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 A 1H, 13C, and 6Li NMR study of 2-ethylhexyllithium showed that 2-

ethylhexyllithium exists solely as a hexamer in cyclopentane solution over the 

temperature range from 25 to –65 °C. Furthermore, 2-ethylhexyllithium and lithium 2-

ethyl-1-hexoxide were shown to form mixed aggregates when the alkoxide was formed in 

situ by reacting 2-ethylhexyllithium with 2-ethyl-1-hexanol. A multinuclear, variable 

temperature NMR study of a sample with an O:Li ratio of 0.2 led to the identification of 

at least four such aggregates, one of which was found to be a hexamer with the 

composition R 5(RO)Li 6. Studies of samples with higher O:Li ratios, up to 0.8, showed 

additional mixed aggregates present. All solutions containing mixed aggregates were also 

shown to contain hydrocarbon soluble lithium hydride. A study of lithium 2-ethyl-1-

hexoxide indicated that it aggregates in solution as well.  
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CHAPTER I 

INTRODUCTION 

Alkyllithium Compounds 

Organolithium compounds are important reagents for both organic and polymer 

chemistry.1-3 A variety of these compounds are available commercially from a number of 

distributors. The production of organolithium compounds was over 550 tons/year in 

1985, and is sure to have increased in the years since, making these compounds standard 

reagents in most synthetic labs. They find particular use in synthetic processes such as 

anionic polymerization,4,5 the manufacture of pharmaceuticals,6 and the production of 

fine chemicals. Their use is preferred over other reagents because they are more soluble 

than other potential reagents, and because they form metalated intermediates in situ.  

 A large body of data regarding structures and aggregation states of organolithium 

compounds has been accumulated through solid state structural studies,7,8 theoretical 

calculations,9 and NMR studies.10-16 However, the solution state structures of these 

compounds are still not well understood.  

 The goal of this project was to determine the solution state structure of 2-

ethylhexyllithium, and mixed alkyl/alkoxy aggregates formed in situ. This information is 

important for understanding the reactivity of these complexes, as well as potentially 

useful in the design of other similar compounds with specific characteristics tailored for 

specialized syntheses. 
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In hydrocarbon solution, alkyllithium compounds, commonly represented as RLi, 

exist as aggregates (RLi)n where n is the aggregation state. Dimer, trimer, tetramer, 

hexamer, octamer, and nonamer aggregates have all been observed.10,13,17 A number of 

factors can affect the aggregation states of these compounds including: concentration, 

temperature, solvent, and the nature of the ligand. It is also not uncommon for multiple 

aggregates of the same compound to exist simultaneously in solution. The effects of 

changes in the aforementioned variables have been well documented. 

When multiple aggregates are present in the same solution, increasing the 

concentration favors the formation of larger aggregates, as does lowering the temperature 

(for hydrocarbon solutions, the opposite is observed for coordinating solvents). The use 

of a non-coordinating solvent also tends to favor larger aggregates. For example, t-

butyllithium exists as tetramers in cyclopentane,18 a non-coordinating solvent, and as 

monomers in THF and dimers in diethyl ether,19 both of which are coordinating solvents. 

The steric bulk of the ligand plays a key role in determining the aggregation state. Less 

bulky ligands form larger aggregates. For example, the straight chain alkyllithium 

compound n-propyllithium exists as hexamers, octamers, and nonamers in 

cylclopentane,13 where as the more sterically hindered compound t-butyllithium exists as 

tetramers in the same solvent. 

Most alkyllithium compounds exist as tetramers and hexamers in hydrocarbon 

solution. The structure of a tetramer is tetrahedral with the lithium atoms occupying the 

apices, and the alkyl groups sitting over each of the four triangular faces (see Figure 1). 

The alpha-carbon, the carbon atom directly bonded to lithium, is bridging three lithium 
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atoms. The structure of the hexamer is octahedral. In this case, the six lithium atoms 

occupy the apices of an octahedron. The six alkyl groups sit over six of the eight 

triangular faces, bridging three lithium atoms as in the tetramer. The two empty triangular 

faces are believed to be opposite each other, possibly leading to non-random intra-

aggregate fluxional exchange.  

 

 

 

 
 Figure 1 – Shapes for tetrameric (left) and hexameric (right) alkyllithium 
compounds. 
 

 

Alkyllithium compounds undergo both inter- and intra-aggregate exchange. The 

study of intra-aggregate exchange has been primarily limited to tetrameric species 

because the rate of exchange in larger aggregates tends to be too fast on the NMR 

timescale to be studied effectively. Some research has been conducted in the area of 

intra-aggregate fluxional exchange in tetrameric alkyllithium compounds.20-23 On the 

other hand, inter-aggregate exchange can be slowed or stopped in many cases even for 

large aggregates. This is accomplished by dropping the temperature. These processes 
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must be considered when attempts are made to interpret data obtained via NMR 

spectroscopy. 

NMR spectroscopy has been the method of choice for studying alkyllithium 

compounds.10,16 In particular, this method allows a significant amount of information to 

be obtained about carbon- lithium bonding. Carbon- lithium coupling is observed in the 

13C NMR spectra of 6Li enriched alkyllithium compounds, the magnitude of which has 

been used to assign aggregation states. Experimental data has shown the magnitude of 

coupling to be 

 

 J13C-6Li  =  (17 ± 2 Hz) / n    [eq. 1] 

 

where n is the number of equivalently bonded 6Li nuclei.24,25 For fluxional aggregates, n 

is also the aggregation state. 

 Another method used to determine aggregation states is line-shape analysis.26 

This method examines the number and relative intensities of the peaks in the alpha-

carbon multiplet in the 13C NMR spectrum. The number of peaks is governed by the 2nI 

+ 1 rule, where n is the number of equivalently bonded nuclei and I is the spin 

multiplicity of the bonded nuclei (I = 1 for 6Li). For instance, the alpha-carbon multiplet 

of a fluxional hexamer will be a thirteen- line multiplet. The relative intensities of each of 

those lines are a function of the splitting. In the case of the hexamer, the relative 

intensities of the outermost peaks are so small that those lines are not observed in 13C 

NMR spectrum due to signal- to-noise issues. Even so, the comparison of simulations of 
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the alpha-carbon multiplet for several different aggregation states with experimental data 

can be quite definitive. 

 Some of the most commonly used alkyllithium compounds, such as n-

butyllithium, are difficult to study because they do not show 13C-6Li coupling, 

presumably due to dynamic processes described above. Therefore, other systems, which 

can be studied effectively, are used as models for the straight chain compounds. Coupling 

between carbon and lithium has been observed for n-propyllithium, but for longer chains, 

n-butyl and longer, no coupling information has been obtained.  

 

Alkyllithium/Lithium Alkoxide Mixed Aggregates 

 Alkyllithium compounds react with oxygen or alcohol to form alkoxides. Those 

reactions are as follows. 

 

  RLi  +  1/2O2                 ROLi   [eq. 2] 

  RLi  +  R’OH                 R’OLi  +  RH  [eq. 3] 

 

Alkyllithium compounds often contain alkoxides as impurities due to mishandling or 

exposure to air. The result is a change in reactivity of the complex. Presumably, the 

alkoxide ligands are incorporated into the alkyllithium aggregates according to equation 

4. 

  aRLi  +  bR’OLi                   Ra(R’O)bLia+b  [eq. 4] 
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Studies of alkyllithium/lithium alkoxide mixed aggregates have been conducted.27-31 

Samples containing these aggregates have been prepared in situ by reacting an 

alkyllithium compound with an alcohol in a controlled fashion as shown in equation 3. 

The mixed aggregates have been observed to be larger than the all alkyl aggregates. For 

example, n-propyllithium, a primary alkyllithium compound that exists as hexamers, 

octamers and nonamers in hydrocarbon solution, reacts with the corresponding alcohol to 

produce mixed aggregates, one of which is a dodecamer.31 Also, t-butyllithium, a 

tetrameric species, reacts with the corresponding alcohol to produce t-

butyllithium/lithium t-butoxide mixed aggregates which are both tetramers and 

hexamers.30 The t-butyllithium/lithium t-butoxide mixed aggregates are of the form 

Rn(RO)6-nLi6, with n = 1,2 and R 3(RO)Li 4. In this case, the oxygen atom decreases the 

steric bulk of the ligand, which allows larger aggregates to form. 

 

Lithium Hydride/Lithium Alkoxide Mixed Aggregates 

 Solutions containing alkyllithium/lithium alkoxide mixed aggregates have been 

observed to contain lithium hydride/lithium alkoxide mixed aggregates. This is due to the 

fact that the alkyl groups in the mixed aggregates more readily undergo beta-hydride 

elimination. These aggregates are larger than both the all alkyl and the alkyl/alkoxy 

mixed aggregates. For example, two mixed aggregates of lithium hydride/lithium t-

butoxide have been observed and assigned as a decamer and dodecamer in hydrocarbon 

solvent, even though t-butyllithium is tetrameric and lithium t-butoxide is hexameric 
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under the same conditions.33 This class of compounds presents great interest because this 

is a relatively new way to prepare activated lithium hydride. 

 

2-Ethylhexyllithium and its Mixed Aggregates 

 The compound 2-ethylhexyllithium was chosen as a model for straight chain 

systems. Straight chain systems contain multiple aggregates in solution, which are often 

undergoing rapid exchange. It was hoped that this compound would contain fewer 

aggregates, possibly only a single aggregate, and that the exchange processes would be 

slowed, thus allowing for the observation of 13C-6Li coupling.  

 This thesis presents the study of 2-ethylhexyllithium and mixed aggregates 

formed by adding 2-ethyl-1-hexanol to 2-ethylhexyllithium in cyclopentane solution. The 

amount of alcohol added is varied so that solutions containing different concentrations of 

alkoxide can be studied. For this investigation, the stoichiometric ratio between RLi and 

ROH is varied between 0 (no alcohol added) and 0.8. 

 Two lithium alkoxides are synthesized so that comparisons can be made with 

alkoxides formed in situ.  

