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Statistical analysis of time series. With compelling arguments we show that the

Di�usion Entropy Analysis (DEA) is the only method of the literature of the Science of

Complexity that correctly determines the scaling hidden within a time series re
ecting

a Complex Process.

The time series is thought of as a source of 
uctuations, and the DEA is based

on the Shannon entropy of the di�usion process generated by these 
uctuations. All

traditional methods of scaling analysis, instead, are based on the variance of this

di�usion process. The variance methods detect the real scaling only if the Gaussian

assumption holds true. We call H the scaling exponent detected by the variance

methods and Æ the real scaling exponent. If the time series is characterized by Frac-

tional Brownian Motion, we have H = Æ and the scaling can be safely determined, in

this case, by using the variance methods. If, on the contrary, the time series is char-

acterized, for example, by L�evy statistics, H 6= Æ and the variance methods cannot be

used to detect the true scaling. L�evy walk yields the relation Æ = 1=(3� 2H). In the

case of L�evy 
ights, the variance diverges and the exponent H cannot be determined,

whereas the scaling Æ exists and can be established by using the DEA. Therefore, only

the joint use of two di�erent scaling analysis methods, the variance scaling analysis

and the DEA, can assess the real nature, Gauss or L�evy or something else, of a time

series. Moreover, the DEA determines the information content, under the form of

Shannon entropy, or of any other convenient entropic indicator, at each time step

of the process that, given a suÆciently large number of data, is expected to become

di�usion with scaling. This makes it possible to study the regime of transition from

dynamics to thermodynamics, non-stationary regimes, and the saturation regime as

well.

First of all, the eÆciency of the DEA is proved with theoretical arguments and with



numerical work on arti�cial sequences. Then we apply the DEA to three di�erent sets

of real data, Genome sequences, hard x-ray solar 
are waiting times and sequences

of sociological interest. In all these cases the DEA makes new properties, overlooked

by the standard method of analysis, emerge.
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CHAPTER 1

INTRODUCTION

The goal of this dissertation is to introduce a new method of statistical analysis

of time series. We show with compelling arguments that DIFFUSION ENTROPY

ANALYSIS is the only method available in the literature of the Science of Complexity

determining the correct scaling of a time series.

For the reader to appreciate the importance of this result, we have to outline very

quickly what the Science of Complexity is all about. After the discovery of quantum

mechanics and of the theories of relativity, humanity seemed to have nothing else

to discover about the fundamental laws of nature. This was not true. The world

around us, from a mountain to a cloud, from a coastline to a tree, shows a complexity

that hardly can be described by applying the basic laws of Nature. The Mandelbrot's

masterpiece \The Fractal Geometry of Nature" [1] proved that many natural patterns,

characterized by an irregular and fragmented behavior, may be studied scienti�cally.

Since Euclid, the scientists have left aside this research because it was thought that

to investigate what looked as \formless" or \amorphous" was not interesting or,

even, was impossible. Maldelbrot showed that a revolutionary geometry, the \Fractal

Geometry," is able to evidence and analyze the di�erent levels of complexity of a

phenomenon. Fractal Geometry is able to make intelligible what looks \formless"

and \amorphous."

Today, fractals, chaos and power laws have become common in modern science

[2]. Self-similarity is the unifying concept underlying this new frontier of physics.

Self-similarity means invariance against changes in scale or size. Self-similarity is like

a set of Chinese boxes or Russian dolls - a doll hides a similar smaller one inside

its \body" and this is repeated for many generations of dolls. In other words, we

say that an object is self-similar, or invariant with scaling, if magnifying some por-

tion of it reproduces itself. Innumerable natural phenomena, from the distribution

of atoms in matter to that of the galaxies in the universe or that of stock market

trends, show self-similarity attributes. \Chaos," a word used for describing a state of
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utter confusion and disorder, may be related to self-similarity and its inherent lack of

\smoothness." Of course, it is impossible to �nd a natural phenomenon characterized

by a mathematical self-similar behavior, which implies invariance in scaling ad in�ni-

tum. Galileo Galilei, who discovered the scaling law for falling objects, noted that

some laws of nature are not unchanged under changes of scale. For example, he noted

that it is not true that if an animal is two times longer, wider and taller than another

animal, its bones scale with the same factor 2. Its bones must scale with a factor that

is higher than 2 because an eight times heavier animal cannot be supported by bones

with a four times larger cross section: an anomalous scaling may be involved. This

means that in Nature, self-similarity re
ects always a range of validity. It is true that

the shape of a cloud is self-similar, but the invariance in scaling is obviously lost at

the atomic scale. However, self-similarity is a fundamental concept for understanding

innumerable natural phenomena.

From a mathematical viewpoint, a function �(r1; r2; : : :) is scaling invariant, if it

ful�lls the following property:

�(r1; r2; : : :) = 
a �(
br1; 

cr2; : : :) : (1.1)

Eq. (1.1) means that if we scale all coordinates frg by particular factors, the resulting
values of the function remain similar to the original ones; the only change is a change

of scales. This dissertation focuses upon the scaling properties of a time series. By

summing the terms of a time series we get a trajectory and the trajectory can be

used to generate a di�usion process. There is scaling if, in the stationary condition, a

di�usion process can be described by the following probability density function (pdf):

p(x; t) =
1

tÆ
F (

x

tÆ
); (1.2)

where x denotes the di�usion variable and p(x; t) is its pdf at time t. The coeÆcient

Æ is called the scaling exponent. We de�ne the scaling of a time series as the scaling

exponent of a di�usion process generated by that time series.

Di�usion Entropy Analysis detects the correct scaling exponent, Æ, of a time series.
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Let us see why. This method of analysis is based upon the evaluation of the Shannon

entropy of the pdf of the di�usion process that reads

S(t) = �
Z +1

�1

dx p(x; t) ln [p(x; t)] : (1.3)

If the scaling equation (1.2) is ful�lled, the time evolution of the entropy, S(t), is

linear with respect to the logarithmic time, � � ln(t=t0), which makes Eq. (2) read

S(�) = A + Æ �: (1.4)

Eq. (1.4) states that the scaling exponent Æ is determined by the asymptotic slope of

the entropy S(�). The term, t0, is the unit di�usion \time." Because the exponent

Æ does not depend on the value of t0, it will be conventionally put equal to 1 in the

entire dissertation. The \time" t will be always measured in unit of t0.

The Di�usion Entropy Analysis is the only method establishing Æ correctly. It

is so because Di�usion Entropy Analysis analyzes directly the pdf of the di�usion

processes, without using the moments of the distribution. Instead, all the other

methods used for detecting scaling {Variance Scaling Analysis, Hurst R/S Analy-

sis, Detrended Fluctuation Analysis, Relative Dispersion Analysis, Spectral Analysis,

Spectral Wavelet Analysis{ are subtly based on the Gaussian assumption and, so,

upon a variance that can be used to monitor scaling. The problem is that the scaling

detected by the \variance" methods, usually called H in honor of Hurst [3], may

not exist or may not coincide with the correct scaling, Æ. If the time series is char-

acterized by what Mandelbrot called Fractional Brownian Motion, we have H = Æ.

Consequently, the scaling of this type of noise can be detected by using the variance

methods. If, on the contrary, the time series is characterized, for example, by L�evy

properties [4, 5], H 6= Æ and the variance methods cannot be used to detect the true

scaling. A di�usion process generated by L�evy walk is characterized by the relation

Æ =
1

3� 2H
: (1.5)

In the case of L�evy 
ights, the exponent H cannot be determined because the variance
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diverges, whereas the scaling Æ exists and can be determined by using the di�usion

entropy analysis. The above conclusions suggest that to determine the real statistical

properties of a time series it is not enough to study the scaling with only one type

of analysis. Only the joint use of two scaling analysis methods, the variance scaling

analysis and the di�usion entropy analysis, can determine the real nature, Gauss or

L�evy or something else, of a time series. We have to determine H and Æ. Then, if

H = Æ we can conclude that Fractional Brownian Noise may characterize the signal.

If, instead, H 6= Æ we have to look for a di�erent type of noise. If we �nd that

the relation (1.5) holds true, we can have good reasons to conclude that the noise is

characterized by L�evy statistics. Moreover, Di�usion Entropy Analysis may be used

for studying the transition from the dynamics to the thermodynamics of the dissusion

process. This is the transition region before that the Central Limit Theorem or the

Generalized Central Limit Theorem hold true and a thermodynamical scaling of the

di�usion process may be de�ned.

The dissertation is organized in two parts followed by a conclusion. The �rst part

addresses the theory of Di�usion Entropy Analysis and the numerical simulations

that verify the theoretical results. The second part shows three di�erent applications

to real data. Each application addresses a particular way to work with the Di�usion

Entropy Analysis for studying the scaling of a time series or statistical properties of

the transition region.

Chapter 2 reviews the theory of a di�usion process. Continuous Random Walk

theory is used to derive the main scaling properties of Fractional Brownian and L�evy

di�usion. Di�erent ways to realize a walk are studied. Chapter 3 reviews the most

traditional analysis methods used in literature of the Science of Complexity for de-

tecting the scaling of a time series. All these methods have in common the fact that

they are based upon the Gaussian assumption, that is, upon the fact that the real

scaling can be detected by studying the variance of the generated di�usion process.

The results illustrated from Chapters 4 to the end are original results of this

dissertation and have produced several papers, some already published [6, 7], two

submitted to Phys. Rev. Lett. and Phys. Rev. E [8, 9], and some others almost

ready for submission. Many more publications are expected to emerge from the
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results of this dissertation. Chapter 4 focuses on the meaning of the entropic analysis

of a time series. Shannon entropy, Tsallis non-extensive entropy and Kolmogorov-

Sinai entropy of a time series are reviewed. The theory of Di�usion Entropy Analysis

is exposed. Chapter 5 is devoted to the veri�cation of the theory of the previous

chapters by using arti�cial sequences. The main characteristics of Di�usion Entropy

Analysis are discussed and shown. The second part of the dissertation begins with

Chapter 6 in which Di�usion Entropy Analysis is applied to di�erent type of DNA

sequences. The large number of data available for a DNA sequences makes this type

of time series suitable for the analysis of asymptotic scaling properties. Chapter 6

proves that DNA sequences are characterized by long-range L�evy correlation. This

may have important consequences upon the understanding of the complexity and

the origin of the life. Chapter 7 is dedicated to the study of waiting times of hard

x-ray solar 
ares. It is shown how a dynamical entropic �t can be realized and its

superiority is compared to the static �t of the waiting time distribution. Moreover, a

dynamical entropic �t is sensitive to the time evolution of the data. This result may

be important for understanding the dynamics of the solar 
are phenomenon and, in

general, the turbulent behavior of the Sun and of other similar turbulent phenomena.

In fact, a theoretical model for describing turbulence should not simulate only the

waiting time distribution, but it should simulate the real temporal dynamics of the

turbulence as well. Di�usion Entropy Analysis may be used to determine the waiting

time distribution properties and the temporal dynamics of the turbulent phenomenon.

The goodness of a theoretical model may be checked by an entropic dynamical �t.

Chapter 8 is dedicated to thermodynamics of social processes. Di�usion Entropy

Analysis is used for studying two di�erent sets of data regarding the births of babies

to married and unmarried teenagers. The Di�usion Entropy Analysis applied to the

two groups allows a distinction between them based upon thermodynamic properties.

The non-extensive Tsallis entropy is used to measure the thermodynamic di�erence

between the two groups. The applications to study of the transition region and the

non-stationary condition are shown.

The dissertation ends with a short conclusion and with a research project con-

cerning further applications of this theory.
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CHAPTER 2

CONTINUOUS TIME RANDOM WALK

In this chapter we discuss some aspects of the Continuous Time Random Walk

(CTRW) theory . We demostrate how to obtain the probability density p(x; t) of

a di�usion process according to di�erent rules of walking. The chapter focuses upon

those di�usion processes that are characterized by a probability density function (pdf)

of the type

p(x; t) =
1

tÆ
� F

�
x

tÆ

�
(2.1)

that shows scaling proprieties. The coeÆcient Æ is the pdf scaling coeÆcient. More-

over, we compare the pdf scaling coeÆcient Æ with the variance scaling exponent H

de�ned by

�2(t) � t2H ; (2.2)

where �2 is the variance of the di�usion process. In literature, the exponent H is

usually called Hurst exponent because of the well know Hurst's scaled range analysis

(R/S analysis) [3]. We note that the Hurst's analysis does not coincide exactly

with the second moment analysis. The exponents measured by the two techniques

may be slightly di�erent [10]. However, for the purpose of this dissertation, the

slight distinction between the Hurst analysis and the variance scaling analysis is not

important and we use the same symbol, H, to indicate the scaling exponent given by

the two techniques without further distinctions.

If < x(t) >= 0, the variance, �2(t), will coincide with the mean squared displace-

ment, and Eq. (2.2) will read

< x2(t) >=
Z �1

�1

x2 p(x; t) dx � t2H : (2.3)

The pdf scaling coeÆcient Æ and the second moment scaling exponent H coincide in

all cases in which
1Z

�1

y2F (y) dy = const <1 ; (2.4)
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where const is a constant that does not depend on the di�usion time. This holds true,

for example, in the normal and fractional Brownian di�usion. However, there are cases

in which they do not coincide. Possible cases include di�usion processes characterized

by L�evy 
ights where Eq. (2.1) still holds true. However, the variance is not �nite and,

therefore, the variance scaling exponent, H, cannot be de�ned. Another interesting

situation is when, for example, a di�usion process is characterized by L�evy walks

where Æ = 1=(3 � 2H). In chapter 3, we review the common techniques used to

measure the variance scaling exponent H. In chapter 4 we show that the Di�usion

Entropy Analysis (DEA), the subject of this dissertation, is the �rst technique for

detecting directly the pdf scaling coeÆcient Æ. This allow us to distinguish anomalous

Brownian di�usion from other types of di�usion like L�evy di�usion. In this chapter, we

address the basic theory of normal and fractional Brownian motion and of anomalous

L�evy di�usion (long 
ights and walks) [11].

2.1 Brownian and anomalous di�usion: historical remarks.

In 1785, the Dutch physician J. Ingenhousz observed a small 
ickering of coal dust

particles on the surface of alcohol. In 1827, the Scottish botanist R. Brown [12]

observed that, when suspended in water, small pollen grains appear to move in a

very irregular way. At the beginning, Brown thought that this motion had an organic

origin. However, further experiments made by using any type of �ne particles {glass,

minerals and even a fragment of the sphinx{ showed that this motion could not be a

manifestation of life. In 1855, by studying Fourier's works about the heat conduction

equation, A. Fick discovered the di�usion equation [13]. Fick used the theory of the

continuum formulation of 
uid dynamics that had already been fully developed at his

time. Fick's law states that if �(r; t) is the concentration of a chemical substance in

the position r at time t, a di�usion current j(r; t) exists such that

j(r; t) = �Dr�(r; t); (2.5)
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where D is called the di�usion coeÆcient. If there is no chemical reaction, the current

obeys to the following conservation equation

d

dt

Z
V

�(r; t) d3r = �
Z
S

j(r; t) � dS = �
Z
V

r � j(r; t) d3r; (2.6)

where V and S are the volume and the boundary of the substance. Hence, since V is

arbitrary, it follows the conservation equation:

@

@t
�(r; t) +r � j(r; t) = 0 : (2.7)

By substituting Fick's law (2.5) into the conservation equation (2.7), we get the

di�usion equation
@

@t
�(r; t) = Dr2�(r; t); (2.8)

that can be easily solved. In the one-dimensional case the solution is given by

�(x; t) =
1p
4�Dt

exp

 
� x2

4Dt

!
: (2.9)

In 1863, C. Weiner attempted a �rst explanation of Brownian motion based on

the kinetic theory. Further developments of the theory based on the collision model

were attempted by von N�ageli, W. Strutt and Lord Rayleigh. Finally, in 1905, A.

Einstein uni�ed the continuum formulation given by Fick with the stochastic theory

based upon the collision model and gave an excellent explanation of the Brownian

motion [14]. Einstein's solution to the problem of Brownian motion was based upon

the following two assumptions:

(i) The motion is caused by the exceedingly frequent impacts on the pollen grain

of the incessantly moving molecules of liquid in which it is suspended.

(ii) The motion of these molecules is so complicated that its e�ect on the pollen

grain can only be described probabilistically in terms of exceedingly frequent statis-

tically independent impacts.

By using these two assumptions, Einstein proved that pollen grains suspended

upon a liquid di�use according to the equation (2.9) with the di�usion coeÆcient D
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Figure 2.1: Di�usion Equation. Eq.(2.9) with D = 1=4.

given by

D =
RT

N
� 1

6�kP
; (2.10)

where N is Avogadro's number, k is the coeÆcient of viscosity, P is the radius of the

suspended particles which are supposed spherical, R and T are the gas constant and

the temperature respectively. In 1926, J. B. Perrin won the Nobel Prize for measuring

the Avogadro's number with a rather high accuracy by using the Einstein's theory.

It is easy to see that Eq. (2.9), a Gaussian function, belongs to the class of the

scaling equations (2.1) with

Æ =
1

2
= H : (2.11)

The Gaussian distribution is important for many reasons. Empirically many di�u-

sion processes are well described by the Gaussian di�usion equation (2.9) because

of the Central Limit Theorem (CLT) [15]. In fact, under general conditions, a ran-

dom variable composed of the sum of many parts, each independent but arbitrarily

distributed, is Gaussian.

The CLT states that if X1, X2, X3, : : :, Xn are independent random variables
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such that

< Xi >= 0; varfXig = �i <1; (2.12)

and pi(xi) is the distribution function of Xi, the variable Sn de�ned by

Sn =
nX
i=1

Xi (2.13)

tends to the Gaussian with zero mean and variance

�2
n = varfSng =

nX
i=1

�2i : (2.14)

This holds true if the Linderberg condition

lim
n!1

2
64 1

�2
n

nX
i=1

Z
jxj>t�n

dx x2 pi(x)

3
75 = 0 (2.15)

is ful�lled for any �xed t > 0.

In nature, however, many anomalous di�usion processes are observed as well.

These processes are characterized by a variance scaling exponent H 6= 0:5. If 0 < H <

0:5, the process is characterized by subdi�usion. If H > 0:5, there is superdi�usion.

The Brownian di�usion, H = 0:5, is the threshold between sub- and super-di�usion.

H = 1 is the special case that corresponds to the ballistic motion. As normal di�usion

rests on the validity of the CLT, anomalous di�usion rests on the validity of the L�evy-

Gnedenko Generalized Central Limit Theorem (GCLT) that can be applied where

not all moments of the underlying elementary transport events, the jumps, exist

[16, 17, 18, 4, 5, 19].

The �rst one who studied anomalous di�usion was Richardson in his treatise on

turbulent di�usion in 1926 [20]. Today, anomalous di�usion is observed in many

systems. Subdi�usion regimes are observed in charge carrier transport in amorphous

semiconductors [21, 22, 23, 24, 25, 26, 27], in nuclear magnetic resonance (NMR)

di�usometry in percolative [28, 29] and porous systems [30, 31], in reptation dynamics

in polymeric systems [32, 33, 34, 35, 36, 37, 38], in transport on fractal geometries
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[39, 40], in the di�usion of a scalar tracer in an array of convection rolls [41, 42], and

in the dynamics of a bead in a polymeric network [43, 44]. Superdi�usion and/or

L�evy statistics are observed in special domains of rotating 
ows [45], in collective

slip di�usion on solid surfaces [46], in layered velocity �elds [47, 48], in Richardson

turbulent di�usion [20, 49, 50, 51, 52], in bulk-surface exchange controlled dynamics

in porous glasses [53, 54, 55], in the transport in micelle systems and in heterogeneous

rocks [56, 57, 58], in quantum optics [59, 60], in single molecule spectroscopy [61, 62],

in the transport in turbulent plasma [63], in bacterial motion [64, 65, 66, 67, 68] and

even for the 
ight of an albatross [69].

Anomalous di�usion has been modelled in numerous ways: fractional Brownian

motion introduced by B. Mandelbrot [1, 70, 71, 72, 73, 74]; generalized di�usion

equations [75]; continuous time random walk models [21, 22, 23, 24, 25, 76, 77, 78,

79, 80, 81, 82, 83, 84]; Langevin equations [85, 86, 87, 88, 89]; generalized Langevin

equations [90, 91, 92, 93]; generalized master equations [94, 95, 96, 97]; generalized

thermostatistics [98, 99, 100, 101, 102]. In the next sections we develop some contin-

uous time random walk models.

2.2 From Discrete to Continuous Time Random Walk: Brownian di�usion.

The problem of a discrete time random walk (DTRW) may be addressed as follows.

At time l = 0 a walker is in the position m = 0. At each temporal step the walker

moves with one jump of intensity 1 in either a positive or a negative direction. Let us

suppose that the probability of doing a positive jump +1 is equal to the probability

of doing a negative jump -1. The problem is to determine the probability p(m; l) for

the random walker to be at position m after l jumps. This probability is given by the

binomial distribution [103]:

p(m; l) =
1

2l

 
l

l+m
2

!
1 + (�1)l+m

2
: (2.16)
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For large values of l, the binomial distribution (2.16) converges to the Gaussian dis-

tribution

p(x; t) =
1p
2��2t

� exp
 
� x2

2�2t

!
; (2.17)

with � = 0:5 and where m and l are replaced with the continuous variables x and t

respectively. Eq. (2.17) is of the type of Eq. (2.1) with the scaling coeÆcient Æ = 0:5

as expected for a di�ution process where the CLT holds true.

Whereas the DTRW model is based on the idea that the walker can jump only by

a discrete unit length for each discrete time unit, in the CTRW model the length of

a given jump, as well as the waiting time elapsing between two successive jumps, are

regulated by a jump pdf, w(x; t). The function w(x; t) determines the jump length

pdf

�(x) =

1Z
0

w(x; t) dt (2.18)

and the waiting time pdf

 (t) =

1Z
�1

w(x; t) dx : (2.19)

The quantity �(x) dx is the probability of having a jump length in the interval

(x; x+dx), whereas  (t) dt is the probability for a waiting time between two successive

jumps in the interval (t; t + dt). If the jump length and the waiting time are two

independent random variables, the jump pdf w(x; t) is decoupled and can be written

as w(x; t) = �(x) (t). If the jump length and the waiting time are coupled, it is

possible to write the jump pdf w(x; t) by using the conditional probabilities: w(x; t) =

p(xjt) (t) or w(x; t) = p(tjx)�(x), that indicate a jump of a certain length needs a

time cost or that in a given time interval the walker cannot travel more than a

maximum distance.

By using the jump length and waiting time pdfs it is possible to determine the

jump length variance

�2 =< x2 >=

1Z
�1

x2 �(x) dx (2.20)
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and the characteristic waiting time

T =

1Z
0

t  (t) dt : (2.21)

If at t = 0 the walker is at position x = 0, the pdf �(x; t) of just having arrived at

position x at time t from the position x0 at time t0 is determined by

�(x; t) =

1Z
�1

dx0
1Z
0

dt0 �(x0; t0) w(x� x0; t� t0) + Æ(x)Æ(t) : (2.22)

Let us now de�ne the cumulative probability

	(t) = 1�
tZ

0

dt0  (t0) (2.23)

of having no jump events during the time interval (0; t). It is not diÆcult to prove

that the pdf p(x; t) of being in x at time t is given by

p(x; t) =

tZ
0

dt0 �(x; t0) 	(t� t0) : (2.24)

Because it is easier to work in the Fourier-Laplace space, let us calculate the Fourier-

Laplace transform of p(x; t)

p̂(k; s) = FfLfp(x; t); t! sg; x! kg : (2.25)

We obtain [80]

p̂(k; s) =
1�  ̂(s)

s

p̂0(k)

1� ŵ(k; s)
; (2.26)

where p̂0(k) is the Fourier transform of the initial condition p(x; 0). If the jump length

and waiting time are independent random variable, we have that ŵ(k; s) =  ̂(s)�̂(k).
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This means

p̂(k; s) =
1�  ̂(s)

s

p̂0(k)

1�  ̂(s)�̂(k)
: (2.27)

Finally, to obtain the pdf p(x; t) in the di�usion limit, we have to invert the Fourier-

Laplace transform in the limit (k; s)! (0; 0), that is

p(x; t) = L�1flim
s!0

F�1flim
k!0

p̂(k; s)gg : (2.28)

Let us now use the CTRW model for describing the Brownian motion. Let us

suppose that the Brownian di�usion is given by a decoupled jump pdf w(x; t) =

�(x) (t) with both characteristic waiting time and jump length variance �nite. Let

the waiting time pdf  (t) be a Poissonian of the type

 (t) =
1

�
exp

�
� t
�

�
; (2.29)

where � = T < 1 is the characteristic waiting time. Let the jump length pdf �(x)

be the Gaussian

�(x) =
1p
4��2

exp

 
� x2

4�2

!
; (2.30)

where �2 is the variance. By doing the Laplace transform of  (t) and the Fourier

transform of �(x) and taking only the lowest order in s and k, we obtain:

 ̂(s) � 1� �s +O(� 2); (2.31)

�̂(k) � 1� �2k2 +O(k4) : (2.32)

Finally, by using Eq. (2.27), we get the propagator p̂(k; s) of the Brownian di�usion

p̂(k; s) =
1

s+Dk2
; (2.33)

where D = �2=� . Eq. (2.33) is the Fourier-Laplace transform of the well-know

Gaussian propagator

p(x; t) =
1p
4�Dt

exp

 
� x2

4Dt

!
: (2.34)
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Figure 2.2: Di�usion of 10 Brownian particles with �2 = 1 in two dimensions. The

trajectories are statistically self-similar. The walk starts from (0,0) and is drawn for

1000 steps.

