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Methanococcus jannaschii is a thermophilic methane producing archaebacterium.  In this

organism genes encoding the aspartate transcarbamoylase (ATCase) catalytic (PyrB) and

regulatory (PyrI) polypeptides were found.  Unlike Escherichia coli where the above

genes are expressed from a biscistronic operon the two genes in M. jannaschii are

separated by 200-kb stretch of genome.  Previous researchers have not been able to show

regulation of the M. jannaschii enzyme by the nucleotide effectors ATP, CTP and UTP.

In this research project we have genetically manipulated the M. jannaschii pyrI gene and

have been able to assemble a 310 kDa E. coli like enzyme.  By using the second

methionine in the sequence we have shown that the enzyme from this organism can

assemble into a 310 kDa enzyme and that this enzyme is activated by ATP, CTP and

inhibited by UTP.  Thus strongly suggesting that the second methionine is the real start of

the gene.

The regulation of the biosynthetic pathway in Pseudomoans aeruginosa has previously

been impossible to study due to the lack of CTP synthase (pyrG) mutants.  By

incorporating a functional uridine (cytidine) kinase gene from E. coli it has been possible

to isolate a pyrG mutant.  In this novel mutant we have been able to independently

manipulate the nucleotide pools and study its effects on the enzymes in the biosynthetic



pathway.   The enzyme asapartate transcarbamoylase was repressed 5-fold when

exogenous uridine was high and cytidine was low.  The enzyme dihydroorotate was

repressed 9-fold when uridine was high.  These results suggest that a uridine compound

may be the primary repressing metabolite for the enzymes encoded by pyrB and pyrC.

This is the first study to be done with the proper necessary mutants in the biosynthetic

pathway of P aeruginosa.  In the past it has been impossible to vary the internal UTP and

CTP pools in this organism.
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CHAPTER I

INTRODUCTION

In 1996 Bult et al. reported the complete genome sequence of Methanococcus

jannaschii. The size of the entire genome was reported to be 1.66 mega-bases, which

included two plasmids of 58 kb and 16 kb respectively.  A total of 1738 protein

coding genes were identified, though only 38% of them were assigned putative

cellular roles.  The complete genome sequence of this thermophilic autotrophic

archaeon allowed for the first time the ability to compare genetic components and

biochemical pathways among the three domains of life.

In 1977 Fox and Woese proposed the placement of Archaebacterium into a

distinct kingdom of its own.  Although Archaea are cytoplasmically prokaryotic in

nature, they are related at the molecular level more specifically to Eukaryota.  Many

of the genes related to transcription, translation, and replication are more similar to

those found in Eukaryota, although one does find genes that are required for cell

division and central metabolism to bear resemblance to Prokaryota genes.

There are three orders that comprise the methanogens, the

Methanobacteriales, the Methanococcales and the Methanomicrobiales.  The

Methanococcales have one family Methanococcaceae, and one genus

Methanococcus, which is composed of six species of themophilic and mesophilic

organisms.  Members of this genus are Gram-negative or Gram-positive irregular

cocci, 1-2 μm in diameter.  M. jannaschii is the most extensively studied of the six
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species in the genus Methanococcus (Fig 1).  Leigh (1983) first isolated M. jannaschii

from a sediment sample collected from the sea floor surface at the base of a 2600 m

deep hydrothermal vent in the East Pacific Rise and the Guaymus Basin (Jones et al,

1983). M. jannaschii can grow at pressures of up to 200 atm and has an optimal

temperature for growth of 85◦C, a pH growth optimum of 6.0 � 7.0 and grows

optimally at a salinity of 0.4 � 0.7 M NaCl.  M. jannaschii utilizes hydrogen (H2) and

carbon dioxide (CO2) as substrates for methanogenesis.  When growing on H2 and

CO2, the methanogens are autotrophic with CO2 serving as both a carbon source and

as the electron acceptor.  Formate can act as an electron acceptor to be reduced to

methane (CH4) for one of the three strains of M. jannaschii.
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Fig 1.  Photomicrograph of M. jannaschii seen as irregular cocci.  Adapted from The

Methanococcus jannaschii functions database.

Web address http://geta.life.uiuc.edu/~nikos/Methanococcus_jannaschii.html
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Synthesis of pyrimidine nucleotides de novo

The pyrimidine biosynthetic pathway has been studied in detail in bacteria

(Yates & Pardee, 1956a, 1956b, 1957; Beckwith et al., 1962; Hayward & Belser,

1965; Yan & Demerec, 1965; Hutson & Downing, 1968; Isaac & Holloway, 1968;

Condon et al., 1976, Foltermann et al., 1981; Grogan & Gunsalus, 1993), fungi

(Lacroute, 1968; Caroline, 1969), plants (Kafer & Thornburg, 1999) and mammals

(Hager & Jones, 1967; Nakinishi et al., 1968; Jones, 1980).

There are nine enzymatic steps, which ultimately result in the formation of the

pyrimidine ribonucleotides UTP and CTP (Fig 2).  The pyrimidine ring is assembled

first and then linked to ribose phosphate to form the initial pyrimidine nucleotide

OMP.  The precursors of the pyrimidine ring are carbamoylphosphate and aspartate.

The initial step in the pathway is the formation of carbamoylphosphate, which is

produced in the reaction catalyzed by carbamoylphosphate synthetase (CPSase;

carbamoylphosphate: L-aspartate carbamoyltransferase, EC 6.3.55).

Carbamoylphosphate plays a dual role, being required not only for pyrimidine but

also for arginine biosynthesis.   The carAB genes encode CPSase in Escherichia coli.

Figure 6 shows the fate of carbamoylphosphate in overall microbial metabolism.

The next step in the pathway involves the carbamoylation of aspartate by

aspartate transcarbamoylase (ATCase; EC 2.1.3.2) to form N-carbamoylaspartate and

inorganic phosphate.  This reaction is the first committed step in the synthesis of

pyrimidine nucleotides de novo.  The genes encoding ATCase in E. coli are pyrBI and

in Pseudomonas are pyrBC' .

Carbamoylaspartate cyclizes with the loss of water to yield dihydroorotate.  At

this stage the pyrimidine ring has formed.  The reaction is catalyzed by
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dihydroorotase (DHOase; EC 3.5.2.3) encoded by the pyrC gene.  The dihydroorotate

so formed is then oxidized to orotate by dihydrooorotate dehydrogenase (DHOdehase;

EC 1.3.3.1) encoded by pyrD.  DHOdehase is a flavoprotein which is membrane

associated.

The next step in the pathway involves the acquisition of a ribose phosphate

group.  Orotate phosphoribosyltransferase (OPRTase; EC 2.4.2.10) catalyzes the

reaction where orotate a free pyrimidine, reacts with PRPP to yield orotidine-5�-

monophosphate (OMP) and pyrophosphate.  This reaction is driven forward by the

hydrolysis of pyrophosphate.  The pyrE gene encodes the enzyme is responsible for

this conversion.

Decarboxylation of OMP is carried out by OMP decarboxylase (OMPdecase;

EC 4.1.1.23), which yields uridine-5�- monophosphate (UMP).  The pyrF gene

encodes OMP decarboxylase. UMP is then phosphorylated by a specific UMP kinase

to form uridine-5�-diphosphate (UDP).  UMP kinase (UMPK; EC 2.7.4.4) utilizing

the gamma phosphate of ATP.  UTP is produced by the phosphorylation of UDP by

nucleoside diphosphokinase.  (NDK; EC 2.7.4.6)

The final step in the pyrimidine pathway is the amination of UTP to cytidine-

5�-triphosphate (CTP) by the enzyme CTP synthetase.  (CTPsase; EC 6.3.42).  For

this enzyme, encoded by pyrG, glutamine serves as the amino donor for the

amination.

ATCase is an especially interesting regulatory enzyme.  ATCase from E. coli

is one of the most highly characterized enzymes. The nature of this enzyme in M.

jannaschii, E. coli and in Pseudomonas species will be discussed later.
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Recycling of pyrimidine and purine nucleotides

Pyrimidine nucleotide biosynthesis can be divided into three phases

(O�Donovan et al, 1989).  Phase 1 involves the production of the pyrimidine

ribonucleotides UTP and CTP.  Phase 2 yields the deoxyribonucleotides dCTP and

the ultimate pyrimidine nucleotide dTTP.  The final phase, phase 3 involves the

salvage pathways.  The salvage phase can be divided into two parts, the

ribonucleotide salvage pathway and the second one being the deoxyribonucleotide

salvage pathway (Fig 3).  The nucleotide salvage pathway functions to supply the

pentose portions of nucleotides and nucleosides as carbon and energy source and the

amino group of cytosine compounds as nitrogen source.  Pyrimidine bases and

nucleosides are returned to the pool as triphosphates and thus are recycled and not

excreted into the medium.

The salvage pathway in prototrophs provides a balance between RNA

synthesis and the biosynthetic pathway, while it supplies all the necessary

requirements for pyrimidines in auxotrophs (O�Donovan & Shanley, 1995).  Figure 3

shows the salvage enzyme pathway in the archetype organism E. coli.  The latter half

of this dissertation deals specifically with the salvage pathway, which is discussed in

greater detail in Chapter II.
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Classification of  bacterial aspartate transcarbamoylase

Bacterial ATCases are divided into three classes.  Bethell & Jones (1969) first

proposed these classes, namely Class A, Class B and Class C.  The classification is

based on the molecular weight of the ATCases and their response to the nucleotide

effectors (ATP, CTP and UTP).

Class B ATCase, in which the enzymes of E. coli and other

Enterobacteriaceae have been placed has a molecular mass of approximately 300 kDa

and shows sigmoid saturation curves with both substrates, aspartate and

carbamoylphosphate.  The subunit structure of Class B ATCase is 2(c3): 3(r2).

Class C ATCases are the smallest in size and have a molecular mass of 100-

140 kDa.  Class C enzymes are not regulated and are simple catalytic trimers (c3).  A

representative within this class of ATCases is the Bacillus subtilis enzyme, which has

a structural organization of (c3).

The largest ATCases are those that belong to Class A and have been studied in

the genus Pseudomonas.  The ATCase of P. fluorescens (Neumann & Jones 1964;

Adair & Jones 1972), P. putida (Condon, et al., 1976; Shurr et al., 1995), P.

aeruginosa (Isaac & Holloway, 1968) and Burkholderia cepacia (Linscott, Ph.D.

dissertation, 1996) have all been extensively studied.  Purified ATCase from P.

fluorescens was thought to be a dimer (Neumann & Jones, 1964; Adair & Jones,

1972) until it was shown to consist of a 1:1 ratio of 34-kDa and 45-kDa polypeptides,

which are arranged in a dodecamer (Bergh & Evans 1993).  The KM for aspartate in

this study was reported to be 2.75 mM and that for carbamoylphosphate to be 14 µm.

ATCase of P. aeruginosa (Isaac & Holloway 1968, Schurr et al., 1995) was reported
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to have a molecular mass of 480 kDa, whilst the KM of aspartate in this species was

1.3 mM.  ATP and UTP inhibited the enzyme.  CTP was also an inhibitor but not to

the same extent as ATP and UTP.  The ATCase of P. putida (Condon et al., 1976)

was reported to be inhibited by pyrophosphate, ATP, UTP and CTP.  When

carbamoylphosphate was limiting, CTP was the most influential inhibitor of the

enzyme.  The structural organization of the Class A ATCase encoded by pyrBC� in

Pseudomonas species is dodecameric and may be represented as follows 2B3: 3C�2.

Schurr et al, (1995) showed that the ATCase of P. putida required an inactive

DHOase to be functional.

Hughes et al, (1999) conducted an extensive study of  the ATCase of

Streptomyces griseus.  In this organism, hyperbolic curves were obtained for ATCase

activity when velocity-substrate plots for aspartate and carbamoylphosphate were

made.  The ATCase enzyme was inhibited by ATP, CTP, UTP and GTP.  This is

typical of Class A ATCase found in other organisms.  Purification studies of ATCase

and DHOase showed that the two activities were present as a single enzyme complex.

Two other organisms, namely Deinococcus radiophilus and Thermus aquaticus also

show this ATCase/DHOase activity in their holoenzyme structure.  Many more

organisms may also possess this unique complex.  This led Hughes et al, (1999) to

suggest a subtyping of the Class A ATCases. Class A1 ATCases would be those that

have both ATCase and DHOase activity and Class A2 would be those that have

degenerate DHOase subunits as one finds in Pseudomonas.  Figure 4 shows all the

classes of ATCases.
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Fig 4. The Classes of Bacterial ATCase
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Regulation by transcriptional attenuation of E. coli pyrBI operon

The pyr genes can be regulated by mechanisms of transcriptional and

translational attenuation.  In E. coli the catalytic and the regulatory polypeptides of

ATCase are expressed from adjacent genes, pyrB and pyrI respectively, which are

present in a bicistronic operon.  The pathway for pyrimidine biosynthesis is regulated

at the level of enzyme synthesis by attenuation (Roof et al., 1982; Turnbough et al.,

1983; Schachman, 1983) and enzyme activity is regulated by allosteric inhibition by

nucleotide effectors (Gerhart & Pardee, 1962, 1964).

The pyrBI genes encoding ATCase and the pyrE gene encoding OPRTase all

have upstream leader sequences that allow for attenuational control.

Turnbough et al, (1983) reported the presence of two promoter regions located at �

350 bp and �160 bp upstream of the translational start of the pyrB gene.  The

promoter region located at �160 bp was observed to be more active in vivo than the

region located at �350 bp (Navre & Schachman, 1983).  Transcripts initiated at both

promoters are terminated at a region of dyad symmetry, 40 bp from the start of the

pyrB gene.  The rho-independent terminator is high in GC residues, which allows for

the formation of a stem loop secondary structure.  The stem loop structure is followed

by a string of uridine residues, which typifies other attenuators found in some amino

acid biosynthetic operons.  A second stem loop formation can also be observed at �

100 bp upstream of the pyrB start (Fig 5a).

Based on the information a model has been proposed for the mechanism of

attenuational control of pyrimidine biosynthesis in E. coli.
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At high intracellular levels of UTP, RNA polymerase transcribes the message through

the region of dyad symmetry.  This allows for the formation of the stem loop

secondary structure corresponding to the termination loop and transcription is

terminated.  Therefore the structural genes are not transcribed (Fig 5b).

At low UTP concentrations, the RNA polymerase pauses at a site located �80

bp from the start of the pyrB gene.  This pausing allows the translating ribosome to

catch up, and this linking does not allow the formation of the stem loop structure.

The coupling of the ribosome and RNA polymerase allows for the transcription of the

pyrBI operon and the subsequent expression of ATCase (Fig 5c).
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Fig 5a Promoter-Regulatory Region

Fig 5b High UTP-No or Weak Transcriptional Pausing

 pyrBI promoter

Transcriptional
   pause sites

attenuator structural genes

transcriptional termination

leader peptide

    ppp

leader transcript

RNA polymerase

ribosome
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Fig 5c Low UTP-Strong Transcriptional Pausing

readthrough
transcription

RNA polymerase

ribosome

leader
peptide

ppp

leader transcript
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Regulation of pyrimidine biosynthesis at the level of enzyme activity in E. coli and

Pseudomonas.

Enzyme activity is controlled at three steps in the de novo synthesis of

pyrimidines in E. coli.  CPSase, is inhibited by UMP and activated by ornithine and IMP.

ATCase the first committed step in the pathway is inhibited by CTP and UTP, and

activated by ATP (Gerhart & Pardee, 1962).  CTP synthetase encoded by my favorite

gene, pyrG, is inhibited by CTP and activated by UTP (Long and Pardee, 1967; Long and

Koshland, 1978).

In the genus Pseudomonas regulation at the level of enzyme activity is similar to

that found in E. coli.  CPSase activity is inhibited by UMP and activated by ornithine and

N-acetylornithine (Abdelal et al., 1983).  ATCase activity which is encoded by pyrBC� is

inhibited by ATP, CTP and UTP (Issac and Holloway, 1968; Condon et al, 1976;

Vickrey, 1993;  Schurr et al, 1995).