 The effect of the chirality of the alkyl group used for this study is also 

investigated. A similar compound 2-methylbutyllithium, which also contains a chiral 

center, exhibited chiral properties in both the 6Li NMR spectrum and the 13C NMR 

spectrum. 
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CHAPTER II 

EXPERIMENTAL 

Introduction 

 A former group member, Andrea Lay, synthesized the alkyllithium used for this 

project. The steps involved in that synthesis are included here for completeness. That 

compound, 2-ethylhexyllithium, was made using the following three steps: 

 

  RBr  +  Mg                   RMgBr   [eq. 1] 

  2RMgBr  +  HgCl 2                  R2Hg  +  2MgCl 2 [eq. 2] 

  R2Hg  +  2Li                   2RLi  +  Hg   [eq. 3] 

 

Details of this type of synthesis can be found elsewhere.1,2 Standard precautions were 

employed for handling of both oxygen sensitive and mercury containing compounds, 

some of which will be discussed later in detail as they relate to this work. The majority of 

this project focuses on the study of mixed complexes containing both alkyllithium and 

lithium alkoxide species. The synthesis of lithium alkoxide was accomplished by reacting 

the alkyllithium compound with an alcohol according to the following reaction: 

 

  RLi  +  R’OH                     R’OLi  +  RH  [eq. 4] 
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In this case, R and R’ were both 2-ethylhexyl. If an excess of alcohol is used for the 

reaction in equation 4, it is presumed that the majority of the alkyllithium compound will 

be converted to lithium alkoxide and hydrocarbon because of its greater basicity. If, 

however, a less than stoichiometric amount of alcohol is reacted with the alkyllithium 

compound, the following reaction could take place between the remaining unreacted 

compound and the alkoxide: 

 

  RLi  +  R’OLi                     Ra(R’O)bLia+b  [eq. 5]  

 

The mixed species of interest for this study would be the products of the reaction in 

equation 5. Solutions potentially containing these aggregates were prepared 

experimentally by varying the amount of alcohol added in equation 4. The amounts of 

reactants used to prepare each sample are listed in Table 1.  

 

Table 1 - Description of samples prepared for this study  
     

O/Li Sample ID Amount of Alkyl Lithium Amount of Alcohol Sample Volume 
    2-ethylhexyl lithium 2-ethylhexanol (in mL) 
0 RP001 0.168g (1.41 mmoles) none used 0.7 
0 RP007 0.168g (1.41 mmoles) none used 0.7 

0.2 RP003 0.168g (1.41 mmoles) 0.036g (0.28 mmoles) 0.7 
0.2 RP020 0.738g (6.20 mmoles) 0.161g (1.24 mmoles) 3.2 
0.4 RP002 0.168g (1.41 mmoles) 0.073g (0.56 mmoles) 0.7 
0.6 RP004 0.168g (1.41 mmoles) 0.109g (0.84 mmoles) 0.7 
0.8 RP005 0.168g (1.41 mmoles) 0.146g (1.12 mmoles) 0.7 
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These amounts were chosen for two reasons. First, since many of the properties of 

interest in this study are affected by concentration, all samples were prepared to be 2 F (2 

M in monomeric RLi). And second, this concentration allows for comparison with other 

work done with similar compounds. 

In addition, all compounds used for this project, which contained lithium, were 

prepared using 95.5% isotopically enriched 6Li metal (U.S. Services). Both alkyllithium 

and lithium alkoxide compounds are air and water sensitive, so special precautions were 

taken to avoid contamination due to unwanted exposure to oxygenated species.  

 

General Precautions 

 The majority of synthetic work required for this project was carried out either in 

an inert atmosphere glove box or on a high vacuum line. The work in the glove box was 

performed under an argon atmosphere. The glove box was equipped with a catalyst 

capable of removing oxygen and moisture from the atmosphere inside the box. The 

catalyst consisted of alternating layers of Alpha De-Ox oxygen removal catalyst and type 

5A molecular sieves (Fisher Scientific). The catalyst was regenerated before each time 

the box was to be used, which helped ensure that the atmosphere inside was not 

contaminated due to saturation of the catalyst. While in use, the argon atmosphere inside 

was circulated through the catalyst. In general, the introduction of objects into the glove 

box capable of absorbing large amounts of moisture onto their surfaces was avoided.  No 

wood or paper products were taken inside the glove box; and supplies such as glassware, 
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trays, etc., were dried in an oven for at least two hours at 200 °C before being taken into 

the anti-chamber of the glove box.  

 The high vacuum line used for this work was capable of producing pressures as 

low as 1 x 10-6 torr, and was never used if the pressure was above 5 x 10-6 torr. Some of 

the glassware used had to be specially prepared by our glassblower. These and other 

pieces of glassware were attached to the vacuum line prior to use so that they could be 

checked for pinholes, which could jeopardize the integrity of the sample. 

 

Storage of the Alkyl Lithium Compound 

 The alkyllithium compound used for this study was always stored in a refrigerator 

wrapped in aluminum foil. These precautions were taken to avoid thermal or 

photochemical decomposition. Our glassblower specially made the vessel, in which the 

compound was stored. It was capable of holding approximately 30 mL of solution, and 

was equipped with an inner high vacuum joint. The shape was a cylinder approximately 

1.5 cm in diameter and 10 cm in length. The cylinder was connected to the inner high 

vacuum joint using a 10 cm extension of glass tubing with a diameter of less than 1 cm, 

which was chosen so that the vessel could easily be sealed.  

Each time a new sample was to be prepared, a new vessel had to be made.  Both 

vessels would then be taken into the glove box. The  vessel containing the compound was 

opened by first scoring the neck, and then breaking it. The needed amount of compound 

was taken; and the remaining compound was transferred to the new vessel. A stopcock 

was then placed on the vessel. It was brought out of the glove box, degassed, flame 
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sealed, and returned to storage. The amount of time the compound was out of storage was 

minimized, usually only a few hours. 

 

Preparation of NMR Samples3 

All glassware used for preparing NMR samples was dried in an oven for at least 

two hours. The glassware was allowed to cool in a desiccator, or in the anti-chamber of 

the glove box under a vacuum. These steps, as previously mentioned, were taken to 

minimize the amount of moisture absorbed onto the surface of the glassware. Once the 

supplies were placed in the anti-chamber, it was evacuated and then filled with argon 

from the atmosphere inside the glove box. The anti-chamber was then evacuated again. 

This process was repeated at least three times before the supplies were taken into the 

glove box. Finally, the anti-chamber was filled with argon to equilibrate the pressures 

inside the box and anti-chamber, and the inside door was opened. The supplies were then 

taken inside the glove box and the door was closed.  

The following procedure, used to prepare samples containing mixed aggregates, 

was carried out inside the glove box.   The stopcock, which was to be used on the NMR 

tube, was greased with suitable high vacuum grease, Apiezon H or N (M&I Materials 

LTD), H for joints that were not required to move and N for joints that must move, and 

placed out of the way.  A 10 mL beaker was set on the balance.  After the balance reading 

became constant, it was tared to zero.  The vessel containing the RLi was opened and the 

desired amount of the compound was transferred to the beaker using a pipette.  The same 

procedure was used to weigh the desired amount of ROH in a separate beaker.  Next, 
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approximately 0.35 mL or 1.5 mL of 10% d10-cyclopentane in cyclopentane was added to 

each of the two beakers depending on the total volume of the solution needed.  Sample 

volumes for 5mm and 10mm NMR tubes are 0.7 mL and 3.1 mL respectively. The 

solution of ROH was then transferred to the beaker containing the RLi.  The ROH was 

added to the RLi to avoid highly localized concentrations of oxygen.  This procedure was 

done drop by drop; and each drop was allowed to run down the side of the beaker.  After 

each drop of ROH was added, the beaker was swirled for a few seconds.  The reaction 

between RLi and ROH is highly exothermic; so, if the ROH were added too quickly, it 

could cause decomposition, which would lead to unwanted side-products, and or cause 

the solvent to evaporate.   After all the ROH solution had been added, the sample was 

transferred to a NMR tube via pipette.  The beaker was then washed with a small portion 

of solvent, which was also transferred to the NMR tube.  The NMR tube had been 

marked at the desired volume.  Enough solvent was then directly added to the NMR tube 

so that the total volume of the sample reached the marking.  Next, a stopcock was placed 

on the NMR tube, and the sample was brought out of the glove box.   

The sample was then placed on the high vacuum line. It was frozen by 

submerging it in a liquid nitrogen bath.  Once frozen, the stopcock was opened, and the 

NMR tube was left under a vacuum for approximately seven minutes. The main manifold 

had been separated from the manifold being used by a U-trap submerged in liquid 

nitrogen. This precaution was taken to ensure that the solvent from the sample did not 

accidentally get drawn into the vacuum pump. After a few minutes, the stopcock was 

closed and the liquid nitrogen bath was removed slowly, allowing the sample to thaw. It 
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is important that the sample be thawed slowly to avoid any sudden increases in sample 

volume, which could cause the NMR tube to rupture. This freeze-pump-thaw process was 

repeated at least three times on each sample. The sample was then flame sealed on the 

vacuum line.  

Each sample was then wrapped in aluminum fo il and stored in the refrigerator. 

Again, these last precautions were taken to avoid thermal or photochemical 

decomposition. Samples containing only the alkyllithium compound were prepared in a 

similar fashion, but without the addition of alcohol. 

 

Synthesis of Lithium 2-ethyl-1-hexoxide 

 A comprehensive literature search was conducted for this compound. The registry 

number for lithium 2-ethyl-1-hexoxide is RN = 34689-96-8. Only the three following 

chemical abstracts references were found: 108:206131, 81:52099, and 76:5531. These 

three references refer to patents. In each, this compound was used as part of a 

hydrocarbon gelling system. 

All glassware used for this procedure was dried in an oven at 200 °C, and then 

allowed to cool in a desiccator or under argon flow.  The 2-ethyl-hexanol used for the 

procedure was dried over calcium hydride for one day.  A fractional distillation was then 

used to obtain pure, dried alcohol from the mixture of alcohol and drying agent.  

Approximately 25 mL of 2-ethyl-hexanol was collected at 181 °C.  Next, the solvent, 

cyclopentane, was dried over calcium hydride, and approximately 150 mL was distilled 

into a three-neck 500 mL round bottom flask, which had previously been flushed with 
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argon.  After adding the solvent, a stir bar was introduced to the flask and rubber septa 

were placed on the three necks.  The septa were secured using wire, and the flask was 

taken into the glove box.  Inside the glove box, 0.32 g (0.0533 moles) of enriched 6Li was 

cut and added to the reaction flask.  The flask was then brought out of the glove box, and 

a condenser and flow control device were attached.   

Next, the system was flushed with argon for 20 minutes.  A bubbler was attached 

to the top of the condenser to ensure that excessive pressure did no t build up in the 

reaction flask.  The system was then brought to reflux before proceeding.  Next, 1.8 mL 

(0.0115 moles) of dried 2-ethyl-hexanol was injected into the reaction vessel through the 

rubber septum.  The solution was allowed to reflux for 15 hours, during which time the 

solution turned yellow and a yellowish-white precipitate formed.  The solution was 

transferred to a flask fitted with a high vacuum joint via a cannula.  The flask was then 

attached to the high vacuum line. Another flask was attached to the line, and submerged 

in liquid nitrogen. With the manifold isolated, both stopcocks were opened. The solvent 

transferred to the empty flask leaving behind a dark yellow precipitate.  

