
HIGHER COMPRESSION FROM THE BURROWS-WHEELER TRANSFORM

WITH NEW ALGORITHMS FOR THE LIST UPDATE PROBLEM

Brenton Chapin

Thesis Prepared for the Degree of

DOCTOR OF PHILOSOPHY

UNIVERSITY OF NORTH TEXAS

May 2001

APPROVED:

Stephen R. Tate, Major Professor

Paul Fisher, Committee Member

Robert Renka, Committee Member

Tom Jacob, Chair of the Department of

Computer Science

C. Neal Tate, Dean of the Robert B. Toulouse

School of Graduate Studies

Chapin, Brenton. Higher Compression from the Burrows-Wheeler Transform

with New Algorithms for the List Update Problem. Doctor of Philosophy, Computer

Science, May 2001, 101 pp., 18 tables, 4 figures, 53 references.

Burrows-Wheeler compression is a three stage process in which the data is trans-

formed with the Burrows-Wheeler Transform, then transformed with Move-To-Front,

and finally encoded with an entropy coder. Move-To-Front, Transpose, and Fre-

quency Count are some of the many algorithms used on the List Update problem. In

1985, Competitive Analysis first showed the superiority of Move-To-Front over Trans-

pose and Frequency Count for the List Update problem with arbitrary data. Earlier

studies due to Bitner assumed independent identically distributed data, and showed

that while Move-To-Front adapts to a distribution faster, incurring less overwork, the

asymptotic costs of Frequency Count and Transpose are less.

The improvements to Burrows-Wheeler compression this work covers are increases

in the amount, not speed, of compression. Best x of 2x−1 is a new family of algorithms
created to improve on Move-To-Front’s processing of the output of the Burrows-

Wheeler Transform which is like piecewise independent identically distributed data.

Other algorithms for both the middle stage of Burrows-Wheeler compression and the

List Update problem for which overwork, asymptotic cost, and competitive ratios

are also analyzed are several variations of Move One From Front and part of the

randomized algorithm Timestamp. The Best x of 2x − 1 family includes Move-To-
Front, the part of Timestamp of interest, and Frequency Count. Lastly, a greedy

choosing scheme, Snake, switches back and forth as the amount of compression that

two List Update algorithms achieves fluctuates, to increase overall compression.

The Burrows-Wheeler Transform is based on sorting of contexts. The other im-

provements are better sorting orders, such as “aeioubcdf...” instead of standard

alphabetical “abcdefghi...” on English text data, and an algorithm for computing

orders for any data, and Gray code sorting instead of standard sorting. Both tech-

niques lessen the overwork incurred by whatever List Update algorithms are used by

reducing the difference between adjacent sorted contexts.

c© Copyright 2001

by

Brenton Chapin

ii

ACKNOWLEDGEMENTS

For my ultimate scholarship providers, my parents.