Regulation by attenuation of the Bacillus subtilis pyrimidine biosynthetic (pyr) gene

cluster

In Bacillus subtilis the pyr map as a single gene cluster on the chromosome

(Lerner & Switzer, 1986).  All of the genes on the cluster are expressed as a single

polycistronic transcriptional message.  Transcription is controlled by the availability of

UTP.  Switzer et al (1999) have shown that it is controlled by an attenuation mechanism.
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Transcriptional attenuation is controlled at three sites within the 5� sequence of the

transcript.  The first gene in the cluster is a UMP- dependent RNA binding protein

encoded by pyrR.  When pyrimidine nucleotide levels are high (UTP) in the B. subtilis

cell, UMP binds to the PyrR protein.  This in turn binds to the pyr mRNA in a sequence

specific manner.  This binding promotes the formation of a rho-independent terminator,

which inhibits the expression of the downstream pyr genes (Lu et a.l, 1995; Lu and

Switzer, 1996; Turner et al., 1998; Switzer et al., 1999).

Regulation of pyrimidine biosynthesis in Pseudomonas.

Various researchers (Isaac & Holloway, 1968; Condon et al., 1976) have tried to

elucidate the regulation of pyrimidine biosynthesis in the pseudomonads.  Regulation of

pyrimidines in Pseudomonas has been elusive and researchers have yet to ascertain the

control of the pathway.  It has not been possible to study the mechanism of control at the

level of gene expression.  However research in our lab (Patel & Kumar, unpublished

data) have studied the presence of a regulatory protein, PyrR, in  P. aeruginosa upstream

of the pyrBC� genes.  The pyrR gene product is thought to regulate the expression of the

later pyrimidine genes, pyrD, pyrE and pyrF by binding to a specific sequence.  PyrR is

also thought to autoregulate its own expression.



19

Aspartate transcarbamoylase of thermophiles and hyperthermophiles

       Microorganisms have the ability to inhabit almost any enviroment.  The discovery

of life in extreme conditions opened up a whole new perspective on the fundamentals of

applied biology.  �Extremophiles� are organisms that can thrive in extreme conditions.

These include those organisms that can withstand very low temperatures (between 0◦C

and 10◦C) as in the case of the psychrophiles.  Thermophiles and hyperthermophiles are

organisms that can withstand very high temperatures (60◦C to 113◦C).  Organisms that

can survive at pressure (40 atm) are known as barotolerant organisms or barophiles.

Alkalophiles are those organisms that can survive at pH>10 and acidophiles are those

that can survive at pH 3.0 or lower.  All these organisms are prokaryotes belonging to

the eubacterial or archaea domains of life (Cunin, 1997).  The ATCases of many of these

organisms provide insights into the ancestral forms of the enzyme and therefore it is

important to study the enzymes in these extremophiles.  As in all bacteria,

carbamoylphosphate (CP) is required in the arginine and pyrimidine biosynthetic

pathways.  Fig. 6 shows the many pathways in which CP is involved.  CP is a highly

thermolabile metabolite and it may even be toxic at high temperatures by being converted

to cyanide.  Therefore, thermophilic bacteria must have evolved strategies to protect

against degradation of CP and its possible toxic effects.  Thus, it is important to study

these two intertwined pathways.  ATCase appears to be ubiquitous and therefore its study

in extremophilic archaea and eubacteria is useful when one considers it for comparative

phylogenetic studies.
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The genes for ATCase from all of the following bacteria have been studied.

Thermus aquaticus ZO5 (Van de Casteele et al., 1997), Thermus thermophilus,

Thermatoga maritima, Pyrococcus abyssi and Sulfolobus solfataricus ATCases have all

been cloned and subsequently characterized by complementing a pyrB  deficient E. coli

strain.  All of the ATCases from T. aquaticus, P. furiosus, P. abyssi, T. maritima and S.

solfataricus are regulated (Van de Casteele, 1994 and Purcarea et al., 1994).  All show

cooperativity for the use of aspartate in that velocity-substrate plots are sigmoidal for

both aspartate and carbamoylphosphate.

P. abyssi ATCase shows cooperativity for the use of aspartate and carbamoylphosphate.

(Van de Casteele, 1994 and Purcarea, 1995).  The ATCase of  T. maritima and P.

furiosus is inhibited by UTP and CTP, whilst the enzyme from T. aquaticus is inhibited

by UTP (Van de Casteele, 1994; Purcarea et al., 1994; Van de Casteele, 1997). Enzyme

assays conducted at 37◦C showed that the P. abyssi ATCase was inhibited by CTP, UTP

and activated by ATP.  When the same assay was performed at 90◦C it was observed that

the enzyme was inhibited by CTP only.  UTP, CTP and ATP activate the S. solfataricus

enzyme.

When the catalytic polypeptides of ATCase (pyrB) and the regulatory (pyrI)

polypeptides are aligned from the extremophiles and E. coli it can be seen that there are

strong similarities between them.  Fig. 7 shows the pyrB alignments from various

organisms and Fig. 8 shows the pyrI alignments from various organisms.  In S.

solfataricus the pyrBI genes are organized as part of a pyrB I- pyrE divergent operon.
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This type of arrangement for pyrimidine genes is novel when one compares it to other

closely related organisms.

As pointed out earlier the entire genome of M. jannaschii has been sequenced

(Bult et al., 1996) and it has been shown that two ORFs show similarity to the P. abyssi

and S. solfataricus pyrB and pyrI genes.  In E. coli, the two genes are present as part of a

pyrBI  bicistronic operon.  In M. jannaschii the two coding regions are separated by a 200

kb stretch of genome.  Genes that are unrelated to the metabolism of CP are present

within this 200 kb space.  When one aligns the pyrB gene product of E. coli and M.

jannaschii they exhibit 47% amino acid identity and 67% amino acid similarity (Fig 9)

are exhibited between them.  Amino acid comparison of the M. jannaschii PyrI protein

shows 35% identity and 52% similarity to the E. coli PyrI protein (Fig 10).  Residues

comprising the zinc binding site and nucleotide effector binding sites are all conserved in

the M. jannaschii PyrI.  M. jannaschii differs from other recently characterized ATCases

from other archaeabacteria (P. abyssi and S. acidocaldarius), which contain an

enterobacteria-like pyrBI operon (Purcarea et al., 1997 and Durbecq et al., 1999).

It seemed important to ascertain if the M. jannaschii PyrB and the PyrI

polypeptides were capable of assembly into an active 310 kDa E. coli like ATCase and if

the putative complex could be regulated.
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In this chapter we present data to show that the M. jannaschii ATCase has the capacity to

assemble into an E. coli like enzyme and that the nucleotide effectors ATP, CTP and

UTP regulate the complex.
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Fig 7.  Amino acid alignment of M. jannaschii pyrB gene with other known organisms

pyrB genes.
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Amino acid alignment of pyrI

Fig. 8  Amino acid alignment of M. jannaschii pyrI  gene with other known organisms

pyrB gene.
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Table 1.  Known pyrimidine genes in thermophilic organisms.

____________________________________________________________________

Organism pyrimidine genes organization of genes

____________________________________________________________________

M. jannaschii pyrB and pyrI genes separated by 200-kb

P. abyssi pyrB and pyrI genes are fused, one transcript

S. solfataricus pyrB and pyrI genes next to each other, not fused

S. acidocaldarius pyrB and pyrI genes separated by 1 bp

Ta. Maritime pyrB and pyrI genes are fused, one transcript

Thermus ZO5 pyrR-pyrB-bbc-pyrC genes in an operon

B. caldolyticus pyrR-pyrP-pyrC-pyrD de novo genes associated with 2

pyrA-pyrF-pyrE salvage genes

______________________________________________________________________



28

 O
xa

lu
re

at
e

N
uc

 D
ip

ki
na

se
( n

dk
)

Fi
g 

6.
  F

at
e 

of
C

ar
ba

m
oy

lp
ho

sp
ha

te
 in

Ps
eu

do
m

on
ad

s
O

O
O

M
Pd

ec
as

e
   

   
   

( p
yr

F)
C

TP
Sy

n
( p

yr
G

)

C
ar

ba
m

oy
lp

ho
sp

ha
te

C
A

A

A
TC

as
e 

( p
yr

BC
�)

D
H

O

U
M

P
U

TP
C

TP

H
C

O 3
-

2 
A

TP
G

lu
ta

m
in

e
(N

H
4+ )

O
A O

M
P

  A
sp

Pi
C

PS
as

e
( c

ar
AB

)

D
H

O
as

e 
( p

yr
C) D
H

O
de

ha
se

( p
yr

D
)

O
PR

Ta
se

( p
yr

E)

U
M

P 
ki

na
se

( p
yr

H
)

C
ar

ba
m

at
e 

ki
na

se
C

O
2

N
H

4

A
TP

A
D

P

   
   

 O
xa

m
at

e
tra

ns
ca

rb
am

oy
la

se

Pi

O
xa

m
at

e
  O

R
N

IT
H

IN
E

N
-c

ar
ba

m
oy

l
pu

tre
sc

in
e

Pi

Pu
tre

sc
in

e

C
O

2

A
gm

at
in

e
ur

ea
N

H
4

H
2O

A
R

G
IN

IN
E

C
O

2

C
IT

R
U

LL
IN

E

O
TC

as
e

(c
at

ab
ol

ic
)

Pi

A
rg

in
as

e
de

am
in

as
e

O
rn

ith
in

e

Pi

  O
TC

as
e

(a
na

bo
lic

)
C

IT
R

U
LL

IN
E

A
 S

Sy
nt

ha
se

   
A

rg
in

oS
uc

c

Pu
tre

sc
in

e
tra

ns
ca

rb
am

oy
la

se

A
rg

in
in

o
su

cc
in

as
e

U
D

P

   
 fu

m
ar

at
e



29

CHAPTER I

MATERIALS AND METHODS

Bacterial strains, plasmids, media and growth conditions.

The bacterial strains and plasmids used in this study are listed in Table 2.  The

genotype of Escherichia coli strain TB2 (argI -, argF - and pyrBI -) was confirmed by

checking for growth in E. coli minimal medium (Miller, 1992) with the addition of

arginine, uracil or both at a concentration of 50 µg ml-1.  For the transformation

experiments, the recombinant plasmids were selected on the appropriately

supplemented E. coli minimal medium.  Antibiotics were added at the following

concentrations: ampicillin 100 µg ml-1 and kanamycin 50 µg ml-1.  The carbon source

used was glycerol at 0.2%.  All E. coli TB2 strains harbouring the selected plasmids

were grown at 37◦C with shaking at 250 rpm.

Preparation of competent cells.

All E. coli TB2 competent cells for transformation experiments were prepared

using the calcium chloride method of Dagert & Ehrich (1979) with slight

modifications. The cultures were grown in 50 ml of E. coli minimal medium to an

optical density at 600 nm (OD600) of 0.2 to 0.4 and chilled on ice at 0 to 4◦C for 10

min.  The cells were harvested by centrifugation at 1875 xg at 4◦C for 15 min, the

pellet was resuspended in 20 ml of ice-cold 0.1 M CaCl2 and incubated on ice for 20

to 25 min.  The cells were centrifuged at 833 xg at 4◦C for 15 min, the pellet was
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resuspended in 0.7 ml of ice cold CaCl2 and incubated overnight on ice.  The

following day glycerol was added to a final concentration of 15% and the cells were

separated into 200 µl aliquots.  Cells were then frozen at �80◦C and could used for up

to three months.
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Table 2.  List of Strains and Plasmids
_____________________________________________________________________
Strain or Plasmid Genotype or relevant property

Strain

E. coli TB2 ΔpyrBI, arg I, argF

Plasmids

pUC18 pMB1 origin, high copy

pBJR28 E. coli pyrB

pEK2 E. coli pyrBI

pK184 Kanamycin resistant compatible plasmid

AMJAE67                              1.26 kb insert containing the M. jannaschii pyrI
                        gene in pUC18

AMJPK84                               1.2 kb insert containing the M. jannaschii pyrB
                                                gene in pUC18

pCRII vector                           Invitrogen linearized plasmid

pSPMI                                     Unmodified pyrI cloned into the EcoRI and
                                                 BamHI sites of pK184

pSPMI�2                                 Shine Dalgarno and deletion of the first 3 amino
                                                acids cloned into pCRII vector

pSPMI3                                  Shine Dalgarno and change of the native GTG
                        start codon to an ATG start cloned into pCRII

                                                vector

pSPMI�4                                 Shine Dalgarno and deletion of the first 3 amino
                                                acids cloned into pK184 vector

pSPMI5 Shine Dalgarno and change of the native GTG
                        start codon to an ATG start cloned into pK184

                                                vector

_____________________________________________________________________
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Transformation of E. coli TB2.

Transformation of E. coli TB2 with the plasmids  E. coli pyrB (pBJR28) (Fig

11), E. coli pyrBI (pEK2) (Fig 12) and M. jannaschii pyrB (AMJPK84) (Fig 13) were

conducted according the method described by Huff et al, (1990).  Approximately 40

ng of plasmid DNA were mixed with 200 µl of the CaCl2 treated cells and the mixture

was incubated on ice for 15 min.  The cells were then heat shocked at 42ûC for 2 min,

and then placed back into the ice bucket for a further 15 min.  One ml of LB broth

was added to the cells, which were then incubated at 37ûC for 1 h.  After 1 h the cells

were plated on LB medium, plasmid insertion was selected for by ampicillin

resistance at a concentration of 100 µg ml-1.

Further analysis was conducted to show that expression of the plasmid genes

satisfied the pyrimidine requirement of E. coli TB2.  The colonies that grew on the

LB ampicillin plates were replica plated onto three addition plates, of E. coli minimal

medium, of E. coli minimal medium supplemented with arginine and of E. coli

minimal medium plus arginine and uracil.  Untransformed E. coli TB2 cells were used

as a control.

Preparation of cell extracts for aspartate transcarbamoylase activity gels.

Starter cultures of cells containing the above plasmids pBJR28, pEK2,

AMJPK84 and E. coli TB2 with no plasmid were grown in 5 ml of E. coli  minimal

medium overnight with the addition of glucose as the carbon source, thiamine
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(vitamin B1), arginine, and ampicillin.  E. coli minimal medium (50 ml) with the

above additions was used and the starter cultures were used as the inoculum.  The

flasks were shaken at 37◦C at 250 rpm and grown to an OD600 of 0.5 to 0.7.  The cells

were harvested by centrifugation at 1875 xg at 4ûC for 15 min and resuspended in 1

ml of ATCase buffer (5 ml Tris-HCl pH 8.0, 200 µl 1M β-mercaptoethanol, 2 µl 1M

ZnSO4, 20 ml 100% glycerol and 75 ml ddH2O).  The cells were disrupted by

sonication for 3 min in an ethanol ice bath.  The sonicated extract was centrifuged at

12,000 xg at 4ûC for 30 min.  The supernatant (clarified extract) was transferred to a

sterile microcentrifuge tube and used to assay ATCase on an activity gel.

Heat treatment of clarified cell extract.

Thirty microliters (30 μl) of clarified cell extracts were heated at 65◦C and

80◦C for 0, 10, and 20, 30 min.  This part of the experiment was conducted in order to

test the thermostability and subunit structure of E. coli pyrB (pBJR28), E.coli pyrBI

(pEK2) and M. jannaschii pyrB (AMJPK84).  After the period of heat treatment, the

extracts were centrifuged at 10,000 xg for 1 min.  The clear supernatant was then used

for further analysis.

Non-denaturing polyacrylamide aspartate transcarbamoylase activity gels.

A nondenaturing polyacrylamide gel with 5% stacking gel and an 8%

separating gel was used.  The gel was prepared by first pouring the separation gel,

which contained 2.67 ml of the stock solution of acrylamide (30% w/v acrylamide and
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1 % w/v bis-acrylamide in ddH2O), 2.5 ml of Buffer B (1.5 M Tris-HCL, pH 8.8), and

4.83 ml of ddH2O.  Ammonium persulfate (0.02 g) was added to the mixture.  The gel

was polymerized with the addition of 5 µl of N, N, N� N� - tetramethylenediamine

(TEMED).  The mixture was gently inverted and poured into the assembled Bio-Rad

mini protean II apparatus.  A space of 2 cm was left at the top to pour the stacking gel.

The gel was overlaid with N- butanol to prevent drying and   was allowed to

polymerize for approximately 30 to 40 min after which the stacking gel was prepared.

