental Techniques; John Wiley & Sons, Inc.: New York, 1986.
- (4) Finlayson-Potts, B. J.; Pitts, J. N., Jr. Chemistry of the Upper and Lower Atmosphere; Academic Press: San Diego, 2000.
- (5) Gas-Phase Combustion Chemistry; Gardiner, W. C., Jr., Ed.; Springer-Verlag: New York, 2000.
- (6) Glassman, I. *Combustion*, 3rd ed.; Academic Press: San Diego, 1996.
- (7) Atkinson, R. *Chem. Rev.* **1985**, *85*, 69.
- (8) Andreae, M. O.; Raemdonck, H. Science 1983, 211, 744.
- (9) Astholz, D. C.; Glänzer, K.; Troe, J. J. Chem. Phys. 1979, 70, 2409.
- (10) Charlson, R. J.; Lovelock, J. E.; Andreae, M. O.; Warren, S. G. *Nature* 1987, *326*, 655.
- (11) Kellogg, W. W.; Cadle, R. D.; Allen, E. R.; Lazrus, A. L.; Martell, E. A. Science
 1972, 175, 587.
- (12) Kiefer, J. H. J. Chem. Phys. 1975, 62, 1354.
- (13) Lovelock, J. E.; Maggs, R. J.; Rasmussen, R. A. Nature 1972, 237, 452.

- (14) Schwarz, S. E. *Nature* **1988**, *336*, 441.
- (15) Stachnik, R. A.; Molina, M. J. J. Phys. Chem. 1987, 91, 4603.
- (16) Westenberg, A. A.; de Haas, N. N. J. chem. Phys. 1973, 59, 6685.
- (17) Hynes, A. J.; Wine, P. H. Combustion Chemistry; 2nd ed.; Gardiner, W. C., Jr., Ed., Chapter 3, in press.
- (18) Baulch, D. L.; Drysdale, D. D.; Duxbury, J.; Grant, S. J. Evaluated Kinetic Data for High-Temperature Reactions; Butterworth: London, 1976; Vol. 3.
- (19) Yoshimura, M.; Koshi, M.; Matsui, H.; Kamiya, K.; Umeyama, H. Chem. Phys. Lett. 1992, 189, 199.
- (20) Tsang, W.; Burgess, D. R., Jr.; Babushok, V. Combust. Sci. Tech 1998, 139, 385.
- (21) Kielhorn, J.; Melber, C.; Wahnschaffe; Aitio, A.; Mangelsdorf, I. *Environ. Health Perspect* **2000**, *108*, 579.
- (22) Kirchner, K.; Helf, D.; Ott, P.; Vogt, S. Ber. Bunsen-Ges. Phys. Chem. 1990, 94, 77.
- (23) McCulloch, A.; Midgley, P. M. Atmos. Environ. 1996, 30, 601.
- McCulloch, A.; Aucott, M. L.; Graedel, T. E.; Kleiman, G.; Midgley, P. M.; Li,
 Y.-F. J. Geophys. Res. 1999, 104, 8417.
- (25) Gillbert, D.; Goyer, M.; Lyman, W.; Magil, G.; Walker, P.; Wallace, A.;
 Wechsler, A.; Yee, J. An Exposure and Risk Assessment for Tetrachloroethylene;
 EPA-440/4-85-015:, 1980.
- (26) EPA. Clean Air Act of 1990, 42USC.7412, Title I, Part A, Sec. 112, 53; U. S. Environmental Protection Agency:, 1990.

- (27) Ramamoorthy, S. Chlorinated Organic Compounds in the Environment; Lewis Publishers: New York, 1997.
- (28) IARC. Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans; International Agency for Research on Cancer, World Health Organization: Lyon, France, 1979; Vol. 19.
- (29) Atkinson, R.; Carter, W. P. L. Chem. Rev. 1984, 84, 437.
- (30) Atkinson, R. J. Phys. Chem. Ref. Data, Monogr. 1989, 1.
- (31) Fairchild, P. W.; Smith, G. P.; Crosley, D. R. 19th Symposium (Int.) on Combustion, 1982.
- (32) Warnatz, J.; Bockhorn, H.; Moser, A.; Wenz, H. W. 19th Symposium (Int.) on Combustion, 1982.
- (33) Wong, M.; Radom, L. J. Phys. Chem. 1995, 99, 8582.
- (34) Jursic, B. S. J. Chem. Soc. Perkin Trans. 1997, 2, 637.
- (35) Sosa, C.; Schlegel, H. B. J. Am. Chem. Soc. 1987, 109, 4193.
- (36) Zhang, Z.; Liu, R.; Huie, R. E.; Kurylo, M. J. J. Phys. Chem. 1991, 95, 194.
- (37) Abbatt, J. P. D.; Anderson, J. G. J. Phys. Chem. 1991, 95, 2382.
- (38) Edney, E. O.; Kleindienst, T. E.; Corse, E. W. Int. J. Chem. Kinet. 1986, 18, 1355.
- (39) Tuazon, E. C.; Atkinson, R. A.; Aschmann, S. M.; Goodman, M. A.; Winer, A.
 M. Int. J., Chem. Kinet. 1988, 20, 241.
- (40) Howard, C. J. J. Chem. Phys. 1976, 65, 4771.
- (41) Chang, J. S.; Kaufman, F. J. Chem. Phys. 1977, 66, 4989.
- (42) Greiner, N. R. J. Chem. Phys. 1970, 53, 1284.

- (43) Liu, A.; Mulac, W. A.; Jonah, C. D. J. Phys. Chem. 1989, 93, 4092.
- (44) Perry, R. A.; Atkinson, R. A.; Pitts, J. N. J. Chem. Phys. 1977, 67, 458.
- Tichenor, L. B.; Lozada-Ruiz, A. J.; Yamada, T.; El-Sinawi, A.; Taylor, P. H.,
 Peng, J.; Hu, X.; Marshall, P. Proc. Combus. Inst. 2000, 28, 1495.
- (46) Tichenor, L. B.; Graham, J. L.; Yamada, T.; Taylor, P. H.; Peng, J.; Hu, X.;
 Marshall, P. J. Phys. Chem. A 2000, 104, 1700.
- (47) Tichenor, L. B.; El-Sinawi, A.; Yamada, T.; Taylor, P. H.; Peng, J.; Hu, X.; Marshall, P. *Chemosphere* 2001, 42, 571.
- (48) Yamada, T.; Siraj, M.; Taylor, P. H.; Peng, J.; Hu, X.; Marshall, P. J. Phys. Chem.
 A 2001, 105, 9436.
- (49) Yamada, T.; El-Sinawi, A.; Siraj, M.; Taylor, P. H.; Peng, J.; Hu, X.; Marshall, P.
 J. Phys. Chem. A 2001, *105*, 7588.
- (50) Eyring, H. J. Chem. Phys. 1935, 3, 107.
- (51) Evans, M. G.; Polyani, M. Trans. Faraday Soc. 1935, 31, 875.
- (52) Bishop, D. M.; Laidler, K. J. Trans. Faraday Soc. 1970, 66, 1685.
- (53) Keck, J. C. J. Chem. Phys. 1960, 32, 1035.
- (54) Keck, J. C. Adv. Chem. Phys. 1967, 13, 85.
- (55) Anderson, J. B. J. Chem. Phys. 1973, 58, 4684.
- (56) Anderson, J. B. J. Chem. Phys. 1975, 62, 2446.
- (57) Chesnavich, W. J.; Su, T.; Bowers, M. T. J. Chem. Phys. 1980, 72, 2641.
- (58) Zellner, R. J. Phys. Chem. 1979, 83, 18.

- (59) Zellner, R. Bimolecular Reaction Rate Coefficients. In *Combustion Chemistry, Chapter 3*; Gardiner, W. C., Jr., Ed.; Springer-Verlag: New York, 1984.
- (60) Wardlaw, D. M.; Marcus, R. A. Chem. Phys. Lett. 1984, 110, 230.
- (61) Wardlaw, D. M.; Marcus, R. A. J. Chem. Phys. 1985, 83, 3462.
- (62) Aubanel, E. E.; Wardlaw, D. M. J. Phys. Chem. 1989, 93, 3117.
- (63) Klippenstein, S. J.; Marcus, R. A. J. Chem. Phys. 1987, 87, 3410.
- (64) Klippenstein, S. J.; Marcus, R. A. J. Phys. Chem. 1988, 92, 3105.
- (65) Klippenstein, S. J. Chem. Phys. Lett. 1990, 170, 71.
- (66) Klippenstein, S. J. J. Chem. Phys. 1991, 94, 6469.
- (67) Klippenstein, S. J. J. Chem. Phys. 1992, 96, 367.
- (68) Klippenstein, S. J. Chem. Phys. Lett. 1993, 214, 418.
- (69) Klippenstein, S. J. J. Phys. Chem. 1994, 98, 11459.
- (70) Smith, S. C. J. Chem. Phys. 1991, 95, 3404.
- (71) Smith, S. C. J. Chem. Phys. 1992, 97, 2406.
- (72) Smith, S. C. J. Phys. Chem. 1993, 97, 7034.
- (73) Robertson, S. H.; Wagner, A. F.; Wardlaw, D. M. J. Chem. Phys. 1995, 103, 2917.
- (74) Pesa, M.; Pilling, M. J.; Robertson, S. H.; Wardlaw, D. M. J. Phys. Chem. 1998, 102, 8526.

CHAPTER 2

EXPERIMENTAL METHODS

A. Flash Photolysis / Resonance Fluorescence (FP-RF) Method

In the late 1940s, Norrish and Porter in Cambridge developed a new kinetic technique, Flash photolysis, which overcame many disadvantages of classical flow systems.¹ In 1967, Braun and Lenzi reported the first absolute rate constants, which were measured by FP-RF technique.² Since then, It has become available in several other labs and a good method in studying elementary reactions in a stationary gas.³⁻⁹

The concept of this technique is simple. In the flash photolysis process, reactants and precursors are mixed and flowed into the reactor. An intense flash, such as UV and visible light is employed, and transient atoms or radical species are produced on a time scale that is short compared to the reaction studied. In the resonance fluorescence process, the generated reactive radicals absorb continuous wave radiation, which is in resonance with a higher electronic state. If the lifetime of the upper electronic state for emission is sufficiently short compared to that for other processes, such as quenching and dissociation, a fraction of the resonance radiation is isotropically scattered. The scattered radiation is detected by single photon counting techniques, and the decay of scattered photons is recorded by a multichannel analyzer. Because the intensity of fluorescence is proportional to the radical concentration, the function between the radical concentration and time is obtained. A schematic diagram of the apparatus is shown in Fig. 2.1. The reactor consists of a six-way stainless cross. Each arm has an i.d. of 22 mm and is 110 mm long. The intersection region of the side arms defines the reaction zone, which is roughly cubic, about 20 mm each side. Transient species are photolytically generated and detected by resonance fluorescence in the reaction zone. Pulsed radiation enters the reactor through one arm, resonance radiation through another arm at right angles, and fluorescence exists through a third one, which is mutually perpendicular. The other three arms are used as a gas inlet and outlet and as a port to hold a thermocouple. A small fraction of the total flow, about 10 %, is introduced in front of the three optical ports to sweep the gas mixture away from the windows. Full details of the reactor are described in earlier work of our group.¹⁰⁻¹²

For the H + CF₂=CF-CF=CF₂ reaction, the atomic H was produced by pulsed photolysis of NH₃ or H₂O in a large excess of C₄F₆ diluted in Ar bath gas, by radiation from a EG&G Electro-Optics flash lamp system focused through a MgF₂ ($\lambda > 120$ nm) lens. The flash lamp was a bulb (special FX 193 with a MgF₂ window) plugged into a Lite-Pac (FY-714) and connected to a power supply (PS-302) with a 10 µF external capacitor. The flash energy was varied from 2.0 to 4.1 J by changing the capacitor voltage between 630 ~ 900 V. N₂ (Air Products, Industrial Grade) was applied to purge the region between the flash lamp and the lens so that the wavelengths of actinic radiation transmitted into the reactor were down to about 120 nm. The relative concentration of H atoms was monitored by time-resolved resonance fluorescence at the Lyman- α wavelength, 121.6 nm, H(2²P) \rightarrow H(1²S). The probe radiation was generated by a

microwave-excited discharge lamp with a slow flow of 0.2 % H₂ in Ar at about 0.27 mbar. The lamp was attached to the end of one arm of the reactor, which is perpendicular to the position of the flash lamp. A tuned Evenson cavity was installed at the far end of the lamp body, and connected to the microwave generator (Opthos Instruments, Inc., 2540 MHz). The discharge was initiated with a Tesla coil, and the typical microwave power is 55 W. A jet of air was used to cool the discharge lamp. Fluorescence from the reaction zone was detected with a solar-blind photomultiplier tube (Thorn EMI, RFI-B2F) employed with pulse counting and signal averaging. Typically 100-2000 fluorescence signals were accumulated at each set of conditions, with a repetition rate of 1-2 Hz. The timing of the experiments was controlled by a pulse generator, which provided trigger pulses to the flash lamp and a computer-controlled multichannel scaler (EG&G Ortec ACE-MCS) that was used to collect the resonance fluorescence signal from the PMT via an amplifier / discriminator (Electron Tubes Limited, AD6). Because of a narrow transmittance band of O_2 at the Lyman- α wavelength, ¹³ a dry air filter was put in front of the PMT to absorb other interfering vacuum UV radiation that was around the neighborhood of the H-atom wavelength. The temperature T of the gas in the reaction zone was monitored with a temperature controller (Omega CN 3910 KC/S), and measured before and after each set of measurements with a sheathed, unshielded thermocouple (Omega, type K, chrome (+) vs. alumel (-)), corrected for radiation errors of up to 10 K, which is expected to be accurate to within ± 2 %.¹⁴ All experiments were carried out in a large excess of Ar bath gas at a total pressure P. The C₄F₆ and H-atom precursor (NH₃ or H₂O) concentrations were derived from P, T, the mole fractions of

Fig. 2.1. Schematic diagram of the apparatus

these species in Ar mixtures, and the gas flows measured with calibrated mass-flow controllers.

B. Laser Photolysis / Resonance Fluorescence (LP-RF) Method

When an excimer laser is employed as the light source for flash photolysis, FP-RF is called LP-RF, which has many advantages, such as short pulse duration, high repetition rate, and a narrow, well-defined wavelength range. The LP-RF technique was applied to the $H + H_2S$ reaction. In this work, MgF₂ optics was employed. The atomic H was produced by pulsed photolysis of H₂S at 193 nm using a PSX-100 excimer laser (MPB Technologies). The energy of the laser pluses was measured with a pyroelectric detector (Molectron, J25LP). The relative concentration of H atoms was also monitored by timeresolved resonance fluorescence at the Lyman- α wavelength, 121.6 nm. The probing resonant radiation at 121.6 nm was generated by a microwave-excited discharged lamp (0.1 % H₂ in Ar, 0.27 mbar), and the typical microwave power is about 20 W. A fourchannel digital delay / pulse generator (Stanford Research Systems, DG35) controlled the experiments' timing. The fluorescence from the reaction zone was detected by a solarblind PMT (Hamamatsu, R1459) via an amplifier / discriminator (MIT Inc., F-100T), and was also collected by a computer-controlled multi-channel scaler (EG&G Ortec ACE-MCS). The other set up and procedures were similar to that employed for $H + C_4F_6$.

Kinetic measurements for $H + CH_3Br$ were also made by the LP-RF. The only difference from $H + H_2S$ is that the precursor of H atom is NH₃ for this reaction.

C. Gas Handling

Ar (Big Three, 99.95 %) was used as the bath gas in all the experiments. Ar, N_2 (Liquid Air, Industrial Grade) and air (Big Three, Medical Grade) were used as supplied. H₂S (MG industries, 99.5+ %), CH₃Br (Matheson, 99.5 %), C₄F₆ (Air Liquide, 99.0+ %), NH₃ (MG Industries, 99.99+ %) and H₂ (MG Industries, 99.999 %) were purified by repeated "free-pump-thaw" cycles using a trap cooled to 77 K by a liquid N₂.

Gas mixtures were prepared on a vacuum line that was evacuated to pressures down to 10⁻⁴ mbar. Glass bulbs were evacuated to the same low pressures before introducing controlled amounts of pure gases into the bulbs.¹² The flow rates were measured with mass-flow controllers (MKS, 1159 series), which were calibrated against a bubble meter (Teledyne-Hastings HBM-1A) and operated by a four-channel readout (MKS, 247C). The bulbs were closed and the vacuum line evacuated again. Then Ar was introduced into the bulbs to prepare known ratios of diluted gas mixtures. In order to have uniform mixtures, each gas mixture was prepared at least two hours prior to running the experiments to make sure good mixing.

D. Experimental Procedure

Before starting kinetic measurements, the reactor was evacuated for at least several hours to remove any impurities stuck on the surface of the reactor. The reactor was assembled with a window-cooling system so that it can be applied for the high temperature measurements. When operating at high temperatures, routine cleaning with acetone or methanol was performed. By using a combination of mechanical and diffusion pumps, the gas-handling system was also pumped to near vacuum, until the pressure was as low as 10^{-4} mbar. The readout was set to control the flow rates of mixtures, argon bath flow and sweep gas. The reaction pressure was adjusted by a stopcock between the end of gas-handling system and the gas exit of the reactor. When the pressure and temperature reach equilibrium, the microwave fluorescence resonance lamp was initiated, and the power of the generator was adjusted to the value required with 0-1 W reflected power. The flash lamp or laser and the computer-controlled multi-channel scaler were triggered by the digital delay/pulse generator. The dwell time and the pass count for the multi-channel scaler were set according to the reaction speed to get a good exponential decay curve for data analysis.

In the Experiments, a steady slow flow of reactant and precursor mixtures with large excess Ar bath gas was passed to the reactor, and various experimental parameters were changed to check if they influenced the measured rate constants. The flash or laser energy and the initial precursor concentration were altered to check whether any secondary reactions of radicals with photolysis or reaction products affected the rate constant seriously. The gas residence time, τ_{res} , which was the average time that gas flowed from the entrance port of the reactor to the reaction zone, was also changed to see if any thermal reactant decomposition happened during the experiments. For each same condition, five measurements were made from [reactant] = 0 to [reactant] = maximum. A pseudo-first-order rate constant, k_{ps1} , for the reaction was derived from them.

REFERENCES

- Pilling, M. J.; Seakins, P. W. *Reaction Kinetics*; Oxford University Press Inc.: New York, 1995.
- (2) Braun, W.; Lenzi, M. Faraday Soc. 1967, 44, 252.
- (3) Davenport, J. E.; Ridley, B. A.; Stief, L. J.; Welge, K. H. J. Chem. Phys. 1972, 57, 520.
- (4) Klemm, R. B.; Stief, L. J. J. Chem. Phys. **1974**, 61, 4900.
- (5) Kurylo, M. J.; Peterson, N. C.; Braun, W. J. Chem. Phys. **1970**, *53*, 2776.
- (6) Manning, R. G.; Kurylo, M. J. J. Phys. Chem. 1977, 81, 291.
- (7) Perry, R. A.; Atkinson, R.; Pitts, J. N., Jr. J. Phys. Chem. 1977, 81, 296.
- (8) Stuhl, F.; Niki, H. J. Chem. Phys. 1972, 57, 3671.
- (9) Watson, R. T.; Machado, G.; Fischer, S.; Davis, D. D. J. Chem. Phys. 1976, 65, 2126.
- (10) Goumri, A.; Yuan, W.-J.; Ding, L.; Shi, Y.; Marshall, P. Chem. Phys. 1993, 177, 233.
- (11) Ding, L.; Marshall, P. J. Phys. Chem. 1992, 96, 2197.
- (12) Shi, Y.; Marshall, P. J. Phys. Chem. 1991, 95, 1654.
- (13) Samson, J. A. R. *Techniques of Vacuum Ultraviolet Spectroscopy*; John Wiley & Sons: New York, 1967.
- (14) Ding, L.; Marshall, P. J. Chem. Soc. Faraday Trans. 1993, 89, 419.

CHAPTER 3

REACTION OF H + H₂S

Acting as an important role in sulfur combustion under rich conditions, the reaction

$$H + H_2 S \to H_2 + S H \tag{3.1}$$

has been studied by many groups since the 1970s.¹⁻¹² In this work, the rate constant k_1 of this reaction in the intermediate temperature range was measured to check whether there is a simple Arrhenius temperature dependence for $k_{3,1}$ of this reaction, as said in an earlier review;¹³ or there is a significant curvature in the Arrhenius plot, according to a recent published paper.¹ Dr. Jingping Peng in our group is a coworker of this project.

A. Methodology

Experimental Technique.

The LP-RF technique was used in this study as described in chapter 2. under pseudo-first-order conditions $[H] \ll [H_2S]$, the H atoms reacted with H_2S :

$$d[H]/dt = -(k_{3.1}[H_2S] + k_{diff3})[H] = -k_{ps3.1}[H]$$
(3.2)

where k_{diff3} accounts for any loss of H atoms out of the reaction zone other than by reaction with H₂S, mainly via diffusion to the reactor walls. Typical values of k_{diff3} were in the range of 100 - 450 s⁻¹. $k_{ps3.1}$ was obtained by fitting the recorded fluorescence intensity I_f versus time profile to an exponential decay (an example is shown as the inset

on Fig. 3.1) over typically at least four lifetimes:

$$I_f = A \exp(-k_{ps3.1} t) + B$$
 (3.3)

The second-order H + H₂S rate constant k_1 was determined by linear fitting of $k_{ps3,1}$ versus typically five values of [H₂S] (see Fig. 3.1 for an example). In order to verify that pseudo-first-order conditions were maintained, the energy of excimer laser beam was varied to alter the initial radical concentrations by putting different transmission filters in front of the exit of the laser beam. The energy of the photolysis pulse (I₀, 0.1 - 0.6 mJ) was combined with the H₂S absorption cross section of about 8 × 10⁻¹⁸ cm² (base e, room temperature) at 193 nm¹⁴ to estimate the initial concentrations [H]₀ and [SH]₀. Gas mixtures flowed through the reactor slowly compared to the reaction time scale of the H-atoms, so the kinetic conditions were effectively static. The average gas residence time in the heated reactor before photolysis, τ_{res} , was varied by a factor of 2 or more to check for possible pyrolysis of H₂S.

Theoretical Calculations.

The energies and harmonic vibrational frequencies of optimized structures for H, H_2 , SH, H_2S , and the activated complex of reaction 3.1 were evaluated using the GAUSSIAN 94 program package¹⁵ at the MP2/6-311G(d,p), QCISD/6-311G(d,p) and QCISD(T)/6-311+G(3df,2p) levels of ab initio molecular orbital theory, and the BHandHLYP/6-311G(d,p) level of density functional theory.

Conventional TST was employed for the kinetic calculations, with the usual assumption of the separability of vibrational and rotational motions of the TS^{16}

Fig. 3.1. Plot of pseudo-first-order rate constant $k_{ps3.1}$ vs [H₂S] at P = 33 mbar and T = 491 K. The inset shows the decay of time-resolved fluorescence intensity I_f for the solid point. The error bars are $\pm 2\sigma$.
$$k_{TST} = \Gamma \frac{k_B T}{h} \frac{Q_{H_3 S^{\neq}}}{Q_H Q_{H_2 S}} \exp\left(-\frac{E_0^{\neq}}{RT}\right)$$
(3.4)

where Γ is the Eckart correction factor for quantum-mechanical tunneling.¹⁶ When a particle of energy E moves to a barrier whose height is V, with V > E, according to classical mechanics this particle can not cross the barrier. But in quantum mechanics, if the barrier is thin enough, there is a small but non-zero probability that this particle passes through the barrier. Such leakage by penetration through classically forbidden zones is called tunneling. The optimized geometries and vibrational frequencies at the QCISD(T)/6-311+G(3df,2p) level were used for evaluating Γ , the barrier to reaction including zero point energy E_0^{*} , and the partition functions Q. To allow for anharmonicity, the ab initio vibrational frequencies were multiplied by a scaling factor of 0.9552, which was obtained by plotting observed fundamentals for H₂S,¹⁷ H₂¹⁸ and SH¹⁹ versus calculated frequencies.

B. Results

The experimental conditions and results for 41 k_{3.1} measurements are summarized in Table 3.1. The listed 1 σ uncertainties in k_{3.1} are derived from the precision of slopes of plots such as Fig. 3.1, combined in quadrature with the estimated reproducibility of P, T and the gas flows. Modest values of $\sigma / k_{3.1}$ indicate good linearity in such plots, but the scatter between successive determinations of k_{3.1} was significantly greater than can be accounted for by these σ values alone. At each temperature, the weighted and unweighted means plus the standard deviations of these means were

Τ,	P,	$\tau_{res},$	I ₀ ,	[H] _{0, max}	$[H_2S]_{0,max}{}^a$	$\mathrm{k}_{3.1}\pm\sigma_{\scriptscriptstyle k_{3.1}}$
K	mbar	S	mJ	10 ¹¹ molecule cm ⁻³	10 ¹⁴ molecule cm ⁻³	10^{-13} cm^3 molecule ⁻¹ s ⁻¹
298	68.5	1.2	0.1	4.6	6.1	8.21 ± 0.14
299	200.4	1.2	0.1	4.6	6.0	$8.15~\pm~0.26$
297	67.8	1.2	0.2	13.2	6.0	7.87 ± 0.17
297	67.0	1.1	0.2	13.1	6.0	$7.98~\pm~0.26$
298	67.2	1.2	0.2	9.7	5.9	$7.94~\pm~0.20$
298					-	8.05 ± 0.08^{b}
337	67.0	2.0	0.2	44.6	20.5	9.93 ± 0.37
337	134.6	4.0	0.1	24.0	22.0	10.6 ± 0.22
338	134.3	2.0	0.1	22.7	20.9	$9.57~\pm~0.21$
337	67.3	2.0	0.1	22.4	20.6	$9.68~\pm~0.15$
337					-	9.88 ± 0.20^{b}
386	67.2	0.8	0.2	9.2	4.2	16.3 ± 0.9
383	201.1	0.8	0.2	9.3	4.3	16.3 ± 0.3
386	66.7	0.8	0.1	4.6	4.2	$18.9~\pm~0.9$
387	68.4	1.8	0.2	6.9	4.2	$21.7~\pm~0.8$
386	69.2	3.6	0.2	9.2	5.6	$24.4~\pm~0.6$
386	134.8	3.5	0.2	9.1	5.6	$20.3~\pm~1.2$
386					-	18.6 ± 1.2^{b}
432	66.3	1.5	0.1	4.6	4.3	27.8 ± 1.3
432	66.8	0.8	0.3	16.8	5.2	$24.3~\pm~0.9$
432	66.8	0.8	0.1	5.6	5.2	$20.5~\pm~0.7$
432	132.6	1.5	0.3	16.8	5.1	$24.2~\pm~2.1$
432					-	22.9 ± 1.3^{b}
490	66.4	2.0	0.3	12.9	4.0	30.5 ± 2.4
491	133.0	2.0	0.3	13.1	4.0	38.3 ± 1.3
491	34.5	2.3	0.2	9.7	4.5	64.6 ± 4.2
491	34.3	1.1	0.2	4.9	2.2	48.0 ± 3.3
491	33.9	2.2	0.2	6.9	3.2	42.4 ± 2.1

Table 3.1. Measurements of the rate constants $k_{3.1}$ for the reaction $H + H_2 S$

Τ,	Р,	τ_{res} ,	I ₀ ,	[H] _{0, max}	$[H_2S]_{0, max}^{a}$	k_{3.1} $\pm \sigma_{\scriptscriptstyle k_{3.1}}$
K	mbar	S	mJ	10 ¹¹ molecule cm ⁻³	10^{14} molecule cm ⁻³	10^{-13} cm^3 molecule ⁻¹ s ⁻¹
491	35.2	2.3	0.4	14.3	3.3	61.0 ± 1.3
491	34.1	1.1	0.4	8.1	1.9	$48.0~\pm~2.6$
491	69.9	2.3	0.4	14.8	3.4	$48.7~\pm~0.8$
491	69.8	2.3	0.2	5.6	3.4	50.3 ± 1.5
491	35.9	2.4	0.4	14.6	3.4	55.3 ± 1.1
491	35.9	2.4	0.1	3.6	3.4	58.8 ± 2.1
491					-	49.8 ± 2.9^{b}
601	68.5	1.4	0.4	9.3	2.4	65.7 ± 9.0
598	34.5	1.8	0.6	16.6	2.5	56.6 ± 3.4
598	34.5	1.8	0.2	5.5	2.5	60.9 ± 3.4
598	68.1	1.8	0.6	16.9	2.6	60.2 ± 3.8
597	68.5	3.6	0.6	18.5	2.8	64.1 ± 1.6
598	68.7	1.2	0.6	17.5	2.7	68.6 ± 3.7
597	68.4	3.6	0.6	21.4	3.3	51.4 ± 1.7
598	35.2	1.9	0.5	16.5	3.0	54.5 ± 9.4
598	67.3	3.5	0.5	29.8	5.5	55.5 ± 4.8
599	67.3	1.8	0.5	29.9	5.5	56.7 ± 1.1
599	67.4	1.2	0.5	21.8	4.0	69.5 ± 4.3
598					-	58.4 ± 1.7^{b}

Table 3.1. Measurements of the rate constants k_1 for the reaction H + H₂S (contd.)

^a $[H_2S]_{0,max}$ was 2.3 - 6.3 times $[H_2S]_{0,min}$. ^b Weighted mean value \pm rms deviation of the mean.

calculated.²⁰ The two means at each temperature differ by up to 6 %. The weighted mean and the larger of the two standard deviations at each temperature are reported in Table 3.1. Not all original measurements are included in Table 3.1. Four outlying individual $k_{3.1}$ values were rejected according to Chauvenet's statistical criterion.²¹ At 491 K, measurements at short residence times (< 0.75 s) were also made, but as a group they were significantly smaller than the other measurements at 491 K. Therefore they were not included in Table 3.1. At the highest temperature $k_{3.1}$ showed no consistent trend with τ_{res} , which indicates that pyrolysis of H₂S was unimportant at the listed temperatures.