2.3 Anomalous Di�usion: Fractional Brownian Motion (FBM).

For describing anomalous di�usion, Mandelbrot introduced Fractional Brownian Mo-

tion (FBM). FBM of index � may be easily de�ned as a simple generalization of

the Brownian motion. For de�nition, FBM of index � is described by the fractional

Gaussian propagator

p(x; t) =
1p

4�Dt�
exp

 
� x2

4Dt�

!
: (2.35)

The second moment is given by

< x2 >=

1Z
�1

dx x2 p(x; t) = 2D t� : (2.36)
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For � = 1 the normal Brownian motion is recovered. The case 0 < � < 1 corresponds

to subdi�usion and the case � > 1 corresponds to superdi�usion. In this case, the

pdf scaling coeÆcient, Æ, coincides with the variance scaling exponent, H. Precisely:

Æ =
�

2
= H : (2.37)

Fractional Brownian motion is characterized by long range correlation. In fact, the

correlation function of future increments, ��(t), with past increments, ���(t), is given
by

C(t) =
< ���(�t)��(t) >

< �2�(t) >
/ 2��1 � 1 : (2.38)

The correlation function, C(t), is calculated with the assumption that ��(0) = 0. Eq.

(2.38) justi�es the Mandelbrot notation [1] of persistent fractional Brownian motion

for � > 1 that corresponds to a positive correlation function, and of antipersistent

fractional Brownian motion for 0 < � < 1 that corresponds to a negative correlation

function.

In the nice book of Feder [70], there is an algorithm to generate fractional Brownian

noise. Let f�ig be a set of Gaussian random variables with unit variance and zero

mean. The discrete fractional Brownian increment is given by

xH(t)� xH(t� 1) =
n�H

�(H + 0:5)

(
nX
i=1

iH�0:5 �1+n(M+t)�i+

n(M�1)X
i=1

�
(n+ i)H�0:5 � iH�0:5

�
�1+n(M�1+t)�i

9=
; ;

where M is an integer that should be moderately large, and n indicates the number

of the fractional steps for each unit time. In the simulation, good results are obtained

with M = 1000 and n = 10.

2.4 Waiting time distributions with extended tails.

In this section, we will discuss the scaling properties of two di�usion processes char-

acterized by a waiting time pdf  (t) with long tails , that is, an asymptotic behavior

17



given by

 (t) �
�
�

t

��
; (2.39)

where � > 1. If 1 < � < 2, the characteristic waiting time T diverges and the

process is non-stationary. For � > 2, T is �nite and the process is stationary. A

waiting time pdf with the asymptotic behavior given by (2.39) may be produced by

a L�evy distribution if 2 < � < 3 because in this region the second moment of the

waiting time pdf  (t) diverges whereas T is �nite. The jump length variance is kept

�nite. However, there are two di�erent ways of jumping. We use Symmetric Jump

Model (SJM) to refer to a di�usion process where the walker may randomly make

a jump in both positive and negative directions. Instead, we call Asymmetric Jump

Model (AJM) that di�usion model where the walker makes a jump always in the same

direction. For simplicity, it may be supposed that the length of the jump is �xed.

2.4.1 Symmetric Jump Model (SJM).

In the Symmetric Jump Model a walker remains in a state of rest for a time t according

to a long-tail waiting time pdf with the asymptotic behavior given by the Eq. (2.39).

Then the walker makes a jump randomly forward or backward with a length whose

variance is kept �nite. We also suppose that the jump length is kept �xed. The

scaling corresponding to this process has been studied by Shlesinger in the pioneer

paper of ref. [104].

Let us �rst suppose that 1 < � < 2. Under this condition, the characteristic

waiting time T diverges. In Laplace space at the lowest order, the waiting time pdf

is

 ̂(s) � 1� (�s)��1: (2.40)

By using a Gaussian jump length pdf, the jump pdf in the Fourier-Laplace space

becomes

p̂(k; s) =
1

s

p̂0(k)

1 +D�s1��k2
; (2.41)

where D� = �2=���1. By doing the calculation as shown in [11], we see that the
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second moment is given by

< x2(t) >=
2D�

�(�)
t��1; (2.42)

where �(�) is the Gamma function. Eq. (2.42) implies that

H =
�� 1

2
: (2.43)

A closed-form solution for the jump pdf can be found in terms of Fox functions [11],

that is,

p(x; t) =
1q

4�D�t��1
H

2;0
1;2

"
x2

4D�t��1
j ((3� �)=2; �� 1)

(0; 1); (0:5; 1)

#
: (2.44)

Eq. (2.44) is scaling equation of the type of Eq. (2.1) with the scaling coeÆcient Æ

given by

Æ =
�� 1

2
: (2.45)

In this case the pdf scaling coeÆcient Æ is equal to the second moment scaling

exponent H. For 1 < � < 2, Æ < 0:5. This means that the SJM yields a type of

subdi�usion. This is due to the fact that the characteristic waiting time T is not

�nite. For � > 2, the characteristic waiting time T is �nite and the di�usion process

obeys to the CLT, therefore yielding

Æ =
1

2
= H : (2.46)

2.4.2 Asymmetric Jump Model (AJM).

In the Asymmetric Jump Model [105], the walker can make a jump only in one

direction. The waiting time distribution is still given by Eq. (2.39). For simplicity,

let us suppose that the length of the jump is �xed to a unit length, 1. Under this

condition the jump length pdf is given by

�(x) = Æ(x� 1); (2.47)
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where Æ(x) is the usual Dirac delta function. The Fourier transform of �(x) is given

by

�̂(k) = exp(ik1) : (2.48)

By plugging Eq. (2.48) in Eq. (2.27), we obtain the jump pdf

p̂(k; s) =
1�  ̂(s)

s

1

1�  ̂(s) exp(ik1)
=

1�  ̂(s)

s

1X
n=0

 ̂(s)n eink1 : (2.49)

By evaluating the inverse Fourier transform of Eq. (2.49), we arrive at

p̂(x; s) =
1�  ̂(s)

s

1X
n=0

 ̂(s)n Æ(x� n1) : (2.50)

For large distances we can adopt the following expression

p̂(x; s) =
1�  ̂(s)

s
[ ̂(s)]x : (2.51)

Let us now use the waiting time pdf in Laplace space given by Eq. (2.40). We obtain

p̂(x; s) =
(�s)��1

s
[1� (�s)��1]x : (2.52)

By inverting the Laplace transform with the method of Ref. [106], we obtain for

1 < � < 2

p(x; t) � 1

t��1

�
x

t��1

�� �

��1

L

"�
x

t��1

�� 1

��1

; �� 1; 1� �

#
; (2.53)

and for 2 < � < 3

p(x; t) � 1

t
1

��1

L

"
x

t
1

��1

; �� 1; 1� �

#
; (2.54)

where L(y; �;��) denotes a fully asymmetric L�evy stable law of index � [5]. From

Eqs. (2.53) and (2.54) we obtain the following scaling prescriptions

Æ = �� 1; 1 < � < 2; (2.55)
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and

Æ =
1

�� 1
; 2 < � < 3 : (2.56)

For � > 3 the CLT holds true because the second moment of the waiting time

pdf  (t) is �nite, therefore, we have Æ = 0:5. We observe that for 1 < � < 1:5

there is subdi�usion, whereas for 1:5 < � < 3 there is superdi�usion. Moreover, for

0:5 < Æ < 1 there are two possible values for � smaller or greater than 2. The value

� = 2 is important because is the border between the non-stationary (T = 1 for

� < 2) and the stationary (T <1 for � > 2) region.

2.5 L�evy Flights: Long Jumps Model (LJM).

In this section, we study a di�usion process generated by a waiting time pdf with a

�nite characteristic time T that may be modeled by a Poissonian distribution, and

a jump length pdf �(x) given by a L�evy distribution with index 0 < � < 2. By

de�nition, the Fourier transform of �(x) is

�̂(k) = exp(���jkj�) � 1� ��jkj� : (2.57)

�(x) has the asymptotic behavior given by

�(x) � A� �
�jxj�1�� = A� �

1��jxj�� (2.58)

for jxj � � and � = 1+�. Substituting the asymptotic expansion of the jump length

pdf �̂(k) in the Fourier space and the waiting time pdf of Eq. (2.29) in the Laplace

space into Eq. (2.27), we obtain the following jump pdf in the Fourier-Laplace space

p̂(k; s) =
1

s+K� jkj� ; (2.59)

21



where K� = ��=� is the generalized di�usion constant. Eq. (2.59) is the solution of

the generalized di�usion equation

@p(x; t)

@t
= K�

�1D
�
x p(x; t); (2.60)

where �1D
�
x is the fractional Weyl operator [107, 108]. Upon Laplace inversion of

Eq. (2.59), we get the characteristic function of the jump pdf

p̂(k; t) = exp (�K� t jkj�) : (2.61)

Eq. (2.61) is the characteristic function of a centered and symmetric L�evy distribu-

tion. The Fourier inversion of (2.61) can be obtained analytically by making use of

the Fox function [109, 110]

p(x; t) =
1

�� 1

1

t1=(��1)

 jxj
t1=(��1)

!�1
H

1;1
2;2

" jxj
(K� t)1=(��1)

j (1; 1=�); (1; 1=2)
(1; 1); (1; 1=2)

#
:

(2.62)

The pdf scaling coeÆcient Æ for the LFM with 1 < � < 3 is

Æ =
1

�� 1
: (2.63)

We observe that Eq. (2.62) has an power-law asymptotic of the type

p(x; t) � 1

t1=(��1)

 jxj
t1=(��1)

!��
� < 3 : (2.64)

Due to this propriety, the mean squared displacement, < x2(t) >, diverges. For this

reason, for the LJM, the variance scaling exponent, H, cannot be de�ned.

2.6 L�evy Walk: Symmetric Velocity Model (SVM).

In this section, we address a dynamic derivation of a L�evy walk di�usion [111]. This

type of di�usion is characterized by the fact that the walker travels with a constant
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Figure 2.3: Long jump di�usion of 10 L�evy particles with � = 2:5 and T = 1 in two

dimensions. The typical island structure of clusters of smaller steps connected by a

long step is evident. The trajectories are statistically self-similar. The walk starts

from (0,0) and is drawn for 1000 steps.
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velocity throughout a whole time interval t chosen from a long- tail waiting time pdf

of the kind

 (t) = (�� 1)
T ��1

(T + t)�
: (2.65)

At the end of the time interval, the walker may or may not change direction and

travel through the next time interval with the same or the opposite constant velocity.

We focus our attention upon the interval 2 < � < 3 that is characterized by a �nite

characteristic waiting time T and by an divergent second moment: a fact that is

required for a L�evy statistics.

A di�usion process concerning the variable x(t) is dynamically described by the

equation of motion
�
x (t) = �(t) ; (2.66)

where �(t) are the 
uctuations that the variable x(t) collects. We make the simplifying

assumption that � is a dichotomous variable: � = �1, where 1 is a unit of length.

The solution of (2.66) is given by

x(t) = x(0) +

tZ
0

dt0 �(t0) : (2.67)

Let us assume stationarity, namely, that the normalized correlation function

�y(t1; t2) =
< �(t1)�(t2) >

< �2 >
(2.68)

depends only on t = jt2 � t1j, that is, �y(t). Moreover, we observe that due to the

dichotomous nature of �(t) = �1, we have < �2 >= 1. It is easy to prove that the

mean squared displacement < x2(t) > is given by

d

dt
< x2(t) >= 2 < �2 >

tZ
0

dt0 �y(t� t0) : (2.69)

The normalized correlation function, �y(t), is related to the waiting time pdf,  (t),
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through the relation

 (t) =
d2

dt2
�y(t) : (2.70)

By using Eqs. (2.65, 2.67 and 2.70) it is easy to prove that

lim
t!1

< x2(t) >/ t2H ; (2.71)

with

H =
4� �

2
: (2.72)

On the other hand, by using the result of [111], it is possible to prove that the jump

pdf, p(x; t), obeys the following equation

@

@t
p(x; t) =

1

2

1Z
�1

dx0  

 jx� x0j
1

!
p(x0; t) : (2.73)

By substituting (2.65) in (2.73) and making the plausible assumption that the short-

range region jx � x0j � T does not contribute to the long-time process, we get the

integro-di�erential equation

@

@t
p(x; t) /

1Z
�1

dx0
p(x0; t)

jx� x0j� (2.74)

that describes a centro-symmetric L�evy stable process [85]. Because we expect that

the scaling given by Eq. (2.1) takes place for large t, with a simple dimensional

analysis it is possible to get the right pdf scaling coeÆcient Æ:

Æ =
1

�� 1
: (2.75)

Eq. (2.72) and (2.75) state that for the SVM both the second moment scaling ex-

ponent, H, and the pdf scaling coeÆcient, Æ, exist. However, they coincide only for
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� = 2 and � = 3. In general we have

Æ =
1

3� 2H
: (2.76)

2.7 Conclusion: we need both H and Æ!

The relation between H and Æ given by Eq. (2.76) is very important because it may

be used to distinguish a fractional Brownian di�usion, that is characterized by H = Æ,

from a di�usion with L�evy proprieties. The usual methods for detecting H, as the

Hurst analysis, are able only to measure H. This is not enough if we want to study

the statistical proprieties of the di�usion propagator p(x; t). We need to measure the

pdf scaling coeÆcient Æ, as well. The Di�usion Entropy Analysis (DEA), developed

in Chapter 4, is the �rst technique that determines Æ.
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Figure 2.4: Æ as a function of � according to three rules. The solid, dashed and dotted

lines denote AJM (rules No. 1), SJM (No. 2) and LJM (No. 3), respectively.

Summary. Let us give a short summary of the results of this chapter.

Fractional Brownian Motion (FBM):

Æ = H =
�

2
: (2.77)

� = 1 implies normal Brownian motion.

Symmetric Jump Model (SJM):

Æ = H =

(
(�� 1)=2 1 < � < 2

1=2 � > 2 :
(2.78)
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Asymmetric Jump Model (AJM):

Æ =

(
(�� 1) 1 < � < 2

1=(�� 1) 2 < � < 3 :
(2.79)

Æ = H = 1=2 � > 3 : (2.80)

Long Jump Model (LJM):

Æ =
1

�� 1
1 < � < 3 : (2.81)

Æ = H = 1=2 � > 3 : (2.82)

The second moment scaling exponent, H, cannot be de�ned for � < 3 because the

mean squared displacement diverges.

Symmetric Velocity Model (SVM):

Æ =
1

�� 1
: (2.83)

H =
4� �

2
: (2.84)

Æ =
1

3� 2H
: (2.85)

These relations are valid for 2 < � < 3. Æ = H = 1=2 for � > 3.

28



CHAPTER 3

VARIANCE SCALING ANALYSIS.

In this chapter, we review the most common methods used to measure the variance

scaling exponent, H, associated with a set of data f�ig. The variance scaling analysis
studies the fractal properties of the variance (3.6). In Chapter 2, we saw that the

variance scaling exponent, H, is de�ned by

�2(t) � t2H ; (3.1)

where �2 is the variance of the di�usion process. If < x(t) >= 0, the variance �2(t)

coincides with the mean squared displacement:

< x2(t) >� t2H ; < x(t) >= 0 : (3.2)

In chapter 2, we saw that Brownian noise is characterized by H = 0:5. The correlation

function of Brownian noise is zero. If 0 < H < 0:5, the noise shows antipersistent

properties, that is, a negative correlation. If 0:5 < H < 1, the noise shows persistent

properties, that is a positive correlation.

In this chapter, after the analysis of the basic algorithm for studying the variance,

we review the Hurst's analysis, detrended 
uctuation analysis, relative dispersion

analysis, spectral analysis and wavelet spectral analysis. All these methods are related

to the variance scaling analysis also if they do not coincide and may give a slightly

di�erent value for the scaling exponent H, see Ref. [10]. We use the same symbol H

to indicate the scaling coeÆcient obtained with all methods.
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3.1 Basic algorithm.

The basic algorithm for the variance scaling analysis of a set of data is the following.

Let us suppose that a temporal series f�ig of N data is given:

�1; �2; �3; �4; �5; �6; �7; �8; �9; �10; �11; �12; :::; �N�1; �N : (3.3)

We use the set of data f�ig to build a trajectory

x(t) �
tX
i=1

�i ; n = 1; 2; 3; :::; N : (3.4)

The trajectory (3.4) is then used to build a series of sub-trajectories fxn(t)g according
to the following algorithm

xn(t) �
tX
i=1

�i+n�1 ; n = 1; 2; 3; :::; N � t : (3.5)

where xn(t) indicates the position of the n
th sub-trajectory at time t. For each t, there

are only N � t available sub-trajectories because the last available sub-trajectory is

made by the last t data, that is, by �N�t+1; �N�t+2; :::; �N�1; �N . All trajectories

start from the origin x(t = 0) = 0. At the increasing of the time t, the sub-trajectories

generate a di�usion process. At each time t, it is possible to calculate the variance

of the position of the N � t available sub-trajectories according to the well known

variance equation:

�2(t) = var(x(t)) =

PN�t
n=1 (xn(t)� x(t))

2

N � t� 1
; (3.6)

where x(t) is the average of the positions of the N � t sub-trajectories at time t. We

note that the way to build sub-trajectories shown in (3.5) is not unique. We can also

adopt a non-overlapping window method. In this case the original trajectory (3.4) is

divided in M = int(N=t) non-overlapping available sectors or sub-trajectories of size

t; int(x) is the integer part of x. We can then use the M sub-trajectories to calculate
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the variance. The non-overlapping method has the advantage of using independent

sub-trajectories, but the disadvantage of statistics poorer than those obtained by

using the overlapping window method.

3.2 Hurst's Rescaled Range Analysis (R/S analysis).

In 1965, in the book, Long-Term Storage: An Experimental Study [3], Hurst intro-

duced a method for studying the fractal properties of a time series. Hurst developed

his method for studying the water storage of the Nile river. The problem was to

design a reservoir, which never over
ows or empties, based upon the given record of

observed discharges from a lake. Let us suppose that �i is the amount of water 
ow-

ing from a lake to a reservoir for each year. The problem is to determine the needed

capacity of the reservoir under the condition that each year the reservoir releases a

volume of water equal to the mean in
ux. In � years, the average in
ux is

< � >�=
1

�

�X
i=1

�i : (3.7)

The amount of water accumulated in the reservoir in t years is

x(t; �) =
tX
i=1

f�i� < � >�g : (3.8)

The reservoir neither over
ows nor empties during the period of � years if its storage

capacity is larger than the di�erence, R(�), between the maximum and minimum

amounts of water contained in the reservoir. R(�) is

R(�) = max
1�t��

x(t; �)� min
1�t��

x(t; �) : (3.9)

For getting a dimensionless value, Hurst divided R(�) by the standard deviation S(�)

of the data during the � years:

S(�) =

vuut1

�

�X
i=1

f�i� < � >�g2 : (3.10)
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Figure 3.1: Hurst R/S analysis of the measured annual discharge of the Nile river

(years 622-1284). The scaling exponent is H = 0:90� 0:02.

Hurst observed that many phenomenon are very well described by the following scal-

ing relation:
R(�)

S(�)
/ �H : (3.11)

The exponent H (called K by Hurst) was called the Hurst exponent, H, by Mandel-

brot [1], who makes it a famous scaling analysis. The exponent H is directly related

to the Lipschitz-H�older exponent � [70] and to the variance scaling exponent also if

they do not coincide [10].

In the case of the Nile river, Fig. 3.1, Hurst measured an exponent H = 0:9.

This means that the Nile is characterized by a long range persistence that requires

unusually high barriers, such as the Aswân High Dam, to contain damage and rein

in the 
oods.
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3.3 Detrended Fluctuation Analysis.

In 1994, Stanley and others [112] introduced a new method called Detrended Fluctua-

tion Analysis (DFA). Since 1994, hundreds of papers, which analyze fractal properties

of time series with the DFA, have been published.

Given a time sequence f�ig (i = 1; :::; N), the DFA is based upon the following

steps. First, the entire sequence of length N is integrate

x(t) =
tX
i=1

(�i� < � >) ; (3.12)

where

< � >=
1

N

NX
i=1

�i : (3.13)

Second, the time series is divided into int(N=n) non-overlapping boxes. The number

n, which indicates the size of the box, is an integer smaller than N . A local trend

is de�ned for each box by �tting the data in the box. The linear least-squares �t

may be done with a polynomial function of order l � 0 [113]. Let xn(t) be the local

trend built with boxes of size n. Third, a detrended walk is de�ned as the di�erence

between the original walk and the local trend given by the linear least-squares �t

according to the following relation

X(t) = x(t)� xn(t) : (3.14)

Finally, the mean squared displacement of the detrended walk is calculated, that is,

F 2
D(n) =

1

N

NX
t=1

[X(t)]2 : (3.15)

Stanley and many others have proved that many time series are characterized by the

following scaling relation

FD(n) / nH ; (3.16)

where the scaling exponent is H = 0:5 for a random walk or H 6= 0:5 for fractal noise.
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3.4 Relative Dispersion Analysis.

Relative Dispersion Analysis (RDA) [114] is another technique that makes use of

the variance. The purpose of the RDA is to study the fractal properties of a time

series by measuring an dimensionless value called Relative Dispersion (RD). The RD is

obtained by dividing the standard deviation, calculated from the variance of the basic

algorithm method explained in section 3.1 by using non-overlapping aggregations of

nearest neighbors, by the average among all aggregations of the sum of the data in

each aggregation.

The algorithm is the following. Let f�ig be a set of N data with i = 1; 2; 3; :::; N .

Let r be an integer smaller than N . Let us divide the original sequence in int(N=r)

contiguous aggregations of r nearest data. int(y) is the integer part of y. Let xn(r)

be the integral of the nth aggregation of size r,

xn(r) =
rX
i=1

�n�r�r+i : (3.17)

Let x(r) be the average of all xn(r),

xn(r) =

Pint(N=r)
n=1 xn(r)

int(N=r)
: (3.18)

Let SD(r) be the standard deviation of all xn(r),

SD(r) =

vuutPint(N=r)
n=1 [xn(r)� x(r)]

2

int(N=r)� 1
: (3.19)

Finally, the Relative Dispersion of r nearest neighbors is given by

RD(r) =
SD(r)

xn(r)
: (3.20)

If the time series is a simple fractal process, then the Relative Dispersion scales as

RD(r) / r�; (3.21)
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where � = H � 1 because SD(r) scales as rH and x(r) scales as r.

3.5 Spectral Density Analysis.

Spectral analysis can be used for detecting the scaling in a stationary long memory

process because of the validity of the Parseval's theorem that connects the variance of

a time series to the spectral density function S(f), where f is the frequency. In fact,

noise f�ig with power law correlation is characterized by a spectral density function

of the type

S(f) / 1

f�
; (3.22)

where � is the spectral density scaling exponent. For � < 0 the noise shows anti-

persistent properties because the spectral density increases with the frequency. For

� > 0, the noise shows persistent properties because the spectral density is higher

at low frequencies. The case � = 0 corresponds to a white noise, that is, Brownian

noise.