The stacking gel contained 0.67 ml of acrylamide, 1 ml of buffer C (0.5 M Tris, pH

6.8) and 2.3 ml ddH2O, ammonium persulfate (0.01g) and 5µl of TEMED.  A 10 well

comb was inserted and the gel was allowed to polymerize.  16 µl of sample was

mixed with 5µl of 5X loading buffer (312.5 mM Tris, 50% v/v glycerol, and 0.05%

w/v bromophenol blue in ddH2O).  The samples were loaded onto the gel.  The

chamber was filled with gel running buffer (25 mM Tris, 192 mM glycine in ddH2O)

and electrophoresis was carried out 150 V for 1 h at room temperature.

Aspartate transcarbamoylase activity stain of the nondenaturing polyacrylamide

gels.

The gels were stained specifically for ATCase activity by the method

described by Bothwell (1975) as modified by Kedzie (1987).  The principle behind

method is that when ATCase catalyses the reaction between carbamoylphosphate and

aspartate to produce carbamoylaspartate, an inorganic phosphate is generated.  This

phosphate group reacts with lead nitrate to form a white precipitate.   A modified

version of the above method by Kedzie (1987) was performed.  The gels were placed

in 250 ml of 50 mM, histidine buffer pH 7.0 for 5 to 10 min that had been warmed at
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65ºC in a waterbath.  5 ml of 1 M aspartate and 10 ml of 0.1 M carbamoylphosphate

was added and the gels were incubated at room temperature on a rocking shaker.  The

reactants were removed by rinsing the gel in 100-200 ml of warm ddH2O 3 times.

Lead nitrate at a concentration of 3mM was added to another 250 ml of histidine

buffer, pH 7.0, which was then poured onto the gel.  After 10 min, the lead nitrate was

removed by washing three times in warm ddH2O.  ATCase activity was observed at

the site of lead phosphate precipitation.  The gel was left overnight at room

temperature to increase the visibility of the bands.  The gel was stained with 1%

sodium sulfate for 3 min and washed three times with ddH2O to convert the white

lead nitrate to black lead sulfide.  The gels were soaked in 10% glycerol and dried to

preserve them.

Cloning of the M. jannaschii pyrI gene into the compatible vector pK184.

The M. jannaschii pyrI (AMJE67) plasmid (Fig 14) was obtained from the

American Type Culture Collection (ATCC 623859).  In order to co-express this

plasmid with the M. jannaschii pyrB and with the E. coli pyrB gene (pBJR28) it was

necessary to clone it into the compatible plasmid pK184 (Fig 15) (GenBank accession

number U00800).  Plasmid pK184 DNA was digested with the restriction enzymes

EcoRI and Bam HI to linearize the plasmid and allow for the ligation of the M.

jannaschii pyrI gene fragment, which had been previously isolated from AMJE67

using the same enzymes.  The 1.26 kb pyrI gene fragment was purified from the

agarose gel using the Sephaglas Band Prep Kit® (Amersham-Pharmacia) and ligated

into pK184 to produce pSPM1 (Fig 16).
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Cotransformational studies using E. coli pyrB and M. jannaschii pyrI, and M.

jannaschii pyrB and M. jannaschii pyrI.

E. coli TB2 cells were transformed using the method described above.  DNA

from plasmids expressing the E. coli pyrB (pBJR28) and M. jannaschii pyrI (pSPMI),

M. jannaschii pyrB (AMJPK84) and pSPMI was used.  The insertion of both plasmids

was confirmed by extraction of plasmid using the alkaline lysis method.  The cell

extracts were run on 8% nondenaturing gels.  This experiment failed to produce a 310

kDa holoenzyme.

Addition of an E. coli like Shine Dalgarno sequence into the native M. jannaschii

pyrI by polymerase chain reaction.

Sequence analysis of the upstream DNA of the M. jannaschii pyrI did  not

reveal an E. coli consensus Shine Dalgarno sequence.  We also observed that 6 bases

in from the designated start there was another methionine residue which was coded

for by ATG.  Thus, 2 synthetic oligonucleotide primers were designed and

synthesized by of Biosynthesis, Inc.  The first primer was used to incorporate an E.

coli Shine Dalgarno (SD) sequence, as well to change the original GTG start codon to

an ATG start codon.  The second was used to incorporate an E. coli (SD) sequence

and delete the first three amino acids present in the native clone.  PCR using Taq

polymerase  (Saiki et al., 1998) was used to amplify the products (Table 3).  The

following conditions were used.    This enzyme generates 3�T overhangs and this

allows for the direct cloning into the pCRTMII Vector (Fig 17) from The Original TA
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Cloning ® Kit (Invitrogen).  After ligation and transformation clones, which contained

the modification were selected on LB plus kanamycin 50 µg ml-1, with 5 bromo-4-

chloro-3-indolyl-β-D-galactoside (X-gal) at 0.003% and isopropyl-β-D-

thiogalactopyranoside (IPTG) at 0.03%.  White colonies appearing on the medium

were selected and grown in 5 ml of LB medium with 50 µg ml-1 of kanamycin.

Insertion of the modified pyrI�s were confirmed by restriction digest and by DNA

sequencing.  The clones produced were termed pSPMI�2 (addition of SD sequence

and deletion of the 1st 3 amino acids) and pSPMI3 (addition of an SD sequence and

change of the original GTG to and ATG start codon) (Fig 18 and 19).

Table 3   Oligonucleotides used for PCR of modified M. jannaschii pyrI

  Primer  Sequence (5�- 3�)             Use

MetIF  GGAGGAGAAATGTAACTATGATTCCTATGGAGGAGTTAAAA   SD sequence & GTG

                                                                                                        → ATG

MetIF   GGAGGAGAAATTAACTATGGAGGAGTTAAAAGTTAAAAAA    SD sequence &

     Deletion of First two

  amino acids

MetIR   TTTGAAATACTTCTTCCTTTAATTCCATAATACCA                       Reverse primer   
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DNA sequencing of pSPMI�2 and pSPMI3

Sequencing of double-stranded DNA was performed with the Sequenase kit

(U.S. Biochemicals Corp.) based on the dideoxy method of Sanger et al., (1977 &

1980).  All reactions were carried out according to manufacturer�s specifications.

M13 �20 forward primer and M13 reverse primer were used to sequence the

recombinant plasmids and confirm the orientation of the inserts.

Cloning of pSPMI�2 and pSPMI3 into the compatible vector pK184

It was necessary to clone the modified pyrI genes, first into pUC19, and then

into pK184, due to the lack of enzymes that were available for the purpose of cloning

into pK184. Therefore, the insert from pSPMI2 and pSPMI3 was excised with the

restriction enzymes KpnI and XhoI.  The vector pUC19 was also digested with the

same enzymes and then a ligation reaction was set up.  E. coli DH5α was transformed

with the DNA.  Cells with the recombinant plasmids were selected on LB agar plates

with ampicillin at a concentration of 100 µg ml-1.  The plates also contained 5 bromo-

4-chloro-3-indolyl-β-D-galactoside (X-gal) at 0.003% and isopropyl-β-D-

thiogalactopyranoside (IPTG) at 0.03%.  Presumptive transformants containing the

insert appeared as white colonies and were picked.  Plasmid DNA was extracted using

the alkaline lysis method.

Upon confirmation of the insert of the appropriate size, by agarose gel

electrophoresis, the plasmid DNA was digested with the enzymes KpnI and SalI.  This

was also true of pK184.  Ligation of the modified pyrI genes with the compatible
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vector pK184 was set up.  E. coli DH5α cells were transformed and plated out on LB

agar with kanamycin at a concentration 50 µg ml-1.  The plasmids were named

pSPM4 (Fig 20) and pSPM5 (Fig 21).  The plasmids containing the inserts were

selected for cotransformational studies along with M. jannaschii pyrB (AMPK84).

Cotranformational studies with the various modified M. jannaschii pyrI plasmids

and the M. jannaschii pyrB plasmid.

E. coli TB2 cells were transformed with the above plasmids.  Table 4 lists the

plasmids.  The insertion of both plasmids was confirmed by isolation of plasmid

DNA.  Cell extracts were prepared for ATCase activity gels as described earlier.

Clarified cell extracts were heated at 80○C for 20 min before loading onto

nondenaturing ATCase activity gels.
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Table 4

_____________________________________________________________________

Plasmids Description

_____________________________________________________________________

AMPK84 + pSPMI2 M. jannaschii pyrB and modified pyrI� in pCRII

vector

AMPK84 + pSPMI3 M. jannaschii pyrB and modified pyrI  in pCRII

vector

AMPK84 + pSPMI4 M. jannaschii pyrB and modified pyrI in pK184

vector

AMPK84 + pSPMI5 M. jannaschii pyrB and modified pyrI� in pK184

vector

_____________________________________________________________________
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Effector response of 310 kDa Aspartate Transcarbamoylase of M. jannaschii.

Cell extract was assayed for ATCase activity by measuring the amount of

carbamoylaspartate (CAA) produced at 20 min at 37°C.  The method used was the

color reaction described by Prescott & Jones, 1969.  ATCase assays were performed

to determine the Vmax, KM and nucleotide effector response.  A tribuffer system (0.05

M MES, 0.1 M diethanolamine, and 0.051 M N-ethymorpholine) was used.  The

assay was conducted at pH 9.5 in a microtiter plate.  Aspartate was varied from a final

concentration of 5 mM to 60 mM and carbamoylphosphate was kept at a

concentration of 5 mM.  The total volume of the assay was 200 μl.  Effector response

could be measured by adding UTP, CTP, or ATP at a final concentration of 1 mM

into the microtiter plate wells.  A blank control containing all ingredients minus the

enzyme was used.  This reading was then subtracted from the final reading for the

experimental reaction.  An aliquot of the enzyme was incubated at 80ºC and then 1 μl

of it was used in the reaction.  The assay reaction plate was preincubated at 37ºC for 2

to 3 min.  The reaction was initiated with the addition of cabamoylphosphate.  At 20

min the reaction was stopped with the addition of 100 μl of stop mix (2 parts

antipyrine (5 mg/ml) in 50% sulfuric acid and 1 part monoxime (8 mg/ml) in 5 %

acetic acid).  After the addition of the stop mix clear tape was applied to the top of the

wells to prevent the evaporation of the reaction mixture.  The color was developed at

60ºC in a waterbath.  The assay was read at 450 nm in a kinetic microplate reader by

molecular devices.  Velocity substrate curves were generated by plotting the specific

activity of the enzyme (μmol CAA/min/μg of protein).  The protein concentration was

measured by the method described by Bradford  (1976) with Bovine Serum Albumin
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as the standard.  The μmol produced was calculated by generating a CAA standard

curve.

In vitro expression of modified PyrI from M. jannaschii.

The M. jannaschii PyrI protein was expressed using the E. coli  S30 extract for

Circular DNA (Promega).  This procedure allows one to observe the transcription and

translation of DNA sequences that have been cloned into plasmid vectors.  The

technique is based on the method described by Zubay (1973) and allows for the

characterization of polypeptides from cloned genes.

One μg of pSPMI4 and pSPMI5 DNA (individually) was used as the template.

The DNA was mixed with 5 μl of amino acid mixture, which was devoid of

methionine, 20 μl of s30 Premix without amino acids, 15 μCi of [35 S] methionine

(NEN Dupont) and 15 μl of s30 Circular extract.  Nuclease-free water was added to a

final volume of 50 μl.  The components were mixed by vortexing and then

centrifuged at 12,000 xg for 5 s to collect the mixture at the bottom of the tube.  The

reaction was incubated at 37○C for 2 h.  The reaction was terminated after 2 h by

placing the tubes on ice for 5 min.  A 5 μl aliquot was transferred to a fresh tube and

was precipitated by adding 20 μl of acetone.  This step removes the polyethylene

glycol (PEG) present in the reaction mixture.  The supernantant was aspirated and the

pellet was dried for 15 min in a vacuum desiccator.  The expressed proteins were

analysed by sodium dodecyl sulfate polyacrylamide gel electrophoresis.  The proteins

were then visualized by autoradiography.
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Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE).

SDS is an anionic detergent, which denatures proteins by binding or wrapping

around the protein backbone.  The method denatures the protein into its individual

subunits and thus separates them based on their molecular weight.  SDS binds

specifically to proteins and confers a negative charge to them.  It is necessary to

reduce the disulfide bridges in proteins so that they would adopt a random coil

configuration.  This allows for the proteins to be separated based on its molecular

weight.  Therefore separation of proteins using SDS-PAGE is determined by

molecular weight rather than its intrinsic electrical charge.  A 15% SDS

polyacrylamide separating gel with a 5% stacking gel was used to analyze the

samples.  The apparatus used to conduct the electrophoresis was the Mini-Protean

II� chamber (Bio-Rad).

The gel was prepared by first pouring the 15% separating gel, which contained

5 ml of the stock solution of acrylamide (30% w/v acrylamide and 0.8 % w/v bis-

acrylamide in ddH2O), 2.5 ml of Buffer B (1.5 M Tris-HCl, pH 8.8, 0.4% w/v SDS in

ddH20), and 2.5 ml of ddH2O.  Ammonium persulfate (0.02 g) was added to the

mixture and mixed by vortexing gently to dissolve the ammonium persulfate.  The gel

was polymerized with the addition of 5 µl of N, N, N� N� - tetramethylenediamine

(TEMED).  The mixture was gently inverted and poured into the assembled apparatus.

A space of 2 cm was left at the top to pour the stacking gel.  The gel was overlaid

with n - butanol to prevent drying and was allowed to polymerize for approximately

30 to 40 min after which the stacking gel was prepared.  The stacking gel contained

0.67 ml of Solution A, 1 ml of buffer C (0.5 M Tris, pH 6.8, 0.4% w/v SDS) and 2.3
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ml ddH2O, ammonium persulfate (0.01 g) and 5 µl of TEMED.  A 10 well comb was

inserted and the gel was allowed to polymerise for 1 h.  The gel was placed into the

apparatus and the tank filled up with denaturing gel running buffer (25 mM Tris, 192

mM glycine and 0.1% SDS w/v, pH 8.3).   The sample were mixed at a ratio of 4:1

with the gel loading dye (60 mM Tris-HCI, pH 6.8, 25% glycerol v/v, 2% SDS w/v,

14.4 mM β-mercaptoethanol, 0.1% Bromophenol blue) in a sterile microfuge tube.

The samples and the standards were boiled for 2 min and cooled on ice.  The samples

and the standards were loaded onto the gel and electrophoresed for 90 min at 150 V.

The proteins were stained with Coomasse Blue staining solution (45% methanol v/v,

10% acetic acid v/v, 0.1% Coomasse Brilliant Blue R-250 w/v in ddH2O) for 10 min

with gentle rocking.  The gel was destained with a solution of 10% methanol v/v and

10% glacial acetic acid v/v in ddH2O for 3 h.  The gel was dried on a Whatmann�

filter paper and an X-ray film was placed on top of the dried gel in a Kodak� X-ray

exposure holder.
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lacZ

lacI
ori

Ampicillin resistant

E. coli pyrBpBJR28

Fig 11.  Plasmid  pBJR28 constructed by Jill Ruley.  The plasmid contains the entire

1.1 kb pyrB gene fragment from the plasmid pEK2.
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E. coli pyrBI

LacZ

lacI
ori

Ampicillin resistant

PstI/HindIII (700)

EcoRI (2399)

pEK2

Fig 12.  Schemmatic representation of plasmid pEK2.  The plasmid contains the entire

pyrBI operon of E. coli.
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disrupted MCS

disrupted MCS

M. jannaschii pyrI

EcoRI (1530)

BamHI (395)

Ampicillin R

AMJPK84 M. jannaschii pyrB

3733 bp

Fig 13.  Plasmid AMJPK84 containing the intact 1.2 kb M. jannaschii pyrB gene in

pUC18.  Plasmid was obtained from the American Type Culure collection.
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Ampicillin R

disrupted MCS

disrupted MCS

M. jannaschii pyrI

EcoR1 (425)

BamHI (1450)

AMJE67 M. jannaschii pyrI

3623 bp

Fig 14.  Plasmid AMJ67 containing the entire 1.26 kb M. jannaschii pyrI gene in

pUC18.  Plasmid was obtained from the American Type Culture collection (ATCC

623859).
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Fig 15.  Schematic representation of plasmid pK184.