The flask was taken back into the glove box where an NMR sample of the solid in 

10% d10-cyclopentane was prepared in a 5 mm NMR tube. The sample was prepared by 

adding 0.04 g (0.30 mmoles) of the solid to 0.7 mL of cyclopentane. The original intent 

was to prepare a 2 F solution (0.2 g in 0.7 mL); however, this small amount of solid did 

not completely dissolve, so no more solid was added. The concentration of the solution 

was actually less than 0.4 F. No yield data was calculated for this synthesis. Lithium 2-

ethyl-1-butoxide was synthesized using the same procedure outlined above.  
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NMR Spectrometer Details 

 All data was acquired on a Varian® VXR-300 spectrometer. Resonance 

frequencies were approximately 300 MHz for 1H, 75 MHz for 13C, and 44 MHz for 6Li. 

Two probes were used for these experiments. One was a standard 5 mm tunable, multi-

nuclear probe with observe, deuterium lock, and decoupler coils. The other was a tunable, 

10 mm multi-nuclear probe, which was similar to the 5 mm probe, but without the 

deuterium lock coil. Instead, the lock coil was used as a second decoupler coil and tuned 

for 6Li decoupling. This modification allowed for the simultaneous decoupling of 1H and 

6Li nuclei, which was necessary for many experiments related to this research.  

 Samples were prepared in two different size NMR tubes, 5 mm and 10 mm. Both 

probes were used to acquire data on samples in 5 mm tubes; however, only the 10 mm 

probe was used for acquisitions on the sample in the 10 mm tube. Only one of the 

samples in this study was prepared in a 10 mm NMR tube. The larger tube was chosen 

because it offers a few advantages, the first of which is the fact that the 10 mm probe was 

intended for use in conjunction with samples in 10 mm tubes. As stated previously, the 

10 mm probe’s capability to decouple 6Li made it crucial to this work; and while all 

experiments requiring lithium decoupling could be run on samples in 5 mm tubes, the 

probe was not designed for them. Another advantage was the increased signal-to-noise 

ratio resulting from the increase in sample volume (more compound at the same overall 

concentration as compared with a 5 mm tube).  

The use of a 10 mm tube also had disadvantages, the biggest of which was the 

large amount of alkyllithium compound needed to prepare the sample. This was an 
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important factor to consider for this and related projects because the synthesis of pure 

alkyllithium compounds can be difficult and quite time consuming. Another 

disadvantage, somewhat related to the first, was that if the sample tube was broken during 

preparation, which occurred more than once in this study with 5 mm tubes, a large 

amount of compound would be lost. In particular, it was much more difficult to flame 

seal the 10 mm tube. 

 Many of the experiments run for this study were performed at low temperatures  

(-10 to –70 °C). However, the variable temperature (VT) controller on our spectrometer 

did not register the actual temperature inside the probe correctly. While it did not register 

the temperature accurately, it did maintain a stable thermal environment. As a result, 

manual calibration of the temperature inside the probe had to be performed each time a 

low temperature experiment was to be run. A macro on the VXR-300 computer is 

capable of calculating the probe temperature by determining the distance between the two 

peaks in the proton spectrum of methanol. Each time the temperature of the probe was 

lowered, a standard methanol sample was used to calibrate the exact temperature in the 

probe.4 The procedure was to allow the temperature in the probe to reach a constant 

value, and then insert the methanol sample. The methanol sample was then allowed to 

reach thermal equilibrium with the probe (approximately 15 minutes). Next, a proton 

spectrum was acquired, from which the exact temperature inside the probe could be 

ascertained. After the temperature was determined, the methanol sample was replaced 

with the sample of interest. It was then allowed to reach thermal equilibrium with the 

probe (approximately 15 minutes) before any data was acquired. 



 21

 The probe was cooled using liquid nitrogen. Nitrogen gas was circulated through 

the probe for this procedure. It was cooled before entering the probe by passing it through 

a coil on the outside of the spectrometer that had been submersed in liquid nitrogen. The 

VT unit then controlled the exact temperature inside the probe using a heater to heat the 

gas to the correct temperature. 

 

NMR Experiments 

 Various NMR experiments were run on the aforementioned samples including: 

1H, 13C with lithium and/or proton decoupling, 6Li with and without proton decoupling, 

13C inversion recovery experiments, heteronuclear two-dimensional 1H, 13C chemical 

shift correlation (HETCOR)-with and without lithium decoupling, heteronuclear two-

dimensional 1H, 6Li nuclear Overhauser experiments (HOESY), and 6Li J-modulated 13C 

spin echo5 experiments. Most experiments were performed either at room temperature or 

at  –11 °C. The details of each of those experiments follow. 

 For 1H NMR experiments the following parameters represent typical values used 

for acquisitions.  The spectral width was approximately 2000 Hz, acquisition time was 

usually 2 seconds, the pulse width was 1 µs (a flip angle of roughly 2.9°), and 16 

transients were collected. Both probes were used to perform these experiments. 

 Typical values for 13C NMR experiments were spectral widths of roughly 6500 

Hz, acquisition times from 0.8 to 3 seconds, pulse widths of 4.9 µs (a flip angle of 

roughly 21.2°), and anywhere from 128 to 8000 transients were collected depending on 

the signal- to-noise needed. All 13C NMR experiments were run with proton broadband 
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decoupling. Many 13C NMR experiments were also run with lithium decoupling. This 

was made possible by the specially configured 10 mm NMR probe. Details of many other 

experiments possible using this probe can be found elsewhere.6 Again, the lock coil was 

replaced with a decoupler coil, which was tuned for 6Li, to which a frequency synthesizer 

was connected to control the decoupling frequency. The frequency used to decouple 

lithium was determined by running a 6Li NMR experiment, identifying the desired region 

in the spectrum to be decoupled, and using a computer macro (SETDMX) to calculate the 

exact value at which the frequency synthesizer must be set. This method determined the 

exact frequency of a particular point in the 6Li NMR spectrum, and then the frequency 

synthesizer was manually set to that frequency. The decoupler frequency synthesizer was 

set to 43,140,772.7 Hz for all NMR experiments in this study. 

 The values of parameters for 6Li NMR experiments were spectral widths of 500 

Hz, acquisition times of 9.9 seconds, pulse widths of 10 µs (a flip angle of roughly 

45.0°), from 1 to 16 transients, and a delay of 20 seconds between scans to allow the 

magnetization to return to its equilibrium position. These experiments were run in the 10 

mm probe. Most experiments were run with proton broadband decoupling; however, a 

few experiments were run with gated decoupling to check for 1H-6Li coupling. In those 

cases, the decoupler was turned off during acquisition only. This allowed for the 

identification of the desired coupling, but also allowed NOE to build up during other 

times of the experiment, which increased the signal- to-noise ratio. 

 A set of 13C inversion recovery NMR experiments were run to determine the T1 

times of two peaks in that spectrum. Those times were then used to determine optimal 
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flip angles for the J-modulated spin echo experiments. For those experiments, the spectral 

width was 3910 Hz, the acquisition time was 2.332 seconds, the pulse width was 22 µs, 

48 transients were collected, and an array of D2 times (0.01, 0.2, 0.3, 0.4, 1.0 seconds) 

were used. These experiments were run using the 10 mm probe. 

 Heteronuclear two-dimensional 1H, 13C chemical shift correlation (HETCOR) 

experiments were conducted as follows. Both the 5 mm and 10 mm probes were used for 

these experiments. Some of these experiments were run with lithium decoupling 

(HTCRLD), which required the use of the 10 mm probe. There were two reasons for 

doing this. First, since the peaks in the 13C NMR spectrum, which were coupled to 

lithium, were broad, this method would lead to cross-peaks that were more focused. 

Second, the increased intensity of the peaks in the 13C NMR spectrum would result in 

better signal-to-noise ratios. For experiments with lithium decoupling, the spectral widths 

were 2086 and 5202 Hz for 1H (F1 dimension) and 13C (F2 dimension), respectively. The 

13C pulse width was 10.2 µs, 1H pulse (PP) was 30.5 µs, the number of increments was 

64, and the number of transients was 128. The acquisition time was 1.993 seconds, and 

the delay was 2 seconds. For HETCOR experiments without lithium decoupling, the 

spectral widths were 1600 and 2937 Hz for 1H (F1 dimension) and 13C (F2 dimension), 

respectively. The 13C pulse width was 22.3 µs, 1H pulse (PP) was 30.5 µs, the number of 

increments was 32, and the number of transients was 128. The acquisition time was 1.492 

seconds, and the delay was 0.5 seconds. 

 Heteronuclear two-dimensional 1H, 6Li nuclear Overhauser (HOESY) 

experimental parameters were: spectral widths of 1600 for 1H (F1 dimension) and 120 Hz 



 24

for 6Li (F2 dimension), 6Li 90° and 180° pulses of 20.0 and 40.0 µs, acquisition time of 

1.33 seconds, 16 transients, a delay time of 3 seconds, a mixing time of 2 seconds, 128 

increments, and a 1H polarization transfer pulse (PP) of 19.4 µs. This experiment was 

performed using the 10 mm probe.  

 The parameters for the 6Li J-modulated 13C spin echo experiments were the 

following. The spectral width was approximately 6500 Hz, the 13C 90° and 180° pulses 

were 20.8 and 41.6 µs, the acquisition time was 1.5 seconds, and an array of D2 times (0, 

0.176, 0.216, and 0.324 seconds) were used. These experiments were performed using the 

10 mm probe. 
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CHAPTER III

RESULTS AND DISCUSSION

2-Ethylhexyllithium

The first compound to be studied for this project was 2-ethylhexyllithium. This is 

a known compound.1 A careful study and understanding of this compound’s behavior in 

solution was paramount to future investigations of mixed species. This compound was 

chosen for this study for two reasons. First, it was thought that branching at the beta-

carbon would produce sufficient steric bulk to hinder the formation of large aggregates in 

solution so often observed in straight chain systems. And second, there was a question of 

whether the chirality of this compound would have any effect on its properties. To 

investigate this second issue the results obtained here for 2-ethylhexyllithium, which 

contains a chiral center, were compared to those of its achiral analog, 2-ethylbutyllithium,

and 2-methylbutyllithium both studied elsewhere. 