In this dissertation we are interested in studying time series. Therefore, we focus

our attention upon the Discrete Fourier Transform (DFT). Given a time sequence

f�tg (t = 0; :::; N � 1), the DFT of the data is the sequence f�̂kg of N variable given

by

�̂k =
N�1X
t=0

�t exp

 
� i2�tk

N

!
; k = 0; 1; :::; N � 1 : (3.23)

It is well known that the Fourier transform can be inverted. It is possible to recon-

struct the original set of data f�tg from its DFT f�̂kg using the following equation

�t =
1

N

N�1X
k=0

�̂k exp

 
i2�tk

N

!
; t = 0; 1; :::; N � 1 : (3.24)

The Parseval's theorem is based on the validity of the following identity. Let fatg $
fâkg and fbtg $ fb̂kg two series of data with their DFT, then we have

N�1X
t=0

atb
�
t =

1

N

N�1X
k=0

âkb̂
�
k; (3.25)
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where b�t is the complex conjugate of bt. Now, by letting at = bt = �t, we obtain the

Parseval's theorem for �nite sequences, namely,

N�1X
t=0

j�tj2 = 1

N

N�1X
k=0

j�̂kj2 : (3.26)

In the case in which < � >= 0, the term of (3.26) is equal to N�2, where �2 is the

variance of the noise f�tg. Therefore, we have

�2 =
1

N2

N�1X
k=0

j�̂kj2 =
N�1X
k=0

S�(fk); fk =
2�k

N
; (3.27)

where fk is the value of the k
th frequency and S�(fk) is the spectral density function

at the frequency fk. Eq. (3.27) shows that the variance of the noise �2 can be

decomposed into parts that depend upon frequency, S�(fk). This allows us to �nd the

following relation between the spectral density scaling exponent, �, and the variance

scaling exponent H [74],

� = 2H � 1 : (3.28)

Instead of studying the spectral density function of the 
uctuations �i, it is possible

to study the spectral density function of the integral of the 
uctuations. As done

before, let us de�ne

x(t) =
tX
i=1

(�i� < � >) ; (3.29)

where

< � >=
1

N

NX
i=1

�i : (3.30)

Let Sx(f) be the spectral density function of the data x(t), Mandelbrot and van Ness

[74] proved that, in this case, the spectral density scaling exponent, �, is related to

the variance scaling exponent H through the following equation

� = 2H + 1 : (3.31)

The case � = 1 is generated by pink noise, Brownian noise corresponds to � = 2, and
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for � > 2 we have black noise.

Spectral analysis is widely used because of its simplicity. Moreover, for very large

sets of data the spectral density function may be calculated with a fast algorithm,

the Fast Fourier Transform (FFT), that works for N = 2j data, where j is an integer.

Having a fast algorithm may be important for studying a large set of data. The FFT

is a O(N log(N)) algorithm.

3.6 Spectral Wavelet Analysis.

Spectral Wavelet Analysis (SWA) is a new and powerful method for studying the

fractal properties of the variance [115]. Similar to SDA, SWA is able to decompose

the sample variance of a time series on a scale-by-scale basis. In SDA, as well known,

sine and cosines wave functions are used for the spectral analysis, whereas SWA makes

use of scaling wavelets that have the characteristics of being localized in space and

in frequencies. If SW (�) is the wavelet spectral density function at the scale � , for a

noise f�ig with power law correlation we have

SW (�) / ��; (3.32)

where the exponent � is the same exponent used for the SDA in Eq. (3.22). The

relation between � and the variance scaling exponent H is the same that that valid

for the Fourier Analysis. Therefore, � = 2H � 1 for the wavelet spectral analysis of

the noise, and � = 2H for the wavelet spectral analysis of the integral of the noise.

The essence of the wavelet analysis is the following. Let ~ (u) be a real-valued

function de�ned over the real axis (�1; 1) such that the two basic properties

1Z
�1

~ (u) du = 0 (3.33)

and
1Z

�1

[ ~ (u)]2 du = 1 (3.34)
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are satis�ed. The wavelets are characterized by the fact that they can be localized in

the space and depend upon a scaling coeÆcient that gives the width of the wavelet.

Two typical wavelets widely used are the Haar wavelet localized in t with a width

coeÆcient � de�ned by

(H) ~ �;t(u) �

8>>><
>>>:
�1=�; t� � < u < t

1=�; t < u < t + �

0; otherwise ;

(3.35)

and the Mexican hat wavelet localized in t and with a width coeÆcient � de�ned by

(Mh) ~ �;t(u) � 2 [1� (u� t)2=� 2)] e�(u�t)
2=2�2

�1=4
p
3�

: (3.36)

The Mexican hat wavelet is the second derivative of a Gaussian. The width coeÆcient

� de�nes a kind of scale analyzed by the wavelet. Given a signal �(u), the Continuous

Wavelet Transform (CWT) is de�ned by

W (�; t) =

1Z
�1

~ �;t(u) �(u) du : (3.37)

The CWT of a signal depends on two variables, � that is a width coeÆcient and

looks like the sub-trajectory size used in the basic algorithm in paragraph 3.1 or the

DFA box size discussed in paragraph 3.3, and t that is the position in the sequence

that indicate the region analyzed by the wavelet. If the wavelet ~ (u) satis�es the

admissibility condition, that is, if it is such that

C~	 =

1Z
0

j~	(f)j2
f

df <1; (3.38)

where ~	(f) is the wavelet Fourier transform, namely,

~	(f) =

1Z
�1

~ (u) e�i2�fu du; (3.39)
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and the signal �(u) is such that

1Z
�1

�2(u) du <1; (3.40)

then, the original signal can be recovered from its CWT via

�(u) =
1

C ~ 

1Z
0

2
4 1Z
�1

W (�; t) ~ �;t(u) dt

3
5 d�

� 2
: (3.41)

Finally, it is possible to prove that

1Z
�1

�2(u) du =
1

C ~ 

1Z
0

2
4 1Z
�1

W 2(�; t) dt

3
5 d�
� 2

=

1Z
0

SW (�) d� : (3.42)

The function W 2(�; t)=� 2 de�nes an energy density function that decomposes the

energy across di�erent scales and times. Eq. (3.42) is the wavelet equivalent to

the Fourier Parseval's theorem. The function SW (�) is the wavelet spectral density

function that gives the contribution to the energy at the scale � .

As for the Fourier Analysis, when we have to study a time series, it is better

to adopt a discrete version of the wavelet spectral analysis. The Discrete Wavelet

Transform (DWT) and its generalization, the Maximal Overlap Discrete Wavelet

Transform (MODWT), both work well. In the book of Percival [115], it is possible

to �nd complete details. Due to the existence of a special algorithm, called Pyramid

Algorithm, the DWT is the fastest algorithm for a spectral analysis; a O(N) algorithm

against the O(N log(N)) algorithm for the Fast Fourier Transform. This makes the

Wavelet Analysis the fastest analysis for very large set of data. However, the results

depend slightly upon the particular wavelet chosen for the analysis.
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CHAPTER 4

DIFFUSION ENTROPY ANALYSIS.

In this chapter, we introduce a new method, Di�usion Entropy Analysis (DEA), (the

topic of this dissertation) that has the propriety of detecting the correct pdf scaling

coeÆcient, Æ, of a di�usion process generated by a time series. The pdf scaling

coeÆcient Æ is de�ned by the equation

p(x; t) =
1

tÆ
� F

�
x

tÆ

�
; (4.1)

where p(x; t) is the pdf of a di�usion process with fractal scaling. DEA allows us

to detect the correct scaling coeÆcient also in the case in which a time series is

characterized by L�evy properties. None of the methods available in the literature of

the Science of Complexity can do that. In fact, the variance of an ideal L�evy 
ight

process is divergent as it was shown in section 2.5, and all the methods discussed

in Chapter 2 related to the variance (Hurst R/S Analysis, Detrended Fluctuation

Analysis, Relative Dispersion Analysis, Spectral Analysis, Spectral Wavelet Analysis)

are subtly based on the Gaussian assumption and, so, upon a variance that can be

used to monitor scaling. The variance scaling coeÆcient, H, coincides with the pdf

scaling, Æ, of a time series only in particular cases such as for Fractional Brownian

Motion. In Section 2.6, we proved that a di�usion process generated by L�evy walk is

characterized by a variance scaling coeÆcient H and a pdf scaling coeÆcient Æ that

do not coincide and are related one to the other by the following equation

Æ =
1

3� 2H
: (4.2)

Eq. (4.2) suggests a new powerful method for distinguishing a Fractional Brownian

Motion from a L�evy Walk Motion. Given a time series, we measure the variance

scaling coeÆcient, H, by using, for example, the basic algorithm of Variance Scaling

Analysis, (sec. 3.1). Then, we measure the pdf scaling coeÆcient Æ with the Di�usion
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Entropy Analysis. Finally, we compare Æ and H. If Æ = H, the time series may be

characterized by Fractional Brownian Motion. If Æ 6= H, the time series cannot be

Fractional Brownian Motion. If Æ and H are related each the other by Eq. (4.2), the

time series is characterized by a L�evy distribution.

Di�usion Entropy Analysis is based upon the Shannon Entropy. Moreover, be-

cause we want to study the statistical properties of a time series, we need to intro-

duce the Kolmogorov-Sinai entropy that studies the statistics of a dynamical symbol

sequence. After reviewing the Kolmogorov-Sinai entropy, we brie
y discuss the com-

putational limits of it. These limits justify the adoption of the Di�usion Entropy

Analysis that bypasses those limits.

4.1 The Shannon entropy and the Khinchin axioms.

Let f�ng be a long series of N observations with R di�erent possible events. Let Ni

be the number of times that the i-th event is observed. Therefore, we have

N =
RX
i=1

Ni (4.3)

and

pi =
Ni

N
; (4.4)

where pi is the probability with which the i-th event occurs. We assume that the set

of data is large enough for frequencies to coincide with the probability.

The problem is to measure the information or the entropy {the indicator of the

lack of information{ about the measure of an event that occurs with a probability p.

Given a probability distribution fpig of R events, where i = 1; 2; :::; R, the entropy

indicator S(p) of the probability distribution should ful�ll the following conditions

that are known as the Khinchin axioms:

(I) S(p) is a function of the probabilities pi only, that is

S(p) = S(p1; p2; :::; pR) : (4.5)
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(II) The entropy S(p) takes its maximum value in the correspondence of the

uniform distribution, that is,

S(p) � S

�
1

R
;
1

R
; :::;

1

R

�
: (4.6)

(III) The entropy S(p) should remain unchanged if the sample set is enlarged by

a new event with probability pR+1 = 0, that is,

S(p1; p2; :::; pR) = S(p1; p2; :::; pR; 0) : (4.7)

(IV) If a system � is divided in two subsystems �I and �II , the entropy S(p)

should ful�ll the following condition

S(p) = S(pI) +
X
i

pIi
X
j

Q(jji) lnQ(jji); (4.8)

where S(pI) is the entropy of the subsystem �I and Q(jji) is the conditional proba-
bility that the subsystem �II is in the state j if the subsystem �I is in the state i. If

the two subsystems �I and �II are independent, the entropy becomes additive with

respect to the subsystems, that is

S(p) = S(pI) + S(pII); (4.9)

where S(pI) and S(pII) are the entropies of the two subsystems.

The four Khinchin axioms allow us to de�ne, as the lack of information about the

measure of an event i that occurs with a probability pi, the following indicator

bi = � ln pi : (4.10)

We observe that if an event occurs with a probability p = 1, the lack of information

about that event is zero because that event certainly occurs; b) if an event occurs

with a probability p = 0, the lack of information about that event is in�nity. Finally,

if we have a long series of observations where the events i = 1; 2; :::; R occur with
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a probability distribution fpig, the four Khinchin axioms uniquely determine the

entropy of the system as the average of the lack of information bi about each events,

that is

S(p) = �c
RX
i=1

pi ln pi : (4.11)

The function S(p) of Eq. (4.11) is the Shannon entropy, its opposite is called the

Shannon information. The positive constant c is undetermined and it is chosen to be

1 by convention.

4.2 The R�enyi and the Tsallis entropies.

The Shannon entropy is not the only way to measure information of a probability dis-

tribution. However, it is the only entropy that ful�lls all four Khinchin axioms. If the

fourth axiom is replaced by something else, it is possible to de�ne other information

measure. Two of them are the R�enyi and the Tsallis entropies.

The R�enyi entropy [117] is de�ned by considering the �rst three Khinchin axioms

and replacing the fourth axiom with the simpler condition that the entropy is additive

for independent subsystems as shown in Eq. (4.9). Given a probability distribution

fpig of R events, where i = 1; 2; :::; R, the R�enyi entropy is de�ned by

S�(p) =
1

1� �
ln

RX
i=1

(pi)
�
; (4.12)

where � is an arbitrary real number. By using l'Hôpital's theorems, it is easy to

prove that for � ! 1, the R�enyi entropy converges to the Shannon entropy (4.11).

An important general property of the R�enyi entropy is that it is a monotonically

increasing function of � for arbitrary probability distributions p.

The Tsallis entropy [118] is de�ned by considering the �rst three Khinchin axioms

but it does not ful�ll the fourth axiom but only a generalization of it [119]. Tsallis

entropy is not extensive. Given a probability distribution fpig of R events, where
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i = 1; 2; :::; R, the Tsallis entropy is de�ned by

Sq(p) =
1

1� q

 
1�

RX
i=1

p
q
i

!
; (4.13)

where q is an arbitrary real number. As for the R�enyi entropy, the Shannon entropy

can be recovered as the limit of the Tsallis entropy for q ! 1. The entropic index q

characterizes the degree of nonextensivity according to the following rule

Sq(�) = Sq(�
I) + Sq(�

II) + (1� q)Sq(�
I)Sq(�

II); (4.14)

where �I and �II are two independent subsystems in which the system � is divided.

The situation of q > 1 corresponds to subadditivity or subextensivity. The situation

of q < 1 corresponds to superadditivity or superextensivity. For q = 1, the Tsallis

entropy coincides with the Shannon entropy and, therefore, it is additive.

4.3 The Kolmogorov-Sinai entropy.

The Kolmogorov-Sinai entropy was introduced to arrive at the fundamental concept

of entropy of a trajectory [116]. It may be used, for example, for analyzing the entire

sequences of iterates of a map. Let

fARg = fA1; A2; :::; ARg (4.15)

be a set of R di�erent symbols. This set may be a partition of the phase space. A

trajectory is a symbolic sequence of fxig symbols chosen from fARg. The index i

assumes integer consecutive values, that is, i = 0; 1; 2; :::. Given a sample sequence

of N symbols chosen from fARg, f!Ng = f!0; !2; :::; !N�1g, let

p(!1; !2; :::; !N�1) =
Z

j(!1; !2; :::; !N�1)

d�(x); (4.16)
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be the probability of �nding the sample set f!Ng = f!1; !2; :::; !N�1g in the

symbolic sequence fxig. The function �(x) is the probability distribution of the

initial values. Let us now measure the Shannon Entropy that, as explained in sec.

4.1, is an appropriate measure of the information that is present in the probability

(4.16). By following the prescription of sec. 4.1, the Shannon Entropy is given by

S(N) = � X
!0; !2; :::; !N�1

p(!0; !2; :::; !N�1) ln p(!0; !2; :::; !N�1); (4.17)

where the sum is done upon all possible di�erent sample sequences f!Ng which may

be obtained by using the partition fARg of R symbols (4.15). The Shannon entropy

depends upon the size N , therefore, for making it independent of N , let us measure

the Shannon entropy for unit length de�ned by

KfAg = lim
N!1

S(N)

N
: (4.18)

Finally, in order to construct a fundamental quantity that is independent of the

arbitrarily chosen partition fARg, we take the supreme with respect to all possible

partitions

KS = sup
fARg

hfARg: (4.19)

The value KS is the Kolmogorov-Sinai entropy of the symbolic sequence fxig. The
Kolmogorov-Sinai entropy is independent of N and fARg, however, it may depend

on the probability distribution of the initial values �(x) that de�nes the probability

(4.16).

As a simple example, let us suppose having a sequence xi made with only two

symbols, A1 = +1 and A2 = �1. If the sequence is perfectly random, for any N , all

possible sample sequences f!Ng have the same probability given by

p(!0; !2; :::; !N�1) =
1

2N
: (4.20)

By using (4.17) and (4.18), it is easy to prove that the Kolmogorov-Sinai entropy of
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this random sequence is given by KS = ln 2.

The Kolmogorov-Sinai entropy may have many applications. It may be used for

studying the statistical properties of a map. In this case, the analysis is made by

measuring the Kolmogorov-Sinai entropy of entire sequences of iterates of a map.

For getting a value independent from the probability distribution of the initial values

�(x), the invariant distribution �(x) of the map should be used as initial value. The

partition fARg may be done, for example, by dividing the map space in R cells of

size � = 1=R. If xn is the n-th iterate of a map and it belongs to the cell Ai of the

partition, xn is associated to the symbol that characterizes the cell Ai. In this way a

map is transformed into a dynamical symbolic sequence whose entropic information is

measured by the Kolmogorov-Sinai entropy. For example, in the case of the Bernoulli

shift map de�ned by

xn+1 = f(xn) =

(
2xn for xn 2 [0; 0:5]

2xn � 1 for xn 2 [0:5; 1] ;
(4.21)

it is possible to generate a symbolic sequence of only two symbols A1 = +1 and

A2 = �1 according to whether the n-th iterate of the map xn belongs to the interval

[0; 0:5] or to the interval [0:5; 1]. The Bernoulli shift map is equivalent to a sequence

of symbols A1 = +1 and A2 = �1 chosen randomly. Its Kolmogorov-Sinai entropy is

KS = ln 2.

The Kolmogorov-Sinai entropy is also important because it is simply related to

the Lyapunov exponent � of a map. This relation is given by

K = �� k; (4.22)

where k is the escape rate of a one-dimensional expanding map. If k = 0, the

Lyapunov exponent coincides with the Kolmogorov-Sinai entropy [116].

The main problem with the Kolmogorov-Sinai entropy is computational. It may

be very hard to measure the KS entropic density. The Kolmogorov-Sinai entropy uses

an analysis that requires long sample sequences f!Ng. This creates huge problems

for a computer because the number of probabilities (4.16) that must be calculated
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for each N , increases exponentially with N . Even if only two symbols, +1 and �1,
are used to create the symbolic sequence, the number of possible sample sequences of

N symbols is 2N . A value of N relatively small is enough to saturate also the most

powerful computer! To solve the problem, recourse may be made to some compression

algorithm [120] that reduces drastically the need of a computer resources. In this

dissertation we focus on the Di�usion entropy Analysis that is a powerful alternative

to the Kolmogorov-Sinai entropy analysis for studying large trajectories in the long-

time limit.

4.4 Di�usion Entropy Analysis.

In this section, we �nally address the main topic of this dissertation, the Di�usion

Entropy Analysis (DEA). The purpose of the DEA algorithm is to establish the

possible existence of scaling, either normal or anomalous, in the most eÆcient way

as possible without altering the data with any form of detrending. The existence of

scaling implies the existence of a pdf p(x; t) that scales according to the equation

p(x; t) =
1

tÆ
� F

�
x

tÆ

�
; (4.23)

where Æ is the pdf scaling exponent.

Because we want to study the statistical properties of a time series, �rst we need

an algorithm to obtain a pdf of a time series. Therefore, as we already did in section

3.1, let us consider a time series f�ig of N data:

�1; �2; �3; �4; �5; �6; �7; �8; �9; �10; �11; �12; :::; �N�1; �N : (4.24)

Let us select �rst of all an integer number t, �tting the condition 1 � t � N . This

integer number will be referred to by us as \time". For any given time t, we can �nd

N � t + 1 sub-sequences de�ned by

�
(s)
i � �i+s; s = 0; : : : ; N � t: (4.25)
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For any of these sub-sequences we build up a di�usion trajectory, labeled with the

index s, de�ned by the position

x(s)(t) =
tX
i=1

�
(s)
i =

tX
i=1

�i+s: (4.26)

Let us imagine this position refers to a Brownian like particle that at regular intervals

of time jumps been jumping forward or backward according to the prescription of the

corresponding sub-sequence of Eq. (4.25).

At each time t, it is possible to estimate a pdf p(x; t) that will be used to evaluate

the entropy of this di�usion process. To do that, we have to partition the x-axis into

cells of size �(t). When this partition is made, we have to label the cells. We count

how many particles are found in each cell at a given time l. We denote this number

by Ni(t). Then, we use this number to determine the probability that a particle can

be found in the i-th cell at time l, pi(t), by means of

pi(l) � Ni(t)

(N � t+ 1)
: (4.27)

At this stage the entropy of the di�usion process at time t is determined and reads

Sd(t) = �
X
i

pi(t) ln[pi(t)]: (4.28)

The easiest way to proceed with the choice of the cell size, �(t), is to assume it to

be independent of t and determined by a suitable fraction of the square root of the

variance of the 
uctuation �i. In the case in which the numbers �i are +1, 0 and -1,

� = 1 is the natural choice.

The method we are adopting is based on the idea of a moving window of size

t that makes the s � th trajectory closely correlated to the next, the (s + 1) � th

trajectory. The two trajectories have t � 1 values in common. The motivation for

using overlapping windows, with the DEA method, is given by our wish to establish

a connection with the Kolmogorov-Sinai entropy described in Sec. 4.3. In fact, the

Kolmogorov-Sinai entropy of a symbolic sequence is evaluated by moving a window

48



of size N along the sequence. Any window position corresponds to a given combina-

tion of symbols, and from the frequency of each combination it is possible to derive

the Shannon entropy S(N) as shown in Eq. (4.17). Moreover, we use overlapping

windows because in this way the number of available trajectories is much higher than

that can be obtained by using non-overlapping windows. The non-overlapping win-

dow technique is adopted by the DEA discussed in Sec. 3.3. The large number of

trajectories generated with overlapping windows is fundamental because to derive

the pdf of the di�usion process, we need enough trajectories to calculate a frequency

distribution (4.27) that must correspond to the real probability distribution.

Let us consider the simplifying assumption of considering large enough times as

to make the continuous assumption valid. Therefore, let us adopt the continuous

version, valid for t� 1, of the Shannon entropy that reads

S(t) = �
Z 1

�1

dx p(x; t) ln[p(x; t)]: (4.29)

We also assume that

p(x; t) =
1

tÆ
F

�
x

tÆ

�
(4.30)

and that F (y) maintains its form, namely that the statistics of the process are inde-

pendent of time. Let us plug Eq.(4.30) into Eq. (4.29). Using a simple algebra, we

get the fundamental relation:

S(�) = A + Æ �; (4.31)

where

A � �
Z 1

�1

dy F (y) ln[F (y)] (4.32)

and

� � ln(t=t0); (4.33)

where t0 is the unit time of di�usion. t0 may be neglected with the implicit assumption

that t is measured in unit of t0. Eq. (4.31) is the key relation for understanding how

the DEA is used for detecting the pdf scaling exponent Æ. After a transition regime

that may be less or more extended (this depends on the pdf of the data f�ig) the DEA
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shows an asymptotic behavior from which the parameter Æ can be detected. However,

the fact that the DEA method can be used as a reliable way to detect scaling only

in the long-time limit, may have some limitation. In fact, the real data available are

�nite, thereby there are saturation e�ects in the long-time regime. However, also the

studying of the transition regime may be used for getting important information. Of

course, Æ does not depend on the value of t0.

4.5 Non-stationary dynamical transient analysis.

In the previous section, we saw that the DEA method can be used as a reliable way

to detect the pdf scaling exponent Æ only in the long-time limit. Normally, the sta-

tionary thermodynamical condition is reached only after a non-stationary dynamical

transient. Steady thermodynamical condition holds when the statistical properties

of the di�usion process is well described by the Central Limit Theorem or by the

Generalized Central Limit Theorem. For example, in the normal random walk there

is the need of waiting a while before the binomial distribution may be decribed by a

Gaussian distribution that ful�lls the scaling properties. Another example is if the

signal has some periodicities. A di�usion process at times shorter than the charac-

teristic periods of the signal is sensitive to the intensity of the periodicities. If the

time series f�ig of N data is fractional Brownian noise or is distributed according to

a L�evy distribution, the stationary thermodynamical condition is reached after the

�rst step of di�usion. In fact, the �rst step of di�usion gives the pdf of the data f�ig.
The non-stationary dynamical transient may be simulated by a non stationary

pdf of the type

p(x; t) =
1

tÆ(t)
F

�
x

tÆ(t)

�
; (4.34)

where the pdf scaling exponent Æ(t) changes with the di�usion time t. Let us suppose

that

Æ(t) = Æ0 + � ln(t): (4.35)

Since the scaling parameter Æ cannot exceed the ballistic value Æ = 1 in the case of a

dynamical approach to di�usion with 
uctuation of limited intensity, this condition
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applies to the time scale de�ned by

� ln(t) < 1� Æ0: (4.36)

At this stage it easy for us to show the convenience of adopting the non-extensive

entropy indicator advocated some years ago by Tsallis [118]. First of all, we notice

that in the new non-stationary condition the traditional entropy indicator yields:

S(�) = A+ Æ0� + �� 2; (4.37)

where, � = ln t. According to the Tsallis picture, the entropy undergoes a regime of

linear increase in time (the time t rather than the logarithmic time �) if an entropic

index Q 6= 1 is adopted. For values of q < Q the entropy Sq(t) undergoes an increase

with time faster than the regime of linear increase in time, and for q > Q the entropic

increase is slower. On the basis of this result we make the conjecture that in the

di�usion regime a linear dependence on � is recovered if an entropic index q > 1 or

q < 1 is adopted.

