

APPROVED:

Dr. John Windsor, Major Professor
Dr. Robert Pavur, Minor Professor
Dr. Melinda Cline, Major Professor
Dr. John Windsor, Chair of the Business Computer

Information Systems Department
Dr. Wayne Spence, Coordinator of the Ph D. Program in

the Business Computer Information Systems
Dr. Jared Hazleton, Dean of College of Business
C. Neal Tate, Dean of the Robert B. Toulouse School of

Graduate Studies

AN ANALYSIS OF THE EFFECT OF ENVIRONMENTAL AND
SYSTEMS COMPLEXITY ON INFORMATION SYSTEMS FAILURES

Xiaoni Zhang

 Dissertation Prepared for the Degree of

DOCTOR OF PHILOSOPHY

UNIVERSITY OF NORTH TEXAS

August 2001

Zhang, Xiaoni, An Analysis of the Effect of Environmental and Systems

Complexity on Information Systems Failures. Doctor of Philosophy (Business Computer

Information Systems), August 2001, 116 pages, 18 reference pages.

Companies have invested large amounts of money on information systems

development. Unfortunately, not all information systems developments are successful.

Software project failure is frequent and lamentable. Surveys and statistical analysis

results underscore the severity and scope of software project failure. Limited research

relates software structure to information systems failures. Systematic study of failure

provides insights into the causes of IS failure. More importantly, it contributes to better

monitoring and control of projects and enhancing the likelihood of the success of

management information systems. The underlining theories and literature that contribute

to the construction of theoretical framework come from general systems theory,

complexity theory, and failure studies.

100 COBOL programs from a single company are used in the analysis. The

program log clearly documents the date, time, and the reasons for changes to the

programs. In this study the relationships among the variables of business requirements

change, software complexity, program size and the error rate in each phase of software

development life cycle are tested. Interpretations of the hypotheses testing are provided

as well.

 The data shows that analysis error and design error occur more often than

programming error. Measurement criteria need to be developed at each stage of the

software development cycle, especially in the early stage. The quality and reliability of

software can be improved continuously. The findings from this study suggest that it is

imperative to develop an adaptive system that can cope with the changes to the business

environment. Further, management needs to focus on processes that improve the quality

of the system design stage.

 i

Copyright 2001

by

Xiaoni Zhang

 ii

ACKNOWLEDGMENTS

I am grateful to my committee members for their comments and suggestions. I

have benefited greatly from their advice. I would like to thank Dr. John Windsor for his

guidance. I would like to thank Dr. Robert Pavur for generously investing his time with

me and appreciate Dr. Melinda Cline for her counseling. It has been a pleasure working

with my committee members.

I thank Baojian Xiang, my husband and friend. His support and encouragement

has seen me through tumultuous times. This dissertation would not have been possible

without my parents, Jianghe Zhang and Li Li. I am indebted to my mother for taking care

of my baby so that I could have time to work on my dissertation. I have been fortunate to

have brothers Sheng Zhang, Jie Zhang and sisters, Xiaowen Zhang and Xiaofang Zhang

who give me support and encouragement.

 iii

TABLE OF CONTENTS

 Page

ACKNOWLEDGMENTS... ii

Chapter

1. INTRODUCTION... 1
Definition of Terms………………………………………………………… 2
Purpose of Research………………………………………………………... 2
Problems Motivating This Study…………………………………………… 3
Research Questions…………………………………………………………. 5
Significance of the Problem………………………………………………… 6
Study Scope………………………………………………………………… 8

2. LITERATURE REVIEW.. 9

Introduction………………………………………………………………… 9
Failure Concepts…………………………………………………………… 9
Organization an Behavioral Perspective…………………………………… 12
Project Management……………………………………………………….. 14
Project Abandonment ……………………………………………………… 19
Failure Factors……………………………………………………………… 21
IS implementation………………………………………………………….. 25
Complexity theory………………………………………………………….. 27
General Systems Theory………………………………………………….… 34
Software Reliability and Maintenance……………………………………… 36
Software Volatility…………………………………………………………. 40
Software Development Life Cycle…………………………………………. 42
Summary……………………………………………………………………. 43

3. RESEARCH FRAMEWORK... 44
Theoretical Framework…………………………………………………….. 44
Research Framework………………………………………………………. 45
Independent Variables……………………………………………………… 47
Dependent Variables……………………………………………………….. 48

4. RESEARCH METHODOLOGY.. 51
Research Design……………………………………………………………. 51
Characteristics of the 100 COBOL Programs……………………………… 52
Program Sampled..…………………………………………………………. 52
Unit of Analysis……………………………………………………………. 53

 iv

Analysis Failure……………………………………………………………. 54
Design Failure……………………………………………………………… 56
Programming Failure………………………………………………………. 57
Software Complexity………………………………………………………. 59
Business Requirements Change……………………………………………. 59
Technology…………………………………………………………………. 61
Design Failure Hypotheses..……………………………………………….. 63
Analysis Failure Hypotheses..……………………………………………… 67

 Programming Failure Hypotheses………………………………………….. 68
 Hypotheses Testing Total Failure…………………………………………… 71
 Hypotheses Testing Using Age to Predict Failure..………………………… 73
 Summary……………………………………………………………………. 80

5. CONCLUSIONS……………………………………...…………………… 83

Introduction………………………………………………………………… 83
Contributions..……………………………………………………………... 84
Limitations……………………………………………………………..….. 84
Future Directions…………………………………………………………... 86
Implications………………………………………………………………… 88

REFERENCES.. 99

 1

CHAPTER 1

INTRODUCTION

The demand for information systems has increased steadily as companies strive to

improve performance and efficiency. Companies have invested significant amounts of

money in information systems development. Unfortunately, not all information systems

development efforts are successful. This research explores the problems and failures of

management information systems development efforts. "The short history of computing

shows that technological development does not lead inevitably to successful information

systems in organizations and society" (Fitzgerald, Hirschheim, Mumford, and Wood-

Harper, 1985).

Management information systems are dynamic social systems (Davis et al. 1992)

with many factors involved in their development and operation. Different frameworks

(Lyttinen & Hirsheim 1988; Davis et al. 1992) have been developed to explore failures of

management information systems. However, since IS failure is a less appealing topic of

research than IS success, the academic literature on this topic is limited. Because IS

failure has the potential for significant losses for companies, and IS failure occurs in

companies of all sizes, it is imperative to better understand information systems failures.

Findings from this study are expected to help researchers develop guidelines to increase

the likelihood of information system development success.

 2

Definition of Terms

There is no universally accepted definition of information systems failure. Lucas

(1975) argues that management information systems fail if they are not used, even if they

function well. Alter and Ginzberg (1978) view failure as occurring when the potential

benefits of management information systems are not realized. Bailey and Pearson (1983)

indicate that failure occurs when users’ attitudes are negative. Markus, like Bailey and

Pearson (1987), sees failure as substantial user resistance to management information

systems. According to Gladden (1982), failure occurs when a functioning information

system is not delivered. Lyytinen and Hirschheim (1987) argue that the widely employed

concepts of IS failure are vague, point out that even those (Morgan and Soden 1973;

Lucas 1975; Sanders 1984; Markus and Robey 1988; Ginzberg and Schultz 1987)

systematically exploring management information systems failure use a limiting concept

of failure.

In this study, failure is defined as all planned and unplanned modifications of the

program code contained within the system. The term, Management Information System

refers to a discrete set of application programs. Programs are a series of instructions or

statements which, when decoded by a computer or a translation program cause the

computer to do work (Fox 1982). A system is a set of programs that interact with each

other.

Purpose of the Research

Failure has been studied more extensively in other disciplines than in

management information systems. In civil engineering, the study of bridge failure has

 3

provided important information leading to the redesign of bridges (Petrowski 1985).

Lessons from car crashes due to mechanic failures are incorporated into designing better,

safer cars. In education, failure has been studied to improve educational practice and

produce better student performance (Anderson 1985; Ives and Olson 1984; Baenen,

1992; Brookhart 1997; Elias 1998). In electrical engineering, it is well recognized that

system failures require a thorough analysis (Titus 1997). We can learn from studying

failure. (Ewusi-Mensah and Przasnyski 1994; Davis et al 1992; Boddie1987). A

systematic study of failures provides insights into the causes of IS failure. More

importantly, it contributes in better monitoring and controlling of projects and enhancing

the likelihood of the success of management information systems.

This study explores the relationship between stages of the IS development life

cycle and IS failures. The focus will be on finding the relationships among the internal

complexity of the software system, the change in the business environment, and the

frequency of failure.

Problem Motivating This Study

“Our achievements speak for themselves. What we have to keep track of are our
failures, discouragements and doubts. We tend to forget the past difficulties, the
many false starts, and the painful groping. We see our past achievements as the
end result of a clean forward thrust, and our present difficulties as signs of decline
and decay.”

 -Eric Hoffer Reflections on the Human Condition, p157 (1973)

Standish group (1995) provided the following statistics:

• $250 billion is spent annually on 175,000 I.T. applications in the USA �

• $140 billion is wasted due to lack of best practices and

 4

• $110 billion is the value of the work completed -- less than half of the total
investment

• Canceled Projects : USA - 31%

Management information system failures are a well-acknowledged phenomenon.

Due to the fear of negative publicity and other practical reasons, research on failed

management information systems is less plentiful than research on successful information

systems. Companies either do not feel comfortable discussing their failures or they do not

have well-documented failure project. Often, companies treat failed information systems

as occurrences to be forgotten. In the United Kingdom, problems with IS failure within

the public sector over the last twelve years have cost the taxpayers more than £5 billion

(Collins, 1994). Ewusi-Mensah and Przasnyski (1995) reported that IS failures exist in

many organizations. The impact of the failure of management information systems is not

limited to financial loss; it also has an emotional impact too (Boddies 1987; Gladden

1982; Glaser 1984; McFarlan 1981).

A study done by the Standish Group showed 31% of new IS projects are cancelled

before completion at an estimated combined cost of $81 billion (PC Week 1994).

Furthermore, 52.7% of the projects completed are 189% over budget at an additional cost

of $59 billion. These statistics reflect that the software engineering industry has

experienced serious problems with information systems development.

Software development problems include major system development efforts such

as:

- American Airlines' failed reservation system, CONFIRM

- The 4GL New Jersey Department of Motor Vehicles System

 5

- The NCR inventory system

- The next-generation FAA Air Traffic Control System

It is important to analyze failed IS development projects (Abdel-

Hamid and Madnick 1990; Boddies 1987). Boddies (1987) indicates that “failed projects

need more than explanation or rationalization if they are to teach any lessons. Projects

that fail need an organized effort to uncover what really caused the failure. What these

projects need is a post-mortem.”

Ewusi-Mensah and Przasnyski (1995) wrote "Individuals as well as organizations

learn by examining their past mistakes, errors or failures and by taking the necessary

corrective actions to forestall future recurrence of those activities under the same or

similar failed outcomes in the future.” According to the authors, “A study of how and

why a particular project failed will, in essence, be the best prescription against a

repetition of the same or similar problems.”

Research Question

The major contribution of this study is that it explores the failure from the systems

development life cycle, understanding failures from the business requirement changes.

This study builds upon this work of prior authors by asking:

(1) What is the relationship between program complexity and failure?

(2) What is the relationship between the stages of the systems development life cycle

and failure?

Saul (1991) and Davis et al. (1992) propose that the technology and business

environment have an effect on system failure, but empirical work to validate this

framework has not yet been performed. Previous research has not connected software

 6

complexity with failure. Most software failure studies focus on project management, and

quite often failure is defined as time and/or budget overruns (Wright, 1998; Gary 1998).

No studies have addressed software failures by using the frequency of change of the

software program during various phases of the software development life cycle to better

understand IS failures.

This research uses a software maintenance log to gain insight into this research

question. Maintenance is an ongoing activity occurring in any organization and it

represents a significant investment. This study addresses the failure issue from the

software development life cycle, combining technology and business requirement

changes.

Significance of the Problem

Software project failures are frequent and lamentable. Surveys and statistical

analysis results manifest the severity and the scope of software project failure. It is not

uncommon to find failure examples in any industry. Industry surveys from organizations

such as the Standish Group, as well as statistical data from metrics gurus such as Capers

Jones, Howard Rubin, Paul Strassmann, and Larry Putnam, suggest that the average

project is likely to be 6 to 12 months behind schedule and 50 to 100 percent over budget.

If a project starts off with high risk factors and insufficient planning, failure is likely.

Even if a project begins in a reasonably calm, rational fashion, there’s a good chance that

it will deteriorate into a failed project as time goes on – either because the original

schedule and the budget will turn out to have been highly unrealistic, or because

additional business requirements will be added to those upon which the original schedule

and estimate were based.

 7

Organizations make a substantial investment when developing information

systems to support business goals. Unfortunately, even with the advancement in

technology and development methodologies, management information systems

development continues to fail. Beynon-Davies (1995) writes that “management

information systems failure and the study of this phenomenon is important because of its

apparent frequency; it is significant because they act as an important resource for

validating information systems development practice.”

Typically, software development and maintenance consumes more resources than

does hardware (Mellor 1987). Software is the system driver because it defines the

functionality. Stories of failure attract negative publicity. Valid and quantitative methods

need to be developed to evaluate the probability of system failure. Moreover, we do not

know all the possible causes of software failure. Identifying the causes and factors of

software failure can provide methods, techniques, and strategies to reduce the likelihood

of system failure.

It is important to study management information systems failures systematically

in order to improve the understanding of failures so that preventive and corrective

strategies may be developed. The findings from this study will provide answers regarding

whether technology and/or business requirements have an effect on IS failures. Failures

can be avoided or minimized if failure factors are controlled and monitored. Monitoring

failure indicators from an organizational perspective enhances the probability of

management information systems success.

Software development will likely remain a chaotic process. To improve the

software development process, best practices are required. Failures help uncover what the

 8

best practices may be. Best practices can take many forms. Some of these are techniques

and processes that enable one to reach a goal more efficiently, and with greater success.

Studying failure helps uncover the causes of information systems development problems

so that we can suggest preventative measures and procedures.

Study Scope

This study only examines program modifications to a production software system.

This research concentrates on the maintenance of the software. Errors and modifications

occurring before the software system was installed are beyond the scope of this study.

 9

CHAPTER 2

LITERATURE REVIEW

Introduction

This chapter examines three streams of research to build the study’s research

foundations: information system failures, general systems theory and software

complexity. The literature review on IS failure is organized into failure concepts, the

organizational and behavioral perspectives, project management, project abandonment,

failure factors, and project implementation. The literature review on information systems

failure summarizes previous research findings and identifies the research construct failure

for this study. The literature review on general system theory develops the idea that the

cause of failure can be approached from an environment variety perspective. The review

on complexity theory reveals that complexity exists in many forms and that complexity

may contribute to the decay of a system.

Failure Concepts

The literature on information systems development identifies many problems in

the execution of system building efforts (Markus 1983; Lyytinen and Hirscheim 1987;

Robey and Rodriguez-Diaz 1989). These range from overruns in project budgets and

unmet schedules to the construction of systems that fail to function as designed. Although

failing systems can often be rescued by allocating additional resources to them, such

solutions usually reduce the return on investment.

Information systems failure has been a subject of interest for researchers for more

than three decades (Argyris 1974; Locus 1975; Ginzberg 1981; Bostrom 1989; Lyytinen

 10

1988; Davis et al 1992; Ewusi-Mensah & Przasnyski 1994; Guinan 1998). Prior to the

1970s, attention was given to the technical problems of information systems. During the

1970s, researchers also began studying managerial issues related to system development

problems (Jones and McLean 1970). In the 1980s, researchers proposed quantifying

software reliability. Some viewed software as passive and its failure as a response to the

way it was used. Since changes in the model of use could not be foreseen, it was

meaningless to measure software reliability. Others assumed that software reliability

models were “black-box” models. A software failure was an unrepeatable event, and it

was not possible to quantify objectively the probability of such events.

It is difficult to define exactly what constitutes a failed information system;

therefore, there is no general agreement on the definition of information system failures.

However, it is clear that certain characteristics are strongly related to perceived failures

(Pinto and Mantel 1990). Jones defines failure as projects that are cancelled without

completion due to cost or schedule overruns or that run later than planned by more than

25 percent (1996). Lyytinen and Hirscheim (1987) classify failure into four categories:

correspondence failure, process failure, interaction failure, and expectation failure. These

researchers developed a new concept called expectation failure to describe a gap between

stakeholders’ expectations expressed in some ideal or standard and the actual

performance. They used a survey to collect system analysts’ perceptions regarding IS

failures. Their study is the first empirical study to research IS failure from the system

analysts’ perspective. However, the sample size of 34 made this study’s external validity

somewhat questionable.

 11

Different stakeholders may have different views of information system failures

(Hebert and Benbasat, 1994; Dekleva, 1992; Kling and Gerson 1977; Necco et al., 1987;

Zmud, 1979). Some approach the information systems development failure from the

cognitive perspective and offer a different domain of knowledge about system failures.

The development of management information systems involves management, users, and

IS development personnel. Understanding people's attitudes and behaviors helps explain

the human factors that contribute to the failure of the information systems. Systems

analysts play an important role in the process of information systems development

because they contact different stakeholders and understand the needs of these

stakeholders. Systems analysts’ attitudes toward system development significantly affect

IS quality and the success or the failure of the information systems (Bostrom & Heinen,

1977; Jiang, 1999; Lyytinen, 1988; Zmud, 1979).

Analyst attitudes toward IS development vary, and the assignment of analysts to

projects could affect project success or failure (Dos Santos & Hawk 1988). Attitudinal

perspective of system failures was explored by Jiang et al. (1999), motivated by previous

studies of failures of managers and users. The Jiang et al. study described analyst

attitudes and examined the relationships between the analysts’ attitudes and the perceived

reasons for IS failures. The systems analysts were divided into three different

orientations: user orientation, social-political orientation, and technical orientation or

some combination of the three. A survey method was used to collect data. The findings

suggest that a significant relationship exists between system analysts’ orientations and

perceived reasons for IS failure. However, Jiang et al. do not explicitly define

information system failures; they only examines the analysts’ attitudes for IS

 12

development. The views of other stakeholders’ groups such as the developer’s, the

managers’ and the users’ groups were not investigated. The Jiang et al. study suggests

that matching analyst orientation with project characteristics is important in achieving

information systems success.

The recent study by Linberg (2000) introduced a new perspective on software

project failure. He surveyed software developers on a failed project that was over budget

by 419%, over schedule by 193%, (27 months vs 14 months), and over size estimates by

130% for software component and 800% for its firmware components. To management,

such a project is hardly something to brag about. Linberg asked the participants for their

perceptions of what had happened. To his surprise, the project participants regarded this

failed project as one of the most successful ones they had ever worked on because there

was no catastrophic failure, because there were no post-release software defects, and

because they believe it was well managed. They believed the reasons for the delay and

over budget were due to poor schedule estimates, poor understanding of the problem to

be solved, and poor allocation of resources.