iii

CONTENTS

ACKNOWLEDGEMENTS iii

1 Introduction 1

1.1 The Compression of Data . 1

1.1.1 What is data? . 1

1.1.2 What is data compression? . 1

1.1.3 Why compress? . 3

1.2 A short history of lossless data compression 3

1.2.1 Early work . 3

1.2.2 Burrows-Wheeler Compression 6

1.3 Contributions of This Dissertation . 7

1.4 Organization of Dissertation . 7

2 Asymptotic Cost and Overwork 9

2.1 Introduction . 9

2.2 Definitions . 10

2.2.1 Some common terms . 10

2.2.2 What the mathematical symbols represent 10

2.2.3 Important compression algorithms 12

2.2.4 Identically distributed sources 12

2.2.5 Competitive Analysis . 13

2.3 The Burrows-Wheeler Transform . 14

2.4 Approaches to Coding of BWT Output 17

2.4.1 Inversion Coding . 20

2.4.2 Dynamic Update of a List of the Symbols in BWT Output . . 22

2.5 Overwork Formulae . 25

2.5.1 Overwork and steady state cost of Move-to-Front 25

2.5.2 Overwork of MTF is usually positive 29

2.5.3 Less overwork from smaller changes 32

2.6 Summary . 33

iv

3 Preprocessing for Burrows-Wheeler Compression 34

3.1 Introduction . 34

3.1.1 Previous Work . 36

3.2 Improving the Sort Order . 36

3.2.1 Heuristic Orders . 37

3.2.2 Computed Orders . 38

3.3 Other Preprocessing . 42

3.4 Summary . 43

4 The Burrows-Wheeler Transform and Variations 46

4.1 Introduction . 46

4.2 Gray Code Sort . 48

4.3 Best overall results . 51

4.4 Adding Gray Code Sort to BWT Algorithms 54

4.5 Summary . 55

5 Analysis of Dynamic Update Algorithms 57

5.1 Introduction . 57

5.2 Overwork and Steady State Cost . 61

5.2.1 Timestamp Analysis . 61

5.2.2 Move One From Front Analysis 64

5.2.3 Best x of 2x− 1 . 69

5.2.4 Other Dynamic Update Algorithms 73

5.3 Comparing Best x of 2x− 1 to Best x+ 1 of 2x+ 1 74

5.4 Costs on Zipf distribution . 83

5.5 Solo Performance of Dynamic Update Algorithms 85

5.6 Combining two algorithms . 85

5.7 Entropy Coder . 91

6 Conclusion 94

BIBLIOGRAPHY 96

v

LIST OF TABLES

2.1 All Substrings of “alfalfa$” . 15

2.2 Substrings of “alfalfa$”, sorted in alphabetic order “$afl”. Preceding

symbols shown to left of sorted substrings. 15

2.3 Output column and first column . 16

2.4 Some sorted suffixes and preceding characters from Book1 of the Cal-

gary Corpus . 18

2.5 Inversion Coding and dynamic List Update algorithms on a sample

sequence . 21

3.1 Performance of hand-selected heuristic alphabet reordering. 38

3.2 TSP reordering results using file book1. Numbers in each box, from top

to bottom, are the total compressed size, the compressed size of just

the reordered data, the size of encoding the reordering permutation,

and finally the TSP tour length. 40

3.3 Computed alphabet reordering for all files in the Calgary Compression

Corpus . 42

3.4 Value of Preprocessing: DC 1.24 on files from various corpi 44

4.1 The result of ordering data based on the reflected ordering described

in Section 4.2. 50

4.2 Combining reflected-order sorting with alphabet reordering. 51

4.3 Overall best results . 52

4.4 Standard BWT and Gray code sort BWT on image data from the

Waterloo Corpus . 53

4.5 Direction bits for each 1, 2, 4, 8, and 7 character wrap-around sub-

strings of “abracadabra” . 55

5.1 Best 2 of 3 algorithm on request sequence “abbcbac” 63

5.2 Asymptotic cost on Zipf distribution 84

5.3 Solo performance of dynamic update algorithms. 86

vi

5.4 Snake algorithm switching between M1FF2 and Best x of 2x− 1. . . 90

vii

LIST OF FIGURES

2.1 Pointers for inversion . 16

2.2 Negative overwork with alphabet of 16 symbols. Q is a geometric

distribution 0.6, 0.24, 0.096, ... and P is a Zipf distribution 0.296,

0.148, 0.099, Switch from Q to P at time 0, and back to Q at time

200. 29

5.1 Total cost from uniform to Zipf distribution on alphabet of 64 symbols 85

5.2 Total cost from Q = {0.12, 0.16, 0.24, 0.48} to P = {0.48, 0.24, 0.16,
0.12} . 87

viii

CHAPTER 1

Introduction

1.1 The Compression of Data

1.1.1 What is data?

Data conveys information. Data takes many forms. Some kinds of data are numerical

values obtained by measurements of phenomena such as the digitized output of a

microphone, or values generated by computation such as the digits of π. Other kinds

consist of symbols which form a string from a language such as English, Fortran, or

DNA.

The purpose of data is, ultimately, to convey information. Storage of data is not

an end in itself. Data is stored because it may be needed in the future. Representation

of data is usually tailored to the uses of that data.

Preferred representations of data evolved, or were designed, to ease usage of

the conveyed information. Another consideration is simplicity of the representation.

Early writing systems are generally difficult to learn and use, ambiguous, and limited

compared to modern systems. Changing technology has reduced the need for systems

suitable for clay tablets or stone (runic systems in which the characters contain only

straight lines, since curves are difficult to carve), or signal towers with their firelight

and shutters, and many others. Also, technology has inspired modifications suitable

for new mediums such as the 7 segment displays on calculators and digital watches.

Writing with pens in cursive script is becoming less common, displaced somewhat

by typing on keyboards. Perhaps future systems will make current ones look equally

awkward. Whatever the reason for a representation’s form, compactness is often, but

not always, a low priority in its design or evolution.

1.1.2 What is data compression?

Most representations of information do not optimize usage of resources. For example,

one could replace every “qu” in English with a ‘q’, removing a lot of u’s. Likely,

1

the text will convey the same information as before, but take less space. Why is

no information lost? Because those u’s are redundant. Lossless compression of data

is the removal of redundancies in the data while preserving the ability to return the

data to its original form. Lossy compression involves the discarding of “unimportant”

information from the data which then cannot be recovered. Although people have

developed clever methods for determining what information is important, the ultimate

judge continues to be subjective human evaluation.

“Removal” is an excellent argument against claims of infinite compression achieved

through recursive methods. Ask the claimant how it is possible to remove something,

such as redundancies or unimportant information, more than once. On the other

hand, no compression method is perfect, so another pass or more over the data may

be worthwhile.

Other methods commonly referred to as data compression are transformations to

more compact representations (often followed by some simple entropy coding) which

remove little of the repetition in the data. The popular MP3 lossy compressed sound

format varies the amount of information thrown out to fit the same unit of time

into the same space no matter how complicated the sound. An undesirable effect is

that silence is not compressed well. A minute of total silence will take almost the

same space as a minute of song. Also, repeats in the sound, common in music (the

refrain of a song, for example), are redundancies that are not removed by MP3 [37].

Transformations can serve to model the data, improving the performance of classic

universal data compression algorithms as in the PNG lossless image compression

format which uses a dictionary based compression technique as its back end [52].

Lossy methods use transforms and models to segregate data into varying shades

of important and less important parts. Trade-offs between amount of compression

and quality of representation are made by varying the amount of the less important

information that is thrown out.