Kanamycin resistance

ori

MCS
lacZ
alpha
peptide

pK184
2436 bp
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Fig 16.  The M. jannaschii 1.26 kb pyrI gene fragment from AMJE67 cloned into the

pK184 plasmid at the EcoRI and BamHI restriction sites

disrupted LacZ alpha peptide
disrupted MCS

Kanamycin

ori

disrupted LacZ alpha peptide
disrupted MCS

M. jannaschii pyrI

EcoRI (2225)

BamHI (3250)

pK184

3458 bp
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Fig 17.  Schematic representation of pCRII� vector (Invitrogen®).

Kanamycin resistance
Ampicillin resistance

LacZMultiple cloning site

f1 ori

ColE1 origin

Eco RI (335)
Eco RI (336)

pCRII Vector
3900 bp
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Kanamycin

Ampicillin

disrupted LacZ
disrupted Multiple cloning site

f1 ori

ColE1 origin

Eco RI (912)

disrupted LacZ

disrupted Multiple cloning site

M. jannaschii pyrI

EcoRI (335)

pSPMI2

4476 bp

Fig.18 Schematic diagram of the pCRII vector harbouring the modified M. 

jannaschii pyrI.  Addition of an E. coli like Shine Dalgarno change of the native 

GTG start to an ATG start. Insert size is 576 bp. 
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Kanamycin

Ampicillin

disrupted LacZ
disrupted Multiple cloning site

f1 ori

ColE1 origin

Eco RI (912)

disrupted LacZ

disrupted Multiple cloning site

M. jannaschii pyrI

EcoRI (335)

pSPMI3

4476 bp

Fig.19 Schematic diagram of the pCRII vector harbouring the modified M. jannaschii

pyrI.  Addition of an E. coli like Shine Dalgarno and deletion of the 1st  3 amino acids

568 bp.

 R

R
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disrupted LacZ alpha peptide
disrupted MCS

Kanamycin

ori

disrupted LacZ alpha peptide
disrupted MCS

M. jannaschii pyrI

BamHI (2230)

SalI (2805)

pSPMI4

3008 bp

Fig. 20 Schematic diagram of recombinant plasmid containing the modified M.

jannaschii pyrI subcloned from pUC19 into pK184.  The insert size is 576-bp and 

contains the modified pyrI native sequence.  Shine-Dalgarno sequence has been 

added and the native GTG start codon changed to ATG.  

   R
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disrupted LacZ alpha peptide
disrupted MCS

Kanamycin

ori

disrupted LacZ alpha peptide
disrupted MCS

M. jannaschii pyrI

BamHI (2230)

SalI (2805)

pSPMI5

3008 bp

Fig. 21  Schematic diagram of recombinant plasmid containing the modified M. 

jannaschii pyrI subcloned from pUC19 into pK184 plasmid.  The insert size is 

568-bp and contains the modified pyrI native sequence.  Shine Dalgarno added and 

1st three amino acids deleted as to use the second methionine ATG start. 

R
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CHAPTER I

RESULTS AND DISCUSSION

!"#$%&'!()*+&',-./'%*-$.0+'12*+/$3+

Cell extracts from E. coli TB2 cells containing various plasmids were run on

ATCase activity gels (Fig 21).  E. coli TB2 cells containing the E. coli pyrBI from

expressed from the plasmid pEK2 showed aggregated forms of ATCase and bands

corresponding to 310 kDa and 270 kDa.  Cells containing the E. coli pyrB only (pBJR28)

showed a 100 kDa ATCase band corresponding to the catalytic pyrB trimer.  Cells

containing the M. jannaschii pyrB gene (AMJPK84) similarly showed the 100 kDa

ATCase band corresponding to the catalytic trimer.

(4&-/.+#*5$2$#6'.,'*"#$%&'!()*+&'&7".3&3'56'E. coli pyrB'819:;<=>?'E. coli pyrBI

81@A<>'*73'M. jannaschii pyrB'8!B:CA=D>'*#'EFG)H

The thermostability of the E. coli ATCase was compared to that of M. jannaschii.

E. coli TB2 cells containing the plasmids pBJR28 (E. coli pyrB), pEK2 (E. coli pyrBI)

and AMJPK84 (M. jannaschii pyrB) were grown at 37○C.  30 μl of clarified cell extracts

were heated at 65○C for 0, 10, 20 and 30 min.  ATCase activity gels showed that the E.
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coli enzyme remained fully active after the heat treatment.  E. coli TB2 cells containing

the pBJR28 plasmid showed 100 kDa ATCase bands up to 30 min of incubation at 65○C.

At time 0 the E. coli TB2 cells containing the pEK2 plasmid showed a holoenzyme at 310

kDa.  The 310 kDa holoenzyme form disappeared after heating presumably degrading

into the catalytic trimer form as the incubation time increased.  In contrast the E. coli TB2

sample containing the M. jannaschii pyrB gene showed very little or no activity at time 0

(no heat treatment).  As the sample was incubated at 65○C the ATCase seemed to become

active and its activity increased as the incubation time increased (Fig 22).  This result

suggests that the E. coli enzyme is sensitive to temperature and the enzyme is less active

at higher temperatures.  The M. jannaschii catalytic subunit responds to high

temperatures and therefore is more thermostabile.
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     1                                           2                                    3

Fig 21.  ATCase expressed from various plasmids.  Lane 1. The E. coli pyrBI gene

products showing the aggregated form of ATCase along with the 310 kDa (2C3:3R2), the

270 kDa (2C3:2R2), and the 100 kDa (C3) forms.  Lane 2 shows the E. coli pyrB gene

product  (C3).  Lane 3 shows the M. jannaschii pyrB product.

IJJ'KL*
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I''''''''''<'''''''''M''''''''''D''''''''''F''''''''''E''''''''''N'''''''''''=

Fig 22a.  Thermosensitivity of ATCase expressed from plasmids pEK2 and pBJR28 in E.

coli TB2.  Cell extracts were heated to 65°C and loaded onto the gel.  Lanes

1-4. E. coli pyrB (pBJR28) incubated at 65°C for 0, 10, 20, and 30 min, respectively.

Lanes 5-8. E. coli pyrBI (pEK2) incubated at 65°C for 0, 10, 20, and 30 min.
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I < '''''''M'''''''''''''''D

Fig 22b.  Thermostability of E. coli TB2 cells harboring the M. jannaschii pyrB

(AMPK84) plasmid.  Cell extracts were heated at 65°C.  Lane 1 heat treatment for 0 min.

Lane 2 heat treatment for 10 min.  Lane 3 heat treatment for 20 min.  Lane 4 heat

treatment for 30 min.

IJJ KL*
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(4&-/.+#*5$2$#6'.,'*"#$%&'!()*+&',-./'E. coli pyrB'819:;<=>?'E. coli pyrBI'81@A<>

*73M. jannaschii pyrB'8!B:CA=D>'*#'=JO)H

The various protein products expressed from plasmid DNAs expressed in E. coli

TB2 were incubated at 80○C for 0, 10, 20 and 30 min.  Results from this experiment

showed that the E. coli pyrB and E. coli pyrBI expressed form the plasmids containing

cell extract are denatured with heat

(Fig 23).  The lanes on the activity gel containing the E. coli pyrB expressed product and

E. coli pyrBI gene product samples showed no ATCase activity and this suggests that the

E. coli enzyme is very sensitive to high heat.  In contrast the M. jannaschii pyrB gene

product retained activity after heating at 80○C for 30 min.

At high temperatures, pyrimidine biosynthesis is confronted with the

thermostability of not only the enzymes of the pathway but also with the stability of the

substrates.  One of the ATCase substrates, carbamoylphosphate, is thermolabile with a

half-life of 30 min at 37○C.  At higher temperatures such as 80○C the half-life is reduced

dramatically.  Thus microorganisms grow optimally at high temperatures must have

developed a strategy to utilize the CP very quickly.  One of the mechanisms of protecting

CP at 100○C is involves its rapid conversion to a heat stable compound such as

carbamoylasaprtate, dihydroorotate or orootate.  This could then satisfy pyrimidine and

arginine biosynthesis (Purcarea., 1996).
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I'''''''''<''''''''''M''''''''D''''''''F'''''''E'''''''N''''''''='''''''P

Fig 23.  Thermostability of ATCase encoded by E. coli pyrB (pBJR28), E. coli pyrBI

(pEK2) and M. jannaschii pyrB (AMPK84).  Lane 1. E. coli TB2 cell extract harboring

plasmid AMPK84, 10 min of incubation at 80ûC.  Lane 2. E. coli TB2 harboring plasmid

AMPK84, 20 min of incubation at 80ûC.  Lane 3. E. coli TB2 harboring plasmid

AMPK84, 30 min.  Lane 4.  E. coli TB2 harboring plasmid pBJR28, 30 min.  Lane 5.  E.

coli TB2 harboring plasmid pBJR28, 20 min.  Lane 6.  E. coli TB2 harboring plasmid

pBJR28, 10 min.  Lane 7. E. coli TB2 harboring plasmid pEK2, 30 min.  Lane 8.  E. coli

TB2 harboring plasmid pBJR28, 20 min.  Lane 9.  E. coli TB2 harboring plasmid

pBJR28, 10 min.
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Q.-/*#$.7'.,'*'MIJ'KL*'!()*+&'&7R6/&',-./'M. jannaschiiH

E. coli TB2 cells were transformed with the previously described plasmids.  Pairs

of plasmids were cotransformed (Table 4).  The recombinants were able to satisfy the

pyrimidine requirement of E. coli TB2.  The insertion of both plasmids was confirmed by

isolation of plasmid DNA.  Cell-free extract was prepared as described in the materials

and method section.  Clarified cell extract was heated for 20 min at 80○C and loaded onto

a non-denaturing ATCase activity gel.  The results from this experiment show that the

ATCase from M. jannaschii is capable of assembling into a 310 kDa E. coli-like

holoenzyme

(Fig 24).  The plasmid that was constructed by altering the original GTG start codon to an

ATG start was able to produce a 310 kDa enzyme.  A similar result was observed with

the recombinant plasmid where the second internal methionine (ATG) was used instead

of the designated methionine (GTG).

 Kantrowitz and coworkers (1999) showed that only the M. jannaschii pyrB gene

product exhibited catalytic activity as trimer and that the M. jannaschii pyrI gene product

existed as a dimer.  Preliminary characterization of the enzyme conducted by the above

researchers suggested that the enzyme was similar to the E. coli ATCase with regard to

the molecular mass.  However in this paper no data upholding the suggestion was

presented.  Here I present data that shows the M. jannaschii ATCase is capable of

assembling into a 310 kDa ATCase.
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1         2          3          4          5         6          7         8        9

Fig 24.  Nondenaturing polyacrylamide gel stained for ATCase activity.  Lane 1, Purified

E. coli holoenzyme.  Lane 2, E.coli pyrB gene product.  Lane 3, M. jannaschii pyrB gene

product.  Lane 4, M. jannaschii pyrB + M. jannaschii pyrI gene products.  Lane 5 M.

jannaschii pyrB + M. jannaschii pyrI’ gene products.  Lane 6, M. jannaschii pyrB + M.

jannaschii pyrI gene products.  Lane 7, M. jannaschii pyrB + M. jannaschii pyrI’ gene

products , Lane 8 E. coli TB2 cell extract and Lane 9  Pseudomonas aeruginosa purified

ATCase.
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!()*+&'*++*6'3*#*'*73'&,,&"#.-'-&+1.7+&'.,'#4&'/.3$,$&3'pyrI'S&7&+'.,''M.

jannaschii

ATCase assays were performed to determine the Vmax, KM and nucleotide effector

response for the M. jannaschii pyrB and the two genetically modified pyrI�s.  Partially

purified cell sonicates were assayed for ATCase activity by measuring the amount of

CAA produced at 37°C for 20 min using the colorimetric method described by Prescott

& Jones 1969.  The assay was conducted in a microtiter plate and the absorbance was

read at 450 nm in a kinetic microplate reader.

The KM for aspartate was calculated to be 20 mM in both of the cases (Figs 26 & 29).  It

was also observed that the KM for carbamoylphosphate was in accordance with findings

in 1999 at 88 μM of CAA min-1 (data not shown).

In contrast to their data we observed regulation of the ATCase by nucleotide

effectors.  For the M. jannaschii pyrB and the pyrI where the GTG start codon was

changed to an ATG start codon along with the addition of an E. coli like Shine Dalgarno

no regulation by the nucleotides UTP, ATP and CTP was observed (Fig 28).  However

we did assemble a 310 kDa holoenzyme.

When an E. coli Shine Dalgarno was added along with the removal of the 1st 3

amino acids we observed regulation of the ATCase enzyme by the nucleotide effectors

UTP, CTP and ATP.  At low aspartate concentration (0�5 mM) and saturating

carbamoylphosphate (5 mM) CTP, ATP and UTP inhibited the activity of ATCase.  At
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saturating levels of aspartate (40-60 mM) enzyme activity was activated by CTP and

ATP and slightly inhibited by UTP (Fig 30).

The native pyrI start codon was designated by GenBank to be a GTG start because of the

alignment with the amino acids sequence of E. coli.  However if one looks at the amino

acid alignment (Fig 10) it can be seen that a second methionine is preceded by the amino

acids methionine, isoleucine and proline in the order of MIPM.  It is our belief that the

internal methionine is in-fact the correct start for the M. jannaschii pyrI gene which

would make perfect genetic sense when one considers the G + C content of 31% for M.

jannaschii.  Other researchers have used the 1st methionine as the proposed start and

appear to have failed in their endeavors to see regulation of the M. jannaschii ATCase

holoenzyme by the nucleotide effectors CTP, ATP and UTP respectively.
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The M. jannaschii PyrI protein was expressed using the E. coli S30 extract.  This

procedure follows the basic method described by Zubay in 1973.  The procedure allows

one to directly observe the transcription and translation of specific DNA sequences and

thus allows for the characterization of polypeptides from specific genes.  In this case the

two clones described earlier as pSPMI4 and pSPMI5 were used with one μg of plasmid

DNA in each case.  A 15% SDS gel was used to determine the molecular weight of the

M. jannaschii PyrI protein.  Results from this experiment showed the formation of a 17

kDa polypeptide from each of the plasmids (Fig 31a).  The native size of the polypeptide

is 34 kDa as observed in figure 31b from the same plasmids.
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                           31a 31b

Fig 31a & 31b. Zubay analysis of M. jannaschii modified pyrI clones.   Figure 31a shows

the results of a 15% SDS PAGE gel.  Lane 1 shows the product of the plasmid pSPMI5

and lane 2 shows the product of the plasmid pSPMI4.  Both recombinant plasmids

showed the formation of a 17kDa protein product.  Figure 31b shows the results of a 15%

native gel.  Lane 1 shows the 34 kDa subunit size from the plasmid pSPMI4 M.

jannaschii pyrI and lane 2 shows the product of pSPMI5 M. jannaschii pyrI’.
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CHAPTER II

INTRODUCTION

The genus Pseudomonas is defined as having unicellular straight Gram negative

rods.  With the exception Pseudomonas mallei, all species are motile with one or more

polar flagella.  The G + C content of the pseudomonads is 58% to 69% (Mandel, 1966).

Pseudomonads have an oxidative metabolism and all pseudomonads lack the

enzyme phosphofructokinase.  Therefore they cannot utilize the Embden-Meyerhof

glycolytic pathway (Entner & Doudoroff, 1952; Conway, 1992).  Instead pseudomonads

use the Entner-Doudoroff pathway to form pyruvate from carbohydrates.  Glucose is

converted to glucose-6-phosphate by glucokinase encoded by glk.  Glucose-6-phosphate

is further metabolized to 6-phosphogluconate by the product of the zwf gene, which

encodes glucose-6-phosphate dehydrogenase.  Two enzymes specific to ED convert 6-

phosphogluconate to 2-keto-3-deoxy-6-phosphogluconate.  Aldolase encoded by eda then

catalyzes the formation of pyruvate and glyceraldehydes-3-phosphate.  The two products

can then be further metabolized via the EMP glycolytic pathway and the tricarboxylic

acid cycle (TCA).