Organizational and Behavioral Perspective

The construct of information systems development has stimulated researchers for

the past three decades and a rich body of literature has been produced. Conceptual

frameworks specifying the effects of organizational, task, and individual factors upon the

success of IS development or implementation effort have been proposed (Ives and Olson,

1981; Lucas and Spitler, 1999). However, reviews of this body of literature reveal that

the majority of studies have emphasized the effect of individual factors (Alavi &

Joachimsthaler, 1992), without examining constraints that could inhibit those effects

 13

(Masoner & Nicolaou. 1996). Many types of constrained IS development behavior exist

within organizations (Masoner & Nicolaou, 1996; ; DeLone & McLean 1992; Davis et al

1992). The optimal utilization and deployment of people and methods may have the

potential of alleviating common software development problems (Palvia & Hunter,

1996).

“The failure of many information systems can be attributed to nontechnical

factors rather than to technical characteristics of computer equipment” (Lin &Hsieh

1995). Accordingly, different strategies should be developed to deal with the project

management and risk factors. Even though user participation can be important to the

success or failure of the information system, the extent to which users should participate

in the project, and the way in which users participate depend upon the risk levels of

specific factors.

The commitment to an IS development project is widely believed to affect the

eventual success or failure of systems. The commitment is clearly important to the

success of IS development projects, but managers may sometimes become too committed

to certain IS projects (Keil 1995; Neumann, 1994; Orli, 1989; Rothfeder, 1987), even

when faced with indications that the project may be failing. In other cases, some IS

development projects may involve many time or budget overruns, or even fail, if

commitment is erratic (Reich & Benbasat, 1996). The full commitment to IS

development does not always result in a successful information system.

Lucas (1975) stated that “the major reason most management information systems

have failed is that we have ignored organizational behavior problems in the design and

operation of computer-based information systems.” It is the organization that initiates the

 14

development and implementation of the information systems. The culture of the

organization, its management and external environment have direct bearing on the

success or failure of the information system. Davis et al (1992) proposed information

systems failure from the sociotechnical perspective. An interpretive method is employed

to diagnose IS failures. Davis et al. present a two-dimensional framework: social and

technical. Each dimension has 4 characteristics, resulting in 16 areas for failure diagnosis.

Studying the social system and the technical system at the same time would help in the

understanding of IS failures. The four components of social systems have a chain

reaction. Theories-in-use by the developers and management affect the development

process, which determines the performance of the information system. The performance

of the information system causes varying reactions to the information system. Failure can

be traced from the theories-in-use. Technology refers to hardware and software

upgrades. User interfaces refer to the human computer interface, the cognitive

perspective of the systems. Information requirements are task specific. Organizational fit

refers to the organizational impact of the information system. Each component of the

social system dimension interacts with each of the component of the technical

dimensions. The technical system is concerned with the processes, tasks, and technology

needed to convert inputs into outputs whereas the social system is concerned with the

attitudes, skills, and value of people, the relationship among people, and the

organizational structure.

Project Management

 There is a sizeable body of literature studying IS project management. Examining

the last project can improve the next one. Practitioners and researchers have realized that

 15

the way a project is managed affects the outcome of the IS project. Properly applying

good IS development methodologies/tools does not guarantee a successful information

system because of uncertainties and risks associated with every IS project. In order for

the risks to be reduced, factors that cause these uncertainties must be dealt with before a

development project begins. Until recently, however, the IS community expressed little

interest in the discipline of formal project management, as noted by Gopal Kapur,

president of the Center for Project Management, a San Ramon, California-based

education, training, and consulting firm (Goff, 1993).

 Keider (1984) surveyed 100 management information systems professionals on IS

failure issues and stated that “although some projects fail because of technology or design

problems, the main reasons for project failures indicate a lack of understanding of project

management.”

In order to find causes of project failures, some researchers have addressed

information systems development problems at a specific stage in the systems

development life cycle. Naumann et. al. proposed a contingency approach for

determining information requirements based on four risk factors: project size, degree of

structure, user task comprehension, and developer task proficiency. Observing a number

of IS projects over a period of 10 years, Cash, McFarlen and McKenney (1992)

discovered three serious deficiencies in practice that involve both general management

and IS management: (a) the failure to assess the individual project implementation risk at

the time a project is funded; (b) the lack of recognition that different projects require

different managerial approaches; and (c) the failure to consider the aggregate

implementation risk of the portfolio of the project. According to Meredith (1988), there

 16

are many articles on project management, but few are concerned with the identification of

failing projects. The project implementation risk factors listed by Cash et al. (1990) are

project size, project structure, and experience with technology. Naumann’s finding listed

the same risk factors as Cash et al. Assessing the project risks before the planning stage is

critical to the success of an IS development project.

 Martinez (1994) studied the challenges facing large-scale IS projects. Due to the

size of an IS project, it often fails to meet deadline, and budget, and goes out of control.

The basic functions of project management are the essentials to ensure project success.

Identifying and monitoring essential project management functions increases the

probability of project success and enhance earnest performance. Essential functions may

be classified as executive, project, team, and analyst/doer. A comprehensive

understanding of the various functions in categories will improve the project's potential

for success. The steps suggested for improving the success rate of large-scale IS projects

include (a) start with project scoping and planning, (b) assess culture and values, (c)

clearly articulate the business vision, (d) develop a communications plan, establishing

tracking systems, and (e) implement an administrative support/logistics plan.

The ideas and research concerning project failures in other fields can be used as

references for conducting failure research in the IS field. Pinto and Mantel (1990) found

three contingency variables associated with project failures, the precise way in which

failure was defined; the type of project; and the stage of the project in its life cycle. The

benchmarks used to assess the success or failure of a project are the implementation

process itself, the perceived value of the project, and client satisfaction with the delivered

 17

project. According to Pinto and Mantel, failure is a multidimensional construct,

encompassing both internal efficiency and external effectiveness.

Project management tools play a role in IS management as increasing numbers of

companies are using these tools. One study reported the results of a nationwide survey of

1,000 randomly selected members of the Project Management Institute (Fox & Spence,

1998). The results include the identification of tools used, the level of use, the types of

uses, the satisfaction with the tools employed, the level of training received, and the

adequacy of the tool's use. The respondents listed not only traditional project

management tools, but also several nontraditional tools. In general, project managers

appeared to be satisfied with the tools available. However, sophisticated software tools do

not ensure project success.

The qualitative and quantitative aspects of IS project management are brought

together in a complementary manner under the umbrella of synergism. The quantitative

output from group synergy is a structured and on-task team with synchronized

productivity. Qualitative factors in group synergy include morale, supportiveness,

participation, coordination, integration, and commitment. Qualitative and quantitative

aspects of group synergy are complementary to each other, and together they can

generate greater effectiveness and efficiency in IS project management. Being equipped

with a broader framework of synergism, IS professionals can perform better in the field

of systems development (Lai, 1997).

A formal methodology plays a role in IS development. A formal systems

development methodology cannot be seen as the critical success factor for information

systems (Skok & Scarre, 1992). The use of a formal methodology encourages good

 18

documentation, and quality assurance reviews. Also, it helps inexperienced staff to

understand which tasks precede which, and helps project managers to control projects,

even with rudimentary PC software tools. However, there are a number of drawbacks to

the use of a methodology. The main difficulties are the time taken for its introduction into

an IS department and the associated culture changes. There may be a substantive learning

curve and high associated training costs.

In project management, integration needs to be emphasized. Systems should

provide functions that seamlessly work together and leverage their strengths. Integration

of point solutions is the most expensive component of systems management. End-to-end

management to cover all aspects of the infrastructure such as networks, systems, DBMSs,

and applications. Enterprise management is composed of the total manageability of all

networks, systems, databases, and application resources that constitute the delivery of

services and products.

 19

 Software
Application

 Business Environment

Figure 2.1 The scope of project risks

Project Abandonment

 Project abandonment is one form of IS failures. Factors that may cause project

abandonment, include an economic slow down, legal issues, or technology innovation.

Ewusi-Mensah and Przasnyski (1991) perform an exploratory study on IS project

abandonment. Two categories of IS abandonment were identified: abandonment of

projects under development and abandonment of existing systems in operation. The

research subjects were top executives from the Directory of Top Computer Executives. A

questionnaire was used to collect data with a response rate of 8.7%. The findings suggest

that many IS projects are susceptible to being abandoned--not necessarily just high-risk,

complex, or unstructured ones. Project abandonment is more related to organizational,

behavioral, political issues, and less related to economic and technical issues. Ewusi-

Process
Risks

Product
Risks

Software
Application

Software
Application

Competitor

Competitor

 20

Mensah and Przasnyski’s failure factors fall into the same general categories as those in

Garrison’s (1980) study.

Management and end-users are found to be the factors deciding the fate of the

project (Ewuksi-Mensah & Przasnyski 1994). In Ewusi-Mensah and Przasnyski's (1995)

followup study "Learning From Abandoned Information Systems Development Projects",

a survey was mailed to top computer executives in Fortune 500 companies. The major

concerns of their study were to address whether organizations keep records of abandoned

IS projects, what they do with those records, and what they learn from the abandoned

projects. Based on a 5.6% response rate, 60% of the respondents replied that more than

one project was abandoned for the same reason. More than 70% responded that no

records were kept for the abandoned projects.

 The failure of organizations to document their project failures and use that

information to avoid a repetition of similar problems, perhaps, more than any single fact

attests to the continuing problem of IS development projects abandonment in

organizations. Two problems are identified in this research: 1) a majority of the

companies don't document the abandoned projects; for those that keep records of the

abandoned projects, only IS management and developers consult the records, 2) the

records weren't used as often as expected. Other groups of people such as senior

management, programmers and new project leaders need to spend time on those records.

Research indicates that IS failures occur with some regularity in companies of all

sizes. Therefore, it is apparent that such cases are an industry wide problem, despite the

significant progress made in IS development methodologies and tools since the early days

of business computing almost 4 decades ago. The cancellation of projects may be

 21

attributed to a combination of several factors, including the following: (a) project goals,

(b) project team composition, (c) project management and control, (d) technical know-

how, (e) technology base or infrastructure, (f) senior management involvement, and (g)

escalating project cost and time of completion.

Failure Factors

The search for factors that affect project success or failure has been of great

interest to both researchers and practitioners. Unfortunately, there are few extensive

studies on IS failure factors. Previous failure models consider simple factors (Lyytinen &

Hirschheim 1987). As early as 1973 Morgan and Soden concluded that “almost all the

failures were of management and personnel, rather than technology” based on their small

sample. Keider's survey results support Morgan and Soden's conclusion that, "although

some projects fail because of technology or design problems, the main reasons are within

the control of the project manager."

Lyytinen and Hirschheim (1988) identified 12 factors related to IS failures. These

include technical and operational factors: individual, organizational, environment,

method-based, decision-based, work-based, contingency, implementation, system

assumption-based, analyst-based, and user-based factors. However, Lyytinen and

Hirschheim also suggested that there is strong multicollinearity between these factors. A

failure factor in one domain can cause failure type in other domain.

According to Block's failure classification and causes, one cause of failure can

contribute to several failure types. Block's failure classification provides different aspects

of failures. This kind of classification is still very useful today.

 22

Table 2.1

Block's (1983) Classification of Failure and Cause

Failure Cause

Resource failures Conflicts of people, time and project scope
due to insufficient personnel

Requirement failures Poor specification of requirements

Goal failures Inadequate statement of system goals by
management

Technique failures Failure to use effective software
development approaches, such as
structured analysis/design

User contact failures Inability to communicate with the system
user

Organizational failures Poor organizational structure, lack of
leadership, or excessive span of control

Technology failures Failure of hardware/software to meet
specifications; failure of the vendor to
deliver on time, or unreliable products

Size failures When projects are too large, their
complexity pushes the organization's
systems development capabilities beyond
reasonable limits

People management failures Lack of effort, stifled creativity, and
antagonistic attitudes cause failures

Methodology failures Failure to perform the activities needed
while unnecessary activities are performed

Planning and control failures Vague assignments, inadequate project
management and tracking tools

Personality failures People clashes

Large-scale IS projects not only are expensive, but they also have a high failure

rate. Factors contributing to the failures of large-scale IS projects have been identified by

Jones (1996) from the technical point of view. The project size, the nature of the industry,

and the tools utilized on project development are associated with project failures. Jones

proposed the factors related to IS failures, but no particular research method was

 23

employed. The conclusion was drawn from his own consulting experience. Some

industries are doing better than others in managing large software systems. Six

subindustries within the software community are classified as systems software,

outsource vendors, commercial software, management information software, and end-

user software. All six subindustries have a fairly good success rate. Tools used in IS

development can cause success or failure. Successful projects all use project management

tools and quality assurance tools during the entire development process to ensure the

quality of the product and meet the goal of the project, tools alone do not guarantee the

success of the project. Capable managers and technical personnel are also important to

the fate of the project.

The heuristic of project failures was investigated by McComb and Smith (1991).

Their study focused on systems projects that began well and finished less successfully.

While McComb and Smith claimed that most IS managers were familiar with IS failures,

they did not provide a definition of failure. Throughout the article, failure meant running

over time, over budget or not meeting user expectations. Fifteen failure factors were

discussed along with planning versus executing and technical versus human dimensions.

Although real world examples were provided under some factors to explain the necessity

of the factors, there were no hypotheses developed to test each factor. There was no

empirical work done regarding the failure factors. McComb and Smith’s framework

included comprehensive factors within an organization, but they failed to consider the

effect of the external environment on the information systems. Using McComb and

Smith’s framework as a guideline, IS managers can broaden their perspective on the

source of potential problems and prevent unnecessary project failures.

 24

 planning

 technology human

 executing

Figure 2.2 McComb & Smith framework, technical vs human, planning vs

management.

Fifteen factors are located in different matrices. Failure factors related to project

development are technology, leading edge system, poor consultation and change

requirements, weak procurement, and project timetable slippage. Failure factors related to

implementation are inadequate testing and poor training (Flowers 1997).

Much can be learned from the most catastrophic software development failures of

all time. In Software Runaways, software failure expert Robert Glass (1997) shows

exactly what went wrong in 16 colossal software disasters. Runaway software projects

Technical
architecture

Bid strategy

Scheduling

Feedback

Motivation

User
Involvement

Vendor

Control

Performance

Estimating

Feedback

Experimenting
with technology

Compression

Change
management

Workarounds

 25

are generally caused by one of the following factors: changing specifications, bad

planning, new technology, bad project management, or inexperienced staff (Glass 1997).

Furthermore, he presented specific lessons learned from each failure, and showed how to

"sniff out" runaway projects early enough to take action. He also considered the

typical responses to potential runaways, including risk management and issue

management, demonstrating their strengths and weaknesses.

Understanding the projects undertaken and thoroughly analyzing the solutions

help to prevent software runaways. The better project teams understand the projects and

the requirements, the better they are able to provide the right solutions, and the more they

can plan for future problems. Good planning at the beginning is an important predictor of

success or failure.

The reasons for death march projects are identified by Yourdon as: politics; naïve

promises made by marketing , senior executives, naïve project managers; naïve optimism

of youth; start-up mentality of fledging; the marine corps mentality; intense competition

caused by globalization of markets; intense competition caused by the appearance of new

technologies; intense pressure caused by unexpected government regulations; unexpected

and unplanned crises, your hardware software vendor just went bankrupt and

programmer’s passing away or quitting.

IS Implementation

 Abreu and Conrath (1993) developed an integrative expectancy model based on

factor studies, process studies, and expectancy studies. Their study did not empirically

test the model they proposed. They suggested that expectations could be used as a

predictor of IS implementation success/failure. The multiperspective approach may be

 26

used to consider stakeholders' different views of the process. They recognized a

multiplicity of outcomes of the implementation process.

 Are stakeholders' expectations
 positive, realistic and compatible?

 Yes No

A’:
Has the organization Can expectations
competence in be changed
 systems design? No Yes Yes No

 Failure Failure
 Yes No

A’’ Can expectations
Has the organization be changed?
competence in No Yes Yes No
 system implementation?

 Failure Failure
 Yes No

 Success Failure

Figure 2.3 Expectancy Model. Stakeholders expectation affect the success or

failure of IS project.

Information systems development has both economic and psychological

determinants. For small businesses, IS procurement is often the largest, single capital

expenditure (McWilliams, 1994). The identification of need and system selection and

implementation also require technical knowledge and expertise that are often supplied by

management, an employee, or a consultant (Geisler & Hoang, 1992). Technical

knowledge requires learning and training, which in turn requires time and effort, as well

I

A

D E

A''

A’

E

 27

as monetary expenditure. When the number of employees have created an increasing

number of interactions with the information systems, the economic cost of switching

between different types of systems rises. Some information systems have to be replaced if

they cannot meet the business needs (Geisler & Hoang, 1992; McWilliams, 1994).

Different activities are performed in different stages of the software development

life cycle. Each stage has a varying effect on the systems maintenance. Too often, fixing

programs occurs late in the software development life cycle when changes are costly and

less effective. It has been suggested that early risk-avoidance techniques lead to less

maintenance and ongoing changes of the information systems. (Alder & Nordgren 1999).

Complexity Theory

Complexity Definition

Something is considered to be complex when it has many parts and relations.

According to Brewer (1973), complexity increases as the number of "interactions . . .

through the relationships" (Flood et al., 1993) increases. The ranges of complexity

identified by Shannon and Weaver in 1949 are disorganized complexity, organized

complexity, and organized simplicity. There is a tendency for systems to become

disorganized. Complex systems are in constant transitions, self-creating small levels of

order, and then adapting and changing again. Complexity theory views information

systems in ways that are organic, nonlinear, and holistic. The principle of complexity

theory suggests that small changes may have large effects on the systems; thus,

interesting and unpredictable properties may be expected to emerge from a system.

Complexity may be understood as a combination of variety and constraint.

Variety is a measure of freedom or diversity of the number of distinct possibilities or

 28

alternatives. Variety on its own leads to entropy, disorder, and chaos. Constraint limits

possibilities by excluding certain alternatives. Constraint engenders order, stability, and

rigidity. A system may be defined as a constraint on variety. If variety and/or constraint

increase, the system's complexity increases.

In 1985, Ramamoorthy, Tsai, and Bhide pointed out that software complexity was

the major reason for rapidly increasing software development costs. Some of the best-

known complexity measures today are McCabe’s measure of lines of code (1976), and

Halstead’s measures of length, volume, difficulty and effort. Other complexity measures

are data flow and information flow. There are more than 100 other measures for the

complexity of programs (Zuse, 1997). Ramamoorthy et al. defined software complexity

as the degree or difficulty in analysis, testing, design, and implementation of software.

According to Sheppard", complexity is a metaphysical property and thus not directly

observable.”

Software has unique characteristics. It is not a physical product, and it is difficult

to measure because its components are hidden. There are many sources of software

complexity. Complexity is an abstract property of software. The sources of complexity

come from, control structure, size of code, information content, modularity, and data

structure. While many software complexity metrics have been developed. Gonzalez

(1995) argued that most of them are incomplete because they measure only one factor of

program complexity, even though a program has different sources of complexity. And,

the combination of two complexity metrics does not necessarily offer additional

information about software (Munson & Khoshgoftar 1992).