To make an estimate of the extent of interference from secondary chemistry, kinetic modeling was performed using the ACUCHEM program.²² The following scheme was considered

$\mathrm{H} + \mathrm{H}_2\mathrm{S} \rightarrow \mathrm{H}_2 + \mathrm{SH},$	$k_{3.1} = 7.8 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$
$\mathrm{H} + \mathrm{SH} \rightarrow \mathrm{H}_2 + \mathrm{S},$	$k_{3.2} = 2.2 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$
$S + SH \rightarrow H + S_2,$	$k_{3.3} = 5.0 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$
$SH + SH \rightarrow H_2S + S,$	$k_{3.4} = 3.2 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$
$H \rightarrow diffusion,$	$k_{diff3} = 250 \text{ s}^{-1}$

with the worst-case conditions $[H_2S]_0 = 6.0 \times 10^{14}$ molecule cm⁻³ and $[H]_0 = [SH]_0 = 1.3 \times 10^{12}$ molecule cm⁻³. The value of k_{3.1} was taken from this work and values of k_{3.2}, k_{3.3} and k_{3.4} were from Nicholas et al.⁷ All are room temperature values. For each modeling of a particular set of k_i values, linear regression was applied to the plot of ln [H] versus time. The resultant slope was k_{ps3.1} and the effective second order rate constant was then

estimated as $k_{eff3} = (k_{ps3.1} - k_{diff3}) / [H_2S]_0$. The relative deviations of k_{eff3} with respect to that without secondary chemistry ($k_{3.2} = k_{3.3} = k_{3.4} = 0$) were 5.4 % for the original k_i values, 8.7 % for $k_{3.3} = k_{3.4} = 0$, and -1.4 % for $k_{3.2} = 0$. This reveals that the reaction H + SH \rightarrow H₂ + S is the main source of interference. $k_{3.1}$ increases more rapidly with increasing temperature than $k_{3.2} - k_{3.4}$, so the primary reaction is more easily separated from any secondary chemistry at elevated temperatures. The energy of the photolyzing laser beam was employed as low as practicable in this work to minimize [SH]_0, and the ratio $k_{3.1}[H_2S]_0 / k_{3.2}[SH]_0$ was maintained at 16 or larger.

A weighted Arrhenius fit was performed on the 41 measurements and is shown in Fig. 3.2. It yielded

 $k_{3.1} = (6.6 \pm 0.9) \times 10^{-11} \exp[(-11.2 \pm 0.4) \text{ kJ mol}^{-1} / \text{ RT}] \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (3.5)

over the temperature range 298 - 598 K. The quoted errors in this expression are 1σ and are statistical only. Consideration of the covariance leads to a 1σ precision for the fitted $k_{3,1}$ of 3 - 6 %, and allowance for possible systematic errors leads to 95 % confidence intervals of \pm 20 %.

In Table 3.2 are listed optimized geometries, barrier heights, and reaction enthalpies for $H + H_2S$ system calculated at the four different theory levels mentioned previously. The experimental values are listed for comparison also. The harmonic frequencies calculated at the corresponding optimized geometries together with measured harmonics and observed fundamentals are presented in Table 3.3.

The results of the TST calculation are shown in Fig. 3.3. The dotted line represents a TST calculation using the QCISD(T)/6-311+G(3df,2p) barrier height of 16.0

kJ mol⁻¹ and the corresponding Eckart corrections. The solid line represents a TST calculation adopting a barrier height of 14.4 kJ mol⁻¹, which was chosen to minimize the rms deviation from our experimental data. The reverse barrier height was varied also by the same amount as the reaction barrier height and the imaginary frequency was unchanged when tunneling correction factors were calculated. The open circles are

Fig. 3.2. $k_{3.1}$ for the H + H₂S reaction in the range 293 - 600 K. Solid line: Arrhenius fitting of this work; open circle: this work; open square: ref. 5; solid triangle: ref. 6; open triangle: ref. 1; open diamond: ref. 4; solid square: ref. 8; star: ref. 2; cross(×): ref. 12; solid diamond: ref. 10; cross(+): ref. 7; solid circle: ref. 3. The error bars are $\pm 2\sigma$ if σ was given, otherwise, they are \pm literature reported errors.

Geometry ^a , E_0^{\neq} , ΔH_0	BHandHLYP /6-311G(d,p)	MP2 /6-311G(d,p)	QCISD /6-311G(d,p)	QCISD(T) /6-311+G(3df,2p)	Experimental Values ^c
H1 – H2-S-H3 (TS)					
r (H1H2)	1.2385	1.055	1.1471	1.1613	
r (S-H2)	1.4046	1.4506	1.429	1.428	
r (S-H3)	1.3372	1.3356	1.3394	1.3411	
∠H1-H2-S	175.26	174.88	175.04	173.79	
∠ H2-S-H3	92.27	90.32	90.78	90.85	
H ₂ S					
r (S-H)	1.3361	1.3336	1.3377	1.3391	1.328
∠H-S-H	93.19	92.12	92.20	92.29	92.2
H_2					
r (H-H)	0.7382	0.7384	0.7433	0.7422	0.7414
SH					
r (S-H)	1.3405	1.3381	1.3429	1.3431	1.345
E_0^{\neq} , kJ mol ⁻¹	10.72	32.26	21.95	16.00	
ΔH_0 , kJ mol ⁻¹	-67.82	-46.90	-64.99	-59.90	-61.96 ± 5.08 -55.90 ± 3.12^{d}
Scaling factor for ZPC ^b	0.9305	0.9244	0.9445	0.9552	55.70±5.12

Table 3.2. Geometry, Barrier Height, and Enthalpy for the Reaction $H + H_2S$

^a Bond lengths in 10⁻¹⁰ m and angles in degree.
^b Obtained by plotting observed frequencies vs. calculated frequencies.
^c Taken from ref. 19; ^d Obtained from 23.

Modes ^a	BHandHLYP	MP2	QCISD	QCISD(T)	Measured	Fundamentals ^b
	/6-311G(d,p)	/6-311G(d,p)	/6-311G(d,p)	/6-311+G(3df,2p)	harmonics ^b	
Transition state						
A'	918i	1790i	1437i	1398i		
A'	420	516	464	459		
<i>A</i> ″	483	596	526	522		
A'	1198	1149	1163	1166		
A'	1677	1391	1439	1455		
A'	2785	2811	2761	2748		
H_2S						
$A_1(v_2)$	1257	1228	1231	1211	1215	1183
$A_1(v_2)$ $A_2(v_1)$	2784	2817	2765	2711	2722	2615
$B_2(v_3)$	2797	2836	2781	2727	2733	2627
H_2						
	4522	4533	4423	4411	4401	4159
σ_{g}						
SH						
σ	2766	2796	2734	2690	2690	2599

Table 3.3. Harmonic frequencies and fundamentals for species of reaction $H + H_2S$

^a Designated in irreducible representations from ab initio calculations and in cm⁻¹. ^b Taken from ref. 17, 18 and 19.

Fig. 3.3. Comparison of k₁ value for the H + H₂S reaction. Open circles: this work; line between solid diamonds: ref. 5; line between solid circles: ref. 6; line between solid triangles: ref. 1; line between stars: ref. 11; line between open triangles: ref. 9; dotted line: TST calculation with $E_0^{\neq} = 16.0$ kJ/mol; solid line: TST calculation with $E_0^{\neq} = 14.4$ kJ/mol.

experimental data measured in this work.

Non-linear fitting of the TST data calculated using $E_0^{\neq} = 14.4 \text{ kJ mol}^{-1}$ over 190 - 2237 K yields

$$k_{3.1} = 1.68 \times 10^{-18} \text{ T}^{2.44} \exp(-236/\text{T}) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$
 (3.6)

This expression fits the TST data to within 10 %.

C. Discussion

Fig. 3.2 shows a comparison of the present results with earlier measurements^{1–} 8,10,12 in the temperature range of our investigation. There is good accord with most of the room temperature data, and at higher temperatures our Arrhenius fit lies between the results of Kurylo et al.⁵ and Mihelcic et al.⁶ Fig. 3.3 shows our results in comparison with two studies of $k_{3,1}(T)$ where T was varied substantially around room temperature,^{5,6} together with high temperature measurements.^{1,9,11} Clearly, the higher the central temperature of the experiments, the larger the observed activation energy E_a. A fit to the present results (eq. 3.5) together with the fit expressions from ref. 1, 12, 22 and 24, evaluated at 10⁻⁴ K⁻¹ intervals and weighted equally in ln k_{3,1}, yields the modified Arrhenius expression

$$k_{3.1} = 5.8^{+11.1}_{-3.8} \times 10^{-17} \,\mathrm{T}^{1.94 \pm 0.15} \exp[(-455 \pm 67)/\mathrm{T}] \,\mathrm{cm}^3 \,\mathrm{molecule}^{-1} \,\mathrm{s}^{-1}$$
 (3.7)

which is a reasonable representation of the combined experimental data set, although it overestimates $k_{3,1}$ at 2237 K by about a factor of 1.5. The parameters of eq. 3.7 agree to within the stated 1 σ uncertainties with those of the analogous expression presented by

Yoshimura et al.,¹ which overestimated $k_{3,1}$ at 2237 K by about a factor of 1.7. The common functional form $k = A T^n \exp(-B / T)$ may therefore not be the best expression for this rate constant, for which data are available over an unusually wide range of temperature.

Of the ab initio results in Table 3.2, the transition state geometry at MP2/6-311G(d,p) is the closest to the previous calculations by Yoshimura et al.¹ at the HF/6-31G(d,p) and MP2/6-31G(d,p) levels of theory. The QCISD(T)/6-311+G(3df,2p) geometry is probably more accurate, based on the close accord with data for stable species where the bond lengths appear to be good to within about 10^{-12} m and the H₂S angle is in error by less than 0.1°, although the differences from the earlier geometry will have a negligible influence on k_{3.1}(T).

It is noted that the calculated harmonic frequencies at the QCISD(T)/6-311+G(3df,2p) level for the stable species listed in Table 3.3 are in very good agreement with the measured values (relative deviations up to 0.4 % and a rms deviation of 7 cm⁻¹). The real frequencies of the transition state and H₂S do not vary strongly with the level of calculation, although they are generally slightly smaller than the earlier HF/6-31G(d,p) and MP2/6-31G(d,p) results.¹ These differences will have little impact on $k_{3.1}(T)$, but the imaginary frequency v_i corresponding to motion along the reaction coordinate is important in determining the tunneling correction and is seen to vary significantly with the level of calculation. In particular, the earlier MP2/6-31G(d,p) value of 1890 cm⁻¹ is greater than any found here. We would expect overestimation of the barrier height to correlate with overestimation of the curvature at the saddle point and hence v_i ; the close accord at the QCISD(T)/6-311+G(3df,2p) level between experiment and calculation for E_0^{I} and ΔH_0 is therefore a necessary condition for an accurate assessment of v_i.

The tunneling correction factor Γ increases from 1.04 at 2000 K through 4.1 at 298 K to about 27 at 190 K, so the TST results will be especially sensitive to details of the tunneling model at room temperature and below. Nevertheless, as shown in Fig. 3.3, there is rather close accord with the experimental data in this region when the barrier is reduced by only 1.6 kJ mol⁻¹ from the ab initio value. It is hard to say to what extent this correction reflects contributions from multidimensional tunneling paths, or simply residual energy errors at the QCISD(T)/6-311+G(3df,2p) level of theory, but in any event it is a modest correction to E_0^{-1} . For comparison, Yoshimura obtained a PMP4/6-311G(d,p) barrier of 17.2 kJ mol⁻¹, adjusted to 13.4 kJ mol⁻¹ to match experiment.¹

Conventional TST calculations match experiment closely up to about 1000 K, but overestimate k_1 above this temperature. For example, $k_{3.1}$ from eq. 3.6 is a factor of 2.0 above the measurements of Yoshimura et al. at 2237 K, while the earlier TST calculations were a factor of 1.7 too large at this temperature.¹ A likely explanation is that variational effects become significant above 1000 K. In this case, that is where the average kinetic energy of the particles, 1.5RT, roughly equals the fitted barrier $E_0^{1} = 14.4$ kJ mol⁻¹, but whether this is a general criterion for the need for non-variational TST remains to be explored.

REFERENCES

- Yoshimura, M.; Koshi, M.; Matsui, H.; Kamiya, K.; Umeyama, H. Chem. Phys. Lett. 1992, 189, 199.
- (2) Clyne, M. A. A.; Ono, Y. Chem. Phys. Lett. 1983, 94, 597.
- (3) Cupitt, L. T.; Glass, G. P. Trans. Faraday Soc. 1970, 66, 3007.
- (4) Husain, D.; Slater, N. K. H. J. Chem. Soc., Faraday Trans. 2 1980, 76, 276.
- (5) Kurylo, M. J.; Peterson, N. C.; Braun, W. J. Chem. Phys. 1970, 54, 943.
- (6) Mihelcic, D.; Schindler, R. N. Ber. Bunsen-Ges. Phys. Chem. 1970, 74, 1280.
- (7) Nicholas, J. E.; Amodio, C. A.; Baker, M. J. J. Chem. Soc., Faraday Trans. 1 1979, 75, 1868.
- (8) Perner, D.; Franken, T. Ber. Bunsen-Ges. Phys. Chem. 1969, 73, 897.
- (9) Pratt, G.; Rogers, D. J. Chem. Soc., Faraday Trans. 1 1977, 73, 54.
- (10) Rommel, H.; Schiff, H. I. Int. J. Chem. Kinet. 1972, 4, 547.
- (11) Roth, P.; Lohr, R.; Barner, U. Combust. Flame 1982, 45, 273.
- (12) Bradley, J. N.; Trueman, S. P.; Whytock, D. A.; Zaleski, T. A. J. Chem. Soc., Faraday Trans. 1 1973, 69, 416.
- (13) Baulch, D. L.; Drysdale, D. D.; Duxbury, J.; Grant, S. J. Evaluated Kinetic Data for High-Temperature Reactions; Butterworth: London, 1976; Vol. 3.
- (14) Okabe, H. *Photochemistry of Small Molecules*; John Wiley: New York, 1978.

- (15) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 94 (Revision D.2); Gaussian, Inc.: Pittsburgh, PA, 1995.
- (16) Johnston, H. S. Gas-Phase Reaction Rate Theory; Ronald: New York, 1966.
- (17) Allen, H. C.; Plyler, E. K. J. Chem. Phys. 1956, 25, 1132.
- (18) Huber, K. P.; Herzberg, G. Constants of Diatomic Molecules; Van Nostrand Reinhold: New York, 1979; Vol. 4.
- (19) Chase, M. W. J.; Davies, C. A.; Downey, J. R. J.; Frurip, D. J.; McDonald, R. A.;
 Syverud, A. N. J. Phys. Chem. Ref. Data 1985, 14, Suppl. 1.
- (20) Massey, B. S. *Measures in Science and Engineering: Their Expression, Relation and Interpretation*; John Wiley: New York, 1986.
- (21) Pugh, E. M., Jr.; Winslow, G. H. *The Analysis of Physical Measurements*; Addison-Wesley: Reading, 1966.
- (22) Braun, W.; Herron, J. T.; Kahaner, D. K. Int. J. Chem. Kinet. 1988, 22, 51.
- (23) Nicovich, J. M.; Kreutter, K. D.; van Dijk, C. A.; Wine, P. H. J. Phys. Chem. 1992, 96, 2518.

(24) Kleinbaum, D. G.; Kupper, L. L.; Muller, K. E.; Nizam, A. *Applied Regression Analysis and Other Multivariable Methods*; Duxbury Press: Pacific Grove, 1998.

CHAPTER 4

REACTION OF H + CH₃Br

As one of the inhibitors of flame propagation in some cases, few reports about the reaction of CH_3Br with atomic hydrogen have been published since it was first studied in 1933,¹ in which the reaction 4.1 was argued to be the primary reaction.

$$H + CH_3Br \rightarrow CH_3 + HBr \tag{4.1}$$

In this work, the Arrhenius factor and the activation energy were investigated by kinetic measurements over a wider temperature range and compared with the previously published results.²⁻⁴ Then, the density functional theory (DFT) and the conventional transition state theory (TST) were applied to pick up the right reaction channel. Also, the TST and the Flexible TST (FTST)^{5,6} were used in the kinetic modeling, which was employed to test if there is a good agreement between the measurements and the theoretical calculations. Dr. Jingping Peng is a coworker on this project.

A. Methodology

Experimental Technique.

The LP-RF technique was also used in this work. The detail of this technique was described in chapter 2. The H atom precursor in here was NH_3 . Under pseudo-first-order conditions [H] << [CH₃Br], the H atoms reacted with CH₃Br:

$$d[H]/dt = -(k_{4.1}[CH_3Br] + k_{diff4})[H] = -k_{ps4.1}[H]$$
(4.2)

where k_{diff4} accounts for any loss of H atoms out of the reaction zone other than by reaction with CH₃Br, mainly via diffusion to the reactor walls. Typical values of k_{diff4} were in the range of 65 - 545 s⁻¹. $k_{ps4.1}$ was obtained by fitting the recorded fluorescence intensity I_f versus time profile to an exponential decay (an example is shown as the inset on Fig. 3.1 in chapter 3) over typically at least four lifetimes:

$$I_f = A \exp(-k_{ps4.1} t) + B$$
 (4.3)

The second-order H + CH₃Br rate constant k_1 was determined by linear fitting of $k_{ps4,1}$ versus typically five values of [CH₃Br]. In order to verify that pseudo-first-order conditions were maintained, the energy of excimer laser beam was varied to alter the initial radical concentrations, by putting different neutral density filters in front of the exit of the laser beam. The energy of the photolysis pulse (I₀, 0.2 - 0.6 mJ) was combined with the NH₃ absorption cross section of about 1.1×10^{-17} cm² molecule⁻¹ (base e, 0 °C) at 193 nm⁷ to estimate the initial concentrations [H]₀ and [NH₂]₀, and with the CH₃Br absorption cross section of about 8.0×10^{-19} cm² molecule⁻¹ (base e, room temperature) at 193 nm⁷ to estimate the initial [CH₃]₀ and [Br]₀. Gas mixtures flowed through the reactor slowly compared to the reaction time scale of the H-atoms, so the kinetic conditions were effectively static. The average gas residence time in the heated reactor before photolysis, τ_{res} , was varied by a factor of 2 or more to check for possible pyrolysis of CH₃Br.

Theoretical Calculations.

All the ab initio calculations were performed using the GAUSSIAN 94 program package.⁸ The DFT calculations were contributed by Timothy O'Hara. The structures of

species HBr, CH₃, CH₃Br, and transition state of reaction H + CH₃Br \rightarrow CH₃ + HBr were optimized at HF/6-31G(d), MP2(FULL)/6-31G(d), MP2/6-311G(d,p), and QCISD/6-31G(d,p) levels of ab initio theory. The harmonic vibrational frequencies of optimized structures at HF/6-31G(d), MP2/6-311G(d,p), and QCISD/6-31G(d,p) levels were calculated. The G2 energies were calculated based on the geometries optimized at the MP2(FULL)/6-31G(d), MP2/6-311G(d,p), and QCISD/6-31G(d,p) levels, respectively. As a preliminary investigation, three channels of reaction H + CH₃Br were considered: Br-abstraction (k₁), H-abstraction (k₂) and Br-substitution (k₃) (see Figure 4.1). They were studied at BHandH/6-311G(d,p) level of density functional theory and G2 energies of the system were calculated based on the geometries optimized at this level.

Conventional TST was employed for the kinetic calculations, with the usual assumption of the separability of vibrational and rotational motions of the TS⁹

$$k_{TST} = \Gamma \frac{k_B T}{h} \frac{Q_{CH_4 B r^*}}{Q_{HBr} Q_{CH_3}} \exp\left(-\frac{E_0^*}{RT}\right)$$
(4.4)

where Γ is the Eckart correction factor for quantum-mechanical tunneling.⁹ The barrier height E_0^{\pm} (including zero point energy correction) were calculated at G2, modified G2//MP2/6-311G(d,p), and modified G2//QCISD/6-31G(d,p) levels, respectively. The frequencies at HF/6-31G(d) level scaled by 0.8929 were used to calculate the vibrational partition functions of the species for the G2 rate constant. The frequencies at MP2/6-311G(d,p) level scaled by 0.9473 and at QCISD/6-31G(d) level scaled by 0.9407 were used to calculate the vibrational partition functions of the species for the rate constants at these two levels, respectively. The later two scaling factors were obtained by plotting observed fundamentals of HBr, 10 CH₃ 11 and CH₃Br 11 versus the calculated frequencies.

The Flexible TST treatment was performed at the QCISD/6-31G(d,p) level and the separation R between H and the center of mass (c.m.) of CH₃Br was fixed at the value of the transition state in order to take into account of the hindered rotor effect. Since this is an atom + non-linear-top system, only two internal angles, which were the angle θ formed by the intersection of the line joining the c.m.s of the two fragments and the principle axis of CH₃Br (passes through Br and C atoms) at the c.m. of CH₃Br and the dihedral angle ϕ of the plane containing CH bond with respect to the same plane at equilibrium structure (see Figure 4.2), were needed to define the potential energy function of the transitional/external-rotation modes. The rate expression for this FTST¹² treatment is

$$k(T) = g_e \frac{k_B T}{h} \frac{\sigma}{\sigma^{\dagger}} \frac{e^{\frac{P^{\dagger}}{RT}}}{Q_{trans}(T)} \left(\frac{Q_c^{\dagger}}{Q_{vib,CH_3Br}(T)}\right) \left(\frac{Q_{pd}^{\dagger}(T)Q_{fr,CH_3Br}^{\dagger}(T)}{Q_{fr,CH_3Br}(T)}\right) \Gamma^{\dagger}(T) \quad (4.5)$$

where g_e is the ratio of electronic degeneracy factors for the reactants and transition state and σ/σ^{\dagger} is the ratio of reactant and transition state symmetry factors; V^{\dagger} is the barrier height for the reaction including zero point energy correction (ZPC); $Q_{trans}(T)$ is the translational partition function of the system which takes the reduced mass μ ; $Q_c^{\dagger}(T)$ is the conserved mode partition function, which was calculated as the product of vibrational partition functions of all modes except the two lowest frequencies (doubly degenerated) and the imaginary frequency; $Q_{fr,CH,Br}^{\dagger}(T)$ is the partition function for the free rotation of

Fig. 4.1. Geometries of transition states for reaction H + CH₃Br optimized at BHandH/6-311G(d,p) level:(a) Br-abstraction; (b) H-abstraction; (c) Br-substitution.

Fig. 4.2. Diagram of two internal angles in TS: (1) θ , formed by the intersection of the line joining the c.m.s of two fragments and the principle axis of CH₃Br; (2) ϕ , formed by the plane containing CH bond with respect to the same plane at equilibrium structure. $\phi = 0$ corresponds to the left-hand CH bond lying trans to the HBr bond.

fragment CH₃Br in the transition state; $Q_{pd}^{\dagger}(T)$ is the partition function for the pseudodiatomic formed from the c.m.s of the two fragments H and CH₃Br; $\Gamma^{\dagger}(T)$ is a hindering function in the form of the configuration integral:

$$\Gamma^{\dagger}(T) = (4\pi)^{-1} \int_{0}^{\pi} d\theta \sin \theta \int_{0}^{2\pi} d\phi \, e^{-\frac{V_{tr}}{RT}}$$
(4.6)

It was evaluated in the following way. First, a relaxed scan at the QCISD/6-31G(d,p) level starting at the transition state on angle θ with the range $0^{\circ} - 136^{\circ}$ and step-size 8° , and on ϕ with the range $0^{\circ} - 60^{\circ}$ and step-size 6° was performed; next, the $\Gamma^{\dagger}(T)$ was evaluated at each temperature approximately as the summation of the volumes of column with bottom area $\Delta\theta \times \Delta\phi$ and height $\sin\theta \times \exp(-V_{tr}/RT)$, where the height was the average at the center of each area and the unit of angles was radian. As a test of this kind of numerical integration, the above procedure were applied to evaluate the double integral of $\sin 2\phi e^{-\theta}$ on the range $0 - 120\pi/180$ for ϕ and $0 - 136\pi/180$ for θ . The result is within 0.1 % of the analytically calculated value. The Eckart correction factors (about 2 at room temperature) were also included in the reported FTST rate constants.

B. Results and Discussion

The experimental conditions and results for 26 $k_{4,1}$ measurements are summarized in Table 4.1. The listed 1 σ uncertainties in $k_{4,1}$ are derived from the precision of slopes of plots such as Figure 4.3, combined in quadrature with the estimated reproducibility of P, T. Modest values of $\sigma / k_{4,1}$ indicate good linearity in such plots. At each temperature, the weighted and unweighted means plus the standard deviations of these means¹³ were calculated. The two means at each temperature differ by up to 6 %. The weighted mean and the larger one of the two standard deviations at each temperature are reported in Table 4.1. Not all our original measurements are included in Table 4.1. Two outlying individual $k_{4,1}$ measurements were rejected according to Chauvenet's statistical criterion.¹⁴ At the highest temperature $k_{4,1}$ showed no consistent trend with τ_{res} , which indicates that pyrolysis of CH₃Br was unimportant at the listed temperatures.

To make an estimate of the extent of interference from secondary chemistry, kinetic modeling was performed using the ACUCHEM program.¹⁵ The following scheme was considered

$$H + CH_3Br \rightarrow CH_3 + HBr, \qquad (4.1)$$

$$H \longrightarrow diffusion, \qquad (4.7)$$

$$H + CH_3 (+Ar) \rightarrow CH_4 (+Ar), \qquad (4.8)$$

$$H + NH_2 (+Ar) \rightarrow NH_3 (+Ar), \qquad (4.9)$$

$$CH_3 + CH_3 \rightarrow C_2H_6, \tag{4.10}$$

$$CH_3 + NH_2 \rightarrow CH_3 NH_2, \tag{4.11}$$

$$NH_2 + NH_2 \rightarrow N_2H_4, \tag{4.12}$$

$$H + HBr \rightarrow H_2 + Br, \qquad (4.13)$$

$$CH_3 + HBr \rightarrow CH_4 + Br.$$
 (4.14)

The reaction

$$CH_3 + Br (+Ar) \rightarrow CH_3Br (+Ar)$$
 (4.15)

was not included in this scheme, according to tests at 400 K and 813 K, which showed

Τ,	P,	τ_{res}	I ₀ ,	[H] _{0, max}	[CH ₃ Br] _{0, max}	f _{modeling}	$k_{4.1} \pm \sigma_{k_{4.1}}$
Κ	mbar	S	mJ	10 ¹² molecule	10 ¹⁵ molecule		10^{-13}cm^{3}
				cm ⁻³	cm ⁻³		molec. ⁻¹ s ⁻¹
400	68.2	2.7	0.5	7.3	6.1	0.6957	0.800 ± 0.018
400	68.4	1.3	0.5	7.3	5.9	0.6857	0.720 ± 0.030
400	134.5	2.6	0.5	7.4	6.3	0.6957	0.800 ± 0.020
400	134.2	2.6	0.2	3.7	6.3	0.8073	0.880 ± 0.021
400							0.810 ± 0.028
443	68.6	1.2	0.6	5.1	5.2	0.8235	1.40 ± 0.05
443	68.6	1.2	0.2	2.2	5.2	0.8988	$1.51~\pm~0.05$
443	133.8	2.4	0.6	5.2	5.6	0.8295	1.46 ± 0.04
443							1.46 ± 0.03^{b}
498	67.8	2.1	0.5	7.6	2.5	0.8460	3.46 ± 0.08
498	68.1	2.2	0.3	3.8	2.5	0.8992	3.30 ± 0.11
498	67.4	4.3	0.5	7.5	2.4	0.8541	$3.63~\pm~0.17$
498	34.8	2.2	0.5	7.3	2.4	0.8375	3.04 ± 0.11
498	34.9	2.2	0.3	3.7	2.4	0.9041	3.49 ± 0.13
498	34.1	4.3	0.5	7.2	2.4	0.8477	$3.45~\pm~0.24$
498	71.8	4.5	0.4	4.9	3.6	0.9026	$3.43~\pm~0.18$
498	72.0	4.5	0.2	2.4	3.6	0.9470	3.75 ± 0.14
498							3.41 ± 0.07 ^b
571	136.9	3.8	0.6	10.7	1.8	0.8756	6.83 ± 0.28
571	69.2	3.8	0.6	10.3	1.7	0.8766	$6.89~\pm~0.24$
571	69.4	3.8	0.3	5.1	1.7	0.9281	$7.62~\pm~0.26$
571							7.11 ± 0.21^{b}
670	68.6	3.2	0.5	7.3	84.6	0.9337	16.9 ± 1.4
670	69.4	3.3	0.3	3.7	84.9	0.9560	15.2 ± 1.1
670	68.8	1.6	0.5	7.4	77.3	0.9294	15.8 ± 0.5
670	135.4	3.2	0.5	7.5	86.1	0.9257	$13.7~\pm~0.3$
670							14.4 ± 0.6^{b}
813	70.0	2.7	0.6	13.3	36.4	0.9322	37.1 ± 3.9
813	71.8	1.4	0.6	13.7	34.0	0.9457	$47.0~\pm~5.4$
813	70.9	1.4	0.3	6.8	33.6	0.9652	$44.4~\pm~4.0$
813	139.0	2.7	0.6	13.5	37.4	0.9368	$40.0~\pm~2.5$
813							41.0 ± 1.9^{b}

Table 4.1. Rate constant measurements of the reaction $H + CH_3Br$ and the gas flows

^a [CH₃Br]_{0,max} was 5-17 times of [CH₃Br]_{0.min}; ^b Mean value.

Fig. 4.3. Plot of pseudo-first-order rate constant $k_{ps4.1}$ vs [CH₃Br] at P = 67 mbar and T = 571 K. The points are with 2σ error bar.

the relative deviations of [H] from modeling are less than 0.5 % when this reaction was included. Therefore, the reaction 4.15 could be ignored. The modeling was performed on each individual set of measurement. For each modeling, k_{4.1} was taken as the measured one in this work; k_{4.7} was fixed as 150 s⁻¹; k_{4.8} was evaluated using the expression preferred by Baulch et al., 16 k = $6.0 \times 10^{-29} \times (T/298)^{-1.8}$ cm⁶ molecule⁻² s⁻¹ at 67 mbar pressure; $k_{4.9}$ was estimated as $k_{4.8}$; $k_{4.11}$ and $k_{4.12}$ were taken as the same as $k_{4.10} = 4.1$ $\times 10^{-11} \times exp(137 \text{ K/T}) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}; 17 \text{ k}_{4.13} \text{ was set equal to } 1 \times 10^{-11} \text{ cm}^3$ molecule⁻¹ s⁻¹, ¹⁸ and $k_{4.14} = 8.92 \times 10^{-12} \times exp(-810 \text{ K/T}) \text{ cm}^3$ molecule⁻¹ s⁻¹. ¹⁹ The initial concentrations of species H, NH₃, CH₃, CH₃Br in modeling were those used in each set of measurement. A linear regression was applied to the plot of ln [H] from modeling versus time. The resultant slope was $k_{ps4,1}$ and the effective second order rate constant was then estimated as $k_{eff4} = (k_{ps4,1} - k_{diff4}) / [CH_3Br]_0$, where k_{diff4} was the slope of linear fit of ln [H] from modeling with $[CH_3Br]_0 = [CH_3]_0 = 0$ molecule cm⁻³ versus time. The relative deviations of k_{eff4} with respect to the input $k_{4,1}$ range from about +30 % at 400 K to about +7 % at 813 K. This implies that the k_{4.1} measured under the experimental conditions in this work was overestimated to some extent due to the secondary chemistry. Therefore, a particular correction factor from the modeling was applied to each set of measurement as shown in Table 4.1 under the heading of fmodeling. A weighted Arrhenius fit was performed on the 26 measurements and is shown in Figure 4.4. It yielded

 $k_{4.1} = (1.23 \pm 0.12) \times 10^{-10} \exp[(-(22.4 \pm 0.4) \text{ kJ mol}^{-1} / \text{ RT}] \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (4.16) over the temperature range 400 - 813 K. The quoted errors in this expression are 1 σ and are statistical only. Consideration of the covariance leads to a 1 σ precision for the fitted

Fig. 4.4. k_{4.1} of H + CH₃Br reaction in the range of 296 - 996K. Solid line: Arrhenius fitting of this work; solid circles: this work; open square: Ref. 2; open uptriangles: Ref. 4; open downtriangles: Ref. 3.