The genus Pseudomonas includes the opportunistic human pathogen

Pseudomonas aeruginosa. P. aeruginosa is a ubiquitous environmental bacterium first

named by Migula in the early 1900.  P. aeruginosa is versatile in that it can grow at
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temperatures of 4ûC to 43ûC and the bacterium can grow in many different environments

such as  soil, marshes, marine environments, plants and animal tissue.  Pigment

production by P. aeruginosa is a key identification factor for this organism.  Pyocyanin is

a blue-green pigment, which is unique to this speciesmicroorganism.  Other pigments

such as pyoverdin (yellow), pyorubin (red) and pyomelanin (brown) are also produced by

this organism.  The pigment production is an iron scavenging mechanism from the

surrounding medium and these pigments also act as virulence factors.  Scientific evidence

is also emerging that the production of pigment is linked to the pyrimidine biosynthetic

pathway.

P. aeruginosa is a human pathogen because of its resistance to certain antibiotics

and disinfectants, which would eliminate other bacterial species.  P. aeruginosa is a

common source of bacteraemia in burn victims, urinary tract infections in patients who

are catheterized, cancer patients and AIDS patients (Stover et al., 2000).  It does not

usually cause disease in healthy individuals but is very persistent in immunosuppressed

persons.

Cystic fibrosis (CF) is an autosomal recessive disorder, which is prevalent in

approximately 1 in 2,500 live births.  The prevalence of this disease amongst Caucasian

populations is very high and is characterized by the excessive mucus production in the

lungs of affected individuals.  The excess mucus build up in (CF) patients is a perfect

environment for P. aeruginosa to colonize.  Thus P. aeruginosa is a major cause of

morbidity and mortality in CF patients, usually due to the lack of effective antibiotics

available to treat the infection.  Death of the patient occurs due to pulmonary failure.
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Pyrimidine biosynthesis.

Pyrimidine and purines are essential for the building materials ribonucleic acid

(RNA) and deoxyribonucleic acid (DNA). These molecules are required for the passage

of genetic information to succeeding generations in bacteria, fungi, plants and mammals.

Therefore the study of the synthesis of these macromolecules is imperative if one is to

understand evolutionary relationship between the three domains of life.  Two pathways

form pyrimidine ribonucleotides, the de novo and the salvage pathway.

The pyrimidine biosynthetic pathway has been studied in detail in bacteria (Yates

& Pardee, 1956a, 1956b, 1957; Beckwith et al., 1962; Hayward & Besler, 1965; Yan &

Demerec, 1965; Hutson & Downing, 1968; Isaac & Holloway, 1968; Condon et al.,

1976, Foltermann et al., 1981; Grogan & Gunsalus, 1993), fungi (Lacroute, 1968;

Caroline, 1969), plants (Kafer & Thornburg, 1999) and mammals (Hager & Jones, 1967;

Nakinishi et al., 1968; Jones, 1980).

There are nine enzymatic steps, which ultimately result in the formation of the

pyrimidine ribonucleotides UTP and CTP (Fig 2).  The pyrimidine ring is assembled first

and then linked to ribose phosphate to form the initial pyrimidine nucleotide OMP.  The

precursors of the pyrimidine ring are carbamoylphosphate and aspartate. The initial step

in the pathway is the formation of carbamoylphosphate, which is produced in the reaction

catalyzed by carbamoylphosphate synthetase (CPSase; carbamoylphosphate: L-aspartate

carbamoyltransferase, EC 6.3.55).  Carbamoylphosphate plays a dual role, being required
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not only for pyrimidine but also for arginine biosynthesis.   The carAB genes encode

CPSase in Escherichai. coli.

The next step in the pathway involves the carbamoylation of aspartate by

aspartate transcarbamoylase (ATCase; EC 2.1.3.2) to form N-carbamoylaspartate and

inorganic phosphate.  This reaction is the first committed step in the synthesis of

pyrimidine nucleotides de novo.  The genes encoding ATCase in E. coli are pyrBI and in

Pseudomonas are pyrBC' .

Carbamoylaspartate cyclizes with the loss of water to yield dihydroorotate.  At

this stage the pyrimidine ring has formed.  The reaction is catalyzed by dihydroorotase

(DHOase; EC 3.5.2.3), encoded by the pyrC gene.  The dihydroorotate so formed is then

oxidized to orotate by dihydrooorotate dehydrogenase (DHOdehase; EC 1.3.3.1),

encoded by pyrD.  DHOdehase is a flavoprotein which is membrane associated.

The next step in the pathway involves the acquisition of a ribose phosphate group.

Orotate phosphoribosyltransferase (OPRTase; EC 2.4.2.10) catalyzes the reaction where

orotate a free pyrimidine, reacts with PRPP to yield orotidine-5�-monophosphate (OMP)

and pyrophosphate.  This reaction is driven forward by the hydrolysis of pyrophosphate.

The pyrE gene encodes the enzyme is responsible for this conversion.

Decarboxylation of OMP is carried out by OMP decarboxylase (OMPdecase; EC

4.1.1.23), which yields uridine-5�- monophosphate (UMP).  The pyrF gene encodes OMP

decarboxylase. UMP is then phosphorylated by a specific UMP kinase to form uridine-

5�-diphosphate (UDP).  UMP kinase (UMPk; EC 2.7.4.4) utilizing the gamma phosphate
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of ATP.  UTP is produced by the phosphorylation of UDP by nucleoside

diphosphokinase.  (NDK; EC 2.7.4.6)

The final step in the pyrimidine pathway is the amination of UTP to cytidine-5�-

triphosphate (CTP) by the enzyme CTP synthetase.  (CTPase; EC 6.3.42).  For this

enzyme, encoded by pyrG, glutamine serves as the amino donor for the amination.  CTP

synthetase is feedback inhibited by CTP and activated by UTP (Neuhard & Nygaard,

1987).
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Salvaging of pyrimidine nucleotides.

The salvage pathway is responsible for the scavenging of pyrimidine nucleotides,

nucleosides and nucleobases that are formed during mRNA and rRNA degradation and

hence recycling them to replenish the lost store and using them as a source of carbon and

energy.  The pyrimidine biosynthetic pathway may be missing in some obligate parasites,

but no organism is devoid of the salvage pathway in one form or another.

D A Beck (1995) has studied the pyrimidine salvage pathway in almost 44

prototrophic bacteria and 11 auxotrophs, which were selected because of specific

mutations that they contained in biosynthetic and salvage pathways O� Donovan &

Shanley, 1995).  This study was conducted using High Performance Liquid

Chromatography and offered much insight into the salvage pathways of a wide range of

microorganisms.  The prototype organism used was E. coli and the researcher discovered

8 more variations of the salvage pathways in other organisms.  Through this study, many

groups emerged which differed in the enzymes that were responsible for salvaging

pyrimidines.  Figure 2 and 3 show the enzymes involved in the salvaging of pyrimidine

nucleotides in E. coli and P. aeruginosa respectively.

The following is a general list of all the compounds in the pyrimidine salvage

pathway and how they are utilized in an organism.   Some organisms have two pathways

by which to produce UMP from uracil (U).  The first pathway is the catalysis of uracil by

the enzyme uracil phosphoribosyltransferase (Upp).  One molecule of PRPP is utilized in

this reaction (Anderson et al., 1992).  The second pathway for the formation of UMP can
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be conducted by the enzyme uridine phosphorylase (Udp) when a high amount of ribose-

1-phosphate is present.  Uridine can then be converted to UMP by the enzyme uridine

kinase (Udk).  GTP donates its γ-phosphate for this reaction (Neuhard & Nygaard, 1987).

Cytosine deaminase (CodA) catalyzes the deamination of cytosine to uracil in an

irreversible reaction (West et al., 1982)

Uridine is a substrate for at least 4 different salvage enzymes.  Uridine phosphorylase

(Udp), uridine kinase (Udk), ribonucleoside hydrolase A and B (Rih) and uridine

hydrolase.  In E. coli only the first three of the enzymes have been found (Beck, 1995).

Cytidine in enteric bacteria is phosphorylated to CMP by uridine (cytidine) kinase.  When

cytidine is available to E. coli much of it is converted to uridine by cytidine deaminase

(CodA) by a hydrolytic cleavage (Ashley & Bartlett, 1984).  In Pseudomonas cytidine

has also been shown to be a substrate for ribonucleoside hydrolase (Terada et al., 1967;

Beck, 1995).

The salvaging of pyrimidines is important when one considers that some

organisms do not have a pyrimidine biosynthetic pathway.  If a mutation was to occur in

the biosynthetic pathway (making a pyrimidine auxotroph) the salvage pathway would in

effect take over and continue to make the cell survive.

Breakdown products of mRNA (the 5� mononucleotides UMP and CMP) can be

toxic to the cell and therefore are removed very quickly (O� Donovan, 1978).  If they are

allowed to accumulate they will undoubtly cause bacterial cell death.  A mutation that

affected the process of mRNA degradation in a cell would have the result of self
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destruction.  The cell would die because of the buildup of the toxic 5� monophosphates

(O� Donovan & Shanley 1995).
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Fig 2.  Pyrimidine salvage pathway in Escherichia coli.  Enzymes are 1. uracil

phosphoribosyltransferase (Upp), 2. uridine phosphorylase (Udp), 3. ribonucleoside

hydrolase A & B (Rih), 4. cytosine deaminase (CodA), 5. cytidine deaminase (Cdd), 6.

uridine kinase (Udk), 7. 5�-nucleotidase, 8. CMP glycosylase (Cmg), 9. CMP kinase

(Cmk)
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Fig 3.  Pyrimidine salvage pathway in P. aeruginosa.  Enzymes are 1. uracil

phosphoribosyltransferase (Upp),  2. ribonucleoside hydrolase A & B (Rih), 3. cytosine

deaminase, 4. 5�-nucleotidase, 5. CMP glycosylase (Cmg), 6. CMP kinase (Cmk)
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CTP Synthase.

CTP synthase (EC 6.3.4.2) encoded by pyrG catalyzes the following reaction:

GTP

UTP + ATP + L-glutamine             CTP + L�glutamate + ADP + Pi

Mg2+

Ammonia can be substituted for both GTP and glutamine in which case the reaction is

Mg2+

UTP + NH3 + ATP                       CTP + ADP + Pi

The nucleotide CTP plays essential roles in the bacterial cell.  It is required for growth

and metabolism for all organisms and therefore must be available.  CTP is used for the

synthesis of nucleic acids (Traut, 1988) and membrane phospholipids (Kennedy, 1986).

In E. coli the enzyme exists as a dimer (Mr =105,000) of two identical subunits when the

substrates UTP and ATP are not present.  In the presence of UTP, ATP and Mg2+ the

enzyme exists as a tetramer of Mr = 210,000.  (Koshland & Levitzki, 1974;  Koshland,

1978).  The gene encoding CTP synthase has been cloned from Bacillus subtilis (Trach et

al., 1988), Saccharomyces cerevisiae (Ozier-Kalogeropoulos et al., 1991), human beings

(Yamauchi et al., 1990), Azospirillum brasilense (Zimmer & Hundeshagen, 1994),

Cricetulus griseus (Chinese hamster cells, Zhai et al., 1995), Mycobacterium leprae

(Smith & Robison, 1994), Chlamydia trachomatis (Tipples & McClarty, 1995),

Lactococcus lactis (Steen et al., 2001) and Nitosomonas europaea (Mahony & Miller,

1998).  The enzyme contains a conserved glutamine amide transfer domain, which is

characteristic of glutamine amidotranferases.
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The enzyme has been purified to homogeneity from E. coli and it has been characterized

with respect to its kinetic, physical, and enzymological properties.  The enzyme exhibits

complex kinetic properties including negative cooperativity for the effector GTP and the

substrate glutamine.  Positive cooperativity is seen with the substrates ATP and UTP.

This is only if one of the nucleotides varied whilst the other is held at a constant level.

This is under non-saturating conditions.  If one of the nucleotides is saturating then

normal Michaelis-Menten curves are observed for the other substrate. When the

substrates bind a conformational change is observed which facilitates the binding of

subsequent molecules.  The second binding would therefore cause polymerization and

hence facilitate the formation of the tetramer from the dimer (Yang et al., 1994).

CTP synthetase is a key enzyme in the synthesis of pyrimidine nucleotides.

Walsh et al, (1999) discovered that in P. aeruginosa CTP synthetase encoded by

pyrG was the first gene is a tricistronic operon.  The three genes are located at 28.2 to

29.9 min on the P. aeruginosa 75 min map.  The start codon of kdsA is 1 nucleotide

downstream of the stop codon of pyrG and there are 43 nucleotides between the stop

codon of kdsA and the start of eno.  The gene order is therefore pyrG, kdsA and eno (Fig

4).

A sigma 70 (σ70)-like promoter was identified upstream of pyrG but no promoter-

like sequences was detected upstream of kdsA and eno thus suggesting that the three

genes are co-transcribed.  P. aeruginosa produces two types of cell surface

lipolysaccharides (LPS), an A band and a B band which differ in the nature of the O

antigen attached to the lipid A-core (Lam et a.l, 1996).  The lipid A-core is required for
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the stability of the outer membrane and also is shown to contribute to the intrinsic drug

resistant of the organism (Hancock, 1998).  Biosynthesis of the lipid A-core occurs at the

cytoplasmic face of the inner membrane.  The first sugar in the inner core region is 3-

deoxy-D-manno-octulosonic acid (Kdo).  The synthesis of this sugar involves the

condensation of phosphoenolpyruvate and arabinose-5-phosphate by the enzyme Kdo-8-P

synthase encoded by kdsA.  Enolase catalyzes the formation of phosphoenolpyruvate

(PEP) from phosphoglycerate.  PEP is one of the substrates for Kdo-8-P synthase.  CTP

is required to activate Kdo before it is transferred to the lipid-A core (Walsh et al., 1999)

and high amounts of CTP is required during LPS synthesis.  Thus, the presence of these

genes together in an operon in P. aeruginosa is not an accident.  In Chlamydia

trachomatis pyrG is in part of an operon that has another Kdo biosynthetic kdsB gene

immediately upstream (Tipples & McClarty, 1993; Wylie et al., 1996).  In E. coli pyrG

and eno are part of an operon (Weng & Zalkin, 1986) whilst in Nitosomonas europea

pyrG and eno are linked but are separated by 400 bp and most likely transcribed by

separate promoters (Mahony & Miller, 1998).

Analysis of the PAO1 genome did not reveal any other copies of the pyrG and

therefore a mutant that requires cytidine for growth would be a disaster if it were not an

in-frame deletion due to the fact that a mutation in pyrG would be deleterious to the LPS

synthetic operon.



96

P.
 a

er
ug

in
os

a
kd

sA
 o

pe
ro

n.

σ70

   
   

 p
yr

G
 e

nc
od

es
 C

TP
 sy

nt
he

ta
se

   
   

kd
sA

 e
nc

od
es

 K
do

-8
-P

 s
yn

th
as

e
   

   
   

 e
no

 e
nc

od
es

 e
no

la
se

In
vo

lv
em

en
t o

f e
no

,k
ds

A
 a

nd
 p

yr
G

ge
ne

 p
ro

du
ct

s i
n 

th
e 

bi
os

yn
th

es
is

 o
f K

do
.

Ph
os

ph
og

ly
ce

ra
te

U
T

P 
+ 

N
H

3 
 

 
C

T
P

Ph
op

ho
en

ol
py

ru
va

te
K

do
-8

-P
C

M
P-

K
do

+
A

ra
bi

no
se

-5
-P

ho
sp

ha
te

Fi
g 

4a
 &

 4
b.

  T
he

 P
. a

er
ug

in
os

a 
op

er
on

 in
cl

ud
in

g 
th

e 
py

rG
 , 

kd
sA

 a
nd

 e
no

 g
en

es
.  

In
vo

lv
em

en
t o

f e
no

, k
ds

A 
an

d 
py

rG
 in

 th
e

bi
os

yn
th

ei
s o

f K
do

.

 1
 b

p
   

 4
3 

bp

py
rG

kd
sA

 e
no



97

Regulation of pyrimidine enzymes in P. aerguginosa.

As in Escherichia coli the pyrimidine biosynthetic pathway shares in the

production of UTP and CTP for RNA with the pyrimidine salvage pathway.  While

salvage pathways are essential in providing a balance of RNA synthesis in prototrophs,

they are obligately required to satisfy pyrimidine requirements in auxotrophs.  Salvage

pathways also return mRNA degraded monomers, the 5� monophosphates, to their

triphosphate levels for RNA resynthesis.   A portion of the 5� monophosphates (CMP) is

further degraded to cytosine, which is subsequently deaminated to uracil for the

conversion to UMP.