2

1.1.3 Why compress?

Some resources used to convey and/or hold data are phone lines, books, and compact

discs. No resource, however inexpensive, is cost free. Representing information as

compactly as possible saves resources.

One may ask, why not just use the most compact representation instead of trans-

lating back and forth between compressed and uncompressed versions of the same

information? A space efficent representation is usually not time efficient. For exam-

ple, it is faster to look up a million digits of π than to compute them. But the most

compact representation of π might be something like the following simple description:

“area of a circle of radius r divided by area of a square of width r” translated into a

program.

The above descripition of π is an example of Kolmogorov complexity, a measure of

information [33]. The Kolmogorov complexity of a collection of data is the smallest

program (in a reasonable language) that can generate that data. Finding the Kol-

mogorov complexity is an incomputable problem since an answer also answers the

halting problem. For instance, possessing a “no” answer to the yes/no question “Is

the Kolmogorov complexity of some data d less than c?” means that the halting

question is answered for all programs of length less than c. But the Kolmogorov

complexity of some data, such as the digits of π, is easily shown to be O(logn) where

n is the number of digits to compute. One may generate infinitely many digits of π

with a constant length program.

1.2 A short history of lossless data compression

1.2.1 Early work

The seminal paper on information theory is Claude Shannon’s 1948 paper, “A math-

ematical theory of communications” [46] which gives the only function, log, that fits

the natural properties of information. The first property is high probability events

convey less information than low probability ones. For example, suppose one was

working on a word in a crossword puzzle and one knew one letter of that word. If

3

that letter is a ‘z’, one has more information (less words to try) than if that letter is

an ‘e’. This and other axiomatic properties of information lead to a formula in which

the probability ps of a string s is inversely proportional to the amount of information

I it conveys:

I(s) = − log ps

The expected value of the information, taken over all strings s generated by a

source S over an alphabet A, is the entropy, H , of S, so

H(S) = −∑
s∈A

ps log ps.

In 1952, Huffman published an algorithm for computing minimum redundancy

codes, now called Huffman codes [24]. Huffman codes are optimal per symbol of

data generated by an independent, identically distributed (i.i.d.) source. However,

Huffman codes applied character-by-character are not optimal for strings. Arithmetic

coding (Cleary and Witten, 1984 and Langdon, 1984) [16, 29] is optimal for strings

from an i.i.d. source. Both reduce redundancy by using less resources for more com-

mon symbols at the expense of using more resources for less common symbols, rather

than using the same amount for each symbol, for a net gain. The term “entropy

coding” refers to the many variants of Huffman and arithmetic coding. One such,

probability rank encoding [20], assigns codes to symbols as does Huffman, but can

encode infinitely large alphabets (such as the set of whole numbers), whereas Huff-

man coding operates on an alphabet containing a finite number of symbols. But

probability rank encoding is not efficient except on very specific distributions.

Much data has context and so is not modelled well by i.i.d. sources. Algorithms

for compressing such data are mostly dictionary based or Prediction by Partial Match

(PPM, 1984) [16]. In 1977 and 1978, Lempel and Ziv published two data compression

algorithms: LZ77, the sliding window algorithm in which the dictionary is implicit

[31], and LZ78 with its explicit dictionary [32]. In actuality, these algorithms model

the data and then use entropy coding to compress the model. The conceptual separa-

tion of “model” and “coder” has helped clarify much of the subtle differences between

4

algorithms. A further conceptual refinement is the separation of the statistics from

the modeling and coding. The statistics are simply the counts of occurrences of items

defined in the model.

LZ77 and LZ78 are fast (O(m log b) for a string of length m and a dictionary of

size b) and compress optimally in the limit, but do not converge to optimality at

the optimal rate [34]. PPM is optimal and converges at the optimal rate for many

sources but is very slow. In 1994, Burrows and Wheeler introduced their block sorting

algorithm [13] which is nearly as fast as LZ77 and compresses nearly as highly as

PPM. Subsequent work has shown that context trees can produce the same models

as both Burrows-Wheeler and PPM, making them roughly equivalent [30], and that

PPM can be made to perform as fast as Burrows-Wheeler [19].

An important factor in the development, use, and refinement of all these tech-

niques has been the legal issue. Many nations have patent and copyright laws which

are intended to promote innovation by not allowing people to use or profit from in-

novations without arrangements with the inventors. In data compression, this has

resulted in many more improvements to and widespread use of the unpatented LZ77

algorithm, embodied in the free gzip compression program, than to the patented ex-

tensions of the LZ78 algorithm, as seen in the gradual abandonment of the GIF com-

pressed image format in favor of the newer PNG compressed image format. Although

the patent on GIF expires soon, technology has left it behind. Current hardware

supports millions of colors, so few will now want to use GIF with its 256 color limit.

The Burrows-Wheeler Transform is unpatented. However, Julian Seward’s free BWT

based program bzip did not gain much acceptance in part because it used arithmetic

coding, some variations of which are patented. In bzip2 [44], error checking was

added and the arithmetic coding was replaced with Huffman coding. Now bzip2 is

widely used, is included as a standard part of many distributions of the free operat-

ing system Linux, and is beginning to replace gzip, feats not managed by any of the

hundreds of other compression programs written since gzip.