 $k_{4,1}$ of 2 - 4 %, and allowance for possible systematic errors leads to 95 % confidence intervals of ± 13 %. Three sets of directly measured $k_{4,1}$ values from literature are included in Fig. 4.4. At 298 K the $k_{4,1}$ measured by Westenberg et al.³ is about 8 times smaller than that measured by Aders et al.,⁴ although these authors claimed relative errors of less than 10 % in both sets of measurements. At about 450 K the measurement by Aders et al. is about 5 times larger than Westenberg's measurement.

The geometries, barrier heights and vibrational frequencies of the transition states for the three channels of reaction H + CH₃Br calculated at the BHandH/6-311G(d,p) level are summarized in Figure 4.1, Table 4.2 and Table 4.3. The preliminary calculation for transition state of Br-abstraction showed a symmetry-breaking problem. The expected C_{3v} symmetry was broken to C_1 or C_s symmetry. From C_{3v} to C_1 or C_s symmetry, r_{CBr} increased by 0.00003 Å; r_{HBr} decreased by 0.00036 Å; the maximum change in r_{CH} was 0.00009Å, and the maximum change in \angle_{HCBr} was 0.13°. The ZPCs for G2 energies and frequencies for TST calculations were scaled by 0.9478. The ratios of k_n (n = 2 and 3) over k_1 from TST calculations (without any tunneling correction) versus 1000 K/T are presented in Figure 4.5. It shows that the channels 2 and 3 are negligible even at flame temperatures. This result supports the analysis of Chadwell and Titani in 1933.¹

The optimized geometries, barrier heights and reaction enthalpies at three different G2 levels for $H + CH_3Br \rightarrow CH_3 + HBr$ are listed in Table 4.4. The experimental values are also listed for comparison. The calculated frequencies, which were scaled by a corresponding factor and the observed fundamentals, are presented in Table 4.5.

Geometry ^a , E_0^{\neq}	Br-abstraction (C_1 or C_s symmetry)	H-abstraction (C _s symmetry)	Br-substitution (C _{3v} symmetry)
r _{BrH4}	1.8047		
r _{CBr}	2.0322	1.8682	2.0981
r _{CH1}	1.0822	1.4139	1.0804
r _{CH2}	1.0823	1.0818	1.0804
r _{CH3}	1.0824	1.0818	1.0804
r _{CH4}			1.6028
r _{H1H4}		0.8861	
∠ _{H1CBr}	105.90	108.09	98.79
∠ _{H2CBr}	105.75	112.70	98.79
∠ _{H3CBr}	105.68	112.70	98.79
∠ _{H4BrC}	177.23		
∠ _{H4CBr}			180.0
∠ сн1н4		178.66	
D _{H2CBrH1}	120.03	112.97	120.00
D H3CBrH1	-120.01	-112.97	-120.00
D _{H4BrCH1}	-16.74		
D _{H4H1CBr}		180.0	
E_0^{\neq} , kJ mol ⁻¹ (G2 method)	27.58	51.19	63.28
Scaling factor for ZPC ^b	0.9478	0.9478	0.9478

Table 4.2. Transition state geometries and barrier heights for the reaction $H + CH_3Br$

^a Refer to Fig. 4.1.; calculated at the BHandH/6-311G(d,p) level; bond lengths in angstrom and angle in degree.

^b Obtained by plotting observed frequencies vs. calculated frequencies.

Br-abstraction [‡] (cm ⁻¹)	H-abstraction [‡] (cm ⁻¹)	Br-substitution [‡] (cm ⁻¹)
669i	1193i	1193i
27	278	431
41	516	431
700	701	540
862	946	1097
865	990	1097
1259	1128	1231
1466	1134	1421
1467	1419	1421
3148	2008	3148
3288	3185	3319
3288	3308	3319

Table 4.3. Calculated frequencies of transition states for reaction $H + CH_3Br$

[‡] Geometry refers to Fig. 4.1.; calculated at the BHandH/6-311G(d,p) level.

Fig. 4.5. Ratio of rate constants vs. temperature for reaction $H + CH_3Br$. The triangles:

 k_2 / k_1 (H-abs / Br-abs); the squares: k_3 / k_1 (Br-sub / Br-abs).

Geometry ^a , E_0^{\neq} , ΔH_0	MP2(FULL) /6-31G(d)	MP2 /6-311G(d,p)	QCISD /6-31G(d,p)	Experimental Values
$CH_3BrH (TS)^b$				
r _{HBr}	1.7101	1.7226	1.8330	
r _{CBr}	2.1201	2.0791	2.0865	
r _{CH}	1.0845	1.0860	1.0826	
$\angle_{\rm HCH}$	104.55	105.55	105.21	
CH ₃ Br ^b				
r _{CBr}	1.9476	1.9350	1.9581	1.939 ^f , 1.939 ^h
r _{CH}	1.0867	1.0877	1.0839	1.113 ^f , 1.096 ^h
∠ _{HCBr}	107.86	108.39	107.72	111.23 ^f , 107.93 ^h
CH ₃ ^c				
r _{CH}	1.0783	1.0792	1.0774	1.079 ^g
HBr				
r _{HBr}	1.4356	1.4126	1.4100	1.4144 ^g
E_0^{\neq} , kJ mol ⁻¹ (G2 method)	30.51	26.95	28.72	
ΔH_0 , kJ mol ⁻¹ (G2 method)	-73.07	-70.72	-71.21	$-(74.60\pm0.98)^{\mathrm{g,h}}$
Scaling factor for ZPC	0.8929 ^d	0.9473 ^e	0.9407 ^e	、 /

Table 4.4. Geometry, barrier height and enthalpy for the reaction $H + CH_3Br \rightarrow$

^a Bond lengths in angstrom and angle in degree.

^b C_{3v} symmetry.

^c D_{3h} symmetry.

 d ZPC at the HF/6-31G(d) level.

 $CH_3 + HBr$

^e Obtained by plotting observed frequencies vs. calculated frequencies.

^f Taken from Ref. 2.

^g Taken from Ref. 10.

 $^{h}\,\Delta H_{f,0K}$ of CH3Br was taken from Ref. 11.

Modes ^a	HF /6-31G(d) ^b	MP2 /6-311G(d,p) ^c	QCISD /6-31G(d,p) ^d	Fundamentals
Transition state				
A_1	1014i	1083i	810i	
E (2)	261	85	132	
A_1	476	655	585	
E (2)	748	794	802	
A_1	1148	1189	1194	
E (2)	1417	1395	1422	
A_1	2935	2963	2978	
E (2)	3065	3102	3112	
CH ₃ Br				
$A_{1}(v_{3})$	570	614	578	611 ^e
E (v ₆ , 2)	946	938	937	955 ^e
$A_1(v_2)$	1324	1308	1308	1306 ^e
E (v ₅ , 2)	1451	1417	1445	1443 ^e
$A_1(v_1)$	2926	2957	2973	2973 ^e
E (v ₄ , 2)	3028	3066	3085	3056 ^e
CH ₃				
A_2 " (v ₂)	275	396	395	607 ^e , 580 ^f
E' (v ₄ , 2)	1375	1371	1387	1398 ^e , 1383 ^f
A_1 " (v ₁)	2933	3006	3006	$3000^{\rm e}$, $3002^{\rm f}$
E' (v ₃ , 2)	3090	3189	3182	3162 ^e , 3184 ^f
HBr				
σ_{g}	2501	2593	2547	2559 ^f

Table 4.5. Harmonic frequencies and fundamentals for species of reaction $H + CH_3Br \rightarrow CH_3 + HBr$

^a Designated in irreducible representations from ab initio calculations and in cm⁻¹; Number in parentheses is degeneracy. ^b Scaled by 0.8929. ^c Scaled by 0.9473. ^d Scaled by 0.9407. ^e Taken from Ref. 2. ^f Taken from Ref. 10. The potential energy of the transitional / external-rotation modes is shown in Figure 4.6. When ϕ equals to zero degree, one H atom in the CH₃ group is in the same plane containing the CBr bond and the added H atom, but opposite to the added H atom. It is a gauche conformation, and the barrier heights lie in the minimum. Then the barrier heights increase as the rotation of the CH₃ group. When ϕ equals to 60 degree, an eclips conformation is formed, and barrier heights arrive at the maximum. After that, the barrier heights decrease. When another gauche conformation is formed at 120 degree, the barrier heights become the minimum again. Therefore, there are 3 minimums and 3 maximums in a 360 degree circle of ϕ , except when θ equals to zero degree. Figure 4.6 shows that the CH₃ rotor is a free rotor, and the barrier height is zero, when θ equals to zero degree. Since the barrier heights at $\theta = 136^{\circ}$ are greater than 140 kJ mol⁻¹, and exp (-V_{tr}/RT) is very small, the contributions of $\theta > 136^{\circ}$ to the integral of the hindering function $\Gamma^{\dagger}(T)$ were ignored.

The rate constants from conventional TST and FTST calculations were fitted to the measured $k_{4,1}$ in this work by adjusting the corresponding barrier heights to minimize the rms deviations. The Eckart factors were recalculated at each adjusted barrier height. For the conventional TST calculation (all modes treated as vibrations) with original G2 barrier and scaled HF/6-31G(d) frequencies, the barrier height was adjusted down by 10.3 kJ mol⁻¹ and the relative errors to the measured $k_{4,1}$ are 6 % - 24 %. For the TST calculation with the modified G2//QCISD/6-31G(d,p) barrier height and scaled QCISD/6-31G(d,p) frequencies, the barrier height was adjusted down by 5.6 kJ mol⁻¹ and the relative errors to the measured $k_{4,1}$ are 2 % - 22 %. For the TST calculation with modified

Fig. 4.6. Barrier height of the transitional / external-rotation modes of the TS relative to $H + CH_3Br$ at the QCISD/6-31G(d,p) level of theory

G2//MP2/6-311G(d,p) barrier height and scaled MP2/6-311G(d,p) frequencies, no barrier height adjustment was needed and the relative errors to the measured $k_{4.1}$ are 8 % - 50 %. The lowest (double degenerate) frequencies of the TS at the MP2/6-311G(d,p) level are 85 cm⁻¹ (see Table 4.5). Since a lower frequency has more contribution to the vibrational partition function, a more realistic treatment of the two low frequency modes should give more accurate values for $k_{4.1}$. The G2//QCISD/6-31G(d,p) barrier height of FTST calculation at QCISD/6-31G(d,p) level was adjusted down by only 1.9 kJ mol⁻¹ and the relative errors to the measured $k_{4.1}$ are between 6 % and 37 %.

A non-linear fitting procedure was applied to the adjusted results of the calculations. The non-linear fitting of the TST data calculated with original G2 barrier height $E_0^{\pm} = 20.2 \text{ kJ mol}^{-1}$ over 298 - 2000 K yielded

$$k_{4.1} = 9.86 \times 10^{-18} \text{ T}^{2.165} \exp(-1516 \text{ K/T}) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$
 (4.17)

This expression fits the TST data to within 5 %. The non-linear fitting of the TST data calculated with modified G2//MP2/6-311G(d,p) barrier height $E_0^{\neq} = 27.0$ kJ mol⁻¹ over 298 - 2000 K yielded

$$k_{4.1} = 4.31 \times 10^{-17} \text{ T}^{2.199} \exp(-2360 \text{ K/T}) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$
 (4.18)

This expression fits the TST data to within 7 %. The non-linear fitting of the TST data calculated with modified G2//QCISD/6-31G(d,p) barrier height $E_0^{\neq} = 23.1$ kJ mol⁻¹ over 298 - 2000 K yielded

$$k_{4.1} = 1.51 \times 10^{-16} T^{1.940} \exp(-2189 \text{ K/T}) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$
 (4.19)
This expression fits the TST data to within 4 %. The non-linear fitting of the FTST data calculated with modified G2//QCISD/6-31G(d,p) barrier height $V^{\dagger} = 26.8 \text{ kJ mol}^{-1}$ over 298 - 2000 K yielded

$$k_{4,1} = 4.61 \times 10^{-15} \text{ T}^{1.532} \exp(-2631 \text{ K/T}) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$
 (4.20)

This expression fits the FTST data to within 5 %. The adjusted results of FTST calculations and TST calculations at MP2/6-311G(d,p) and QCISD/6-31G(d,p) levels together with the experimental data are shown in Figure 4.7. It is noted that all the three models fit the experimental data well and are too close to be separated clearly, but combination with the measurements by Westenberg et al.,³ the FTST model is considered to be the most reasonable representation.

Fig. 4.7. Comparison of $k_{4.1}$ of H + CH₃Br reaction. Solid line: FTST calculation with V[†] = 26.8 kJ mol⁻¹ over 298 - 2000 K; dashed line: TST calculation with E_0^{\neq} = 27.0 kJ/mol⁻¹ over 298 - 2000 K; dotted line: TST calculation with E_0^{\neq} = 23.1 kJ/mol⁻¹ over 298 - 2000 K; solid circles: this work; open square: Ref. 2; open uptriangles: Ref. 4; open downtriangles: Ref. 3.

REFERENCES

- (1) Chadwell, H. M.; Titani, T. J. Am. Chem. Soc. 1933, 55, 1363.
- (2) Townes, C. H.; Schawlow, A. L. *Microwave Spectroscopy*; McGraw-Hill: New York, 1955.
- (3) Westenberg, A. A.; deHaas, N. J. Chem. Phys. 1975, 62, 3321.
- (4) Aders, W.-K.; Pangritz, D.; Wagner, H. G. Ber. Bunsenges. Phys. Chem. 1975, 79, 90.
- (5) Wardlaw, D. M.; Marcus, R. A. J. Chem. Phys. 1985, 83, 3462.
- (6) Wardlaw, D. M.; Marcus, R. A. Chem. Phys. Lett. **1984**, 110, 230.
- (7) Okabe, H. *Photochemistry of Small Molecules*; John Wiley: New York, 1978.
- (8) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 94 (Revision D.2); Gaussian, Inc.: Pittsburgh, PA, 1995.
- (9) Johnston, H. S. *Gas-Phase Reaction Rate Theory*; Ronald: New York, 1966.
- (10) NIST-JANAF Thermochemical Tables; 4 ed.; Chase, M. W. J., Ed.; the American Chemical Society and the American Institute of Physics: Woodbury, N. Y., 1998.

- (11) Thermodynamic Properties of Individual Substances; 4 ed.; Gurvich, L. V.;
 Veyts, I. V.; Alcock, C. B.; Iorish, V. S., Eds.; Hemisphere: New York, 1992;
 Vol. 2.
- (12) Robertson, S. H.; Wagner, A. F.; Wardlaw, D. M. J. Chem. Phys. 1995, 103, 2917.
- (13) Massey, B. S. Measures in Science and Engineering: Their Expression, Relation and Interpretation; John Wiley: New York, 1986.
- (14) Pugh, E. M., Jr.; Winslow, G. H. *The Analysis of Physical Measurements*; Addison-Wesley: Reading, 1966.
- (15) Braun, W.; Herron, J. T.; Kahaner, D. K. Int. J. Chem. Kinet. 1988, 22, 51.
- Baulch, D. L.; Cobos, C. J.; Cox, R. A.; Esser, C.; Frank, P.; Just, T.; Kerr, J. A.;
 Pilling, M. J.; Troe, J.; Walker, R. W.; Warnatz, J. J. Phys. Chem. Ref. Data 1992, 21, 411.
- (17) MacPherson, M. T.; Pilling, M. J.; Smith, M. J. C. J. Phys. Chem. 1985, 89, 2268.
- (18) Seakins, P. W.; Pilling, M. J. J. Phys. Chem. 1991, 95, 9878.
- (19) Baulch, D. L.; Duxbury, J.; Grant, S. J.; Montague, D. C. J. Phys. Chem. Ref. Data 1981, 10.

CHAPTER 5

REACTION OF $H + C_4F_6$

The reaction of atomic hydrogen with perfluoro-1,3-butadiene,

$$H + CF_2 = CF - CF = CF_2 \rightarrow products$$
(5.1)

was studied for the first time here. The experiments reveal distinctly non-Arrhenius behavior which is used to interpret in terms of a change of mechanism. At low temperatures addition of H atoms may create a substituted butenyl radical, a process which reaches equilibrium at higher temperatures so that the thermochemistry can be assessed. At even higher temperatures it is speculated that an observed increase in the overall rate constant reflects fragmentation of the adduct to further products

A. Experimental Method

The utilization of the FP-RF technique in this study was described in the previous chapter. H atom was generated by photolysis of NH₃ or H₂O. The C₄F₆ reacted with H atoms under pseudo-first-order conditions, [H] $\leq [C_4F_6]$, which implies an exponential decay of [H]:

$$d[H]/dt = -(k_{5.1}[C_4F_6] + k_{diff5})[H] = -k_{ps5.1}[H]$$

[H] = [H]₀ exp(-k_{ps5.1} t) (5.2)

where k_{diff5} accounts for any loss of H atoms out of the reaction zone other than by reaction with C_4F_6 , mainly via diffusion to the reactor walls, and at high temperatures, by

reaction with the H-atom precursor. $k_{ps5.1}$ was obtained by fitting the recorded fluorescence intensity I_f versus time t profile to an exponential decay over typically at least four lifetimes:

$$I_f = A [H] + B \tag{5.3}$$

where A reflects the proportionality between [H] and the extent of resonance fluorescence, and B represents the constant contribution from scattered light in the system. The second-order H + C₄F₆ rate constant $k_{5,1}$ was determined at a given set of conditions by linear fitting of $k_{ps5,1}$ versus typically five values of [C₄F₆]. In order to verify that pseudo-first-order conditions were attained, the flash energy and precursor concentrations were varied to alter the initial radical concentrations, so that each flash lamp pulse photolyzed a fresh reaction mixture, the reactants flowed through the reactor. The rate of sweeping gas through the reaction zone was slow compared to the reaction time scale of the H-atoms, so the kinetic conditions were effectively static. The average gas residence time in the heated reactor before photolysis, τ_{res} , was varied to check for possible pyrolysis of C₄F₆. Dr. Abdell Goumri is a coworker of these experiments.

B. Results

A typical exponential decay of fluorescence is shown in Figure.5.1, as are representative plots of $k_{ps5.1}$ vs. [C₄F₆] over the temperature range studied, 290-1010 K. The linear fits to these plots passed close to the k_{diff5} measurement obtained with zero reactant concentration, which ranged from about 80 s⁻¹ at low temperatures and up to 870 s⁻¹ at the highest temperature. The slopes of 48 of these plots yield the $k_{5.1}$ values listed in

Table 5.1, together with the statistical uncertainties. Good linearity in these plots leads to small σ/k values. Also shown are the experimental parameters T, P, τ_{res} , the energy discharged in the flash lamp E, and the concentrations employed. As may be seen from Table 5.1, there is no significant variation of $k_{5.1}$ with E (typically varied by a factor of 2),

Fig. 5.1. Plots of pseudo-first-order rate constant k_{ps5.1} vs. [C₄F₆].
Downward triangles: 291 K; circles: 406 K; squares: 518 K; upward triangles: 1006 K. The insert shows the fluorescence decay corresponding to the open circle.

Τ,	P,	τ _{res} ,	Е,	[precursor], ^a 10 ¹⁵	$[C_4F_6], 10^{14}$	$k_{5.1} \pm \sigma_{k_{5.1}}, 10^{-13}$
Κ	Mbar	S	J	molecule cm ⁻³	molecule cm ⁻³	cm ³ molecule ⁻¹ s ⁻¹
290	69	6.4	3.6	2.6	3.63 - 46.8	0.363 ± 0.020
290	69	6.4	3.6	0.88	3.63 - 47.3	0.366 ± 0.020
291	136	6.6	2.0	1.8	3.68 - 49.1	0.342 ± 0.013
291	136	6.6	4.1	1.8	3.68 - 49.1	0.366 ± 0.030
330	141	5.9	4.1	1.4	3.43 - 21.1	0.635 ± 0.015
330	73	3.0	4.1	1.4	3.15 - 21.8	0.748 ± 0.023
383	71	2.6	4.1	0.60	2.78 - 18.4	1.41 ± 0.04
386	71	5.2	4.1	0.60	2.73 - 18.6	$1.43~\pm~0.07$
406	133	4.5	4.1	1.1 ^b	2.33 - 16.5	$2.79~\pm~0.07$
406	68	2.2	4.1	1.1 ^b	2.35 - 16.0	$2.74~\pm~0.03$
439	68	2.1	4.1	0.49	2.23 - 15.4	3.58 ± 0.12
439	68	4.3	4.1	0.49	2.23 - 15.3	$3.68~\pm~0.06$
518	56	1.5	2.0	0.67	1.53 - 10.7	$7.33~\pm~0.26$
519	27	0.70	4.1	0.16	0.749 - 4.99	7.14 ± 0.18
519	27	0.70	2.0	0.16	0.749 - 4.99	$6.40~\pm~0.09$
588	136	3.2	4.1	0.61 ^b	1.67 - 11.4	11.5 ± 0.1
588	68	1.5	4.1	0.60 ^b	1.64 - 11.2	11.9 ± 0.6
615	136	0.77	4.1	0.18	0.785 - 5.50	11.9 ± 0.7
617	68	1.6	4.1	0.18	0.816 - 5.66	12.7 ± 0.3
663	33	0.68	4.1	0.16	0.673 - 4.91	11.1 ± 0.2
663	71	1.5	4.1	0.17	0.869 - 5.37	$10.8~\pm~0.3$
674	132	2.7	4.1	0.65 ^b	1.45 - 9.77	7.78 ± 0.42
674	65	1.3	4.1	0.62 ^b	1.34 - 9.30	8.75 ± 0.39
683	72	1.4	4.1	0.33	1.44 - 10.1	7.10 ± 0.39
683	33	1.3	4.1	0.16	0.715 - 4.99	6.58 ± 0.28
683	69	1.4	4.1	0.32	1.35 - 10.7	$7.37~\pm~0.22$
740	67	1.3	4.1	0.15	0.733 - 4.63	7.48 ± 0.44
740	35	0.64	4.1	0.15	0.687 - 4.54	7.98 ± 0.38
786	35	0.60	4.1	0.14	0.646 - 4.28	9.34 ± 0.40
786	68	1.2	4.1	0.14	0.640 - 4.35	9.53 ± 0.09
800	136	2.4	4.1	0.28	1.38 - 8.71	12.3 ± 0.3
800	65	1.1	4.1	0.25	1.11 - 8.13	11.9 ± 0.2
834	136	2.2	4.1	0.52	1.17 - 8.42	15.6 ± 0.4

Table 5.1. Rate constant measurements of the reaction $H + C_4 F_6$

Τ,	P,	τ _{res} ,	Е,	[precursor], ^a 10 ¹⁵	$[C_4F_6], 10^{14}$	$k_{5.1} \pm \sigma_{k_{5.1}}, 10^{-13}$
Κ	Mbar	S	J	molecule cm ⁻³	molecule cm ⁻³	cm ³ molecule ⁻¹ s ⁻¹
834	65	1.1	4.1	0.50	1.14 - 7.84	14.8 ± 0.2
885	68	1.0	4.1	0.28	1.86 - 7.64	$14.8~\pm~0.4$
885	69	2.1	4.1	0.29	1.97 - 8.23	14.7 ± 0.3
885	35	0.53	2.0	0.29	0.815 - 3.88	13.9 ± 0.5
885	35	0.53	4.1	0.29	0.815 - 3.88	14.8 ± 0.1
911	69	1.0	4.1	0.47	1.03 - 7.50	$20.2~\pm~1.0$
911	133	2.0	4.1	0.47	1.16 - 7.47	$22.1~\pm~0.4$
949	68	1.0	4.1	0.12	0.583 - 3.63	$26.1~\pm~0.8$
949	132	1.9	4.1	0.45	1.01 - 6.93	25.6 ± 1.3
949	69	1.0	4.1	0.46	1.04 - 7.28	23.6 ± 1.1
1006	33	0.50	4.1	0.21	0.481 - 1.94	$33.8~\pm~3.0$
1006	67	0.90	4.1	0.21	0.537 - 2.92	29.5 ± 3.5
1006	129	1.8	4.1	0.83	0.470 - 2.72	$34.0~\pm~2.2$
1006	65	1.8	4.1	0.80	0.454 - 2.63	$36.0~\pm~1.6$
1011	53	0.94	4.1	0.58 ^b	0.545 - 3.33	31.8 ± 1.8

Table 5.1. Rate constant measurements of the reaction $H + C_4F_6$ (contd.)

 a Unless noted, the H-atom precursor is NH_{3}

 $^{\rm b}\,{\rm H}_2{\rm O}$ used as H-atom source

pseudo-first order conditions were attained, and that reaction 5.1 was successfully isolated from secondary chemistry involving photolytically or chemically produced species and any interaction between a precursor and C_4F_6 . The independence of $k_{5.1}$ from τ_{res} , varied by a factor of 2-4, especially at the higher temperatures, shows that pyrolysis of C_4F_6 did not interfere.

There are clearly three regimes in Fig. 5.2. A weighted Arrhenius fit to the data at T < 620 K yields

$$k_{5.1}(T) = (3.40 \pm 0.34) \times 10^{-11} \exp[(-16.7 \pm 0.4) \text{ kJ mol}^{-1}/\text{RT}] \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$

(290 K < T < 620 K) (5.4)

The quoted errors are 1σ and are statistical only. Consideration of the covariance leads to a 1σ precision for the fitted k_{5.1}(T) of 3-6%, and allowance for possible systematic errors leads to a 95% confidence interval of ± 16%.

A similar analysis of the high temperature regime at T > 700 K leads to

$$k_{5,1}(T) = (1.83 \pm 0.53) \times 10^{-10} \exp[(-34.1 \pm 2.1) \text{ kJ mol}^{-1}/\text{RT}] \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$

(700 K < T < 1010 K) (5.5)

with a 1 σ precision of 3-6% for k_{5.1}(T) and a 95% confidence interval, allowing for possible systematic errors, of $\pm 16\%$. In the intermediate regime, 620 K < T < 700 K, fluorescence decays remained exponential and k_{5.1} dropped rapidly with temperature, with an effective activation energy of about -84 kJ mol⁻¹.

Fig. 5.2. Arrhenius plot for the $H + C_4F_6$ reaction, showing 48 measurements made with NH_3 (open circles) and H_2O (solid circles) as H-atom precursors, and fits to the low and high temperature data (solid lines).

C. Discussion

Low temperature regime, T < 620 K

C-F bonds are essentially inert to H-atom attack¹ under our conditions and a plausible path for reaction in the low temperature regime is addition to a π bond followed by collisional stabilization. Two initial adduct are possible, corresponding to addition to a terminal or central carbon atom:

$$H + CF_2 = CF - CF = CF_2 (+Ar) \rightarrow CF_2 H - CF \bullet - CF = CF_2 (+Ar)$$
(5.1a)

$$H + CF_2 = CF - CF = CF_2 (+Ar) \rightarrow CF_2 \bullet - CFH - CF = CF_2 (+Ar)$$
(5.1b)

In order to make a qualitative assessment of which adduct is more likely, Dr. Marshall has derived the geometries, vibrational frequencies and energies of the reactants, transition states and adducts at the HF/6-31G(d) level of ab initio molecular orbital theory.² Energies at the HF/6-31G(d) geometries were recalculated using density functional theory with a larger basis set, denoted B3LYP/6-311G(2df,p). Figure 5.3 is the geometries for C_4F_6 , five C_4F_6H isomers and two transition states for $H + C_4F_6$ addition. The calculation results show that the adduct in 5.1a is more stable than the adduct in 5.1b, in line with an argument that the radicals are electron deficient and so the more substituted radical center is stabilized inductively by the substituents, and there is a somewhat smaller barrier to addition. These differences are not large, and it is speculated that over much of the temperature range 290-620 K a mixture of both adducts may be formed.