Two samples were prepared for this study. The first was made shortly after the 

compound had been produced. The second was prepared two years later. The second 

sample was used to check for decomposition of the original compound before further 

samples were prepared from that stock. The results of a 13C NMR experiment at room 

temperature (see Figure 2) on the second sample show nine major peaks, which are at 

identical chemical shifts as the first sample. These results indicate that no decomposition 

had occurred. The following is a basic representation of that compound.
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alpha beta gamma delta

Both the Greek and alphanumeric labels will be referred to throughout the discussion that 

follows. An identical scheme of labeling has been used to identify the carbon atoms in 

both the parent alkane and the correspond ing lithium alkoxide. In the case of the alkane, a 

hydrogen atom replaces the lithium atom. For the lithium alkoxide, an oxygen atom is 

inserted between the lithium atom and the alpha-carbon.

The first step in analyzing the sample was to assign chemical shift values in the 

13C NMR spectrum (see Figure 2). The spectrum consists of nine major peaks. The large 

peak at 25.89 ppm is from the solvent, cyclopentane. This peak was used to reference all 

13C NMR experiments to TMS (trimethylsilane) by assigning it a value of 25.89 ppm. 

The other eight peaks are from the compound. Thomas et al2 have outlined a method for 

assigning 13C NMR spectra of alkyllithium compounds in hydrocarbon solvent based on 

chemical shift substituent relationships with their parent alkane. The results of those 

calculations for this compound are listed in Table 2 along with the assignment of peaks in 

the 13C NMR spectrum for this compound. While those calculations did not lead to 

definite assignment of all peaks, those in conjunction with an APT experiment did lead to 

the unambiguous assignment of all peaks.

L i C H 2 C H

C H 2 C H 2

C H 2 C H 3

C H 2 C H 3

C 1 C 2

C 3 C 4

C 5 C 6

C 7 C 8
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Figure 2 – 13C NMR spectrum of 2-ethylhexyllithium at room temperature.
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The quality of the data fit from the calculated values was excellent. The only 

ambiguity arose with the values of C2 and C3, whose calculated ranges overlapped. Since 

C2 had one proton attached to it and C3 had two, an APT NMR experiment could be used 

to make those assignments. Figure 3 shows the APT NMR experiment for this

compound. The peak at 39.38 ppm is up indicative of a CH2 group hence it was assigned 

to C3, and the peak at 40.65 ppm is down, indicative of a CH or CH3 group (assigned to 

C2). Also, the substituent relationships in the aforementioned paper were only given for 

alpha, beta, gamma, and delta carbons; therefore, there was no basis for calculating the 

chemical shift values for C5 and C6. One reason for this, which is illustrated by the data 

presented in Table 2, is that the substituent effects decrease with increasing distance from 

the replaced atom.  Therefore, the values for C5 and C6 were roughly the same for both 

compounds.

Table 2 - The assignment of 13C NMR chemical shift values for 2-ethylhexyllithium
          based on theoretical calculations and an APT NMR experiment

Chemical Shift of Calculated Range of Results of Assignment of 13C
Parent Alkane3 Chemical Shift for RLi APT Chemical Shifts for RLi

C1 19.3 19.9-20.0 (+) 20.3
C2 34.8 39.4-42.9 (-) 40.7
C3 36.7 37.4-45.8 (+) 39.4
C4 29.8 28.4-30.2 (+) 29.8
C5 23.4 no basis for calculation (+) 23.5
C6 14.2 no basis for calculation (-) 13.9
C7 29.8 30.6-38.0 (+) 32.2
C8 11.5 10.8-11.9 (-) 10.8
All values are in ppm
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Figure 3 – APT (Attached Proton Test) for 2-ethylhexyllithium at room 
temperature.
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The peak at 20.29 ppm, the alpha carbon, was of extreme interest for this study. It 

can easily be seen that the peak was broad at room temperature. This was presumed to be 

the result of unresolved 13C-6Li coupling, which splits the 13C NMR signal according to 

the 2nI+1 rule, again, where n is the number of equivalent coupled nuclei, and I is the 

spin multiplicity of the coupled nuclei- in this case I = 1 for 6Li. For example, for a 

hexamer n = 6 and the signal would be split into a thirteen line multiplet. The presence of

carbon-lithium coupling was confirmed with the aid of a 6Li decoupled 13C NMR

experiment. The 6Li decoupler was turned on during acquisition and the broad peak in 

this region collapsed into a single narrow peak, thus confirming that the broadness was 

due to unresolved 13C-6Li coupling. Since such coupling is normally only observed for 

the alpha-carbon and since no other peaks showed this behavior, this experiment also 

confirms this peak as C1.

Alkyllithium compounds often undergo rapid inter- and intra-aggregate exchange 

on the NMR timescale, making it difficult to observe coupling due to line broadening. 

This phenomenon leads to a broad signal rather than a well-resolved multiplet. As a 

result, a series of low temperature experiments, to temperatures as low as –65 °C, were 

performed on the sample in hopes of slowing the exchange processes sufficiently to 

observe coupling. 

While the coupling constant could be ascertained from the 13C NMR spectrum at 

–11 °C, the multiplet was never sufficiently resolved to allow for line-shape analysis 

using a computer program, which is a common method for investigating such matters. At 

temperatures lower than –11 °C the signal became less resolved again. The observed 
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coupling of 3.12 Hz was consistent with reported values for alkyllithium compounds 

known to be hexamers,4 and a structurally similar compound, 2-ethylbutyllithium,

investigated by a fellow group member, known to be solely hexameric in cyclopentane 

solution.5 Based on this evidence, it was concluded that 2-ethylhexyllithium exists 

exclusively as a hexameric aggregate in cyclopentane solution. The alpha-carbon peak of 

this compound shifts upfield as much as 0.3 ppm as the temperature is lowered, however, 

no new species were formed. Therefore, this compound exists strictly as a hexamer at all 

temperatures investigated for this study.

The 1H NMR spectrum of this sample at room temperature is shown in Figure 4. 

The peak at 1.51 ppm is from the solvent. The doublet at –0.81 ppm is from protons on 

the alpha carbon. It is the only signal that would produce a lone doublet because it is split 

only by the proton attached to C2. The fact that there was only one signal in this region 

supports the conclusion reached above that there was a single aggregate in solution. The 

multiplet at 0.90 ppm is actually two overlapping triplets. This assignment was made 

based on a HETCOR experiment (Figure 5). According to the HETCOR, this region in 

the proton spectrum shows correlations with C6 and C8, whose proton signals would be 

split into triplets by the protons attached to C5 and C7, respectively. The multiplet at 1.14 

ppm correlates with C2. The broad multiplet from 1.20-1.40 ppm correlates to C3, C4, 

C5, and C7. Little effort was made to determine coupling constants of these peaks, as the

data was somewhat convoluted. The assignments of all peaks in the 1H NMR spectrum, 

including coupling constants and signal multiplicities where appropriate, are listed in 

Table 3. 
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Figure 4 – 1H NMR spectrum of 2-ethylhexyllithium at room temperature.
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Figure 5 – 13C-1H HETCOR NMR experiment at room temperature for 2-
ethylhexyllithium with carbon peaks in the F2 dimension (vertical) and proton peaks in 
the F1 dimension (horizontal).
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Table 3 - The assignment of peaks in the 1H NMR spectrum of 2-ethylhexyllithium
                including coupling constants and signal multiplicities

Protons Attached Chemical Shift Multiplicity Coupling Constant

To: (ppm) (Hz)
C1 -0.81 doublet 6.7
C2 1.14 multiplet unresolved
C3 1.39 multiplet unresolved
C4 1.32 multiplet unresolved
C5 1.33 multiplet unresolved
C6 0.91 triplet 7.3
C7 1.35 multiplet unresolved
C8 0.89 triplet 7.3

The 6Li NMR spectrum at room temperature (Figure 6) of 2-ethylhexyllithium

shows a single peak at 0.87 ppm, indicating the presence of a single aggregate in solution. 

The spectrum was referenced using a sample of t-butyllithium. The peak in the spectrum 

of t-butyllithium was arbitrarily assigned to 0 ppm. All 6Li NMR spectra acquired for this 

study were then referenced accordingly, assigning chemical shift values relative to t-

butyllithium. Low temperature studies show only a single peak, again indicating the 

presence of a single aggregate at all temperatures.

As discussed previously, a series of variable temperature experiments were run on 

these samples. 13C NMR data were acquired at –14.2 °C, -24.7 °C, -37.4 °C, -50.6 °C, 

and –65.1 °C. There were slight shifts in the resonance signals, but none shifted more 

than 1 ppm. 6Li NMR data were acquired at -24.7 °C, -37.4 °C, -50.6 °C, and –65.1 °C. 

That data included both proton coupled and decoupled experiments. There was a single 
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Figure 6 – 6Li NMR spectrum of 2-ethylhexyllithium at room temperature.
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peak at all temperatures, and the experiments without proton decoupling, which were 

used to check for the presence of lithium hydrides, showed no signs of 1H-6Li coupling.

The variable temperature experiments concluded the study of this compound. The 

key features of this investigation were the assignment of peaks in the 13C, 1H, and 6Li

NMR spectra, the assignment of the aggregation state (hexamer), the observation of any 

temperature dependence of the aforementioned resonance signals, and the lack of an 

observable effect of the chiral center at the beta position on the compounds properties. 

The final conclusion was based on comparison with studies of 2-methylbutyllithium6 in 

which multiple peaks were observed in the 6Li and 13C NMR spectra due to its chirality. 

In that study, the peak separation in the 6Li NMR spectrum was very small, on the order 

of 10-2 ppm. The 6Li NMR spectrum acquired for this study for 2-ethylhexyllithium

contained only a single peak; however, the small difference in chemical shift observed for 

2-methylbutyllithium is roughly the same order of magnitude as the resolution of the 

NMR spectra obtained for this study. There was, however, a more pronounced effect in 

the 13C NMR spectrum of 2-methylbutyllithium. In that spectrum, there were multiple 

peaks in the alpha-carbon region. Those peaks were confirmed to be the product of the 

chiral properties of the compound by comparison with results obtained for optically pure 

R-2-methylbutyllithium, in which a single alpha-carbon peak was observed. The alpha-

carbon peak separation for racemic 2-ethylbutyllithium was approximately 1.2 ppm

between the two outermost peaks. Multiple peaks were not observed in the alpha-carbon

region for 2-ethylhexyllithium; therefore, it was concluded that the chirality of this 

compound had no observable effect on the structural attributes examined here. Having 
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conducted a careful study of the alkyllithium compound, the next step was to study the 

lithium alkoxide compound.