5

data

❄

Burrows-Wheeler
Transform

❄
Move-To-Front
Transform

❄
entropy
coder

❄
compressed
data

Burrows-Wheeler compression

1.2.2 Burrows-Wheeler Compression

The Burrows-Wheeler Transform (BWT) does not actually compress data. Burrows-

Wheeler compression, as originally described, has 3 stages. First the data is trans-

formed with the Burrows-Wheeler Transform, then further transformed with Move-

To-Front, and finally compressed with an entropy coder.

Each of the 3 stages can be improved. Also, data can be better prepared for

compression, much like the BWT prepares context sensitive data for entropy coding.

Ways to encode the BWT output directly (combining the last 2 stages into 1) have

been considered. These improvements came in part from a better understanding of

the kinds of data involved.

6

1.3 Contributions of This Dissertation

This dissertation contains new material and results on the following:

• Improvements to Burrows-Wheeler compression

– Better alphabet orders

– Binary reflected Gray code sort

– Encoding output of Burrows-Wheeler Transform by switching between a

Move-To-Front improvement and Best x of 2x− 1

• Design of a new family of algorithms called “Best x of 2x − 1” encompassing
Move-To-Front, Timestamp, and Frequency Count

• Analysis of overwork of Move-To-Front, Move 1 From Front, and Best x of 2x−1

• Tight competitive ratios for two versions of Move 1 From Front

1.4 Organization of Dissertation

A familiar problem for writers of technical papers is how to organize subjects into

a linear progression when a graph of their relationships forms a network. Maybe

in the future hypertext will be employed. But for the present, the linear order of

the stages of Burrows-Wheeler compression has been used to impose a linear order

upon the material within this dissertation. Chapter 2 introduces overwork, the cost

to an adaptive algorithm of making adaptations, used for much of the analysis in

this thesis. Chapter 3 covers some of the preprocessing that can be applied before

performing the BWT. A method for computing sort orders is presented. Chapter 4

considers modified sorting for the Burrows-Wheeler, specifically, Gray code sorting.

Chapter 5 contains the analysis of Move-To-Front and variants from the viewpoint of

steady state cost and overwork on pieces of i.i.d. data. Chapter 5 also has some of the

modifications to the final stage of Burrows-Wheeler compression, the entropy coding.

In conclusion, chapter 6 summarizes and points out directions for further work.

7

Parts of this dissertation have been previously published in the Proceedings of the

Data Compression Conference as “Higher Compression from the Burrows-Wheeler

Transform by Modified Sorting” by Brenton Chapin and Stephen R. Tate [15] and

“Switching Between Two On-line List Update Algorithms for Higher Compression of

Burrows-Wheeler Transformed Data” by Brenton Chapin [14].

8

CHAPTER 2

Asymptotic Cost and Overwork

2.1 Introduction

The proofs of optimality for dictionary compression (LZ78 and LZ77) and Prediction

by Partial Match (PPM) assume the data is stationary and also ergotic, but there is

very little real data that fits that criteria. For example, in a story, characters come

and go, and the plot moves forward. The words are not random; the data is not

stationary.

In addition to the measures of running time and space, algorithms are judged

by the cost or quality of their solutions when a measure of cost is available and an

optimal cost algorithm is not feasible. Many on-line problems such as cache updating

or intractable problems such as the NP-hard set have a cost metric. In the case of

data compression algorithms, the usual cost measure is the amount of compression

achieved. Typically, interesting costs are the asymptotic cost, which is the limiting

cost to an adaptive algorithm as the problem size grows arbitrarily large, or average

and worst-case costs which are the costs on average instances and worst-case instances

of data. Another is amortized cost, the cost of an operation taken as an average over

a sequence of requests from any instance (even a worst-case one) of a problem.

If one discards the assumption of stationarity, another aspect of any adaptive data

compression algorithm becomes important: the overwork. The overwork is the extra

cost (beyond the asymptotic cost) incurred by an algorithm as it adapts to new data.

Ordinarily, overwork can be “swept under the rug” since it is only the vanishingly

small constant of initial adaptation to the data, after which the asymptotic cost

dominates. But if the data changes from time to time, so that instead of just one

initial adaptation many adaptations are needed, overwork becomes significant.

In fact, one could say overwork has been considered already in comparing LZ78

to PPM. Both are asymptotically optimal. Yet PPM achieves higher compression in

9

practice. The difference lies in the speed of the two algorithms’ adaptation to data.

PPM adapts to data at the optimal rate. LZ78 does not [47].

In this chapter, terminology and definitions used throughout this work are listed

next, followed by some analysis of overwork for various algorithms.

2.2 Definitions

2.2.1 Some common terms

symbol: The unit of language, such as a letter of the English alphabet.

alphabet: The set of symbols of which data may be comprised.

source: The source of the input data. The data may be characterized as a string be-

longing to a language (such as a sentence in English), or a sequence of unrelated

requests for symbols from the alphabet, or in many other ways.

independent: Probabilities of symbols are not context dependent.

identically distributed: Probabilities of symbols do not change.

stationary: Probabilities are independent of time t

ergotic: The finite state machine of contexts contains no subset from which egress

is impossible, and the greatest common denominator of the lengths of all the

cycles is 1.