Fig. 5.3. Geometries for C₄F₆, five C₄F₆H isomers and two transition states for H + C₄F₆ addition, calculated at the HF/6-31G(d) level of theory. 1 C₄F₆; 2 CF₂H-CF•-CF=CF₂; 3 •CF₂-CFH-CF=CF₂; 4 •CFH-CF₂-CF=CF₂; 5 CF₂H-CF₂-C•=CF₂; 6 CF₃-CH•-CF=CF₂; 7 H...CF₂-CF•-CF=CF₂ TS; 8 •CF₂-CF(...H)-CF=CF₂ TS

High temperature regime, T > 700 K

As noted in the previous section, direct attack by H on a C-F bond seems unlikely. It is speculated that an addition-fragmentation mechanism may operate at high temperatures:

$$H + C_4 F_6 \rightleftharpoons adduct \rightarrow fragments$$
(5.6)

where the overall observed rate constant, summarized by eq. 5.5, is the product of the concentration equilibrium constant for adduct formation K_c , equal to the ratio of forward and reverse rate constants, and the rate constant for adduct fragmentation, defined here as k_6 . The nature of the fragments is unknown. It is noted that fission of the central C-C bond of the adduct in 5.1b would lead to the perfluorovinyl radical C_2F_3 and the stable trifluoroethylene molecule, C₂F₃H. Similarly, the adduct in 5.1a could lead to the same products if C-C fission is concerted with a 1,2 hydrogen atom shift. Combination of $\Delta_{f}H_{298}$ for these two fragments, -220³ and -474 ± 8.4 kJ mol⁻¹,⁴ respectively, with $\Delta_{d}H_{298}(H) = 218 \text{ kJ mol}^{-1}$ and $\Delta_{d}H_{298}(C_{4}F_{6}) = -942 \text{ kJ mol}^{-1}$, 4 yields an overall reaction enthalpy for reaction 5.6 of $\Delta H_{298} = 30$ kJ mol⁻¹. This endothermicity compares well with the measured activation energy of 34 kJ mol⁻¹, although there is considerable uncertainty in ΔH_{298} , which is guessed to be at least 20 kJ mol⁻¹. The accord does not mean the fragments are uniquely identified, but indicates that the general scheme of eq. 5.6 is plausible. Analogous products, with F replaced by H, were proposed for the hightemperature reaction of H with butadiene by Benson and Haugh.⁵

Intermediate temperature regime, 620 K < T < 700 K

We suggest that the abrupt drop in the overall rate constant $k_{5.1}$ is caused by adduct formation coming to equilibrium. As the temperature is raised close to the point where H-atom addition becomes thermodynamically unfavorable, only the most stable adduct in 5.1a will be formed. Isomer in 5.1b will dissociate more quickly and not contribute to net loss of H atoms here. The rate constant k_{-1a} for the endothermic dissociation of the adduct in 5.1a has a large activation energy, so that at slightly higher temperatures the reverse of 1a becomes significantly faster and H is no longer consumed via channel 5.1a. Over a narrow temperature range both adduct formation and dissociation are comparable. Over this range it is considered the following mechanism quantitatively:

$$H + CF_2 = CF - CF = CF_2 \rightarrow adduct \qquad \qquad k_{Ia}$$

adduct
$$\rightarrow$$
 H + CF₂=CF-CF=CF₂ k_{-1a}

adduct
$$\rightarrow$$
 products (excluding H) k_6

$$H \rightarrow loss$$
 k_{diff5}

Solution of the rate equations via the Laplace transform method⁶ yields

$$[H] = [H]_{0} \frac{(k_{-1a} + k_{6} + \lambda_{1})e^{\lambda_{1}t} - (k_{-1a} + k_{6} + \lambda_{2})e^{\lambda_{2}t}}{\lambda_{1} - \lambda_{2}}$$
(5.7)

where

$$\lambda_{1,2} = \frac{-\left(k_{1a}\left[C_{4}F_{6}\right] + k_{-1a} + k_{6} + k_{diff^{5}}\right) \pm \sqrt{\left(k_{1a}\left[C_{4}F_{6}\right] + k_{diff^{5}} - k_{-1a} - k_{6}\right)^{2} + 4k_{1a}k_{-1a}\left[C_{4}F_{6}\right]}{2} (5.8)$$

Fluorescence decays were again fit to the form of eq. 5.3, where now [H] is described by eq. 5.7-5.9. There are only three variables to be adjusted in this fitting: A, B and k_{-1a} , and

these were varied directly to minimize the root mean square deviations between observed decays and eq. 5.7. An example is shown as the inset of Fig. 5.4, and we were intrigued to see how an apparently exponential decay could be equally well represented as a biexponential, eq. 5.7. The other parameters were found as follows. k_{1a} was obtained via

Fig. 5.4. Van't Hoff plot for addition of H to C_4F_6 . The intercept is constrained to the statistical mechanical value of $\Delta S_{298}/R$ (see text). The inset shows a typical fluorescence decay obtained at 674 K together with a biexponential fit (see text, eq. 5.7).

a short upward extrapolation of eq. 5.4 while k_6 was derived from a short downward extrapolation of eq. 5.5, coupled with application of the scheme shown in eq. 5.6, i.e., $k_{5.1}(T)$ for T > 700 K = $K_c k_6$, so that

$$k_6 = \frac{k_{5.1}(T; T > 700 \text{K})k_{-1a}}{k_{1a}}$$
(5.9)

 k_{diff5} was obtained from decays with zero reactant concentration.

The results of this kinetic analysis are summarized in Table 5.3. The concentration equilibrium constant for adduct formation K_c equals k_{1a}/k_{-1a} , and from this we calculated the equilibrium constant K, which is dimensionless and is defined relative to a standard state of unit activity for 10⁵ Pa. The temperature variation of K contains thermochemical information. Because of the short temperature range we employ a "third-law" analysis, illustrated in Fig. 5.4. This is a van't Hoff plot where the intercept is fixed at the statistical mechanical value of $\Delta S_{298}/R$ for channel 5.1a. Statistical mechanics were also employed to derive the temperature variation of ΔS and ΔH , to obtain the correction added to ln K in Fig. 5.4, equal to about 0.4:

$$\ln K + \text{correction} = \Delta S_{298}/\text{R} - \Delta H_{298}/\text{RT}$$
(5.10)

where

correction = -(
$$\Delta S_T - \Delta S_{298}$$
) /R + ($\Delta H_T - \Delta H_{298}$) /RT (5.11)

The slope of Fig. 5.4 yields $\Delta H_{298} = -111$ kJ mol⁻¹ for reaction 5.1a, with an estimated uncertainty of \pm 7 kJ mol⁻¹ based on the 2 σ error bars for ln *K*. This is minus the bond dissociation enthalpy (BDE₂₉₈) for the adduct and, for comparison, the BDE₂₉₈ in the ethyl radical is 150.2 \pm 0.9 kJ mol⁻¹.⁷ Apparently the electronegative substituents in the perfluorobutadiene system destabilize the radical adduct and/or the limited conjugation between the two π bonds in the reactant is lost upon addition of an H atom. The conjugation in C₄F₆ is only partial because the lowest energy configuration is non-planar: steric repulsions between the terminal CF₂ groups lead to a dihedral angle along the carbon backbone of 53° rather than zero.

Table 5.2. Thermochemical information for adduct formation between H and C₄F₆

Т, К	Number of decays	$K_c^a \pm \sigma_{Kc, 10^{-15}} \text{ cm}^3 \text{ molecule}^{-1}$	$Ln K^b \pm \sigma_{ln K}, 10^4$
663	8	3.85 ± 0.84	10.62 ± 0.24
674	8	2.77 ± 1.44	10.13 ± 0.62
683	12	2.10 ± 1.11	9.88 ± 0.50

^aMean and standard deviation of K_c

^bMean and standard deviation of ln K

It should be stressed that the above analysis depends on the correctness of the assumed mechanism. Sato and coworkers have drawn attention to the facile 1,2 migration of F atoms in chemically activated fluoroethyl radicals.^{8,9} If such processes occur in the present system then three further isomers of C_4F_6H would be accessible, and geometries of 4, 5, and 6 are shown in Fig. 5.3. According to the results of theoretical calculation,² 4 and 5 are less stable than 2 and 3 and therefore are not important, and that isomer 6 is the most stable of all. The greater density of states in the larger systems studied here will tend to make such isomerization less important, but we cannot rule it out completely.

D. 1,2-H Atom Migration in Fluorinated Ethyl Radicals

1,2-halogen atom migration in β -substituted ethyl radicals has been the subject of extensive experimental¹⁰⁻¹⁴ and theoretical¹⁵⁻²³ studies, and led to a good understanding of structure and activation energy. However, 1.2-hydrogen atom migration in halogenoethyl radicals is known little. In the Sato and coworkers' work about 1,2-Fluorine atom migration in 1,2-difluoroethyl and 1,1,2-trifluoroethyl radicals,⁹ they mentioned that hydrogen atom migrated through a hydrogen atom bridging intermediate, and more easily in the less fluorinated ethyl radical. Since their results were obtained by the INDO (Intermediate Neglect of Differential Overlap, a semi-empirical computational method) calculations, the absolute barrier value was not reliable, as they already pointed out in the paper. Also they did not prove that the hydrogen atom bridging intermediate was a true transition state in their work. An additional investigation, 1,2-H atom migration in ethyl radical and fluorinated ethyl radicals was made using ab initio quantum mechanics here.

All calculations were performed using the GAUSSIAN 94 program package.²⁴ Initial geometries of open and bridged structures of ethyl radical and fluorinated ethyl radicals were obtained by the semi-empirical computational methods, AM1 (Austin Model 1) and PM3 (Parametric Model 3). They were optimized at the HF/3-21G(d), HF/6-31G(d), HF/6-31G(d,p) and MP2/6-31G(d,p) levels of theory. The single point energies and harmonic vibrational frequencies of optimized structures were evaluated at the same levels. The bridged structures of the radicals were optimized as transition states. At each level, to examine whether the obtained transition state was the right one or not, the normal modes of the vibrational frequencies were checked by the GaussView program.²⁵ And, both directions' IRC jobs were performed at HF/6-31G(d), HF/6-31G(d,p) and MP2/6-31G(d,p) levels of theory corresponding to each optimized transition state structure.

Table 5.3 shows the open and bridged structures of ethyl and fluorinated ethyl radicals ($C_2H_{(5-n)}F_n \cdot$, n=1,2,3,4). The open structure of the CH₂F-CHF · radical has a gauche conformation. However, the bridged structure of the CH₂F-CHF · radical has trans- and cis- conformations. The optimized geometries calculated at the four different theoretical levels mentioned previously and the harmonic frequencies calculated at the corresponding optimized geometries are presented in Appendix Table 8.2. Only one imaginary frequency was found for each transition state (bridged structure). When checked by GaussView, the H atom shifted between two carbon atoms, and the IRC job produced two structures of the corresponding radicals. For example, for TS (CH₂...H...CHF)•, the IRC job gave the structure of CH₃-CHF• radical at one direction of the reaction path, and the structure of CH₂F-CH₂• radical at the other direction of the reaction path. These calculations confirm that the bridging intermediate through which H atom migrates in the fluoroethyl radicals is a reliable transition state.

The calculated total energies of each radical and barrier height at various theory levels are presented in Table 5.4. All methods give somewhat similar overall descriptions of the various fluoroethyl radicals: the barrier of 1,2-H atom migration is higher in the more fluorinated ethyl radical. This result agrees with the expectation of Sato et al. For the substituted ethyl radicals which have same fluorine atoms number, the ones in which more fluorine atoms are connected to the unsaturated carbon have lower total energies than others in which more hydrogen atoms are connected to the unsaturated carbon. To explain this, more investigations are needed. An accurate result should be carried out by some higher level calculations. A G3 or G3 (MP2) calculation will be preferred in the future work.

Table 5.3. Structures of ethyl radical, fluoroethyl radicals, and transition states for the 1,2-hydrogen atom migration ^a

^a Black circle: carbon atom; gray circle: fluorine atom; empty circle: hydrogen atom

Ethyl Radical							
Method	TS (CH ₂ HCH ₂)•	CH ₃ -CH ₂ ●		ΔE			
HF/3-21G(d)	-78.0658723	-78.1636468		256.7			
HF/6-31G(d)	-78.505312	-78.5971488	241.1				
HF/6-31G(d, p)	-78.516597	-78.6055251	233.5				
MP2/6-31G(d, p)	-78.800573	-78.8758875		197.7			
	Monofluo	roethyl Radical					
Method	TS (CH ₂ HCHF)•	$CH_2F-CH_2\bullet$	CH ₃ -CHF•	ΔE			
HF/3-21G(d)	-176.3748227	-176.47583	-176.4819556	265.1			
HF/6-31G(d)	-177.3466167	-177.44315	-177.4478771	253.5			
HF/6-31G(d, p)	-177.3566815	-177.45018	-177.4547363	245.5			
MP2/6-31G(d, p)	-177.800995	-177.87866	-177.8866668	203.9			
	1,1-Difluo	oroethyl Radical					
Method	$TS (CH_2HCF_2) \bullet$	$CHF_2-CH_2\bullet$	CH_3 - CF_2 •	ΔE			
HF/3-21G(d)	-274.6993933	-274.80731	-274.8143992	283.3			
HF/6-31G(d)	-276.2032209	-276.30802	-276.312752	275.2			
HF/6-31G(d, p)	-276.2113433	-276.31339	-276.3177472	267.9			
MP2/6-31G(d, p)	-276.8159811	-276.90212	-276.9115141	226.2			
	1,2-Difluo	oroethyl Radical					
Method	TS cis-	CH_2F - CHF •		ΔE			
HF/3-21G(d)	-274.6729903	-274.7899193		307.0			
HF/6-31G(d)	-276.1795284	-276.2907903		292.1			
HF/6-31G(d, p)	-276.1883419	-276.2962018		283.2			
MP2/6-31G(d, p)	6-31G(d, p) -276.7930724			247.0			

Table 5.4. Total energy of ethyl radical, fluoroethyl radicals and TSs, and barrier heights

for the 1,2-hydrogen atom migration at various levels of theory ^a

Table 5.4. Total energy of ethyl radical, fluoroethyl radicals and TSs, and barrier heights

TS trans-	CH ₂ F-CHF•		ΔE
(CHFHCHF)•	-		
-274.6830115	-274.7899193		280.7
-276.1870726	-276.2907903		272.3
-276.1957294	-276.2962018		263.8
-276.8020452	-276.8871306		223.4
Trifluor	oethyl Radical		
TS (CF_2HCHF)•	CF ₂ H-CHF•	CH_2F - CF_2 •	ΔE
-372.9977185	-373.1135145	-373.11545	304.0
-375.0360591	-375.150333	-375.15097	300.0
-375.0428169	-375.1540725	-375.15444	292.1
'6-31G(d, p) -375.8088692		-375.90733	253.8
Tetrafluo	roethyl Radical		
$TS (CF_2HCF_2) \bullet$	CF_2 - CF_2 •		ΔE
-471.43881	-471.3100683		338.0
-474.0109866	-473.8840779		333.2
-474.0127594	-473.8887631		325.6
-474.9257307	-474.8138933		293.6
	TS trans- (CHFHCHF)• -274.6830115 -276.1870726 -276.1957294 -276.8020452 Trifluor TS (CF ₂ HCHF)• -372.9977185 -375.0360591 -375.0428169 -375.0428169 -375.8088692 Tetrafluo TS (CF ₂ HCF ₂)• -471.43881 -474.0109866 -474.0127594 -474.9257307	TS trans- (CHFHCHF)• $CH_2F-CHF•$ -274.6830115-274.7899193-276.1870726-276.2907903-276.1957294-276.2962018-276.8020452-276.8871306CF2-276.8871306Trifluoro-thyl RadicalTS (CF2HCHF)•CF2H-CHF•-372.9977185-373.1135145-375.0360591-375.150333-375.0428169-375.1540725-375.8088692-375.9055415TS (CF2HCF2)•CF2-CF2•-471.43881-471.3100683-474.0109866-473.8840779-474.0127594-473.8887631-474.9257307-474.8138933	TS trans- (CHFHCHF)• $CH_2F-CHF•$ -274.6830115-274.7899193-276.1870726-276.2907903-276.1957294-276.2962018-276.8020452-276.8871306Trifluoroethyl RadicalTS (CF2HCHF)•CF2H-CHF•CH2F-CF2•-372.9977185-373.1135145-373.11545-375.0360591-375.150333-375.15097-375.0428169-375.1540725-375.15444-375.8088692-375.9055415-375.90733Tetrafluoroethyl RadicalTS (CF2HCF2)•CF2-CF2•-471.43881-471.3100683-474.0109866-473.8840779-474.0127594-473.8887631-474.9257307-474.8138933

for the 1,2-hydrogen atom migration at various levels of theory ^a (contd.)

^a Total energy in hartree and barrier height in kJ/mol

REFERENCE

- Berry, R. J.; Ehlers, C. J.; Burgess, D. R., Jr.; Zachariah, M. R.; Marshall, P. Chem. Phys. Lett. 1997, 269, 107.
- (2) Hu, X.; Goumri, A.; Marshall, P. J. Phys. Chem. 2001, in press.
- (3) Haworth, N. L.; Smith, M. H.; B., b. G.; Mackie, J. C. J. Phys. Chem. A 2000, 104, 7600.
- (4) Afeefy, H. Y.; Liebman, J. F.; Stein, S. E. Neutral Thermochemical Dara. In *NIST Chemistry WebBook, NIST Standard Reference Datrabase Number 69*; Mallard, W. G., Linstrom, P. J., Eds.; NIST: Gaithersburg, MD, 2000.
- (5) Benson, S. W.; Haugen, G. R. J. Phys. Chem. 1967, 71, 1735.
- (6) Steinfeld, J. I.; Francisco, J. S.; Hase., W. L. *Chemical Kinetics and Dynamics*;Prentice Hall: Englewood Cliffs, NJ, 1989.
- (7) Brouard, M.; Lightfoot, P. D.; Pilling, M. J. J. Phys. Chem. 1986, 90, 445.
- Kohida, T.; Kotaka, M.; Sato, S.; Ishida, T.; Yamamoto, K.; Yamazaki, T.;
 Kitazume, T. *Bull. Chem. Soc. Jpn.* **1987**, *60*, 3131.
- (9) Kotaka, M. S., S. Shimokoshi, K. J. Fluorine Chem. 1987, 37, 387.
- (10) Chen, K. S.; Elson, I. H.; Kochi, J. K. J. Am. Chem. Soc. 1973, 95, 5341.
- (11) Edge, D. J.; Kochi, J. K. J. Am. Chem. Soc. 1972, 94, 6485.
- (12) Farrar, J. M.; Lee, Y. T. J. Chem. Phys. 1976, 65, 1414.
- (13) Jacox, M. E. Chem. Phys. 1981, 58, 289.
- (14) Kawamura, T.; Edge, D. J.; Kochi, J. K. J. Am. Chem. Soc. 1972, 94, 1752.

- (15) Hoffmann, R.; Radom, L.; Pople, J. A.; Schleyer, P. V. R.; Hehre, W. J.; Salem,
 L. J. Am. Chem. Soc. 1972, 94, 6221.
- (16) Schlegel, H. B. J. Phys. Chem. 1982, 86, 4678.
- (17) Schlegel, H. B.; Sosa, C. J. Phys. Chem. 1984, 88, 1141.
- (18) Hoz, T.; Sprecher, M.; Basch, H. J. Phys. Chem. 1985, 89, 1664.
- (19) Guerra, M. J. Am. Chem. Soc. 1992, 114, 2077.
- (20) Engel, B.; Peyerimhoff, D. D. J. Phys. Chem. 1989, 93, 4462.
- (21) Kato, S.; Morokuma, K. J. Chem. Phys. 1980, 72, 206.
- (22) Chen, Y.; Rauk, A.; Tschuikow-Roux, E. J. Chem. Phys. 1990, 93, 6620.
- (23) Ihee, H.; Zewail, A. H.; Goddard III, W. A. J. Phys. Chem. A 1999, 103, 6638.
- (24) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Petersson, G. A.; Montgomer, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussina 94 (Revision D.2); Gaussian, Inc.: Pittsburgh, PA, 1995.
- (25) GaussView; 2.0 ed.; Gaussian, Inc.: Pittsburgh, PA, 1998.

CHAPTER 6

COMPUTATIONAL STUDIES OF OH + CHLOROETHYLENES

As stated in Chapter One, the wide use of chloroethylenes in industry results in the release of these hazardous compounds into the atmosphere at significant rates. High-temperature incineration is considered to be the best available technology for the complete and permanent disposal of these toxic materials. The reaction with hydroxyl radicals is an important process contributing to the initial destruction halogenated hydrocarbons under both atmospheric and combustion conditions.^{1,2}

Since the importance of the reaction of OH radicals with chloroethylenes both in natural and planned decomposition, the knowledge of the reaction rate constants and mechanisms over an extended temperature range is necessary. However, previous measurements were limited to low temperatures.³⁻¹¹ and few theoretical studies were reported.^{12,13}

In 1997, Villà and González-Lafont developed an approach for theoretically studying the fast addition reaction of hydroxyl radical with ethylene.¹⁴ In their work, the reaction coordinate for addition of OH to the C = C bond was defined as a distinguished coordinate pathway (DCP) at the MP4sdq(fc)/6-311+G(d,p) level, since it had been found the C – O bond was the most significant varying parameter along the reaction path in the transition state region. The DCP was defined as the sequence of minimum energy structures at various fixed C – O separations, which were optimized also at the

MP4sdq(fc)/6-311+G(d,p) level. At each of these geometries, the frequencies at the MP2(full)/6-311+G(d,p) were calculated. Then the energy of system was computed at the spin-projected PMP4sdtq/6-311+G(d,p) level of theory. They found this approach provided a very good agreement with experiment measurements. However, there were two mistakes found in this work: 1. a wrong degeneracy of reaction path was used in the calculation; 2. the computational results are based on the assumption that the reaction is high-pressure-limit, in which the rate constant is independent of the pressure. In fact, at high temperatures, this is a pressure-dependent reaction.¹⁵ Nevertheless, their work provided an example of the application of the variational transition state theory (VTST) to a fast radical addition reaction to π bonds. These kinds of reactions, in general, present low or negative activation energies (see Fig. 6.1-b). In contrast to the reactions with positive activation energies, the rate constants of the reactions with negative barriers present a negative temperature dependence.

Fig. 6.1. Schematic diagram of the potential energy surface of the reactions with:

a. positive barrier; b. negative barrier

The purpose of current study is to modify the Villà and González-Lafont's approach in order to decrease the cost for obtaining initial information, such as optimized geometries and frequencies, so as to apply it to theoretical calculations of the whole set of reactions of OH with chloroethylenes for further investigation of reaction mechanisms.

A. Computational Methodology

All the ab initio calculations were performed using the GAUSSIAN 94 program package.¹⁶ VTST was employed for the kinetic calculations. Part of ab initio and VTST calculations for C₂H₄, C₂Cl₄ and C₂HCl₃ were contributed by Dr. Jingping Peng. The VTST calculations were carried out as follows. First the reaction path was defined. The geometry of each point along with the reaction path was optimized, and frequencies were obtained at the same level. Then energies were calculated at a spin-projected level, relative to reactants. (In open shell unrestricted calculations, the wave functions are not the eigenfunctions of the operators for S^2 and S_7 . If they are expanded in terms of pure spin wave functions, contamination from higher spin states is included besides the desired spin state. Normally the spin contamination is small enough to be ignored. However, when a single bond is stretched toward breaking, or a π bond is twisted to a perpendicular conformation, the spin contamination will be large so that the shape of the potential energy surface can be distorted. Since transition states are likely to have elongated bonds, twisted π systems, or delocalized unpaired electrons, they are easy to have a big spin contamination. Spin contamination can be eliminated by the treatment of spin projection. In this work, the transition states have significant large contamination.

For example, at the HF/6-31G(d,p) level of theory, S² values of CH₂-CHCl...OH, CCl₂-CHCl...OH and CH₂-CH₂...OH are 1.0505, 1.0868 and 1.0101, respectively. They are obviously larger than the standard value 0.75. Thus, the spin projection is necessary to be applied in this work.) These energies, geometries and frequencies were used to derive conventional TST rate constants as a function of position along the reaction path by using POLYRATE 8.0 program package.¹⁷ At each temperature, the VTST result was obtained by interpolation to find the minimum rate constant. Temperatures were up to 1000 K.

 $OH + C_2H_4$

The structure of transition state (TS) of OH + C_2H_4 reaction was optimized at the HF/3-21G(d), HF/6-31G(d,p), HF/6-311G(d,p), MP2/6-31G(d,p), MP2/6-311G(d,p) and QCISD/6-31G(d,p) levels. The harmonic vibrational frequencies of optimized TS structures were calculated at same levels. The reaction path was defined by the intrinsic reaction coordinate (IRC) based on the optimized TS geometry at each level. IRC is a method used in the GAUSSIAN 94 program, which requests that a reaction path be followed.^{18,19} The TS geometry is used as the initial geometry, and from that point, one or both directions can be followed. At each point along the reaction path, the geometry is optimized.

 $OH + C_2 H_{(4-X)} Cl_x (x=1, 2, 3)$

The structures of species OH, $C_2H_{(4-X)}Cl_x$ (x=1, 2, 3) and TS of reaction of OH + $C_2H_{(4-X)}Cl_x$ (x=1, 2, 3) were optimized at the HF/6-31G(d,p) level. The harmonic

vibrational frequencies of optimized structures were calculated at the same level scaled by 0.9011, which was obtained by plotting observed fundamental of OH,²⁰ C₂H_{4²⁰} and C₂Cl_{4²⁰} versus the calculated frequencies. The reaction path was defined by IRC based on the optimized TS geometry using HF/6-31G(d,p). The projected frequencies (the imaginary frequency was projected by using special keyword, IOP(7/45=1), in the GAUSSIAN 94 job) of each point along the reaction path were computed by the same level and scaled by 0.9011 too. The reaction barrier height at each point E_0^{\pm} (excluding zero point energy correction) was evaluated at the PMP4/6-311+G(d,p) level based on the optimized geometry obtained by IRC, relative to reactants.

$OH + C_2Cl_4$

Conventional TST calculations was used for this reaction because of the presence of a small but distinct barrier to the initial addition of OH to the C=C bond. The structures of species OH, C_2Cl_4 and the TS of reaction of OH + C_2Cl_4 were optimized at the HF/6-31G(d) level. The vibrational frequencies of optimized structures were calculated at the same level scaled by $0.8929.^{21}$ The energies were evaluated using G3²² and $G3(mp2)^{23}$ theories. Energy calculations were estimated using the reactants as the basis for the relative total energy difference. Both G3 and G3(mp2) methods use the HF/6-31G(d) level to calculate frequencies and the MP2(full)/6-31G(d) level to optimize the geometry. The G3 method then uses the total energy calculated by QCISD(T)/6-31G(d), MP4/6-31G(d), MP4/6-31+G(d), MP4/6-31G(2df,p) and MP2(full)/G3large for QCISD(T)/6-31G(d)the higher energy correction. G3(mp2) uses and

MP2(fc)/G3MP2large for the higher energy correction. The G3large basis set is a modified 6-311+G(3df,2p) basis set and has a better balance of polarization functions than the original 6-311+G(3df,2p) basis set. It also includes core polarization functions. G3MP2large basis set is the same as the G3large basis set, except that core polarization functions functions are not included.²³

B. Results and Discussion

$OH + C_2H_4$

Figure 6.2 is the comparison of two methods defining the reaction path, IRC and DCP, at HF/6-31G(d,p), MP2/6-31G(d,p), MP4sdq(fc)/6-311+G(d,p) and QCISD/6-31G(d,p) levels. In the range of the C – O distance between 1.95 and 2.24 Å, which is in the transition state region, there is no significant difference between IRC and DCP. Figure 6.3 is the results of IRC at HF/3-21G(d), HF/6-31G(d,p), HF/6-311G(d,p), MP2/6-31G(d,p), MP2/6-31G(d,p), MP2/6-311G(d,p), QCISD/6-31G(d,p) levels and DCP at MP4sdq(fc)/6-311+G(d,p) level used by Villà and González-Lafont. Clearly, in the transition state region, at the highest level, QCISD/6-31g(d,p), C – C distance is closer and closer to the corresponding value in ethylene as the C – O distance increases. It is accurate but expensive too. The results of MP2 jobs evidently deviate from the results of QCISD job and DCP job. They are not good to be used to modify Villà and González-Lafont's approach. The HF jobs almost repeat the path of QCISD, their results are closer to the result of DCP compared with those at the QCISD and MP2 levels, and they are much cheaper. Therefore, the HF/6-31G(d,p) level was used in the geometry optimization and

frequency calculation in the following studies as a replacement in the Villà and González-Lafont's approach (except in the reaction $OH + C_2Cl_4$). Table 6.1 is the optimized geometrical parameters of reactants and TS of the reaction $OH + C_2H_4$ at the HF/6-31G(d,p) level. Figure 6.4 is the optimized TS structure at the same level.

$OH + C_2H_3Cl$

There have been several experimental investigations of the rate coefficient and the mechanism of this reaction since 1976.^{3,4,24-26} The following reactions can be used to describe the mechanism for the initial stages of this reaction:

$$OH + CH_2 = CHCl \rightarrow HOC_2H_3Cl \bullet$$
 (6.1)

$$HOC_2H_3Cl \bullet \to OH + CH_2 = CHCl$$
 (6.2)

$$HOC_{2}H_{3}Cl \bullet + M \to HOC_{2}H_{3}Cl + M$$
(6.3)

The reaction of the elimination of a Cl atom can compete with the reaction 6.2:

$$HOC_2H_3Cl \bullet \rightarrow CH_2=CHOH + Cl$$
 (6.4)

These prior measurements and modeling observations suggested that at room temperature and moderate pressures, the reactions 6.1, 6.2 and 6.3 were dominant, and Cl elimination was but a minor component. For explaining this behavior, two possible mechanisms were suggested.^{4,25,27} One is that the OH radical addition only occurs at the CH₂ end (β site) and the rate-determining step is OH 1,2-migration. The other is that the OH addition occurs at both ends (α and β sites), but β site is main position, and the OH 1,2-migration is slow enough to be negligible. The elimination plays a minor role in this reaction because only when the OH adds at α site, it can directly proceed. High level theoretical

Fig. 6.2. Comparison between IRC and DCP of the reaction OH with C₂H₄ at different theory levels: a. HF/6-31G(d,p); b. MP2/6-31G(d,p); c. MP4sdq(fc)/6-311+G(d,p); d. QCISD/6-31G(d,p).

Fig. 6.3. Results of IRC at different levels and DCP at Mp4sdq(fc)/6-311+G(d,p) level (•) for the OH + C₂H₄ reaction. (O) HF/3-21G(d); (□) HF/6-31G(d,p); (Δ) HF/6-311G(d,p); (∇) MP2/6-31G(d,p); (◊) MP2/6-311G(d,p); (+) QCISD/6-31G(d,p); (...) experimental data, reference 28.

Fig. 6.4. Optimized TS structure of the reaction $OH + C_2H_4$ at the HF/6-31G(d,p) level.

Table 6.1.	Optimized ge	ometrical]	parameters ^a	for reactan	ts and	transition	state	of	the
	reaction OH +	C_2H_4 at th	e HF/6-31G	(d,p) level.					
	а	b	с	d	e	f		g	

	а	b	с	d	e	f	g
OH			0.9549				
C_2H_4	1.317			1.077		1.077	
TS	1.393	1.924	0.9507	1.073	1.073	1.076	1.076
	ba	da	ea	fa	ga	cb	
OH							
C_2H_4				121.8			
TS	106.0	119.1	119.1	121.1	121.1	100.7	
	dab	eab	fab	gab	cba	daf	
OH							
C_2H_4						180.0	
TS	105.0	-103.9	86.07	-87.59	6.369		

^a Refer to Figure 6.4 for definition of parameters: e.g. a = bond length (Å), ba = bond angle (degree), cba = dihedral angle (degree) between the plane containing bonds c, b and the plane containing bonds b, a
calculations are provided in present work for further verification of the reaction mechanism.²⁶

The theoretical approach was described as above. The optimized geometries of reactants and TSs are shown in Fig. 6.5 and Table 6.2. As maybe seen from Fig. 6.6, for vinyl chloride, the barrier for β addition lies below the reactants' energy, whereas α addition requires overcoming a positive barrier.