 29

Basili (1980) defined software complexity as "a measure of the resources

expended by another system while interacting with a piece of software. If the interacting

system is people, the measures are concerned with human efforts to comprehend, to

maintain, to change, to test, ..., that software.” Curtis et al. (1979) similarly defined this

concept as psychological complexity: "psychological complexity refers to characteristics

of software which make it difficult to understand and work with.” Both of these authors

noted that the lack of use of structured programming techniques is believed to increase

the cognitive load on a software maintainer (Banker, Srikant, Chris & Zweig 1993).

 There are three types of complexity: computational, psychological and

representational complexity (Curtis 1979; Cant & Henderson-Sellers, 1995). Of these

three complexities, Zuse (1990) suggests that psychological complexity is the most

important. It is suggested that exiting design and coding complexity measures do not

provide an absolute rating, rather they should be evaluated relative to the problem

complexity (Cant & Henderson-Sellers, 1995). Kitchenham, Pfleeger, and Fenton (1997)

observed that complexity can be viewed from a number of different perspectives

including program algorithms, and structural and cognitive complexity contexts. With the

existence of multiple metrics, McDonell (1991) evaluated the rigor in software

complexity measurement experiment and provided suggestions for software complexity

measurement.

 30

Table 2.2 Gonzalez’s (1995) complexity definition

the nature of the problem

the number of the objects created

the interfaces and relationships

the algorithm and logic structure

methods and tools used

programming languages used

the level of human expertise

the hardware and software environment

project organization

project management

Software complexity is objectively aimed to quantify a program, based on the

degree of presence or absence of certain characteristics of software. Software complexity

is related to such features of software as number of errors left in the software, effort to

design, test, or maintain a software product, development time, and maintenance cost.

The importance of software complexity lies in the fact that knowing the complexity of a

specific software product or its module enables one to: (a) predict the cost of testing,

maintenance, etc., number of errors left in the software, size of the final program; (b)

assess the development time, effort, cost, etc.; (c) identify critical modules or parts of the

software; (d) compare programs, modules, programmers, etc. according to software

complexity.

 31

Complexity Metrics

 Software metrics measure the attributes of software programs. The common

software complexity measures are cyclomatic number (McCabe, 1976), software science

(Halstead, 1977), lines of code (Mills 1983), number of procedures and I/O statements

(McTap, 1980), and level of nesting (Harrison & Magel, 1981). There is no universally

accepted measure to ensure that a software complexity metric measures complexity

because there is no generally accepted definition of complexity. Furthermore, researchers

have found high correlations among the software metrics (Crawford, 1985; Feurer &

Fowlkes, 1979; Coupal & Robillard, 1990).

 A factor analysis was performed to analyze the software metrics by Mata-Toledo

and Gustafson (1992). A set of Pascal programs was analyzed for the number of

decisions, the number of I/O statements, the Halstead count, the number of procedures,

and the number of lines of code. Their findings suggest that a program should be

normalized to avoid high correlation between program size and maintenance frequency.

Dividing by lines of code appears to be the best normalization. An inverse relationship

exists between the normalized number of decisions and both the normalized unique

operand counts and the number of decisions.

Other researchers have approached software complexity problems from a

different point of view. Khoshgoftaar and Lanning (1995) developed a neural network

model to classify program modules as either high-risk or low-risk based. The inputs to

the model include a selection of software complexity metrics collected from a

telecommunications system. Two criteria variables are used for class determination: (a)

 32

the number of changes to enhance the program modules and (b) the number of changes

required to remove faults from the modules.

With many program complexity metrics available, it is difficult to rank programs

by complexity--the different metrics can give different indications. Comparison is offered

through two methods of simultaneously detecting those aspects of software complexity

measured by the Halstead (1977) metrics and the McCabe (1976) cyclomatic complexity

number. The first method synthesizes a combined metric by weighting each Halstead

metric to reflect program attributes measured by the cyclomatic complexity number. The

second method uses principal components analysis. This method derives a relative

complexity metric, which represents each complexity metric in proportion to the amount

of unique variation that it contributes. A validation study establishes a useful statistical

relationship between this relative complexity metric and faults for a military

telecommunications development effort.

In object-oriented environment, Chidamber and Kemerer's (1994) metrics are the

most well-known software metrics. Measuring the aspects of software complexity for

object-oriented software helps to improve the quality of such systems during their

development, while especially focusing on reusability and maintainability. Chidamber

and Kemerer's metrics evaluate the complexity of the classes in terms of internal,

inheritance, and coupling complexity.

The methodical approach in information systems development can also affect the

flexibility of IS developed and the ability to cope with the dynamic world. As the

complexity of IS evolves, not all information systems are able to deal with the challenge

of evolutionary complexity (Lycett, Mark. & Paul, 1999).

 33

The relationship of software complexity and maintenance has been investigated

by many researchers (Schneberger, 1997; Banker et al, 1998). Component simplicity and

system complexity have a direct bearing on the maintenance of the information systems.

The smaller (but more numerous) the system components, the easier they are to deal with

individually, but the more difficult it is to deal with the overall system.

Software maintenance is the last stage of the software development life cycle.

This stage can consume a large proportion of organizational resources. It is believed that

many repairs of the systems derive from inadequate work done at different stages of the

software development life cycle. Poor design, analysis and coding can result in complex

software that is costly to support and difficult to change. It is difficult to assess the actual

maintenance performance because the causes of maintenance are realized over the

software life cycle. To estimate the impact of different stages of the entire life cycle on

maintenance, a two-stage model was developed using software complexity as a key

intermediate variable that links design and development decisions to the effects on

software maintenance. The results suggest that an important link exists between software

development practices and maintenance performance (Banker, Davis & Slaughter, 1998).

In terms of the maintenance problems, some suggest that methodology has an

effect on the maintenance. Dekleva’s (1992) findings suggest that modern information

systems development methodology does not necessarily decrease the maintenance time.

It is found that the use of modern methodology can decrease the time spent on emergency

error correction as well as systems failures.

 34

General Systems Theory

The society of General Systems Theory was founded by scientists from different

disciplines, biologist Bertalanffy L.V., economist Kenneth Boulding, biomathematician

Anatol Rtapoport, and physiologist Ralph Gerard. The purposes of the society for

General Systems Theory are to: (a) examine the isomorphy of concepts, laws, and models

in different fields and transfer the concepts from one discipline to another; (b) encourage

the development of adequate theoretical models in the fields that lack them;

(c) minimize the duplication of theoretical efforts in different fields; and (d) form the

unity of science through improving communication among specialists.

Boulding (1956) classifies systems into nine categories, based on the level of

complexity: frameworks, clockworks, cybernetics, open systems, genetic-societal,

animal, human, social organization, and transcendental. Ashby’s (1956) law of requisite

variety (1956) states that the regulator must have as much variety or more variety than

the system it regulates. Control of a system depends on the variety of the regulator and

the capacity of the channel between the regulator and the system. It is costly, both in time

and resources, to obey this law. Ashby's (1956) law of requisite variety states that “only

variety can destroy variety.” An application of Ashby's law shows that system variety

cannot handle environmental variety, the system will fail.

The systems approach of developing information systems originates from

Bertalanffy's (1968) general system theory. The system refers to "the abstract idea of a

whole having emergent properties, a layered structure, and processes of communication

and control which in principle enable it to survive in a changing environment"

(Bertalanffy 1968). Such a view considers the system as a whole, instead of looking at

 35

the individual function, or component of the system in isolation. According to the system

approach, the IS developer has to consider the effect that the change in one part of the

system would have on the rest of that system.

Checkland (1989) developed a soft systems methodology based on general

systems theory as an alternative approach for coping with a major problem in systems

engineering -- that of soft, or ill-defined, problem situations. It is hypothesized that the

only way to develop an information system effectively is by interacting with the real

problem situation, and by examining the "whats" and "hows" of the problem, before any

attempt is made at a solution. This methodology is useful in improving the understanding

of the problem situation during the process of requirements definition. However, Walters

& Broady (1994) argue that the soft systems methodology does not provide adequate

support for the actual design of a new system, or for its implementation.

In recent years, information systems development has incorporated general

systems theory. The usefulness of the Viable System Model (VSM) in information

systems projects was proposed by Kawalek & Wastell (1999). The VSM is a rigorous

organizational model explaining information systems development from a general

systems perspective and it can be used for diagnostic purpose in IS development.

Technology has been undergoing rapid development. Hardware and software have

been kept upgrading. Businesses have to employ the newest technology to operate in

competitive environment. Hardware and software change are common for any given

systems. Today’s business environment is dynamic, so businesses have to modify their

requirements to keep with the environment change.

 36

 Brooke’s et al. (1998) study took a systems approach to study information

systems failures. Information system failures were examined at both the technology and

the business requirement levels. They questioned the established practice in the design

and implementation of information systems and focused on the systems development

process and the interactions that take place between the various process participants.

They argue that systems development activities are interest-based in nature to the extent

that an “unholy alliance” is struck between interested parties and that ignoring the social

and organizational issue makes the method to development mechanistic.

There is a growing interest in the use of soft systems methodology (SSM) in

work-related to computer-based information systems. An effort has been made to identify

and define, a role for SSM in information systems development that stems from its

fundamental principles. Since SSM sees computer-based information systems as systems

that serve purposeful human action, the notion of "information system" in SSM is one

that necessarily involves two systems--a serving system and a served system of

purposeful action. (Winter & Brown, 1995).

Software Reliability and Maintenance

An extensive body of research stream has focused on software reliability studies

for the past two decades and many software reliability growth models have been

developed for the estimation of software reliability and the number of errors embedded in

software (Goel and Okumoto, 1979; Pham 1993; Ohba, 1984; Misra 1983; Hossain and

Dahiya 1993, Yamada and Osake 1985; Zhang and Hoang, 1998). Exhaustive software

testing can reduce the errors in software but also increase costs in software development.

When to stop testing and to release software and at the same time guarantee optimal

 37

performance of the software and user satisfaction have been the greatest challenge for the

software industry. Most of the reliability models focused on the software reliability

before the software was released. It is well acknowledged that the cost is exponentially

increasing with the amount of the time and effort spent on testing software once the

software reaches a certain level of perfection. Due to various factors, it is quite common

fro software to have defects after it is released. Defects may be caused by the insufficient

design and analysis or maybe the coding process. The purpose of a software reliability

studies are to make software more dependable and reliable and less prone to error. Most

studies of this field have developed statistical models to predict the distribution of

failures (Bunday and Al-Ayoubi 1990). Poisson-type distribution models are widely used

in software reliability and reliability growth modeling

Software cost models address the cost/benefit issues of software development.

(Kapur and Bhalla,1992; Leung, 1992; Dalal and Mallows 1988; Dalal and Mallows

1992; Ehrlich and Prasanna and Stampfel and Wu, 1993). These models are constructed

to predict the set-up, warranty, risk, testing and repair costs. Software testing consumes

substantial resources, such as man-power, CPU hours and test cases in order to detect and

remove errors in software programs. (Yamada and Ohitera 1990).

Software reliability is one of the evaluation characteristics of ISO 9126 and it is

often recognized. Many models and techniques have been proposed to quantitatively

represent software reliability. Faced with the practical problems of reliability models and

experiences in practice, Bazzana et al (1993) applied an empirical industrial dataset to

existing software reliability models. They used graphics to aid the explanation of error-

fault-failure taxonomy. They state, “an error is a human action that results in software

 38

containing a fault and fault is a manifestation of an error in software. A fault encountered

may cause a failure. Failure is the inability of a system to perform required functions

within specified limits.”

Errors can cause failures and can happen in different phases of software

development. A large industrial failure data was used to validate the software reliability

models and evaluate the predictive capability of the models. Several models, Jelinski-

Moranda, Goel-Okumoto, Musa-Okumoto, Duane, Littlewood, Littlewood Non-

Homogeneous Poisson Process, Littlewood-Verral and Keiller-Littlewood were selected

for the testing. It was concluded that no one model performed best for all the phases,

system testing, and operation. Different models have different strengths in terms of

operation, quality and operation. The predictive power of a particular model depends on

the model selected and the quality of data analysis.

Inter-failure interval is used as a variable to test software reliability in Bazzana

(1993) et al’s study. Cumulative failure rates have been of interest and explored

extensively in software reliability models. (Goel and Okumoto, 1979; Pham 1993; Ohba,

1984; Misra 1983; Hossain and Dahiya 1993, Yamada and Osake 1985; Zhang and

Pham, 1998).

Software maintenance is the modification of a software product after delivery to

correct faults, to improve performance or other attributes, and to enhance the product by

adapting it to a modified environment (IEEE Standarad for Software Maintenance 1993).

The high cost of software during its life cycle is largely attributable to software

maintenance activities. Yau and Collofello (1985) discussed an approach to reducing

maintenance costs through the utilization of metrics. Design stability measures indicate

 39

the potential ripple effect characteristics due to modifications of the program at the

design level.

Much software maintenance research links soft maintenance to the cost of the

system and attempts to build a model to predict the maintenance cost (Banker and

Slaughter 1993; Kemeter and Slaughter 1997). Aging software may require maintenance

for regulatory reasons or to make the software more interoperable with new packaged

applications. Kafura and Reddy (1987) describe seven different software complexity

metrics andrelate them to maintenance activities performed on a medium-size software

system. They demonstrate the usefulness of software metrics in the redesign phase by

revealing a poorly structured component of the system.

Yau et al (1988) presents an integrated life-cycle model for use in a software

maintenance environment. The proposed model, which represents information about the

development and maintenance of software systems, emphasizes relationships between

different phases of the software life cycle and provides the basis for automated tools to

assist maintenance personnel in making changes to existing software systems. The model

is independent of particular specification, design, and programming languages because it

represents only certain fundamental semantic properties of software systems, such as

control flow, data flow, and data structure. The software development processes, by

which one phase of the software life cycle is derived from another, are represented by

graph rewriting rules that indicate how various software system components have been

implemented. The approach permits analysis of the fundamental properties of a software

system throughout the software life cycle.

 40

Software Volatility

Software are social systems which evolve constantly (Davis et al 1992). Literature

has addressed the changeable nature of software for three decades in the name of

maintenance, debugging, and improving reliability. However, software volatility has

recently received attention by a few researchers (Barry, 2000; Butcher, 1997; Heales,

2000’ Banker, 2000). This theory holds that software is changeable. Software

development phases involve changeable factors, such as the requirements change, the

turnover of the development team, hardware and software change or maybe the

management change. The evolution of software is doomed by its environment and its

purpose to serve the business functions and goals.

Different definitions of software volatility have been defined. Barry and Slaughter

examine and develop software volatility measurements based on three dimensions:

amplitude, periodicity and deviation. “Amplitude measures the size of software

modifications made to a system” (Barry and Slaughter 2000). This has been

operationalized as the total size of software modifications divided by the total system

size. Periodicity measures time between software modifications. In Barry and Slaughter’s

study, periodicity is normalized by dividing mean time of between system modifications

by system age. Deviation is the variance of the time between system modifications.

Periodicity and deviation are derived from the same variable, time between system

modifications. Software volatility measures are aggregate measures of longitudinal

behavior. By combining the measures Barry and Slaughter develop a predictive model of

software complexity.

 41

Factors affecting information system volatility have been explored by Heales

(2000). Volatility in this study means the propensity of an information system to change

its state from evolution to revolution. Four factors are identified to influence the volatility

of the software system: semantic relativism, size, age, and period. Heales’s study

combines a model developed in 1998 and Wand and Weber’s model to examine

information systems changes. Heales’s study suggests that more effort put on deep

structure change would result in a reduction in the volatility index. The high level

language is associated with low volatility index which correspondingly lead to low cost

in fixing the program. Heales further provides implications from his study along

management, staff perspective, and selection of tools and techniques.

It is well recognized that the cost of enhancing software applications to adapt to

user requirements is growing and significant (Kemerer and Slaughter 1997; Banker and

Slaughter 1993, 2000). Banker and Slaughter developed a software enhancement model

to illustrate the relationship among software volatility, total data complexity and

enhancement costs and errors. Structure is introduced as a moderator factor. Empirical

data from two field studies are used to test the model. In Banker and Slaughter’s study,

volatility is defined as the frequency of enhancement per unit of functionality. They find

the optimal level of structure increases with volatility and complexity.

Researchers in this area have employed the common methodology to study

software volatility. Predicting volatility of software appears to be the common interest.

Different variables are identified and selected to predict software volatility. All three

existing studies use multiple regression models to perform data analysis.

 42

Software Development Life Cycle

Software development goes through analysis, design, development and

maintenance stages. Any errors that occur in any of these phases will affect the

performance of the systems and incur costs in keeping the system up and running and

meeting user’s requirements. The eventual performance of the system is closely related to

each phase of software development life cycle.

Research has identified design faults contribute to software failure (Mellor 1987,

Zhang and Pham 1998). Numerous real life catastrophes also provide evidence that

design error cause not only financial loss but also the loss of human life. One such

disaster occurred on June 4, 1996, when an explosion ended the maiden flight of the

European Space Agency’s Ariane 5 rocket less than 40 seconds after lift off, due to the

Ariane 5’s flight control system. This disaster was caused by a few lines of Ada code

containing three unprotected variables. Zhang and Pham (1998 and 2000) state design

error and insufficient software testing are possible causes of disastrous failures.

The principle of total quality management in the Information Systems (IS)

environment focuses on zero defects in a software development to satisfy customers and

meet business objectives. Huq (2000) emphasizes that total quality management in the

software development life cycle should be enforced in each phase of software

development. Huq’s study suggests that near zero defects can be achieved through testing

after each phase (concurrently), of the development life cycle, as opposed to testing only

after the entire system is complete. The ability to detect errors using measures in the

early phases of the software development life-cycle leads to better management and

quality of the systems in the later phases. Effective quality assessment in each phase of

 43

the software development life cycle is preventive (Briand, Morasca and Basili 1999).

Software inspection and testing conducted together with previews and postmortems

within each phase of the software development life cycle are widely recognized as

necessities for building a solid foundation for defect prevention and quality enhancement.

 Hong and Xie (1999) propose a statistical method to control the software defects

detection process and to provide defect prevention analysis. Adler, Leonard and

Nordgren (1999) investigate software reliability using a risk management framework

which emphasizes preventive risk management in early phase of the software

development. In the later phase of the software development life cycle, changes are costly

and less effective.

Summary

 Both trade journals and academic journals have discussed the factors that are

attributable to software failures. Software failures have been examined from the

following perspectives: the system development life cycle, tools used, management,

stakeholders, users, project management strategies and development methodologies. The

following chapter develops a research framework using the constructs identified from the

literature.

 44

CHAPTER 3

RESEARCH FRAMEWORK

Introduction

This chapter presents the conceptual model and the research framework. The

conceptual model describes the breadth of the research and the research framework

narrows the conceptual framework to specific research constructs. Construct definitions

and operationalization of the constructs are discussed next.

Theoretical Framework

Figure 3.1 Theoretical Framework.

 The research framework borrows ideas from complexity theory; general systems

theory and information systems change theory. It is constructed by combining complexity

theory's notion of software complexity, general systems theory's definition of

environmental variety, and information systems change theory's concept of system state.

The change to business requirements is used to operationalize system state. Several

researchers claim that information system change requests are the accepted method for

System State

System
Complexity

Environmental
Variety

 45

initiating and managing information system changes (Arthur 1988; Martin and McClure

1983; Wand and Weber 1995; Heales 2000). This research is focused on how

environmental variety and the software’s internal complexity affect system state. The

frameworks of Davis et al.(1992) and Sauer (1991) address the social and technological

impact on systems failure. The framework used in this study also considers the impact of

technology and business requirements on the stability of information systems.