Zipf distribution: Similar to the informal “80-20” rule which states that 80% of

the requests are for the 20% most common symbols. Formally, pi = 1/(iHn)

where Hn =
∑n

j=1 1/j is the nth harmonic number.

2.2.2 What the mathematical symbols represent

A: The source alphabet. A is an ordered set and is used for sorting in the BWT.

d: The input data. d ∈ A∗. |d| is the length of d, denoted by m.

10

L: Ordered list maintained by an algorithm which may reorder the list. Contains the

same symbols as A.

ρ(l): rank of symbol l ∈ L. Symbol at front has rank of 1.

s: = (s1, s2, ..., sm). Sequence of requests for symbols in L.

sji : A substring (piece) from the ith to the jth character of s, inclusive.

I: Intervals. Ordered indexes of dividing points of s. I ⊂ N. Let I0 denote 0 and not
be counted as a member of I. Then the kth piece of s is sIk

Ik−1+1 for 1 ≤ k ≤ |I|,
abbreviated as sk.

τ(L): permutation of L.

c: Cost of serving a request in s. Two parts to the cost:

c1: Cost of accessing L.

c2: Cost of a permutation τ(L).

n: = |A| = |L|.

m: = |d| = |s|.

t: Time, or number of symbols processed. 0 ≤ t ≤ m.

P,Q: Probability distributions.

E: Expected cost.

OV : Overwork is the expected cost minus the asymptotic cost. This amount is usually

positive, hence the “over” in the term [11].

11

2.2.3 Important compression algorithms

entropy coding: Methods for homogenous data with no context dependencies

Huffman: Optimal integer sized codes for each symbol

arithmetic: Optimal fractional sized codes for each symbol

probability rank: Integer sized codes for symbols from open-ended alphabets

such as the set of whole numbers, ordered by probability of occurrence

universal compression: Methods for context sensitive data that are asymptotically

optimal

LZ77: Limpel and Ziv’s sliding window (which implies a dictionary) compres-

sion algorithm, published in 1977, and the basis of the popular zip and

gzip programs [31].

LZ78: Limpel and Ziv’s dictionary compression algorithm, published in 1978

[32].

PPM: Prediction by Partial Match. Predict the next symbol by matching the

last several symbols with past data. For instance, to predict a continuation

for English “the”, one might look back and count many “the ”, “them”,

“then”, “there”, “these”, “they” and a few “theater”, “theocrat”, and

“thew” and assign probabilites accordingly [16].

BWT: Burrows-Wheeler Transform. Based on sorting, for which fast and effi-

cient methods are well known, the transform rearranges the data, grouping

symbols with similar contexts near each other [13].

2.2.4 Identically distributed sources

i.i.d., independent: Each request in the sequence is independent of all other requests.

Prob(sm) =
∏m

i=1 Prob(si).

p.i.i.d., piecewise independent: s, the sequence of requests is |I| concatenated i.i.d.
sequences sk, 1 ≤ k ≤ |I|. Thus, Prob(sk) =

∏
Ik−1<j≤Ik

Prob(sj)

12

i.p.i.d., independent piecewise: Same as piecewise independent plus the pieces are

independent. Thus, Prob(s) =
∏|I|

k=1 Prob(sk).

o.i.i.d., ordered independent: Prob(sm) =
∏m

i=1 Prob(si) and Prob(li) ≥ Prob(lj)

for i < j. In other words, the list L is ordered by the probability of the symbols

from most to least probable.

o.p.i.i.d., ordered piecewise independent: Same as piecewise independent plus

Prob(li) ≥ Prob(lj) for i < j for all pieces sk.

b.i.p.i.d., binary i.p.i.d.: Same as i.p.i.d. plus |A| = 2 [51].

2.2.5 Competitive Analysis

deterministic: For a given input, a deterministic algorithm always makes the same

decisions and produces the same results.

randomized: A randomized algorithm uses random values to make some decisions.

Hence, an input may produce different results in separate trials.

on-line: Algorithm cannot use problem data (s) that has not yet been processed. At

time t, algorithm is limited to st1

off-line: Algorithm may use any data in s, including future requests, at any time t.

adversary: Source of data which attempts to maximize (hence, adversarial) the ratio

of cost between some algorithm B and an optimal algorithm.

List Update: One of the first problems analysed competitively. Let L be an ordered

list of items, and sm be a sequence of m requests for these items. To satisfy

a request for an item st, compare st to members of the list L, starting with

the first member and proceeding in order until a match is found. One may pay

proportionally to change the order of L between requests; most algorithms make

simple changes for free. The problem is to minimize the number of comparisions

needed to satisfy all the requests, plus the amounts paid to reorder L.

13

Algorithms for the List Update problem

Let l be the requested item. We give a short description of how each algorithm

changes the list of items L after serving a request for item l.

MTF: Move-To-Front. Move l to front of list (rank 1).

TS: Timestamp. With probability p, move l to front of list, else move l in front of

frontmost item requested at most once since last request for l [1].

FC: Frequency Count. Move l in front of all items requested less frequently.