Let us see all this in detail. The non-extensive Tsallis indicator [118] reads in the

continuous formalism

Sq(t) =
1� R+1�1 dx [p(x; t)]q

q � 1
: (4.38)

It is straightforward to prove that this entropic indicator coincides with that of

Eq.(4.23) when the entropic index q gets the ordinary value q = 1. Let us make

the assumption that in the di�usion regime the departure from this traditional value

is very weak. This can be quantitatively expressed as follows. Let us de�ne �rst

� � q � 1: (4.39)

We make the assumption that

� << 1; (4.40)

which, as we shall see, is ful�lled by the process under study in this paper. This
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allows us to use the following approximated expression for the non-extensive entropy

S1+�(t) = �
Z +1

�1

dx p(x; t) ln(p(x; t))

� �
2

Z +1

�1

dx p(x; t) [ln(p(x; t))]
2
: (4.41)

In the speci�c case where the non stationary condition of Eq. (4.34) applies, this

entropy gets the form

S1+� = A+ Æ(t) ln(t)

�� B � � Æ(t) ln(t)A� �

2
Æ(t)2 [ln(t)]

2
; (4.42)

where

B � 3

8
+
1

4
ln(2��2) +

1

8

h
ln(2��2)

i2
: (4.43)

It is straightforward to show that the regime of linear increase in time is recovered

when � is assigned the value

� =
�

Æ20=2 + �A
: (4.44)

These theoretical remarks demonstrate that this non-extensive approach to the

di�usion entropy makes it possible to detect the strength of the deviation from the

steady condition. In fact Eq. (4.44) proves that � = 0 implies a steady condition. It

is evident that the measure of the departure from the steady condition is given by

� =
1

2

�Æ20
1� �A

: (4.45)

This Section shows that the breakdown of the stationary property of Eq. (4.23) can

be revealed by the Di�usion Entropy Analysis under the form of an entropic index q

slightly departing from the condition of ordinary statistical mechanics, namely q = 1.

Fig. 4.1 shows the e�ect of the entropic index q upon the entropy of the di�usion.

The entropic index q has the e�ect to bend the curve. If q > 1 the curve becomes

more convex; if q < 1 the curve becomes more concave. This e�ect is illustrated in
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Figure 4.1: Di�usion Entropy by using the non-extensive Tsallis entropy equation

(4.38). The dashed line is for q = 0:8, the solid line is for q = 1, and the dotted line

is for q = 1:2. The �gure shows the bending due to the adoption of q 6= 1.

Fig. 4.1 by adopting the following Brownian di�usion equation:

p(x; t) =
1p
�t

exp

 
�x

2

t

!
: (4.46)

By adopting the non-extensive Tsallis entropy equation (4.38), we get

Sq(t) =

8<
: (1� �0:5(1�q) q�0:5 t0:5(1�q))=(q � 1) q 6= 1

0:5 + 0:5 log(�t) q = 1 :
(4.47)

In Fig. 4.1, the curves corresponding to q = 0:8, q = 1 and q = 1:2 are plotted.
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CHAPTER 5

ARTIFICIAL SEQUENCE ANALYSIS.

In this chapter, we verify the theoretical predictions of Chapter 2 about the pdf scaling

exponent Æ and the variance scaling exponent, H, by using arti�cial sequences. we

compare the Variance Scaling Analysis with the Di�usion Entropy Analysis.

In Chapter 2, we saw that the Fractional Brownian Motion, Sec. 2.3, is character-

ized by the fact that the pdf scaling exponent Æ and the variance scaling exponent,

H, coincide. In the case of L�evy 
ights, Sec. 2.5, the variance scaling exponent, H,

cannot be de�ned. However, the pdf scaling exponent Æ can be measured with the

Di�usion Entropy Analysis. In the case of L�evy walks, Sec. 2.6, both H and Æ can be

measured but they do not coincide and are related one to the other via the following

expression

Æ =
1

3� 2H
: (5.1)

We describe the algorithms for generating the arti�cial sequences. We also analyze

an intermittent dynamical model base upon the Manneville map [121] that may be

used to produce time series of rare events, that is, a sequence of data f�ig distributed
according to an inverse power law distribution. These types of sequences may be used

to produce L�evy di�usion processes.

All analyses are made by using the following di�usion method. Given a time series

f�ig of N data:

�1; �2; �3; �4; �5; �6; �7; �8; �9; �10; �11; �12; :::; �N�1; �N : (5.2)

we select �rst of all an integer number t, �tting the condition 1 � t � N . This integer

number will be referred to by us as \time." For any given time t, we can �nd N� t+1

sub-sequences de�ned by

�
(s)
i � �i+s; s = 0; : : : ; N � t: (5.3)
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For any of these sub-sequences, we build up a di�usion trajectory, labelled with the

index s, de�ned by the position

x(s)(t) =
tX
i=1

�
(s)
i =

tX
i=1

�i+s: (5.4)

The statistics of the positions x(s)(t) are analyzed by using the basic algorithm for

detecting the variance scaling exponent H, Sec. 3.1, and the DEA algorithm for

measuring the pdf scaling coeÆcient, Æ, Sec. 4.4.

5.1 Fractional Brownian di�usion.

Fractional Brownian di�usion is produced by Fractional Brownian noise. We generate

a time series f�H;tg of N data by using the algorithm by Mandelbrot that can be found

in the book of Feder [70]. Chosen a value of H 2 [0 : 1], let f�ig be a set of Gaussian
random variables with unit variance and zero mean. The discrete fractional Brownian

increment is given by

�H;t = xH(t)� xH(t� 1) =
n�H

�(H + 0:5)

(
nX
i=1

iH�0:5 �1+n(M+t)�i+

n(M�1)X
i=1

�
(n+ i)H�0:5 � iH�0:5

�
�1+n(M�1+t)�i

9=
; ;

where M is an integer that should be moderately large, and n indicates the number

of the fractional steps for each unit time. Note that the time t is discrete. In the

simulation, good results are obtained with M = 1000 and n = 10. The time series

f�H;tg is then used for generating a di�usion process with the trajectories (5.4).

Fig. (5.1) shows 5000 data generated by the fractional Brownian algorithm with

H = 0:5. The data f�0:5;tg are distributed according to a Gaussian distribution with

a variance �2 = 1. Fig. (5.2) shows a sample of di�usion trajectories de�ned by the

position x(s)(t) of Eq. (5.4). Ten trajectories are plotted. At t = 0, all trajectories

depart from the position x(s)(0) = 0. As the time t increases, the trajectories give

origin to the classical di�usion picture.
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Figure 5.1: Brownian Noise. H = 0:5, variance �2 = 1.

-20

-15

-10

-5

0

5

10

15

0 20 40 60 80 100

x(
t)

t

Figure 5.2: Brownian di�usion generated by the trajectories (5.4) and using the data

plotted in Fig. (5.1). Only ten trajectories are plotted.
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Figure 5.4: Variance scaling analysis. In ordinate it is plotted the standard deviation

SD(t) of the positions of the di�usion trajectories in function of the di�usion time t.

The data shown in Fig. (5.1) and in Fig. (5.3) are used. The straight lines correspond

to the right scaling exponent H for each set of data: from up to down: (1) H = 0:8,

(2) H = 0:6, (3) H = 0:5, (4) H = 0:4, (5) H = 0:2.

Figs. (5.3, a-d) show 2000 data generated by the fractional Brownian algorithm

with four di�erent values of H: (a) H = 0:8, (b) H = 0:6, (c) H = 0:4, (d) H = 0:2.

Fig. (a) and (b) show a noise with a persistence behavior, Fig. (c) and (d) show a

noise with antipersistence behavior.

Fig. (5.4) shows the variance scaling analysis of the data shown in Fig. (5.1) and

in Fig. (5.3). For convenience, in ordinate we plot the normalized standard deviation

SD(t) of the positions of the di�usion trajectories as a function of the di�usion time
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Figure 5.5: Di�usion Entropy analysis. For convenience, in ordinate it is plotted the

entropy S(t) � S(1) of the pdf due to the positions of the di�usion trajectories in

function of the di�usion time t. At t = 1 all curves start from the same ordinate

position = 0. The data shown in Fig. (5.1) and in Fig. (5.3) are used. The straight

lines correspond to the right scaling exponent Æ for each set of data: from top to

bottom : (1) Æ = 0:8, (2) Æ = 0:6, (3) Æ = 0:5, (4) Æ = 0:4, (5) Æ = 0:2.
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t. The normalized standard deviation SD(t) is related to the variance var(t) by

SD(t) =

vuut var(t)

var(1)
: (5.5)

With this choice of SD(t), all curves start from the same ordinate position = 1. The

straight lines correspond to the right scaling exponent H for each set of data, that

is, from top to bottom: (1) H = 0:8, (2) H = 0:6, (3) H = 0:5, (4) H = 0:4, (5)

H = 0:2. The variance scaling exponent H is de�ned by

SD(t) = tH : (5.6)

Fig. (5.5) shows the Di�usion Entropy analysis of the data shown in Fig. (5.1)

and in Fig. (5.3). For convenience, in ordinate we plot the entropy

S(t)� S(1) (5.7)

of the pdf due to the positions of the di�usion trajectories as a function of the di�usion

time t. At t = 1 all curves start from the same ordinate position = 0. The straight

lines correspond to the right scaling exponent Æ for each set of data: from top to

bottom: (1) Æ = 0:8, (2) Æ = 0:6, (3) Æ = 0:5, (4) Æ = 0:4, (5) Æ = 0:3. The pdf scaling

exponent Æ is de�ned by

S(t)� S(1) = Æ ln(t) : (5.8)

Fig. (5.4) and Fig. (5.5) show clearly that for Fractional Brownian Motion the

variance scaling exponent H and the pdf scaling exponent Æ coincides. The scaling

may not start from the �rst steps of di�usion because of a transition region due to the

arti�cial discretization introduced by the cell size � used for estimating the di�usion

pdf.
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5.2 Manneville Map: an intermittent dynamical model for time series of rare events.

In Chapter 2, we analyzed anomalous di�usion processes that cannot be described by

fractional Brownian motion that, as we saw in the previous paragraph, are character-

ized by a variance scaling exponent, H, that coincides with the pdf scaling exponent

Æ. In Chapter 2, we analyzed L�evy 
ights (LJM) and walks (SVM), and di�usion

models characterized by long rests (SJM and AJM). In this cases, usually, the vari-

ance scaling exponent, H, does not coincide with the pdf scaling exponent Æ. In the

case on L�evy 
ights it is not possible to de�ne H because the variance diverges. All

these di�usion models rest upon the fact that the data are distributed according to

an inverse power law pdf of the type

 (y) =
(�� 1) T ��1

(T + y)�
; (5.9)

where T is a positive value and the exponent � 2 [2 : 3]. With this choice of the

exponent �, the second moment of  (y) diverges. For the SVM, AJM and SJM,

the pdf (5.9) may be considered equivalent to an inverse power-law distribution of

waiting times. If we adopt the LJM, the pdf (5.9) may be considered the distribution

of the 
ights. The GCLT assures that a di�usion processes generated by long 
ights

distributed according to Eq. (5.9) converges to a L�evy distribution.

In this paragraph, we introduce an intermittent dynamical model for time series

distributed according to Eq. (5.9) [6]. The dynamical model is based on the Man-

neville Map [121] that has been widely used in the recent past to derive L�evy and

describe turbulence processes [122, 123, 124, 144].

The Manneville map reads:

xn+1 = �(xn) = xn + xzn (mod: 1) (1 � z): (5.10)

We note that at z = 1 the Manneville map becomes equivalent to the Bernoulli shift

map used by Zaslavsly [126] to prove that in the case of fully chaotic systems the

distribution of the Poincar�e recurrence times is an exponential whose decay rate is
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Figure 5.6: The Manneville Map. z = 1:8, d(z) = 0:6. The laminar region, [0; d(z)],

and the chaotic region, [d(z); 1].

the Kolmogorov-Sinai (KS) according to the following prescription:

PR(t) / exp(�hKSt) : (5.11)

Fig. (5.6) shows the Manneville Map. For z > 1 the interval [0; 1] is divided in

two regions, the laminar region, [0; d(z)], and the chaotic region, [d(z); 1], with d(z)

de�ned by

d(z) + d(z)z = 1 (5.12)

We review here the arguments used by Geisel and Thomae [127] to derive an analytical

expression for the distribution of the times of sojourn in the laminar region. First of

all we assume that the injection point x0 is so close to x = 0 as to replace eq.(5.10)
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with:
dx

dt
= �xz: (5.13)

The coeÆcient � can be �xed to 1. Thus we obtain the following time evolution:

x(t) =
h
x1�z0 + (1� z)t

i1=(1�z)
: (5.14)

Hence the time necessary for the trajectory to get the border x = d(z) is given by

t = T (x0) �
 

1

xz�10

� 1

dz�1

!
1

z � 1
: (5.15)

Note that in the special case where the initial conditon is so close to x = 0 as to ful�ll

the condition x0 << d, the exit time T (x0) can be satisfactorily approximated by

T (x0) � 1

xz�10

1

z � 1
; (5.16)

which, as we shall see in Section III, can be used to de�ne the time at which we lose

control of the trajectories departing from a region of the map very close to x = 0.

Note that the distribution function  (t) is related to the injection probability

p(x0) by

 (t) dt = p(x0) dx0: (5.17)

Assuming equiprobability for the injection process we have:

p(x0) dx0 =
1

d(z)

�����dx0dT

����� dT: (5.18)

Thus, we obtain:

 (t) =
1

d(z)

�����dx0dt
����� : (5.19)

By di�erentiating t with respect to x0 we �nally arrive at

 (t) = dz�1
h
1 + dz�1(z � 1)t

i�z=(z�1)
: (5.20)
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We observe that the exponent � of the basic inverse power-law Eq. (5.9) is related to

the exponent z of the Manneville map (5.10) via the equation

� =
z

z � 1
: (5.21)

It is important to observe that the mean waiting time Tav is given by

Tav =
1

dz�1
1

2� z
; (5.22)

with Tav =1 for 2 � z.

We see that Eq. (5.20) implies that the region corresponding to z > 2 or � < 2

is characterized by a diverging �rst moment. This region is in con
ict with the

Kac theorem [128] and for this reason we do not take it into account. The region

pertaining to the interval 1:5 < z < 2 or 2 < � < 3 is characterized by a �nite

second moment and a diverging second moment. This is the region of interest for us,

since it corresponds to that generating L�evy di�usion according to the recent work

of Ref. [129]. The region 1 < z < 1:5 or � > 3 is characterized by a �nite second

moment. Of course, the ideal condition z = 1 implies all the moments to be �nite.

This is a region which would correspond, in the perspective of Ref.[129], to ordinary

Gaussian di�usion. We note that in the region 1 < z < 1:5 the waiting function

distribution must make a transition from the inverse power law behavior of Eq.(5.20)

to the exponential regime, where the arguments of Zaslavsky leading to Eq.(5.11)

apply. In fact, at z = 1, the Manneville map becomes identical to the Bernoulli shift

map. In that case, the theoretical remarks of Zaslavsky yield:

 (t) / exp(�t ln 2): (5.23)

For computational purposes we found to be more convenient to evaluate the pop-

ulation of the laminar region, M(t), rather than the waiting time distribution  (t).

The two functions are related the one to the other by
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Figure 5.7: M(t) as a function of time. The meaning of the six solid lines is as

follows. The lowest solid line is the function M(t) = exp(�tln2). All the other solid
lines denote the long-time inverse power lawM(t) = 1=t

1

z�1 . The dotted lines are the

numerical result. All the full lines but the lowest have been shifted to the right to

make them distinguishable from the numerical result. The value of the parameter z,

from the bottom to the top is: z = 1; 1:1; 1:2; 1:3; 1:4; 1:5.

M(t) = 1�
Z t

0
 (t0)dt0: (5.24)

Thus, the analytical expression of Eq.(5.20) yields

M(t) =
h
1 + dz�1(z � 1)t

i�1=(z�1)
: (5.25)

Figs. (5.7) and (5.8) illustrate the results of our numerical treatment. In Fig.

(5.7) we illustrate the result of the numerical calculation with the parameter z in the

interval [1; 1:5]. We see that the long-time limit �ts for all values of z considered

but z = 1, the theoretical prescription of the inverse power law t�
1

z�1 . However,
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Figure 5.8: M(t) as a function of time. The meaning of the four pairs of lines is as fol-

lows. The solid lines denote the functionM(t of Eq.(5.25) and the dotted lines denote

the numerical results. To make the solid lines distinguishable from the dotted lines we

shifted them to the right by the quantity � = 0:1. In the logarithmic representation

adopted, this is equivalent to replacing t of M(t) with texp(��). The value of the

parameter z from the bottom to the top changes as follows: z = 1:5; 1:6:1:7; 1:8; 1:9.

this inverse power law regime is reached after an extended transition regime, which

seems to be exponential-like. The duration of this transition regime becomes more

and more extended with z coming closer and closer to z = 1. At z = 1 this transition

regime becomes in�nitely extended and coincident with the theoretical prediction of

Eq.(5.23). In Fig. (5.8), devoted to studying the relaxation of the Manneville map

with z in the interval [1:5; 2], we see that the prediction of Eq.(5.25) is very accurate

and tends to become exact with increasing the values of z.
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5.3 Symmetric velocity model simulations.

Section 2.6 was dedicated to the L�evy walk di�usion. In Ref. [111] it is proved that

a L�evy walk di�usion may be generated by the so-called Symmetric Velocity Model

(SVM). This type of di�usion is characterized by the fact that the walker travels with

a constant velocity throughout a whole time interval t chosen from a waiting time

pdf of the kind

 (t) = (�� 1)
T ��1

(T + t)�
: (5.26)

At the end of the time interval, the walker may or may not change direction and

travel through the next time interval with the same or the opposite constant velocity.

We focus our attention upon the interval 2 < � < 3 that is characterized by a �nite

characteristic waiting time T and by an divergent second moment as required for a

L�evy di�usion statistics. L�evy walk di�usion model is more realistic than the Long

Jump Model or L�evy 
ights because it implies that, for making a jump, a walker

needs a time proportional to the length of the jump itself. In Section 2.6, we proved

that SVM implies a second moment scaling exponent H di�erent from the pdf scaling

exponent Æ. The two exponents are related to the power exponent � of Eq. (5.26)

according to the following equations

H =
4� �

2
(5.27)

and

Æ =
1

1� �
: (5.28)

Fig. 5.9 shows Æ and H against �. Eqs. (5.27) and (5.28) implies that L�evy walk

di�usion is characterized by an easy relation between the second moment and the pdf

scaling exponents:

Æ =
1

3� 2H
: (5.29)

Let us describe how an arti�cial sequence �i, generating a L�evy walk di�usion

process, is generated. To construct such a sequence �rst of all we need to generate

a series of N integer numbers fL(i)g according to a probability distribution p(L):
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Figure 5.9: Æ (solid line) and H (dashed line) against �. For � = 2:5, H = 0:75 and

Æ = 0:666.

these numbers can be interpreted as the lengths of strings of the sequence to build

up. Then, for any string, we toss a coin and we decide to �ll it with +1's or �1's,
according to whether we get head or tail. The integer numbers L(i) are distributed

according to the following inverse power law pdf:

p(L) =
C

(T + L)�
; (5.30)

where T and C =
�P1

L=1
1

(T+L)�

��1
are two constants. We focus our attention on the

condition 2 < � < 3. This condition is known [130, 131, 132] to yield a L�evy di�usion.

A technical method to create a distribution as in equation (5.30) is the following. We

divide the interval [0,1] of real numbers into in�nite sectors. The L-th sector covers

the space

sector(L) �
"
X(L); X(L) +

C

(T + L)�

!
; (5.31)

68



where

X(L) =

8<
: 0 if L = 1;

C
PL�1
n=1 1=(T + n)� if L > 1:

(5.32)

The length of the L-th sector is equal to the probability p(L) given by the Eq.(5.30).

Then, by using a computer, we generate a sequence of rational random numbers �(i)

uniformly distributed between 0 and 1: if the rational number �(i) belongs to the

L-th sector, the value L will be assigned to the element L(i) of the sequence of integer

numbers. The described algorithm and the uniformity of the sequence of rational

random numbers �(i) assure that the sequence of integer numbers L(i) is distributed

exactly according to the power law given by the equation (5.30). An alternative

method can be found in Ref. [133]. The illustrated algorithm is based upon the

discrete assumption, it is possible to use an algorithm based upon the continuous

assumption that the element L(i) is related to the random number �(i) by

L(i) = Int
h
T (y + 1)

� 1

��1 � 1
i
; (5.33)

where Int[y] is the integer part of y. However, in our simulations we use the discrete

algorithm because it seems to give more precise results than the continuous one.

The only disadvantage in using the discrete algorithm is that it is slower than the

continuous one. The discrete algorithm has the advantage of producing a series of

L(i) distributed exactly according to the inverse power-law distribution (5.31). After

generating the arti�cial sequence �i, it is possible to apply the procedures exposed

in the Chapters 3 and 4 to determine the variance scaling coeÆcient H via several

forms of methods that detect variance scaling, as well as, the pdf scaling exponent Æ

via the di�usion entropy.

The simulations are made by using 5 million data �i. The sequence L(i) is dis-

tributed according to Eq. (5.30) where it is chosen T = 0. In fact, T is only a time

scaling, and large T have the e�ect of increasing the transition region before reaching

the scaling region. Because we are interested in studying the scaling region, T is �xed

as small as possible. We generate �ve sets of data �i by using �ve di�erent exponents

�: � = 2:8, � = 2:6, � = 2:5, � = 2:4, � = 2:2. Table 5.1 shows the theoretical
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� 2.200 2.400 2.500 2.600 2.800

H 0.900 0.800 0.750 0.700 0.600

Æ 0.833 0.714 0.667 0.625 0.556

Table 5.1: Theoretical relation between the waiting time distribution power exponent

� and the variance scaling exponent H and the pdf scaling exponent Æ.
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mu=2.2
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0.625*log(t)+1.15
0.667*log(t)+1.05
0.714*log(t)+0.93
0.833*log(t)+0.35

Figure 5.10: Di�usion Entropy Analysis of L�evy walk. Five sets of data corresponding

to � = 2:8, � = 2:6, � = 2:5, � = 2:4, � = 2:2. The values of the pdf scaling exponent

Æ are in Table 5.1.

relation between � and the scaling exponents Æ and H.

Fig. 5.10 shows the results obtained by using the di�usion entropy method. The

�ve sets of data scale according to the theoretical values of Æ shown in Table 5.1. For

large t we note a slight saturation e�ects due to the fact that the number of data is

limited.

Figs. 5.11, 5.12, 5.13, 5.14 show the Hurst Analysis, the Detrended Fluctuation

Analysis, Variance Scaling Analysis and the Wavelet Variance Analysis respectively

applied to the �ve sets of data corresponding to � = 2:8, � = 2:6, � = 2:5, � = 2:4,

� = 2:2. The four pictures show that the four techniques are practically equivalent.
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Figure 5.11: Hurst Analysis of L�evy walk. Five sets of data corresponding to � = 2:8,

� = 2:6, � = 2:5, � = 2:4, � = 2:2. The values of the scaling exponent H are in Table

5.1.

They all give the same scaling exponents. These exponents coincide with the theo-

retical values of H of Table 5.1. To graphically show the same scaling exponent H,

the Variance Scaling Analysis is made by plotting the standard deviation, that is, the

square root of the variance. The Wavelet Variance Analysis is made upon the integral

of the data series �i. Finally, we plot the square root of the spectral density accord-

ing to the prescriptions of Section 3.6. The wavelet spectral density is calculated by

using the Maximum Overlap Discrete Wavelet Transform [115]. For the calculation

the Daubechies H4 discrete wavelet is used .