Research Framework

Figure 3.2 Research Framework.

The conceptual framework has three components: organizational complexity,

system variety and system state. System complexity and system variety impact the

system states. Environmental variety can be measured by business requirements changes

and technology impact. System complexity can implicate software size and software

complexity in research framework. System state is measured by the state of failure which

is further classified into analysis, design and programming failure.

System State
• Design failure
• Analysis failure
• Program failure

System Complexity
• Cyclomatic

complexity
• Size

Environmental Variety
• The Change to

business requirements
• Technology

 46

As suggested in the literature, program size affects the complexity of a system

(Kimberly & Evanisko, 1981; Stanwick, 1998). System complexity causes organizational

complexity (Damanpour, 1996; Keidel et al 1994). In the present study, system

complexity and program size will be used to measure the conceptual model construct -

system complexity.

There is ample evidence in the literature suggesting that environmental variety

plays a role in the system performance (Lucas et al., 1999; Marsden et al. 1999; Meyer &

Goes, 1988). Business requirements are directly linked to information systems

development and maintenance (McLean et al. 1993; Hay and Munoz, 1997). Business

requirements specify the functions of the desired the system (Gilbert, 1983). According to

Boehm (1979), a precise specification greatly aids effective management control of a

project. The frameworks of Block (1983) and Davis et al. (1992) identified technology as

an important component affecting the overall performance of the system. In this study

technology and business requirements are employed to measure the conceptual model

construct environmental variety.

Failure is defined as the state when the change of code is needed to meet the

system requirements. Three factors cause the program to change: (a) repair change, which

happens more often after the program is newly developed when certain tasks can not be

completed; (b) business requirements; (c) technology. The change of code may be traced

to a stage in the IS development life cycle, such as analysis, design, and development.

Systems or programs are a series of instructions or statements that when decoded

by a computer or by a computer and a translation program cause the computer to do work

(Fox, 1982). Software is a set of programs that interact with each other.A system consists

 47

of many components. A computer-based system consists of hardware, software, people,

procedure, database, and telecommunications (McLean et al. 1992). Requirements

definition is a system level problem that will affect the software level. Any changes in the

component or the subsystem affect the entire system.

Independent Variables

Four variables are employed in this study: program size, technology, cyclomatic

complexity, and the changes in business requirements. Two variables, program size and

cyclomatic complexity are used to measure system complexity. Literature has a number

of ways to measure these three variables. In this study, system complexity is measured by

using Cyclomatic complexity metrics (McCabe, 1976). Program size is measured by the

total number of executable lines. The change to business requirements is a continuous

variable. It is measured by summing those requests that are related to changes in business

requirements in a program. Technology is classified into two groups: hardware and

software. Hardware is operationalized by adding the modifications that are related to

hardware changes. Software is measured by totaling the modifications that are related to

software changes.

Complexity is an abstract property of software, Fenton (1997) says that

complexity can be viewed from a number of different perspectives including program

algorithms, structural and cognitive complexity contexts. It cannot be directly measured.

Complexity can produce entropy for a program. Complex programs are hard to modify

and maintain. In this study we will explore how software complexity correlates to

failures.

 48

The structured programming primitives used in the calculation of cyclomatic

complexity are based on the control flow graph rather than the source code text. This

allows cyclomatic complexity metric to measure structural quality, independently of the

syntax of any particular programming language. The process of calculating cyclomatic

complexity is similar to the calculation of module design complexity. When calculating

cyclomatic complexity, primitive constructs can be removed whether or not they involve

module calls.

Dependent Variables

 In this study, the frequency of change of program is a dependent variable. Four

variables, design failure, analysis failure, program failure and total failure are employed

as a measure of system state. The total failure is the summation of design, analysis and

program failure. The maintenance log was documented by the professional EDP auditor

who has advanced knowledge on programming and maintenance. The maintenance log

contains 1702 modifications on 100 COBOL programs over the period 1978-1992. The

log records the program installation date, the date when the request for modification was

proposed, the date the programmer was assigned to modify the program, the date when

the modification was completed and the reasons that caused the modifications. The

reasons for modifications are grouped into three categories: analysis failure, design

failure and programming failure. Each of these categories is defined by the set of

modifications which arise from each respective step of the software development life

cycle. Analysis failure is measured by the frequency of modifications that are due to the

analysis stage of the software development life cycle. Design failure is measured by the

frequency of modifications that are due to the design stage of the software development

 49

life cycle. Programming failure is measured by the frequency of modifications that are

due to the programming stage of the software development life cycle.

Table 1. Constructs and Variables Table

Dependent
Construct

Previous Research Measurement

Total failure The total frequencies of changes to the
program due to any reason

Design
failure

 The frequency of the changes to the program
due to the design error.

Analysis
failure

 The frequency of the changes to the program
due to the analysis error.

Program
failure

 The frequency of the changes to the program
due to the programming error.

Independent
Construct

Cyclomatic
complexity

McCabe1976 Cyclomatic metrics.

Total
Procedure
lines

Banker&
Slaughtere (2000)

The total number of executable lines of code

Software size Jones (1983);
Sumner (1999);
Mills (1983)
Dijkstra (1972)

Total number of executable lines.

Business
requirements

Block (1983);
Davis et al (1992);
Sumner (1999)

The frequency of the change to the program
due to changes in business requirements
change.

Research questions:

Each stage of traditional software development life cycle requires different

activities and has a varying role in the quality of the final system. In this study, the

failures are traced to design, analysis and development. The frequency of design error

analysis error and development error are used to measure the dependent variable IS

failure. This method of analysis allows the identification of which stage of software

development life cycle is most prone to errors. By identifying this, practical suggestions

 50

on software development can be made. Certain stages of software life cycle require more

efforts than others.

This study will examine the following research questions:

1. Is there a relationship between changes to business requirement and

software failure?

2. Is there a relationship between software complexity and software failure?

3. Is there a relationship between program size and software failure?

4. Is there a relationship between the age of software and software attributes?

 51

 Chapter 4

Research Methodology

 This chapter describes the research design, data collection, sample population,

hypotheses tested, and data analysis methods used to validate the conclusions of this

study. Logistic regression analysis was conducted to determine the significance of the

variables: program size, business requirements, and cyclomatic complexity in predicting

analysis, design, and programming failures. In addition, the relationship between the age

(life of the software) and the following variables was investigated: design failure,

analysis failure, program failure, software failure, hardware failure, and cumulative

failure. Regression analysis was used with a log transformation of these variables.

Research Design

Archival data analysis was performed in this study by analyzing data collected by

professional programmers and auditors in a large insurance company between 1978-

1992. Both qualitative and quantitative data were documented for the 100 COBOL

programs. These programs include commercial billing, statistical reports, programs to

print requested information, programs to give summary reports, commercial bill

cancellation programs, commercial bill zero balance programs, deposit premium

programs, programs capable of listing commercial policies, backup statistical system

transaction programs, and programs for the annual warehouse purge of cancelled/expired

 52

policies. The smallest program had 101 lines of codes and the largest one had 18488 lines

of codes.

Characteristics of the 100 COBOL programs

Archival corporate data provided the following information related to the 100

COBOL programs: program size, changes due to new business requirements, cyclomatic

complexity, and total procedure lines. The number of lines of codes was used as a

measure of the size of the program. The literature suggests that the longer the program,

the more effort needed to maintain the program. Also, the literature suggests that

complexity measures are positively related to both the cost of developing a program and

the time spent on developing a program. As theses program characteristics are focused on

the design and internal complexity of the programs, it is not surprising that these

variables are moderately correlated.

Programs Sampled

In this study, 100 COBOL programs are used to test the proposed hypotheses.

These programs were from different departments of a single company. From program

logs, dates and reasons for changes in the programs were obtained. Software complexity

measures were obtained from programs designed to calculate complexity metrics.

Cyclomatic complexity, procedure codes and the number of lines of code were reported

from programs designed to calculate these metrics. Information related to technology

and business requirement changes were obtained from the documentation in the program

log. The program log also reported the date when a program was released, the date when

a program was assigned to a programmer to modify the program, the date when errors

 53

were corrected, and the time allotted to make changes in a program. The number of

programs with analysis failures, design failures, and failures due to a change in business

requirements were 29, 55, and 58, respectively.

Unit of Analysis

Following the principles of data collection established by Eisenhardt (1989) and

Yin (1989), data were obtained from the program logs of a large corporation. The unit of

analysis for this study is a COBOL program used in the corporation. Each of the 100

programs performed a different function. Maintaining commercial billing systems and

ordering systems to process invoices are examples of the functions performed by these

programs. The date of each software failure (modification) and its cause were accurately

recorded from the company’s program logs.

0

10

20

30

40

50

60

70

80

90

Ju
l-7

8

Nov
-78

Mar-
79

Ju
l-7

9

Nov
-79

Mar-
80

Ju
l-8

0

Nov
-80

Mar-
81

Ju
l-8

1

Nov
-81

Mar-
82

Ju
l-8

2

Nov
-82

Mar-
83

Ju
l-8

3

Nov
-83

Mar-
84

Ju
l-8

4

Nov
-84

Mar-
85

Ju
l-8

5

Nov
-85

Mar-
86

Ju
l-8

6

Nov
-86

Mar-
87

Ju
l-8

7

Nov
-87

Mar-
88

Ju
l-8

8

Nov
-88

Mar-
89

Ju
l-8

9

Nov
-89

Mar-
90

Ju
l-9

0

Nov
-90

Time

To
ta

l n
um

be
r o

f m
od

ifi
ca

tio
ns

Figure 4.1. Total number of modifications due to analysis error from 1978

through 1992.

Figure 4.1 shows that the number of software modifications fluctuated over the

10- year period used in this study. The following periods experienced an increase in the

 54

numbers of modifications made to the software in use by the company: July 1982 –

December 1982, and July 1986 – December 1986, January 88- June 1988, July 1988 –

December 1988, July 1990 – December 1990. The number of modifications ranges from

5 to 81 over this ten-year period. Further investigation of this software may reveal

cyclical causes for the increased modifications during these periods.

Analysis Failure

Analysis failure is defined as a necessary modification to a program code to

correct a problem in the software that is related to the analysis stage of software

development. The 100 COBOL programs were dichotomized into two groups: those with

modifications due to analysis and those having no modifications related to the analysis

stage of software development. There were 75 programs in the non-analysis failure group

and 25 programs in the analysis failure group. The mean number of business requirement

changes in the analysis failure group is 6.92 whereas the mean number of business

requirement changes in the non-analysis failure group is 3.11.

 55

0

1

2

3

4

5

6

7

8

9

Ja
n-7

9

May
-79

Sep
-79

Ja
n-8

0

May
-80

Sep
-80

Ja
n-8

1

May
-81

Sep
-81

Ja
n-8

2

May
-82

Sep
-82

Ja
n-8

3

May
-83

Sep
-83

Ja
n-8

4

May
-84

Sep
-84

Ja
n-8

5

May
-85

Sep
-85

Ja
n-8

6

May
-86

Sep
-86

Ja
n-8

7

May
-87

Sep
-87

Ja
n-8

8

May
-88

Sep
-88

Ja
n-8

9

May
-89

Sep
-89

Ja
n-9

0

May
-90

Time

A
na

ly
si

s
er

ro
r

Figure 4.2. Number of modifications due to analysis error from 1978 through

1992

The accumulated number of modifications due to analysis error is 87 for the

period 1978 through 1992 for the 100 COBOL programs. The number of errors due to the

analysis stage appears to be slightly larger between the years 1979 to 1983 than for the

years 1984 to 1990. Over time, perhaps the analysts improved their ability to analyze

business situations and problems. Figure 4.2 also shows an improvement over time with

respect to software modifications due to analysis error. During the period July 1979

through December 1979, the number of modifications due to analysis error reached a

peak at eight. The least value for the number of modifications is one which occurred

during certain periods of 1985, 1987, 1989, and 1990. The range of modifications is from

one to eight.

 56

Design failure

The software development life cycle consists of analysis, design, development

and maintenance. Failures can occur at different stages of the software development life

cycle. The design phase of software development is important because the cost of future

maintenance can be easily impacted by poor design of software. Design failure in

software is defined as code needing modification because of errors related to the design

phase of the software development life cycle. The 100 programs were classified into two

categories, one is with design failures and the other is without design failures.

In this study, 47 programs fall into the category of non-design failure and the

other 53 programs belong to the group of design failure. Thus, 53% of the programs have

design failure problems. The frequency of design error in the group with design failure

ranged from 1 to 33. The mean for business requirements change is 0.38 for non-design

failure programs whereas the mean for business requirements change is 7.32 for

programs with design failure. This suggests that changes in business requirements may

have an effect on design failure.

 57

0

20

40

60

80

100

120

Ju
l-7

8

Nov
-78

Mar-
79

Ju
l-7

9

Nov
-79

Mar-
80

Ju
l-8

0

Nov
-80

Mar-
81

Ju
l-8

1

Nov
-81

Mar-
82

Ju
l-8

2

Nov
-82

Mar-
83

Ju
l-8

3

Nov
-83

Mar-
84

Ju
l-8

4

Nov
-84

Mar-
85

Ju
l-8

5

Nov
-85

Mar-
86

Ju
l-8

6

Nov
-86

Mar-
87

Ju
l-8

7

Nov
-87

Mar-
88

Ju
l-8

8

Nov
-88

Mar-
89

Ju
l-8

9

Nov
-89

Mar-
90

Ju
l-9

0

Nov
-90

Time

D
es

ig
n

er
ro

r

 Figure 4.3. Number of modifications due to design error from 1978 through 1992

The total number of modifications due to design error is 449 for 100 COBOL

programs from 1978 through 1992. There were two time periods in which unusually large

number of modifications were made due to design error. One occurred in the first six

months of 1980 during which 110 modifications were made, the other occurred during

the period of the last six months of 1982 during which 37 modifications were made.

During other time intervals, the number of modifications due to design error was less

than 20 without any sharp spikes. The range of modifications is from one to 110.

Programming Failure

The development stage of software development involves the coding activities of

the programmers. Logical errors incurred in this stage will cause the system to

malfunction. Extra attention should be given to the logical flow of the program to ensure

that the final system will have minimal failures traced back to this stage. Software

programs having failures due to programming are classified into two groups. One group

contains programs with programming failures and the other group includes only

programs without programming failures.

 58

In this study, 51 programs were in the non-programming failure group and 49

programs were in the programming failure group. Thus, we can say 49% of the programs

have programming failures. The mean number of changes due to the number of changes

in business requirements is 0.60 for the non-programming failure group whereas the

mean for the number of changes in business requirements is 7.65 for the programming

failure group. This implies that business requirements change may have an important

effect on programming failure.

0

5

10

15

20

25

30

35

Ja
n-7

9

May
-79

Sep
-79

Ja
n-8

0

May
-80

Sep
-80

Ja
n-8

1

May
-81

Sep
-81

Ja
n-8

2

May
-82

Sep
-82

Ja
n-8

3

May
-83

Sep
-83

Ja
n-8

4

May
-84

Sep
-84

Ja
n-8

5

May
-85

Sep
-85

Ja
n-8

6

May
-86

Sep
-86

Ja
n-8

7

May
-87

Sep
-87

Ja
n-8

8

May
-88

Sep
-88

Ja
n-8

9

May
-89

Sep
-89

Ja
n-9

0

May
-90

Sep
-90

Ja
n-9

1

Time

Pr
og

ra
m

 e
rr

or

Figure 4.4. Number of modifications due to programming error from 1978 through 1992

 The total number of modifications due to programming errors is 385 from 1978

through 1992 for the 100 COBOL programs. The range of modification is from five to

31. The lowest number of modifications occurred from July 1979 through December

1979 and January 1981 through December 1981. During January 1984 though July 1984,

the heaviest modifications due to programming error occurred. Figure 4.4 illustrates that

the number of modifications due to programming errors is erratic.

 59

Software Complexity

Metrics that measure software complexity provide an indication of the ease in

understanding and modifying a program. Many different kinds of software complexity

metrics exist. Big companies can develop their own complexity metrics. The metrics

known as essential complexity and cyclomatic complexity were developed by Halstead

(1976) to measure the difficulty in maintaining programs. Because these two metrics are

highly correlated, only cyclomatic complexity is used in this study. Special programs

designed to calculate complexity were used to obtain this metric.

Cyclomatic Complexity 10-299 300-599 600-1382

The number of programs 88 75 5
Mean 102 423 989
Standard deviation 74 80 336

Most of the programs have cyclomatic complexity values less than 600. Only 5%

of the programs have a cyclomatic complexity value of 600 or more. The standard

deviation of those programs with a complexity score of 600 or more is approximately

four times that for programs with a complexity score less than 300 or between 300 and

599. This variable will be used as a predictor of program failure.

Changes to Business Requirements

An important aspect of system development is converting user "needs" into clear,

concise, and verifiable system requirements. Businesses function in a dynamic

environment. New products and services are coming into the market every day. It is quite

common that old products and services are exiting the market due to competition and

changing customer taste. Nothing can last forever. Change is one phenomenon that is

 60

perpetual. Many reasons can cause a change in business requirements such as the change

of organizational structure, the change of management, downsizing, merging, the

turnover of the employees, expanding business activities and the pressure from the

competitors. The number of changes in business requirements is believed to be

significantly correlated with the number of modifications in software programs. Programs

that are part of a company’s information system are usually integrated into the

organization itself and developed to improve the performance of a company. Every

information system is based on clearly defined business requirements. When business

requirements change, the current information systems usually cannot meet the needs of

business activities and cannot fully support business operations. Information systems

must change to cope with the changes in business requirements to better support

organizational activities and operations.

0

20

40

60

80

100

120

Ju
l-7

9

N
ov

-7
9

M
ar

-8
0

Ju
l-8

0

N
ov

-8
0

M
ar

-8
1

Ju
l-8

1

N
ov

-8
1

M
ar

-8
2

Ju
l-8

2

N
ov

-8
2

M
ar

-8
3

Ju
l-8

3

N
ov

-8
3

M
ar

-8
4

Ju
l-8

4

N
ov

-8
4

M
ar

-8
5

Ju
l-8

5

N
ov

-8
5

M
ar

-8
6

Ju
l-8

6

N
ov

-8
6

M
ar

-8
7

Ju
l-8

7

N
ov

-8
7

M
ar

-8
8

Ju
l-8

8

N
ov

-8
8

M
ar

-8
9

Ju
l-8

9

N
ov

-8
9

M
ar

-9
0

Ju
l-9

0

N
ov

-9
0

Time

B
us

in
es

s
R

eq
ui

re
m

en
ts

 c
ha

ng
e

 Figure 4.5. Changes in business requirements from 1978 through 1992

 61

The accumulated modifications due to business requirements over the period

1978-1992 for the 100 COBOL programs occurred 643 times. Among the 100 COBOL

programs, 58 programs had modifications due to business requirements change. As figure

4.5 illustrates, the maximum occurrence is 58 and lowest occurrence is 1. The frequency

of changes in business requirements is displayed below. Most programs had 10 or fewer

modifications due to changes in business requirements. Note that 42% of the programs

had no business requirements change while 5% of the programs have 20-58 modifications

due to business requirements change. When business requirements change, there is a

strong likelihood that programs will fail. This relationship will be investigated in the

hypotheses tested in this study.