TP: Transpose. Swap l with item in front of l.

M1FF: Move 1 From Front. Move l to rank 2 if it was at rank 3 or greater, else

move l to the front [7].

Bx: Best x of 2x− 1. Move l in front of each item requested less than x times of the

last 2x− 1 requests for l or that item [14].

2.3 The Burrows-Wheeler Transform

In this section we give a description of the Burrows-Wheeler Transform [13].

To perform the Burrows-Wheeler Transform on a string of length m− 1, append
a unique character. Generate all m suffixes of the appended string, sort the suffixes,

and output the character preceding each of the sorted suffixes. (The unique character

appended to the original string is the one that “precedes” the original string.) An

example on the input string “alfalfa” is shown in tables 2.1 and 2.2. The output is

“aff$llaa”

The inverse transform is even easier. The first column of the sorted strings may be

obtained from the output of the BWT with a simple O(m) bucket sort. The output

column and the first column form all pairs that occurred in the original string. For

all m symbols, point the ith occurrence of a symbol s in the first column to the ith

occurrence of s in the output column. Then, starting at the unique symbol that was

appended to the original input, the pointers form a chain of pairs that is the original

14

alfalfa$

lfalfa$

falfa$

alfa$

lfa$

fa$

a$

$

Table 2.1: All Substrings of “alfalfa$”

a $

f a$

f alfa$

$ alfalfa$

l fa$

l falfa$

a lfa$

a lfalfa$

Table 2.2: Substrings of “alfalfa$”, sorted in alphabetic order “$afl”. Preceding
symbols shown to left of sorted substrings.

15

a $

f a

f a

$ a

l f

l f

a l

a l

Table 2.3: Output column and first column

a

f

f

$

l

l

a

a

$

a

a

a

f

f

l

l

✡
✡

✡
✡

✡
✡✡✢

❍❍❍❍

✁
✁

✁
✁

✁
✁

✁
✁☛

✁
✁

✁
✁

✁
✁

✁
✁☛

❏
❏

❏
❏

❏
❏❏

❏
❏

❏
❏

❏
❏❏

❅
❅

❅
❅�

❅
❅

❅
❅�

Figure 2.1: Pointers for inversion

input. Follow the pointers to recover the original data. The inverse BWT is shown

in table 2.3 and figure 2.1.

There are some minor variations on the BWT that are essentially just different

ways of describing the process. The unique character appended to the string may

occur in an arbitrary place in the sort order but is usually at the low or high end.

The “alfalfa” example arbitrarily set ‘$’ at the low end of the sort order. The unique

character is not necessary if instead a pointer to the starting character is included

with the output. Rotations of the input string may be used in place of suffixes, in

which case the output can be described as the last characters of the sorted rotations.

The input string may be reversed so that the suffixes of the input are the prefixes

16

of the original data, giving more traditional prefix based contexts. These alterations

usually have little effect on the compression of BWT output.

An easily varied parameter of the BWT is the block size, which is the maximum

amount of data to sort. If computing resources are insufficient to sort all the data

in one large block, the data can be split into multiple blocks. This usually decreases

compression efficiency. However, data that is different should not be lumped into

the same block as the amount of compression will decrease. An example is the Cal-

gary Corpus. Higher compression of the corpus is achieved by compressing each file

separately rather than concatenated together in one large block.

By sorting, the BWT groups similar contexts near each other. As one might ex-

pect, characters preceding similar contexts are themselves similar. This transformed

data can be highly compressed with fast and simple algorithms. An example of BWT

output is shown in Table 2.4. The example shows the preceding characters of a

contiguous group of sorted suffixes from Book1 of the Calgary Corpus. Where the

context remains nearly the same, the set of preceding characters does likewise. For

example, only ‘p’ or ‘l’ precedes “osed”. The next context may be preceded by some

of the same characters, as in the switch to “osely”, or totally different characters as

happens when switching from “osening” to “oseph”. An encoder of BWT output

should compress large quantities of symbols from sets of small cardinality well, and

at the same time quickly adapt to new sets of symbols.

2.4 Approaches to Coding of BWT Output

In Burrows and Wheeler’s seminal paper, BWT output was transformed with Move-

To-Front. The MTF output was then encoded by run-length encoding of 0’s and

standard entropy coding. They noted that MTF followed by entropy coding gave

more compression than the “superior” dictionary techniques. (The dictionary tech-

niques are superior to MTF on most data, but not on output of the BWT.) Several

refinements to MTF and entropy coding have been presented. Fenwick retained the

run-length coding and improved the entropy coding by modeling the logarithms of

the MTF output, thus allowing the coder to adapt more quickly to changes [21].