Pseudomonas aeruginosa lacks the salvage enzyme uridine (cytidine) kinase and

therefore cannot convert uridine to UMP and cytidine to CMP.  Thus, a pyrimidine

auxotroph (Pyr -) in a upp � background cannot grow when fed exogenous uracil.  In the

absence of uridine (cytidine) kinase it is impossible to study the regulation of the

pyrimidine enzymes in P. aeruginosa (Fig 3).

Various authors have shown that in E. coli and S. typhimurium the expression of

aspartate transcarbamoylase (pyrBI), orotate phosphoribosyltransferase (pyrE) and

orotidine-5'-monophosphate decarboxylase (pyrF) is under negative control by a uridine

nucleotide.

A cytidine nucleotide has been shown to exert control on carbamoylphosphate

synthetase (carAB), dihydroorotase (pyrC) and dihydroorotate dehydrogenase (pyrD) (O�

Donovan et al., 1989; Smith et al., 1980; Schwartz & Neuhard, 1975).  In the above
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organisms with ~50% G + C, it has been observed that a uridine compound was the

primary repressing metabolite for the expression of pyrB gene.  It is thought that a

cytidine compound may be the primary repressing metabolite in organisms, which have a

higher G + C composition such as P. aeruginosa.

To test this hypothesis it was necessary to isolate a pyrG mutant in Pseudomonas,

in a strain with a functional udk gene.  Such a strain could be fed exogenous cytidine

because it would be a requirement for growth.  Metabolic blocks were created

systematically in P. aeruginosa starting with the isolation of a upp- strain and then

electroporating the E. coli udk gene on the plasmid pDEB1 into this strain.  Expression of

the udk gene was confirmed by 5-fluroanalog plate assays.  By way of an in-frame

deletion and subsequent gene replacement method the CTP synthase (pyrG) was

inactivated on the chromosome.

This hitherto unavailable mutant allowed the independent manipulation of the

intracellular UTP and CTP pools by exogenous feeding of or starving for uridine and

cytidine nucleosides.

Assays for the pyrimidine enzymes encoded by pyrB-F were conducted with the

cells grown in all possible combinations of high and low cytidine and or uridine

nucleoside levels.   
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CHAPTER II

MATERIALS AND METHOD

Bacterial strains, plasmids, media and growth conditions.

The bacterial strains and plasmids used in this study are listed in Table 1.

Bacteria were grown in Luria-Bertani (LB) enriched medium (Miller, 1992),

Pseudomonas minimal medium (Ornston & Stanier, 1966) supplemented with Hutners�s

Metals 44 (Murray et al, 1981).  For biparental mating experiments transconjugates were

selected on Pseudomonas isolation agar (PIA).  Antibiotics were added at the following

concentrations:  carbenicillin, 600 μg ml-1, ampicillin, 100 μg ml-1 and 50 μg ml-1;

gentamicin, 20 μg ml-1 and 100 μg ml-1.  The carbon source used was glucose at a

concentration of 0.2 %.  All E. coli and P. aeruginosa strains were grown at 37ûC. P.

aeruginosa used for the biparental mating experiment was grown at 42ûC in an attempt to

inactivate its restriction modification system.

Isolation of P. aeruginosa (PAO1) chromosomal DNA.

Chromosomal DNA from P. aeruginosa (PAO1) was isolated using the method

described by Berns & Thomas Jr., (1965).  A starter culture of the above organism was

grown in 5 ml of Pseudomonas minimal medium supplemented with 0.2 % glucose.  A

1% inoculum was used to initiate the growth in a larger volume of 50 ml.  Cells were

grown to an OD600 of 0.5 to 0.7.  The cells were harvested at 1875 xg at 4ûC and placed
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on ice for 20 min.  The cooled cells were washed in 30 ml of a 50 mM Tris pH 8.0 and 20

mM ethylenediamine tetra acetic acid (EDTA) buffer for pelleting at 1875 xg for 20 min.

The pellet was resuspended in 50 ml of the above buffer.  Pronase at 5 mg/ml final

concentration and 0.1 mls 10 % sodium dodecyl sulfate (SDS) were added.  The solution

containing the cells and the buffer were transferred to silconized corex tubes and

incubated at 37ûC for 3 to 8 hrs.  The solution was extracted 4X with an equal volume of

phenol equilibrated with 50 mM Tris-HCl pH 8.0 and 1 mM EDTA.  Phenol

contamination was removed by extracting with 15 ml of diethyl ether.  The DNA was

dialyzed against 3 changes of Tris-EDTA pH 8.0.  The purity and quantity of DNA was

read at 280 nm and 260 nm respectively in as Shimadzu 500 UV spectrophotometer.  A

DNA concentration of .265 μg/μl was recovered using the above preparation.
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Table 2.  List of Strains and plasmids.

Strain or Plasmid Genotype or relevant property

Strains

P. aeruginosa PAO1 Wild type

E. coli

SM10 thi-1 thr leu tonA lacY supE recA::RP4-2-Tc::Mu (knR)

HPS1 e14- (mcrA) recA1 endA1 gyrA96 thi-1 hsdR17 supE44

relA1 Δ(lac-proAB) rif zxx::miniTn5lac4 (lacIQ+ lacZ

ΔM15) rifampicinR chlorophenicolR

Plasmids

pEUK20 E. coli udk gene

pUCP19 E. coli-Ps shuttle vector

pDEB1 780 bp E. coli udk gene subcloned from pEUK20

pCRII AmpR KnR PCR cloning vector

pSPG1 2.1 kb PCR product cloned into PCR II vector

pEXGm GmR: oriT+ SacB+, gene replacement vector with MCS of

pUC18

pEX18ΔpyrG GmR: oriT+ SacB+, gene replacement vector with MCS of

pUC18. pyrG (-195 bp) cloned into the EcoRI and KpnI

restriction sites.

pGmΩ1 AmpR aacC1; gentamicin cassette with omega loops

pGmCJF5 nuh::GmR in pCJF5; Gm cassette cloned into the ScaI site

________________________________________________________________________



103

Polymerase chain reaction and cloning of CTP Synthetase (pyrG) from P.

aeruginosa.

Primers for the amplification of pyrG from P. aeruginosa were designed using

Prophet 5.0� gene analysis software.

The upstream primer (5�GGTGGCCAACATTCCTGG-3�) and the downstream primer

(5�-CACGGAACGAGTGGATCG-3�) were synthesized by BioSyntheis, Inc.  The 2.1 kb

DNA fragment incorporating the entire pyrG gene from P. aeruginosa was amplified

using Taq polymerase using the method of PCR (Saiki et al., 1988).  The fragment

generated was cloned into the pCRII� vector from The Original TA Cloning ® Kit

(Invitrogen) (Fig. 8).  After ligation and transformation into INVαF� competent cells,

clones which contained the pyrG gene were selected on LB plus ampicillin 50 μg ml-1,

with 5 bromo-4-chloro-3-indolyl-β-D-galactoside (X-gal) at 0.003% and isopropyl-β-D-

thiogalactopyranoside (IPTG) at 0.03%.  White colonies appearing on the medium were

selected and grown in 5 ml of LB medium with 50 µg ml-1 of ampicillin.  Insertion of the

pyrG gene was confirmed by restriction digestion and by DNA sequencing.  Five positive

clones were isolated and characterized (Fig 9).

Complementation of E. coli JF646.

E. coli JF646, which is auxotrophic for cytidine, was transformed with the plasmids and

the vector controls (pCRII vector).  The transformants were grown on selective medium

which, lacked cytidine.  Complementation was confirmed by the growth of E. coli JF646
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without cytidine and recovering the plasmids from colonies growing on the selective

medium.

Isolation of P. aeruginosa (PAO1) upp‾  mutants.

Wild type strains of P. aeruginosa were grown at 37ûC in 5 ml of Pseudomonas minimal

medium with glucose at a concentration of 0.2%.  The overnight cultures (100 μl) was

spread onto Pseudomonas minimal agar with 0.2% glucose.  Crystals of 5-fluorouracil

were placed in the center of the plate with a sterile spatula.  The plates were incubated at

37ûC for two to three days upon which a zone of killing was observed.  Colonies

appearing within the zone of killing were identified as upp‾ and were picked and grown

in 5 ml of Pseudomonas minimal medium to confirm the genotype.  The overnight

culture was spread onto a new Pseudomonas minimal medium plate.  Crystals of 5-

fluorouracil were placed in the center of the plate.  The plates were incubated for two

days.  The upp‾ mutant was confirmed by the growth of the cells up to the 5-fluorouracil

crystals in the center of the plate.

Preparation of Electro competent upp‾ P. aeruginosa (PAO1).

A single colony of P. aeruginosa upp‾ cells were inoculated into 5 ml of Pseudomonas

minimal medium.  The cells were grown at 37ûC at 250 rpm.  100 μl of the culture were

used as the inoculum for 100 ml of Pseudomonas minimal medium.  The cells were

grown at 37ûC to an OD600 of 0.5 to 0.7 was reached.  The flask was chilled on ice for 20

min and transferred to two chilled 50 ml centrifuge tubes.  The sample was centrifuged at
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5000 xg for 20 min at 4ûC.  The pellet was gently resuspened by swirling in 10 ml of ice

cold H2O.  The above step was repeated 5 times.  The cells were resuspended in 5 ml of

ice-cold H2O and centrifuged at 5000 xg for 10 min.  The pellet was resuspended in 2 ml

of 10% glycerol (v/v) and transferred to pre-chilled microcentrifuge tubes in 50 μl

aliquots.  The cells were frozen on dry ice and stored at -80ûC until use.
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Confirmation of the expression of uridine (cytidine) kinase (udk) in P. aeruginosa by

flouroanalog plate assays.

P. aeruginosa upp‾  mutants transformed with the plasmid pDEB1 were grown

overnight in 5 ml of Pseudomonas minimal medium with 0.2% glucose and 600 μg ml-1

of  carbencillin.  One hundred μl of the overnight culture was spread plated onto

Pseudomonas minimal agar which was then divided into two halves.  On one side of the

plate, crystals of fluorocytidine were placed in the center whilst on the other side crystals

of fluorouridine was placed.  A zone of killing would indicate the expression of the E.

coli uridine (cytidine) kinase gene in P. aeruginosa.

Cloning of the P. aeruginosa CTP synthase gene (pyrG) into pUCP19.

A 2.1 kb DNA fragment containing the entire pyrG gene was excised from the

plasmid pSPG1 using the restriction enzymes KpnI and EcoRI.  The DNA fragment was

agarose gel purified and ligated into the pUCP19 plasmid, which had also been digested

with the same enzymes.  After ligation and transformation into DH5α competent cells,

clones, which contained the pyrG gene were selected on LB plus ampicillin 100 μg ml-1,

with X-gal at 0.003% and IPTG at 0.03%.  White colonies appearing on the medium were

selected and grown in 5 ml of LB medium with 100 µg ml-1 of ampicillin.  Upon

confirmation of the cloned gene of the appropriate size the plasmid was digested with the

restriction enzyme BssHII.  This enzyme was chosen because it would remove a portion

(~195 bp) from the internal region of pyrG, however it would not cut the plasmid DNA.

The linearized plasmid with the 195 bp deletion was agarose gel purified using Gelase
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and circularized using T4 DNA ligase.  This method created an in-frame deletion of the

pyrG gene (Fig 10).

Cloning of ΔpyrG into the suicide vector pEX18Gm.

pEX18Gm (Genbank Accession number AF047518) is a gene replacement vector

which was developed by Hoang et al, (1998) (Fig 11).  This vector is useful for gene

replacement studies in P. aeruginosa.  The vector incorporates (i) A counter-selectable

sacB marker, (ii) a lacZα-allele for blue white screening, (iii) the multiple cloning site

from pUC18 and, (iv) gentamicin resistance gene.  The plasmid can be used to replace

wild type gene sequences with cloned genes because it allows for one to track the gene

replacement process.  Thus this plasmid was used for the replacement of the wild type

pyrG sequence with the ΔpyrG.  The ΔpyrG gene was excised from pUCP19 using the

restriction enzymes Kpn I and Eco RI.  The 1.756 bp pyrG gene was agarose gel purified

and cloned into plasmid pEX18Gm, which had been digested with the same enzymes.

After ligation and transformation into DH5α competent cells, clones, which contained the

ΔpyrG gene were selected on LB plus gentamicin 20 μg ml-1, with X-gal at 0.003% and

IPTG at 0.03%.  White colonies appearing on the medium were selected and grown in 5

ml of LB medium with 20 µg ml-1 of gentamicin.  Plasmid DNA was isolated using the

alkaline lysis method.  Insertion of the ΔpyrG gene was confirmed by restriction digest

and agarose gel electrophoresis.
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Preparation of competent cells.

All E. coli SM10 and E. coli HPS1 competent cells for transformation

experiments were prepared using the calcium chloride method of Dagert & Ehrich (1979)

with slight modifications. The cultures were grown in 50 ml of E. coli minimal medium

with the appropriate antibiotics to an OD600 of 0.2 to 0.4 and chilled on ice at 0 to 4◦C for

10 min.  The cells were harvested by centrifugation at 1875 xg at 4◦C for 15 min, the

pellet was resuspended in 20 ml of ice cold 0.1 M CaCl2 and incubated on ice for 20 to 25

min.  The cells were centrifuged at 833 xg at 4◦C for 15 min, the pellet was resuspended

in 0.7 ml of ice cold CaCl2 and incubated overnight on ice.  The following day glycerol

was added to a final concentration of 15% and the cells were separated into 200 µl

aliquots.  Cells were then frozen at �80◦C and could used for up to three months.

Transformation of E. coli HPS1 and E. coli SM10 with pEX18Gm ΔpyrG.

Transformation of E. coli HPS1 with the plasmid pEX18 ΔpyrG (Fig 12) ), was

conducted according the method described by Huff et al, (1990).  Approximately 40 ng

of plasmid DNA were mixed with 200 µl of the CaCl2 treated cells and the mixture was

incubated on ice for 15 min.  The cells were then heat shocked at 42ûC for 2 min, and

then placed back into the ice bucket for a further 15 min.  LB broth at a volume of 1 ml

was added to the cells, which were then incubated at 37ûC for 1 h.  After 1 h the cells

were plated on LB medium, plasmid insertion was selected for by gentamicin resistance

at a concentration of 20 µg ml-1.
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Transformation of E. coli SM10 with the plasmid pEX18ΔpyrG (Fig 12), was conducted

according the method described by Huff et al, (1990).  E. coli SM10 cells were used for

the biparental mating experiment because it allows for the mobilization of plasmid

sequences into the chromosome of wild-type cells.   Approximately 40 ng of plasmid

DNA were mixed with 200 µl of the CaCl2 treated cells and the mixture was incubated on

ice for 15 min.  The cells were then heat shocked at 42ûC for 2 min, and then placed back

into the ice bucket for a further 15 min.  LB broth at a volume of 1 ml was added to the

cells, which were then incubated at 37ûC for 1 h.  After 1 h the cells were plated on LB

medium, plasmid insertion was selected for by gentamicin resistance at a concentration of

20 µg ml-1.

Isolation of pyrG‾  (cytidine requiring mutants) by biparental mating.

The gene replacement plasmid, pEX18 ΔpyrG, was mobilized into P. aeruginosa

PAO1 upp-, udk+, by biparental mating as described by De Lorenzo & Timms (1994).