Frequency of business requirements change

0 1-10 11-20 21-58

Number of programs 42 44 9 5

Technology

Program logs are used to document the dates for modifications in the software due

to changes in technology. Changes in technology include hardware replacement,

program database changes, interface changes, DBMS errors, and revisions of COBOL2.

The number of software modifications due to technology changes may be related to the

age or life of software programs. This relationship will be investigated in this study. The

total occurrences of modifications in software programs due to changes in technology

over a 10-year period on the 100 COBOL programs used in this study are 63. Only 41

programs experienced technology changes while the other 59 programs did not. The

maximum number of technology changes for any single program is 3. Three programs

 62

had a technology change frequency of 3. Overall, 16 programs had a technology change

frequency of 2 and 21 programs had a technology change frequency of 1.

In this study, changes due to technology are typically due to changes in hardware,

software and using the newest, innovative devices or procedures to complete business

tasks. Businesses implement new technologies to improve efficiency and gain

competitive advantages in the market. Companies have realized that in the information

age changes in technology are an inevitable part of business practices and operations.

There are always costs involved in acquiring new technologies, such as the cost to buy

the technologies, the operation and training cost for using the new technology.

Frequency of
technology change

0 1 2 3

The number of
programs

59 22 16 3

Overall, 59% of the programs have no modifications due to changes in

technology. Only one modification due to changes in technology was experienced by

22% of the programs. Two and three modifications due to changes in technology were

experienced by 16% and 3% of the programs, respectively.

 63

0

5

10

15

20

25

Ja
n-8

0

Apr-
80

Ju
l-8

0

Oct-
80

Ja
n-8

1

Apr-
81

Ju
l-8

1

Oct-
81

Ja
n-8

2

Apr-
82

Ju
l-8

2

Oct-
82

Ja
n-8

3

Apr-
83

Ju
l-8

3

Oct-
83

Ja
n-8

4

Apr-
84

Ju
l-8

4

Oct-
84

Ja
n-8

5

Apr-
85

Ju
l-8

5

Oct-
85

Ja
n-8

6

Apr-
86

Ju
l-8

6

Oct-
86

Ja
n-8

7

Apr-
87

Ju
l-8

7

Oct-
87

Ja
n-8

8

Apr-
88

Ju
l-8

8

Oct-
88

Ja
n-8

9

Apr-
89

Ju
l-8

9

Time

Te
ch

no
lo

gy
 c

ha
ng

e

 Figure 4.6. Number of modifications due to changes in technology from 1978

through 1992

 The total number of modifications due to changes in technology was 95 from

1978 through 1992. The range of modifications due to changes in technology is from one

to 23. Figure 4.6 illustrates that the period from January 1985 through January 1989 had

an unusually large number of modifications from changes in technology. Before January

1985, few modifications were made because of changes in technology.

Design failure hypotheses

In this study the statistical analysis to test the relationship between modifications

due to design failure and the variables program size, business requirements, cyclomatic

complexity, and total procedure lines are presented in tables 4.1 through 4.11. Theses

hypotheses are as follows:

H1a: There is a relationship between design failure and business requirements controlling
for cyclomatic complexity and program size.

 64

H2a: There is a relationship between design failure and program size controlling for
business requirements and cyclomatic complexity.

H3a: There is a relationship between design failure and cyclomatic complexity controlling
for business requirements and program size.

 In analyzing the logistic model used to test the hypotheses related to each of

causes of failure in software, an overall test is first presented to show the significance of

the model itself. For the logistic model used to investigate the relationship between

modifications due to design failure and the predictor variables, the Wald’s statistic is

used. However, alternative global tests are presented as well. As shown in table 4.1,

Wald’s test has a p-value of less than 0.0003. The overall model with the intercept and 4

independent variables is significant.

Table 4.1. Overall model for modifications due to design failure

 Intercept
 Intercept and
 Criterion Only Covariates

 AIC 140.269 83.126
 SC 142.874 93.546
 -2 Log L 138.269 75.126

Testing Global Null Hypothesis: BETA=0

 Test Chi-Square DF Pr > ChiSq
 Likelihood Ratio 63.1939 3 <.0001
 Score 26.3625 3 <.0001
 Wald 20.9351 3 <.0003

 Table 4.1 also displays the AIC, SC, and –2LogL statistics to make comparisons

between the full model (intercepts and covariates) and the null model (only has an

intercept term). From these values, the overall adequacy of the model can be assessed

further. The –2LogL statistic is commonly used in understanding the contribution by the

 65

predictor variables. The value –2Log L for the model with only the intercept has a value

of 138.269 09 whereas the model with intercept and covariates has a value of 75.075. By

including the covariates, the independent variable in the model, there is a large decrease

in –2Log L. This suggests that the model with intercept and independent variables is a

good fit to the data.

Table 4.2. Parameters for logistic model for modifications due to design failure

 Standard
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 1.1620 0.4200 7.6545 0.0057
Business requirements 1 -1.0053 0.2208 20.7239 <.0001
Cyclomatic complexity 1 -0.0145 0.00914 2.5189 0.1125
Program size 1 0.00328 0.00194 2.8690 0.0903

 Table 4.2 presents the significant levels of the three independents variables,

business requirements, cyclomatic complexity and program size. At the 1% significance

level, the variable business requirements is the only variable significant when controlling

for the other variables in the model. However, the classification rate was 82%. Thus the

model appears to have good predictive validity. Table 4.2 shows support for hypotheses

H1a and H2a at the 1% and 10% significance levels, respectively.

Table 4.3. Testing model with modifications due to design failure when influential data
 are removed
 Intercept
 Intercept and
 Criterion Only Covariates

 AIC 135.634 74.363
 SC 138.209 87.237
 -2 Log L 133.634 64.363

 66

 Testing Global Null Hypothesis: BETA=0

 Test Chi-Square DF Pr > ChiSq

 Likelihood Ratio 69.2710 3 < .0001
 Score 26.0507 3 < .0001
 Wald 20.5110 3 0.0004

 During the analysis of the logistic model, it was found that certain

observations were influential. So further analysis was performed to assess the effect of

the influential observations. Without three influential observations, -2 Log L is smaller

than it was with all the observations. The model with intercept only has a much larger

value of –2 Log L by including the three covariates in the model. This implies that the

model is a good fit to the data. Note that Wald’s test is significant at the 1% significance

level (p=0.0004). The results of Wald’s test including the influential observations agree

with the results of Wald’s test deleting the influential observations. Wald’s test confirms

the overall fit of the model.

Table 4.4. Logistic regression parameters with influential data removed

 Standard Standard
 Parameter DF Estimate Error Chi-Square Pr > ChiSq

 Intercept 1 1.4915 0.4460 11.1833 0.0008
 Business requirements 1 -1.2733 0.2810 20.5362 < .0001
 Cyclomatic complexity 1 -0.0186 0.0112 2.7827 0.0953
 Program size 1 0.00363 0.00213 2.8995 0.0886

 After removing three influential observations, the logistical regression analysis

was redone. Table 4.3 and table 4.4 display the logistical regression results. After

removing three influential observations, variables business requirements, cyclomatic

complexity and program size are significant at the 10% significance level in predicting

 67

the dependent variable design failure. Therefore, with the removal of influential

observation, the hypotheses H1a and H2a and H3a are now supported.

Analysis Failure Hypotheses

The following hypotheses are presented to test the relationship between analysis

failure and each of the independent variables.

H4a: There is a relationship between analysis failure and business requirements
controlling for program size and cyclomatic complexity.

H5a: There is a relationship between analysis failure and program size controlling for
business requirements and cyclomatic complexity.

H6a: There is a relationship between analysis failure and cyclomatic complexity
controlling for business requirements and program size.

Table 4.5. Testing overall model with dependent variable analysis failure

 Intercept
 Intercept and
 Criterion Only Covariates

 AIC 114.467 102.800
 SC 117.072 113.221
 -2 Log L 112.467 94.800

 Testing Global Null Hypothesis: BETA=0

 Test Chi-Square DF Pr > ChiSq

 Likelihood Ratio 17.6668 3 0.0005
 Score 15.3092 3 0.0016
 Wald 10.1649 3 0.0172

 Table 4.5 presents the results for testing the overall model. The value -2 Log L is

much smaller for the model with the intercept and covariates than for the model with only

the intercept and therefore indicates that the logistic model with the independent variables

 68

is an improvement over the null model. Wald’s test is significant with the probability of

0.0001. This test supports that the independent variables contribute significantly to

predicating the likelihood of modifications due to analysis failure.

Table 4.6. Parameter estimate for model with dependent variable analysis failure

 Standard

Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 1.1314 0.3676 .4743 0.0021
Business requirements 1 -0.1793 0.0611 8.6156 0.0033
Cyclomatic complexity 1 -0.0106 0.00544 3.7817 0.0518
Program size 1 0.00298 0.00115 6.6933 0.0097

 Table 4.6 shows that the chi-square tests on the individual independent variables

are all significant. The three independent variables business requirements, cyclomatic

complexity, and program size are good predicators for the dependent variable analysis

failure. The logistical regression model also has a reasonable classification rate. Eighty

percent of the observations are correctly classified. The analysis supports H4a, H5a, and

H6a. We can conclude analysis failure is related to business requirements change

controlling for the effect of other variables in the model. At the 1% significance level,

there is a relationship between analysis failure and program size controlling for the effect

of other variables in the model. At the 10% significance level, there is a relationship

between analysis failure and cyclomatic complexity controlling the effect of other

variables in the model.

Programming failure hypotheses

 In order to test the relationship between programming failures and the

independent variables, four hypotheses are stated as follows:

 69

H7a: There is a relationship between programming failures and business requirements
controlling for program size and cyclomatic complexity.

H8a: There is a relationship between programming failures and program size controlling
for business requirements and cyclomatic complexity.

H9a: There is a relationship between programming failures and cyclomatic complexity
controlling for business requirements and program size.

Table 4.7. Testing overall model with dependent variable programming failure

 Intercept
 Intercept and
 Criterion Only Covariates

 AIC 140.589 97.849
 SC 143.195 106.281
 -2 Log L 138.589 87.849

 Testing Global Null Hypothesis: BETA=0

 Test Chi-Square DF Pr > ChiSq

 Likelihood Ratio 50.7400 3 < .0001
 Score 24.8897 3 < .0001
 Wald 19.7596 3 0.0002

Table 4.7 presents the statistics for testing the overall model. Wald’s statistics

provides evidence that the overall fit of the model with intercept and the three

independent variables is adequate. The data only support H7a and we conclude that there

is relationship between programming failure and business requirements controlling for

program size and cyclomatic complexity being in the model.

 70

Table 4.8 Parameter estimates for model with dependent variable programming failure

 Standard
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 1.1854 0.3998 8.7899 0.0030
Business requirements 1 -0.6869 0.1551 19.6141 <.0001
Cyclomatic complexity 1 -0.00256 0.00660 0.1503 0.6983
Program size 1 0.000825 0.00134 0.3801 0.5376

 Chi-square tests on the individual independent variables show that only the

variable business requirements is significant. The other independent variables cyclomatic

complexity and program size are not significant predicators in predicting the dependent

variable programming failure. At the 1% significance level, we can state that there is a

relationship between business requirement change and programming failure controlling

for the effects of program size, and cyclomatic complexity. The classification rate is 75%

which is not very high in correctly classifying all the observations.

Table 4.9 Testing overall model with dependent variable programming failure after
 removing influential observations

 Intercept
 Intercept and
 Criterion Only Covariates

 AIC 136.460 92.147
 SC 139.035 105.021
 -2 Log L 134.460 82.147

 Testing Global Null Hypothesis: BETA=0

 Test Chi-Square DF Pr > ChiSq

 Likelihood Ratio 52.3127 3 < .0001
 Score 24.1259 3 < .0001
 Wald 19.0887 3 0.0008

The value -2 Log L after deleting three influential observation is smaller when

 71

compared to –2 Log L including all observations. There is also a big reduction in –2 Log

L in the model with intercept and covariates. Wald’s statistic is 0.0008 after deleting

three influential observations. Therefore, the overall model fits the data.

Table 4.10 Parameter estimates for model with dependent variable programming
 failure after removing influential observations

 Standard
 Parameter DF Estimate Error Chi-Square Pr > ChiSq

 Intercept 1 1.2793 0.4175 9.3875 0.0022
 Business requirements 1 -0.7372 0.1732 18.1184 <.0001
 Cyclomatic complexity 1 0.00161 0.00778 0.0427 0.8362
 Program size 1 0.000484 0.00187 0.0674 0.7951

 Chi-square tests on individual independent variables show that only the variable

business requirements is a significant predicator in predicting dependent variable

programming failure. After deleting three influential observations, the same conclusion as

before. We can only state that business requirement change is related to programming

failure when controlling for the effects of other three independent variables.

Hypotheses Testing Total Failure

 A new variable, total failure is formed to test another three hypotheses. Total

failure is the summation of design failure, analysis failure and programming failure.

H10a: There is a relationship between total failure and business requirements controlling
for program size and cyclomatic complexity.

H11a: There is a relationship between total failure and program size controlling for
business requirements and cyclomatic complexity.

H12a: There is a relationship between total failure and cyclomatic complexity controlling
for business requirements and program size.

Using dependent variable total failure to model the relationship, the following results

are produced:

 72

Table 4.11 Analysis using total number of failures

 Intercept
 Intercept and
 Criterion Only Covariates

 AIC 136.602 65.768
 SC 139.208 76.189
 -2 Log L 134.602 57.768

 Testing Global Null Hypothesis: BETA=0

 Test Chi-Square DF Pr > ChiSq

 Likelihood Ratio 76.8343 3 <.0001
 Score 24.8660 3 <.0001
 Wald 15.4348 3 0.0015

 Analysis of Maximum Likelihood Estimates

 Standard
 Parameter DF Estimate Error Chi-Square Pr > ChiSq

 Intercept 1 0.8253 0.4412 3.4993 0.0614
 Business requirements 1 -1.8993 0.4921 14.8980 0.0001
 Cyclomatic complexity 1 -0.0166 0.0120 1.8967 0.1685
 Total lines in procedure 1 0.00412 0.00259 2.5228 0.1122

 -2Log L is significantly reduced with the independent variables in the model.

Wald’s statistics show the significance of the overall model fit. Coefficients analysis

suggests that only the variable business requirements is the good predictor whereas with

respect to the other two independent variables, program size and cyclomatic complexity

are not significant predicators in predicting the total number of modifications.

 73

Hypotheses Testing Using Independent Variable Age to Predict Failure

 The following tests are performed to analyze the relationship between age and

several dependent variables. These dependent variables include design failure, analysis

failure, program failure, software failure, hardware failure, total failure, and cumulative

failure. A graph of the dependent variables with age indicated some curvature in the

model. After experimenting with several transformations, the log transformation was

used, as it appeared to be a good fit for several of the models. Software that had been in

use for 8 to 18 years was included in this portion of the study. The total number of

software programs was 35 with this restriction. In this section, hypotheses are listed to

test the relationship between the variable program age and each of 7 variables using

regression analysis with a log-transformed dependent variable.

H1b: There is a relationship between program age and design failure.

 Dependent Variable: log of number of modifications due to design error

Table 4.12. Design errors occurring over time

 Parameter Standard
 Variable DF Estimate Error t Value Pr > |t|

 Intercept 1 0.34673 0.82337 0.42 0.6764
 age 1 0.00012777 0.00014932 0.86 0.3983

Since the p-value is 0.3983, the conclusion is that there is no relationship between

the log of design error and the age of the system. Thus the first hypothesis in this section

is not supported.

 74

H2b: There is a relationship between program age and analysis failure.

 Dependent Variable: log of number of modifications due to analysis error

 Table 4.13. Analysis errors occurring over time

 Parameter Standard
 Variable DF Estimate Error t Value Pr > |t|

 Intercept 1 -0.75156 0.56988 -1.32 0.1963
 age 1 0.00023330 0.00010335 2.26 0.0307

 The p-value from the regression analysis is 0.0307. Thus, at the 5% significance

level, we conclude there is a relationship between the log of analysis error and the age of

the system.

H3b: There is a relationship between program age and programming failure.
 Dependent Variable: log of number of modifications due to programming error

Table 4.14. Programming errors occurring over time

 Parameter Standard
 Variable DF Estimate Error t Value Pr > |t|

 Intercept 1 -0.52523 0.89100 -0.59 0.5595
 age 1 0.00028072 0.00016158 1.74 0.0917

At the 10% significance level, we conclude that there is a relationship between the

log of the program errors and the age of the systems.

H4b: There is a relationship between program age and software failure.

Dependent Variable: log of number of modifications due to software failure

 75

Table 4.15. Software failures occurring time.

 Parameter Standard
 Variable DF Estimate Error t Value Pr > |t|

 Intercept 1 0.11106 0.47776 0.23 0.8176
 age 1 0.00007616 0.00008664 0.88 0.3857

Since the p-value is equal to .3857, there is no relationship between the log of

number of modifications due to software failure and the age of the systems.

H5b: There is a relationship between program age and hardware failure.
Dependent Variable: log of number of modifications due hardware failure

Table 16. Hardware failures occurring over time.

 Parameter Standard
 Variable DF Estimate Error t Value Pr > |t|
 Intercept 1 0.45087 0.18783 2.40 0.0222
 age 1 -0.00007202 0.00003406 -2.11 0.0421

Since the p-value less than .05, we conclude that there is a relationship between

the log of modifications due to hardware failure change and the age of the systems at the

5% significance level.

H6b: There is a relationship between program age and changes in business requirements.

Dependent Variable: log of number of modifications due to changes in business
requirements

Table 4.17. Changes to business requirements occurring over time.

 Parameter Standard
 Variable DF Estimate Error t Value Pr > |t|

 Intercept 1 -0.48545 0.80761 -0.60 0.5519
 age 1 0.00030778 0.00014646 2.10 0.0433

 76

At the 5% significance level, the hypothesis that there is a relationship between

the log of changes in business requirements and age of software is supported. To gain

further insight into the number of software errors or modifications over time, the total

number of errors was analyzed. This new variable was the sum of each of errors produced

by the causes previously analyzed individually.

 Total errors

4.5

*

4.0 *

3.5
*

*

 3.0 *
*

*
*

* * ** *

2.5 * *

* *
* *

 2.0
* * *

* * ** *

* * **

1.5
*

 2500 3000 3500 4000 4500 5000 5500 6000

Figure 4.7. The number of modifications over years

 77

To understand if the relationship between the log of the total number of errors and

the age of software programs is significant, the following regression analysis was

performed. Note that this analysis produced a significant relationship at the 1%

significance level. However, the R-square was still small with a value of 20.79%.

H7b: There is a relationship between program age and total error.

Table 4.18. Total failures occurring over time.