The derived VTST rate constants are plotted in Fig. 6.7. The α channel has a simple positive temperature dependence. The β channel is more important at all temperatures and has a more complex behavior. The negative relative transition state energy implies a negative temperature dependence for the rate constant, an effect that dominates at low temperatures, whereas increases in temperature more rapidly increase the partition function of the loose TS as compared to the reactants, leading to a positive activation energy at higher temperatures. The calculated rate constants for OH addition to vinyl chloride are listed in Table 6.3.

$OH + C_2H_2Cl_2$

The reaction mechanism of OH + 1,1-dichloroethylene and 1,2-dichloroethylene is presumed to be addition to the π electrons associated with the C=C double bond, according to previous studies.⁵⁻⁹ These prior measurements confirmed that secondary reaction involving Cl atoms was important for both substrates.^{6,7} The chlorine atom deactivated the carbon, which it was attached on, toward OH attack while activating the

Table 6.2. Optimized geometrical parameters^a for reactants and transition states of the reaction $OH + C_2H_3Cl$ at the HF/6-31G(d,p) level.

	а	ł)	c	d	e		f	g
OH				0.9549					
C_2H_3Cl	1.311				1.737	1.07	2 1.	.075	1.074
TS 1 ^b	1.390	1.9	38	0.9517	1.756	1.07	0 1.	.074	1.074
TS 2 ^c	1.387	1.9	31	0.9513	1.733	1.07	1 1.	.073	1.073
	ba	d	a	ea	fa	ga		cb	
OH									
C_2H_3Cl		12.	3.3	123.9	119.5	122.	4		
TS 1 ^b	103.5	11′	7.6	121.8	119.2	121.	3 9	8.27	
TS 2 °	106.3	12	1.4	123.8	117.4	119.	2 9	9.46	
	dab	eab	fab	gab	cba	daf	eag	dag	eaf
OH									
C_2H_3Cl						180.0	180.0	0.0	0.0
TS 1 ^b	107.8	-107.8	85.48	-85.48	52.34				
TS 2 ^c	84.91	-84.91	104.9	-104.9	-42.79				

^a Refer to Figure 6.5 for definition of parameters: e.g. a = bond length (Å), ba = bond angle (degree), cba = dihedral angle (degree) between the plane containing bonds c, b and the plane containing bonds b, a

^b OH added at CHCl end (α site)

^c OH added at CH₂ end (β site)

Fig. 6.6. Classical energies (no ZPE) relative to OH + CH₂=CHCl for addition of OH at the CH₂ end (β site, squares) and the CHCl end (α site, circles), calculated at the PMP4/6-311+G(d,p)//HF/6-31G(d,p) level of theory.

Fig. 6.7. Ab initio high-pressure limit rate constants for OH addition to CH_2 =CHCl: square, β channel; circle, α channel).

Table 6.3. Rate constants for OH addition to vinyl chloride

	$k_{VTST} = B T^n e^{-E/RT} (\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})$
TS 1 (α site)	$1.00 \times 10^{-19} \text{ T}^{2.350} \exp(-1209/\text{T})$
TS 2 (β site)	$1.25 \times 10^{-18} \text{ T}^{2.099} \exp(805/\text{T})$

other one.⁸ For the reaction of OH with 1,1-dichloroethylene at low temperatures, Cl elimination was insignificant compared with OH addition to the CH₂ side of the substrate.⁵ And, it had been observed that the reactivity of the chloroethylenes was quite less than that of unsubstituted olefinic hydrocarbons.⁹ This is reasonable when considered the fact that the highest occupied molecular orbital is composed of carbon-carbon π bonding and Cl atom lone-pair electrons contributions. There are greater nonbonding interactions in the transition state occurred in the OH with chloroethylene reactions than it does in the OH with alkene reactions, where the HOMO is pure carbon-carbon π bonding. The relative importance of the adduct stabilization, Cl elimination, and H abstraction of dichloroethylene is particularly interesting. The current work is to estimate thermodynamic properties of these reactions for further investigation in this field.²⁹

VTST was performed to calculate the rate constant for OH addition to 1,1- and 1,2-dichloroethylene. The calculations were carried out as described as before. These VTST results correspond to the high-pressure limit for OH addition, where the initially formed excited adduct is always stabilized by collisions. At limited pressures, the observed rate constant is possibly smaller than the calculated one, because some fraction of the excited adducts can dissociate back to reactants before collisional stabilization or fragmentation. Under a given pressure, at elevated temperatures, this effect will be more noticeable, as the reaction moves further from the high-pressure limit.

Figure 6.8 and Table 6.4 present the optimized TS structures and geometrical parameters of reactants and TS at HF/6-31G(d,p) theory level. The classical energies

along the IRC at PMP4/6-311+G(d,p) level are shown in Figure 6.9 and 6.10. The variationally located TSs lie at C – O separations around 0.05 Å smaller than the local energy maxima along the IRCs. For 1,1-dichloroethylene, β addition (at CH₂ end) presents a negative barrier of -7 kJ mol⁻¹, whereas α addition (at CCl₂ end) requires a positive barrier of approximately +10 kJ mol⁻¹. For OH addition to 1,2-C₂H₂Cl₂, the energy curves of cis- and trans- structures are very similar, and both have a significant positive barrier.

The derived VTST rate constants are shown in Figure 6.11 and Table 6.5. For 1,1dichloroethylene, as similar as the reactions of OH with vinyl chloride, the α channel has a simple positive temperature dependence. The β channel is more important at all temperatures and has a more complex behavior. At low temperatures, the negative relative TS energy contributes to a negative temperature dependence for the rate constant, whereas at high temperatures, a positive temperature dependence has been yielded, because the partition function of the loose TS more rapidly increase as temperature increasing, compared to the reactants.

$OH + C_2HCl_3$

The reaction mechanism of OH + trichloroethylenes was presumed to be the same as the one for OH + dichloroethylenes. Previous studies^{5,11} reported that the rate coefficients were independent of pressure, thus the addition complex was rapidly thermalized by collisions with the buffer gas or that a decomposition pathway was available. Ab initio calculations were performed in current work to estimate

Fig. 6.8. Optimized TS structures of the reaction OH with dichloroethylene at the HF/6-31G(d,p) level: a. cis-1,2-dichloroethylene; b. trans-1,2-dichloroethylene; c. 1,1dichloroethylene at the CCl₂ end (α site); d. 1,1-dichloroethylene at the CH₂ end (β site).

	a	b	c		d	e		f	g	
OH			0.95	49						
$cis-1,2-C_2H_2Cl_2$	1.312			1.	721	1.07	2	1.072	1.721	
trans-1,2-C ₂ H ₂ Cl ₂	1.310			1.	730	1.07	1	1.730	1.071	
$1, 1-C_2H_2Cl_2$	1.311			1.	728	1.72	8	1.073	1.073	
TS 1 ^b	1.394	1.939	0.95	25 1.	744	1.07	1	1.071	1.718	
TS 2 ^c	1.390	1.949	0.95	23 1.	750	1.07	0	1.720	1.071	
TS 3 ^d	1.397	1.932	0.95	26 1.	744	1.73	4	1.072	1.073	
TS 4 ^e	1.388	1.941	0.95	22 1.	725	1.71	8	1.071	1.072	
	ba	da	ea	l	fa	ga		cb		
OH										
$cis-1,2-C_2H_2Cl_2$		125.7	120	.2 12	20.2	125.	7			
trans-1,2-C ₂ H ₂ Cl ₂		121.7	123	.8 12	21.7	123.	8			
$1, 1-C_2H_2Cl_2$		122.8	122	.8 12	20.5	120.:	5			
TS 1 ^b	102.8	120.1	118	.0 11	9.7	124.	1	97.47		
TS 2 ^c	104.4	115.8	121	.6 12	20.4	123.	1	98.64		
TS 3 ^d	101.4	117.8	118	.5 11	9.9	119.4	4	100.5		
TS 4 ^e	106.8	121.3	122	.0 11	7.8	117.	8	100.1		
	dab	eab	fab	gab	cl	ba	daf	eag	dag	eaf
OH										
$cis-1,2-C_2H_2Cl_2$							180.0	180.0	0.0	0.0
trans-1,2- $C_2H_2Cl_2$							180.0	180.0	0.0	0.0
$1, 1-C_2H_2Cl_2$							180.0	180.0	0.0	0.0
TS 1 ^b	108.5	-108.5	83.13	-83.13	61.	08				
TS 2 ^c	108.1	-108.1	84.77	-84.77	55.	19				
TS 3 ^d	110.3	-105.7	80.44	-89.31	60.	39				
TS 4 ^e	97.01	-82.77	102.5	-107.4	-44	.26				

Table 6.4. Optimized geometrical parameters ^a for reactants and transition States of the reaction OH with dichloroethylene at the HF/6-31G(d,p) level.

^a Refer to Figure 6.8 for definition of parameters: e.g. a = bond length (Å), $ba = bond angle (degree), cba = dihedral angle (degree) between the plane containing bonds c, b and the plane containing bonds b, a; ^b TS of the reaction OH with cis-1,2-C₂H₂Cl₂; ^c TS of the reaction OH with transs-1,2-C₂H₂Cl₂; ^d TS of the reaction OH with 1,1-C₂H₂Cl₂, OH added at CCl₂ end (<math>\alpha$ site); ^e TS of the reaction OH with 1,1-C₂H₂Cl₂, OH added at CH₂ end (β site)

Fig. 6.9. Classical energies (no ZPE) relative to $OH + CH_2$ -CCl₂ for addition of OH at the CH₂ end (β site, open circles) and the CCl₂ end (α site, solid circles), calculated at the PMP4/6-311+G(d,p)//HF/6-31G(d,p) level of theory, together with molecular structures along the reaction path.

Fig. 6.10. Classical energies (no ZPE) relative to OH + 1,2-CHCLCHCl for addition of OH at the cis- structure (open circles) and the trans- structure (solid circles), calculated at the PMP4/6-311+G(d,p)//HF/6-31G(d,p) level of theory, together with molecular structures along the reaction path.

Fig. 6.11. Ab initio high-pressure limit rate constants for OH addition to dichloroethylene: solid square, OH + CH₂CCl₂ (β channel); empty square, OH + CH₂CCl₂ (α channel); solid circle, OH + trans-CHClCHCl; empty circle, OH + cis-CHClCHCl.

Table 6.5. Rate constants for OH addition to dichloroethylene

	$k_{VTST} = B T^n e^{-E/RT} (\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})$
TS 1 ^a	$3.13 \times 10^{-19} \mathrm{T}^{2.340} \exp(-1066/\mathrm{T})$
TS 2 ^a	$3.22 \times 10^{-19} \mathrm{T}^{2.364} \exp(-1034/\mathrm{T})$
TS 3 ^a	$1.42 \times 10^{-20} \mathrm{T}^{2.543} \mathrm{exp}(-783/\mathrm{T})$
TS 4 ^a	$5.28 \times 10^{-18} \mathrm{T}^{2.004} \exp(929/\mathrm{T})$

^a Refer to Table 6.4

thermodynamic properties, which were used for deeper theoretical computations of energy-dependent rate constants.^{30,31}

VTST calculations were performed as previous description in this chapter. The results correspond to the optimized geometries are shown in Figure 6.12 and Table 6.6. Figure 6.13 presents the classical energies curves for the reactions of OH + trichloroethylenes. As may be seen, the barrier for α addition lies around 5 kJ/mol below the reactants' energy, whereas β addition has a positive barrier approximately +5 kJ/mol. Correspond to the derived VTST rate constants (see Figure 6.14), the β channel has a simple positive temperature dependence. The α channel is more important at all temperatures and has a more complex behavior: a negative temperature dependence at low temperature region due to the negative relative TS energy, and a positive temperature dependence at high temperature region as a result of the rapidly increasing of the loose TS's partition function with the temperature increasing. For α addition, all the vibrational modes were treated as harmonic oscillators, except for one at 201cm⁻¹, corresponding to hindered torsion of the hydroxyl group around the forming C - O bond. By using the relationship of Benson,³² a barrier of 10 kJ/mol was derived and taken into account when determining the overall rate constants.

$OH + C_2Cl_4$

In contrast to the other chloroethenes, there is a distinct barrier presented in the reaction of OH radical with tetrachloroethylene, so that the VTST calculations are not useful to estimate the rate of this reaction. As a replacement, conventional TST

Fig. 6.12. Optimized TS structures of the reaction $OH + C_2HCl_3$ at the HF/6-31G(d,p) level.

Table 6.6. Optimized geometrical parameters^a for reactants and transition states of the reaction $OH + C_2HCl_3$ at the HF/6-31G(d,p) level.

	а	1)	c	d	e		f	g
OH				0.9549					
C_2HCl_3	1.314				1.716	1.72	71.	071	1.717
TS 1 ^b	1.405	1.9	39	0.9532	1.733	1.73	4 1.	070	1.714
TS 2 °	1.399	1.9	45	0.9528	1.713	1.71	6 1.	.069	1.731
	ba	d	a	ea	fa	ga		cb	
OH									
C_2HCl_3		12	4.8	120.0	120.6	124.	7		
TS 1 ^b	101.1	12	0.2	115.3	119.7	122.	9 9	9.99	
TS 2 °	103.7	12	3.6	118.7	117.4	120.	2 9	9.07	
	dab	eab	fab	gab	cba	daf	eag	dag	eaf
OH									
C_2H_3Cl						180.0	180.0	0.0	0.0
TS 1 ^b	111.6	-105.0	80.55	-84.15	65.93				
TS 2 °	91.26	-167.5	-145.3	-116.2	-66.15				

^a Refer to Figure 6.12 for definition of parameters: e.g. a = bond length (Å), ba = bond angle (degree), cba = dihedral angle (degree) between the plane containing bonds c, b and the plane containing bonds b, a; ^b OH added at CHCl end (α site); ^c OH added at CCl₂ end (β site)

Fig. 6.13. Classical energies (no ZPE) relative to OH + C_2HCl_3 for addition of OH at the CHCl end (α , squares) and the CCl₂ end (β , circles), calculated at the PMP4/6-311+G(d,p)//HF/6-31G(d,p) level of theory

Fig. 6.14. Ab initio high-pressure limit rate constants for OH addition to C_2HCl_3 : circle, at the CCl_2 end (β channel); square, at the CHCl end (α channel). The OH rotation was treated as a hindered rotor with a barrier of 10 kJ/mol in the α channel.

Table 6.7. Rate constants for OH addition to trichloroethylene

	$k_{VTST} = B T^n e^{-E/RT} (\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})$
TS 1 (α site) ^a	$1.98 \times 10^{-19} \text{ T}^{2.397} \exp(750/\text{T})$
TS 2 (β site)	$4.32 \times 10^{-20} \text{ T}^{2.430} \exp(-720/\text{T})$

^a OH rotation was treated as a hindered rotor

calculations were performed to predict the rate constants in here.

Theoretical approach was described at the beginning of this chapter. High level G3 and G3(mp2) calculations were used to evaluated the activation energy, which are 5.0 kJ/mol and 12.1 kJ/mol, separately. Optimized geometries of reactants and TS at HF/6-31G(d) are presented in Figure 6.15 and Table 6.8. Conventional TST rate constants were derived by POLYRATE 8.0 program package. The lowest vibrational mode at 58 cm⁻¹ corresponds to torsion about the C - C bond in the TS. Using the relationship of Benson,³² a barrier to internal rotation of 53.6 kJ/mol was obtained. This barrier was confirmed by reoptimizing the TS to a second-order saddle point, where the two CCl₂ moieties are close to perpendicular (see Fig. 6.16). At the HF/6-31G(d) level, the zeropoint energy corrected geometry was 51.9 kJ/mol above the TS geometry. This value for the barrier to hindered internal rotation was employed with the table of Lewis et al.³³ to derive the partition functions and entropy for this internal mode of the TS. Similarly, the hindered torsion of hydroxyl group around the forming C- O bond, with a frequency of 204 cm⁻¹, has a corresponding³² barrier of 25.1 kJ/mol and was also taken into account when determining the overall molecular partition function. In fact, both torsional modes had partition functions close to those derived from a purely harmonic oscillator model. The greatest combined deviation was 30%, at 2000K. The results of such ab initio calculations are shown in Figure 6.17, and result in an expression, $k_{TST} = 9.90 \times 10^{-21}$ $T^{2.693} \exp(45/T)$.

Fig. 6.15. Optimized TS structure of the reaction $OH + C_2Cl_4$

at the HF/6-31G(d) level.

Table 6.8. Optimized geometrical parameters^a for reactants and transition state of the reaction $OH + C_2Cl_4$ at the HF/6-31G(d) level.

	а	b	с	d	e	f	g
OH			0.9585				
C_2Cl_4	1.322			1.718		1.718	
TS	1.418	1.947	0.9573	1.736	1.726	1.709	1.716
	ba	da	ea	fa	ga	cb	
OH							
C_2Cl_4				122.8			
TS	100.8	118.0	118.3	121.4	121.1	100.2	
	dab	eab	fab	gab	cba	daf	
OH							
C_2Cl_4						180.0	
TS	100.9	-106.2	79.88	-83.91	69.11		

^a Refer to Figure 6.15 for definition of parameters: e.g. a = bond length (Å), ba = bond angle (degree), cba = dihedral angle (degree) between the plane containing bonds c, b and the plane containing bonds b, a

Fig. 6.16. Barrier height for CCl₂ rotation of the TS relative to

 $OH + C_2Cl_4$ at the HF/6-31G(d) level of theory.

Fig. 6.17. Ab initio rate constants for OH addition to C_2Cl_4 , the OH and CCl_2 rotations were treated as hindered rotors.

REFERENCES

- (1) Fairchild, P. W.; Smith, G. P.; Crosley, D. R. Proc. Combust. Inst. 1982, 19, 107.
- Warnatz, J.; Bockhorn, H.; Moser, A.; Wenz, H. W. Proc. Combust. Inst. 1982, 19, 197.
- (3) Howard, C. J. J. Chem. Phys. 1976, 65, 4771.
- (4) Perry, P. A.; Atkinson, R.; Pitts, J. N., Jr. J. Chem. Phys. 1977, 67, 458.
- (5) Kirchner, K.; Helf, D.; Ott, P.; Vogt, S. Ber. Bunsen-Ges. Phys. Chem. 1990, 94,
 77.
- (6) Edney, E. O.; Kleindienst, T. E.; Corse, E. W. Int. J. Chem. Kinet. 1986, 18, 1355.
- Tuazon, E. C.; Atkinson, R. A.; Aschmann, S. M.; Goodman, M. A.; Winer, A.
 M. Int. J.. Chem. Kinet. 1988, 20, 241.
- (8) Zhang, Z.; Liu, R.; Huie, R. E.; Kurylo, M. J. J. Phys. Chem. 1991, 95, 194.
- (9) Abbatt, J. P.; Anderson, J. G. J. Phys. Chem. 1991, 95, 2382.
- (10) Davis, D.; Machado, U.; Smith, G.; Wagner, S.; Watson, R. T. J. Phys. Chem.
 Ref. Data 1977, 6, 871.
- (11) Chang, J. S.; Kaufman, F. J. Chem. Phys. 1977, 66, 4989.
- (12) Donovan, W. H.; Famini, G. R. J. Phys. Chem. 1994, 98, 7811.
- (13) Sekušak, S.; Liedl, K. R.; Sabljic, A. J. Phys. Chem. A 1998, 102, 1583.
- (14) Villà, J.; González-Lafont, A.; Lluch, J. M. J. chem. Phys. 1997, 107, 7266.
- (15) Fulle, D.; Hamann, H. F.; Hippler, H.; Jänsch, C. P. Ber. Bunsenges. Phys. Chem.
 1997, 101, 1433.

- (16) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defree, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 94 (Revision D.2); Gaussian, Inc.: Pittsburgh, PA, 1995.
- (17) Chuang, Y.; Corchado, J. C.; Fast, P. L.; Villà, J.; Coitiño, E. L.; Hu, W.; Liu, Y.;
 Lynch, G. C.; Nguyen, K. A.; Jackels, C. F.; Gu, M. Z.; Rossi, I.; Clayton, S.;
 Melissas, V. S.; Steckler, R.; Garrett, B. C.; Issacson, A. D.; Truhlar, D. G.
 POLYRATE; 8.0 ed.; University of Minnesota: Minneapolis, 1998.
- (18) Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154.
- (19) Gonzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523.
- (20) NIST-JANAF Thermochemical Tables; 4 ed.; Chase, M. W. J., Ed.; the American Chemical Society and the American Institute of Physics: Woodbury, N. Y., 1998.
- (21) Frisch, M.; Frisch, Æ.; Foresman, J. B. *Gaussian 94 User's Reference*; Gaussian, Inc.: Pittsburgh, PA, 1995.
- (22) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Rassolov, V.; Pople, J. A. J. Chem. Phys. 1998, 109, 7764.
- (23) Curtiss, L. A.; Redfern, P. C.; Raghavachari, K.; Rassolov, V.; Pople, J. A. J. Chem. Phys. 1999, 110, 4703.

- (24) Liu, A.; Mulac, W. A.; Jonah, C. D. J. Phys. Chem. 1989, 93, 4092.
- (25) Atkinson, R. J. Phys. Chem. Ref. Data 1989, Monograph 1.
- (26) Yamada, T.; Siraj, M.; Taylor, P. H.; Peng, J.; Hu, X.; Marshall, P. J. Phys. Chem.
 A 2001, 105, 9436.
- (27) Zhu, L.; Bozzelli, J. W.; Ho, W.-P. J. Phys. Chem. A 1999, 103, 7800.
- (28) CRC Handbook of Chemistry and Physics; 71st ed.; Lide, D. R., Ed.; CRC Press: Boston, 1990.
- (29) Yamada, T.; El-Sinawi, A.; Siraj, M.; Taylor, P. H.; Peng, J.; Hu, X.; Marshall, P. J. Phys. Chem. A 2001, 105, 7588.
- (30) Tichenor, L. B.; Lozada-Ruiz, A. J.; Yamada, T.; El-Sinawi, A.; Taylor, P. H.,
 Peng, J.; Hu, X.; Marshall, P. Proc. Combus. Inst. 2000, 28, 1495.
- (31) Tichenor, L. B.; El-Sinawi, A.; Yamada, T.; Taylor, P. H.; Peng, J.; Hu, X.; Marshall, P. *Chemosphere* 2001, 42, 571.
- (32) Benson, S. W. Thermochemical Kinetics; John Wiley & Sons: New York, 1976.
- (33) Lewis, G. N.; Randall, M.; Pitzer, K. S.; Brewer, L. *Thermodynamics*; McGraw-Hill: New York, 1961.

CHAPTER 7

CONCLUSIONS

In conclusion, the rate constant for the H + H₂S reaction has been measured from 298 to 598 K by the laser photolysis / resonance fluorescence (LP-RF) technique, and the results coupled with a transition state theory (TST) analysis support the suggestion by Yoshimura et al. that the reaction support the suggestion by Yoshimura et al. that the reaction shows significant curvature in the Arrhenius plot.¹ With a 1.6 kJ mol⁻¹ lowering of the reaction barrier from the QCISD(T)/6-311+G(3df,2p) value, conventional TST combined with an Eckart tunneling model accounts well for the observed rate constants over 190-1000 K. Above this temperature, nonvariational TST begins to overestimate the rate constant, by up to a factor of 2 at around 2000 K. A possible reason is that variational effects become significant above 1000 K. Future work can be extended to the study of this reaction at high temperature with variational TST (VTST) calculations. Also, a collaboration is underway with the group of Seakins in the UK to extend rate constant measurement down to about 200 K and to explore the isotopic combinations H / D + H₂S / D₂S, in order to define the role of tunneling more carefully.

The LP-RF technique was also used to measure the temperature-dependent rate constants of the $H + CH_3Br$ reaction over the temperature range 400 - 813 K. The results of TST and density functional theory (DFT) calculations show that the dominant reaction channel is Br-abstraction. The kinetic modeling using TST and flexible TST (FTST) has

yielded curves in very good agreement with the experimental data. Combined the literature data as well as the geometry and frequency of the transition state, the FTST calculations with modified G2//QCISD/6-31G(d,p) barrier height $V^{\dagger} = 26.8$ kJ mol⁻¹ is considered to be the most physically realistic. However, only limited experimental information is available in the literature, it is worth investigating this reaction continually, especially at temperature above 1000 K to test whether nonvariational TST analysis will overestimate the rate constant at high temperature, as already be found in the reaction of $H + H_2S$.

The reaction H + CF₂=CF-CF=CF₂ was first studied by Flash Photolysis / Resonance Fluorescence (FP-RF) Method. The experiments of this work revealed distinctly non-Arrhenius behavior: the rate constant increases up to 620 K, then drop, then increases again above about 700 K, which was interpreted in terms of a change in mechanism. At low temperatures addition of H atoms may create a substituted butenyl radical, a process which reaches equilibrium at higher temperatures so that the thermochemistry can be assessed. At even higher temperatures, it was speculated that an observed increase in the overall rate constant reflected fragmentation of the adduct to further products. Density functional calculations suggest that the adduct is CF₂H-CF \bullet -CF=CF₂. At lower temperatures a mixture of this molecule and CF₂ \bullet -CFH-CF=CF₂ is likely. To confirm the assumed reaction mechanism, a further study of F atom migration in activated C₄F₆ radicals is necessary.

As a preliminary investigation for this future work, 1,2-hydrogen atom migration in fluoroethyl radicals was inspected using ab initio quantum mechanics up to MP2/631G(d,p). The calculation results show that H atom migrates in the fluoroethyl radicals through a bridging intermediate, and the barrier height for this process is lower in the less fluorinated ethyl radical. By using similar methods, the further study of F atom migration can be extended.

High level computations were also employed in studies of the rate constants of OH + chloroethylenes reactions. VTST calculations indicate that except the reaction of $OH + C_2Cl_4$, the other reactions involve a chemically activated system, and present a complex behavior. For $OH + C_2Cl_4$, conventional TST was used to carry out the rate constant, which shows a simple positive temperature-dependence behavior. The computational results of this work were applied for further investigation of the reaction mechanisms coupled with experimental data by our co-workers.²⁻⁶

REFERENCE

- Yoshimura, M.; Koshi, M.; Matsui, H.; Kamiya, K.; Umeyama, H. Chem. Phys. Lett. 1992, 189, 199.
- Tichenor, L. B.; Lozada-Ruiz, A. J.; Yamada, T.; El-Sinawi, A.; Taylor, P. H.,
 Peng, J.; Hu, X.; Marshall, P. Proc. Combus. Inst. 2000, 28, 1495.
- (3) Tichenor, L. B.; Graham, J. L.; Yamada, T.; Taylor, P. H.; Peng, J.; Hu, X.;
 Marshall, P. J. Phys. Chem. A 2000, 104, 1700.
- (4) Tichenor, L. B.; El-Sinawi, A.; Yamada, T.; Taylor, P. H.; Peng, J.; Hu, X.; Marshall, P. *Chemosphere* 2001, 42, 571.
- (5) Yamada, T.; El-Sinawi, A.; Siraj, M.; Taylor, P. H.; Peng, J.; Hu, X.; Marshall, P.
 J. Phys. Chem. A 2001, *105*, 7588.
- Yamada, T.; Siraj, M.; Taylor, P. H.; Peng, J.; Hu, X.; Marshall, P. J. Phys. Chem.
 A 2001, 105, 9436.