Lithium 2-Ethyl-1-hexoxide

This compound was prepared independently as discussed in the experimental

chapter of this work. There were two reasons for the synthesis of this compound. First, it 

was not known whether the compound was soluble in cyclopentane solution. Second, the 

data obtained from this compound could be used in conjunction with the data from the

alkyllithium compound to serve as bookends so to speak, in the study of the mixed 

aggregates.

While it was only slightly soluble, enough compound went into solution to allow 

data to be acquired on the sample. The solubility of this compound was an issue that

greatly affected the quality of the NMR experimental results. There was a large amount 

of solid dispersed in this sample, which made it difficult to shim the sample well. The 

lack of a homogeneous magnetic field lead to poor signal-to-noise ratios and line

broadening. Having said that, some useful information was obtained from this sample. 

The 13C NMR spectrum at room temperature for this compound is shown in

Figure 7. The spectrum consists of nine peaks, one of which is from the solvent,

cyclopentane. While a detailed study of this compound’s chemical shift values was not 

undertaken, some assignments were made. The peak at 67.9 ppm was assigned to the 

carbon alpha to oxygen (C1), and the peaks at 10.8 and 13.9 ppm were assigned to C8 

and C6, respectively. The other chemical shift values were 23.9, 24.0, 29.9, 30.8, and 
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Figure 7 – 13C NMR spectrum of lithium 2-ethyl-1-hexoxide at room temperature.
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46.1 ppm. The real importance of this data was that the chemical shift values were 

obtained even though they were not fully assigned. This information was then used in the 

study of the mixed species containing both alkyl and alkoxy groups.

The 1H NMR spectrum acquired at room temperature contains peaks in the same 

regions as the alkyllithium compound from 0.80-2.00 ppm. The differences arise with 

peaks at 3.58 and 3.68 ppm present in the spectrum of the alkoxide. These peaks are not 

present in the spectrum of the alkyllithium compound. They have been assigned to 

protons on the alpha-carbon of the alkoxide. Also, there is no peak at –0.81 ppm, which 

would correspond to the protons attached to the alpha-carbon of the alkyllithium

compound. No further efforts were made to assign the remaining peaks in the proton 

spectrum of this compound.

The 6Li NMR spectrum of this sample at room temperature is shown in Figure 8. 

It was initially believed that the multiple peaks in this spectrum were somehow related to 

the chirality of the compound. Its achiral analog, lithium 2-ethyl-1-butoxide, was then 

prepared to answer this question. The results of the 6Li NMR experiment on that 

compound are identical to those obtained for this compound. Therefore, it was concluded 

that the peaks in the 6Li NMR spectrum were not related to chirality. 

Three possible explanations were proposed for the observed data: 1) there are 

multiple aggregates in solution, which has been observed for lithium menthoxide,7 and/or 

2) the lithium nuclei in the same aggregate are not all magnetically equivalent, or 3) the 

sample contains lithium based impurities. The third possibility seemed unlikely due to the 

similarities of data obtained for the two compounds. It is unlikely that the same 
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Figure 8 – 6Li NMR spectrum of lithium 2-ethyl-1-hexoxide at room temperature.
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contaminant would be present in the same relative amounts in two separate syntheses. 

The chemical shifts in this spectrum were noted, and no further effort was made to 

distinguish between the other two possible explanations.

Although little effort was put forth in this study relating to this compound, I 

believe its study could provide valuable insight into the aggregation states of the mixed 

species.  If the replacement of alkyl groups in alkyllithium compounds by alkoxy groups 

decreases the steric bulk of the ligands in the aggregate sufficiently to allow for the 

formation of larger aggregates, then it seems reasonable to assume that the largest 

aggregate possible would be one in which all the bulkier alkyl groups have been replaced 

by the less bulky alkoxy groups. In this case, the aggregation state of the lithium alkoxide 

compound can be thought of as an upper limit on the size of the aggregates of the mixed 

species. One possible way to determine the aggregation state of this compound is through 

cryoscopic measurements.

Alkyllithium/Lithium Alkoxide Mixed Aggregates

0.2:1 Oxygen-to-Lithium Ratio

The study of this oxygen-to-lithium ratio represents the bulk of this investigation 

regarding the mixed aggregates. While other samples were prepared containing higher 

O:Li ratios, only basic experiments were run on them. Two samples at this approximate 

ratio were prepared-one in a 5mm NMR tube, and the other in a 10mm NMR tube. 
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Unless otherwise stated, all results reported here were obtained from experiments using 

the 10mm NMR sample tube.

The 13C NMR spectrum of this sample at room temperature is shown in Figure 9. 

A detailed analysis of the peaks present in this spectrum was conducted, which led to the 

identification of three major species present in solution. Those species are the original

alkyllithium compound, a lithium alkoxide, and 3-methylheptane. The alkane was a 

product of the reaction between the alkyllithium compound and alcohol used to produce 

the alkoxides, as outlined in the experimental chapter. It was identified using chemical

shift data already reported (Table 2, p. 29). The other two species were confirmed using 

data obtained on each of those two compounds, as discussed earlier. Table 4 lists the 

assignments of peaks in the spectrum. These assignments were corroborated by general 

trends in the data obtained on samples with higher oxygen-to- lithium ratios. In that data, 

the peaks assigned to the alkyllithium compound slowly diminished, while the peaks 

assigned to the alkoxide intensified. The appearance of multiple broad peaks at

approximately 20 ppm confirmed the presence of multiple types of carbon alpha to 

lithium. Again, the broadness of those peaks was assumed to be the result of carbon-

lithium coupling. To confirm that assumption, a 13C NMR experiment was run with both

proton and 6Li decoupling at -11 °C. A similar experiment was performed at room 

temperature; however, the peak remained broad, perhaps due to inter-aggregate

exchange. At -11 °C, this process was slowed sufficiently, on the NMR timescale, to 

allow a decoupled spectrum to be obtained. The results of that experiment are shown in 
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Figure 9 – 13C NMR spectrum of a mixture of 2-ethylhexyllithium and 2-ethyl-1-
hexanol with O:Li = 0.2:1 at room temperature. Insets show expansion of alkoxide alpha-
carbon region (bottom) and alkyl alpha-carbon region (top).
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Table 4 - Assignment of peaks in the 13C NMR spectrum of 0.2:1 O:Li sample (RP020)

Chemical Alkyllithium Lithium Alkoxide 3-methylheptane Other Species

Shift (ppm) Compound Compound
10.7 C8
10.9 C8
11.2 C8
13.9 C6
14.0 C6
14.1 C6
18.9 C1
19.7 C1
20.2 C1
20.5 C1
22.6 X
23.2 C5
23.5 C5
24.1 C5
25.9 Solvent
27.1 X
28.7 X
29.8 C4 C4 & C7 C4
30.1 C7
31.2 C3
32.2 C7
34.8 C2
36.1 X
36.5 C3
39.4 C3
40.8 C2
45.9 C2
66.8 C1
67.54 C1
67.68 C1
67.75 C1
67.78 C1
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Figure 10. They indicate the presence of multiple peaks in the 13C NMR spectrum, which 

are coupled to lithium. 

Only the alpha-carbon of the alkyllithium compound would exhibit carbon-

lithium coupling. The 13C NMR spectrum of the original alkyllithium compound has only 

one peak in this region. These results show that there are carbon atoms alpha to lithium 

that are in slightly different magnetic environments. The chemical shift values for all 

peaks exhibiting carbon-lithium coupling are: 18.60, 19.31, 19.49, 19.98, and 20.31 ppm. 

These additional peaks are the result of alkoxide ligands being incorporated into the all 

alkyl aggregates. This would result in a change in the magnetic environment of the alpha-

carbon, and possibly lead to different aggregation states compared to the all alkyl

aggregate. Other experimental evidence, which supports this conclusion, will be

presented later.

At least five different types of carbon alpha to oxygen were identified (see Figure 

9). Those peaks are at 66.80, 67.54, 67.67, 67.76, and 67.95 ppm. It is probably no 

coincidence that there are as many as six peaks from carbon atoms alpha to lithium 

assuming no peaks are overlapping. These results lead to the conclusion that there could 

be as many as six different types of aggregates in solution-one all alkyl aggregate and 

five aggregates containing both alkyl and alkoxy ligands.

The 13C NMR spectrum of this sample at -11 °C (Figure 10) clearly indicates that 

there is a shift in equilibrium between aggregates as the temperature is lowered. The peak 

that appears at 66.80 ppm at room temperature (Figure 9) best exemplifies this shift. It 

decreases in intensity relative to other peaks in this region, and shifts upfield a distance of 
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Figure 10 – 13C NMR spectrum with 6Li decoupling of a mixture of 2-
ethylhexyllithium and 2-ethyl-1-hexanol with O:Li = 0.2:1 at –11 °C. Insets show 
expansion of alkoxide alpha-carbon region (bottom) and alkyl alpha-carbon region (top).
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0.20 ppm at -11 °C. The shift upfield indicates that that species is exchanging with others

further downfield in the spectrum, and that the change in temperature slows this process. 

The changes in intensity indicate shifts in the overall population of different species.

The 1H NMR spectrum (Figure 11) shows new overlapping peaks in the region 

–0.8 to –0.9 ppm, which is the region assigned to protons attached to the alkyllithium 

alpha-carbon. In the 1H NMR spectrum of the original alkyllithium compound, only a 

single doublet appeared in this region. In addition, there are multiple peaks in the region 

assigned to protons attached to the alpha-carbon of the alkoxide (3.4 to 3.6 ppm). Two 

doublets can be seen in this region, one at 3.38 ppm and the other at 3.57 ppm, and there 

is also a broad peak from 3.2 to 3.4 ppm. These two regions were the focal point of 

attempts to correlate peaks in the 13C NMR spectrum with peaks in the 6Li NMR 

spectrum using 2-D experiments. A detailed summary of those experiments will follow. 

No attempts were made to identify other peaks in this spectrum.

Another important feature of the 1H NMR spectra that were obtained was the 

temperature dependence of some of the peaks. The peaks from protons attached to the 

alpha-carbon became somewhat more resolved at -11 °C. Instead of a single broad peak 

at approximately –0.85 ppm, at least two doublets at –0.83 and –0.87 ppm can be seen 

clearly with other smaller doublets overlapping. The peaks from protons on the alkoxide 

alpha-carbon also change with temperature. The peak at 3.57 ppm decreases in intensity 

while the peak at 3.38 ppm increases. These changes are possibly the result of a shift in 

equilibrium between aggregates.
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Figure 11 – 1H NMR spectrum of a mixture of 2-ethylhexyllithium and 2-ethyl-1-
hexanol with O:Li = 0.2:1 at –11 °C. Insets show the expansion of the akoxide alpha-
proton region (left) and the alkyl alpha-proton region (right).
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The 6Li NMR spectrum shows multiple new peaks upfield from that of the 

original alkyllithium compound at 0.87 ppm (see Figure 12). The chemical shift values 

are approximately 0.85, 0.45, 0.07, -0.11, -0.31, -0.48, -0.56, -0.65, and -0.74 ppm. 