Five ml cultures of E.coli SM10 harboring the pEX18 ΔpyrG plasmid (donor strain) were

grown at 37◦C overnight in LB medium.  Five ml cultures of P. aeruginosa (PAO1, upp-,

udk+) were grown in Pseudomonas minimal medium with µg ml-1 carbenicillin 600 at

42◦C overnight in an attempt to inactivate its restriction modification system (recipient

strain).  40 μl of the recipient strain (P. aeruginosa, PAO1) were placed into a sterile

microfuge tube and pelleted at 12,000 xg in a bench top centrifuge.  The cells were

washed 3 times with sterile phosphate buffered saline (pH 7.3).  40 μl of the donor strain

was added to the same tube and the above procedure was again performed.  The donor
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and recipient cells were transferred to a 15 ml tube, which contained 5 ml of 10 mM

MgSO4.  The solution containing the donor and recipient strain were transferred to a 5 ml

sterile syringe, which had a Nalgene filter unit containing a 0.45 μm

 Filter.  The solution was pushed through the filter unit.  The apparatus was disassembled

and the filter was removed with sterile forceps and placed on an LB agar plate bacteria

side up.  The plate was incubated at 37◦C for 16 to 18 h.  Sterile forceps were used to

remove the filter off the LB plate and it was placed into a tube containing 10 ml of 10

mM MgSO4.  The bacteria were resuspened in the solution and serial dilutions of 10‾1,

10‾2, 10‾3, 10‾4 were made.  The serial dilution of 10‾3 was plated on PIA plates

supplemented with 50 µg ml-1 of cytidine and incubated at 37◦C overnight.  PIA plates

select against E. coli strains.  Colonies appearing on the plates were replica-plated on 3

plates.  Plate 1 was Pseudomonas minimal medium supplemented with 50 µg ml-1

cytidine, 100 µg ml-1 gentamicin and glucose at a concentration of 0.2% as the carbon

source.  Plate 2 was Pseudomonas minimal medium supplemented with 50 µg ml-1

cytidine, carbenicillin at 600 µg ml-1 and glucose at a concentration of 0.2 %.  Plate 3 was

Pseudomonas minimal medium supplemented with 50 µg ml-1 cytidine, 10 % sucrose,

carbenicillin 600 µg ml-1 and glucose at 0.2 %.  Colonies that were sucrose sensitive,

carbenicillin resistant and gentamicin resistant were picked and inoculated into 5 ml LB

broth supplemented with cytidine at a concentration of 50 µg ml-.  The tube was

incubated overnight at 37◦C to increase the number of double crossovers.  Serial dilutions

10‾1, 10‾2, 10‾3, 10‾4 were made and 100 μl of the 10‾3 dilution was plated onto

Pseudomonas minimal agar plates supplemented with cytidine at 50 µg ml-1 and
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carbenicillin at 600 µg ml-1.  Transconjugates were replica-plated onto 3 plates.  Plate 1

was Pseudomonas minimal medium supplemented with 50 µg ml-1 cytidine, 100 µg ml-1

gentamicin and glucose at a concentration of 0.2% as the carbon source.  Plate 2 was

Pseudomonas minimal medium supplemented with 50 µg ml-1 cytidine, 600 µg ml-1

carbenicillin and glucose at a concentration of 0.2 %.  Plate 3 was Pseudomonas minimal

medium supplemented with 50 µg ml-1 cytidine, 10 % sucrose, 600 µg ml-1 carbenicillin

and glucose at 0.2 %.  Colonies of ,phenotype carbenicillin resistant, sucrose resistant,

gentamicin sensitive and cytidine-requiring were isolated.  These colonies were

designated PAO1 upp-, udk+, pyrG-.  Strains were confirmed for the requirement of

cytidine by plating on Pseudomonas minimal agar with and without cytidine.

Small scale chromosomal isolation of wild-type and mutant pyrG- strains.

 Small scale genomic DNA preparation from wild type P. aeruginosa (PAO1) and

5 cytidine-requiring mutants was conducted.  Five ml of each of the samples were grown

independently to saturation overnight.  1.5 ml of the overnight culture was transferred to

a microfuge tube and the cells were pelleted for 2 min at 10,000 xg.  The cells were

resuspended in 575 μl of Tris-EDTA solution and resuspeneded by repeated pipetting.  30

μl of 10 % (w/v) SDS and 3 μl of 20 mg proteinase K ml-1 was added.  The samples were

mixed and incubated at 37◦C for 1 h.  100 μl of 5 M NaCl was added and mixed

thoroughly.  80 μl of CTAB/NaCl was added and the mixture was incubated at 65◦C for

10 min.  An equal volume of 24:1 chloroform/isoamyl alcohol was added, the mixture

was mixed thoroughly and centrifuged for 5 min at 12,000 xg.  The supernatant was
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removed to a fresh microfuge tube and the sample was extracted with 25:24:1

phenol/chloroform/isoamyl alcohol and placed into a fresh tube.  DNA was precipitated

by the addition of 600 μl of isopropanol centrifuged and washed once with 70 % ethanol

and dried briefly in a vacuum dessicator.  The quantity and the protein contamination of

the DNA samples were measured by UV spectrophotometer at Abs260 and Abs280

respectively.

Verification of pyrG deletion in mutant strain by PCR.

The deletion of the pyrG gene and its subsequent integration into P. aeruginosa

(PAO1, upp-, udk+) chromosome was verified by PCR (Saiki, 1988) on chromosomal

DNA extracted from the strain.  The DNA from five mutant strains and wild-type DNA

was extracted using the above method.  The PCR primers initially used to isolate the

pyrG gene were used to verify the deletion using Taq DNA polymerase.  The following

conditions for the PCR reaction were used:  Step 1:  denaturation at 95○C for 5 min, Step

2: denaturation at 95○C for 2 min, Step 3:  Annealing at 56○C for 1 min, Step 4:

polymerisation at 72○C for 3 min, Step 5: repeat step 2-4 29 times, Step 6:  72○C for 5

min and Step 7:  4○C for 99 h.  Products formed by the PCR reaction were observed using

agarose gel electrophoresis.
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Inactivation of the uridine hydrolase gene (nuh) by gentamicin cassette mutagenesis

in specially constructed cytidine requiring strains of P. aeruginosa.

The P. aeruginosa uridine hydrolase gene was cloned into the pZero vector to

produce the plasmid pCJF5 by Christopher Fields in our lab.  A 1.6 kb SmaI fragment

containing the gentamicin-resistant (Gm) cassette was isolated from plasmid pGMΩ1

(Fig 13) (Schweizer, 1993).  A ScaI digest of pCJF5 allowed for the direct insertion of

the Gm cassette into the internal region of uridine hydrolase gene (Fig 14).

P. aeruginosa upp-, udk+, pyrG- was made electrocompetent and the plasmid was

electroporated into the cells as described above.  The cells were plated on Pseudomonas

minimal agar supplemented with 50 µg ml-1 cytidine and 20 µg ml-1uridine.  The

antibiotics 600 µg ml-1 carbenicillin, 200 µg ml-1  gentamicin were added at the mentioned

concentrations.

Confirmation of a uridine hydrolase (nuh) mutant in P. aeruginosa.

Pseudomonas minimal agar plates supplemented with uridine and cytidine at a

concentration of 50 µg ml-1 were streaked with P. aeruginosa upp-, udk+, pyrG- nuh+.

Another plate with the same supplements was streaked with the isogenic P. aeruginosa

upp-, udk+, pyrG- nuh-.  If the P. aeruginosa upp-, udk+, pyrG - nuh � grew on the plate

then this would prove that they are not uridine hydrolase mutants because of the uridine

hydrolase�s ability to make ribose, which could satisfy the carbon source requirement.
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Growth conditions of pyrG-, upp-, udk+ nuh- strains for pyr assays.

P. aeruginosa upp-, udk+, pyrG- nuh- and its isogenic P. aeruginosa upp-, udk+, pyrG-,

nuh- strains were grown in Pseudomonas minimal medium under var conditions of high

and low uridine and cytidine.  At least 50 µg ml-1 of cytidine was required for the cells to

grow successfully.   All mutant strains were grown with glucose as the carbon source,

600 µg ml-1 carbenicillin and 200 µg ml-1 gentamicin.   Table 2 describes the various

conditions concentrations of uridine and cytidine used.

Table 2

Strain Condition for growth
________________________________________________________________________

P. aeruginosa      UR20 and CR50, UR200 and CR200,

 UR20 and CR200, and UR200 and CR50

P. aeruginosa upp-, udk+, pyrG- UR20 and CR50, UR200 and CR200,

 UR20 and CR200, and UR200 and CR50

P. aeruginosa upp-, udk+, pyrG-, nuh- UR20 and CR50, UR200 and CR200,

 UR20 and CR200, and UR200 and CR50
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Preparation of cell extract for pyr enzyme assays.

All strains were grown in 100 ml of Pseudomonas minimal medium with the

necessary additions.  Bacteria were grown to 100 Klett units and harvested by

centrifugation at 6,000 xg for 20 min.  The cells were resuspended in 1 ml of 40 mM

phosphate buffer pH 8.0.  Cells were disrupted by sonication and transferred to a

microfuge tube.  The clarified extract was centrifuged at 10, 000 xg for 4 min at which

time a 200 μl sample was removed and placed into a sterile tube for dihydroorotate

dehydrogenase (pyrD) encoded enzyme assays.  The remainder was centrifuged at 12,

000 xg for a further 20 min.  The supernantant was removed for enzymes encoded pyrB-

pyrF.

Enzyme assays.

All assays were carried out at 37ûC.  Changes in absorbance were monitored

spectrophotometrically using a Shimadzu UV-mini spectrophotometer 1240.  Specific

activites of the enzymes assayed were determined under conditions in which product

formation (or substrate utilization) was proportional to extract and time and expressed as

μmol min-1 mg-1 protein.  All values represent the mean of three independent

determinations.
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Aspartate transcarbamoylase (ATCase) assay.

 ATCase enzyme assays were performed using the method described by Gerhart

& Pardee (1962). The specific activity (μmol min-1 mg-1) was determined by monitoring

the enzymatic production of carbamoylaspartate (CAA) in 10 min at 37°C using the

colorimetric method of Prescott & Jones (1969).  A 1 ml reaction volume contained the

following components: 40 µl of Tri-buffer (Ellis & Morrison, 1982), pH 9.5, (51 mM

diethanolamine, 51 mM N-ethylmorpholine and 100 mM MES), 50 µl of 100 mM

potassium aspartate (pH 9.5), 100 µl of 50 mM carbamoylphosphate (dilithium salt), 10

µl of clarified extract, 800 µl ddH2O.  In addition to the reaction tubes, a control was also

prepared by substituting ddH2O for larified extract.  The ATCase assay tubes were

prepared in advance, without the addition of carbamoylphosphate, and preincubated at

37°C for 2 min.  The reaction was initiated by the addition of carbamoylphosphate and

the tubes were incubated at 37° for 10 min. After 10 min, the reaction was terminated by

the addition of 1 ml of color mix (2 parts of 5 mg ml-1 of antipyrine in 50% sulfuric acid

(v/v) with 1 part of 8 mg ml-1 of 2, 3-butanedione monoxime in 5% acetic acid (v/v)).

The reaction tubes were mixed by vigorous vortexing, and incubated at 65°C for 2 h in

the light to allow development of the color.  The tubes were capped with marbles to

minimize evaporation.  After 2 h, the absorbance units at 466 nm (A466) was measured,

using the control tube to blank the spectrophotometer.  The μmoles of CAA produced

were determined using a CAAstandard curve, prepared with known concentration of
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CAA ranging from 25 to 300 μM in the standard assay reaction mix and under the same

color development conditions .

Dihydroorotase (DHOase) assay.

The DHOase assay tubes contained the following components in a 1 ml reaction

volume: 100 µl of 1 M Tris (pH 8.6), 100 µl of 10 mM EDTA, 100 µl of 20 mM

dihydroorotate (in 0.1 M phosphate buffer, pH 7.5), 10 µl clarified extract and 690 µl of

ddH2O (Beckwith et al., 1962).  The DHOase assay tubes were prepared in advance,

without the dihydroorotate, and pre-incubated at 37°C for 2 min. The reaction was

initiated by the addition of dihydroorotate and the tubes were incubated at 37°C for 10

min. After 10 min, the reaction was terminated by the addition of 1 ml of color mix, the

tubes were vortexed and incubated at 65°C for 2 h in the light.  The A466 units were

measured using a control tube, containing all reaction components except dihydroorotate,

to blank the spectrophotometer.

Dihydroorotate dehydrogenase assay.

Dihydroorotate dehydrogenase activity was measured spectrophotometrically by

monitoring the conversion of dihydroorotate to orotate at 290 nm.  The dihydroorotate

dehydrogenase reaction mix was prepared in a quartz cuvette containing the following

components in a 1 ml reaction volume: 0.1 M Tris (pH 8.6), 6 mM MgCl2, 1 mM

dihydroorotate (in 0.1 M phosphate buffer, pH 7.5), 50 µl clarified extract and ddH2O to

a 1 ml total volume.  The reaction cuvette was prepared in advance, without the
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dihydroorotate, and incubated at 37°C for 2 min. The reaction was initiated with the

addition of dihydroorotate, and the A290 units were noted immediately, this was the blank

reading.  The cuvette was then incubated at 37°C for 10 min, after which the A290 units

were measured.  The blank reading was subtracted from the 10 min reading.  An increase

in absorbancy of 1.93 is equivalent to a change in substrate concentration of 1 mM

(relative to the blank reading).

Orotate phosphoribosyltransferase (OPRTase) assay.

OPRTase activity was measured spectrophotometrically by the method of Smith

et al., (1980).  The conversion of orotate to OMP was monitored at 295 nm.  The

OPRTase reaction mix was prepared in a quartz cuvette containing the following

components in a 1 ml reaction volume: 0.1 M Tris (pH 8.6), 6 mM MgCl2, 0.25 mM

orotate, 0.6 mM 5-phosphoribosyl-1-pyrophosphate (PRPP), 50 µl clarified extract and

ddH2O to a 1 ml total volume.  The reaction cuvette was prepared in advance, without the

orotate, and incubated at 37°C for 2 min. The reaction was initiated with the addition of

orotate, and the A295 units were recorded immediately, this was the blank reading.  The

cuvette was then incubated at 37°C for 10 min, after which the A295 units were measured.

The 10 min reading was subtracted from the blank reading.  A decrease in absorbancy of

3.67 is equivalent to an increase in orotidine 5�-monophosphate (OMP) concentration of

1 mM (relative to the blank reading).
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OMP decarboxylase assay.

OMP decarboxylase activity was measured spectrophotometrically by monitoring

the conversion of OMP to uridine 5�-monophosphate (UMP) at 285 nm.  The OMP

decarboxylase reaction mix was prepared in a quartz cuvette containing the following

components in a 1 ml reaction volume: 0.1 M Tris (pH 8.6), 6 mM MgCl2, 0.2 mM OMP,

50 µl clarified extract and ddH2O to a 1 ml total volume.  The reaction cuvette was

prepared in advance, without the OMP, and incubated at 37°C for 2 min.  The reaction

initiated with the addition of OMP, and the A285 units were noted immediately, this was

the blank reading.  The cuvette was then incubated at 37°C for 10 min, after which the

A285 units were measured.  The 10 min reading was subtracted from the blank reading.  A

decrease in absorbancy of 1.38 is equivalent to a decrease in OMP concentration of 1 mM

(relative to the blank reading).
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bla / cb

lacZ

Fig 6.  Plasmid pUCP19.  The plasmid contains the ampicillin resistant gene which

confers carbenicillin resistance in Pseudomonads.
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bla / cb
disrupted lacZ

disrupted lacZ

udk

Fig 7.  Construction of pDEB (Beck, 1995).  The plasmid contains the E. coli

780 bp uridine (cytidine) kinase gene from pEUK20 (Kelln, 1988).  The host plasmid is

pUCP19.
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Kanamycin

Ampicillin

LacZ Multiple cloning site

f1 ori

ColE1 origin

Eco RI (335)
Eco RI (336)

pCRII Vector

3900 bp

Fig 8 Schematic diagram of pCR� II vector (Invitrogen).  The multiple cloning site is

located within the lacZα gene which allows for blue, white selection.  The plasmid

contains a kanamycin and ampicillin resistant gene.
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disrupted lacZ disrupted MCS

f1 ori

Kn resistance
Ampicillin resistance

ColE1 origin

disrupted lacZ

disrupted MCS

pyrG

Fig 9.  Construction of pSPG1, entire pyrG gene cloned into the multiple cloning site of

the plasmid.

pSPG1
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bla / cb disrupted lacZ

disrupted lacZ

pyrG

bla / cbdisrupted lacZ

disrupted lacZ

disrupted pyrG

disrupted pyrG
deleted region

bla / cb
disrupted lacZ

disrupted lacZ

disrupted pyrG

disrupted pyrG

deleted region

Fig 10.  Construction of the pyrG deletion in pUCP19.  The 2.0 kb pyrG gene was cloned

into pUCP19 and the geletion was conducted in the plasmid by digesting with the BssHII

enzyme.