 Parameter Standard
 Variable DF Estimate Error t Value Pr > |t|

 Intercept 1 0.33313 0.67150 0.50 0.6231
 age 1 0.00035843 0.00012178 2.94 0.0059

To gain a more realistic view of the number of errors produced over time and the

age of software, a new variable was used which cumulatively summed the errors. A graph

of this variable and the age of the software is presented below. The graph of this new

variable with age has a very strong relationship with the square of the independent

variable age. However, the log transformation of this new variable, which is the

cumulative sum of the errors, also has a strong linear relationship with age. With this log

transformation, the R-square value was a high 94.08%. The regression analysis reveals

that age is a significant predictor at the 1% significance level.

 78

Cumulative total error

500

*

400
*

300 *
**
*

*
*
**

200 *
* *

*

*
*

 100 *
* *
*

* *
* *

*
*

* *

 500 3000 3500 4000 4500 5000 5500 6000

 Figure 4.8. The cumulative number of modifications over years.

Dependent Variable: log of the cumulative total number of modifications

Table 4.19. The log transformation on total failures.

 Parameter Standard
 Variable DF Estimate Error t Value Pr > |t|

 Intercept 1 -2.49208 0.31477 -7.92 <.0001
 age 1 0.00131 0.00005708 22.90 <.0001

 79

Table 4.20. Summary of hypothesis tests

Hypotheses Result
H1a: There is a relationship between design failure and
business requirements controlling for cyclomatic complexity
and program size.

Supported at the
1% significance
level

H2a : There is a relationship between design failure and
program size controlling for business requirements and
cyclomatic complexity.

Supported at the
10% significance
level

H3a: There is a relationship between design failure and
cyclomatic complexity controlling for business requirements
and program size.

Supported at the
10% significance
level

H4a: There is a relationship between analysis failure and
business requirements controlling for program size and
cyclomatic complexity.

Supported at the
1% significance
level

H5a: There is a relationship between analysis failure and
program size controlling for business requirements and
cyclomatic complexity.

Supported at the
1% significance
level

H6a: There is a relationship between analysis failure and
cyclomatic complexity controlling for business requirements
and program size.

Supported at the
5% significance
level

H7a: There is a relationship between programming failure and
business requirements controlling for program size and
cyclomatic complexity.

Supported at the
1% significance
level

H8a: There is a relationship between programming failure and
program size controlling for business requirements and
cyclomatic complexity.

Not supported

H9a: There is a relationship between programming failure and
cyclomatic complexity controlling for business requirements
and program size.

Not supported

H10a: There is a relationship between total failure and business
requirements controlling for program size and cyclomatic
complexity.

Supported at the
1% significance
level

H11a: There is a relationship between total failure and program
size controlling for business requirements and cyclomatic
complexity.

Not supported

H12a: There is a relationship between total failure and
cyclomatic complexity controlling for business requirements
and program size.

Not supported

 80

Hypotheses result
H1b: There is a relationship between program age and design
failure.

Not supported

H2b: There is a relationship between program age and analysis
failure.

Supported at 5%
significant level

H3b: There is a relationship between program age and program
failure.

Supported at 10%
significant level

H4b: There is a relationship between program age and software
failure.

Not supported

H5b: There is a relationship between program age and hardware
failure.

Supported at 5%
significant level

H6b: There is a relationship between program age and business
requirements change.

Supported at 5%
significant level

H7b: There is a relationship between program age and total error . Supported at 1%
significant level

SUMMARY

 Table 4.20 summarizes the results of this chapter. Logistic regression and

multiple regression analysis were used to test the proposed hypotheses. Each of these

hypotheses is based on a literature review of software development. These findings are

particularly insightful as they are from data in the field. Much effort was involved in

obtaining the necessary statistics from the program logs of the 100 COBOL programs

used in this study. Implications from the hypotheses testing will be presented in chapter 5

along with limitations and future directions of the research.

 Practices in different phases of software development life cycle impact the

quality, performance and stability of the information systems. Software programs

experience changes due to different reasons. Software attributes such as software

complexity and program size determines the ease of change to the program. These

behaviors also affect software volatility. In this study we examine the effect of program

 81

size, software complexity and business requirements on design failure, analysis failure

and program failure.

 This study shows that the variable business requirements has a significant

relationship with design failure, analysis failure and programming failure. Companies

face challenges, regulations, and competitions constantly, which contribute to changes in

business requirements over time and correspondingly causes modifications of the

information systems. Opportunities also lead to changes in business requirements. As

information systems are developed to serve the needs of organizations, changes in

business requirements will inevitably incur the changes in information systems.

Information systems need to be designed as adaptive and flexible to cope with the

changes in business requirements.

 Software complexity and program size are related to modifications caused by the

analysis and design phase of the software development. The more complex a system is,

the more likely it will have failures due to either analysis or design. The larger the

program is, the more modifications will incur because of inadequate analysis and design.

For large and complex programs, resources should be allotted to ensure producing quality

analysis and design of software development in order to reduce the later likelihood of

fixing the programs.

 No significant relationship was found between the software attributes, software

complexity, and program size with programming failure. Programming practices have

improved greatly over the years. As a result, programmers are well trained so that they

can produce code that is not error-prone. Thus, it is reasonable to expect no relationship

between the software attributes used in this study and programming error.

 82

 The findings from this study suggest that developing an adaptive system should

be set as a goal to live with the changes in business environment. It is hard to foresee

what will happen tomorrow. Change is the only constant. Design and analysis phases

are very critical. Improved practices in these two phases will reduce the workload in the

maintenance stage.

 83

CHAPTER 5

CONCLUSIONS

Introduction

This chapter describes the contributions, limitations, future directions and the

implications of this study, organized with respect to management, technology, business

requirements and software development life cycle. Conclusions follow at the end.

The purpose of this research was to identify from the longitudinal data, what

factors impact changes and modifications of the systems. The study proposed the

relationships between software complexity, program size and business requirement

changes within the analysis, design and programming stages of software development.

Therefore, 12 hypotheses were tested against these relationships. Five of the 12

hypotheses are supported at 1% significance level; one is supported at 5% significance

level; two are supported at 10% significance level; and another four are not supported

based on the longitudinal data.

In addition, a different set of hypotheses was constructed to test the relationship

between the independent variable of program age and several dependent variables, such

as design failure, analysis failure, programming failure, software upgrades, hardware

upgrades, changes to business requirement. The independent variable program age was

also tested against the total failures, which is the summation of analysis, design,

programming, software, hardware and changes to business requirement. One hypothesis

 84

is supported at 1% significance level; three hypotheses are supported at 5% significance

level; one is supported at 10% significance level and two hypotheses are not supported.

Contributions

This research has contributed to the knowledge in the following domains. First, it

has employed theories from the general system domain and the complexity domain, and it

has extended the model of information system change developed by Heales (1998),

which was grounded in Wand and Weber’s (1995) model of information systems and the

models of software volatility produced by Banker and Slaughter (2000) and Heales

(2000). Second, this study has examined system modifications throughout the life cycle.

Based on the findings, this research has confirmed that different types of change requests

exist. Furthermore, activities and practices in the life cycle of software development have

an impact on the system evolution. Third, it has presented the idea that system attributes

affect the modifications to an information system. Fourth, this research has addressed the

importance of software design phase, which affects the flexibility and adaptability of an

information system. Finally, this study has analyzed software volatility using the

longitudinal data.

Limitations

This study used the longitudinal data from a single company to perform analysis.

Therefore, it is subject to the limitations of the single case study method. Findings from

this study are not easily extrapolated to other companies and different situations. The

findings, however, are based on a company that used COBOL language, so they can be

generalized for COBOL environment.

 85

The reliability of the findings can be examined by replications which can

minimize the biases and errors in the study and validate the findings from this study.

Procedures documented in this study can facilitate the future replications of the study.

Future replications should follow the exact procedures in the previous study in order to

have an equal base for comparison. Data collecting is the major stage that impacts for the

results of replication.

Data collection techniques affect the internal validity of the study (Yin, 1994).

The longitudinal data collected by professional EDP auditors and programmers

strengthens the internal validity of the study. The methods to improve internal validity of

the study are pattern-matching or time series analysis as suggested by Yin (1994). Data

analysis process plays a important role in enforcing internal validity. This study used the

maintenance log over a 10-year period. Accordingly, as the time series data was used in

the analysis, possible pattern matches could be achieved for different periods of time.

Future research intends to collect data from another company with a 10-year period to

address the pattern matching issue.

In terms of construct validity in this study, establishing content validity can help

improving construct validity. Content validity is enforced by the identification and

classification of the change of the programs professional EDP auditors who have good

understanding of the programs and business. Well-established objective measurements

were employed to measure the construct system complexity, such as cyclomatic

complexity used to measure complexity, the number of lines used to measure the size of

the program. Even though we do not have established and validated measurement for

 86

business requirements change, the measurement we employed is considered very

objective.

Future Directions

By conducting research in a particular business unit, we can build basic theories

on certain phenomena. This theory can be used to explain the practices in business, and in

the mean time provide effective feedback to the business community. The future research

should focus on 1) validating the findings from this study; 2) examining other factors

affecting the modifications of the system, 3) estimating modification costs, 4) evaluating

software life-cycle cost benefits in object-oriented environments, 5) investigating the

correlations of error occurrence in analysis, design and program phase of software

development life cycle, 6) measuring and predicting software volatility throughout life

cycle, 7) expanding the failure studies into e-commerce area, 8) furthering the

understanding of how the CASE tools affect software maintenance, 9) exploring factors

affecting software volatility, 10) focusing on the relationship between a complexity

measure and maintenance effort.

Cumulative research on similar research questions provides validity and

credibility of the findings. Generalization can be constructed based on replications of the

study. Numerous articles mention the importance of each phase of the software

development life cycle; however, no empirical study has focused on quantifying the

effect of each of these phases so far. This study contributes to the knowledge in this

stream of research. To advance our understanding in this area, linking costs to each phase

of the software development life cycle with modifications in maintenance phase is

another area of interest for future study.

 87

Finding the reasons and factors of program modifications will provide effective

suggestions on software development process. The interesting factors identified for future

research are the mean time between modifications, the use of language and system age.

System age and the mean time between modifications were factors used in Heales’ recent

ICIS 2000 proceedings which studies the system modifications from a single company,

South Africa Mining Company. Heales’s study found the significant relationships among

the factors previously mentioned. Generalization is the limitation of his study. Our future

study will explore the effects of these variables and add industry as a moderate variable.

It is possible that certain industries have better programs and less modifications than

other industries. Exploring the industry characteristics and program development

attributes can give better explanations of the difference between industries and different

companies.

Maintenance costs of the software programs claim a large resource of an

organization. Identifying costs incurred in each phase of the software development life

cycle, quantifying maintenance costs and building relationships between the costs in each

phase of the software development life cycle will provide insight into project

management and development. If one phase is more expensive than another phase, is it

true that the corresponding errors are found more in one phase than the other? Or is more

effort needed to spend in one phase of the software development?

 88

Implications

Software development goes through analysis, design, development and

maintenance. Activities carried out and requirements set in each phase determine the final

functions of the systems. Any errors occurring in any of these phases will affect the

performance of the systems and incur costs in keeping the systems up and running and

meeting user’s requirements. The eventual performance of the systems is closely related

to each phase of the software development life cycle. Various reasons can require fixing

and updating the systems after the systems are implemented. Both the literature and the

findings from this study suggest software practices in the software development life

cycle, software complexity, and business requirements are related to failures. In an effort

to maximize efficiency and effectiveness of information systems, management should

motivate system analysts and IS development personnel to devote more effort in design

and analysis phase of software development.

Management

Even though this research did not directly study the effect of management on

software project failures, the variable, the variable, changes to business requirements is

closely related to management, since management determines the short term and long

term business objectives, which in turn decide the parameters of information systems.

Therefore, management should envision what position the company will be in the

industry, and what products and services will be offered in the long run. This foresight

will help the IS development team to design and develop an adaptive system to evolve

with the scope and growth of an organization. Information systems serve the goals and

 89

objectives of an organization. Strategic competitiveness and return on investment can be

realized by clearly defining business objectives, which, in turn, improves information

system’s longevity and reduces its maintenance costs.

Management is responsible for the allocation of resources. Any error or

mishandling can produce adverse effect. Yourdon (1999) stated the existence of software

project failures is usually the result of a conscious management decision. Software

project failure is the norm. The solution will involve issues of peopleware, processes and

methodologies, as well as tools and technologies. IS management addresses issues like

adequate programming languages, workstations and CASE tools or may sometimes

involve fighting political battles over the issues of people and processes.

Management should be centered around people. Productivity studies in the past 30

years has identified people as the greatest source of productivity improvements - far

greater than the productivity gains typically achieved with development tools or new

software development methodologies. Talented people, corporative and fully committed

team members, decent working conditions are necessary conditions for success. Having

all above factors is not sufficient to create success, but the absence of one of these

elements, however, is good enough to create failure.

Management has different drivers. Bureaucracy and corporate insanity can cause

failures to happen again and again. The bureaucratic procedures can be time consuming

and waste time. The management should find ways to keep the team motivated. The MIS

directors should be involved in the decision-making process so that they know the

objectives and goals of an organization and are able to better define the systems which

 90

allow an organization to adapt and to succeed. To survive in today's turbulent e-business

world, software project teams must exhibit adaptability, speed, and collaboration.

Many practitioners suggest a set of key "best practices" to ensure success. Jones

(1996) has identified are twelve attributes that are indeed "necessary and sufficient” for

software project success. Management needs to think about how many of them are being

carried out effectively in the organization and how to know whether they were successful.

What kind of metrics does the organization have, and how do the metrics compare with

the metrics documented by Jones?

Management should strictly enforce documentation during project development,

documenting whatever practices and processes have worked in the project, for the benefit

of the next project. It has been found that interviews for failed projects rarely occur

because the project team is so frustrated, exhausted and frazzled by the end of the project.

A series of mini-audits throughout the project is suggested because these audits are

helpful in identifying and tracing the possible causes of failures.

At last, formal risk management needs to be used to cover the following areas:

agreement on interfaces, hardware interfaces, software interfaces, and interfaces between

the system and other external systems; peer reviews, inspections, walkthroughs, reviews;

metric-based scheduling and management; binary quality gates at the inch-pebble level,

project-wide visibility of project plan and progress vs plan; defect tracking against quality

targets, configuration management and people-aware management accountability.

Technology

In this study, the effect of technology on the longevity of programs is examined.

The study found there is no relationship between software upgrades and program age,

 91

which means software programs can be upgraded no matter how long the program has

been used. A negative relationship was found between hardware failure and program age.

Over the years, hardware failures have been decreasing due to improved engineering

techniques and processes.

Technology itself can not guarantee the success of the project. The absence of

appropriate methodologies can transform a project into a failure. CASE tools help the

management and the team with the configuration management. The functions of the

system determines the selection of CASE tools to be used. Using OO and the web as

building blocks for a telephone company’s billing system might sound trendy, but if the

nature of the job is batch processing, it is better off to choose COBOL. It is believed that

picking the right CASE tool would support high level design and communication. Any

CASE tool that requires a new mode of effort or a more sophisticated way to thinking can

create a problem and result in the waste of time and money.

Introducing new technology can also bring troubles into the software

development. Practitioners provide suggests on what tools must have, what should have,

and others could have. It is essential for team members to agree on common tools within

the project. The project manager should have the discretion to decide what tools are

critical and must have. A configuration management tool helps the development team to

track the versions of the system. Thus, a configuration management tool is strongly

recommended, but it needs to be well-integrated with other primary development tools in

order to yield benefits.

 92

Management plays a role in promoting efficient design. Controlling the

complexity at the design phase is an effective way to improve maintainability of

software. Management needs to create incentives or establish a reward policy for good

designs. Alternatively, holding training sessions on the design and complexity control,

and educating the developers, analysts and programmers on the cost of maintenance may

result in better performance, and allow programmers and developers perform in the best

interest of the employer.

Business Requirements

Evidence was found indicating that the variable, changes to business

requirements, is a significant variable affecting analysis, design and programming stage

the software development at 1% significance level. Although literature mentioned that

business requirements is an important factor affecting the success or failure of the system,

no empirical work has been conducted to operationalize the variable, changes to business

requirements.

In 1999, Yourdon summarized business requirements as follows:

In the 1970s, requirements analysis was usually considered
primarily a question of eliciting requirements from users through
interviews, brainstorming, and JAD sessions. In the 1980s, it was
seen as a documentation problem, with great emphasis on visual
modeling techniques such as structured analysis and object-
oriented analysis. And in the 1990s, the emphasis shifted to
managing requirements, with automated tools, and concepts like
"triage." In the first decade of the new millennium, requirements
analysis is now seen as a carefully-balanced combination of
elicitation, documentation, and management. Focusing on one or
two of these items while short-changing the other(s) is a recipe for
failure.

 93

Businesses compete in a dynamic environment. Information systems are part of

the organization itself and it plays a critical role in business performance. Change is

inevitable. Adhikari (1996) stated that software development should put more effort in

defining business requirements. Interviews with software production mangers in Sabre

and MCI all support the notion that business requirements change frequently and the

initial definition of business requirements has the direct bearing on later modifications.

Information systems have to be adaptive in order to meet the needs of the organization.

Whenever there is a change in business requirements, it will inevitably cause changes in

the coding of the systems. Business requirements determine the design and development

of the systems. As the purpose of developing the systems is to meet the business

requirements, capturing the right business requirements will reduce the likelihood of later

modifications.

The modification of software products is considered a software enhancement

process, which involves adding, changing and deleting software functionality to adapt to

new and evolving business requirements (Kemerer and Slaughter 1997). For today's

hectic pace of "Internet time" projects, requirements analysis is still crucial and is often

more difficult than ever before. Because users are even less sure than ever before of their

"true" requirements, and they often lack the patience to discuss them calmly before

demanding to see some evidence of implementation. Keeping in touch with the users and

identifying requirements are critical in better defining business requirements.

Incorrectly defined requirements can cause software failure. Misunderstanding

user requirements is a major cause of project failure. Communication with the users

 94

promotes the better business requirement definitions. Requirement errors are usually far

more expensive than other types of errors (e.g., coding bugs), because adding new

requirements involves more effort and sometime may initiate a new lifecycle to begin.

Well-articulated requirements provide the basis to start off the project even though there

is inadequate time or resources to implement the entire system.

There are many requirement capture techniques available, such as interviewing,

brainstorming, storyboarding, Role Playing, Prototyping, JAD sessions, and Modeling.

The combination of these techniques can produce well-defined requirements.

Requirements need to cover functional and non-functional requirements. To be specific,

requirements need to address performance requirements, user interface requirements,

security requirements, hardware requirements, environmental requirements, acceptance

requirements, and user-friendly requirements. It is imperative to prioritize requirements if

resource constraints are imposed. Prioritizing requirements can be served as a guideline

in building the system and give the project team the order of importance of each

requirement.

After requirements are defined and prioritized, managing requirements is the next

important task to perform. CASE tools are effective for automating the modeling process.

Other tools need to be used to manage a "database" of requirements. Requirement

changes need to be recorded. They consume resources in an organization and may incur

unpleasant consequences. The use of modern software engineering methods allows

developers to prove that the system meets the requirements defined by users.