APPENDIX

SUMMARIES OF OPTIMIZED GEOMETRIES, HARMONIC VIBRATIONAL

FREQUENCIES, AND RATE CONSTANTS (k_{tst})

Table 8.1. Optimized geometries (in cartesian coordinates) and harmonic vibrational frequencies of C_4F_6 , five C_4F_6 isomers and two transition states for $H + C_4F_6$ addition at the HF/6-31G(d) levels of theory ^a

cis-	$-C_4F_6$			
	Х	Y	Z	
С	-1.557103	-0.370296	0.190813	
С	-0.716825	0.580661	-0.132982	
С	0.716836	0.580662	0.132978	
С	1.557106	-0.370292	-0.190839	
F	-1.214451	-1.455483	0.814476	
F	-2.820558	-0.351571	-0.087003	
F	-1.183857	1.666826	-0.741862	
F	1.183878	1.666814	0.741874	
F	2.820550	-0.351594	0.087002	
F	1.214430	-1.455482	-0.814467	
	51.4804	10)5.4243	120.1161
2	05.8558	22	28.1561	278.3045
3	21.4019	40)7.1096	452.3289
5	17.5618	58	38.8472	615.9975
6	81.1642	69	92.8889	735.4795
7	79.3557	107	78.1961	1263.5369
13	35.7024	149	93.8523	1508.0943
15	47.3727	202	24.9801	2048.8877

CF	$2H-CF \bullet -CF=C$	F2		
	Х	Y	Z	
С	1.391353	-0.562255	-0.000354	
С	0.718371	0.628534	0.000083	
С	-0.661913	0.828168	0.000139	
С	-1.762703	-0.182605	0.000279	
F	0.802874	-1.720424	-0.000397	
F	2.687134	-0.639581	0.000081	
F	1.476439	1.714583	0.000197	
F	-1.080690	2.085709	-0.000282	
F	-1.687472	-0.975122	-1.076980	
F	-1.686756	-0.975486	1.077208	
Η	-2.714406	0.321825	0.000664	

35.6182

64.4480

91.5006

132.2270	136.2430	166.2630
221.7707	327.1237	365.3922
426.8006	473.0656	508.8041
556.8697	623.4781	700.3782
798.8195	1082.8103	1247.8429
1251.4853	1315.8321	1387.8851
1513.1072	1528.3108	1553.8619
1610.6609	1718.5987	3351.6356

•CF	2–CFH –CF=C	F2		
	Х	Y	Z	
С	1.584249	-0.291914	-0.251261	
С	0.724000	0.447279	0.398383	
С	-0.683418	0.056525	0.731572	
С	-1.583707	-0.006785	-0.474616	
F	1.291445	-1.460144	-0.734904	
F	2.811428	0.040366	-0.490978	
F	1.105680	1.639703	0.848837	
F	-0.721611	-1.168031	1.321503	
F	-2.808971	-0.383854	-0.198562	
F	-1.586217	1.107585	-1.174119	
Η	-1.072528	0.788732	1.429545	
1	0.1953	6	56.0457	109.1667
15	1.0913	20	04.3665	292.4235
30	8.2943	38	36.5786	433.2503
470.9142		55	53.3388	581.3756
635.4366		71	15.4624	730.3473
870.5226		113	L6.6212	1227.1403
1294.6510		133	32.4614	1379.3402
140	3.8680	149	98.2513	1526.3773
157	0.4015	204	43.6127	3263.3990

•C	•CFH–CF2–CF=CF2							
	Х	Y	Z					
С	1.719787	0.149895	-0.109958					
С	0.574053	-0.462995	0.052441					
С	-0.791720	0.131896	0.217250					
С	-1.727788	-0.317595	-0.857958					
F	1.887246	1.430531	-0.164773					
F	2.841380	-0.483640	-0.244325					
F	0.564562	-1.792984	0.073215					
F	-0.700008	1.471275	0.230263					

F -2.994438 H -1.437812 F -1.288539	-0.025994 -0.622554 -0.258408 -1.889499 -0.237943 1.403602	
37.5186	77.7021	118.4667
188.8849	216.9737	269.7849
301.4615	365.0162	380.9018
435.8900	535.8548	601.0055
619.2169	711.3533	733.3334
784.2865	877.7855	1069.5744
1282.2816	1287.2400	1315.6243
1377.6530	1462.4619	1537.1681
1566.4605	2040.7777	3398.3365

1 2	
-0.174158 -0.174129	
-0.045144 -0.644026	
0.602046 -0.169402	
-0.369204 0.266784	
-0.813888 -0.789197	
0.310967 0.953301	
1.400520 0.874660	
-1.171687 -0.755822	
-1.113639 1.271402	
0.158649 0.582550	
1.361073 -1.138555	
79.5152	92.7943
227.6567	275.1767
386.8646	414.0576
589.1106	607.6031
687.5135	774.0321
1108.3198	1253.8292
1314.8604	1330.8871
1460.4790	1543.2909
1861.5624	3349.9472
2	
2 V 7	
	-0.174158 -0.174129 -0.045144 -0.644026 0.602046 -0.169402 -0.369204 0.266784 -0.813888 -0.789197 0.310967 0.953301 1.400520 0.874660 -1.171687 -0.755822 -1.113639 1.271402 0.158649 0.582550 1.361073 -1.138555 79.5152 227.6567 386.8646 589.1106 687.5135 1108.3198 1314.8604 1460.4790 1861.5624 2 Y Z

-			
С	0.447221	1.050635	-0.000020

С	1.547213	0.039283	0.000000	
F	-0.934922	-1.589312	-0.000016	
F	-2.844094	-0.561594	0.00001	
F	-1.731612	1.811888	-0.00003	
F	1.512698	-0.744748	-1.064229	
F	1.512752	-0.744644	1.064308	
Η	0.738225	2.081619	-0.000029	
F	2.714424	0.657661	-0.000059	
	58.2515		78.2676	131.3280
1	51.2597	18	38.2550	227.4114
3	49.0481	36	56.7662	435.0520
4	50.9202	52	24.5659	576.3090
5	86.7880	65	54.1810	690.2262
7	65.3987	83	31.5186	981.3648
12	37.6583	129	99.5890	1351.7761
14	15.4728	142	21.1044	1520.8093
16	12.1975	170	08.8042	3422.8543

Η	$.CF2-CF\bullet-CF=$	CF2 (alpha-TS)		
	Х	Y	Z	
С	1.593602	-0.405648	-0.139464	
С	0.742001	0.603401	0.060160	
С	-0.680428	0.595660	-0.154660	
С	-1.575482	-0.375496	0.211646	
F	1.243051	-1.569521	-0.592948	
F	2.859920	-0.334525	0.123194	
F	1.255994	1.767740	0.437518	
F	-1.199596	1.759165	-0.514419	
F	-2.802227	-0.362475	-0.221882	
F	-1.182289	-1.572643	0.545511	
Η	-2.051835	0.302834	2.141142	
-6	82 1364	ſ	57 8956	106 7584
1	02.1304 22.8057	- 19	28 1023	210 8205
エ 2	22.0997 77 9159	2 (1 (12 1661	227 5729
2	67 5620	20	35.1001	
د ۱	07.5039	31 Г	90.2194	412.1955
4	70.5775	5.	19.1/62	528.2566
6	00.2869	62	22.7052	661.2234
7	40.3146	104	41.4200	1222.7237
13	49.7638	148	31.4376	1504.1395
15	36.4891	16	72.8996	1806.9389

•C	F2–CF(H)–CF	E=CF2 (beta-TS)		
	X	Ŷ	Z	
С	1.867713	-0.072709	-0.054216	
С	0.617363	0.394267	0.062301	
С	-0.592414	-0.381434	0.169687	
С	-1.851850	0.072428	-0.223106	
F	2.185171	-1.325915	-0.150156	
F	2.904861	0.706689	-0.076341	
F	0.470156	1.709437	0.146586	
F	-0.431058	-1.694685	0.104246	
F	-2.885677	-0.709903	-0.089363	
F	-2.172659	1.332116	-0.143707	
Η	-0.882012	-0.234961	2.150620	
-7	00.4144		38.9026	106.0271
1	33.9552	1	65.5872	228.6811
2	86.5309	3	05.6805	336.4712
3	67.2572	3	93.3403	410.6521
4	64.2317	5	19.0342	563.1942
6	21.7143	6	29.6646	658.2820
7	50.5272	9	98.0073	1270.8820
13	43.8919	14	53.5988	1500.4175
15	47.9148	16	50.0673	1778.5980

^a Cartesian Coordinates in 10⁻¹⁰ m, Harmonic Frequencies in cm⁻¹

Table 8.2. Optimized geometries (in cartesian coordinates) and harmonic vibrational frequencies of ethyl radical, fluoroethyl

CH ₃ -CH ₂ ●								
		HF/3	3-21G(d)			HF/6-3	1G(d)	
Geometry	С	0.703857	0.000003	0.001347	С	-0.034941	0.124402	-0.686853
	С	-0.802891	0.000000	-0.026795	С	0.049096	-0.174807	0.778545
	Н	1.104168	-0.878269	-0.492750	Н	0.920808	-0.032030	-1.177148
	Н	1.104159	0.878559	-0.492244	Н	-0.769823	-0.506437	-1.177062
	Н	1.081792	-0.000296	1.023304	Н	-0.325345	1.159296	-0.872095
	Н	-1.347949	-0.920809	0.057188	Н	0.928509	0.089041	1.338072
	Н	-1.347967	0.920797	0.057190	Н	-0.839079	-0.407435	1.338081
Frequency	128.5467	436.1560	894.7281	1046.4275	165.8695	459.8741	870.7531	1083.3319
	1110.0715	1318.9864	1574.8483	1596.5022	1113.2899	1309.2124	1552.5063	1608.7293
	1660.1087	1664.9026	3151.0701	3218.8313	1629.9758	1634.8894	3160.4591	3229.0537
	3251.5372	3292.6948	3397.3224		3263.6671	3314.7486	3412.3827	
		HF/6-	31G(d, p)			MP2/6-3	1G(d, p)	
Geometry	С	0.698330	0.000003	0.002409	С	0.694479	0.000003	0.001772
2	С	-0.798275	0.000000	-0.035920	С	-0.793995	0.000000	-0.034825
	Н	1.106930	-0.877815	-0.488816	Н	1.103935	-0.881499	-0.489602
	Н	1.106917	0.878098	-0.488324	Н	1.103922	0.881762	-0.489145
	Н	1.077231	-0.000288	1.025615	Н	1.077355	-0.000269	1.028005
	Н	-1.345693	-0.918974	0.076294	Н	-1.344048	-0.920805	0.074529
	Н	-1.345710	0.918963	0.076297	Н	-1.344068	0.920793	0.074533

radicals, and transition states for the 1,2-hydrogen atom migration at various levels of theory ^a

Frequency	164.3408	459.6904	866.9280	1074.4074	171.8215	470.1910	836.0421	1024.3761
	1110.2818	1300.6468	1536.2695	1596.3259	1108.1312	1245.8778	1461.5086	1537.7391
	1613.2118	1616.8101	3139.9087	3210.1203	1551.1939	1551.2540	3092.2681	3179.9423
	3246.1466	3293.1761	3394.6872		3225.7885	3266.5315	3380.5790	

(CH ₂ HCH ₂)● TS								
		HF/3	-21G(d)			HF/6-3	1G(d)	
Geometry	С	0.750916	-0.000004	-0.023244	С	0.742357	0.000008	-0.023173
2	С	-0.750949	0.000007	-0.023117	С	-0.742392	0.000004	-0.023111
	Н	1.266008	-0.922832	-0.196012	Н	1.265254	-0.922706	-0.190723
	Н	1.265938	0.922911	-0.195788	Н	1.265066	0.922861	-0.190343
	Н	0.000168	-0.000044	1.062076	Н	0.000292	-0.000125	1.039804
	Н	-1.265932	-0.922871	-0.195972	Н	-1.265111	-0.922842	-0.190401
	Н	-1.265985	0.922817	-0.196139	Н	-1.265290	0.922742	-0.190628
Frequency	-2486.9578	609.9495	872.7784	884.3808	-2428.91	98 602.5773	823.7543	832.9572
· · ·	904.9552	1141.8040	1300.7187	1372.0110	856.18	30 1214.6998	1304.3088	1392.0403
	1553.8384	1571.5600	2002.1696	3319.2116	1550.38	20 1584.3279	2234.8980	3324.9986
	3325.5169	3424.5094	3448.3132		3333.24	23 3427.9854	3449.9643	
		HF/6-3	31G(d, p)			MP2/6-3	G(d, p)	
Geometry	С	0.742669	0.000005	-0.022507	С	-0.743011	0.000009	-0.021689
2	С	-0.742697	0.000005	-0.022492	С	0.742969	0.000001	-0.022102
	Н	1.264938	-0.922835	-0.192001	Н	-1.266280	0.927114	-0.187870
	Н	1.264764	0.922982	-0.191605	Н	-1.266276	-0.927112	-0.187811

1.036985

-0.191560

Η

Η

-0.000154

1.266497

-0.000071

0.927189

1.012473

-0.186954

Η

Η

0.000302

-1.264835

-0.000104

-0.922971

	Н	-1.264998	0.922871	-0.191829	H 1	.266469 -	0.927176	-0.187094
Frequency	-2386.3665	600.9956	829.2556	836.9604	-2205.2618	573.5972	759.3467	805.4597
11010010	851.1792	1211.302	1298.0828	1387.5185	816.2004	1182.4317	1237.4574	1361.8066
	1540.3850	1573.7847	2254.0359	3303.5459	1477.1593	1505.0851	2441.3362	3260.3483
	3311.9824	3409.3545	3431.2625		3265.6132	3378.4158	3397.1529	

$CH_2F-CH_2\bullet$								
		HF/3	-21G(d)			HF/6-3	lG(d)	
Geometry	С	0.033129	0.537744	0.035561	С	0.051883	0.520915	0.054284
	С	-1.223883	-0.264387	-0.028974	С	-1.218085	-0.250194	-0.044755
	F	1.145550	-0.322699	-0.031412	F	1.124881	-0.326082	-0.047399
	Н	0.091509	1.240328	-0.784890	Н	0.128841	1.257953	-0.736464
	Н	0.101005	1.095554	0.962707	Н	0.139654	1.038106	1.006202
	Η	-1.193835	-1.303611	0.226808	Н	-1.255714	-1.250654	0.343396
	Н	-2.164109	0.231876	-0.161443	Н	-2.139497	0.265011	-0.243724
Frequency	143.1359	413.5794	444.6467	930.6498	175.8684	428.5671	492.3215	930.7410
	1055.4753	1140.4380	1201.9944	1356.7851	1070.8632	2 1187.6468	1232.7037	1374.8678
	1552.1091	1572.6644	1684.3336	3193.3228	1554.7210) 1597.1285	1664.2435	3199.4508
	3239.7141	3319.7479	3437.0452		3258.2737	3331.2033	3439.4375	
		HF/6-3	31G(d, p)			MP2/6-31	G(d, p)	
Geometry	С	0.051580	0.520474	0.053217	С	0.035194	0.525275	0.056332
	С	-1.217860	-0.250530	-0.043542	С	-1.217257	-0.259225	-0.043753
	F	1.125268	-0.325425	-0.046522	F	1.140849	-0.321935	-0.049634
	Н	0.126092	1.257292	-0.739815	Н	0.098046	1.274687	-0.735628

	Η	0.000302	0.000005	-0.022507	H (0.116683	1.046706	1.016962
	Η	-1.252374	-1.255147	0.335028	Н -	1.243495	-1.257793	0.359467
	Н	-2.139848	0.265678	-0.239413	Н -2	2.146492	0.237521	-0.269573
Frequency	176.4100	428.7806	491.3425	927.3002	189.0471	417.7095	494.1950	880.7222
	1064.9523	1184.2560	1229.4709	1368.2232	1019.2789	1142.9282	1166.5393	1278.1489
	1542.7923	1586.4741	1644.5213	3171.5786	1457.5553	1521.9983	1564.6217	3087.0383
	3229.8007	3308.5311	3420.5614		3159.8911	3275.5121	3399.4044	

CH2-CHF										
	HF/3-21G(d)					HF/6-31G(d)				
Geometry	С	-0.106614	0.523832	-0.108085	С	-0.122830	0.519802	-0.120959		
	С	1.204893	-0.179580	0.013678	С	1.189443	-0.171181	0.015100		
	F	-1.216463	-0.278224	0.018982	F	-1.187394	-0.282182	0.021193		
	Н	-0.258041	1.516151	0.266585	Н	-0.294616	1.495930	0.296674		
	Н	2.009897	0.498848	-0.236184	Н	1.998377	0.518509	-0.196973		
	Н	1.239561	-1.027972	-0.658967	Н	1.253070	-1.003943	-0.677086		
	Н	1.367071	-0.548524	1.024174	Н	1.330037	-0.562581	1.021802		
-	100 1 10 1				2060520			0040505		
Frequency	180.1484	404.7559	649.0556	958.8463	206.0529	435.1998	/1/.4046	984.9797		
	1151.2891	1200.3878	1277.7128	1500.1589	1145.4594	1218.0619	1291.1290	1498.4273		
	1580.8051	1641.8449	1660.4192	3171.1374	1573.5700	1614.8508	1632.8640	3179.5625		
	3243.4551	3281.5241	3359.5893		3251.6944	3287.3357	3359.0081			
	HF/6-31G(d, p)					MP2/6-31G(d, p)				
Geometry	С	-0.122326	0.519681	-0.119525	С -	0.109288	0.524457	-0.117977		
2	С	1.188923	-0.171548	0.014947	С	1.189918	-0.176764	0.014946		

	F	-1.187242	-0.282171	0.020992	F -	1.198690	-0.280190	0.020554
	Н	-0.293603	1.499311	0.292523	Н -	0.275663	1.512840	0.289955
	Η	1.997494	0.518568	-0.197790	Н	2.006753	0.507825	-0.202878
	Η	1.251356	-1.004082	-0.677848	Н	1.240085	-1.014169	-0.678933
	Н	1.330347	-0.563051	1.021656	Н	1.333264	-0.570948	1.025054
Frequency	206.0794	436.0799	708.7189	981.7158	212.4532	413.5635	670.8250	946.1079
	1134.5853	1211.8664	1289.4412	1489.1115	1081.2179	1173.9687	1222.7247	1419.9494
	1559.4971	1597.0542	1615.6896	3159.6653	1479.8673	1528.6355	1550.1388	3106.8527
	3233.8538	3270.0510	3334.5378		3199.4583	3242.4437	3275.2308	

(CH ₂ HCHF)● T	S									
		HF/3-21G(d)				HF/6-31G(d)				
Geometry	С	0.059878	0.483051	0.058361	С	0.071457	0.480583	0.062933		
	С	-1.234080	-0.226875	-0.042144	С	-1.214575	-0.218181	-0.042162		
	F	1.217752	-0.259423	-0.042585	F	1.188191	-0.263271	-0.044052		
	Н	0.139502	1.478125	-0.326133	Н	0.176520	1.475530	-0.327242		
	Н	-0.785410	0.369751	1.075368	Н	-0.760528	0.347321	1.059589		
	Н	-1.214018	-1.289101	0.085588	Н	-1.205670	-1.285316	0.069759		
	Н	-2.054634	0.238977	-0.548861	Н	-2.045334	0.257497	-0.530262		
Frequency	-2590.9562	355.0574	452.7013	851.4707	-2550.251	5 349.1686	473.3096	811.9315		
	914.2119	1012.1641	1207.1626	1263.0203	871.419	9 1034.7900	1236.4152	1282.7669		
	1363.9339	1492.7000	1552.2991	1931.9759	1383.563	5 1501.7021	1570.8195	2176.6590		
	3327.8942	3377.6711	3451.5285		3330.198	5 3374.8206	3450.8159			
	HF/6-31G(d, p)				MP2/6-31G(d, p)					
Geometry	С	0.071400	0.481322	0.061714	С	0.058188	0.475905	0.070557		
-----------	------------	-----------	-----------	-----------	------------	-----------	-----------	-----------		
	С	-1.214939	-0.218390	-0.041035	C -	1.225885	-0.220007	-0.044788		
	F	1.187818	-0.263457	-0.043677	F	1.211386	-0.258805	-0.049346		
	Н	0.176984	1.477768	-0.326392	Н	0.146660	1.489921	-0.294550		
	Н	-0.756264	0.342418	1.058276	Н -	0.774735	0.358269	1.029279		
	Н	-1.202929	-1.286529	0.061641	Н -	1.219063	-1.282014	0.135170		
	Н	-2.046918	0.259865	-0.524499	Н -2	2.049162	0.227680	-0.580397		
Frequency	-2508.1806	349.0578	471.7846	815.8844	-2334.3286	356.6950	459.2475	734.6485		
	868.1944	1031.5851	1232.2925	1282.1158	833.1098	969.8184	1164.1792	1229.7602		
	1383.3568	1495.3521	1561.3794	2201.5782	1354.7237	1449.5141	1489.1887	2406.6111		
	3309.2869	3350.9236	3432.6547		3251.1253	3276.4288	3388.6019			

CH ₂ F-CHF●										
		HF/3	-21G(d)			HF/6-31G(d)				
Geometry	С	-0.657717	0.429635	0.374949	С	0.677325	0.497988	-0.310663		
-	С	0.642666	0.482881	-0.330998	С	-0.663458	0.489334	0.321510		
	F	-1.620063	-0.370196	-0.172439	F	1.535192	-0.406208	0.159208		
	Н	-0.748073	0.572927	1.430119	Н	0.813067	0.705003	-1.355730		
	Н	0.487829	0.315130	-1.384018	Н	-0.571850	0.341352	1.388144		
	F	1.536722	-0.497569	0.157860	F	-1.440997	-0.526369	-0.183878		
	Н	1.100619	1.446734	-0.178589	Н	-1.172175	1.422904	0.124526		
Frequency	107 4955	329,7629	451,6193	655,7186	115 4380	342,0656	505,4611	765,9462		
rrequency	958.1273	1094.7657	1180.0361	1275.9411	983.9411	1135.3426	1213.4104	1305.3451		
	1385.7017	1514.9068	1561.2028	1673.5585	1394.5840	1509.5899	1587.2621	1653.5490		
	3269.6555	3319.5229	3396.8030		3266.8778	3321.8985	3385.7485			

		HF/6-3	31G(d, p)			MP2/6-31G(d, p)					
Geometry	С	0.677035	0.498124	-0.309197	С	0.675923	0.504428	-0.309211			
	С	-0.662985	0.488020	0.322663	С	-0.655261	0.500779	0.324671			
	F	1.534822	-0.407541	0.157889	F	1.544860	-0.420547	0.154443			
	Н	0.816992	0.718417	-1.351872	Н	0.832009	0.759019	-1.347153			
	Н	-0.569840	0.337974	1.390090	Н	-0.554565	0.350489	1.398563			
	F	-1.441693	-0.525564	-0.185381	F	-1.460414	-0.533506	-0.184986			
	Н	-1.169613	1.424684	0.128418	Н	-1.161426	1.445727	0.130719			
Frequency	115.4687	342.1953	504.4395	756.9889	120.	6172 320.445	5 473.9181	692.2178			
	980.8551	1133.9726	1208.8968	1304.9009	941.	6135 1041.149	4 1155.0870	1246.9089			
	1388.3461	1500.5257	1579.4454	1634.8579	1304.	4692 1419.699	5 1494.7826	1553.5416			
	3237.8124	3294.4744	3360.8591		3155.	3309 3225.972	4 3305.6741				

		HF/3	-21G(d)		HF/6-31G(d)				
Geometry	С	0.744943	0.600922	-0.082689	С	0.737390	0.591760	-0.080689	
-	С	-0.715743	0.580746	0.101977	С	-0.712398	0.573359	0.108243	
	F	1.379266	-0.612113	0.034896	F	1.336708	-0.599398	0.037028	
	Н	1.237774	1.310195	-0.715453	Н	1.251230	1.280053	-0.729761	
	Н	0.136366	0.917975	1.096521	Н	0.139785	0.888811	1.078167	
	F	-1.414701	-0.586483	-0.067950	F	-1.368532	-0.579363	-0.072146	
	Н	-1.230417	1.469181	-0.199307	Н	-1.254554	1.449264	-0.197666	
Frequency	-2678.7775	146.9232	244.5677	641.0494	-2671.8598	163.7945	274.8332	678.9248	
	808.8539	961.8311	1001.6652	1198.0052	829.5043	939.62882	1063.1396	1226.8259	
	1312.9766	1367.5483	1454.8863	1522.3895	1316.6138	1397.6834	1459.3274	1573.4784	
	1822.9869	3355.2196	3383.3339		2076.7896	3337.4618	3374.9625		

		HF/6-3	31G(d, p)			MP2/6-31G(d, p)					
Geometry	С	0.737939	0.592909	-0.075658	С	0.732139	0.587970	-0.125487			
-	С	-0.713835	0.575125	0.104018	С	-0.694233	0.564785	0.145360			
	F	1.335400	-0.600302	0.034332	F	1.378090	-0.601139	0.058111			
	Н	1.253728	1.287989	-0.716487	Н	1.241728	1.260143	-0.807810			
	Н	0.132779	0.885583	1.076332	Н	0.196282	0.861906	1.038495			
	F	-1.365917	-0.580948	-0.070124	F	-1.427716	-0.568753	-0.091105			
	Н	-1.256476	1.449478	-0.207875	Н	-1.218816	1.490450	-0.052981			
Frequency	-2631.2204	161.4158	270.5244	679.9009	-2486.77	713 168.2383	333.8732	626.2408			
	832.6340	939.9966	1063.0694	1227.7862	786.88	807 845.4241	1005.8966	1132.2905			
	1317.1727	1400.7168	1453.2343	1569.8015	1240.95	506 1364.7986	1390.8793	1505.4621			
	2117.8272	3315.5751	3350.7912		2358.42	202 3220.2704	3275.4383				

trans-(CHFHCH	HF)● TS								
		HF/3-	-21G(d)		HF/6-31G(d)				
Geometry	С	-0.616849	-0.381847	0.284006	С	0.614288	0.379419	0.277304	
	С	0.616912	0.382051	0.283795	С	-0.614499	-0.378787	0.278099	
	F	-1.752498	0.138496	-0.294314	F	1.719652	-0.141998	-0.285636	
	Н	-0.533697	-1.446064	0.226673	Н	0.549265	1.447919	0.203555	
	Н	0.000130	0.000333	1.437892	Н	-0.000209	0.001816	1.402572	
	Н	0.534245	1.446306	0.226055	Н	-0.548780	-1.447347	0.205811	
	F	1.752381	-0.138695	-0.294289	F	-1.719542	0.141311	-0.285959	
Frequency	-2572.0871	249.0566	365.9114	445.1377	-2564.2270	244.0006	389.8406	453.7014	
	818.4165	965.1513	1153.7926	1167.8271	800.5632	957.6146	1180.2083	1182.7385	
	1295.3737	1318.5050	1479.3147	1566.3678	1306.8158	1327.0988	1489.9453	1604.4207	
	1816.1046	3396.3374	3409.6404		2072.5808	3398.0948	3407.6846		

		HF/6-3	31G(d, p)			MP2/6-31G(d, p)					
Geometry	С	0.613520	0.380971	0.274246	С	0.616717	0.367612	0.292064			
	С	-0.613719	-0.380502	0.274805	С	-0.617055	-0.366445	0.293070			
	F	1.721598	-0.141863	-0.282621	F	1.749807	-0.138571	-0.302982			
	Н	0.546702	1.449946	0.198774	Н	0.563139	1.447024	0.279261			
	Н	-0.000138	0.001442	1.395680	Н	-0.000344	0.002397	1.384569			
	Н	-0.546240	-1.449544	0.200568	Н	-0.562911	-1.445866	0.283458			
	F	-1.721501	0.141345	-0.282860	F	-1.749569	0.137398	-0.303473			
Frequency	-2524.9824	244.7137	388.4327	454.0748	-2334.214	3 268.3740 0 894 7572	365.2053	436.0967			
	1304.6224 2111.6039	1328.7285 3373.9471	1483.4200 3383.5761	1600.2847	1271.356 2347.279	 3 1280.6696 6 3295.7854 	1483.2827 3306.3833	1505.4433			

CH	-C	F.
CIT	3-CI	L 2-

		HF/3	-21G(d)			HF/6-31G(d)				
Geometry	С	0.054510	-0.000140	-0.303337	С	0.065567	-0.000092	-0.312546		
-	С	-1.392938	-0.000967	0.045535	С	-1.381441	-0.000649	0.045969		
	F	0.736937	1.109843	0.063622	F	0.727830	1.080577	0.065850		
	F	0.738972	-1.108739	0.063664	F	0.729191	-1.079857	0.065883		
	Н	-1.863607	-0.883752	-0.360222	Н	-1.860349	-0.883486	-0.356264		
	Н	-1.865029	0.880233	-0.362189	Н	-1.860987	0.881578	-0.356987		
	Н	-1.523972	0.000229	1.123649	Н	-1.496605	-0.000126	1.127127		
Frequency	197.5574	370.6901	458.6629	548.5940	209.4705	396.5896	496.5329	582.4039		
1	896.7909	1110.0164	1219.3499	1369.4378	937.1384	1089.8933	1210.5554	1398.2817		
	1417.7855	1590.1689	1644.2479	1650.5655	1399.9482	1576.3552	1620.0352	1623.3846		
	3199.3498	3283.7046	3320.4960		3205.9926	3288.0313	3321.6922			

		HF/6-3	31G(d, p)		MP2/6-31G(d, p)				
Geometry	С	0.064955	-0.000097	-0.312352	С	0.058952	-0.000090	-0.320334	
	С	-1.381185	-0.000687	0.046112	С	-1.383177	-0.000681	0.047937	
	F	0.727756	1.080523	0.065748	F	0.730454	1.103081	0.066958	
	F	0.729189	-1.079766	0.065785	F	0.731868	-1.102322	0.066988	
	Н	-1.859525	-0.883770	-0.356582	Н	-1.864254	-0.887995	-0.352301	
	Н	-1.860141	0.881835	-0.357234	Н	-1.865083	0.885701	-0.353483	
	Η	-1.495458	-0.000173	1.127464	Н	-1.486217	0.000087	1.134653	
Frequency	209.0658	397.0066	496.9165	582.3192	219.328	0 375.7498	467.8536	542.1267	
	935.3118 1395.8466 3185.7208	1082.9849 1562.1946 3270.1203	1201.7220 1602.7968 3303.9203	1394.0448 1606.5255	893.141 1316.782 3131.980	 1018.7949 4 1471.4738 5 3235.6549 	1537.4166 3273.8135	1540.2731	

$CHF_2-CH_2\bullet$									
		HF/3	-21G(d)		HF/6-31G(d)				
Geometry	С	0.018615	-0.000026	0.344649	С	0.027074	-0.000025	0.337120	
	С	-1.396070	-0.000088	-0.093627	С	-1.392505	-0.000028	-0.098963	
	F	0.664378	-1.116225	-0.142244	F	0.660322	-1.086501	-0.141200	
	F	0.664192	1.116328	-0.142101	F	0.660258	1.086540	-0.141047	
	Н	0.131090	-0.000104	1.414818	Н	0.155444	-0.000120	1.410836	
	Н	-1.911892	-0.932093	-0.180284	Н	-1.924226	-0.929858	-0.149122	
	Н	-1.911601	0.931957	-0.181560	Н	-1.923851	0.929942	-0.150442	
Fraguanay	150 1110	401 0222	111 9613	101 7166	144 242	× 410 5201	120 7866	525 0740	
rrequency	130.1110	401.9222	444.8043	494.7400	144.542	8 410.3201 2 1017 6675	420.7800	323.9740	
	661.4273	1019.0507	1034.7458	1235.8679	688.555	3 1017.6675	10/1.5034	1278.7284	
	1293.2598	1523.9912	1550.5960	1575.8166	1290.179	1 1533.6963	1557.3153	1598.0509	
	3284.0440	3344.8419	3467.9112		3278.909	7 3351.1346	3466.9701		

		HF/6-3	31G(d, p)		MP2/6-31G(d, p)				
Geometry	С	0.026302	-0.000027	0.337750	С	0.018670	-0.000022	0.342370	
-	С	-1.392103	-0.000047	-0.098869	С	-1.392276	-0.000069	-0.101631	
	F	0.660372	-1.086135	-0.141381	F	0.663604	-1.112699	-0.142385	
	F	0.660269	1.086193	-0.141219	F	0.663465	1.112776	-0.142237	
	Н	0.152995	-0.000117	1.413970	Н	0.149545	-0.000109	1.428112	
	Н	-1.922162	-0.931001	-0.151224	Н	-1.925925	-0.932887	-0.154813	
	Н	-1.921791	0.931033	-0.152634	Н	-1.925606	0.932852	-0.156132	
Frequency	140.4324	413.3244	419.9953	526.8814	155.7	240 396.1766	431.6059	491.4370	
	688.5099	1011.6152	1069.2203	1276.3969	654.2	608 953.8885	1023.8541	1195.5161	
	1286.6663	1522.0444	1547.0044	1588.0247	1198.6	591 1431.6672	1445.1493	1520.0379	
	3242.1276	3328.8603	3448.6757		3130.5	756 3290.5151	3420.7831		