The �ve �rst �gures of this section clearly show the eÆciency of the Di�usion

Entropy Analysis in detecting the real statistical properties of a data set. In fact , all

techniques related to the variance {Hurst Analysis, Detrended Fluctuation Analysis,

Standard Deviation Analysis, Wavelet Spectral Analysis{ are practically equivalent

and are able to detect only the second moment scaling exponent H. The problem is

that if a data set is analyzed only with one of these techniques based upon the variance

and a scaling exponent H is found, the data set may be mistaken for Fractional
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Figure 5.12: Detrended Fluctuation Analysis of L�evy walk. Five sets of data corre-

sponding to � = 2:8, � = 2:6, � = 2:5, � = 2:4, � = 2:2. The values of the scaling

exponent H are in Table 5.1.
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Figure 5.13: Standard Deviation of L�evy walk. Five sets of data corresponding to

� = 2:8, � = 2:6, � = 2:5, � = 2:4, � = 2:2. The values of the scaling exponent H

are in Table 5.1.
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Figure 5.14: Wevelet Variance Analysis of L�evy walk. Five sets of data corresponding

to � = 2:8, � = 2:6, � = 2:5, � = 2:4, � = 2:2. The values of the scaling exponent H

are in Table 5.1.

Brownian noise that is based upon the Gaussian assumption while the truth may be

that L�evy and not Gauss statistics characterize the data set. The Di�usion Entropy

Analysis can distinguish between the two types of noise. If Æ = H the noise may

be Fractional Brownian Noise, whereas if Æ 6= H the noise cannot be Fractional

Brownian. If Æ and H are related by Eq. (5.29), the data show clear L�evy properties.

The reason is because Di�usion Entropy Analysis detects a scaling di�erent from

that revealed by the variance scaling analysis. DEA studies the scaling of the di�usion

distribution itself whereas the variance is related to only one of the moments of the

distribution. The Gaussian di�usion is characterized by the fact that all moments,

M�(t) =< jx � xj� >, scale with the same exponent of the distribution. A L�evy

di�usion has divergent moments. Therefore, it is not true that all moments scale as

the distribution does. Fig. 5.15 shows the �rst moment of the distribution M1(t)

against the di�usion time t. Whereas the second moment scaling H does not coincide

with the distribution of scaling exponent Æ, the �rst moment scaling exponent H1 is

equal to Æ. This is due to the fact that the �rst moment of a L�evy distribution is
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Figure 5.15: First Moment Analysis of L�evy walk. Five sets of data corresponding to

� = 2:8, � = 2:6, � = 2:5, � = 2:4, � = 2:2. The values of the scaling exponent H1

are in Table 5.1. We have that H1 = Æ.

convergent. In the next two sections we analyze the scaling properties of the long

jump model, Section 2.5. For long jumps distributed according to an inverse power

law distribution (5.30) with 2 < � < 3, the �rst moment analysis is still able to detect

the correct scaling exponent as the DEA does. The methods based upon the variance

fail completely in detecting a true scaling. If 1 < � < 2, even the �rst moment fails

to detect the real scaling. Only the Di�usion Entropy Analysis is able to measure the

real scaling in all situations.

5.4 Long jump model: case 2 < � < 3.

In this section and in the next one we simulate the long jump model theoretically

discussed in Sec. 2.5 and analyze its scaling properties. We generate a sequence of

�ve million jumps, f�ig, distributed according to the following inverse power law

 (�) = (�� 1)
T ��1

(T + �)�
: (5.34)
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Figure 5.16: Di�usion Entropy Analysis of Long Jump Model with 2 < � < 3. Five

sets of data corresponding to � = 2:8, � = 2:6, � = 2:5, � = 2:4, � = 2:2. The values

of the pdf scaling exponent Æ are in Table 5.1.

The di�usion process is generated by a walker that at each unit time makes a jump

forward or backward equal to the jump length �. The generalized central limit theorem

assures that a di�usion process generated in this way is a L�evy di�usion whose pdf

scales according to the equation

Æ =
1

�� 1
; (5.35)

as it is proved in Sec. 2.5. If 2 < � < 3, the variance diverges; Therefore, all scaling

detectors based upon the variance are expected to fail in detecting the real scaling of

the di�usion distribution given by Eq. (5.37) because there is not an equation like Eq.

(5.29) that relates Æ to H as is possible for the Symmetric Velocity Model. On the

contrary, the modulous of the �rst moment, M1(t) =< jx � xj > of the distribution

does not diverge. It should be able to detect the scaling of the distribution. The

Di�usion Entropy Analysis directly studies the scaling properties of the distribution;

Therefore, DEA detects real scaling.

Fig. 5.16 shows the Di�usion Entropy Analysis of �ve sequences of data f�ig
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Figure 5.17: (a) Standard Deviation Scaling Analysis (SDSA) and (b) Hurst R/S

analysis of Long Jump Model with 2 < � < 3. Five sets of data corresponding to

� = 2:8, � = 2:6, � = 2:5, � = 2:4, � = 2:2. The �gures show that the scaling

analysis method based upon the study of the variance are unable to detect the real

scaling of the distribution.
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Figure 5.18: First Moment Scaling Analysis of Long Jump Model with 2 < � < 3.

Five set of data corresponding to � = 2:8, � = 2:6, � = 2:5, � = 2:4, � = 2:2. The

values H1 coincide with the pdf scaling exponent Æ present in Table 5.1.

generated by using the discrete algorithm illustrated in the previous section with the

constant T = 0, and � = 2:8, � = 2:6, � = 2:5, � = 2:4 and � = 2:2. The �gure

shows clearly that DEA detects the real scaling exponent Æ whose values are in Table

5.1.

Figs. 5.17 show the Standard Deviation scaling analysis and the Hurst analysis for

the same �ve sequences analyzed before. The �gures show that the scaling coeÆcients

H do not change with �. H = 0:5 in all cases. This proves that the variance scaling

analysis methods are unable to detect the real pdf scaling exponent Æ. Because the

Variance scaling methods give H = 0:5, by using them it is possible to reach the

wrong conclusion that these di�usion pdfs are Gaussian, whereas they are L�evy. Fig.

5.17a shows a �nite standard deviation because the number N of data is �nite. By

increasing N, the variance increases. Fig. 5.17b shows that all �ve curves coincide.

This is due to the fact that the Hurst Analysis normalizes the data by dividing by

the standard deviation.
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Finally, Fig. 5.18 shows the First Moment Scaling Analysis (FMSA) of Long

Jump Model with 2 < � < 3. The values H1 coincide with the pdf scaling exponent

Æ present in Table 5.1. This is due to the fact that for 2 < � < 3 the �rst moment

of the di�usion pdf is �nite and, therefore, it detects the right scaling. In the next

section, we show that for 1 < � < 2 while the FMSA is unable to detect the right

scaling, the DEA is still able to detect the right scaling. This makes the Di�usion

Entropy the best method of detection of the pdf scaling.

5.5 Long jump model: case 1 < � < 2.

As done in the previous section, we generate a sequence of �ve million jumps, f�ig,
distributed according to the following inverse power law

 (�) = (�� 1)
T ��1

(T + �)�
: (5.36)

The di�usion process is generated by a walker that for each unit time makes a jump

forward or backward equal to the jump length �. The generalized central limit theorem

assures that a di�usion process generated a di�usion whose pdf scales according to

the equation

Æ =
1

�� 1
; (5.37)

as it is proved in Sec. 2.5. If 1 < � < 2, not only the second moment but also

the �rst moment diverges. This means that even the �rst moment scaling analysis is

expected to fail to detect the real scaling. The Di�usion Entropy Analysis, instead,

directly detects the scaling of the distribution. Therefore, it is expected to succeed in

detecting the right scaling exponent related to the power exponent � via Eq. (5.37).

Figs. 5.19 and 5.20 show the DEA and the FMSA applied to the same set of data

respectively. Table 5.2 shows the relation between � and Æ for the four sets of data

used in the simulations. Fig. 5.19 shows clearly that DEA is able to detect the real

scaling of the distribution, whereas Fig. 5.20 shows that the �rst moment scaling

analysis cannot be used for detecting the real scaling. The �rst moment diverges

for 1 < � < 2. The �nite values shown in Fig. 5.20 are due to �nite set of data.
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� 1.900 1.800 1.700 1.600

Æ 1.111 1.250 1.429 1.667

Table 5.2: Theoretical relation between the waiting time distribution power exponent

� and the pdf scaling exponent Æ.
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Figure 5.19: Di�usion Entropy Analysis of Long Jump Model with 1 < � < 2. Four

sets of data corresponding to � = 1:9, � = 1:8, � = 1:7, � = 1:6. DEA detects the

right pdf scaling exponents Æ; Table 5.2.

M1(t) increases with the number of data analyzed, therefore it has not an universal

meaning.

5.6 Di�usion Entropy Analysis is the best scaling detector.

The results of the previous sections show clearly the superiority of the Di�usion

Entropy Analysis over all standard scaling detector methods like the variance scaling

analysis, Hurst's analysis, detrended 
uctuation analysis, relative dispersion analysis,

spectral analysis, wavelet spectral analysis and �rst moment scaling analysis. The

moment scaling analysis methods are based upon the assumption that the scaling
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Figure 5.20: First Moment Scaling Analysis of Long Jump Model with 1 < � < 2.

Four sets of data corresponding to � = 1:9, � = 1:8, � = 1:7, � = 1:6. All four sets

of data show H1 = 1. This proves that FMSA is unable to detect the real scaling.

detected by one of the moment, M� of the distribution coincides with the scaling of

the distribution. This is true in some cases like in the Fractional Brownian di�usion,

but it is not true in general. Di�usion processes characterized by, for example, a L�evy

statistics as the symmetric velocity model or the long jump model, are characterized

by the fact that the exponent H is di�erent from the true scaling exponent Æ. Only

the Di�usion Entropy Analysis is able to detect the true scaling exponent Æ in all

situations because DEA measures directly the scaling of the distribution. However, to

know whether a time sequence is characterized by Gaussian or non-Gaussian statistics,

DEA is not enough. There is the need of a simultaneous use of the DEA with one of

the variance scaling analysis methods. If the two exponents H and Æ are equal, the

Gaussian hypothesis may be realistic whereas it cannot be granted if H 6= Æ. If by

adopting the symmetric velocity model Æ = 1=(3 � 2H), the theory assures us that

the time sequence is characterized by L�evy properties.
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5.7 Non-stationary condition induced by weak and persistent memory.

In this section we show that a sequence of data generated by fast 
uctuations around

a weak and slowly 
uctuating drift, produces the same e�ects as those illustrated

in Sec. 4.5. This supports our conviction that the breakdown of the stationary

condition discussed earlier is a manifestation of weak but persistent memory. In fact,

the connection between � and � is proven to be the same as that of Eq. (4.44) and

Eq. (4.45). This means that for short periods of the logarithmic time � the e�ect of

persistent memory becomes indistinguishable from the breakdown of the stationary

condition. We have in mind the notable e�ect, illustrated in Sec. 4.5, of the structure

of of Eq. (4.35) yielding the entropic property of Eq. (4.37).

We create a sequence of data, ��(t), where � denotes the memory intensity, in

the following way. Firstly, using a random noise generator we create a sequence of


uctuations. More speci�cally, we generate a set of 100,000 random rational numbers,

F (n), belonging to the interval [0; 1]. The variable n is an integer number running

from 1 to 100,000. Secondly, we create an arti�cial memory through a square periodic

function, f�(t), with period equal to 2000, average equal to 0.5, and amplitude equal

to the parameter �, which is, as mentioned earlier, the memory intensity. In the �rst

period, for t from 0 to 2000, the function f�(t) is:

f�(t) =

8<
: 0:5 + � if 0 < t � 1000

0:5�� if 1000 < t � 2000 :
(5.38)

In the third and �nal stage we convert the sequence F (n) into the dichotomous

sequence, ��(t), of numbers \+1" and \-1" using the following prescription:

��(t) =

8<
: +1 if F (t) > f�(t)

�1 if F (t) < f�(t) :
(5.39)

The numbers \-1" and \1" can be interpreted as the discrete jumps of a random

walker. This means that with the data ��(t), interpreted as the steps made, forward

or backward, by a random walker moving on the x-axis, we can build a trajectory,

denoted by ��. This trajectory speci�es the random walker's position on the same
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Figure 5.21: The di�usion entropy as a function of time. The three curves refer to

the three sets of data with � = 0 (solid line), � = 0:04 (the curve denoted by �)
and � = 0:10 (the curve denoted by +), respectively. The case � = 0 results in the

di�usion entropy of a stationary process, the ordinary random walk, in this case. The

corresponding curve, as expected, is a linear function of the logarithmic time � �
ln(t), see Eq.(5.40). The other two curves, corresponding to non-vanishing memory

strength, result in an evident departure from the linear dependence on logarithmic

time, larger for the case of larger memory (larger �). This is a clear illustration of the

breakdown of the stationary condition caused by a memory of weak but non-vanishing

intensity.

x-axis, at any given time N . With � = 0 there is no memory: The data ��=0(t) are

statistically equivalent to those that one would obtain by tossing a fair coin.

At this point, it is possible to calculate the di�usion entropy associated with the

weak memory controlled by the parameter �:

Fig. 5.21 shows the results of this numerical analysis. We plot three curves corre-

sponding to � = 0; � = 0:04; and � = 0:10: For � = 0 the di�usion entropy refers

to a stationary di�usion process. According to the theory of Sec. 4.5, this condition

is expected to produce an entropy increase linear with respect to the logarithmic time

� = ln(t). In the case under study, the stationary condition is that of an ordinary
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Brownian di�usion, which yields for the scaling coeÆcient Æ0 the value 0:5. Thus, the

di�usion entropy is given by

H(t) = 0:5 ln(t) + ln(2); (5.40)

which �ts very well the numerical result of Fig. 5.21. For the other two curves,

corresponding to � = 0:04 and � = 0:10, respectively, there is a signi�cant deviation

from the linear dependence on the logarithmic time � , which is larger with the larger

memory strength. In conclusion, Fig. 5.21 shows that the numerical evaluation of

the di�usion entropy detects the breakdown of the condition of stationary di�usion,

even if this is caused by a very weak memory. In the case under study, the memory

strength, given by the parameter �, is equivalent respectively to the 4% and 10% of

the signal.

Let us discuss now how to measure the intensity of the breakdown of the stationary

condition. In accordance with the prescriptions of Sec. 4.5. This can be done in two

ways. The �rst method is direct one. It is based on �tting the curves with the

quadratic approximation of Eq.(4.37). This allows us to determine the coeÆcients

A; Æ0; and, �. On the basis of the theoretical remarks of Sec. II we realize that the

latter parameter is the property of interest to measure. We can establish a connection

with the second method by determining the entropic index q = 1 + � by means of

Eq.(4.44). The second method rests on the determination of the entropic index q, as

the \magic" value of q making the non-extensive Tsallis entropy linear with respect

to logarithmic time � . In practice, this means that we have to look for the value of

q that results in the maximum the coeÆcient of linear correlation. The form of the

non-extensive Tsallis entropy used in this case is:

Hq;�(t) =

 
1�X

x�

p�(x�; t)
q

!
= (q � 1) ; (5.41)

where, as in the earlier case, the sum is understood on all available positions x�. For

q = 1 Eq.(5.41) is identical to the Shannon Entropy.

We illustrate the results of the numerical calculations based on the adoption of
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Figure 5.22: The non-extensive Tsallis entropy as a function of time t. The three

curves are the numerical realization of Eq.(5.41) with q = 1 (solid line), q = 1:054

(symbol �) and q = 1:205 (symbols +) and correspond to di�erent values of the

memory strength �, which are � = 0, � = 0:04 and � = 0:10, respectively. The

choice of di�erent entropic indices q for the di�erent values of � has been done with

the criterion of selecting the value of q resulting in the most extended linear regime

with respect to the logarithmic time � � ln(t):

Eq.(5.41) in Fig. 5.22. This �gure refers to the same physical conditions as those

of Fig. 5.21 and proves that for any of those conditions an entropic index q can

be found so that the non-extensive Tsallis entropy becomes a linear function of � .

Thus, within the context of the problems under discussion in this paper, Tsallis

entropy takes on the following "thermodynamic" meaning. This new type of entropic

indicator allows us to imagine the processes departing from the stationary condition

as also being stationary. The departure of q from the ordinary value q = 1 increases

with increasing Æ. We �nd that � = 0, � = 0:04 and � = 0:10 correspond to q = 1,

q = 1:054 and q = 1:205:, respectively. All this is in complete accordance with the

theoretical remarks of Sec. 4.5.

We make a judgment of the results obtained by means of the numerical treatment
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of the simple model of this section with the help of Table 5.3. In the �rst three

columns of this table we report, for di�erent values of the parameter �, the values of

the coeÆcients A, Æ0, � and q = 1 + � calculated using the Eq.(4.44), and thus using

the former of the two methods illustrated earlier. In the last column of this table we

report the values of q obtained using the latter method. The �tting procedure adopted

to generate the values of this table have been limited to time windows whose size does

not exceed the value of 30. We see that, as expected, q is an increasing function of

� and that within the statistical accuracy the two methods yield the same value for

q. This means that Eqs.(4.44) and (4.45) are correct. Of course, this implies that the

memory strength is weak enough. From the values reported in Table I we see that the

accuracy of the theoretical prediction is satisfactory for values � � 0:207, a fact which

implies the maximum value � = 0:09 for the memory strength. Beyond this value

the validity of the quadratic approximation necessary to evaluate the parameter � is

broken. For higher values of the memory strength it is probably convenient to use the

latter method. However, in this case the theoretical connection with the breakdown

of stationary di�usion is still missing and further research work is required.
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� � Æ0 A q1 = 1 + � q2

0.03 0.0018 0.517 0.690 1.014 1.017

�.0005 �.002 �.002 �.004 �.008
0.04 0.0063 0.512 0.692 1.047 1.054

�.0006 �.002 �.002 �.005 �.005
0.05 0.0113 0.506 0.693 1.083 1.092

�.0007 �.003 �.003 �.006 �.004
0.06 0.0165 0.501 0.695 1.120 1.127

�.0007 �.003 �.003 �.007 �.004
0.07 0.0214 0.498 0.696 1.154 1.157

�.0008 �.003 �.003 �.008 �.004
0.08 0.0261 0.497 0.696 1.184 1.181

�.0007 �.003 �.00 �.008 �.004
0.09 0.0300 0.498 0.695 1.207 1.197

�.0006 �.003 �.002 �.007 �.004
0.10 0.0329 0.503 0.693 1.221 1.205

�.0005 �.002 �.002 �.005 �.004

Table 5.3: Entropic index q resulting from two distinct �tting procedures. The coef-

�cient q1 is calculated by using the �rst method via the measure of the coeÆcients �,

Æ0, A and �. The coeÆcient q2 is calculated by using the Tsallis entropy.
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CHAPTER 6

L�EVY STATISTICS IN CODING AND NON-CODING NUCLEOTIDE

SEQUENCES

In this chapter we apply the Di�usion Entropy, DEA, to the statistical analysis of

nucleotide sequences. The recent progress in experimental techniques of molecular

genetics has made available a wealth of genome data (see for example the NCBI's

Gen-Bank data base of Ref. [134]), and raised the interest for the statistical analysis

of DNA sequences [135, 136, 137, 138]. These pioneer papers mainly focused on

the controversial issue of whether long-range correlations are a property shared by

both coding and non-coding sequences or are only present in non-coding sequences.

The results of more recent papers [139, 140] yield the convincing conclusion that the

former condition applies. However, some statistical aspects of the DNA sequences are

still obscure, and it is not yet known to what extent the dynamic approach to DNA

sequences proposed by the authors of Ref. [141] is a reliable picture for both coding

and non-coding sequences. The later work of Refs. [142] and [143] established a

close connection between long-range correlations and the emergence of non-Gaussian

statistics, con�rmed by Mohanti and Narayana Rao [139]. According to the dynamic

approach of Refs. [141, 144] this non-Gaussian statistics should be L�evy, but this

property has not yet been assessed with compelling evidence. The reason for this

failure is that there exists no reliable method of scaling detection. In this chapter, we

aim at �lling this gap and we show that the Di�usion Entropy Analysis (DEA) realizes

the ambitious goal of a�ording the genuine scaling value. Furthermore, we prove

that the joint use of the DEA method and of the Variance Scaling Analysis (VSA)

methods like the Standard Deviation Scaling Analysis, the Detrended Fluctuation

Analysis (DFA) [145], and the Wavelet Spectral Analysis (WSA) [140, 146], allow us

to:

1) establish the presence of long-range correlations in coding as well as in non-

coding sequences;

2) assess the L�evy nature of the resulting non-Gaussian statistics.
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This is possible because, as shown in the previous chapters, DEA detects the true

scaling of a time series. In fact, DEA directly detects the pdf scaling exponent Æ,

whereas the other techniques based upon the Variance Scaling Analysis are able to

detect the true scaling only in the reductive case of Fractional Brownian noise.

As shown in the previous chapters, scaling is the property of di�usion processes

relating the space variable x to the time variable t via the key relation x / tH . The

symbol H stands for Hurst, as a recognition by Mandelbrot of the earlier work of

Hurst [70], and is interpreted as a scaling parameter. Mandelbrot's arguments are

based on the so called fractional Brownian motion (FBM), an extension of ordinary

Brownian motion to anomalous di�usion. If the FBM condition applies, H is the real

scaling of the time series as shown in Section 5.1. In this case the departure from

ordinary di�usion is given by H 6= 1=2, with no departure, though, from Gaussian

statistics. When the FBM condition and, therefore, the Mandelbrot's argument do

not apply, only the DEA can establish the true scaling. It is worth stressing that

our de�nition of scaling is given by the asymptotic time evolution of the probability

distribution of x, obeying the property

p(x; t) =
1

tÆ
F

�
x

tÆ

�
; (6.1)

where the symbol Æ denotes the true scaling, which exists also when the second

moment of F (y) is divergent. The L�evy nature of the resulting non-Gaussian statistics

of the nucleotide sequences is assessed on the basis of the theoretical results of Section

2.6 and on the numerical results of Section 5.3 that are about the L�evy walk and the

Symmetric Velocity Model.

6.1 DNA genome data and its numerical representation.

In the last few years, thanks to the recent progress in experimental technics in molecu-

lar genetics, a wealth of genome data has become available (see for example Ref.[134]).

This has triggered a large interest both in the study of mechanics of folding [147], and
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on the statistical properties of DNA sequences. In particular, genomes can be con-

sidered as long messages written in a four-letter alphabet, in which we have to search

for information (signal). Recently, there have been many papers pointing out that

DNA sequences are characterized by long-range correlation, this being more clearly

displayed by non-coding than by coding sequences [144, 135, 138, 145].

In this chapter we consider various DNA sequences: The human T-cell receptor

alpha/delta locus (Gen Bank name HUMTCRADCV) [145], a non-coding chromoso-

mal fragment (it contains less than 10% coding regions); The Escherichia Coli K12

(Gen Bank name ECO110K) [145], and the Escherichia Coli (Gen Bank ECOTSF)

[143], two genomic fragments containing mostly coding regions (more than 80% for

ECO110K). The three sequences have comparable lengths, respectively M = 97634

basis for HUMTCRADCV, M = 111401 basis for ECO110K and M = 91430 basis

for ECOTSF.

The �rst two sequences have been analyzed in Ref. [145] by means of the De-

trended Fluctuation (DFA). The fundamental di�erence between them is that the

non-coding sequence, namely HUMTCRADCV, shows the presence of long-range

correlation at all scales, while the sequence ECO110K, a coding sequence, shows

the presence of long-range correlation only at the large-length scale. The third se-

quence, ECOTS, has been studied in Ref. [143] with the interesting conclusion that

the large-length scale shows non-Gaussian statistics. The authors of Ref. [145] using

the illuminating example of the lambda phage genome, pointed out that the DFA

does not mistake the presence of patches of di�erent strand bias for correlation. This

is an important property, shared by the DEA method, which is widely independent

of the presence of biases, since the entropy increases mainly as a consequence of the

trajectories departing from one another. We want to prove that the DEA method

makes it possible to relate the non-Gaussian statistics and the anomalous scaling of

the large-length scale to the same cause: the onset of L�evy statistics.