 95

Systems Complexity

This study finds that software complexity is related to analysis and design phases

of software development. The research corroborates the claims of Kemerer (1995),

Banker (1993) and Banker and Slaugher (2000). This study also supports a finding of

Linberg (2000). The software field needs, as computer scientists and software engineer

academics so frequently advocate, better ways of approaching and building software.

More accurate and honest estimates and more understanding of the complexity of scope

is needed. It is necessary to develop a new theory to address software project failure, to

emphasize the realistic expectations, to place the importance on a quality product,

organizational congruency and the interactions between the software project and its own

environment.

Large systems are more complex than small systems in terms of requirements for

performance, reliability, testability, maintainability and ability for integration with

existing systems. Jones (1996) suggests that software project of huge size is in deep

trouble from the start, no matter which computer science techniques are or are not used.

Software project complexity increases with size. Business functions and activities usually

determine the scope of a software project. Management of complexity of a project is not

an easy task because many factors contribute to the complexity of the software project.

since maintenance activities can claim a large portion of an organization’s resources, it is

necessary to control the design stage, and to motivate the designers to produce an

efficient and effective design which will reduce the maintenance workload.

 96

Large and complex programs have high risks than smaller, and less complex

programs. Risk can be assessed by evaluating the complexity of the system or products

being developed, as well as evaluating the client and project team environments. Product

complexity can be assessed in terms of size (number of function points), performance

constraints, and technical complexity. Risk assessment focuses on the complexity of the

system, so as to alert the organization to potential problems.

Research confirms prior findings that complexity is associated with the volatility

of the system (Barry and Slaughter 1999, Banker and Slaughter 2000; Heales 1999). The

study also confirmed the prior findings. The complex programs have experienced more

modifications over the years. The more complex a system is, the more volatile the system

is. The increased frequency of modifications of software products translates into

increased maintenance hours, which in turn, increases maintenance cost.

Software development life cycle

Each stage of software development can cause ripple or major effects on the

maintenance stage. Therefore, performance measures should develop in each stage of the

software development life cycle. It must be possible to measure the effects of design

approaches on maintenance, and to measure the effects of maintenance approaches on

future maintenance (Schneidewind 1987).

The analysis shows that design failure occurred more often than analysis failure

and programming failure. In order to improve quality and reliability of software

continuously throughout the software development life cycle, it is imperative to develop

 97

measurement criteria along the life cycle, especially in the early stage (Tian, 1999). The

quality and reliability of software in early phases determine the faults, failures and

program modifications after the implementation. The activities like inspections and

evaluations in early phase of software development, can ensure software reliability.

Conclusions

This study provides insight into the factors that are related to software failures.

Practices in different phases of the software development life cycle impact the quality,

performance and stability of information systems. Software programs experience changes

as a result of changes in business requirements and technology upgrades. Software

attributes such as software complexity and program size impact the ease of making

changes in the program.

 The findings from this study suggest design phase and analysis phase affect the

modification workload. Therefore, it is important to develop an adaptive system to copy

with the changes in business environment. Improved practices in these two phases will

reduce the modifications workload, hence reducing the maintenance cost on software

programs. IS managers should pay special attention to the design and analysis phases

where maintenance problems are likely to begin. The selection of qualified analysts and

developers may contribute to sound analysis and design.

Although this study focused on a COBOL environment, we believe that the

procedures used to conduct this study can be generalized to other settings. The finding

from this study can be used to guide the development practices in a COBOL

environment. The longitudinal data in the field study over the 10-year period highlights

 98

the strength of variables identified in this study. The findings reveal the importance of

design stage and the effect of business requirement changes.

 99

REFERENCES

Abdel-Hamid, T., & S. M. (1990). The elusive silver lining: how we fail to learn from
 software development failures. Sloan Management Review.

Abreu, A. F., & Conrath, D. W. (1993). The role of stakeholders expectations in

 predicting information systems implementation outcomes. ACM Transactions on
 Software Engineering and Methodology: 408-415.

Ackoff, R.L. (1960). Unsuccessful case studies and why. Operations Research, 8: 259-

 263.

 Ackoff, R. L. (1971). Towards a system of systems concepts. Management Science,
 17(11), 661-671.

 Adhikari, Richard Developers benefit from a process blueprint. Software Magazine.
 16(3): 59-69. 1996

 Alavi, M. Joachimsthaler, E. A (1992). Revisiting DSS Implementation Research: A
 Meta-Analysis of the Literature and Suggestions for Researchers. MIS Quarterly.
 16(1): 95-116.

 Alder, R. L., G. & Nordgren, K. (1999). Improving risk management: Moving
 from risk elimination to risk avoidance. Information & Software Technology. 41(1):
 29-34.

 Albrecht, A. J. & Gaffney, J. E. (1983). Software function, source lines of code, and
 development effort prediction: a software science validation, 9(6): 639-647. IEEE
 Transaction on Software Engineering

 Alter, S. & Ginzberg, M. (1978). Managing Uncertainty in MIS Implementation. Sloan
 Management Review, 20(1), 23-31.

 Argyris, C. & Schon, D. A. (1974). Theory in Practice: Increasing Professional
 Effectiveness. Josser-Bass, San Francisco, CA, 1974.

 Arthur, L. J. Software Evolution: The Software Maintenance Challenge, New York; John
 Wiley and Sons, Inc., 1988.

 Ashby, R. (1956). Requisite variety and its implications for the control of complex
 Systems. Cybernatica, London.

 100

Bailey, J. E. & Pearson, D. J (1983). Development of a Tool for Measuring and
 Analyzing Computer User Satisfaction. Management Science, 29(5), 530-545.

Banker, R. D., Srikant M. D., Chris, F., & Zweig, D. (1993). Software complexity and
 maintenance cost. Communications of ACM, 36(11): 81-94.

Banker, D. Datar, M. & Zweig, D. (1994). Software complexity and maintenance costs.
 Communications of the ACM. 36(11): 81-94.

Banker, R. D. Slaughter, S. A. (1997). A field study of scale economies in software
 maintenance. Management Science. 43(12): 1709-1725.

Banker, R. D. Davis, G. B. Slaughter, S. (1998). A Software Development Practices,
 Software Complexity, and Software Maintenance Performance: A Field Study.
 Management Science. 44(4): 433-450.

Banker, R. D., and Slaughter, S. A. “The Moderating Effects of Structure on Volatility an
 Complexity in Software Enhancement,” Information Systems Research, September
 2000.

Basili, V.R. Quantitative software complexity models: A panel summary. In V.R. Basili,
 Ed., Tutorial on Models and Methods for Software Management and Engineering,
 IEEE Computer Society Press, Los Alamitos, Calif, 1980.

Banker, R. D. Davis, G. B. & Slaughter, S. A (1998). Software Development Practices,
 Software Complexity, and Software Maintenance Performance: A Field Study.
 Management Science. 44(4): 433-450.

Barry, Evelyn and Slaughter, S.A. “measuring software volatility: a multi-dimensional
 approach,” the 21th International Conference on Information Systems, Dec 10-13,
 2000, Brisbane, Australia

Bazzana, G., Zontini, G., Damele, G. Maiocchi, M. and Giunchi, M. (1995) Applying
 software reliability models to a large industrial dataset. Journal of Information and
 Technology, 35,11/12, 669-677.

Beer, S. (1959). Cybernetics and Management. London: English Universities Press.

Beer, S. (1966). Decision and Control. New York: John Wiley & Sons.

Behrens, C. A. (1983). Measuring the productivity of computer systems development
 activities with function points. IEEE Transactions on Software Engineering, 9(6):

 101

 648-652.

Belady, L. A. & Leham, M. M. (1976). A model of large program development. IBM
 Systems Journal, 3: 225-243.

Bertalanffy, L. M. (1968). General systems theory. Braziller, New York.

Beynon-Davies, P. (1995). Information systems 'failure': the case of the London
 ambulance service's computer aided dispatch project. European Journal of
 Information Systems, 4:171-184.

Boddie, J. (1987). The Project Postmortem. Computerworld, 7, 77-82.

Boehm, B. M. (1979). Software engineering: R & D trends and defense needs. Research
 Directions in Software Technology, Cambridge, MA: MIT Press.

Bostrom, R. P., & Heinen, J. S. (1977). MIS Problems and Failures: Social-Technical
 Perspective, Part I: the Causes. MIS Quarterly, 11(1): 17-32.

Bostrom, R. P. & Heinen, J.S. (1977). MIS Problems and Failures: a social-technical
 perspective, Part I: the Causes, MIS Quarterly, 1(3), 17-32.

Bostrom, R. P., & Zmud, R. W. (1987). Information technology planning in the 1990’s:
 directions for practice and research. MIS Quarterly, 11(1): 59-71.

Bostrom, R. (1989). P Successful Application of Communication Techniques to Improve
 the Systems Development Process. Information Management. 16(5): 279-295.

Boujarwah, A S. Saleh, K. (1997). Compiler test case generation methods: A survey and
 assessment. Information & Software Technology. 39(9): 617-625.

Boulding, K. (1956). General Systems Theory – the Skeleton of Science. General Systems
 I: 11-17.

Boynton, A.C., and Zmud, R.W. Information technology planning in the 1990’s:
 directions for practice and research. MIS Quarterly, (1987), 11(1): 59-71.

Briand, L. C., Morasca, S., Basili, V. R .Defining and validating measures for object-
 based high-level design. IEEE Transactions on Software Engineering. 25(5): 722-743.
 1999.

Brown, Courtney. (1995). Chaos and Catastrophe Theories. Sage Publications.

Buckley, W. (1967). Sociology and modern systems theory. Pretice-Hall, Englewood
 Cliffs, N.J.

 102

Bunday, B. D., and Al-Ayoubi, I. D. (1990). Likelihood and Bayesian Estimation Methods
 for Poisson Process Models in Software Reliability. International Journal of Quality
 and Reliability Management, 7:5.

Butcher, G. Addressing Software Volatility in the System Life Cycle, Unpublished
 Doctoral Dissertation, Colorado Technical University, 1997.

Cale, E.G., Curley, K. F. (1987). Measuring implementation outcome: beyond success
 And failure. Information and Management, 13: 245-253

Cannon, J. A. (1994). Why it applications succeed or fail: the interaction of technical and
 organizational factors. Industrial and Commercial Training, 26(1): 10-15.

 Cant, S. N., Jeffery, E. R. & Henderson-sellers B. (1995). A conceptual model of cognitive
 complexity of elements of the programming process. Information & Software
 Technology, 37(7): 351-362.

 Cash, McFarlan, McKenney, and Vitale. (1992). Corporate Information
 Systems Management: Text and Cases, 3rd ed., Irwin, Homewood, Illinois.

Charette, R. N. Application Strategies for Risk Analysis, (New York: McGraw-Hill,

1990).

 Checkland, P. B. (1989). Soft Systems Methodology. Human Systems Management. 8(4):
 273-289.

Chidamber, S. R. Kemerer, C. F. (1994). A metrics suite for object oriented design. IEEE

Transactions on Software Engineering. 20(6): 476-493.

 Cox, B. (1990). The threats and opportunities for systems management. A
 Presentation By George Cox to Australian Foundation Members.

 Coupal, D. Robillard, P. (1990). N Factor Analysis of Source Code Metrics. Journal of
 Systems & Software. 12(3): 263-269.

 Curis, B. Sheppard, S., Milliman, P., Borst, M., & Love, T. (1979). Measuring
 Psychological Complexity of Software Maintenance Tasks with the Halstead and

 McCabe Metrics. IEEE Transactions Software Engineering, 5(2):96-104.

Dekleva, Sasa M. (1992). The Influence of the Information Systems Development
 Approach on Maintenance. MIS Quarterly. 16(3): 355-372.

 Dalal, S.R. and Mallows, C.L. (1988) When should one stop testing software. IEEE

 103

 Journalon Selected Areas in Communication, 83, 872-879-175.

Dalal, S.R. and Mallows, C.L. (1992) Some graphical aids for deciding when to stop
 testing software. IEEE Journal on Selected Areas in Communication, 8, 169-175.

DeLone, W.H. and McLean, E.R. (1992). Information Systems Success: the Quest for
 The Dependent Variable. Information Systems Research, 3 (1): 205-226.

Damanpour, F. Organizational complexity and innovation: Developing and testing
 multiple contingency models. Management Science. 42(5): 693-716. 1996

Davis, M. A. Software Requirements: Objects, Functions, and States. (Englewood Cliffs,

NJ: Prentice Hall, 1993).

Davis, G. B. Management information systems: conceptual structure, and development.

McGraw-Hill, New York, 1974.

 Davis, G. B., Lee, A. S., Nickles, K. R., & Chatterjee, S. (1992). Diagnosis of an
 Information System Failure, Information & Management 23: 293-318.

 Davis, J. S., Richard, J. L. (1988). A study of the applicability of complexity measures.
 IEEE Transactions on Software Engineering, 14(9):1366-1371.

 Dekleva, S. M. (1992). The influence of the information systems development approach
 on maintenance. MIS Quarterly, 16(3): 355-372.

 DeVore, P. W. (1980). Technology an introduction. Davis Publications, Inc.

 Dishaw, M.T., Strong, D.M., (1998). Supporting software maintenance with software
 engineering tools: a computed task-technology fit analysis. 44:107-120.

 Earl, M. J. (1993). Experiences in Strategic Information Systems Planning. MIS
 Quarterly, 17(1): 1-24.

 Elias, C. (1998). Timely reminders. Incentive. 172(1): 55.

 Ehrlich, W., Prasanna, B., Stampfel, J. and Wu, J. 91993) Determining the cost of a stop-
 test decision. IEEE Software, March, 33-42.

 Ernest, R. C. Baenen, L. B. (1985). Analysis of Attitude Survey Results: Getting the Most
 from the Data. Personnel Administrator. 30(5): 71-80.

 Ebert, Christof. Morschel, (1997). Ivan Metrics for quality analysis and improvement of
 object- oriented software. Information & Software Technology. 39(7): 497-509.

 104

 Elgin, D. S. & Bushnell R. A. (1977). The limits of complexity: are bureauracies
 becoming unmanageable? The Futurist, December 1977, p338.

 Evanco, W. M. Poisson analyses of defects for small software components. Journal of
 Systems & Software. 38(1): 27-35. 1997

 Ewusi-Mensah, K., & Przasnyski, Z. (1991). On Information Systems Project
 Abandonment: an exploratory study of organizational practices. MIS Quarterly: 67-
 86.

 Ewusi-Mensah, K., & Przasnyski, Z. (1994). Factors contributing to the abandoned
 information systems development projects. Journal of Information Technology, 9:
 185- 201

 Ewuisi-Mensah, & Przasnyski, Z. (1995). Learning from Abandoned Information
 Systems Development Projects. Journal of Information Technology, 10: 3-14.

 Fagan, M. E. (1999). Design and code inspections to reduce errors in program
 development. IBM Systems Journal, 38(2&3): 258-287).

 Fenton, N. (1994). Software Measurement. (1994). Software Measurement: A Necessary
 Scientific Basis. IEEE Transactions on Software Engineering, 20(3): 199-206.

 Flowers, Stephen. (1997). Information systems failure: identifying the critical failure
 factors. Failure & Lesson Learned in Information Technology Management, 1: 19-
 29.

 Forbes, R. J. (1958). Man and maker: a history of technology and engineering. London:
 Abelard-Schuan, Ltd.

 Fox, T. L. Spence, J. W. (1998). Tools of the trade: A survey of project management
 tools. Project Management Journal. 29(3): 20-27.

 Franz, C. R., & Rovey, D. (1984). An investigation of user-led system design: rational
 And political perspective. Communications of ACM, 27(12): 1202-1209.

 Frost, P. J. (1987). Power, Politics and Influence. Handbook of Organizational
 Communication: an Interdisciplinary Perspective: 503-548.

 Garrison, E. Wynn. (1980). Factors in Management Information System Failures. Master
 Thesis. University of Texas at Austin.

Gary, D. (1999). Customers fading away? Wireless Review. 16(21): 22-26.

Geisler, E. Hoang, W. (1992). Purchasing Information Technologies: Behavior Patterns in

 105

 Service Companies. International Journal of Purchasing & Materials Management.
 28(3): 38-42.

Gilbert, P. (1983). Software design and development. The SRA Computer Science Series.

Gill, G. K. Kemerer, C. F. (1991). Cyclomatic Complexity Density and Software
 Maintenance Productivity. IEEE Transactions on Software Engineering. 17(12):
 1284-1288.

Ginzberg, M. J. (1981). Early diagnosis of MIS implementation failure promising results
 and unanswered questions. Management Science 28(7): 459-478.

 Ginzberg, M. & Schultz, R. (1987). The Practical Side of Implementation. Interfaces,
 17(3), 1-5.

Gladden, G. R. (1982). Stop the Life Cycle, I Want to Get off. Software Engineering
 Notes., 7(2), 35-39.

Glaser, G. (1984). Managing Projects in Computer Industry. Computer, 17, 45-53.

Glass, R. L. (1998). Software Runaways. Prentice Hall.

Glass, R. L (2000). Evolving a New Theory of Project Success, Communications of the
 ACM, 42(11), 17-24.

Goel, A. L. and Okumoto, K. (1979) Time-dependent error-detection rate model for
 software and other performance measures. IEEE Transaction on Reliability, 28, 206-
 211.

Goff, L (1993). Leslie Mastering project management. Computerworld. 27(51): 76-78.

Gonzalez, R. R. (1995). A unified metric of software complexity: measuring productivity,
quality and value. Journal of Systems Software, 29:17-37.

Gorla, N. (1991). Techniques for Application Software Maintenance. Information &

Software Technology. 33(1): 65-73.

Gray, P. The state of software development. Information Systems Management. 15(1):
 88-92. 1998.

Green, M. and MacColl, G. (1987). Mission Impossible.

Guinan, P. J. Cooprider, J. G. Faraj, S. (1998). Enabling software development team

performance during requirements definition: A behavioral versus technical approach.
Information Systems Research. 9(2): 101-125.

 106

Haffer, J. & George, J. & Valacich, J. (1996). Modern system analysis and design. The

Benjamin/Cummings Publishing Company, Inc.

Halstead, M H. (1977). Elements of software science. Eksevier/North-Holland.

Harrison, W., & Cook, C. (1977). A micro/macro measure of software complexity. Journal

of Systems and Software, 7: 213-219.

Harrison, W. & Magel, K. (1981). A Complexity Measure Based on Nesting Level. ACM

SIGplan Notices, 16(3):63-74.

Hart, K. E Introducing Stress and Stress Management to Managers. Journal of
 Managerial Psychology. 5(2): 9-16. 1990.

Harvey, A. (1970). Factors Making for Implementation Success and Failure. Management
 Science, 16 (6): 312-321.

Hass, J. Lagarias, J. C. and Pippenger, N. (1999). The computational complexity of knot
 and link problems. Journal of the Association for Computing Machinery. 46(2): 185-
 211.

Hay, Gordon. Munoz, Rick Establishing an IT architecture strategy. Information Systems
 Management. 14(3): 67-69. 1997

Hebert, M. Benbasat, I. (1994). Adopting information technology in hospitals: The
 relationship between attitudes/expectations and behavior. Hospital & Health Services
 Administration. 39(3): 369-383.