(CH ₂ HCF ₂)● 15								
		HF/3-	-21G(d)			HF/6-31	G(d)	
Geometry	С	-0.016354	0.000134	0.222273	С	0.024854	-0.000136	0.222426
	С	1.414550	-0.000584	-0.087724	С	-1.399089	-0.001362	-0.084474
	F	-0.723410	1.118854	-0.073297	F	0.715675	-1.091723	-0.073866
	F	-0.724472	-1.118353	-0.073272	F	0.713019	1.093108	-0.073804
	Η	0.907098	-0.000329	1.191774	Н	-0.887199	0.000066	1.169471
	Η	1.867658	0.934003	-0.339980	Н	-1.862417	-0.936129	-0.333295
	Н	1.867006	-0.935485	-0.339961	Н	-1.863211	0.932587	-0.334862
Frequency	-2661.9373	271.4450	409.7865	483.2204	-2640.4738	8 283.5269	427.6874	514.3204
	617.8519	918.0630	972.6147	1020.9072	647.7289	828.9608	1017.5656	1026.2595
	1291.4375	1404.5838	1435.0063	1541.1883	1309.1477	7 1438.7801	1443.1554	1573.5664
	1851.2009	3350.9166	3481.1535		2093.5202	2 3349.2115	3475.0181	

		HF/6-3	31G(d, p)		MP2/6-31G(d, p)				
Geometry	С	0.023986	-0.000230	0.221305	С	0.017178	0.000181	0.218692	
	С	-1.400397	-0.001922	-0.083126	C ·	1.408296	-0.001882	-0.084530	
	F	0.716842	-1.091113	-0.073608	F	0.722486	-1.117949	-0.072412	
	F	0.713094	1.093071	-0.073517	F	0.718925	1.119745	-0.072365	
	Н	-0.886324	0.000190	1.166340	H ·	0.874752	-0.000453	1.135384	
	Н	-1.861872	-0.937095	-0.334508	H ·	1.874334	-0.944059	-0.317757	
	Н	-1.862762	0.932197	-0.336781	H ·	1.876904	0.938560	-0.319604	
Frequency	-2606.4130	282.9838	426.0154	514.4156	-2512.0092	242.9633	404.2734	468.8546	
	647.5450	832.93431	1016.8343	1019.5061	617.7437	737.89831	948.9237	952.5699	
	1312.6500	1435.0372	1443.0391	1565.6106	1258.1216	1363.5085	1386.9589	1476.7871	
	2128.4430	3326.7868	3455.5149		2379.3500	3273.4314	3416.3222		

CH₂F-CF₂●

		HF/3	-21G(d)			HF/6-31G(d)				
Geometry	С	-0.550649	-0.000032	0.378809	С -	0.557486	-0.000007	0.398403		
-	С	0.909956	-0.001206	0.632828	С	0.916181	-0.000400	0.619462		
	F	-1.063500	1.110758	-0.180590	F -	1.037502	1.080331	-0.178258		
	F	-1.064837	-1.109846	-0.181716	F -	1.037702	-1.080144	-0.178678		
	Н	1.169036	0.879860	1.192289	Н	1.200203	0.884512	1.168779		
	F	1.629138	0.000423	-0.576752	F	1.569386	0.000262	-0.581248		
	Н	1.167908	-0.884436	1.189408	Н	1.199986	-0.886114	1.167693		
Frequency	95.8008	205.4600	360.4293	526.9793	94.9551	227.2807	389.7133	562.5845		
	735.8868	868.8681	1093.4320	1119.6390	802.5246	929.12391	1087.7984	1172.9895		
	1333.7914	1417.6964	1504.8663	1556.8854	1349.1838	1444.8727	1470.6375	1587.4373		
	1675.8338	3297.9881	3350.6885		1654.1574	3285.7842	3344.6983			

		HF/6-3	31G(d, p)		MP2/6-31G(d, p)				
Geometry	С	-0.556974	-0.000018	0.398108	С	-0.560273	-0.000038	0.406489	
	С	0.916120	-0.000490	0.619097	С	0.910593	-0.001188	0.634113	
	F	-1.037748	1.080276	-0.178273	F	-1.040761	1.102587	-0.184282	
	F	-1.038113	-1.079993	-0.178769	F	-1.042102	-1.101687	-0.185413	
	Н	1.198366	0.885053	1.170664	Н	1.190230	0.889767	1.192038	
	F	1.570157	0.000267	-0.581103	F	1.584925	0.000427	-0.588612	
	Η	1.198099	-0.886952	1.169416	Н	1.189284	-0.894348	1.189107	
Frequency	94.7264	227.3307	389.6110	562.7012	96.3105	5 208.2160 278.2094	370.0038	521.1019	
	802.4586 1345.7118 1635.2488	928.0408 1441.3178 3256.1958	1081.6532 1465.3288 3316.4270	1173.1233 1579.2628	753.9038 1254.7988 1554.3540	8 878.2984 8 1358.5635 9 3172.2997	1017.3581 1372.0165 3245.5998	1077.1461 1477.3168	

CF ₂ H-CHF●								
		HF/3	-21G(d)			HF/6-31	lG(d)	
Geometry	С	-0.566132	-0.044655	0.432086	С	-0.564222	-0.043995	0.428446
-	С	0.883248	-0.293090	0.585655	С	0.905458	-0.163218	0.618563
	F	-0.772896	1.213004	-0.071318	F	-0.861640	1.141793	-0.113573
	F	-1.138559	-0.941973	-0.447056	F	-1.014974	-0.992555	-0.414118
	Н	-1.062640	-0.139708	1.377539	Н	-1.092429	-0.146810	1.363153
	F	1.680605	0.094395	-0.441657	F	1.624229	0.109459	-0.459254
	Н	1.237596	-1.122654	1.156299	Н	1.316483	-0.938185	1.237303
Frequency	82.5871	233.0706	355.2779	526.6035	90.6962	2 246.1734	390.2725	562.0895
	678.5183	801.9170	949.9575	1186.0151	777.452	7 841.0943	984.3717	1224.5873
	1237.8158	1330.6572	1523.1430	1539.3600	1260.3219	9 1344.8181	1526.5354	1549.5809
	1579.3615	3346.2456	3411.2950		1596.8958	3 3327.5441	3393.6325	

		HF/6-3	81G(d, p)		MP2/6-31G(d, p)				
Geometry	С	-0.563902	-0.044098	0.428794	С	-0.562292	-0.041411	0.440868	
-	С	0.905479	-0.161876	0.618174	С	0.901584	-0.180588	0.625072	
	F	-0.862876	1.141008	-0.114331	F	-0.842611	1.173965	-0.116022	
	F	-1.014062	-0.993078	-0.413777	F	-1.039701	-1.004031	-0.421433	
	Н	-1.090848	-0.147418	1.366534	Н	-1.098229	-0.136651	1.385047	
	F	1.623833	0.108934	-0.460233	F	1.631473	0.098119	-0.467553	
	Н	1.319332	-0.928522	1.246728	Н	1.320020	-0.943825	1.264385	
Fraguanay	00 6273	246 2047	280 8426	562 4021	80 644	2 220 8624	364 1005	514 0001	
riequency	90.0373	240.3047	369.6430	J02.4951	09.044	5 230.6024 6 700.5257	504.1095	1112 2967	
	/00.4239	840.7887	982.7400	1223.7901	/04.5/4	5 /90.525/	947.6419	1112.2867	
	1259.8504	1343.9404	1517.7338	1541.5858	1166.576	5 1268.5731	1419.8554	1457.5378	
	1590.7265	3291.7376	3368.8044		1496.876	8 3185.9770	3306.9233		

(CF ₂ HCHF)• TS	S									
		HF/3	-21G(d)			HF/6-31G(d)				
Geometry	С	-0.525829	-0.041748	0.278018	С	-0.521774	-0.039373	0.277204		
-	С	0.824223	-0.577660	0.300250	С	0.820095	-0.588918	0.279942		
	F	-0.634736	1.279904	0.020120	F	-0.613053	1.249762	0.021300		
	F	-1.533612	-0.737619	-0.299018	F	-1.516402	-0.709913	-0.287908		
	Н	0.135073	-0.249969	1.474914	Н	0.140150	-0.273364	1.432676		
	F	1.855426	0.081069	-0.305311	F	1.813953	0.093537	-0.290061		
	Н	0.890861	-1.643766	0.313357	Н	0.909444	-1.657362	0.234468		
Frequency	-2622.3514	164.9146	230.0177	389.1623	-2662.3575	156.2433	246.2135	407.4071		
	540.8378	709.07151	874.0571	928.2277	570.7227	731.2211	867.6871	977.7162		
	1202.4030	1260.8588	1382.7646	1428.8594	1223.7643	1269.3181	1389.0749	1441.8153		
	1562.2087	1705.7754	3413.1075		1623.4211	1958.4646	3403.9471			

		HF/6-3	31G(d, p)		MP2/6-31G(d, p)				
Geometry	С	-0.520730	-0.039480	0.275237	С	-0.519427	-0.048265	0.271739	
-	С	0.819769	-0.592051	0.275415	С	0.828277	-0.558580	0.320310	
	F	-0.612250	1.250284	0.021350	F	-0.636514	1.269745	0.027995	
	F	-1.519745	-0.708037	-0.285173	F	-1.540053	-0.735384	-0.303481	
	Н	0.141810	-0.278214	1.424336	Н	0.127468	-0.208441	1.403420	
	F	1.816057	0.094254	-0.286589	F	1.853551	0.074617	0.320676	
	Н	0.907398	-1.661112	0.225465	Н	0.926582	-1.631289	0.409744	
Frequency	-2633.1260	157.3018	245.9846	407.8352	-2556.7602	2 168.4857	243.8996	373.6846	
	571.2127	728.2321	867.8895	977.5386	534.0379	671.1052	804.0621	910.6117	
	1223.9770	1273.8532	1391.1327	1441.0703	1104.1297	1196.7347	1350.9688	1401.4384	
	1622.9399	2015.2020	3379.8847		1523.3595	5 2308.6734	3300.6734		

$-CF_2\bullet$									
		HF/3	-21G(d)			HF/6-31G(d)			
Geometry	С	0.682479	-0.000004	-0.255877	С	-0.692157	-0.000012	-0.268669	
-	С	-0.693621	-0.000005	0.325709	С	0.693969	-0.000022	0.313722	
	F	1.383698	-1.109582	0.018684	F	-1.374749	1.080982	0.023576	
	F	1.383682	1.109592	0.018658	F	-1.374791	-1.080965	0.023645	
	Н	-0.681419	-0.000017	1.399847	Н	0.684167	-0.000067	1.393787	
	F	-1.342120	-1.115690	-0.119732	F	1.336143	1.086280	-0.116020	
	F	-1.342119	1.115688	-0.119704	F	1.336170	-1.086267	-0.116102	
Frequency	69.3263	197.2965	363.6376	403.0099	78.7359	216.8367	386.1255	438.9825	
	511.1129	551.1212	651.4352	1055.3756	532.8349	586.1466	690.6458	1121.8893	
	1219.0292	1299.7951	1367.1297	1422.2332	1260.9996	1303.7032	1388.9279	1413.2538	
	1535.2256	1559.2837	3320.9041		1544.1720	1605.4928	3311.0597		

		HF/6-3	31G(d, p)		MP2/6-31G(d, p)				
Geometry	С	-0.691883	-0.000013	-0.268626	С	-0.691702	-0.000002	-0.272048	
	С	0.693833	-0.000022	0.314239	С	0.693961	-0.000010	0.318671	
	F	-1.374661	1.080963	0.023413	F	-1.384149	1.104479	0.023301	
	F	-1.374702	-1.080946	0.023483	F	-1.384168	-1.104470	0.023319	
	Н	0.681902	-0.000068	1.396276	Н	0.683180	-0.000022	1.410694	
	F	1.336134	1.086022	-0.116181	F	1.345448	1.112322	-0.117212	
	F	1.336162	-1.086008	-0.116265	F	1.345454	-1.112320	-0.117234	
Frequency	78.9345	216.9817	386.1491	439.3408	75.5458	201.688	5 358.5157	405.1087	
	532.8666	586.3685	690.6012	1120.6170	495.1319	536.225	0 642.5455	1046.3521	
	1260.8840	1303.0365	1384.1574	1412.9247	1166.6397	1198.335	0 1296.0285	1305.4396	
	1535.2807	1600.2022	3276.6197		1432.4143	1484.785	0 3161.4557		

(CF ₂ HCF ₂)● TS								
		HF/3	-21G(d)			HF/6-31	G(d)	
Geometry	С	0.732565	0.023239	0.278232	С	-0.731676	-0.020880	0.276992
	С	-0.732568	-0.023366	0.278257	С	0.731672	0.020771	0.276927
	F	1.360420	-1.113787	-0.071822	F	-1.347876	1.084653	-0.077137
	F	1.335100	1.126187	-0.197325	F	-1.320639	-1.099519	-0.189027
	Н	0.000017	-0.000130	1.505524	Н	0.000041	-0.000148	1.467479
	F	-1.335397	-1.126130	-0.197342	F	1.320357	1.099572	-0.189002
	F	-1.360123	1.113829	-0.071785	F	1.348156	-1.084617	-0.077166
Frequency	-2650.4601	24.8572	189.9656	300.5277	-2719.5676	5 25.5050	220.9667	324.2422
1 5	478.1955	519.3211	533.2173	721.5931	508.2718	549.6814	567.4731	745.1414
	872.4067	1108.9238	1183.7304	1399.9899	930.5832	2 1164.3482	1210.1346	1423.8499
	1432.4085	1480.1628	1618.7668		1440.6384	1639.2670	1828.3032	

		HF/6-3	81G(d, p)			MP2/6-31G(d, p)				
Geometry	С	-0.731869	0.008425	0.275644	С	0.728080	0.048652	0.263693		
-	С	0.731856	-0.008458	0.275612	С	-0.728086	-0.048647	0.263703		
	F	-1.330793	1.096367	-0.155550	F	1.377410	-1.103452	0.027071		
	F	-1.341478	-1.090764	-0.109284	F	1.338861	1.117601	-0.280397		
	Н	-0.000054	-0.000124	1.459269	Н	0.000015	-0.000067	1.395554		
	F	1.341390	1.090779	-0.109258	F	-1.338843	-1.117599	-0.280405		
	F	1.330896	-1.096345	-0.155552	F	-1.377426	1.103453	0.027072		
Frequency	-2709.8323	10.8025	220.5337	325.3092	-2830.2340	65.8085	192.3124	294.8069		
	510.8808	547.9418	567.0815	738.3877	457.8389	512.7727	531.3308	649.6044		
	932.1457	1185.2486	1209.1896	1423.7982	869.3042	1090.5695	1229.7582	1289.8161		
	1442.2967	1656.6430	1893.8035		1353.0662	1560.8724	2247.5763			

^a Cartesian Coordinates in 10⁻¹⁰ m, Harmonic Frequencies in cm⁻¹

Table 8.3. Optimized geometries (in cartesian coordinates) and harmonic vibrational frequencies of the transition state for the addition reaction of hydroxyl radical with ethylene at Various Levels of Theory ^a

Y Z	
0.000000 0.000000	
0.000000 1.393402	
0.000000 -0.508744	
-0.904959 -0.521370	
0.904959 -0.521370	
0.917489 1.949387	
-0.917489 1.949387	
0.000000 0.371357	
97.2824	303.8793
820.0502	894.6449
1042.4911	1091.5151
1361.3785	1620.1230
3303.3420	3337.1397
3425.5082	3689.6692
Y Z	
0.000000 0.000000	
0.000000 1.392656	
0.000000 -0.530636	
-0.905960 -0.522238	
0.909809 -0.522547	
0.918560 1.948465	
-0.919913 1.948926	
01919910 10910	
-0.103619 0.313058	
-0.103619 0.313058 29.1328	291.6334
-0.103619 0.313058 29.1328 803.7238	291.6334 863.9639
-0.103619 0.313058 29.1328 803.7238 1019.2056	291.6334 863.9639 1068.9416
-0.103619 0.313058 29.1328 803.7238 1019.2056 1333.9788	291.6334 863.9639 1068.9416 1589.1711
-0.103619 0.313058 29.1328 803.7238 1019.2056 1333.9788 3302.0618	291.6334 863.9639 1068.9416 1589.1711 3331.6003
	YZ 0.000000 0.000000 0.000000 1.393402 0.000000 -0.508744 -0.904959 -0.521370 0.904959 -0.521370 0.917489 1.949387 -0.917489 1.949387 0.000000 0.371357 97.2824 820.0502 1042.4911 1361.3785 3303.3420 3425.5082 YZ 0.000000 0.000000 0.000000 1.392656 0.000000 -0.530636 -0.905960 -0.522238 0.909809 -0.522547 0.918560 1.948465

HF/6-311G(d,p)		
Х	Y Z	
C 0.000000	0.000000 0.000000	
C 0.000000	0.000000 1.391784	
0 1.848775	0.000000 -0.524408	
н -0.257864	-0.902501 -0.521050	
н -0.209500	0.913519 -0.522159	
н 0.091757	0.917108 1.946081	
н 0.020779	-0.921312 1.947663	
н 2.259960	-0.306944 0.271932	
-622.0502	89.9147	289.2661
454.6897	803.7444	859.9492
941.1051	1018.4797	1064.5063
1260.1850	1325.8044	1575.9404
1651.3707	3273.3299	3305.7802
3363.8175	3400.4892	4097.5035
MP2/6-31G(d,p)		
X	Y Z	
C 0.000000	0.000000 0.000000	
C 0.000000	0.000000 1.338274	
0 2.026396	0.000000 -0.328138	
H -0.149102	-0.911260 -0.556989	
H -0.073929	0.920208 -0.556679	
н 0.065928	0.919406 1.899757	
н -0.025166	-0.921194 1.901395	
H 2.354026	-0.304986 0.534311	
-538.3097	84.2334	238.6226
412.3790	795.9837	857.2300
962.0575	1061.0043	1121.0950
1282.5384	1392.5872	1531.8946
1694.6815	3259.3626	3279.7225
3360.1745	3387.6415	3828.4769
MP2/6-311G(d,p)		
X	Y Z	
C 0.000000	0.000000 0.000000	
C 0.000000	0.000000 1.339822	
0 2.021139	0.000000 -0.289777	
н -0.168666	-0.912824 -0.556511	
н -0.059386	0.926689 -0.555266	
н 0.093468	0.922706 1.899627	

H -0.040570	-0.925744	1.902983		
Н 2.315655	-0.474920	0.498999		
-574.0987	14	4.6504	245.0922	
421.9960	77	6.2456	842.6180	
941.9395	105	3.4058	1113.2027	
1256.3491	136	9.9311	1493.6855	
1657.2925	320	0.6911	3222.8827	
3298.9072	332	8.8345	3836.7464	
QCISD/6-31G(d,p)				
X	Y	Z		
C 0.000000	0.00000	0.00000		
C 0.000000	0.00000	1.361049		
0 2.064582	0.00000	-0.358357		
H -0.186070	-0.907329	-0.556252		
н -0.060724	0.923826	-0.555170		
Н 0.105881	0.917687	1.922429		
н -0.045667	-0.922003	1.925721		
Н 2.322840	-0.569458	0.387182		
-415.3498	13	0.8534	227.8474	
378.0775	77	1.4177	844.0484	
871.4434	98	2.8027	1024.7709	
1268.0165	134	3.6767	1522.1538	
1647.4654	322	2.9664	3246.2391	
3316.7820	334	5.4286	3793.8072	

^a Cartesian Coordinates in 10⁻¹⁰ m, Harmonic Frequencies in cm⁻¹

Table 8.4. Optimized geometries (in cartesian coordinates) and harmonic vibrational

frequencies of OH, chloroethylenes and transition states for the reaction of

OH	[
	Х	Y	Z	
0	0.00000	0.00000	-0.106100	
Η	0.00000	0.00000	0.848796	
40	53.8155			
CH	2=CHCl			
	Х	Y	Z	
С	-0.743494	0.00000	0.159464	
С	-0.749678	0.00000	1.470579	
Cl	0.713121	0.00000	-0.787249	
Η	-1.630628	0.00000	-0.442281	
Η	-1.687909	0.00000	1.995072	
Η	0.154514	0.00000	2.050187	
4	30.8999	69	96.8834	772.9946
10	76.7576	1089.1716		1138.6917
14	22.5750	1532.2360		1839.1748
33	29.8962	340)3.9023	3425.4379
0.11				
OH	ICH_2 -CHCI (TS	S, OH at CH_2 end)		
	Х	Y	Z	
C	0.000000	0.000000	0.000000	
С	0.000000	0.000000	1.386603	
0	1.853124	0.000000	-0.542377	
CT	0.131270	1.473023	2.289961	
Η	0.079017	-0.886673	1.982207	
Н	-0.244118	-0.920202	-0.494252	
Η	-0.240103	0.905068	-0.523132	
Η	2.196635	0.637499	0.074533	
6	04 2029	1 '	02 0456	101 1025
-0	04.2030	т 2 И 1	4 8053	644 8802
2 7	60 9720	41	10 2200	1002 6652
10	11 2675	_ 9 ر 1 1	11 6065	1002.0052
1 /I	14.3073 16 1201	164	11.0905 06.280 <i>1</i>	1277.022J 3330 /510
2/1	70.7341 01 7950		10 0/20	1000 05/1
54	04./000	344	10.0432	4099.0341

hydroxyl radical with chloroethylenes at the HF/6-31G(d,p) level of theory ^a

CH ₂ -CHCl OH (TS, OH at CHCl end)				
X	Y Z			
C 0.00000	0.000000 0.000000			
C 0.000000	0.000000 1.389843			
0 1.884912	0.000000 -0.451999			
Cl -0.475684	-1.481599 -0.812692			
н -0.277934	0.865672 -0.564035			
Н 0.073892	0.934670 1.914088			
Н 0.072326	-0.914861 1.946922			
Н 2.152245	-0.745586 0.075651			
-614.4397	164.0625	246.9105		
305.9095	428.6509	515.7482		
743.0279	788.5476	946.3676		
1050.5988	1119.0089	1295.8642		
1433.5056	1608.3160	3320.7598		
3419.2613	3433.5975	4093.8556		
CH ₂ =CCl ₂				
Х	Y Z			
C 0.000000	0.000000 0.000000			
C 0.000000	0.000000 1.310750			
Cl 1.452799	0.000000 -0.936160			
Cl -1.452849	0.000000 -0.936120			
н -0.923972	0.000000 1.855867			
н 0.923972	0.000000 1.855868			
324.4828	410.6174	522.0643		
654.0985	777.7882	877.1737		
1067.8313	1219.1428	1536.2544		
1847.3524	3348.7277	3445.9101		
OHCH ₂ -CCl ₂ (TS	, OH at CH ₂ end)			
X	Y Z			
C 0.000000	0.000000 0.000000			
C 0.000000	0.000000 1.387545			
0 1.858192	0.000000 -0.561727			
Cl 0.076827	1.471733 2.284958			
Cl 0.183564	-1.445965 2.296925			
н -0.283778	0.904969 -0.500143			
н -0.205206	-0.924875 -0.499676			
H 2.212982	0.654186 0.032338			

-586.0828	101.8126	137.7371
185.7027	319.3287	387.2939
413.2539	630.9007	840.7231
916.5835	972.1696	1028.0289
1229.0238	1360.8394	1613.5493
3349.8063	3455.6917	4087.3563

CH ₂ -	CCl2. OH (TS.	OH at CCl ₂ end)				
	x	Y		7.		
C	0 000000	0 00000	0 (00000		
C	0.000000	0.000000	1.1	397216		
0	1.893755	0.000000	-0.3	380404		
Cl -	-0.534983	-1.446696	-0.8	813505		
Cl -	-0.411530	1.467493	-0.8	827868		
Н	0.011280	-0.930020	1.9	932118		
H	0.155226	0.921302	1.9	922970		
Η	2.155856	-0.814136	0.0	038955		
-623	8.9848	22	10.869	97	218.7997	
235	5.2036	33	37.820	05	372.9218	
388	3.4292	51	18.04	59	627.5600	
762	2.9727	85	54.31!	51	988.4949	
1210	0.9135	133	34.312	25	1594.4518	
3333	3.7929	344	49.313	33	4083.1499	
cis-C	HCl=CHCl					
	Х	Y		Z		
С	0.00000	0.00000	0.0	00000		
С	0.00000	0.00000	1.3	312019		
Cl	1.398332	0.00000	-1.0	003887		
Н -	-0.926271	0.00000	-0.5	539003		
Cl	1.398332	0.00000	2.3	315907		
н -	-0.926271	0.00000	1.8	851022		
183	3.5235	40	53 . 363	18	619.9044	
769	9.8197	82	13.889	92	931.8506	
1060	.5788	133	34.342	11	1452.6427	
1841	.0851	339	96.25	03	3419.9867	
cis-C	HCl-CHClOI	H (TS)				
	X	Y		Z		
С	0.000	0.000	0000	0.00000		
С	0.000	0.000	0000	1.394244		
0	1.890	0.000	0000	-0.430462		

	Cl -0.4793 H -0.3003 Cl 0.1699 H 0.1113	393 -1.431270 -0.873399 175 0.896198 -0.502838 976 -1.411392 2.358267 304 0.924211 1.924780	
	H 2.1124 -618.4592 222.4625 595.1717 889.6617 1248.7383 3399.1819	439 -0.826665 -0.012694 112.5229 254.3161 656.6438 972.6341 1429.7366 3422.2302	187.1232 356.9918 732.7976 1041.7550 1475.8287 4085.9532
-	trans-CHCl=CHCl		
-	X C 0.000000 C 0.000000 Cl 1.471547 H -0.889950 Cl -1.471552 H 0.889946	Y Z 0.000000 0.000000 0.000000 1.310216 0.000000 -0.909580 0.000000 -0.595934 0.000000 2.219796 0.000000 1.906155	
	237.0797 888.1855 1059.9669 1836.6932	260.6687 922.3176 1345.0172 3417.4633	380.2673 930.1357 1428.0867 3423.3671
-	trans-CHCl-CHClC	OH (TS)	
	X C 0.000000 C 0.000000 O 1.888120 Cl -0.489565 H -0.283263 Cl 0.135103 H 0.081720 H 2.160153	YZ0.0000000.0000000.0000001.3904950.000000-0.484319-1.496817-0.7626140.866061-0.5600621.4773212.260062-0.8935881.975147-0.7730050.000736	
	-593.7771 231.9202 374.4993 896.3971 1300.6875 3408.8034	121.7907 262.1264 647.3967 966.1895 1329.1638 3433.8754	144.6498 328.2918 846.2345 1031.3189 1510.1659 4087.7895

CCl ₂ =CHCl		
Х	Y Z	
Н 0.00000	0.000000 0.000000	
C 0.000000	0.000000 1.070516	
C 1.131303	0.000000 1.739534	
Cl 2.636283	0.000000 0.891484	
Cl 1.258190	0.000000 3.450433	
Cl -1.560300	0.000000 1.787633	
189 2423	230 3148	301 8843
420 2909	536 0136	685 9917
915 0593	957 5517	1042 4109
1409.2905	1842.5256	3423.4619
OHCCl ₂ -CHCl (1	$\frac{S, OH \text{ at } CCl_2 \text{ end}}{V}$	
C 0.00000	0.00000 0.00000	
C 0.00000	0.000000 1.404845	
0 1.902438	0.000000 - 0.374465	
$C_{1} = 0.552556$	-1 392674 -0 870399	
C1 = 0.352550	1513488 = 0.741236	
C1 0.400220	-1 $A31AAA$ 2 33685A	
U 0 152569	1.451444 2.550054 0.017059 1.024774	
H 2.138596	-0.857160 -0.030802	
-613.5972	110.2144	173.3470
224.5121	237.6503	254.9267
306.7913	367.3506	420.0111
638.4431	656.9806	888.7641
956.8754	1057.9035	1320.3419
1460.7206	3420.2971	4077.0105
CCl ₂ -CHClOH (T	S, OH at CHCl end)	
X	Y Z	
C 0.000000	0.000000 0.000000	
C 0.000000	0.000000 1.398738	
0 1.891290	0.000000 -0.462269	
Cl -0.031431	1.426269 2.347674	
Cl 0.356846	-1.461602 2.223636	
Cl -0.660246	1.342558 -0.870823	
н -0.140256	-0.938904 -0.491946	
н 2.127483	0.860486 -0.128317	
-598.4447	82.1834	141.5296
	01.1001	

189.2674	201.2402	230.9963
304.6253	398.6876	425.0870
657.6113	865.0965	961.0236
1007.6275	1056.0935	1338.1560
1468.9723	3431.3783	4083.4440

^a Cartesian Coordinates in 10⁻¹⁰ m, Harmonic Frequencies in cm⁻¹

Table 8.5. Optimized geometries (in cartesian coordinates) and harmonic vibrational frequencies of OH, tetrachloroethylene and transition state for the reaction of OH with tetrachloroethylene at the HF/6-31G(d) level of theory ^a

OH					
	Х	Y	Z		
Η	0.00000	0.00000	-0.851973		
0	0.00000	0.00000	0.106497		
399	96.9028				
CCl	2=CCl ₂				
	Х	Y	Z		
Cl	0.00000	0.00000	0.00000		
С	0.00000	0.00000	1.717531		
С	1.111195	0.00000	2.433686		
Cl	2.675357	0.00000	1.724243		
Cl	1.111195	0.00000	4.151217		
Cl	-1.564163	0.00000	2.426974		
11	0.1237	19	8.0931	262.9232	
33	84.9504	34	4.5973	378.9579	
48	37.9528	64	3.2111	850.2853	
99	9.6350	111	6.9385	1824.1380	
OH	CCl ₂ -CCl ₂ (TS)			
	Х	Y	Z		
С	-0.071074	0.007984	-0.633649		
С	-0.112144	0.012372	0.784163		
0	1.850958	0.001765	-0.941990		
Cl	-0.596902	-1.424696	-1.460419		

Cl -0.467188 Cl 0.122104 Cl 0.013937 H 2.068476	1.465596 -1.468829 1.449491 1.677889 -1.446741 1.678844 -0.878298 -0.634402	
-595.5711	65.0221	139.8073
184.0388	217.3923	228.2274
253.8878	291.8522	356.1286
363.1569	426.8795	477.2412
824.0940	929.8777	1022.1888
1105.4111	1366.8666	4011.5541

^a Cartesian Coordinates in 10⁻¹⁰ m, Harmonic Frequencies in cm⁻¹.