Several of the peaks are broad due to inter-aggregate exchange as previously mentioned. 

Also shown in Figure 12 is the spectrum acquired at -13 °C. It is apparent that the 

exchange process has been slowed, resulting in sharper resonance signals. At this

temperature, an additional signal at 0.24 ppm can be observed. There are also changes in 

relative peak intensities resulting from a shift in equilibrium between aggregates.

In similar experiments on the 5 mm sample, a multiplet centered at approximately 

–0.59 ppm can be seen (Figure 13). This appears to be a five- line multiplet. Experiments 

run without proton decoupling during data acquisition reveal that each peak is actually a 

doublet. This is interpreted as each of the five lithiums coupled to a single proton. Figure 

14 shows an expansion of this series of peaks along with coupling constants and chemical 

shift differences between peaks. The resolution for this spectrum was calculated to be 

approximately 0.1 Hz per data point (NP = 2176, FN = 4K, and SW = 218.8). 6Li-1H

coupling has only been observed when there is direct bonding between 6Li and 1H. These 

species were likely formed from lithium hydride elimination, and are perhaps aggregates 

containing alkoxide ligands and a single hydride ligand such as those identified

elsewhere.8 Lithium hydride elimination can occur either thermally or photochemically.6

Lithium hydride species are also present in the 10 mm sample, but in much lower 

concentration. Greater care was taken in the preparation of that sample, which probably 

led to less heat being generated; hence less thermal decomposition. Since the 
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Figure 12 – 6Li NMR spectrum of a mixture of 2-ethylhexyllithium and 2-ethyl-1-
hexanol with O:Li = 0.2:1 at room temperature (top, with 1H decoupling) and –13 °C 
(bottom, without 1H decoupling).



52

Figure 13 – 6Li NMR spectrum of a mixture of 2-ethylhexyllithium and 2-ethyl-1-
hexanol with O:Li = 0.2:1 at –12 °C with 1H decoupling (bottom) and without (top).



53

Figure 14 – Expansion of an unidentified multiplet in the 6Li NMR spectrum of a 
mixture of 2-ethylhexyllithium and 2-ethyl-1-hexanol with O:Li = 0.2:1 at –12 °C. The 
top spectrum (without 1H decoupling) shows the peak splitting of doublets. The bottom 
spectrum (with 1H decoupling) shows the difference in chemical shift between each of 
the peaks.
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concentrations of those species are low in both samples (less than 6% of the total lithium 

nuclei), they were ignored in the analysis of the other aggregates.

The goal of the remainder of the investigation of this sample was to determine the 

aggregation states of species in solution. Two different approaches were used to that end. 

One way was to try to observe coupling, which has been shown in the past to obey the 

following equation.9,10

J13C-6Li = (17 ± 2) / n

where n is the number of equivalent lithium nuclei coupled to each carbon. Therefore, if 

the magnitude of the coupling can be determined for a particular aggregate, then some 

conclusions can be drawn about its aggregation state.

A nicely resolved multiplet would facilitate the determination of coupling

constants; however, only the peak from the original alkyllithium compound was

sufficiently resolved to allow that approach to be used. The observed coupling for that 

aggregate was 3.12 Hz. That information, obtained in a straightforward manner, served as 

an internal reference for future experiments to determine the coupling constants of other 

aggregates in solution via a more complicated method. 

A series of 6Li J-modulated 13C spin echo experiments were run on the sample. 

This experiment is designed to refocus the magnetization of peaks in the 13C NMR 

spectrum, which exhibit specific coupling. This approach is similar to using an attached

proton test (ATP) to differentiate between carbon atoms with different numbers of
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hydrogen atoms attached. The first experiment was run using a delay of 0 seconds, which 

allowed all peaks to be refocused (see Figure 15, A). Then, the information already

known for the original alkyllithium compound was used to set the delay to refocus what 

were presumably hexamers (D). The peak at 19.98 ppm assigned to the original hexamer 

was indeed refocused, and another peak at 20.31 ppm was also refocused (see Figure 15). 

There were two possible explanations for the peak at 20.31 ppm being refocused. First, it 

could simply be coupled to six lithiums. However, in addition to peaks being refocused at 

their observed J values, they are also refocused at integer multiples of J. For example, the 

peak from a carbon coupled to two lithiums (m = 2) will also be refocused at m = 4, 6, 8, 

etc, although at reduced intensity for each successive multiple. Therefore, the peak at 

20.31 ppm, which was refocused for m = 6, could actually be coupled to two or three 

lithiums. These two possibilities were eliminated based on the results of experiments to 

test for m = 3 (B) and m = 4 (C). If it were coupled to two lithiums and it refocused with 

enough intensity to be observed for m = 6, then it would also show up in the test for m = 

4, which it did not. Similarly, it did not refocus in the test for m = 3. While this does not 

prove conclusively that this aggregate is a hexamer, its observed coupling constant of 

approximately 3.12 Hz is consistent with a hexameric species. 

The experiment designed to test for m = 3 shows a small peak at 20.10 ppm. This 

peak corresponds to a small peak barely visible in the same experiment with no delay. 

The signal-to-noise for this spectrum was poor, so no definite conclusion could be drawn. 

It could, however, be a sign that fluxional exchange for one of the aggregates in solution 

has been stopped. When that happens, the carbon atom would be bonded to three lithium
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Figure 15 – 6Li J-modulated 13C spin echo experiments for a mixture of 2-
ethylhexyllithium and 2-ethyl-1-hexanol with O:Li = 0.2:1 at –11 °C. A) D2 = 0. B) D2 = 
0.176 for m = 3 (trimer). C) D2 = 0.216 for m = 4 (tetramer). D) D2 = 0.324 for m = 6 
(hexamer).
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atoms. This experiment should be repeated to further investigate this matter. The test for 

m = 4 showed no peaks being refocused.

A set of experiments were run to obtain the T1 times for peaks at 19.98 and 20.31 

ppm. These values were then be used to optimize the 13C flip angle for the 6Li J-

modulated 13C spin echo experiments.  The optimal flip angle, also known as the Ernst 

angle, is designed to balance signal detection with loss of longitudinal magnetization. A 

90° flip angle allows for maximum signal detection; however, spin lattice relaxation

times may be long resulting in long delays between transients.  In some cases, it is more 

productive to use a smaller flip angle and acquire more transients, which ultimately result 

in signal- to-noise ratios similar to those obtained with a 90° pulse but in less time. In 

other words, the highest signal- to-noise ratios are achieved in the least amount of

experimental time by using the Ernst angle. The Ernst angle is given by the following 

equation.

cos a  =  exp ( -tr / T1 )

where tr is the repetition time between pulse and a is the Ernst angle.

The calculated T1 times were 0.290 ± 0.004 s and 0.164 ± 0.012 s for the peaks at 

19.98 and 20.31, respectively. Since these T1 times were short, the Ernst angle turned out 

to be the standard 90° pulse. It is interesting to note that the T1 time for the peak at 19.98 

is longer than that of the peak at 20.31 ppm. This is interpreted as the aggregate at 19.98 

ppm (the original alkyllithium hexamer) tumbling faster than the other aggregate (mixed 
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alkyl/alkoxy aggregate). The mixed aggregate is probably tumbling less rapidly because 

the replacement of an R group by the longer OR group causes a small increase in the size 

of the complex.

The other approach employed to investigate aggregation states was to determine 

the composition of each aggregate. This method was based on the comparison of integral 

values in the 13C NMR spectrum, which were used to determine the ratio of alkyl to 

alkoxy groups in a specific aggregate. In order to determine which peaks from the alkyl 

and alkoxy region were in the same aggregate, other experiments would have to be run. A 

6Li-13C HETCOR would produce the needed correlations for the alkyl alpha-carbon

region; however, that experiment was prohibitively long. It would also not show the 

correla tion between peaks in the alkoxy alpha-carbon region. A less direct, but equally 

effective method was to correlate the 13C alpha-carbon peaks in both the alkyl and alkoxy 

region, which had already been assigned, with the 1H peaks using a 1H-13C 2D HETCOR 

experiment. The 1H peaks were then correlated to the 6Li peaks using a HOESY 2-D

experiment. The results of those two experiments were then used to correlate 6Li peaks 

directly to their counterparts in the 13C NMR spectrum.

Two separate 1H-13C HETCOR experiments were performed: one with, and one 

without 6Li decoupling. The experiment with lithium decoupling during data acquisition 

was used to correlate peaks in the alkyl alpha-carbon region. An expansion of the region 

of interest can be seen in Figure 16. It shows the correlation of the three most intense 

signals in the alpha-carbon region of the 13C NMR spectrum with their corresponding 

signals in the 1H NMR spectrum. The peaks in the proton spectrum at –0.83, -0.85, and



59

Figure 16 – Expansion of alkyl alpha-carbon region of 13C-1H HETCOR with 6Li
decoupling of a mixture of 2-ethylhexyllithium and 2-ethyl-1-hexanol with O:Li = 0.2:1 
at –11 °C. The F1 dimension (vertical) shows the 1H chemical shift values for cross 
peaks, and the F2 dimension (horizontal) shows the corresponding 13C chemical shifts. 
The top spectrum was run with NT = 32, NI = 128, resulting in better resolution, and the 
bottom was run with NT = 128, NI = 64, resulting in better signal-to-noise.
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–0.87 ppm are from protons attached to carbon atoms whose peaks are at 19.98, 19.49, 

and 20.31 ppm, respectively. Also shown in Figure 16 is approximately the same region 

from another experiment, which resulted in better signal- to-noise but less resolution. The 

number of increments was reduced (1H dimension) and the number of transients was 

increased. This spectrum contains at least five cross-peaks in the alkyl alpha-carbon

region, further bolstering the evidence for multiple aggregates in solution.

A standard 1H-13C 2D HETCOR experiment was used to correlate peaks in the 

alkoxy alpha-carbon region (see Figure 17). Two cross-peaks are clearly visible. The 

peak in the 13C NMR spectrum at 66.63 ppm correlates with the peak at 3.57 ppm in the 

1H NMR spectrum. This correlation is unambiguous. The other cross peak seems to be a 

conglomeration of the remainder of 13C peaks correlating with a broad range in the 1H

NMR spectrum. Therefore, no other unambiguous assignments could be made.