The usual way to study the statistical properties of DNA is to consider a sequence

of four bases: adenine, cytosine, guanine, and thymine (respectively A, C, G, and

T), at the simpli�ed level of a dichotomous sequence of two symbols, purine (for A

and G) and pyrimidine (for C and T). A trajectory, the so-called DNA walk, can
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Figure 6.1: The DNA walk. Fig. 6.1a shows the DNA walk relative to

HUMTCRADVC, a non-coding chromosomal fragment. Figs. 6.1b and 6.1c show

the DNA walk relative to ECO110K and ECOTSF, two coding genomic fragments.
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be extracted by considering a one-dimensional walker associated to the nucleotide

sequence in the following way: the walker takes one step up when there is a pyrimidine

in the nucleotide and a step down when there is a purine. The DNA sequence is

therefore transformed in a sequence �i; i = 1; :::;M , of numbers +1 or �1. Here i
can be conceived as a discrete value of \time", and the walker makes a step ahead or

backward, according to whether at \time" i the random walker sees +1 or �1, namely
if the i-th site of the DNA sequence hosts a pyrimidine or a purine. The displacement

of the walker after l steps is x(l) =
Pl
i=1 �i and is reported in Fig. 6.1 for the three

sequences under consideration.

6.2 Detrended Fluctuation Analysis and Wavelet Spectral Analysis.

The �rst thing we notice is that all the three series present \patches", i.e. excess of

one type of nucleotide. In the DFA method of ref. [145] Stanley and collaborators

de�ne a detrended walk by subtracting the local trend from the original DNA walk

and then they study the variances F (l) of the detrended walk. If the walk is totally

random, as in the ordinary Brownian motion, no correlations exist and F (l) � l1=2.

On the contrary, the detection of F (l) � lH with either H > 1=2 or H < 1=2 is

expected to imply the presence of extended correlation, which, in turn, is interpreted

as a signature of the complex nature of the observed process. Stanley et al. found

a scaling exponent H = 0:61 for the non-coding intron sequence HUMTCRADCV,

and H 0 = 0:51 for the intronless sequence of ECO110K in the short-time region. We

indicate the scaling at short-time H 0 and that at long-time H. They claim their

method is able to avoid the spurious detection of apparent long-range correlations

which are the artifacts of the patchiness by detrending. The detection of the true

scaling, as we have seen, often involves the adoption of detrending procedures, since a

steady bias hidden in the data produces e�ects which might be mistaken for a striking

departure from Brownian di�usion, while the interesting form of scalings must be of

totally statistical nature.

Fig. 6.2 shows the Detrended Fluctuation Analysis compared with the Standard
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Figure 6.2: SDSA, DFA andWSA of the HUMTCRADVC, a non-coding chromosomal

fragment. The scaling exponent H is 0:59�0:01 (SDSA), 0:60�0:01 (DFA), 0:61�0:01
(WSA). H is the same both at short-time and long-time regions.

Deviation Analysis and the Wavelet Spectral Analysis of the HUMTCRADVC, a non-

coding chromosomal fragment. Wavelet Spectral Analysis is conducted on the DNA

walk and the square root of the wavelet variance is plotted in the ordinate axes. In this

way we obtain a scaling directly compatible with the one obtained by the SDSA and

the DFA. The scaling exponent H is 0:59�0:01 (SDSA), 0:60�0:01 (DFA), 0:61�0:01
(WSA). H is the same both at short and long time region. The advantages of using

the DFA are not evident here. Figs. 6.3 show the Detrended Fluctuation Analysis

compared with the Standard Deviation Analysis and the Wavelet Spectral Analysis of

the ECO110K and ECOTSF, two coding genomic fragments. The scaling exponentH 0

is 0:53�0:01 (SDSA), 0:52�0:01 (DFA), 0:52�0:01 (WSA) in the short-time region.

H is 0:73� 0:01 (SDSA), 0:75� 0:01 (DFA), 0:74� 0:01 (WSA) at long-time region.

Both �gures show the three adopted methods detect the same scaling exponents H 0

and H both in short and long time region. However, the advantages/disadvantages

of using the DFA are evident. DFA detects the scaling in the long-time region later
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Figure 6.3: The DNA walk. SDSA, DFA and WSA of ECO110K and ECOTSF, two

coding genomic fragments. The scaling exponent H 0 is 0:53�0:01 (SDSA), 0:52�0:01
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(DFA), 0:74� 0:01 (WSA) at long-time region.
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because of the detrending that cuts o� long local trend. In Ref. [145], Stanley and

collaborators were interested in studying the scaling in the short-time region in order

to distinguish the non-coding from the coding DNA sequences. The DFA works for

extending such a regime. If the interest is in studying the signal as it is, that is,

studying the statistical properties of what appears to be local trend as well, it is

better to adopt a non-detrending method of analysis. The Wavelet Spectral Analysis

is adopted by Arneodo and collaborators in Ref. [140, 146]. Figs. 6.2 and 6.3 show

that there is no di�erence between SDA and WSA. This is because the Wavelet

Transform behaves, Sec. 3.3, like the Fourier Transform that studies the variance of

the signal. Therefore, WSA, as Fourier Spectral Analysis, can detect the true scaling

only in the Gaussian case. In all other cases, WSA can detect only the variance

scaling that may not coincide with the true scaling, see Sec. 5.3.

By using the DEA algorithm we can detect the existence of scaling, either normal

or anomalous, Gaussian or L�evy, in a very eÆcient way, and without altering the

data with any form of detrending. We analyze the data of both the coding and non-

coding sequences. Starting from the sequence �i; i = 1; :::; N we create the di�usion

trajectories and we compute the di�usion entropy S(l) according to equation (4.28).

The results are reported in Figs. 6.4-6.6. We extract Æ which identi�es the scaling

with the asymptotic tangent to the curve S(l) vs. log(l).

6.3 The Copying Mistake Map: a model for DNA sequences.

According to the dynamical model of Ref. [141] a non-coding DNA sequence corre-

sponds to an arti�cial sequence with long-range inverse power law correlation as those

studied in Section 2.6. On the other side, a coding sequence can be obtained by adopt-

ing a model called Copying Mistake Map (CMM) [141]. According to CMM, Nature

has, at her disposal, two independent sequences. The �rst one is of the same kind as

the inverse power law correlated sequence discussed in Section 2.6 (and corresponding,

as already said, to non-coding sequences). The second sequence is a random walk.

Then Nature decides to build up the DNA sequence using a random criterion. To

any site of the sequence to build, Nature assigns a symbol drawn, with a probability
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pR, from the corresponding site of the latter sequence (the random sequence), and

drawn, with probability pL, from the corresponding site of the former sequence (the

correlated sequence). In the case of coding sequences usually the condition

pR � pL (6.2)

applies. The authors of Ref. [143] pointed out that the CMM model is equivalent to

an earlier model [148, 138] called Generalized L�evy Walk (GLW). The CMM (and the

GLW, as well, of course) yields, for short times, a di�usion process indistinguishable

from ordinary Brownian motion. At large times, however, the long-range correlation

predominates. In Ref. [143] the CMM was adopted to account for the properties of

prokaryotes, for which a signi�cant departure from Gaussian statistics occurs. One

of the coding sequences studied here, namely ECOTSF, is the same as one discussed

in Ref. [143]. It produces strong deviations from Gaussian statistics. On the basis of

that, and of the conjectures made in Section 3 D, we expect also for coding sequences

at large \times" a scaling parameter Æ corresponding to the L�evy statistics

Æ =
1

�� 1
; (6.3)

This is di�erent from the result provided by using the DFA,

H =
4� �

2
: (6.4)

The proof of Eq. (6.4) can be given using the dynamic approach to di�usion

discussed in Refs. [144, 141]. The discussion made in Section 2.6, with arti�cial

sequences, and consequently, with a known value of �, proves that the DE method

detects in the long-time limit the correct scaling of Eq. (6.4). In the case of the

real DNA sequences here under discussion, the value of � is not known. Both the

DFA and the DEA method can be used as reliable methods of determining �, if we

give credit to the dynamic approach to DNA sequences of Ref. [141], adopted also in

the ensuing papers of Refs. [143, 142]. By determining � by means of the DFA and
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plugging the corresponding expression in Eq. (6.3), we get

Æ =
1

(3� 2H)
: (6.5)

We denote this relation as L�evy Condition (LC). If the Gaussian case, which is the

only case where a method based on measuring variances yields a reliable scaling

prediction, we would get

Æ = H: (6.6)

We call this Gaussian Condition (GC). We prove that the DEA makes it possible to

assess which of the two, LC or GC, applies.

6.4 DEA of non-coding and coding DNA Sequences.

We are �nally ready to discuss the results of the application of the DEA. First of all

we focus on the non-coding sequence HUMTCRADCV. Fig. 6.4a shows that the DEA

results in a scaling changing with time. This is pointed out by means of two straight

lines of di�erent slopes, Æ0 = 0:615� 0:01 and Æ = 0:565� 0:01, corresponding respec-

tively to the short-time and long-time region. Anomalous di�usion shows up at both

the short-time and the long-time scale, and this seems to be a common characteristic

of non-coding sequences, supported also by the application of our technique to other

non-coding DNA sequences. Moreover, we notice that the scaling in the short-time

regime Æ0 = 0:615� 0:01 coincides exactly with the value found by means of the DFA

analysis [145], H 0 = 0:61�0:01. The authors of Ref. [145] assign this scaling value to

both the short and the long-time regime, while here it appears clearly that the true

long-time regime scaling is di�erent. We note that this change of scaling corresponds

to a transition from the the GC of Eq. (6.6), valid in the short-length scale, to the

LC of eq. (6.5), valid in the large-length scale.

Fig. 6.4b shows the result of the DEA applied to an arti�cial sequence built up

according to the CMM prescription so as to mimic the sequence HUMTCRADCV. In

this case, the intensity of the random component is not predominant as in the case of

the coding sequences, which are known [143] to require the condition of Eq. (6.2). In
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Figure 6.4: Di�usion Entropy and CMM simulation for the HUMTCRADCV, non-

coding chromosomal fragment. Fig. 6.4a shows that the DE analysis results in a

scaling changing with time. The slope of the two straight lines is Æ0 = 0:615 � 0:01

at short-time regime, and Æ = 0:565 � 0:01 at long-time regime. Fig. 6.4b shows

the comparison between the DEA of the real non-coding sequence and an arti�cial

sequence corresponding to the CMM model: pR = 0:56 � 0:02, T = 0:43, � =

2:77� 0:02.
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fact, in this case the best �t between the real and the CMM sequence is obtained by

setting pR = 0:56� 0:02. Note that we set � = 2:77� 0:02, which corresponds to the

prescription of Eq. (6.3) in the short-time limit. In fact, if we plug � = 2:77� 0:02

into Eq. (6.4), we get H = 0:615 � 0:01. This is the slope of the DE curve in the

short-time limit. If, on the contrary, we plug � = 2:77�0:02 into Eq. (6.3) we obtain

Æ = 0:565� 0:01, which is the slope of the DEA curve in the long-time regime. This

means that the random component has only the e�ect of improving the accuracy of

the �tting, the scaling of whole time regime before the time l of the order of about 100

being essentially determined by the anomalous index � = 2:77� 0:02. The important

property con�rmed by the CMM sequence is the crossover from short-time GC of Eq.

(6.6) to the long-time LC of Eq. (6.5).

In Figs. 6.5 and 6.6 we turn to the more delicate problem of the coding sequence.

The �rst sequence (ECO110K) has already been studied by means the DFA analysis in

Ref. [145]. The DFA �nds H 0 = 0:52� 0:01 at the short-length scale and H = 0:75�
0:01 in the large-length scale. The second sequence (ECOTSF) has been analyzed

in Ref. [141] by using four di�erent methods. The �rst was the second moment

analysis of the di�usion process. This is a method of analysis less sophisticated

than the DFA, since does not imply any local detrending. The second and third

methods were the DFA and the Hurst analysis [70], respectively. The fourth method

used was the Onsager regression analysis, a method that, in that context, provides

information on the correlation function of the 
uctuation �, which has an inverse

power dependence on time l with the power index � = ��2. The authors of Ref. [141],
by using essentially the �rst method and the Onsager regression analysis, reached the

conclusion that the most plausible value of the scaling parameter in the long-time

region is H = 0:75� 0:01 that is equivalent to the exponent H = 0:74� 0:01 found

in Figs. 6.3. It is interesting to remark that the coincidence among the di�erent

predictions about scaling, and especially that between the second moment technique

and the Hurst analysis implies the adoption of the Gaussian assumption [149]. On

the other hand, when that condition does not apply and the two scaling predictions

are di�erent, to the best of our knowledge, it does not seem to be known what is the

meaning of any of them. Furthermore, the authors of Ref. [141] pointed out that the
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Figure 6.5: Di�usion Entropy and CMM simulation for the ECO110K, coding genomic

fragment. Fig. 6.5a shows that the DEA results in a scaling changing with time.

The slope of the two straight lines is Æ0 = 0:52 � 0:01 at short-time regime, and

Æ = 0:665 � 0:01 at long-time regime. Fig. 6.5b shows the comparison between the

DE analysis of the real coding sequence and an arti�cial sequence corresponding to

the CMM model: pR = 0:943� 0:01, T = 45, � = 2:5� 0:02.
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statistics of the long-time regime is too poor to support any claim on the departure

from the Gaussian condition.

Finally the DEA illustrated in Figs. 6.5 and 6.6 a�ords a convincing settlement

of the problems left open by the analysis of Ref. [141]. Figs. 6.5a and 6.6a clearly

show the di�erence between the slope at short time, which, in this case, is very close

to that of ordinary random walk, and the slope at long time that corresponds to

Æ = 0:665� 0:01. Since we know that in both cases the long-time slope provided by

the DFA is H = 0:75 � 0:01, we conclude that in both cases the LC of Eq. (6.5)

applies. Figs. 6.5b and 6.6b are instead devoted to a comparison with the CMM.

A very good agreement is obtained by setting pR = 0:943� 0:01 for ECO110K (Fig.

5b) and pR = 0:937 � 0:01 for ECOTSF (Fig. 6b). The results shown in the Figs.

6.5 and 6.6 are very close to each other. and are in accordance with the physical

reasons that led the authors of Ref. [141] to propose the CMM model for coding

sequences. In fact, with such a high weight, assigned to the random component, the

scaling Æ0 = 0:52 � 0:01 and Æ0 = 0:53 � 0:01, very close to the conventional scaling

Æ = H = 0:5, lasts for an extended period of time. At larger times a transition to a

larger scaling takes place.

We note that the authors of Ref. [146] �nd anomalous di�usion in a statistical

condition that they claim to be Gaussian. According to the result of Ref. [142]

the Gaussian condition is incompatible with a stationary di�usion process generated

by a dichotomous 
uctuation yielding a non integrable correlation function with an

inverse power law character. However, the authors of Ref. [142], with the help of

a fractal model for the DNA folding, proved that the fractional Brownian motion

advocated by the paper of Ref. [146] is possible as a form of non-stationary process.

Thus, in principle we cannot rule out the possibility that the change of slope with

time illustrated by Figs. 6.5a and 6.6a is a manifestation of that condition, implying

Gauss statistics throughout the whole time range explored by the statistical analysis.

We see, on the contrary that Figs. 6.5 and 6.6, and Table 6.1 prove that the LC

of Eq. (6.5) applies to both sequences. This means that in both cases the long-time

limit is characterized by L�evy statistics and that this is the form of non-Gaussian

statistics revealed by the analysis of Ref. [142].
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Figure 6.6: Di�usion Entropy and CMM simulation for the ECOTSF, coding genomic

fragment. Fig. 6.6a shows that the DEA results in a scaling changing with time.

The slope of the two straight lines is Æ0 = 0:53 � 0:01 at short-time regime, and

Æ = 0:665 � 0:01 at long-time regime. Fig. 6.6b shows the comparison between the

DEA of the real coding sequence and an arti�cial sequence corresponding to the CMM

model: pR = 0:937� 0:01, T = 60, � = 2:5� 0:02.
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Non-Coding N H ÆH Æ

HUMTCRADCV 97630 0.61 0.56 0.56

CELMYUNC 9000 0.71 0.63 0.635

CHKMYHE 31109 0.78 0.69 0.70

DROMHC 22663 0.72 0.64 0.65

HUMBMYHZ 28437 0.58 0.54 0.54

Coding

ECO110K 111401 0.74 0.66 0.66

ECOTSF 91430 0.74 0.66 0.66

LAMCG 48502 0.85 0.77 0.76

CHKMYHN 7003 0.74 0.66 0.66

DDIMYHC 6680 0.68 0.61 0.61

DROMYONMA 6338 0.69 0.62 0.64

HUMBMYH7CD 6008 0.63 0.57 0.58

HUMDYS 13957 0.69 0.62 0.62

Table 6.1: Values of the scaling exponents H and Æ for coding and non-coding

genomes. In the �rst column there is the GenBank name [134]. In the second column

there is the length N of the genome. For all measures the error is �0:01. ÆH of the

fourth column is the theoretical value for Æ if the L�evy Condition applies, Eq. (6.5).

If the length of the genome is larger than 20,000 the �tted region is 100 < l < 2000.

If the length of the genome is shorter than 20,000, the statistics are not very good

for large l. In this case, the �tted region is 20 < l < 200.

.
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6.5 Signi�cance of the results obtained.

To properly appreciate the signi�cance of the results of this chapter, it is necessary to

say a few words about the two di�erent scaling prescriptions of Eqs.(6.3) and (6.4).

The scaling prescription of Eq.(6.4) is determined by the adoption of the variance

method, as clearly illustrated by the dynamical approach to the DNA sequences of

Ref. [141]. This prescription is not ambiguous if the condition of Gaussian statistics

applies. In fact, a Gaussian distribution drops quickly to zero, and the existence of a

�nite propagation front does not produce any signi�cant e�ect. It has to be pointed

out, in fact, that the adoption of the Brownian landscape proposed in the pioneer

papers of Refs. [135, 138, 145] implies the existence of a propagation front moving

with ballistic scaling (Æ = 1). In other words, if we �nd a window of length l �lled with

only 1 's or with only �1's, this means a trajectory travelling with uniform velocity,

and the x-space at distances from the origin larger that l is empty. The existence of

a propagation front does not have big consequences in the case of Gaussian statistics,

since the population at the propagation front is essentially zero in that case. It

is not so in the case of L�evy statistics, though, due to the existence of very long

tails in that case. Therefore the L�evy processes resulting from these sequences are

essentially characterized by the presence of two distinct scaling prescriptions, the L�evy

prescription of Eq.(6.3), concerning the portion of distribution enclosed between the

two propagation fronts, and the scaling Æ = 1, of the propagation front itself. The

scaling of the variance of Eq.(6.4) does not re
ect correctly either of these two di�erent

scaling prescriptions, being a kind of compromise between the two. The scaling of

the distribution enclosed by the two propagation fronts is, on the contrary, a genuine

property that corresponds to the prediction of the generalized central limit theorem

[150]. It is very satisfactory indeed that the DEA method makes this genuine form of

scaling emerge. Furthermore, the DEA is a very accurate method of scaling detection,

as proved by the fact that it reveals the existence of L�evy statistics in the case of the

coding sequence. In this case, as pointed out by the authors of Ref. [141], the ordinary

methods become inaccurate due to the poor statistics available in the long-time limit.

Another important result of this chapter is that it con�rms the validity of the
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CMM model. This model is expected to generate L�evy statistics not only in the case

of non-coding sequences, where it is easier to reveal this property. It predicts L�evy

statistics also in the case of coding sequences as the one here analyzed. In Ref. [141]

the emergence of L�evy statistics was conjectured but not proved, due to the fact

that in that paper the observation was made monitoring the probability distribution

p(x; t). The proof of the emergence of L�evy statistics would imply the detection of

distribution tails with an inverse power law, a property diÆcult to assess, due to

the poor statistics of the long-time limit. In Ref. [143] a clear deviation from the

Gaussian condition was detected in the long-time limit, but, again, no direct evidence

was found that this deviation from Gaussian statistics is due to the emergence of L�evy

statistics. The results of this chapter prove, with the help of the arti�cial sequences of

Sections 2.6 and 6.3, that the DEA is method of analysis is so accurate as to consider

the detection of the property LC of Eq. (6.5) as a compelling evidence that the CMM

is a correct way of modelling DNA sequences.
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CHAPTER 7

HARD X-RAY SOLAR FLARES

The study of solar 
ares is becoming popular among the researchers working at the

frontier of statistical mechanics, due to the widely shared conviction that they are a

signature of a signi�cant departure from the condition of ordinary Brownian motion

[151, 152, 153, 154]. As pointed out by Wheatland, [155], the distribution of times

between 
ares, gives information on how to model 
are statistics. Although the

agreement on the fact that 
are statistics depart from ordinary statistical mechanics

is general, there seems to be the still unsettled issue of what is the proper model

which will account for this form of anomalous statistics. Does this form of statistics

re
ect self-organized criticality or turbulence [153]? We think that the settlement of

this delicate issue is made diÆcult by the fact that, although many authors claim that

 (�) is an inverse power law with power index �, the actual value of � still seems to

be uncertain. In fact, the authors of Ref. [151] propose � = 1:7 and those of Ref.

[152] claim that � = 2 is the proper power law index. Bo�etta et al. [153] propose

� = 2:4. Finally, Wheatland explains the origin of the power law behavior with a

model yielding � = 3:0, [155].

This chapter is devoted to analyzing the distribution of time distances � between

two nearest-neighbor 
ares. This analysis is based on the joint use of two distinct

techniques. The �rst is the direct evaluation of the waiting time distribution function

 (�), or of the probability, 	(tau), that no time distance smaller than a given � is

found. We adopt the paradigm of the inverse power law behavior, and we focus on the

determination of the inverse power index �, without ruling out di�erent asymptotic

properties that might be revealed, at larger scales, with the help of richer statistics.

The second technique is the Di�usion Entropy Analysis that rests on the evaluation

of the entropy of the di�usion process generated by the time series. The details of

the di�usion process depend on walking rules. We adopt the SJM, AJM, and LJM

that are discussed in Chapter 2. This three rules determine the form and the time

duration of the transition to the scaling regime, as well as the scaling parameter Æ.
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With the �rst two rules the information contained in the time series is transmitted,

to a great extent, to the transition, as well as to the scaling regime. The same

information is essentially conveyed, by using the third rule, into the scaling regime,

which, in fact, emerges very quickly after a fast transition process. We show that

the signi�cant information hidden within the time series concerns memory induced

by the solar cycle, as well as the power index �. The scaling parameter Æ becomes

a simple function of �, when memory is annihilated by shu�ing the data. Thus, the

three walking rules yield a unique and precise value of � if the memory is carefully

taken under control, or cancelled by shu�ing the data. All this leads to a compelling

conclusion that � = 2:138 � 0:01 and, at the same time, proves that the hard x-ray

solar 
ares statistics are more complex than expected on the basis of the waiting time

distribution alone.

7.1 Statistical analysis of the real data:  (�) and 	(�).

In this section we plan to derive the waiting time distribution  (�) directly from the

statistical analysis of the real data, the x-rays emitted by solar 
ares in the case here

under study. At �rst sight, one might think that a direct determination of  (�) is

more convenient than any indirect approach. Actually, it is not so. As mentioned in

Section I, we �nd that the evaluation of the probability of �nding no time distance

larger than a given � , denoted by 	(�), de�ned by

	(�) �
1Z
�

 (t)dt; (7.1)

is more appropriate than the direct evaluation of  (�). In later sections we shall

prove a striking property: the evaluation of � through the DEA, an approach less

direct than the evaluation of 	(�), is still more eÆcient.

The data are a set of 7212 hard x-ray peak 
aring event times obtained from

the BATSE/CGRO (Burst and Transient Source Experiment aboard the Compton

Gamma Ray observatory satellite) solar 
are catalog list. The data is a nine-year

series of events from 1991 to 2000. If the time �t between two consecutive solar 
ares
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Figure 7.1: The original sequence of the solar 
ares waiting times. Note the logarith-

mic scale of ordinates.

is expressed in seconds, the range goes from 45 to 10,000,000 seconds, as shown in Fig.

7.1. Fig. 7.2 shows the rate of solar 
ares per month from April 1991 to May 2000.

The set of data studied here concerns a time period of 9 years, and, consequently,

a large part of the whole 11-year solar cycle. Fig. 7.2 shows that during a large

portion of this 11-year cycle the 
are rate undergoes big changes, thereby signi�cantly

departing from the uniform distribution. Furthermore, it is worth remarking that, as

shown by Fig. 7.3, the 11-year solar cycle is not a mere harmonic oscillation with the

period of 11 years, but a complex dynamic process with many components.