					D	/ Å				
T / K	2.064	2 083	2 102	2 1 2 2	$\frac{K_{c-c}}{2.142}$	$\frac{7}{2163}$	2 1 8 2	2 202	2 221	2 241
	2.004	2.085	2.105	2.123	2.145	2.105	2.102	2.202	2.221	2.241
200	31.955	19.249	10.654	7.9340	5.8507	5.1555	4.6594	5.1596	4.6573	5.5379
250	14.481	10.028	6.1927	5.0366	3.9577	3.6527	3.4014	3.8198	3.4626	4.1156
300	9.0072	6.8530	4.5510	3.9293	3.2217	3.0688	2.9164	3.3094	3.0074	3.5778
350	6.7103	5.4638	3.8220	3.4451	2.9121	2.8383	2.7374	3.1315	2.8503	3.3952
400	5.5861	4.7877	3.4817	3.2427	2.8045	2.7816	2.7129	3.1233	2.8460	3.3945
450	4.9974	4.4585	3.3417	3.1930	2.8112	2.8268	2.7812	3.2186	2.9350	3.5051
500	4.6927	4.3248	3.3199	3.2383	2.8922	2.9406	2.9136	3.3862	3.0896	3.6938
550	4.5570	4.3117	3.3764	3.3496	3.0268	3.1056	3.0950	3.6099	3.2950	3.9434
600	4.5314	4.3834	3.4893	3.5111	3.2039	3.3124	3.3171	3.8806	3.5432	4.2443
650	4.5831	4.5176	3.6463	3.7135	3.4166	3.5553	3.5750	4.1931	3.8295	4.5908
700	4.6929	4.7012	3.8398	3.9512	3.6610	3.8309	3.8657	4.5443	4.1509	4.9797
800	5.0429	5.1864	4.3185	4.5193	4.2357	4.4726	4.5391	5.3557	4.8933	5.8774
900	5.5266	5.8016	4.0936	5.1994	4.9168	5.2287	5.3300	6.3072	5.7636	6.9294
1000	6.1189	6.5299	5.5854	5.9850	5.7002	6.0962	6.2365	7.3973	6.7603	8.1343

Table 8.6. Sum of rate constants (k_{TST}) at each point along with the reaction path at various temperatures for the reaction OH +

 $^{a}\,k_{TST}\,in\,10^{-12}\,cm^{3}$ molecule $^{-1}$ s $^{-1};$ bold number is the minimum at each temperature.

 $CH_2 \text{=} CHCl \rightarrow adduct \ (OH \ at \ CH_2 \ end)^a$

_

_

					R	/ Å				
T / K	2.069	2.089	2.108	2.128	2.148	2.167	2.187	2.206	2.225	2.245
200	69.223	23.857	11.918	8.2572	6.3926	5.9279	5.9200	7.2534	8.6377	11.891
250	277.23	110.03	61.514	45.416	36.847	34.841	34.744	41.330	47.779	62.418
300	740.89	322.87	194.50	149.79	125.38	120.12	119.68	139.63	158.30	199.78
350	1568.9	730.70	464.21	368.40	315.32	304.92	303.67	349.45	390.75	481.21
400	2865.8	1402.6	927.20	752.54	654.96	637.79	634.97	723.22	800.41	967.84
450	4731.2	2406.4	1640.7	1355.0	1194.7	1169.6	1164.2	1315.4	1444.2	1721.7
500	7261.3	3808.4	2661.3	2228.5	1985.3	1952.0	1942.6	2180.9	2379.2	2804.3
550	10548	5672.5	4044.4	3425.2	3077.3	3036.0	3021.0	3373.8	3661.4	4275.7
600	14680	8060.7	5844.1	4996.0	4520.1	4472.1	4449.5	4947.2	5345.5	6194.0
650	19742	11032	8112.3	6990.1	6361.9	6309.2	6276.7	6952.6	7484.5	8615.7
700	25815	14645	10900	9455.3	8649.2	8594.8	8549.7	9439.8	10130	11595
800	41303	24009	18222	15982	14739	14694	14614	16050	17134	19432
900	61729	36567	28179	24923	23132	23117	22988	25142	26730	30100
1000	87635	52701	41108	36604	34145	34188	33993	37054	39265	43961

Table 8.7. Sum of rate constants (k_{TST}) at each point along with the reaction path at various temperatures for the reaction OH +

 $CH_2 = CHCl \rightarrow adduct \ (OH \ at \ CHCl \ end)^a$

 $^{a}k_{TST}$ in 10^{-17} cm³ molecule⁻¹ s⁻¹; bold number is the minimum at each temperature.

					R	, / Å				
T / K	2.043	2.083	2.103	2.123	2.143	2.163	2.182	2.202	2.221	2.241
200	494.29	136.86	62.953	44.078	32.189	30.211	22.515	23.938	22.429	24.871
250	143.93	53.749	29.193	22.626	17.895	17.819	13.856	15.229	14.540	16.306
300	66.931	35.549	18.543	15.390	12.842	13.315	10.649	11.977	11.582	13.096
350	40.526	21.396	14.847	12.249	10.624	11.345	9.2560	10.591	10.336	11.762
400	28.857	16.968	11.844	10.722	9.5749	10.457	8.6610	10.042	9.8999	11.288
450	22.840	14.626	10.699	9.9740	9.1130	10.131	8.4895	9.9471	9.8315	11.290
500	19.429	13.326	10.121	9.6610	8.9911	10.140	8.5771	10.137	10.064	11.599
550	17.388	12.618	9.8842	9.6200	9.0896	10.374	8.8422	10.525	10.488	12.120
600	16.143	12.281	9.8716	9.7654	9.3448	10.772	9.2405	11.065	11.062	12.813
650	15.398	12.193	10.018	10.049	9.7199	11.300	9.7462	11.731	11.756	13.649
700	14.989	12.286	10.286	10.440	10.193	11.937	10.344	12.506	12.564	14.611
800	14.823	12.852	11.094	11.483	11.381	13.489	11.777	14.344	14.465	16.872
900	15.217	13.786	12.188	12.808	12.845	15.369	13.498	16.534	16.722	19.551
1000	15.981	14.998	13.516	14.378	14.557	17.550	15.486	19.058	19.320	22.632

Table 8.8. Sum of rate constants (k_{TST}) at each point along with the reaction path at various temperatures for the reaction OH

+ CH_2 = $CCl_2 \rightarrow adduct (OH at CH_2 end)^a$

^a k_{TST} in 10⁻¹² cm³ molecule⁻¹ s⁻¹; bold number is the minimum at each temperature.

				R _{c-o} / Å			
1 / K	2.057	2.077	2.097	2.117	2.137	2.157	2.177
200	4.1558	2.6858	1.9296	1.8592	1.6903	1.9714	2.2996
250	4.315	10.246	7.8538	7.8810	7.2527	8.3907	9.5174
300	34.859	26.716	21.378	22.062	20.461	23.558	26.227
350	69.379	55.841	46.069	48.529	45.248	51.932	57.047
400	121.28	101.28	85.480	91.467	85.610	98.041	106.62
450	193.82	166.56	143.09	155.01	145.51	166.36	179.49
500	290.13	255.13	222.27	243.22	228.81	261.27	280.10
550	413.24	370.28	326.31	360.02	339.28	387.03	412.76
600	566.04	515.22	458.38	509.24	480.58	547.76	581.60
650	751.32	693.00	621.52	694.54	656.22	747.44	790.64
700	971.76	906.60	818.67	919.50	869.60	989.88	1043.7
800	1528.3	1452.4	1326.2	1501.9	1422.5	1617.7	1696.7
900	2255.1	2174.1	2002.3	2282.2	2164.0	2459.1	2568.4
1000	3169.9	3091.5	2866.8	3284.4	3117.0	3539.8	3684.8

Table 8.9. Sum of rate constants (k_{TST}) at each point along with the reaction path at various

temperatures for the reaction $OH+CH_2{=}CCl_2 \rightarrow adduct~(OH~at~CCl_2~end)^{\,a}$

 ${}^{a}k_{TST}$ in 10^{-16} cm³ molecule⁻¹ s⁻¹; bold number is the minimum at each temperature.

T/V			R _{c-o} / Å		
1/K —	2.123	2.122	2.162	2.181	2.201
200	4.9650	3.9505	3.6470	3.9217	4.5543
250	23.480	19.544	18.413	19.707	22.453
300	70.205	60.206	57.490	61.342	69.009
350	161.09	141.12	136.05	144.85	161.48
400	312.35	278.01	269.96	286.95	317.74
450	539.93	486.55	475.11	504.37	555.53
500	859.30	782.02	767.04	813.45	892.16
550	1285.4	1179.2	1160.8	1230.0	1344.4
600	1832.5	1692.5	1671.1	1769.4	1928.3
650	2514.5	2335.4	2311.9	2446.4	2659.3
700	3344.5	3121.4	3096.6	3275.0	3552.5
800	5498.8	5172.2	5149.2	5440.9	5881.2
900	8390.8	7940.2	7926.3	8369.4	9021.7
1000	12108	11513	11518	12155	13073

Table 8.10. Sum of rate constants (k_{TST}) at each point along with the reaction path at various

temperatures for the reaction OH + cis-CHCl=CHCl \rightarrow adduct a

 $^{a}k_{TST}$ in 10^{-16} cm³ molecule⁻¹ s⁻¹; bold number is the minimum at each temperature.

T/V			R _{c-o} / Å		
1/K —	2.173	2.192	2.211	2.230	2.249
200	5.6589	5.3719	4.9057	6.8131	7.4567
250	27.369	26.530	24.254	33.024	34.906
300	82.962	81.587	74.627	100.40	103.68
350	192.18	191.00	174.76	233.24	236.90
400	375.34	376.06	344.13	456.73	458.12
450	652.55	657.97	602.13	795.88	790.56
500	1043.4	1057.5	967.78	1275.2	1256.8
550	1567.0	1594.9	1459.5	1918.3	1878.5
600	2241.6	2289.6	2095.1	2748.2	2676.8
650	3084.9	3160.5	2891.8	3786.9	3671.7
700	4113.7	4225.5	3865.9	5055.6	4882.5
800	6792.8	7006.8	6409.4	8363.4	8025.6
900	10401	10764	9844.9	12825	12245
1000	15052	15619	14283	18581	17670

Table 8.11. Sum of rate constants (k_{TST}) at each point along with the reaction path at various

temperatures for the reaction OH + trans-CHCl=CHCl \rightarrow adduct a

 $^{a}k_{TST}$ in 10^{-16} cm³ molecule⁻¹ s⁻¹; bold number is the minimum at each temperature.

T / V	R _{c-o} / Å								
1 / K =	2.044	2.064	2.084	2.104	2.124	2.144			
200	152.33	76.887	45.384	4.5229	25.684	25.778			
250	262.67	154.98	102.62	16.454	66.148	68.126			
300	402.21	263.52	188.46	41.511	132.56	139.04			
350	573.44	405.06	306.14	84.690	292.26	243.80			
400	779.22	582.52	458.94	150.47	360.33	387.30			
450	1022.5	798.97	650.22	243.46	529.71	574.24			
500	1306.1	1057.5	883.28	367.84	741.20	809.15			
550	1632.8	1361.1	1161.4	527.65	998.51	1096.4			
600	2005.2	1712.7	1487.6	726.76	1305.2	1440.3			
650	2425.2	2115.2	1865.1	968.91	1664.7	1844.7			
700	2896.8	2571.1	2296.6	1257.6	2080.4	2313.7			
800	3999.4	3653.7	3333.0	1988.4	3092.5	3460.0			
900	5329.8	4979.8	4617.7	2944.8	4365.4	4907.3			
1000	6903.6	6567.5	6170.4	4150.6	5921.1	6681.4			

Table 8.12. Sum of rate constants (k_{TST}) at each point along with the reaction path at various

temperatures for the reaction $OH + CCl_2=CHCl \rightarrow adduct (OH at CCl_2 end)^a$

 $^{a}k_{TST}$ in 10^{-16} cm³ molecule⁻¹ s⁻¹; bold number is the minimum at each temperature.

T / V			R _{c-o} / Å		
I/K —	2.145	2.165	2.185	2.205	2.224
200	3.6385	2.4850	2.8470	2.5964	3.0186
250	2.8324	2.0231	2.3649	2.1835	2.5313
300	2.5511	1.8764	2.2259	2.0722	2.3995
350	2.4865	1.8673	2.2401	2.0980	2.4284
400	2.5472	1.9352	2.3422	2.2036	2.5508
450	2.6615	2.0546	2.5048	2.3651	2.7381
500	2.8400	2.2136	2.7147	2.5707	2.9770
550	3.0624	2.4057	2.9652	2.8146	3.2604
600	3.3231	2.6270	3.2527	3.0937	3.5847
650	3.6190	2.8774	3.5750	3.4061	3.9478
700	3.9481	3.1540	3.9312	3.7510	4.3457
800	4.7025	3.7856	4.7436	4.5370	5.2625
900	5.5830	4.5213	5.6890	5.4517	6.3260
1000	6.5900	5.3622	6.7705	6.4974	7.5425

Table 8.13. Sum of rate constants (k_{TST}) at each point along with the reaction path at various

temperatures for the reaction $OH + CCl_2=CHCl \rightarrow adduct (OH at CHCl end)^a$

 $^{a}k_{TST}$ in 10^{-12} cm³ molecule⁻¹ s⁻¹; bold number is the minimum at each temperature.

BIBLIOGRAPHY

- Abbatt, J. P. D. and Anderson, J. G. (1991). J. Phys. Chem. 95: 2382.
- Aders, W.-K., Pangritz, D., et al. (1975). Ber. Bunsenges. Phys. Chem. 79: 90.
- Afeefy, H. Y., Liebman, J. F., et al. (2000). Neutral Thermochemical Dara. <u>NIST</u> <u>Chemistry WebBook, NIST Standard Reference Datrabase Number 69</u>. W. G. Mallard and P. J. Linstrom. Gaithersburg, MD, NIST.
- Allen, H. C. and Plyler, E. K. (1956). J. Chem. Phys. 25: 1132.
- Anderson, J. B. (1973). J. Chem. Phys. 58: 4684.
- Anderson, J. B. (1975). <u>J. Chem. Phys.</u> 62: 2446.
- Andreae, M. O. and Raemdonck, H. (1983). Science 211: 744.
- Astholz, D. C., Glänzer, K., et al. (1979). J. Chem. Phys. 70: 2409.
- Atkinson, R. (1985). Chem. Rev. 85: 69.
- Atkinson, R. (1989). J. Phys. Chem. Ref. Data, Monogr. 1.
- Atkinson, R. and Carter, W. P. L. (1984). Chem. Rev. 84: 437.
- Aubanel, E. E. and Wardlaw, D. M. (1989). J. Phys. Chem. 93: 3117.
- Baulch, D. L., Cobos, C. J., et al. (1992). J. Phys. Chem. Ref. Data 21: 411.
- Baulch, D. L., Drysdale, D. D., et al. (1976). Evaluated Kinetic Data for High-

Temperature Reactions. London, Butterworth.

- Baulch, D. L., Duxbury, J., et al. (1981). J. Phys. Chem. Ref. Data 10.
- Benson, S. W. (1976). Thermochemical Kinetics. New York, John Wiley & Sons.
- Benson, S. W. and Haugen, G. R. (1967). J. Phys. Chem. 71: 1735.

- Berry, R. J., Ehlers, C. J., et al. (1997). Chem. Phys. Lett. 269: 107.
- Bishop, D. M. and Laidler, K. J. (1970). Trans. Faraday Soc. 66: 1685.
- Bradley, J. N., Trueman, S. P., et al. (1973). J. Chem. Soc., Faraday Trans. 1 69: 416.
- Brasseur, G. P., Orlando, J. J., et al., Eds. (1999). <u>Atmospheric Chemistry and Global</u> Change. New York, Oxford University Press.
- Braun, W., Herron, J. T., et al. (1988). Int. J. Chem. Kinet. 22: 51.
- Braun, W. and Lenzi, M. (1967). Faraday Soc. 44: 252.
- Brouard, M., Lightfoot, P. D., et al. (1986). J. Phys. Chem. 90: 445.
- Chadwell, H. M. and Titani, T. (1933). J. Am. Chem. Soc. 55: 1363.
- Chang, J. S. and Kaufman, F. (1977). J. Chem. Phys. 66: 4989.
- Charlson, R. J., Lovelock, J. E., et al. (1987). Nature 326: 655.
- Chase, M. W. J., Ed. (1998). <u>NIST-JANAF Thermochemical Tables</u>. Woodbury, N. Y., the American Chemical Society and the American Institute of Physics.
- Chase, M. W. J., Davies, C. A., et al. (1985). J. Phys. Chem. Ref. Data 14: Suppl. 1.
- Chen, K. S., Elson, I. H., et al. (1973). J. Am. Chem. Soc. 95: 5341.
- Chen, Y., Rauk, A., et al. (1990). J. Chem. Phys. 93: 6620.
- Chesnavich, W. J., Su, T., et al. (1980). J. Chem. Phys. 72: 2641.
- Chuang, Y., Corchado, J. C., et al. (1998). POLYRATE 8.0. Minneapolis, University of Minnesota.
- Clyne, M. A. A. and Ono, Y. (1983). Chem. Phys. Lett. 94: 597.
- Cupitt, L. T. and Glass, G. P. (1970). Trans. Faraday Soc. 66: 3007.
- Curtiss, L. A., Raghavachari, K., et al. (1997). J. Chem. Phys. 106: 1063.

- Curtiss, L. A., Raghavachari, K., et al. (1998). J. Chem. Phys. 109: 7764.
- Curtiss, L. A., Redfern, P. C., et al. (1999). J. Chem. Phys. 110: 4703.
- Davenport, J. E., Ridley, B. A., et al. (1972). J. Chem. Phys. 57: 520.
- Davis, D., Machado, U., et al. (1977). J. Phys. Chem. Ref. Data 6: 871.
- Ding, L. and Marshall, P. (1992). J. Phys. Chem. 96: 2197.
- Ding, L. and Marshall, P. (1993). J. Chem. Soc. Faraday Trans. 89: 419.
- Donovan, W. H. and Famini, G. R. (1994). J. Phys. Chem. 98: 7811.
- Edge, D. J. and Kochi, J. K. (1972). J. Am. Chem. Soc. 94: 6485.
- Edney, E. O., Kleindienst, T. E., et al. (1986). Int. J. Chem. Kinet. 18: 1355.
- Engel, B. and Peyerimhoff, D. D. (1989). J. Phys. Chem. 93: 4462.
- EPA (1990). Clean Air Act of 1990, 42USC.7412, Title I, Part A, Sec. 112, 53, U. S. Environmental Protection Agency.
- Evans, M. G. and Polyani, M. (1935). Trans. Faraday Soc. 31: 875.
- Eyring, H. (1935). J. Chem. Phys. 3: 107.
- Fairchild, P. W., Smith, G. P., et al. (1982). Proc. Combust. Inst. 19: 107.
- Fairchild, P. W., Smith, G. P., et al. (1982). 19th Symposium (Int.) on Combustion, The Combustion Institute.
- Farrar, J. M. and Lee, Y. T. (1976). J. Chem. Phys. 65: 1414.
- Finlayson-Potts, B. J. and Pitts, J. N., Jr. (1986). <u>Atmospheric Chemistry: Fundamentals</u> <u>and Experimental Techniques</u>. New York, John Wiley & Sons, Inc.
- Finlayson-Potts, B. J. and Pitts, J. N., Jr. (2000). <u>Chemistry of the Upper and Lower</u> <u>Atmosphere</u>. San Diego, Academic Press.

- Frisch, M., Frisch, Æ., et al. (1995). <u>Gaussian 94 User's Reference</u>. Pittsburgh, PA, Gaussian, Inc.
- Frisch, M. J., Trucks, G. W., et al. (1995). Gaussian 94 (Revision D.2). Pittsburgh, PA, Gaussian, Inc.
- Fulle, D., Hamann, H. F., et al. (1997). Ber. Bunsenges. Phys. Chem. 101: 1433.
- Gardiner, W. C., Jr., Ed. (2000). <u>Gas-Phase Combustion Chemistry</u>. New York, Springer-Verlag.
- GaussView (1998). . Pittsburgh, PA, Gaussian, Inc.
- Gillbert, D., Goyer, M., et al. (1980). An Exposure and Risk Assessment for Tetrachloroethylene, EPA-440/4-85-015.
- Glassman, I. (1996). <u>Combustion</u>. San Diego, Academic Press.
- Gonzalez, C. and Schlegel, H. B. (1989). J. Chem. Phys. 90: 2154.
- Gonzalez, C. and Schlegel, H. B. (1990). J. Phys. Chem. 94: 5523.
- Goumri, A., Yuan, W.-J., et al. (1993). Chem. Phys. 177: 233.
- Greiner, N. R. (1970). J. Chem. Phys. 53: 1284.
- Guerra, M. (1992). J. Am. Chem. Soc. 114: 2077.
- Gurvich, L. V., Veyts, I. V., et al., Eds. (1992). <u>Thermodynamic Properties of Individual</u> <u>Substances</u>. New York, Hemisphere.
- Haworth, N. L., Smith, M. H., et al. (2000). J. Phys. Chem. A 104: 7600.
- Hoffmann, R., Radom, L., et al. (1972). J. Am. Chem. Soc. 94: 6221.
- Howard, C. J. (1976). J. Chem. Phys. 65: 4771.
- Hoz, T., Sprecher, M., et al. (1985). J. Phys. Chem. 89: 1664.

Hu, X., Goumri, A., et al. (2001). J. Phys. Chem. in press.

- Huber, K. P. and Herzberg, G. (1979). <u>Constants of Diatomic Molecules</u>. New York, Van Nostrand Reinhold.
- Husain, D. and Slater, N. K. H. (1980). J. Chem. Soc., Faraday Trans. 2 76: 276.
- Hynes, A. J. and Wine, P. H. (Chapter 3, in press). Combustion Chemistry. W. C. Gardiner, Jr.
- IARC (1979). Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. Lyon, France, International Agency for Research on Cancer, World Health Organization. 19.
- Ihee, H., Zewail, A. H., et al. (1999). J. Phys. Chem. A 103: 6638.
- Jacox, M. E. (1981). <u>Chem. Phys.</u> 58: 289.
- Johnston, H. S. (1966). Gas-Phase Reaction Rate Theory. New York, Ronald.

Jursic, B. S. (1997). <u>J. Chem. Soc. Perkin Trans.</u> 2: 637.

- Kato, S. and Morokuma, K. (1980). J. Chem. Phys. 72: 206.
- Kawamura, T., Edge, D. J., et al. (1972). J. Am. Chem. Soc. 94: 1752.
- Keck, J. C. (1960). J. Chem. Phys. 32: 1035.
- Keck, J. C. (1967). <u>Adv. Chem. Phys.</u> 13: 85.
- Kellogg, W. W., Cadle, R. D., et al. (1972). Science 175: 587.
- Kiefer, J. H. (1975). J. Chem. Phys. 62: 1354.
- Kielhorn, J., Melber, C., et al. (2000). Environ. Health Perspect 108: 579.
- Kirchner, K., Helf, D., et al. (1990). Ber. Bunsen-Ges. Phys. Chem. 94: 77.

Kleinbaum, D. G., Kupper, L. L., et al. (1998). Applied Regression Analysis and Other

Multivariable Methods. Pacific Grove, Duxbury Press.

- Klemm, R. B. and Stief, L. J. (1974). J. Chem. Phys. 61: 4900.
- Klippenstein, S. J. (1990). Chem. Phys. Lett. 170: 71.
- Klippenstein, S. J. (1991). J. Chem. Phys. 94: 6469.
- Klippenstein, S. J. (1992). J. Chem. Phys. 96: 367.
- Klippenstein, S. J. (1993). Chem. Phys. Lett. 214: 418.
- Klippenstein, S. J. (1994). J. Phys. Chem. 98: 11459.
- Klippenstein, S. J. and Marcus, R. A. (1987). J. Chem. Phys. 87: 3410.
- Klippenstein, S. J. and Marcus, R. A. (1988). J. Phys. Chem. 92: 3105.
- Kohida, T., Kotaka, M., et al. (1987). <u>Bull. Chem. Soc. Jpn.</u> 60: 3131.
- Kotaka, M. S., S. Shimokoshi, K. (1987). J. Fluorine Chem. 37: 387.
- Kurylo, M. J., Peterson, N. C., et al. (1970). J. Chem. Phys. 54: 943.
- Kurylo, M. J., Peterson, N. C., et al. (1970). J. Chem. Phys. 53: 2776.
- Lewis, G. N., Randall, M., et al. (1961). Thermodynamics. New York, McGraw-Hill.
- Lide, D. R., Ed. (1990). CRC Handbook of Chemistry and Physics. Boston, CRC Press.
- Liu, A., Mulac, W. A., et al. (1989). J. Phys. Chem. 93: 4092.
- Lovelock, J. E., Maggs, R. J., et al. (1972). Nature 237: 452.
- MacPherson, M. T., Pilling, M. J., et al. (1985). J. Phys. Chem. 89: 2268.
- Manning, R. G. and Kurylo, M. J. (1977). J. Phys. Chem. 81: 291.
- Massey, B. S. (1986). <u>Measures in Science and Engineering: Their Expression, Relation</u> and Interpretation. New York, John Wiley.
- McCulloch, A., Aucott, M. L., et al. (1999). J. Geophys. Res. 104: 8417.
- McCulloch, A. and Midgley, P. M. (1996). Atmos. Environ. 30: 601.
- Mihelcic, D. and Schindler, R. N. (1970). Ber. Bunsen-Ges. Phys. Chem. 74: 1280.
- Misra, A. (1997). Kinetics and Thermochemistry of Halogenated Species. Denton, University of North Texas.
- Nicholas, J. E., Amodio, C. A., et al. (1979). J. Chem. Soc., Faraday Trans. 1 75: 1868.
- Nicovich, J. M., Kreutter, K. D., et al. (1992). J. Phys. Chem. 96: 2518.
- Okabe, H. (1978). Photochemistry of Small Molecules. New York, John Wiley.
- Perner, D. and Franken, T. (1969). Ber. Bunsen-Ges. Phys. Chem. 73: 897.
- Perry, P. A., Atkinson, R., et al. (1977). J. Chem. Phys. 67: 458.
- Perry, R. A., Atkinson, R., et al. (1977). J. Phys. Chem. 81: 296.
- Perry, R. A., Atkinson, R. A., et al. (1977). J. Chem. Phys. 67: 458.
- Pesa, M., Pilling, M. J., et al. (1998). J. Phys. Chem. 102: 8526.
- Pilling, M. J. and Seakins, P. W. (1995). <u>Reaction Kinetics</u>. New York, Oxford University Press Inc.
- Pratt, G. and Rogers, D. (1977). J. Chem. Soc., Faraday Trans. 1 73: 54.
- Pugh, E. M., Jr. and Winslow, G. H. (1966). <u>The Analysis of Physical Measurements</u>. Reading, Addison-Wesley.
- Ramamoorthy, S. (1997). <u>Chlorinated Organic Compounds in the Environment</u>. New York, Lewis Publishers.
- Robertson, S. H., Wagner, A. F., et al. (1995). J. Chem. Phys. 103: 2917.
- Rommel, H. and Schiff, H. I. (1972). Int. J. Chem. Kinet. 4: 547.

Roth, P., Lohr, R., et al. (1982). Combust. Flame 45: 273.

- Samson, J. A. R. (1967). <u>Techniques of Vacuum Ultraviolet Spectroscopy</u>. New York, John Wiley & Sons.
- Schlegel, H. B. (1982). J. Phys. Chem. 86: 4678.
- Schlegel, H. B. and Sosa, C. (1984). J. Phys. Chem. 88: 1141.
- Schwarz, S. E. (1988). Nature 336: 441.
- Seakins, P. W. and Pilling, M. J. (1991). J. Phys. Chem. 95: 9878.
- Sekušak, S., Liedl, K. R., et al. (1998). J. Phys. Chem. A 102: 1583.
- Shi, Y. and Marshall, P. (1991). J. Phys. Chem. 95: 1654.
- Smith, S. C. (1991). J. Chem. Phys. 95: 3404.
- Smith, S. C. (1992). J. Chem. Phys. 97: 2406.
- Smith, S. C. (1993). J. Phys. Chem. 97: 7034.
- Sosa, C. and Schlegel, H. B. (1987). J. Am. Chem. Soc. 109: 7007.
- Sosa, C. and Schlegel, H. B. (1987). J. Am. Chem. Soc. 109: 4193.
- Stachnik, R. A. and Molina, M. J. (1987). J. Phys. Chem. 91: 4603.
- Steinfeld, J. I., Francisco, J. S., et al. (1989). <u>Chemical Kinetics and Dynamics</u>. Englewood Cliffs, NJ, Prentice Hall.
- Stuhl, F. and Niki, H. (1972). J. Chem. Phys. 57: 3671.
- Tichenor, L. B., El-Sinawi, A., et al. (2001). Chemosphere 42: 571.
- Tichenor, L. B., Graham, J. L., et al. (2000). J. Phys. Chem. A 104: 1700.
- Tichenor, L. B., Lozada-Ruiz, A. J., et al. (2000). Proc. Combus. Inst. 28: 1495.

- Townes, C. H. and Schawlow, A. L. (1955). <u>Microwave Spectroscopy</u>. New York, McGraw-Hill.
- Tsang, W., Burgess, D. R., Jr., et al. (1998). Combust. Sci. Tech 139: 385.
- Tuazon, E. C., Atkinson, R. A., et al. (1988). Int. J.. Chem. Kinet. 20: 241.
- Villà, J., González-Lafont, A., et al. (1997). J. chem. Phys. 107: 7266.
- Wardlaw, D. M. and Marcus, R. A. (1984). Chem. Phys. Lett. 110: 230.
- Wardlaw, D. M. and Marcus, R. A. (1985). J. Chem. Phys. 83: 3462.
- Warnatz, J., Bockhorn, H., et al. (1982). Proc. Combust. Inst. 19: 197.
- Warnatz, J., Bockhorn, H., et al. (1982). . 19th Symposium (Int.) on Combustion, The Combustion Institute.
- Watson, R. T., Machado, G., et al. (1976). J. Chem. Phys. 65: 2126.
- Wayne, R. P. (2000). <u>Chemistry of Atmospheres</u>. New York, Oxford University Press Inc.
- Westenberg, A. A. and de Haas, N. N. (1973). J. chem. Phys. 59: 6685.
- Westenberg, A. A. and deHaas, N. (1975). J. Chem. Phys. 62: 3321.
- Wong, M. and Radom, L. (1995). J. Phys. Chem. 99: 8582.
- Yamada, T., El-Sinawi, A., et al. (2001). J. Phys. Chem. A 105: 7588.
- Yamada, T., Siraj, M., et al. (2001). J. Phys. Chem. A 105: 9436.
- Yoshimura, M., Koshi, M., et al. (1992). Chem. Phys. Lett. 189: 199.
- Zellner, R. (1979). J. Phys. Chem. 83: 18.
- Zellner, R. (1984). Bimolecular Reaction Rate Coefficients. <u>Combustion Chemistry</u>, Chapter 3. W. C. Gardiner, Jr. New York, Springer-Verlag.

Zhang, Z., Liu, R., et al. (1991). J. Phys. Chem. 95: 194.

Zhu, L., Bozzelli, J. W., et al. (1999). J. Phys. Chem. A 103: 7800.