17

preceding context
character

l osed, steps crossed the hall, an

p osed, the Bath escapade/being qu

l osed./ "Who is Mr. Boldwood?’ s

l osed./" My life is a burden with

l osed./<C xi>/<P 134>/OUTSIDE THE

l osed./This night the buildings w

p osed. However, it was too/late n

l osed. My/uncle has a hut like th

l osed.’/"Yes I suppose I should,’

o osely/put together, and the flam

l osely at the hot wax to discover

l osely beheld. By degrees a/more

l osely compressed was his mouth,

l osely considered. what he would

l osely drawn over the/accommodati

l osely huddled, and outside these

o osely thrown on, but not/buttone

l osely, and his compressed lips m

h osen being always on the side aw

h osen by women as best. All/featu

h osen it on/that account for his

h osen my course. A runaway wife/i

o osen my hand; I will, indeed I w

h osen points, where they fed, hav

h osen the front of her bodice as

o osened/his woollen cravat, and c

o osened his hand, saying, ’By Hea

o osened tooth or/a cut finger to

o osened, rose to the surface,/and

l oseness of his cuts, that had it

o osening/his neckerchief./On open

o osening her tightly clasped arms

J oseph/Poorgrass in a voice of th

J oseph/Poorgrass o’ Weatherbury,

Table 2.4: Some sorted suffixes and preceding characters from Book1 of the Calgary
Corpus

18

Balkenhol, Kurtz, and Shtarkov have further improved the basic technique by replac-

ing MTF with several variations on a slightly different algorithm, called Move 1 From

Front (M1FF) in this work, and the run-length coding of 0’s with an order-3 Markov

coder of 0’s and 1’s (2 or greater must still be encoded with the entropy coder), and

other refinements [6, 7]. None of these methods are radical departures from Burrows

and Wheeler’s approach of having an algorithm for transforming the localized con-

centrations of similar symbols into a global preponderance of low values, followed by

entropy coding.

The problem of how best to compress the output of the Burrows-Wheeler Trans-

form is difficult. Before trying to answer hard questions, one should consider: Are

they the “right” questions? Can they be answered? Will the answers help solve

the problem? Perhaps the first questions concern the BWT: does the BWT help

compress data and, if so, is the BWT worth using instead of other, possibly better,

methods? Empirical data (obtained by such means as comparing amount and speed

of compression of BWT algorithms with dictionary and other methods on suites of

test files, performed on the same machine, with the same compiler and optimizations,

etc.) suggest that, yes, BWT methods are viable.

Since empirical results were good, one might next wonder how BWT compares

with dictionary and other algorithms on the theoretical front. Several works have

proved, with limitations, that Burrows-Wheeler compression is optimal on stationary,

ergotic data [18, 30, 35]. Thus, the theoretical work is about on par with the proofs

for dictionary compression.

With the promising results on BWT based compression, an examination of the

workings of the BWT, in particular, the kinds of input for which BWT performs

best and good characterizations of BWT output, provides a starting point towards

higher compression, the goal of this work. How should the output of the BWT be

described? Piecewise independent identically distributed is one way. A similar view

is as independent, but with a smoothly varying change between distributions, rather

than as identically distributed pieces (no change in distribution within pieces and then

abrupt changes at piece edges). A different approach is Inversion Coding, presented by

Arnavut [4], an off-line technique to find and encode a representation of BWT output

19

as an inversion of a permutation of a multiset. In the simplest form, each element of

a multiset is paired with a frequency, indicating the number of occurrences of that

element. BWT output can be characterized as a permutation of a multiset.

Another method of encoding BWT output is somewhat like run-length encoding

or the interval coding of Elias [20]. Elias noted that Recency Ranking (his name for

MTF) will always produce equal or smaller values than Interval Coding, which, for

each symbol, outputs the number of characters (the interval) to the last occurrence

of that symbol in the sequence. However, better encoding rules, such as only count-

ing those symbols which precede the current symbol in the alphabet A (and in one

variation, encoding only a count for the first symbol in A instead of a 0 value for each

occurrence of that symbol), can make an interval coder compress in an MTF coder’s

league.

2.4.1 Inversion Coding

Experimental results show that Inversion Coding compresses slightly more than im-

provements on Move-To-Front techniques, but is a relatively slow O(m logm) time.

What is not clear is how else Inversion Coding may be compared to Move-To-Front,

say by formulating Inversion Coding in terms of asymptotic cost and overwork.

What follows is a brief description of inversion coding, with an example given in

Table 2.5 (The example uses capital letters ‘A’ thru ‘I’ to represent numbers 10 thru

18):

1. Assign the numbers 1...m to each symbol in the sequence of m symbols as

follows. Symbols preceding other symbols in alphabetical order have smaller numbers.

All ‘a’s are less than all ‘b’s which are less than all ‘c’s and so on. Same symbols

occurring sooner in the sequence have smaller numbers. The first ‘a’ is less than the

second ‘a’ and so forth. This produces the linear index permutation.

2. Each entry in the inversion is the count of numbers in the linear index per-

mutation that come after and are smaller than the corresponding entry of the linear

index permutation.

3. Take the difference of the counts of successive occurrences of the same symbol in

20

sequence acaabaaabcbaaccaaa

Move-To-Front (start list abc) 021021001212020100

Move 1 From Front 020020001202121100

interval coding (prepend cba) 031051003713030200

better interval coding 030040003700030000

better interval coding with count .3..4...370..30...

linear index permutation 1F23C456DGE78HI9AB

inversion 0D0080005650033000

an inversion coding 0D0080003700030000

Table 2.5: Inversion Coding and dynamic List Update algorithms on a sample se-
quence

the inversion to obtain an inversion code. Reversing the encoding is possible because

data on frequency and first and last position of each symbol is kept, adding a small

amount of overhead.