The direct evaluation of the waiting time distribution,  (�), needs the data to be

distributed over many bins with the same size. When only a few data are available,

the bin size cannot be too small, and, in turn, the adoption of bins of large size can

produce incorrect power law indices. In proceeding with the direct evaluation of the

key parameter �, �rst of all, we have to adopt a proper criterion to determine the

size �i of the i-th bin. We note that the waiting time distribution is expected to

be an inverse power law. If we adopted bins of equal size, those corresponding to
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Figure 7.2: Number of solar 
ares and sun spots per month from April 1991 to May

2000. The two phenomena follow the same solar cycle.
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Figure 7.3: The solid curve was obtained by using the maximum entropy method

[133].

large times would collect a very limited amount of data, thereby resulting in a non

reliable evaluation of the frequencies. To bypass this diÆculty we adopt bin sizes that

are constant in the logarithmic scale. This means that ln(�i) � ln(�i�1) is constant,

where �i and �i�1 are the middle times of two consecutive bins. We de�ne the width

of the i-th bin as � = �i��i�1, thereby making it become an exponentially increasing
function of the sequence position, so as to widely compensate for the density decrease.

In this representation the probability density  (�i) is expressed by

 (�i) =
Ni

N�i

; (7.2)

where N is the total number of data points, Ni is number of points located within

the i-th bin, and �i, as earlier said, is the width of the i-th bin.

The �tting is done by using the prescription of a inverse power law of the type

 (�) =
A1

(T + �)�
; (7.3)
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with A1, T and � being three independent �tting parameters. It is worth noting that

the normalization condition reduces the three independent parameters to two which

are a function of only T and �. We �nd it necessary to adopt three independent

�tting parameters, with the understood proviso that the departure of A1 from the

value (� � 1)T ��1 can be interpreted as a way to estimate the inaccuracy of the

adopted �tting procedure.

The �tting is done by using an implementation of the nonlinear least-squares

(NLLS) Marquardt-Levenberg algorithm [156]. The NLLS algorithm may not give

unique values for the �tting parameters. It needs initial guesses for the free parameters

and the �nal results may change or be a�ected by huge errors. This �tting procedure

yields: T = 8787, � = 2:12 � 0:32 and A1 = 31006. The evaluated value of A1 is

not far from the value 29236 that would be required by the normalization condition.

However, there are very large errors of the order of 100%, with an error on the

parameter � of the order of 15%, thereby implying 1:80 < � < 2:44. This means that

the result of this �tting procedure would prevent us from assessing the important

question on whether the process is stationary (� > 2) or non stationary (� < 2). The

large error of this procedure depends upon the initial values assigned to the three

�tting parameters, T, � and A1, whose choice requires a more eÆcient criterion. It

also depends on the fact that there are oscillations around the �tting curve, as clearly

illustrated by Fig. 7.4.

As earlier mentioned several times, a more accurate �tting is obtained using the

function 	(�). Again we do not pay attention to the normalization constraints and

we adopt the following �tting function

	(�) = A2

�
1

T + �

���1
: (7.4)

As shown by Fig. 7.5, the �tting of the real data is now much more accurate than that

of Fig. 7.4. The �tting parameters used are: A2 = 30657� 16590, T = 8422� 500,

� = 2:144� 0:05. This sets on the key parameter � the constraint 2:094 < � < 2:194,

which has the very attractive property of establishing the stationary nature of the

dynamic model behind the solar 
ares 
uctuations. The results of this search for �,
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 (�) 	(�)

1:80 < � < 2:44 2:094 < � < 2:194

Table 7.1: � evaluated by using  (�) and by using 	(�).

based on the direct evaluation of  (�) and on the use of 	(�), are summarized in

Table 7.1. We note that the uncertainty interval associated with the use of 	(�) is

contained within the wider uncertainty interval produced by the use of  (�). This

means that we are coming closer to the real value of �. The width of the uncertainty

interval will be further reduced by using the DEA.

7.2 Di�usion Entropy of solar 
ares.

This section is devoted to the analysis of the solar 
ares data by means of the DEA.

The �nal result will be given by � = 2:138 � 0:01, namely a value for � even more

accurate than that obtained in Section 6.1 by using 	(�). We shall prove also that

the DEA allows us to establish some aspects of the dynamics behind solar 
ares

that would be overlooked by an analysis based only on the use of the waiting time

distribution.

The �rst issue that we have to solve is how to process the data so as to apply the

three walking rules: SJM, AJM, and LJM that are discussed in Chapter 2. For com-

modity, let us report here the scaling properties of the three rules. The prescriptions

are the following:

Æ =

8>>><
>>>:
�� 1; 1 < � < 2

1=(�� 1); 2 < � < 3

0:5; � > 3;

(7.5)

Æ =

8<
: 0:5(�� 1); 1 < � < 2

0:5; � > 2
(7.6)

and

Æ = 1=(�� 1); � > 1; (7.7)
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for rules No. 1 or AJM, No. 2 or SJM and No. 3 or LJM, respectively.

The data accessible to us are the times �i = ti � ti�1, with ti and ti�1 denoting

the time of occurrence of the i-th and the (i-1)-th solar 
are, respectively. However,

the direct adoption of these numbers would result in technical diÆculties that are

bypassed by referring ourselves to the new sequence of numbers

�j = Int

�
�tj

�

�
+ 1; (7.8)

where Int[x] denotes the integer part of x. The adoption of � = 1 would be virtually

equivalent to referring ourselves to the original sequence of numbers. However, pre-

liminary trials with changing values of � led us to conclude that there are problems

with the adoption of both excessively small and excessively large values of �. The

adoption of excessively small values of � would make the computer analysis too slow

and would require an excessively large amount of computer memory. This is the rea-

son why we cannot use the original sequence of numbers. The adoption of excessively

large values of �, on the other hand, would produce statistical saturation, and a con-

sequent sub-di�usion process that would not accurately re
ect the dynamics behind

the data. We adopted the criterion of using the largest value of � compatible with

negligible saturation e�ect. Preliminary attempts made it possible for us to assess

that this convenient value is given by � = 3600.

After processing the data, we have to realize the three walking rules. We note that

di�usion is generated by the random walker jumping at any time step. The random

walker makes jumps of intensity j�ij, ahead or backward, according to whether �i > 0

or �i < 0. Thus, we create a new sequence �i, of 0's and 1's, with the following

prescription. We consider a sequence of in�nite empty sites, labelled by the integer

index i, considered as a discrete time, running from i = 1 to i = 1. We divide this

sequence into patches of width �j. The �rst patch consists of the sites i = 1, i = 2;..,

i = �1, the second patch consists of the sites i = �1 + 1, �1 + 2, .., �1 + �2, and so

on. We assign the value 0 to all the sites of the same patch but the last site. This

means that the random walker walks only at the end of the patch, namely, at the

occurrence time of an event. To apply rule No. 1, AJM, with the random walker
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always moving in the same direction, we always assign to the last site of a given

patch the value of 1. To apply rule No. 2, SJM, we assign to the last site of any

patch either the value 1 or the value -1, according to the coin tossing rule. The coin

tossing prescription is realized by using a random number generator. To reduce the

risk of arti�cial periodicity we create 10 di�erent sequences, each corresponding to

a di�erent random distribution of 1's and -1's. For any sequence, we run the DE

method and then we make the average over the 10 resulting DE curves. To apply the

rule No. 3, LJM, which will be shown in action in Section 6.3.3, we have to identify

�i with �i.

The DEA results obtained applying rule No. 1 are illustrated in Fig. 7.6. This

�gure shows one of the bene�ts of the DEA. According to rule No. 1, we have to

use the prescription of Eq. (7.5). The most accurate of the values of �, discussed in

Section V, is � = 2:144. This value, being smaller than 3 and larger than 2, makes us

adopt the formula Æ = 1=(�� 1), and yields the scaling parameter Æ = 0:874, which

is the slope of the straight line of Fig. 7.6.

This theoretical prediction implies that the times �i of the sequence f�ig are not
correlated with each other. In the speci�c case of seasonal periodicity described by

harmonic oscillations, the numerical results of Ref. [7] prove that the scaling detected

by the DE, as well as by other methods to detect scaling, is higher than the Brownian

motion scaling Æ = 0:5. This is so even when there is no correlation in addition to

seasonal periodicity. We eliminate this e�ect, by shu�ing the data. The DEA can

be applied to both the original sequence of �i and to the shu�ed sequence. If the

DEA yields two di�erent curves, this is a proof of the fact that there is memory in

the original sequence. This is an important property that cannot be revealed by the

analysis of the waiting time distribution,  (�). Fig. 7.6 shows that this is the case. In

fact we see that the DEA curve corresponding to the shu�ed data, after the transition

region at short time and before saturation, has a slope distinctly smaller than the

curve referring to the non shu�ed data. Furthermore, this slope is closer to the slope

of the straight line corresponding to the �nding of Section 7.2, which yields � = 2:144,

and, consequently, according to Eq. (7.5), Æ = 0:874. However, both shu�ed and

non-shu�ed data yield saturation e�ects at a time scale of the order of tsat = 1; 500
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Figure 7.6: DE as a function of time according to rule No. 1. The dotted straight line

illustrates the slope of entropy increase corresponding to � = 2:144, and Æ = 0:874,

which is the best value of � a�orded by the analysis of Section V. The dashed line

is the DEA curve generated by the non-shu�ed real data. The solid line is the DEA

curve generated by the shu�ed real data.

hours. These saturation e�ects set limits to the accuracy of the determination of the

value of � by means of the DEA.

In Fig. 7.7 we illustrate the results obtained by using rule No. 2. It is remarkable

that in this case the shu�ed data yield, with the DEA, an entropy increase faster

(rather than slower) than the non-shu�ed data. This is a consequence of the fact

that in this case the deviation from ordinary di�usion, produced by time periodicity,

would generate sub-di�usion rather than super-di�usion. We notice that the di�erence

between the shu�ed and non-shu�ed curves is smaller than that in the case of Fig.

7.6 (rule No. 1) and that the saturation e�ects show up at later times. We thus

conclude that rule No. 2 is much less sensitive to periodicities and to saturation

e�ects than rule No. 1.
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Figure 7.7: DE as a function of time according to rule No. 2. The dotted straight line

illustrates the slope of entropy increase corresponding to � = 2:144, Æ = 0:5, which

is the best value of � a�orded by the analysis of Section V. The dashed line is the

DEA curve generated by the non-shu�ed real data. The solid line is the DEA curve

generated by the shu�ed real data.

7.3 A further improvement: use of arti�cial sequences.

We have seen that the DEA reveals the existence of memory e�ects that are overlooked

by the direct evaluation of the waiting time distribution. However, as illustrated by

the numerical results of Section 7.2, the time region where the DE method might be

fruitfully used to detect scaling, is reduced to an intermediate time region, after the

transition from dynamics to thermodynamics, and before the saturation e�ects. This

has the unwanted e�ect of setting limitations to the accuracy of the DE method.

To bypass this diÆculty we generate arti�cial sequences with the same statistical

limitations of the real data, and then we search for the parameter � that establishes

the most accurate �tting with the DEA curves derived from real data.

To make this procedure as reliable as possible we proceed as follows. We assume

that  (�) has the form

 (�) =
A

(T + �)�
; (7.9)
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where T and � are our �tting parameters. The constant A is determined by the

normalization condition through

1

A
�
Z 1

45

1

(T + �)�
d� : (7.10)

The �tting parameters are made to change around the mean values established by

the results of Section V which yield � = 2:144 � 0:05 and T = 8422 � 500. Note

that in the real data no time exists with a value smaller than � = 45 sec. This is the

reason why the integration in Eq. (7.10) is done from 45 to 1 rather than from 0 to

1. The number of data available to us are 7211. Thus we produce 7211 values of �i,

according to the prescription

�i =

"
1

(T + 45)
��1 �

(�� 1) yi

A

#
� T ; (7.11)

with the number yi randomly selected in the interval [0; 1]. It is straightforward

to prove that the resulting distribution of �i is the same as that of Eq. (7.9) and

�ts the condition of Eq. (7.10). At this stage we are ready to compare the DEA

curves generated by the arti�cial data to the DEA curves generated by the real data,

using both rule No. 1 and rule No. 2. The comparison is made with the DE curves

corresponding to shu�ed data, since the arti�cial sequences are generated without

correlation among the numbers �i.

Let us discuss �rst the results concerning rule No. 1. These results are illustrated

in Figs. 7.8. In Fig. 7.8a we show the e�ect of changing � in the interval [2:094; 2:194],

with T = 8422 and in Fig. 7.8b we show the e�ect of changing T in the interval

[7922; 8922], with � = 2:144. We see that the DE curves of the arti�cial sequences


uctuate within an error strip containing the DEA curve of the real data. The size of

this error strip increases upon change of time and we see that the spreading caused

by the change of T is much smaller than that caused by the change of �. From a

qualitative point of view, the results concerning rule No. 2, shown in Figs. 7.9a and

7.9b, are very similar.
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Figure 7.8: DE as a function of time according to the rule No. 1. The two solid curves

denote the DEA curve corresponding to the shu�ed real data. (a) The vertical bars

indicate the changes of the DE curves resulting from the arti�cial sequences described

in the text with T = 8422 and � moving in the interval [2.094, 2.194]. (b) The vertical

bars indicate the changes of the DE curves resulting from arti�cial sequences described

in the text with � = 2:144, and T moving in the interval [7922, 8922].
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Figure 7.9: DE as a function of time according to the rule No. 2. The two solid curves

denote the DEA curve corresponding to the shu�ed real data. (a) The vertical bars

indicate the changes of the DE curves resulting from the arti�cial sequences described

in the text with T = 8422 and � moving in the interval [2.094, 2.294]. (b) The vertical

bars indicate the changes of the DE curves resulting from arti�cial sequences described

in the text with � = 2:144, and T moving in the interval [7922, 9922].
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7.3.1 A more accurate measurement of �.

We have seen that the area of the T-error strip is signi�cantly smaller than that of

the �-error strip, at least �ve times smaller. Therefore, we can improve the accuracy

of � by assigning to T a �xed value and looking for the value of � ensuring the best

�tting of the real data. We assign to T the value of 8422, and we proceed with the

search for the best �tting. The results are illustrated in Figs. 7.10a and 7.10b. The

result concerning rule No. 1 is good, as seen in Fig. 7.10a. As expected, Fig. 7.10b

shows that the result concerning rule No. 2 is even better, and we think that it can

be judged to be excellent. This extremely accurate result is due to the DEA curve

of the arti�cial sequence coinciding with the DEA curve of real data over the wide

range of 1000 hours of di�usion. On the basis of this excellent �tting, we conclude

that

� = 2:138� 0:01 : (7.12)

7.3.2 Non shu�ed data and an arti�cial sequence with suitable memory.

In Section 7.2, we have noticed that the result of the DEA depends on whether the

real data are shu�ed or not. We think that in the original data there are signs

of the 11-year solar cycle and other subcycles. This makes it harder to establish a

connection between the scaling Æ and the power index �. However, if our conclusion

that � = 2:138 � 0:01 is correct, it should be possible to �t the DEA curve of the

non-shu�ed original data with no further change of the �tting parameters T and

�, provided that we sort the arti�cial sequence in such a way as to mimic the solar

periodicity. Rather than doing that with a model we proceed in a more direct way,

according to the following procedure. Let us call Ri and Ai the i� th numbers of the

real and arti�cial sequence used in subsection A, respectively. The i� th number of

the sorted arti�cial sequence is denoted by Si. The subscript i ranges from 1 to N.

The number S1 is �xed by selecting from the set of Ai's the number that is closest

to R1, this being, let us say, Aj(1). We thus set S1 = Aj(1). The number Aj(1) is

eliminated from the arti�cial sequence. Then, we move to R2 and from the set of the
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Figure 7.10: DE as a function of time. The solid lines denote the DEA curve generated

by the shu�ed real data, and the dashed lines, which almost coincide with the solid

lines, denote the DEA curves resulting from the arti�cial sequence with � = 2:138

and T = 8422. (a) Rule No. 1. (b) Rule No. 2.
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remaining N-1 numbers of the arti�cial sequence we select the closest one to it, this

being, let us say, Aj(2). We proceed with the same criterion until we exhaust all the

numbers of the arti�cial sequence. It is evident that the adoption of this procedure

assigns to the arti�cial data a time order re
ecting the complex dynamics illustrated

by Figs. 7.1 and 7.2.

At this stage, we evaluate the corresponding DEA curve and we compare it to the

DEA curve generated by the non-shu�ed real data. As earlier mentioned, the sorted

arti�cial data are the same as those used to produce the excellent �tting of the DE

curves derived from the shu�ed original data. Thus, the �tting parameters are the

same as those used for Figs. 11. We illustrate the new result in Figs. 7.11, which

show that the �tting accuracy is as good as (and for rule No. 1 even slightly better

than) the �tting of Figs. 7.10. This is a very remarkable result since Figs. 7.6 and

7.7 show that shu�ing the data produces a signi�cant e�ect. Thus, Figs. 7.10 and

7.11 prove that the memory of the data is totally under our control.

7.3.3 Third rule in action.

According to Lepreti, Carbone and Veltri [157] the waiting time distribution  (�)

is already L�evy. This would imply that the adoption of the third rule yields an

in�nitely fast transition from dynamics to thermodynamics. This is so because L�evy

distribution is stable and the convolution between two distinct L�evy distributions is

a L�evy distribution [158]. According to our analysis,  (�) is a shifted inverse power

law. It is plausible that the di�erence between the shifted power law distribution of

Fig. 7.4 and the L�evy distribution of Ref. [157] is small. Consequently, the transition

to thermodynamics is expected to be very fast. This expectation is con�rmed by the

numerical results illustrated in Fig. 7.12. The transition to the scaling regime is so

fast that it is possible to detect a wide regime of linear dependence of the entropy on

log(l), which allows us to derive for � the value � = 2:138, in total agreement with

the conclusion of the earlier analysis done by means of rules No. 1 and No. 2. We

see that in this case the memory of the non-shu�ed data yields a Æ slightly larger

than the scaling parameter of the shu�ed data. The adoption of rule No. 3 implies
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Figure 7.11: DE as a function of time. The solid lines denote the DEA curve generated

by the unshu�ed real data, and the dashed lines, which almost coincide with the solid

lines, denote the DEA curves resulting from the arti�cial sequence with � = 2:138

and T = 8422 with a modulation mimicking the in
uence of the 11-years solar cycle.

(a) Rule No. 1. (b) Rule No. 2.
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Figure 7.12: DE as a function of time, according to rule No. 3. The solid lines

denote the DEA curve generated by the shu�ed real data. The dotted straight line

illustrates the slope of entropy increase, Æ = 0:879, which corresponds to � = 2:138.

The dashed line denotes the DEA curve resulting from the unshu�ed real data. Note

the superdi�usion of the unshu�ed real data DE due to the memory in the original

signal.

a statistical accuracy smaller than that of the other two rules, due to fact there is no

limitation to the jumps intensities, thereby decreasing the number of particles located

in the same cell. This has the e�ect of making the evaluation of pi and consequently

that of the entropy less accurate. However, this disadvantage is widely compensated

by the emergence of a much more extended scaling region that yields as a result a

value of � fully con�rming that of the other two rules.
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7.4 Concluding remarks.

We see that the uncertainty on the value of � for solar 
ares has been signi�cantly

reduced. The current literature, if we give the same credit to all the authors, yields

values of � ranging from 3 to 1.7. We provide the compelling conclusion that � =

2:138 � 0:01. However, this is not the main result of his paper. We think that this

paper shows that the DEA is a remarkably accurate technique of analysis that goes

much beyond the direct evaluation of the waiting time distribution  (�). This is so

because complex processes are characterized by two di�erent kinds of memory. The

memory of �rst kind is the main object of the research work done in the �eld of the

Science of Complexity. To make clear the nature of this kind of memory, let us recall

[159] that a Markov master equation, namely a stochastic process without memory, is

characterized by a waiting time distribution  (�) with an exponential form, thereby

implying memory for a marked deviation from the exponential condition. This is

why the search for an inverse power law distribution with a �nite value of � (the

exponential distribution means � = 1) can be interpreted as a search for memory.

This is the memory of the �rst kind, to which the prescriptions of Ref. [160] are

referred to. For real data, in addition to this form of memory, another type of memory

might be present, denoted by us as memory of the second type, under the form of

correlation among the values �i. In this paper we have seen that this second form of

memory is given, in this case, by the 11-year solar periodicity. It is possible that this

form of additional memory is present in many other complex processes for di�erent

reasons. It is also evident that it is diÆcult, or perhaps impossible to reveal this form

of additional memory by means of the direct evaluation of  (�). This paper proves

that joint use of the direct evaluation of  (�) (or of 	(�)) and of the DE method is a

very useful supplement to the ordinary technique, and that it can be pro�tably used

to shed light on the dynamics behind the time series generated by complex processes.

This paper yields a convincing conclusion concerning the distinction between two

possible forms of non-stationary behavior. As pointed out in Section 5.2, the claim

that the waiting time distribution  (�) has the form of Eq. (5.9) is equivalent to as-

suming that the dynamics of the 
aring process is driven by the model of Eq. (5.13)
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with the assumption that the trajectories are injected back randomly. This is a sta-

tionary model that in the case where z > 2, (� > 2), would be incompatible with the

existence of an invariant distribution [161] and consequently with \thermodynamic

equilibrium". The inaccuracy of the analyses done by the earlier work in this �eld

would prevent us from distinguishing this form of non-stationary behavior from a

genuinely form of non-stationary behavior. By genuinely non-stationary behavior, we

mean the existence of rules changing with time. This form of genuinely non-stationary

behavior might be modelled, for instance, by assuming that the parameter � of Eq.

(5.13) is time dependent. If we make the assumption that the time dependence of

� has a period of 11 years, and we make our analysis over a period of time that is

not much larger than this time period, as we have done, then the process must be

perceived as being genuinely non stationary. Our analysis is so accurate as to rule out

the former form of non-stationary behavior and to detect signi�cant e�ects stemming

from the latter, or, equivalently, from the existence of the memory of the second type.

In this paper we do not take side with either the proponents of self-organized

criticality [162] or with those of turbulence [153, 154]. The dynamical model of

Section 5.2 is inspired by the models of turbulence, but we mainly use it to generate

arti�cial sequences mimicking the real ones with no claim that it is an exhaustive

picture of the dynamics behind solar 
ares. The �tting of Fig. 7.5 seems as good

as the �tting of Fig. 1 of Ref. [157]. However, our analysis does not rest only

on the waiting time distribution. In a very recent paper Wheatland [163] criticized

the work of Ref. [157] as being based on the assumption that rate of solar 
ares

is constant. This is not so, as shown by Fig. 7.2. On the other hand, modelling

the time dependence of this rate is not easy, since it does not correspond only to a

11-year periodic motion but to a much more complex condition, as illustrated in Fig.

7.3. In fact, this �gure shows that there are many other components in action. This

is the reason why we decided to mimic the time dependence of the solar 
are rate

sorting the arti�cial sequence in the way described in Section 7.3.2. We found that

this yields a �tting with the real data as good as the �tting between the DEA curve

produced by the arti�cial sequence, with no sorting induced memory, and the DEA

curve produced by the shu�ed real data. This is, in our opinion, a strong indication
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that the value of � = 2:138 is a genuine property of real data. On the other hand, the

dynamical model of Section 5.2 can also be adapted to reproducing the modulated

Poisson process advocated by Wheatland [163]. This is left as a subject of future

investigation. Even in this case, the role of the DEA is expected to be crucial, and

the result is expected to strongly depend on wether the modulation process involves

randomness or only quasi-periodicity.

In our notation, the power index found by the authors of Ref. [157] is � = 2:38, a

value that turns out to be compatible with the uncertainty interval associated to the

determination of � by means of the direct evaluation of  (�). Our analysis establishes

a connection with L�evy statistics, in accordance again with the conclusions of Ref.