2.0 kb pyrG gene cloned into pUCP19,
restriction digest with BssHII enzyme
to delete 195 bp

Plasmid circulized with T4 DNA ligase
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SacB

aacC1

5831 bp

Fig 11.  Gene replacement plasmid pEX18Gm.  Plasmid size is 5.831 kb and has the

convienient multiple cloning site of pUC18.  This vector has the gentimicin resistant

marker and the Bacillus subtilis SacB gene, which confers sucrose sensitivity and thus

allows for the identification of single and double crossovers.

lacZ

pEXGm
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SacB

aacC1

disrupted lacZ alpha

disrupted lacZ alpha

pyrG 1.756 kb

7587 bp

Fig 12.  Gene replacement plasmid containing the deleted 1.756 kb pyrG gene subcloned

from pUCPΔpyrG.  This plasmid was used to replace the wild type pyrG gene in P.

aeruginosa upp-, udk+.

   pEX18GmΔG
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Gm cassette 1.6 kb

Omega loop

Omega loop

bla

SmaI (3040)

Sma 1 (4040)

Fig 13. Small broad host range plasmid pGmΩ1 plasmid (Schweizer, 1993).  The

plasmid contains the 1.6 kb gentamicin resistant gene cassette.  The gentamicin resistant

cassette can be used for site specific insertion and deletion mutagenesis.

   pGmΩ1
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Gm cassette

disrupted nuh

disrupted nuh
Kn

Sca I (1000)

ScaI (2600)

Fig 14.  Schematic diagram of pCJF5.  The resulting 7.3 kb plasmid contains the 1.6 kb

gentamicin cassette fragment, digested from pGMΩ1 (Schweizer, 1993).  The Gm

cassette was cloned into the Sca1 restriction site of plasmid pCJF5.  Expression of uridine

hydrolase was inactivated by the insertion of the Gm cassette.

pGmCJF5
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CHAPTER II

RESULTS AND DICUSSION

)2.7$7S'.,'#4&')(C'+67#4*+&'8pyrG>'.,'P. aeruginosaH

Chromosomal DNA from P. aeruginosa was prepared and used to conduct PCR

using the method described by Saiki et al (1988).  A product of the size 2.0 kb was

produced and was subsequently cloned into the pCRII� vector (Invitrogen) to produce

the construct pSPG1 (Fig 8).  The isolation of the pyrG gene was confirmed by

complementing the E. coli pyrimidine auxotroph JF646.

_+.2*#$.7'.,'P. aeruginosa uppT +#-*$7H

The pyrimidine analog 5�- fluorouracil was used to isolate a P. aeruginosa upp-

mutant.  A pyrimidine analog is a pyrimidine base which has an additional functional

group attached to one of the members of the pyrimidine ring.  The analog 5�fluorouracil

has a fluoro group attached to the number 5 carbon on the pyrimidine ring.  In a bacterial

cell the analog is recognized as a uracil compound and is quickly taken up by the enzyme

uracil permease (uraA).  Next uracil phosphoribosyltransferase encoded by the upp gene

converts it to FUMP.  The ultimate toxic compund molecule is 5FdUMP, which inhibits

thymidylate synthase.
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Fig 15.  A photograph of the pyrG gene isolated from PAO1 chromosomal DNA.  The

size of the fragment is 2.1 kb.  The product generated was cloned into the pCRII� vector

(Invitrogen®).

MHJ K5
<HJ'K5
''IHE'K5

IHJ K5

''FJJ'51

pyrG
C);
C-.30"#
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In any given population of bacteria some cells are naturally resistant to 5�- fluorouracil,

upp-.  These upp mutants have no uridine phosphoribosyltransferase and thus are unable

to catalyze the reaction of fluorouracil to fluorouridine 5� monophosphate (FUMP).  In

this study I have isolated a P. aeruginosa upp- strain, which is resistant to 5� fluorouracil

(Fig 16).  Figure 16 shows the plate assay performed in order to isolate such a mutant.

Crystals of 5�-fluorouracil were placed in the middle of the plate.  P. aeruginosa upp-

mutants were able to grow right up to the crystals.   This was the first step in reaching

that pot of gold at the end of the rainbow, which in my case the pot of gold is excluded

and all that I am left with is the wish of finding pyrG mutants in Pseudomonas.

@\1-&++$.7'.,'#4&'E. coli 0-$3$7&'8"6#$3$7&>'K$7*+&'8udk>'S&7&'$7'P. aeruginosaH

        Organisms with a functional uridine (cytidine) kinase gene are sensitive to the

pyrimidine analog 5�-fluorouridine because the enzyme can catalyze the reaction of FUR

to FUMP, which is toxic to the cell.  Such organisms are also sensitive to

5�fluorocytidine because uridine (cytidine) kinase can also catalyze the reaction of

cytidine to CMP and ultimately CTP.  5�-fluorocytidine can be converted to the toxic

nucleotide levels.

       Beck (1995) showed that P. aeruginosa does not possess a functional uridine

(cytidine) kinase and does not have a cytidine deaminase gene.  She cloned the E. coli

udk gene into pUCP19.  This construct was named pDEB1 (Fig 7).  By finding that P.

aeruginosa became sensitive to FUR and FCR only after she introduced the E. coli
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uridine (cytidine) kinase gene.  Beck showed that the introduced udk was expressed in P.

aeruginosa.

I used this plasmid to electroporate it into a P. aeruginosa upp- strain.

I plated the transformed cells onto Pseudomonas minimal medium and then placed

crystals of 5-fluorouridine and 5-fluorocytidine in the middle of the plate.  The results of

this experiment showed a zone of killing around the FUR and FCR crystals.  The zone of

killing indicates that the udk gene can be expressed in P. aeruginosa upp-  (Fig 17).

       Until a functional uridine (cytidine) kinase was incorporated into P. aeruginosa it

was not possible to convert UR (FUR) or CR (FCR) to their nucleotide derivatives.  Once

udk was expressed, it became possible to feed exogenous nucleosides to pyrimidine

auxotrophs as well as sensitizing P. aeruginosa to FUR and FCR.  Thus, the isolation of a

pyrG mutant became feasible.  This in turn allowed the independent manipulation of the

UTP and CTP pools.
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Fig 16.  P. aeruginosa PAO1 upp- strain isolation.  Crystals of 5� fluorouracil were

placed in the center of the plate.  No zone of killing was observed.
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Fig 17.  Expression of the E. coli uridine (cytidine) kinase gene is P. aeruginosa PAO1

upp- strain.  On the left half of the plate crystals of fluorouridine were placed in the and

on the right half of the plate crystals of fluorocytidine were placed.  Zones of killing

indicate the expression of the udk gene.

   FUR FCR
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_+.2*#$.7'.,'"6#$3$7&'-&`0$-$7S'/0#*7#+'$7'P. aeruginosaH

       CTP synthase mutants were isolated using the in-frame deletion technique described

by Schweizer and Houng (1993).  The pyrG gene was sub-cloned from pSPG1 into the

pUCP19 vector.  An in-frame deletion was created in this vector by restriction digest

using the enzyme BssHII.  This restriction enzyme created a 195 bp deletion in the

internal region of the pyrG gene.  The vector was circularized and the truncated fragment

was cloned into the gene replacement vector pEX18Gm (Fig 10, 11 & 12).  The pEX18

pyrG plasmid was incorporated into the P. aeruginosa upp- udk+ strain by the method of

biparental mating described by De Larenzo & Timms (1993).

Like its E. coli counterpart the pyrG gene of P. aeruginosa encodes CTP synthase.  This

was confirmed by genome analysis and only one copy of the gene was found.  The

disruption (deletion) in pyrG resulted in the cells requirement for 50 μg ml-1cytidine,

pyrG mutants are cytidine auxotrophs.

In E. coli and S. typhimurium cytidine is rapidly deaminated to uridine by cytidine

deaminase.  Accordingly, in E. coli pyrG mutants must be isolated in a cdd- background.

P. aeruginosa does not have this enzyme but instead has a very active nucleoside

hydrolase, which must be mutated along with pyrG to study regulation.  This is discussed

below.  Chromosomal DNA from P. aeruginosa wild type cells and the mutants isolated

was prepared.  PCR was conducted to confirm the presence of the deleted pyrG gene (Fig

18).
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Fig 18.  Verification of pyrG inframe deletion in P. aeruginosa PAO1 upp- udk+.  Lane1

1 kb ladder, Lane 2 Negative control, Lane 3 Wild type, Lane 4 Negative control, Lane 5-

9 ∆pyrG, Lane 10 1 kb Ladder

∆∆∆∆pyrG

K5''''''''''''''I''''<''''M'''''D'''''F''''E''''N''''''=''''P''''IJ

<HJ
IHE
IHJ

JHF
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)*++&##&'/0#*S&7&+$+'.,'0-$3$7&'463-.2*+&'$7'P. aeruginosa uppT udka pyrGTH

       The uridine hydrolase gene was shown to be very active in P. aeruginosa by

Christopher Fields (unpublished data, 2001).  This caused a problem because uridine was

added to the medium to feed the cells and to elevate the UTP pools in P. aeruginosa.

Initial pyr enzyme assays did not show much effect on the de novo enzymes.  This led to

the conclusion that the uridine added was rapidly broken down to uracil by uridine

hydrolase.  Indeed, Fields showed that the hydrolase was induced by growth on uridine.

The uracil was excreted into the surrounding medium.  Therefore it was imperative to

construct a uridine hydrolase mutant in the P. aeruginosa upp- udk+ pyrG-.  A 1.6 kb

gentamicin cassette was inserted into the middle of the uridine hydrolase gene.  The

resultant construct was electroporated into the above strain.  The mutation was confirmed

by plating the cells onto Pseudomonas minimal medium, which had uridine or cytidine

only as the carbon source.  A uridine hydrolase plus mutant would be able to break these

compounds down and use the ribose liberated as a carbon source.  A uridine hydrolase

minus mutant would not be able to do this.  Inability of the cells to use uridine or cytidine

as a carbon source confirmed the mutation in the hydrolase gene.
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@7R6/&'*++*6+',.-'pyrB-pyrF'$7'#4&'+1&"$*226'".7+#-0"#&3'"6#$3$7&'-&`0$-$7S'8pyrG>

/0#*7#+'.,'P. aeruginosaH

Enzyme assays for ATCase (pyrB), DHOase (pyrC), DHOdecase(pyrD), OPRTase

(pyrE) and OMPdecase (pyrF) were carried out on the specially constructed cytidine

requiring mutants.  The cells were grown in 100 ml of Pseudomonas minimal medium

with the appropriate antibiotics.  This experiment allowed us to ascertain the effects on

the pyr enzymes when the cells were grown in different levels of uridine and or cytidine.

In a pyrG- upp- udk+ the specific activity for the enzyme ATCase was 342 μmol min-1 mg-

1 protein.  In comparison the specific activity of the pyrG- upp- udk+ nuh- was 71 μmol

min-1 mg-1 protein.   This showed that when the level of uridine was high (200 μg ml-1)

and cytidine low (50 μg ml-1) there is a 5-fold repression of the enzyme ATCase,

suggesting that a uridine compound (UMP, UDP or UTP) is the primary repressing

metabolite for ATCase (Table 3, Fig 19).

       A more dramatic change was observed in the enzyme dihydroorotase.  When uridine

and cytidine levels were at 20 μg ml-1 and 50 μg ml-1 there was a 5-fold repression of the

enzyme.  When both uridine and cytidine were at 200 μg ml-1 there was a 4.6-fold

repression in the enzyme.  The most change observed in the enzyme was when uridine

was 200 μg ml-1 and cytidine was 50 μg ml-1.  Then there was a 9-fold repression in the

enzyme.  This again suggests that a uridine compound or high UTP has a repressive

effect on the DHOase enzyme (Table 4, Fig 20).

       For the enzyme encoded by pyrD, a 2-fold repression was observed when the cells

were grown in high uridine and low cytidine.  This result is not as significant as those
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observed for the earlier enzymes in the pathway (Table 5, Fig 21).  When the cells were

grown in high uridine and low cytidine the enzyme OMP decarboxylase was derepressed

1.4-fold in the pyrG- upp- udk+ nuh- when compared to pyrG- upp- udk+ (Table 6, Fig 22).

Finally the enzyme encoded by pyrF was repressed 3-fold when grown in high uridine

and low cytidine (Table 7, Fig 23).

       This is the first study to be done with the proper necessary mutants in the

biosynthetic pathway of P. aeruginosa.  In the past it has been impossible to vary the

internal pools of UTP and CTP for the lack of a pyrG mutation.  Currently work is

underway in our laboratory to quantify these pools by way of High Performance Liqiud

Chromatography.  This will provide ultimate data to discover if a uridine or a cytidine

nucleotide is the primary repressing metabolite.

       None of this would be possible without the presence of a functional uridine (cytidine)

kinase in P. aeruginosa.  This presence allowed the isolation of a pyrG mutant, which in

turn required a nucleoside mutant for full expression.
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Table 3.  Specific activities (ATCase) in upp- pyrG- udk+ strain, and its isogenic upp-

pyrG- udk+ nuh- strain.

Z#-*$7 b-.Y#4'".73$#$.7+

]-<JW)-FJ ''']-<JJW)-<JJ'''''']-<JJW)-FJ'''''']-<JW)-<JJ

''''''''''''''''''''''''''''''''''''''''''''Z1&"$,$"'*"#$%$#6'$7'c/.2'/$7TI'/S'1-.#&$7

upp- pyrG- udk+     75         258                  342         123

upp- pyrG- udk+ nuh-    106                        98          71         78
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Table 4.  Specific activities (DHOase) for upp- pyrG- udk+ strain, and its isogenic upp-

pyrG- udk+ nuh- strain.

Z#-*$7 b-.Y#4'".73$#$.7+

]-<JW)-FJ ''']-<JJW)-<JJ'''''']-<JJW)-FJ'''''']-<JW)-<JJ

''''''''''''''''''''''''''''''''''''''''''''Z1&"$,$"'*"#$%$#6'$7'c/.2'/$7TI'/S'1-.#&$7

upp- pyrG- udk+     49         57                     43         26

upp- pyrG- udk+ nuh-    9.3                     12.4          4.9        10
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Table 5.  Specific activities (DHOdecase) for upp- pyrG- udk+ strain, and its isogenic upp-

pyrG- udk+ nuh- strain.

Z#-*$7 b-.Y#4'".73$#$.7+

]-<JW)-FJ ''']-<JJW)-<JJ'''''']-<JJW)-FJ'''''']-<JW)-<JJ

''''''''''''''''''''''''''''''''''''''''''''Z1&"$,$"'*"#$%$#6'$7'c/.2'/$7TI'/S'1-.#&$7

upp- pyrG- udk+     42          61                   49           26

upp- pyrG- udk+ nuh-     36                         32         27          31
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Table 6.  Specific activities (OPRTase) for upp- pyrG- udk+ strain, and its isogenic upp-

pyrG- udk+ nuh- strain.

Z#-*$7 b-.Y#4'".73$#$.7+

]-<JW)-FJ ''']-<JJW)-<JJ'''''']-<JJW)-FJ'''''']-<JW)-<JJ

''''''''''''''''''''''''''''''''''''''''''''Z1&"$,$"'*"#$%$#6'$7'c/.2'/$7TI'/S'1-.#&$7

upp- pyrG- udk+      81         44                    36           37

upp- pyrG- udk+ nuh-     115                      25         52          69
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Table 7.  Specific activities (OMPdecase) for upp- pyrG- udk+ strain, and its isogenic upp-

pyrG- udk+ nuh- strain.

Z#-*$7 b-.Y#4'".73$#$.7+

]-<JW)-FJ ''']-<JJW)-<JJ'''''']-<JJW)-FJ'''''']-<JW)-<JJ

''''''''''''''''''''''''''''''''''''''''''''Z1&"$,$"'*"#$%$#6'$7'c/.2'/$7TI'/S'1-.#&$7

upp- pyrG- udk+     23         22                    72        11

upp- pyrG- udk+ nuh-     27                        32         27        14
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CHAPTER II
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