Having shown some connections between the 1H and 13C NMR spectra, the next

step was to try to connect the 1H NMR spectrum to the 6Li NMR spectrum. This was 

accomplished using a 2-D heteronuclear NOESY (HOESY). This experiment detects 

through-space interactions between nuclei. The protons on the alpha-carbon of both the 

alkoxy and alkyl ligands were believed to be close enough in proximity to interact with 

the lithium nuclei. A full spectrum of this NMR experiment is shown in Figure 18.

A close examination of the alkyl alpha-carbon region shows four correlations 

(Figure 19). The peaks at 0.85, 0.45, -0.11, and –0.31 ppm in the 6Li NMR spectrum 

correspond to peaks at –0.83, -0.83, -0.87, and –0.90 ppm in the 1H NMR spectrum, 

respectively. A similar analysis of the alkoxy alpha-carbon region shows only two 
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Figure 17 – Expansion of alkoxy alpha-carbon region of 13C-1H HETCOR, with 
6Li decoupling, of a mixture of 2-ethylhexyllithium and 2-ethyl-1-hexanol with O:Li = 
0.2:1 at –11 °C. The 1H (vertical) and 13C (horizontal) chemical shift values for cross 
peaks are shown in ppm.
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Figure 18 – 1H-6Li HOESY of a mixture of 2-ethylhexyllithium and 2-ethyl-1-
hexanol with O:Li = 0.2:1 at –11 °C. The F1 dimension (horizontal) and F2 dimension 
(vertical) show the chemical shift values for 1H and 6Li, respectively, in ppm.
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Figure 19 – Expansion of alkyl alpha-proton region of 1H-6Li HOESY of a 
mixture of 2-ethylhexyllithium and 2-ethyl-1-hexanol with O:Li = 0.2:1 at –11 °C. The 
F1 dimension (horizontal) and F2 dimension (vertical) show the chemical shift values for
1H and 6Li, respectively, in ppm.
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correlations. The peaks at -0.11 and –0.31 ppm correlate with peaks at 3.57 and 3.31 

ppm, respectively. The other peaks, which should show some correlation, were too low in 

intensity to do such.

From this data, it was shown that the peak at -0.11 ppm in the 6Li NMR spectrum 

correlated with peaks at 20.31 and 66.63 ppm in the 13C NMR spectrum. While other 

connections could be made, no other aggregates were unambiguously determined. Since 

the alkyl and alkoxy alpha-carbon peaks from a single aggregate were now known, an 

integration of the 13C NMR spectrum would give the approximate ratio between alkyl and 

alkoxy ligands in that aggregate.

The 13C NMR experiment used to obtain integral values was run with both proton 

and 6Li decoupling on during acquisition, but off at other times to prevent the buildup of 

NOE, which might affect peaks differently. A delay between transients equal to the 

acquisition time was also used to allow time for the NOE built up during acquisition to 

dissipate. The ratio of the aforementioned peaks was 5.1 to 1, alkyl to alkoxy. This result 

is consistent with what was expected based on the 6Li J-modulated 13C spin echo 

experiments. Based on those experiments, this aggregate was determined to be a

hexamer. From this evidence it has been concluded that this aggregate is a hexamer with 

one alkoxy ligand and five alkyl ligands.

These methods proved fruitful for the determination of the aggregation state of 

one of the species in solution. It is my belief that similar analysis of samples with higher 

oxygen-to- lithium ratios will yield further information on other species in solution. As 

the alkoxide ligand concentration is increased, some of the low intensity peaks in this 
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sample should intensify leading to better signal- to-noise ratios. The low intensities of 

some peaks greatly hampered efforts to study those species.

0.4:1 Oxygen-to-Lithium Ratio

The 13C NMR spectrum for this sample, shown in Figure 20, contains the same 

peaks in the alkyl alpha-carbon region as the 0.2:1 O:Li sample, but with slightly 

different intensities. The chemical shift values are: 18.19, 18.60, 19.48, 20.00, and 20.29 

ppm. The predominate alkyl species in this sample appears to be the hexameric mixed 

aggregate identified in the 0.2:1 O:Li sample at 20.31 ppm. While no experiments were 

run to positively identify the species as such, the peak is at approximately the same 

chemical shift (20.29 ppm). The majority of original alkyllithium compound appears to 

have been consumed at this point. Of the other smaller peaks associated with alkyl alpha-

carbon atoms (18.19, 18.60, and 19.48 ppm), the peak at 18.19 ppm seems to have 

increased the most between the two samples. It is now roughly of the same intensity as 

the other small peaks, whereas in the first sample it was negligible.

The alkoxide alpha-carbon region of this sample also looks similar to the previous 

sample. The peaks are slightly more intense in this spectrum, as one would expect with a 

higher concentration of alkoxide ligand, but are at approximately the same chemical 

shifts. One major difference between the 0.2:1 and 0.4:1 O:Li samples is that there is a 

single peak at 66.63 ppm in the first, while there are two peaks in the second at 66.53 and 

66.64 ppm. This would suggest that there is possibly another aggregate similar to the 

hexamer identified earlier. 
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Figure 20 – 13C NMR spectrum of a mixture of 2-ethylhexyllithium and 2-ethyl-1-
hexanol with O:Li = 0.4:1 at –12 °C.



67

The peaks associated with 3-methylheptane become more pronounced in this 

sample, and even more so as the oxygen content is increased, because it is a byproduct of 

the synthesis of the alkoxide ligand. Although it was not attempted for this project, it may 

be possible to remove this compound by degassing the sample completely on the high 

vacuum line. In this case, it did not interfere with data analysis.

The 6Li NMR spectrum is shown in Figure 21. The upfield peaks associated with 

the alkoxide containing species grew in intensity. This spectrum clearly shows that the 

original alkyllithium compound (0.85 ppm) has been almost entirely consumed. There are 

high concentrations of species, other than those already identified, present in this sample. 

0.6:1 Oxygen-to-Lithium Ratio

The alkyl alpha-carbon region of this sample contains major peaks at 18.19 and 

20.25 ppm (see Figure 22), as well as smaller peaks at 17.75, 18.55, and 19.89 ppm. A 

sample at this oxygen-to- lithium ratio is perhaps the best candidate to begin further study 

of this system for two reasons. First, the peak at 20.25 ppm should be the same hexameric 

mixed aggregate contained in the 0.2:1 and 0.4:1 O:Li samples already discussed and can 

be studied further. Second, the peak at 18.19 ppm, which has not been studied, exhibits 

fairly good signal-to-noise, which can be very advantageous when running some of the 

experiments described here.

The alkoxide alpha-carbon region shows multiple new peaks from 67.2 to 67.8 

ppm. In addition to the three peaks clearly visible in the 0.2:1 O:Li sample at 67.42, 
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Figure 21 – 6Li NMR spectrum, with proton decoupling, of a mixture of 2-
ethylhexyllithium and 2-ethyl-1-hexanol with O:Li = 0.4:1 at –12 °C.
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Figure 22 – 13C NMR spectrum of a mixture of 2-ethylhexyllithium and 2-ethyl-1-
hexanol with O:Li = 0.6:1 at –12 °C.
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67.57, and 67.64 ppm, there are new peaks at 67.24, 67.29, 67.31, 67.68, and 67.73 ppm. 

Some of these peaks overlap, so there may be more.

The 6Li NMR spectrum for this sample (Figure 23) is more complicated than that 

of the 0.4:1 O:Li sample. It contains many of the same peaks, however, it also contains 

many smaller peaks in between the others. The peak associated with the original

alkyllithium compound is totally absent in this spectrum, which indicates that all

remaining alkyl ligands are in aggregates containing alkoxide ligands. There is also 

increased hydride concentration in this sample.

0.8:1 Oxygen-to-Lithium Ratio

Virtually all the original alkyllithium compound has been consumed at this O:Li 

ratio. Only two small peaks remain in the alkyl alpha-carbon region of the 13C NMR 

spectrum (Figure 24). Those peaks are at 18.52 and 19.44 ppm. There are also fewer 

peaks in the alkoxide alpha-carbon region indicating that overall fewer aggregates are 

present. The peak at 67.57 ppm is likely a mixed aggregate, and the peaks at 67.88, 67.94 

and 67.98 ppm are probably all alkoxide aggregates.

The region of the 1H NMR spectrum assigned to protons attached to the alkyl 

alpha-carbon atoms shows two very small peaks at –0.75 and –0.88 ppm. The low

intensity of peaks in this region further indicates that most of the alkyllithium compound 

has been consumed. The region associated with protons on the alkoxide alpha-carbon

atoms shows a large unresolved peak from 3.48 to 3.65 ppm. This is the result of the 

overlap of peaks from different species in solution.
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Figure 23 – 6Li NMR spectrum of a mixture of 2-ethylhexyllithium and 2-ethyl-1-
hexanol with O:Li = 0.6:1 at –12 °C with 1H decoupling (bottom) and without (top).
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Figure 24 – 13C NMR spectrum of a mixture of 2-ethylhexyllithium and 2-ethyl-1-
hexanol with O:Li = 0.8:1 at room temperature.
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The 6Li NMR spectrum for this sample is shown in Figure 25. The major peaks 

are in the same region as peaks for the alkoxide that was synthesized independently. This 

spectrum also shows the presence of the hydride species referred to earlier. The multiplet 

centered at –0.59 ppm is believed to be this species, but no experimental evidence was 

collected to support that conclusion. 

Conclusion

Three major questions have been answered by this study concerning 2-

ethylhexyllithium. Branching at the beta-carbon in this compound has successfully

limited the number of aggregates present in solution compared to straight chain alkyl 

groups such as n-propyllithium, which exists as hexamers, octamers, and nonamers in 

hydrocarbon solution.11 It has been shown that 2-ethylhexyllithium exists as a single 

aggregate at all temperatures studied. Furthermore, based on the observed coupling the 

aggregation state of this compound has been assigned as six. Second, this study has 

shown that the optical activity of this compound has had no observable effect on any of 

the structural attributes examined here. Finally, it has been clearly demonstrated that 2-

ethylhexyllithium and lithium 2-ethylhexoxide form mixed aggregates in solution, when 

the alkoxide is formed in situ.