Heals, J. “Factors affecting information system volatility,” in Proceedings of Twentieth
 International Conference on Information Systems, Brisbane, Australia, Dec 10-13,
 2000.

Hetzler, S. A. (1973). Applied measures of promoting technological growth. Boston:
 Toutledge and Kegan Paul.

Highsmith, J. A. “Adaptive Software Development : A Collaborative Approach to
 Managing Complex Systems.” 1999. Dorset House.

Hoffer, E. (1973). Relfections on Human Conditions.

Hossain, S.A. and Dahiya, R.C. (1993) Estimating the parameters of a non-homogeneous
 Poisson process model for software reliability. IEEE Transactions on reliability, 42,
 604-612.

 107

Hong, G Y. Xie, M. Shanmugan, P A statistical method for controlling software defect
 detection process. Computers & Industrial Engineering. 37(1,2): 137-140. 1999

Huq, F. Testing in the software development life-cycle: Now or later. International
 Journal of Project Management. 18(4): 243-250. 2000

Hurwitz, J. S. (1998). Scale back software complexity. Informationweek. (678): 198.

Irwin, J. G. Hoffman, J. Geiger, S. W. The effect of technological adoption on
 organizational performance: Organizational size and environmental munificence as
 moderators. The International Journal of Organizational Analysis. 6(1): 50-64. 1998

Ives, B. and Olson, M. (1981). User Involvement in Information Systems: A Critical
 Review of the Empirical Literature, CRIS, 6BA 81-07, New York University, New
 York.

Ives, B., & Olsen, M. (1984). User Involvement and MIS Success: A Review of
 Research. Management Science, (1984), 30: 586-603.

Ives, S. (1994). High performance customer management. Logistics Information
 Management. 7(2): 45-51.

Jiang, J. J., Klein, G., Balloun, J. L., & Crampton, S. M. (1999). System Analysts
 Orientations and Perceptions of System Failure. Information and Software
 Technology, 41: 101-106.

Jiang, J., Margulis, S., Pick, R., & Motvani, J. (1997). System Developers’ Judgements of
 System Development Use and Failure. International Journal of Computer
 Applications in Technology, 10 (5/6): 300-307.

Jones, L. H., and Kydd, C. (1988). Information Processing Framework for Understanding
 Success and Failure of MIS Development Methodologies. Information &
 Management: 263-271.

Jones, T. C. (1978). Measuring Program Quality and Productivity. IBM System Journal,
 17(1):39-63.

Jones, C. (1996). Large software system failures and successes. American Programmer: 3-
 9.

 Kagurazaka, S. (1996). Some discussions on Systems Failure, IEEE International
 Conference on Systems, Man, and Cybernetics, 4: 3130-3131.

Kafura, D. & Reddy, G. R. (1987). The use of software complexity metrics in software

 108

 maintenance. IEEE on Software Engineering, 13(3): 335-343.

Kapur, P.K. and Bhalla, V.K. (1992) optimal release policies for a flexible software
 reliability growth model. Reliability Engineering and Systems Safety, 35, 45-54.

Kawalek, P & Wastell, D. G. (1999). A case study evaluation of the use of the viable
 system model in information systems development. Journal of Database
 Management. 10(4): 24-32.

Keider, S. P. (1984). Why system development projects fail. Journal of Information
 Systems Management, 1: 33-38.

Keil, M. (1995).Escalation of commitment in information systems development: A
 comparison of three theories. Academy of Management Journal. (Best Papers
 Proceedings. (1995): 348-352.

Keil, M. (1995). Pulling the plug: Software project management and the problem of
 project escalation. MIS Quarterly. 19(4): 421-447.

Kemerer, C. F. (1995). Software complexity and software maintenance: a survey of
 empirical research. Annals of Software Engineering. 1: 1-22.

Kemerer, C. F. and Slaughter, S. (1997). Determinants of software maintenance profiles:
 An Empirical investigation. Software Maintenance: Research Practice 9:235-251.

Khoshgoftaar, M., Munson, C. & Lanning, L (1994). Alternative approaches for
 the use of metrics to order programs by complexity. Journal of Systems & Software.
 24(3): 211-221.

Khoshgoftaar, M. & Lanning, L (1995). A neural network approach for early detection
 of program modules having high risk in the maintenance phase. Journal of Systems &
 Software. 29(1): 85-91. 1995

Kitchenham, B. Pfleeger, S. Fenton, N. (1997). Reply to: Comments on
 "Towards a Framework for Software Measurements Validation". IEEE Transactions
 on Software Engineering. 23(3): 189.

Klein, H. K. Hirschheim, R. (1985). A Fundamental Issues of Decision Support Systems:
 A Consequentialist Perspective. Decision Support Systems. 1(1): 5-23.

Kling, R. (1974). Computer and Social-Power. Computers and Society, 5(3).

Kling, R. and Gerson, E. M. (1977). The Social Dynamics of Technical Innovation in the
 Computer World. Symbolic Interaction, 1, 132-146.

 109

Klir, G. (1985). Complexity: some general observations. System Research, 2(2): 131-140.

Klir, G. (1985). Architecture of systems problem solving. A division of Plenum
 Publishing Corporation, New York.

Lai, L. (1997). A synergistic approach to project management in information
 systems development. International Journal of Project Management. 15(3): 173-179.

Leung, Y.W. (1992) Optimal software release time with a given cost budget. Journal of
 Systems and Software, 17, 233-242.

Lew K. L., Dillon, T. S., & Forward, K. E. (1988). Software complexity and its impact
 on software reliability. IEEE, 14(11):1645-1655.

Lin, E. Hsieh, C. (1995). The seven deadly risk factors. Journal of Systems Management.
 46(6): 48-52.

Low G. C. & Jeffery D. R. (1990). Function points in the estimation and evaluation of the
 software process. IEEE Transactions on Software Engineering, 16(1): 64-71.

Lucas, H.C. Jr. (1975). Why Information Systems Fail. Columbia University Press, New
 York.

Lucas, H.C. Jr. (1975). Implementation – The Key to Successful Information Systems,
 Columbia.

Lucas, H. C Jr. Spitler, V K. (1999). Technology use and performance: A field study of
 broker workstations. Decision Sciences. 30(2): 291-311.

Lycett, M. & Paul, R. J. (1999). A perspective on the challenge of evolutionary
 complexity. European Journal of Information Systems. 8(2): 127-135.

Lyytinen, K., & Hirschheim, R. (1987). Information Systems Failures – A Survey and
 Classification of the Empirical Literature. Oxford Surveys in Information
 Technology, 4: 257-309.

Lyytinen, K. (1988) Expectation Failure Concept Systems Analysts View of Information
 System Failures: Results of an exploratory Study. Information and Management,
 14(1): 45-56.

 Mata-Toledo, R. A. Gustafson, D. A. (1992). A Factor Analysis of Software Complexity
 Measures. Journal of Systems & Software. 17(3): 267-273.

 McDonell, S. G. (1991). Rigor in software complexity measurement experimentation.

 Journal of Systems Software, 16:141-149.

 110

Markus, M. L. (1983). Power, Politics and MIS Implementation. Communications of the
 ACM, 26(6), 430-444.

Markus, M. L., & Bjorn-Andersen, N. (1987). Power over Users: Its Exercise by System
 Professionals,” Communications of the ACM, 30(6): 498-504.

 Markus, M. L. & Robey, D. (1988). Information Technology and Organizational Change:
 Causal Structure in Theory and Research, Management Science, 34(5): 583-
 598.

Marsden, James R. Tung, (1999). Y Alex The use of information system technology to
 develop tests on insider trading and asymmetric information. Management Science.
 45(8): 1025-1040.

Martin, J., and McClure, C. Software Maintenance: the Problem and its Solutions,
 Englewood Cliffs, NJ: prentice Hall, 1983.

Martinez, E. V (1994). Avoiding large-scale information systems project failure: The
 importance of fundamentals. Project Management Journal. 25(2): 17-25.

Masoner, M. M. & Nicolaou, A. I. (1996). An empirical examination of
 information systems development strategies in organizational contexts. Mid-Atlantic
 Journal of Business. 32(3): 205-219

 Mate-Toledo, R. A., & Gustafson, D. A. A factor analysis of software complexity
 measures. Journal of Systems Software. 17:267-273.

 May, R. M. (1972). Will large complex system be stable? 238: 413-414.

 McCabe T J. (1976). A complexity measure. IEEE Transaction Software Engineering
 11(2), 308-320.

 McColl, R. B., & McKim, J.C. Evaluating and extending Npath as a software complexity
 measure. Journal of Systems Software. 17:275-279.

 McComb, D. & Smith J. Y. (1991). System Project Failure: The Heuristics of Risk. The
 Journal of Information System Management, 8(1): 25-34.

McFarlan, F. W. (1981). Portfolio Approach to Information Systems. Harvard Business
 Review, 65, 68-74.

McWilliams, G. (1994). Mom and Pop go high tech. Business Week. (3400): 82-90.

 111

Mellor, P. (1987). Software Reliability Modeling: the State of the Art. Information and
 Software Technology. 29(2): 81-98.

 Meredith, J. (1988). Project monitoring for early termination. Project Management
 Journal, 19(5): 31-38.

Mills, H. D. (1975). Software Engineering, Science, No 4283:1149-1205.

Mills, H. D. (1976). Software Development, IEEE Transactions on Software Engineering,
 SE-2, 4:265-273.

Misra, P. N. (1983) Software reliability analysis. IBM Systems Journal, 22, 262-270.

Morgan, H. & Robey, D. (1983). Understanding MIS failures. Data Base, 5(1).

Morgan, H. & Soden, J. (1973). Understanding MIS Failures. Data Base, 5, 157-171.

Munson, J. C. & Khoshgoftar. T. M. Applications of a relative complexity metric for
 software project management. Journal of System and Software, 12, 283-291.

Munson, J. C Software faults, software failures and software reliability modeling.
 Information & Software Technology. 38(11): 687-699. 1996

Necco, Charles R. Gordon, Carl L. Tsai, Nancy W. (1987). Systems Analysis and Design:
 Current Practices. MIS Quarterly. 11(4): 461-476.

Nejmeh, B. A. (1998). NPATH: a measure of execution path complexity and its
 applications, Communications of ACM, 31(2), 188-200.

 Newman, M. & Sabherwal,R. (1996). Determinants of commitment to information
 systems development: A longitudinal investigation. MIS Quarterly. 20(1): 23-54.

Oakley, K. (1949). Man the tool maker. London.

Ohba, M. (1984). Software reliability analysis model. IBM Journal of Research
 Development, 28, 428-443.

Orli, R. J (1989). Battling Project Escalation. Computerworld. 23(14): 64,66.

Osborne, W. M. (1988). All About Software Maintenance: 50 Questions and Answers.
 Journal of Information Systems Management. 5(3): 36-43.

Palvia, P., Patula, A., & Nosek, J. (1995). Problems and issues in application
 Software Maintenance Management. Journal of Information Technology
 Management, 6(3): 17-28.

 112

Palvia & Hunter (1996). Information systems development: A conceptual model and a
 comparison of methods used in Singapore, USA and Europe. Journal of Global
 Information Management. 4(3): 5-16

Paulk, M. C. and Weber, B. C., Chrissis, M. B., et al. The Capability Maturity Model:
 Guidelines for Improving the Software Process. (Reading,MA: Addison-Wesley,
 1995)

Pfeffer, J. (1992). Managing with Power: Politics and Influence in Organizations.
 Harvard Business School Press.

Pham, H. (1993) Software Reliability assessment: imperfect debugging and multiple
 failure types in software development. Technical report, EG&G-RAAM-10737,
 Idaho National Engineering Laboratory.

Pinto, J. K. & Mantel, S. J. (1990). The Cause of Project Failure. IEEE.37(4), 269-275.

Pinto , J. K. & Slevin, D. P. (1987). Critical Factors in Successful Project
 Implementation. IEEE Transaction Engineering Management. 32, 22-27.

 Poo, C-C D. Layzell, P J. (1990). Enhancing Software Maintenance Through Explicit
 System Representation. Information & Software Technology. 32(3): 176-186.

 Poo, C-C D. Layzell, P J. (1992). An evolutionary structural model for software
 maintenance. Information & Software Technology. 18: 113-123.

Poulymenakou A., & Holmes A. (1996). A contingency framework for the investigation
 of information systems failure. European Journal of Information Systems 5: 34-46

Pursell, W. Technology and western civilization.

Reich, B. H.. Benbasat, I. (1996). Measuring the linkage between business and
 information technology objectives. MIS Quarterly. 20(1): 55-81.

Robey, D. (1987). Implementation and the organizational impacts of information
 systems. Interfaces, 17(3), 72-84.

Robey, D. Rodriguez-Diaz, A. (1989). The Organizational and Cultural Context of
 Systems Implementation: Case Experience from Latin America. Information
 Management. 17(4): 229-239.

Roman, D. (1983). A Proposed Project Termination Audit Model. IEEE Engineering
 Management, 30(3):123-127.

 113

Rothfeder, J. (1987). Communications Management: A Dangerous Constriction. Network
 World. 4(4): 29.

Rouse, R. (1980). Human Detection and Diagnosis of System Failures.

Royce, W. W. Managing the Development of Large Software Systems: Concepts and
 Techniques. Proceeding IEEE Wescon: 1978, 1-9.

Sanders, G. L. (1984). MIS/DSS Success Measure. Systems, Objectives, Solutions. 4, 29-
 34.

Santos, D. & Hawk S. R. (1988). Differences in analyst’s attitudes towards information
 systems development: evidence and implementations. Information & Management,
 24(1): 31-41.

Schmitt, J., & Kozar, K. (1978). Management’s Role in Information System Development
 Failures: A Case Study. MIS Quarterly: 7-16.

Schneidewind, N. F. The State of Software Maintenance. IEEE Transactions on
 Software Engineering. SE-13(3): 303-310. 1987

Schneberger, S. L (1997). Distributed computing environments: Effects on software
 maintenance difficulty. Journal of Systems & Software. 37(2): 101-116.

Schoderbek, schoderbek, & Kefalas. Management Systems, Forth Edition (1990).BPI
 IRWIN, Homewood, IL 60430.

Senn, J. (1978). A management view of system analysts: failures and shortcomings. MIS
 Quarterly, 2(3): 25-32.

Shannon, C. E. & Weaver, W. (1949). The Mathematical Theory of Communication,
 University of Illinois Press, Urbana.

Smith, Peter. (1998). Explaining Chaos. Cambridge University Press.

 Simpson, R. L. (1992). Learning from Software Development Failures. Nursing
 Management 23(8): 30-31.

 Simon, H. A. (1969). The Sciences of the Artificial. MIT Press, Cambridge, Mass.

 Skok & Scarre, (1992). Gina Computer Project Management: An Information
 Systems Development Methodology as the Critical Success Factor - Myth or
 Universal Truth? Management Research News: Mrn. 15(2): 6-13.

 114

Stanwick, P. A. Stanwick, S. D. The relationship between corporate social
 performance and organizational size, financial performance, and environmental
 performance: An empirical examination. Journal of Business Ethics. 17(2): 195-204.
 1998.

Sumner, M. (1999). Critical Success Factors in Enterprise Wide Information. ACM
 Transactions on Software Engineering and Methodology: 297-303.

Symons, C. R. (1988). Function point analysis: difficulties and improvements. IEEE
 Transaction on Software Engineering, 14(1):2-11.

Tian, J. (1999). Measurement and continuous improvement of software reliability
 throughout software life-cycle. Journal of System and Software, 47, 189-195.

Titus, J. (1997). System failures require thorough analysis. Test & Measurement World.
 17(10): 41-44.

Tsaur, W. & Horng, S. (1998). A new generalized software complexity metric for
 distributed programs. Information & Software Technology. 40(5,6): 259-269.

Turner, J. A. (1982). Observations on the use of behavioral models in information
 systems research and practice. Information & Management, 15(3):207-213.

Vessey, I. & Weber, R. (1983). Some factors affecting program repair maintenance: an
 empirical study. Communications of the ACM, 26(2): 128-134.

Valach, Klir. (1967). Cybernetic Modeling. D. Van Nostrand Company. New Jersey.

Waelchli, E. (1989). The VSM and Ashby's law as illuminants of historical management
 thought. The Viable System Model. Chilchester, England: John Wiley.

Walters, S A. Broady, J E. Hartley, R J. (1994). A review of information systems
 development methodologies. Library Management. 15(6): 5-19.

Wand, Y., and Weber, R. 1995. On the deep structure of information systems, Information
 Systems Journal, 203-223.

Weill, P. & Olson, M. H. (1989). Managing Investment in IT: Mini CASE Examples and
 implications. Management Information Systems Quarterly, 13(1).

Weyuker, E. J. (1988). Evaluating software complexity measures. IEEE, 14(9):1357-1365.

Weyuker, E. J. (1996). Using failure cost information for testing and reliability
 Assessment. ACM Transactions on Software Engineering and Methodology, 5(2)
 : 87-98.

 115

Wicken, J. S. (1954). Entropy and information: suggestions for common language.
 Philosophy of Science, 54, 176-193.

Wilson, Francis A. Wilson, John N The role of computer systems in organizational
 decision making. Information Society. 10(3): 173-180. 1994

Winter, C., Brown, H. & Checkland, P. B. (1995). A role for soft systems methodology in
 information systems development. European Journal of Information Systems.
 4(3): 130-142.

Wright, J. (1998). Software Failure: Management Failure: Amazing Stories and
 Cautionary Tales. International Review of Law Computers & Technology. 12(1):
 188-191.

Xie, M. Hong, G Y A study of the sensitivity of software release time. Journal of Systems
 & Software. 44(2): 163-168. 1998 Dec.

Yamada, S. and Osaki, S. (1985). Software reliability growth modeling: models and
 applications. IEEE Transactions on Software Engineering, 11, 1431-1437.

Yamada, S. and Ohtera, H. (1990) Software reliability growth models for testing-effort
 control. European Journal of Operational Research, 46:343-349.

Yau, S. S. Collofello, J. S. (1985). Design Stability Measures for Software Maintenance.
 IEEE Transactions on Software Engineering. SE-11(9): 849-856.

Yau, S. S., Nicholl, R. A. Tsai, J. J-P. Liu, S. An Integrated Life-Cycle Model for
 Software Maintenance. IEEE Transactions on Software Engineering. 14(8): 1128-
 1144. 1988.

Yin, R. (1994). Case study research: design and methods. Sage Publications, 2nd Edition.

Yourdon, E. (1999). Death March. Prentice Hall.

Zhang, X. Pham, H. A software. cost model with warranty cost, error removal
 times and risk costs. IIE Transactions. 30(12): 1135-1142. 1998 Dec.

Zhang, X. and Pham, H. An analysis of factors affecting software reliability.
 Journal of Systems & Software. 50(1): 43-56. 2000 Jan 15.

Zmud, R. (1979). Individual differences and MIS success: a review of the empirical
 literature. Management Science, 25(10): 966-979.

 116

 Zmud, R.W. (1982). System Implementation Success – Behavioral/Organizational
 Influence and Strategies for Effective Change. Teaching Informatics Courses,
 Jackson, North Holland: 125-142.

Zuse, H. (1997). Property-based Software Engineering Measurement. IEEE Transactions
 on Software Engineering. 23(8): 533.