[157]. However, we adopt a perspective that is di�erent from that of the authors

of Ref. [157]. Our di�usion process reaches the L�evy regime after the process of

transition from dynamics to thermodynamics that has been discussed in detail in

the earlier sections. This process is very fast if the rule No. 3 is adopted, but it

is not in�nitely fast as in the perspective of the authors of Ref. [157] who assume

the waiting time distribution  (�) to obey already the L�evy statistics. It is worth

pointing out that the perspective adopted in this paper makes it possible to take into

account the time dependence of the solar 
are rate. We do not rule out the possibility

that  (�) is a stretched exponential [164]. In fact, a stretched exponential would not

con
ict with the attainment of L�evy statistics in the long-time limit of the di�usion

process. Although a truncation of  (�) at large values of � generates a �nite second

moment, and consequently Gaussian statistics in the long-time limit, the transition

to the conventional thermodynamic regime is ultra slow [165]. It is known [166] that

a much earlier transition to L�evy statistics occurs and that the L�evy regime lasts for

a very extended period of time. The transition to the Gaussian regime probably takes

place at times much larger than the saturation time, and might be made visible only

in the ideal case of in�nitely large sequences.
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CHAPTER 8

THE THERMODYNAMICS OF SOCIAL PROCESSES:

THE TEEN BIRTH PHENOMENON

In this Chapter we apply the Di�usion Entropy Analysis to the study of the teen

birth phenomenon and we �nd that the unmarried teen births are a manifestation

of a social process with a memory more intense than that of the married teens [7].

To arrive to this conclusion, we argue that a process of social interest is a balance

of order and randomness, thereby producing a departure from a stationary di�usion

process. The strength of this e�ect vanishes if the order to randomness intensity

ratio vanishes, and this property allows us to reveal, although in an indirect way, the

existence of a �nite order to randomness intensity ratio. We aim at detecting this

e�ect by proving that Di�usion Entropy Analysis makes it possible for us to build up

a memory detector, which signals the presence of even very weak memory, provided

that this is persistent over large time intervals. In Sec. 4.5 it is explained how to

handle a non-stationary dynamical transient analysis, and in Sec. 5.7 it is proved that

a non-stationary condition can be induced by weak and persistent memory. In this

Chapter we use the results of Sec 4.5 and 5.7 and we prove that, after having removed

the seasonal periodic properties from the two sets of data regarding the married and

unmarried teen births, the two groups are di�erent in regard to residual memory.

This allows us to classify the two groups as dynamically di�erent. Our analysis is

about the teen birth phenomenon in Texas.

8.1 The teen birth phenomenon.

In this section we give a brief introduction to the teen birth phenomenon in Texas

and place the results of the di�usion entropy method of analysis within the context

of earlier research.

Texas is second only to California in the number of births to teens in the United

States. Rates of births to teens of all ages and racial/ethnic groups have been dropping
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since 1990, Ref.[167]. However, the size of the problem in Texas is increasing.

In 1996, in Texas there were 80,490 pregnancies and 52,273 births to girls 15-19

years old, Ref.[168]. The U.S. rate of pregnancy among young women 15 to 19 years

old was 97 per 1000 girls of that age, the rate in Texas was 113 per 1000 in 1992. The

mean age of teens giving birth was 17.62 years in Texas. Approximately 66% of teen

births in Texas were out of wedlock and 24% of births to teens were to girls who had

given birth at least once previously.

Data used in West et al. (1999) [169] to study the nonlinear dynamics in teen birth

data included daily counts of all births to teens in Texas from 1980 through 1998.

Findings demonstrated the teen birth data obeyed a scaling law. The authors[169]

concluded the scaling relation tied together what happened at the shortest time scales

with what happened at the longest time scales, thus, resulting in long-term memory.

When found, such long term correlation and complexity in time series suggests there

is strong feedback across time scales in the process. These authors[169] suggest the

phenomenon is dominated by a self-induced stability which may increase with pop-

ulation density, mobility and interaction among persons, between persons and social

institutions, and among social institutions. To date these conjectures have not been

tested.

The authors of Ref.[169] did not detrend or smooth the data prior to their analysis,

nor did they investigate the e�ects of marital status on the scaling process. It was

their intent to study the gross behavior of the time series of all births. The approach

used here provides a deeper look into the endurance of memory and its possible source

for this data.

Data for the study reported here were abstracted from birth certi�cates obtained

from the Texas Department of Health. The original time series was constructed

from the daily count of births from January 1, 1994 through December 31, 1998.

Every recorded birth to a woman under the age of 20 was included. Data on the

marital status of the mother allowed us to analyze married and unmarried births

separately. Reliable and valid birth certi�cate information regarding marital status

did not become available in Texas until January 1, 1994. See Table 8.1 for further

description of the data.
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Data All Married Unmarried

Set Teens Teens Teens

Mean #

Daily Births 149.14 50.39 98.52

Range 143 68 97

Minimum 81 22 55

Maximum 224 90 152

Standard

Dev 23.52 10.34 16.68

Variance 553.03 106.89 278.15

Total

Births 272,328* 92,006 179,893

Table 8.1: Marital Status Data Set Used N=1994-1998=1826 days. *Marital status

was missing on 429 teen birth certi�cates.

Data All Married Unmarried

Set Teens Teens Teens

Lags of

7 Days .665 .466 .602

Lags of

364 Days .536 .370 .464

Table 8.2: Autocorrelation in Married and Unmarried Teens.

The reason marital status is relevant to the analysis that follows is based on the

observation that amount of linear memory di�ers between time series of births to

married and to unmarried teens. See Table 8.2 for autocorrelations for lags of one

weak and approximately one year in total teen births and married and unmarried teen

births separately. The fewest births to both married and unmarried teens occurred

in the second quarter of each year (April, May and June). The third quarter of every

year (July, August and September) had signi�cantly more births to teens than any

other quarter.

Large third quarter peaks in births and autocorrelation = 0.536 at lags of 364 days

were found for all teen births. Atmospheric factors such as light and temperature have
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been suggested as reasons for annual cycles in human births, Ref.[170]. However, it is

not clear why such factors would have a stronger e�ect on unmarried than on married

teens as indicated by di�erences in autocorrelation at lags of 364 days.

Strong weekly periodicities (autocorrelation = 0.665 at lags of 7 days for all teens)

were found. These may have been imposed on the process through provider preference.

Scheduled inductions of labor and cesarean sections generally occur early in the week

in order to assure patients are out of the hospital by the weekend when staÆng is a

greater problem. However, further investigation is needed to determine the veracity of

the assumption that these preferences are related to the weekly periodicity observed

in the data. In addition, investigation is needed to determine the reason for the

disparity in autocorrelation for lags of 7 days between married and unmarried births.

8.2 Data and Preliminary detrending.

The goal of this chapter is to discover weak memory remaining after the removal

of linear correlations from the two original sets of data regarding the married and

unmarried teen births. We are aware that any form of detrending carries with it the

risk of loss of information and obliteration of long-range memory. However, in this

case we believe detrending provided us an opportunity to test our new method for

sensitivity to long-lasting memory of extremely weak intensity. We believe earlier

�ndings [169] may be the result of long-lasting memory of large intensity, perhaps the

result of annual periodicities not removed by detrending. We make the conjecture

that, although weak, there is a residual memory left after detrending annual period-

icity, steady drift and removing births occurring on weekends and holidays. In Sec. 4

we shall try to explain the implications of the results. With these warnings in mind,

we proceed with our detrending prescription as follows.

First of all, we notice that the number of births corresponding to Saturdays and

Sundays are much smaller than those of the week days. In addition to Saturdays and

Sundays, there are other days with very small number of births that are identi�ed

with holidays. All data identi�ed as holidays are erased and replaced by empty sites.

The data of Figs. 8.1 report the daily number of births with empty sites that are
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not visible in the scale of that �gure. The data refer to the births to married (a) and

unmarried (b) teens, in the state of Texas from 1994 to 1998. In both cases the data

show ostensible signs of seasonal periodicities. We remind the reader that the purpose

of this paper is to prove that the Di�usion Entropy Analysis is an eÆcient way of

detecting residual memory after detrending trivial periodic properties, thus revealing

the balance between order and randomness. The seasonal recurrences shown in Figs.

8.1 seem to be a signi�cant example of an obvious periodic property.

Thus, we detrend it proceeding as follows. We assume that the periodic property

is described by

�(t) = A +Bt+ Ccos(!t) +Dsin(!t): (8.1)

This is a deterministic process whose form is determined by seasonal periodicity,

the harmonic part, and by the fact that the number of births is proportional to the

increase (or decrease) of the number of births to teens within the two categories with

time, the term Bt. In the case of the unmarried teens the �t gives A = 97.5, B =

0.00893, C = 1.29, D = -6.30; we set ! = 2�=365:25: In the case of the married the

�t gives A = 57.8, B = -0.00353, C = - 0.277, D = -4.14; we set ! = 2�=365:25: The

resulting curves are illustrated by the solid lines of Fig. 8.1a and Fig. 8.1b. In Fig.

8.2a and 8.2b we show the time series after application of this detrending procedure.

It is evident that the data of Figs. 8.2 look more erratic than the original data of Figs.

8.1. A mere sight inspection of Fig. 8.2 seems to indicate that the data concerning

unmarried teens are more correlated than those of the married. The di�usion entropy

method of this paper aims at a quantitative assessment of this property. To proceed

to this quantitative assessment that will be illustrated in Sec. IV C, we have to

prepare the data in a suitable way. We call these new data �a(n); if they refer to

unmarried teens, and �b; if they refer to unmarried teens. The symbol n denotes, as

usual, the discrete "time" n = 1,2,3.... It is important to point out that this time

does not correspond exactly to the days of the original data, because the empty sites

are not counted, and if two given days are separated by holidays, the latter day is

labelled as being immediately subsequent to the former.
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Figure 8.1: (a) The day by day births from unmarried teens in Texas from 1994 to

1998. (b) The day by day births from married teens in Texas from 1994 to 1998.

The data has been obtained cancelling all the holidays (see the text). The solid

lines illustrate the choice made to detrend seasonal periodicities. This means the

analytical expression of Eq. (30) with (a) A = 97.5, B = 0.00893, C = 1.29 , D =

-6.30 and ! = 2�=365:25; (b) A = 57.8, B = -0.00353, C = -0.227 , D = -4.14 and

! = 2�=365:25.
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Figure 8.2: (a) and (b) show the data after the detrending of seasonal periodicity,

and of all Saturdays, Sundays and holidays respectively for births to unmarried and

married teens in Texas from 1994 to 1998 . These are the data that we analyze with

the di�usion entropy method.
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8.3 Di�usion entropy used to detecting memory.

We apply the Di�usion Entropy Analysis to the new data �a(n) and �b(n) of Fig. 8.2a

and Fig. 8.2b using the recipe illustrated in Sec. 8.2. To make easier for us to adopt

this recipe, we will transform these two sequences into two dichotomous sequences.

To do that we adopt the following prescription

�a=b(n) =

8<
: +1 if �a=b(n) > 0

�1 if �a=b(n) < 0 :
(8.2)

As done in Sec. 5.7, we create a large number of trajectories described mathematically

by

xa=b(r; t) �
tX
i=0

�a=b(i + r); (8.3)

with r = 1; 2; 3; : : :. Then, following again Sec. 5.7, we calculate the probability

pa=b(xa=b; t) of �nding the random walker in the position xa=b after t jumps. Finally,

we calculate the di�usion entropy of the two sets of data, Ha=b(t); with the following

formula:

Ha=b(t) = �
X
xa=b

pa=b(xa=b; t) log(pa=b(xa=b; t)) : (8.4)

We show the results of this statistical analysis in Fig. 8.3. This �gure shows

that the di�usion entropy of both sets of data exhibits deviation from the stationary

condition, indicated by the dotted line. The departure from ordinary statistical me-

chanics of the unmarried teens is much larger than that of the married teens. The

curves of Fig. 8.3 are remarkably similar to those of Fig. 5.21 and this fact, by itself,

suggests that births to unmarried teens contain more memory than is the case for

married teens.

Following the prescriptions of Sec. 5.7, we also use the Tsallis entropy, which, in
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Figure 8.3: The teen births di�usion entropy as a function of time. The solid line

corresponds to the prediction of Eq.(5.40) and serves the main purpose of indicating

to the reader how the entropy time evolution of a stationary process of di�usion would

look in the scale of this �gure. The case of unmarried teens is denoted by the symbols

+ and the case of married teens is denoted by symbols �. The deviation from the

straight line of the stationary di�usion process of the unmarried teens is stronger than

that of the married teens.

this case, reads:

Hq;a=b(t) =

0
@1�X

xa=b

pa=b(xa=b; t)
q

1
A = (q � 1) : (8.5)

We illustrate the results of this analysis in Fig. 8.4. This �gure shows that both

the di�usion entropy of the unmarried teen and the di�usion entropy of the married

teens have a linear dependence on the logarithmic time � if we use for the former case

q = 1:204 and for the latter q = 1:050.

Finally, as done in Sec. 5.7, in Table 8.3 we compare the two distinct methods

adopted for the detection of the entropic index q. We see that the results of the latter

method are very close to those of the former, thereby ensuring the validity of the
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Figure 8.4: The non-extensive di�usion entropy of the teen birth phenomenon as a

function of time. The solid line refers to the prescription of Eq.(5.40). The case of

unmarried and married teens are denoted by the symbols + and �, respectively. The
entropic indices resulting in an entropy increase linear with respect to the logarithmic

time � are q= 1.204 and q= 1.050, for unmarried and married teens, respectively.

parabolic �tting of the former method. Actually, the agreement in the case of the

married teens is better than in the case of the unmarried teens, which are characterized

by memory strength larger than that of married teens. This is in agreement with the

remarks of Sec. 5.7 suggesting that the strong memory case can produce a con
ict

between the two methods. However, we think that the hidden memory, detected

by the new method of this paper, is weak enough as to ensure the validity of our

main conclusion that the married and unmarried cases show a remarkable similarity

with the memory strengths � = 0:04 and � = 0:10 of Fig. 5.22, respectively.

More precisely, according to Table 8.3, the married and unmarried case correspond

to � = 0:006 and � = 0:035, respectively. We conclude that the method of di�usion

entropy a�ords a reliable proof that births to unmarried teens have stronger `weak'

memory than those to married teens.

One might wonder if the procedure of making the signal dichotomous might have
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� Æ0 A q = 1 + � q

unmarried 0.035 0.513 0.687 1.23 1.204

teens � 0.002 � 0.007 � 0.007 � 0.02

married 0.006 0.514 0.697 1.046 1.050

teens � 0.001 � 0.004 � 0.004 � 0.009

Table 8.3: Entropic index q as resulting from two distinct �tting procedures.

produced statistical e�ects distinct from those resulting from the actual signal. Nu-

merical calculations, not reported here, prove that it is not so, and that the actual

data produce similar results. For the quantitative purpose of measuring the mem-

ory strength the adoption of a dichotomous signal yields the bene�t of resting only

on integer numbers for the production of the histograms necessary for the entropy

calculations. Furthermore, the adoption of dichotomous signals provides a deeper

connection with the model described in Sec. 5.7, and it is in fact the reason for the

surprising similarities between Figs. 5.21 Fig. 8.3 and between Figs. 5.22 and 8.4.

8.4 CONCLUSION

The �rst interesting result we can conclude is that there is an intimate relation be-

tween memory and the breakdown of the stationary condition expressed by the scaling

property of Eq. (4.1). It has to be pointed out that the departure of the entropic index

q from the ordinary value q = 1 does not signal a departure from ordinary statistics,

as claimed in Ref.[171]. Rather, it signals the breakdown of the scaling property of

Eq. (4.1), which, in turn, is due to the fact that the signal under study consists of fast


uctuations with a time dependent bias that are a much slower function of time. If

the bias is weak, the deviation from the ordinary entropic index q = 1 can be related

to the memory strength �, which can be independently derived from the adoption of

the ordinary Shannon entropic indicator. In other words, the parameter � is more

signi�cant than the parameter � � q � 1, since it correctly suggests that the e�ect

revealed by the Di�usion Entropy Analysis has to do with the time dependence of

the scaling parameter Æ. We recover from a di�erent perspective the conclusions of
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earlier work [130]. The L�evy processes are an interesting example of non-Gaussian

statistics. Yet, their di�usion entropy would yield a linear increase with respect to

the logarithmic time � � ln(t), described by Eq. (4.31), even if this were the case

Æ0 would be a scaling parameter larger than 0:5. This is so because the dynamical

derivation of the L�evy processes, after a process of memory erasure [130], yields the

scaling property of Eq. (4.1).

The second important result is that Di�usion Entropy Analysis is very sensitive

to weak but persistent memory. The similarities between Fig. 5.21 and Fig. 8.3 and

between Fig. 5.22 and Fig. 8.4 are impressive. These �gures mean that it is plausible

to conjecture that the detrending process used to analyze the birth data does not

eliminate all forms of memory. The form of memory adopted in Sec. 5.7 to create

the arti�cial sequence is a deterministic process with the time period of 2000 days.

This cannot be considered as a proof that this is the order of magnitude of the hidden

periodicity. We can only conjecture that the periodicity responsible for the deviation

of entropy from the linear increase with respect to the logarithmic time � , is larger

than the maximum observation time, which is of the order of 30 days. Beyond 30

days the number of trajectories available is too scarce to ensure statistical stability.

Here we make two conjectures regarding sources of weak memory detected in the

detrended data. First, it is likely that weekly and annual periodicities removed by

detrending were not the only periodicities present in the data. For example, there

are weak cycles with periods of approximately one half year remaining in the data for

unmarried teens after detrending. Similar cycles do not appear in the data for married

teens. There are sociological factors such as school schedules and holiday breaks

that may account for the di�erence in weak sub-annual cycles between married and

unmarried teens. While these e�ects have not yet been investigated, further study

could reveal their association to the memory strengths of the data. However, this

conjecture seems simplistic in light of our second conjecture regarding fractal scaling

in the data. Traditional time series analysis methods used in the social sciences are

based on the assumption that complicated time series data represent the superposition

of numerous frequencies of varying periods. A frequency for which cause is understood

or considered trivial is modelled and/or removed. Frequencies are, thus, explained
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and removed iteratively until all useful information in the data is accounted for and

the data remaining represent white noise. However, the time series data used to

test the methods described here are known to have fractal scaling properties [169].

These properties are the result of feedback across all time scales within the time series

(days, weeks, months, years). Fractal scaling processes cannot be fully characterized

by the superposition of few independent, additive frequencies. Instead, the data are

nonlinear in that all frequencies are folded together in a complex pattern. In such a

case, detrending, as we prescribed, would be insuÆcient to obliterate the e�ects of

weekly and annual periodicities folded into periodicities on other time scales. Thus,

the weak memory remaining may be the result of fractal scaling of the data that resists

simple detrending techniques common in the social sciences. The di�erence in scaling

properties of married and unmarried teen births has not been thoroughly investigated

but suggests unmarried teens are a�ected by a stronger feedback mechanism than are

married teens.

All these conjectures suggest that the logarithmic oscillations detected in Ref.

[169] are of such large intensity because of the fact that the yearly periodicities are

not detrended. Their detrending, as shown in this paper, makes the resulting signal

much closer to the ordinary random walk. The analysis of this paper reveals, however,

that this is not an ordinary random walk, and that a fractal cascade of frequencies of

smaller and smaller intensity might exist. This is a challenge for future application

of the entropic method of analysis developed in this paper. We plan to shed light on

this and other intriguing issues raised by our method by means of the joint analysis of

real data and of arti�cial sequences like that of Sec. 5.7, with 
uctuating periodicities

driven by an inverse power law prescription.
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CONCLUSION
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CHAPTER 9

CONCLUSION

In this dissertation we introduced a new method of statistical analysis of time series,

the Di�usion Entropy Analysis (DEA). We showed that this methods out performs

all the methods currently used in the �eld of the Science of Complexity, due to one

essential property: it is the only method that establishes the correct scaling of a time

series, if this exists. This was proved theoretically, using arti�cial sequences with

assigned properties, designed to prove our assertion. We compared the results from

DEA with those derived from di�erent methods currently adopted to detect scaling.

These methods are popular and are frequently used: Variance Scaling Analysis, Hurst

R/S Analysis, Detrended Fluctuation Analysis, Relative Dispersion Analysis, Spectral

Analysis, Spectral Wavelet Analysis. These traditional methods are based on the

assumption that the variance scaling coincides with the true scaling, and, so, on the

assumption of Gaussian statistics. The scaling detected by the variance methods,

denoted by the symbol H, may not exist or may not coincide with the correct scaling,

Æ. If the time series is a realization of what Mandelbrot called Fractional Brownian

Motion, namely a Gaussian di�usion, with anomalous as well as normal scaling, we

have H = Æ. Consequently, the scaling can be correctly detected by using the variance

methods. If, on the contrary, the time series generates, for example, a di�usion of the

L�evy type [4, 5], H 6= Æ and the variance methods fail to detect the true scaling.

The scaling of a time series is determined as follows. By summing the terms of

a time series, thought of as 
uctuations, we get a trajectory and the trajectory can

be used to generate the di�usion of the variable x, collecting all these 
uctuations.

There is scaling if the probability density function (pdf) at time t, p(x; t), of this

di�usion process �ts the property:

p(x; t) =
1

tÆ
F (

x

tÆ
): (9.1)

The coeÆcient Æ is the scaling exponent of the time series under study. The DEA
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detects the correct scaling exponent, Æ, of a time series because it is based upon the

evaluation of the Shannon entropy of the pdf of the di�usion process that reads

S(t) = �
Z +1

�1

dx p(x; t) ln [p(x; t)] : (9.2)

If the scaling condition (9.3) applies, the time evolution of the entropy, S(t), is linear

with respect to the logarithmic time, � � ln(t=t0), which makes Eq. (9.3) read

S(�) = A + Æ �: (9.3)

Eq. (9.3) states that the scaling exponent Æ is determined by the asymptotic slope of

the entropy S(�).

The DEA out performs other methods of analysis due to the fact that the infor-

mation extracted from the pdf, expressed under the form of entropy, is larger than

the information extracted from the pdf variance. Note that the entropy indicator

needs not to be the Shannon indicator. To detect scaling the Renyi entropy is as

e�ective as the Shannon entropy; From this dissertation is a research project emerg-

ing, with a form of DEA based on the Renyi entropy, as a way to shed light on

multi-fractal statistics. To study the long-lasting regime of transition in teen births,

we have seen that the non-additive form of entropy advocated by Tsallis can also

a�ord some bene�ts. The methods of analysis resting on variance, a�ord much more

limited information, and, as we have seen, can be trusted only in the Gaussian case.

On the other hand, when the true scaling of the DEA departs from that detected by

the variance methods, this can be taken as a clear indication that the statistics are

not Gaussian. Only the joint use of the two scaling analysis methods, the variance

methods and the DEA, can assess the real nature, Gauss or L�evy, of a time series.

Furthermore, the bene�ts stemming from the entropic method of analysis of a

di�usion process (the DEA) are not limited to the detection of the true asymptotic

scaling Æ. We can explore the still unknown regime of transition from dynamics to

thermodynamics, and we can also address the ambitious issue of studying the time

series produced by non-stationary processes. Finally, we can bypass the limitation

144



posed by a scarce number of data that would produce saturation before reaching the

scaling regime. As we have seen, the DEA is useful even when the scaling regime is

not reached and only the transition or the non-stationary regime may be studied.

This dissertation focuses on theory and on the discussion of arti�cial sequences, as

a way to check the eÆciency of the new method of analysis. However, the eÆciency of

the DEA was illustrated also by showing this analysis in action on real data, referring

to three di�erent kinds of processes. The DNA sequences are long enough as to show

the DEA in action to detect the true scaling. The direct detection of scaling and

the auxiliary study of an arti�cial sequence generated by the CMM prove that DNA

sequences are characterized by L�evy statistics. The eÆciency of the DEA to study

the transition regime is made clear by its application to Hard x-ray solar 
are waiting

times. Of special relevance to settle the intriguing problem of the correct power index

� has be the adoption of di�erent walking rules. The comparison between the real data

in the natural order and the real data in shu�ed order made it possible for us to prove

the existence of complex dynamics, and of memory e�ect, which would be overlooked

completely by an analysis only based on the waiting time distribution. This may

turn out to be useful to shed light on the dynamics of a turbulent phenomenon. The

births data from teenagers in Texas a�ords another example of memory properties,

this time of social interest, emerging from the adoption of the DEA. We could assess

that the births to unmarried teenagers reveal memory e�ects more intense than for

births to married teenagers.

On the basis of the results of this dissertation, we reach the conclusion that the

DEA is of fundamental importance to detect the real statistical and dynamical prop-

erties of the time series. In general, DEA does not substitute or make the standard

methods of analysis of a time series obsolete. In fact, as we have seen in the case

of DNA sequences, the genuine statistics of the process emerge from the joint use of

DEA and ordinary variance scaling methods, these latter being based on variance.

Moreover, its ductile and sensitive entropic nature makes the DEA ideal for the de-

tection of even little changes occurring over time in the statistics of a time series.

Innumerable applications in any �eld of science are expected to follow.
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