Careful study of a sample with an oxygen-to- lithium ratio of 0.2:1 led to the 

determination of the aggregation state of one of the mixed aggregates. It was shown that

two peaks in the 13C NMR spectrum, one in the alkyl alpha-carbon region and one in the 

alkoxide alpha-carbon region, were from the same aggregate. This was determined 



74

Figure 25 – 6Li NMR spectrum of a mixture of 2-ethylhexyllithium and 2-ethyl-1-
hexanol with O:Li = 0.8:1 at room temperature.
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through data correlations between 1H, 13C, and 6Li NMR spectra. The correlations

between spectra were made using 2-D NMR experiments. The 1H NMR spectrum was 

correlated with the 13C NMR spectrum using HETCOR experiments, some with lithium 

decoupling. The 1H NMR spectrum was then correlated with the 6Li NMR spectrum 

using a HOESY experiment. After showing those correlations, the integral values for the 

two peaks, obtained through a gated decoupled 13C NMR experiment, were compared, 

and shown to be in a ratio of five-to-one alkyl-to-alkoxide. That information and

information obtained about the observed carbon- lithium coupling constant through a 6Li

J-modulated 13C spin echo experiment led to the determination that that aggregate was a 

hexamer with five alkyl groups and one alkoxy group.

The aggregates already identified continued to be present in the sample with an 

oxygen-to- lithium ratio of 0.4:1. The hexameric mixed aggregate appears to be the most 

abundant species in this sample, and the original alkyllithium compound has decreased 

significantly. Other aggregates are present in this sample as well; however, no attempts 

were made to assign their aggregation states.

The sample with an oxygen-to- lithium ratio of 0.6:1 offers the most promise for 

future study. Two mixed aggregate peaks in the alkyl alpha-carbon region of the 13C

NMR spectrum are present with significant intensities. The increased signal-to-noise of 

those peaks may make it possible to obtain useful information regarding their carbon-

lithium coupling constants through 6Li J-modulated 13C spin echo experiments. Their 

increased intensities would also shorten experimental times. One of the peaks is from the 

mixed aggregate already identified, so it could be used as an internal reference. The other 
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is present in samples with lower oxygen-to-lithium ratios, but it is most abundant at this 

particular oxygen-to- lithium ratio.

The number of aggregates containing alkyl groups has decreased dramatically in 

the sample with an O:Li ratio of 0.8:1. Only two peaks remain visible in the alkyl alpha-

carbon region of the 13C NMR spectrum. This sample could provide valuable information 

as well. Because there are only two peaks in that region of the 13C NMR spectrum, it may 

be fairly straightforward to determine their counterparts in the alkoxy alpha-carbon

region, which is fairly well resolved. An analysis similar to the one carried out on the 

sample with an oxygen-to- lithium ratio of 0.2:1 could be used. 

Finally, the compound 2-ethyl-1-hexoxide was shown to be slightly soluble in 

cyclopentane solution. The 6Li NMR spectrum showed multiple peaks, which could be 

from different aggregates in solution or from lithium nuclei within the same aggregate 

that are not magnetically equivalent. 



77

WORKS CITED

1. Lochmann, L.; Trekaoval, J. J. Organomet. Chem. 1987, 326, 1.

2. Thomas, R. D.; Clarke, M. T.; Young, T. C. J. Organometal. Chem. 1987, 328,
239.

3. Simons, W. W. In The Sadtler Guide to Carbon 13 NMR Spectra; Sadtler:
Philadelphia, PA, 1983, 11.

4. Thomas, R. D. In Isotopes in the Physical and Biomedical Sciences; Buncel, E.;
Jones, J. R., Eds.; Elsevier, Amsterdam, 1991, 2, 367.

5. Ferreira, A. M. Sc. Thesis, University of North Texas, Denton, TX, 2001.

6. Nguyen, H. D. Ph. D. Dissertation, University of North Texas, Denton, TX, 1997.

7. Pannell, D. K. Ph. D. Dissertation, University of North Texas, Denton, TX, 1992.

8. DeLong, G. T.; Hoffman, D.; Nguyen, H. D.; Thomas, R. D. J. Am. Chem. Soc.
1997, 119, 11998.

9. Bauer, W.; Winchester, W.; Schleyer, P. v. R. Organometallics 1987, 6, 2371.

10. Bauer, W.; Feigel, M.; Muller, G.; Schleyer, P. v. R. J. Am. Chem. Soc. 1988,
110, 6033.

11. Fraenkel, G.; Henrichs, M.; Hewitt, J. M.; Su, B. M.; Geckle, M. J. J. Am. Chem.
Soc. 1980, 102, 3345.



 78

BIBLIOGRAPHY 

 

Bauer, W.; Winchester, W.; Schleyer, P. v. R. Organometallics 1987, 6, 2371. 
 

Bauer, W.; Feigel, M.; Muller, G.; Schleyer, P. v. R. J. Am. Chem. Soc. 1988, 110, 6033. 
 

Bauer, W.; Schleyer, P. v R. Adv. Carbanion Chem. 1992, 1, 89. 
 

Brown, T. L.; Dickerhoof, D. W.; Bafus, D. A.; Morgan, G. L. Rev. Sci. Insti. 1962, 33, 
 491. 
 

Delong, G. T. Ph. D. Dissertation, University of North Texas, Denton, TX, 1992. 
 

DeLong, G. T.; Pannell, D. K.; Clarke, M. T.; Thomas, R. D. J. Am. Chem. Soc. 1993, 
 115, 7013. 
 

DeLong, G. T.; Hoffman, D.; Nguyen, H. D.; Thomas, R. D. J. Am. Chem. Soc. 1997, 
 119, 11998. 
 

Examples of pharmaceuticals. (a) antidepressant doxepin: British Patent  
1,085,406 (to Chas. Pfizer & Co., Inc.). Sittig, M. Pharmeceutical MFG.  
Encycl., Noyes Data Corp., Park Ridge, N.J., 1979, 216. (b)  
hypocholesterolemic agent gemfibrozil: Cregar, P. L. (to Park Davis &  
Co.), U.S. Patent 3,674,836. Sungerbey, K. Drugs of the Future 1976, 1,  
520. 

 

Ellington, D. H. Ph. D. Dissertation, University of North Texas, Denton, TX, 1990. 
 

Fraenkel, G.; Henrichs, M.; Hewitt, J. M.; Su, B. M.; Geckle, M. J. J. Am. Chem. Soc.  
 1980, 102, 3345. 
 

Fraenkel, G.; Henrichs, M.; Hewitt, J. M.; Su, B. M. J. Am. Chem. Soc. 1984, 106, 255. 
 

Gorrell, I. B. Annu. Rep. Prog. Chem., Sect. A: Inorg. Chem. 1994, 90, 3. 



 79

Gunther, H.; Moskau, D.; Bast, P.; Schmatz, D. Angew. Chem. 1987, 26, 1212. 
 

Hassig, R.; Seebach, D. Helv. Chim. Acta. 1983, 66, 2269. 
 

Hoffman, D; Kottke, T.; Lagow, R. J.; Thomas, R. D. Angew. Chem., Int. Ed. Engl. 1998, 
 37, 11 
 

Jackman, L. M.; Scarmoutzos, L. M. J. Am. Chem. Soc. 1984, 106, 4627. 
 

Kottke, T.; Stalke, D. Angew. Chem., Int. Ed. Engl. 1993, 32, 580. 
 

Lochmann, L.; Trekaoval, J. J. Organomet. Chem. 1987, 326, 1. 
 

Lubomir, L. Eur. J. Inorg. Chem. 2000, 1115. 
 

Morton, M. Anionic Polymerization: Principles and Practice, Academic Press:  
 New York, 1983. 
 

n-Butyllithium in Organic Synthesis, Lithium Corporation of America, Gastonia, 
 N. C., 1982. 
 

Nguyen, H. D. Ph. D. Dissertation, University of North Texas, Denton, TX, 1997. 
 

Olsher, U.; Izatt, R. M.; Bradshaw, J. S.; Dalley, N. K. Chem. Rev. 1991, 91, 137. 
 

Pannell, D. K. Ph. D. Dissertation, University of North Texas, Denton, TX, 1992. 
 

Pearson, R. G.; Gregory, C. D.  J. Am. Chem. Soc. 1976, 98, 4098. 
 

Peyton, G. D.; Glaze, W. H. Theoret. Chim. Acta. 1969, 13, 259. 
 

Schiemenz, B.; Power, P. P. Angew. Chem., Int. Ed. Engl. 1996, 35, 2150.  
 

Schleyer, P. v R. Pure Appl. Chem. 1984, 56, 151. 
 

Schleyer, P. v. R.; Gregory, K.; Snaith, R. Adv. Inorg. Chem. 1991, 37, 47. 



 80

 

Schleyer, P. v. R.; Bauer, W.; Winchester, W. Organometallics 1987, 6, 2371. 
 

Seebach, D. Angew. Chem., Int. Ed. Engl. 1988, 27, 1624. 
 

Setzer, W. N.; Schleyer, P. v R. Adv. Organometal. Chem. 1985, 24, 353. 
 

Simons, W. W. In The Sadtler Guide to Carbon 13 NMR Spectra; Sadtler: Philadelphia,  
PA, 1983, 11. 

 

Thomas, R. D. In Isotopes in the Physical and Biomedical Sciences; Buncel, E.; Jones, J.  
 R., Eds.; Elsevier, Amsterdam, 1991, 2, 367. 
 

Thomas, R. D.; Bates, T. F.; Clarke, M. T. J. Am. Chem. Soc. 1998, 110, 1851. 
 

Thomas, R. D.; Clarke, M. T.; Jensen, R. M.; Young, T. C. Organometallics 1986, 5,  
 1851. 
 

Thomas, R. D.; Huang, H. J. Am. Chem. Soc. 1999, 121, 11239. 
 

Thomas, R. D.; Jensen, R. M.; Young, T. C. Organometallics, 1987, 6, 565. 
 

Thomas, R. D.; Ellington, D. H. Magnetic Resonance in Chemistry, 1989, 27, 628. 
 

Thomas, R. D.; Clarke, M. T.; Young, T. C. J. Organometal. Chem., 1987, 328, 239. 
 

Thornton, T. L. Masters Thesis, University of North Texas, Denton, TX, 1997. 
 

Van Geet, A. L. Anal. Chem. 1968, 40, 2227. 
 

Wakefield, B. J., The Chemistry of Organolithium Compounds, Pergamon Press, Oxford,  
1974. 

 

Wakefield, B. J., Organolithium Methods, Academic, Oxford, 1988. 
 

 



 81

Wardell, J. L., Comprehensive Organometallic Chemistry, Wilkinson, G., Ed.; Pergamon 
 Press: New York, 1982, Vol 1, 43. 
 

Weiss, E. Angew Chem., Int. Ed. Engl. 1993, 32, 1501. 
 

 