Other inversions are possible, by using counts of numbers that are to the left and

smaller, or to the right and larger, or to the left and larger.

Interestingly, the 2 approaches, inversion coding and interval coding with improve-

ments, produce similar output. We show that, except for the initial symbols, the two

methods produce identical output. Despite the similarity in outputs, this seems to

be a previously unknown fact!

Theorem 1 Except for the initial occurrence in the input string of each symbol in

the alphabet, better interval coding and Inversion Coding produce identical output.

Proof : Each entry in the inversion is the count of the number of values in the linear

index permutation that are to the right of its position and smaller than its corre-

sponding value in the permutation. A value to the right can only be smaller if it

represents a symbol that occurs earlier in the alphabet, so each value is a count of

all later occurrences of all symbols preceding the represented symbol in the alpha-

bet. The inversion coding is the difference between successive values representing the

same symbol, and is therefore the number of all symbols of earlier alphabetic order

between the current and previous occurrence, which is precisely the way in which the

21

better interval coding is computed. Only the initial values, where there is no previous

occurrence of an individual symbol with which to take a difference, are different.

Corollary 1 Inversion Coding can be performed on-line in O(m logn) time.

Thus Inversion Coding can match the speed of many List Update algorithms,

including MTF.

2.4.2 Dynamic Update of a List of the Symbols in BWT Output

The List Update problem and Move-To-Front (MTF) algorithm has been studied

since the 1960’s, well before the advent of Competitive Analysis in the mid 1980’s.

Early work analysed the asymptotic cost of the MTF rule on arbitrary data and on

very specific kinds of independent identically distributed (i.i.d.) data such as Zipf

distributed i.i.d. data and data drawn from a 3 or 2 letter alphabet. Bitner analysed

the overwork of MTF and several other dynamic list update algorithms [11]. In all

cases, an access cost function c = ρ(l) was used. The optimal worst-case cost for an

on-line deterministic algorithm was shown to be 2 times the cost of an optimal off-line

algorithm. Later work showed that the proofs of optimality held for any convex cost

function such as c = log ρ(l) which is close to the cost to an entropy coder [48]. A

probability rank encoder can encode with cost function c = log ρ(l) + 2 log log ρ(l).

Viewing the output of BWT as piecewise independent identically distributed

(p.i.i.d.) makes for easy analysis in some cases. The analysis of some of the List

Update algorithms, such as MTF, on p.i.i.d. data is fairly easy. Other algorithms,

such as Transpose (TP), remain difficult to analyze. The p.i.i.d. model of BWT out-

put has been the basis of some improvements in the amount of compression achieved.

A point to make here is that, strictly speaking, the output of BWT is not p.i.i.d.,

though close enough to achieve practical improvements. A fuller explanation of this

point is given in chapter 4.

Taking piecewise independent identically distributed as a reasonable model of

BWT output, how should p.i.i.d. data be analysed? Again, there is more than one

approach. Older methods focused on the asymptotic cost of a solution, which is fine

22

for i.i.d. data but not p.i.i.d. Taking the overwork into account, ala Bitner, addresses

this shortcoming, and explains why Move-To-Front (MTF) is, in practice, much better

than the optimal asymptotic cost algorithms Transpose (TP) and Frequency Count.

Competitive Analysis, which involves worst-case analysis under varying conditions,

gives a theoretical basis for the observed differences on arbitrary data between on-line

algorithms such as MTF and TP, and shows the power of randomization in avoiding

worst-case situations. Essentially, if worst-case scenarios are a few random instances

of a problem rather than a few highly structured and much more probable than

average instances (for example, deterministic Quicksort in which the pivot is always

the first element in the sub problems, on data that has already been sorted) then it

is far less likely that worst-case problem instances will be picked. Discussions about

how to refine or replace Competitive Analysis continue; meanwhile, useful results

on many on-line problems, and randomized algorithms for solving them, have been

obtained with the technique. One open problem in this area is the performance of

randomized algorithms on the List Update problem. The optimal competitive ratio

for deterministic algorithms is known (2 minus a small constant times optimum, for

the usual cost function c = ρ(l)), and is met by Move-To-Front. But for randomized

algorithms, the current lower limit is 1.5 times optimum [49] and the best known

randomized algorithm achieves 1.618 (the golden ratio) times optimum [1]. The open

problem may yet be solved, or superceded along with Competitive Analysis by some

new paradigm. The main results in this work do not come from applying Competitive

Analysis, but instead come from an extension of Bitner’s overwork analysis applied

to Effros’ modifications of independent identically distributed data sources.

The possible characteristics of pieces of piecewise i.i.d. deserve some attention.

P.i.i.d. data may contain many small pieces and/or a few large pieces. Specifically,

there may be O(1) pieces of size Θ(m) or Θ(m) pieces of size O(1) or a mixture.

And, of course, there may be any number or size in between such as Θ(m/ logm)

pieces of size Θ(logm). With this distinction, it is worth noting that while MTF is

optimal for arbitrary data, MTF is not optimal for p.i.i.d. data in which the pieces

are larger than O(1) size. BWT on data generated from a stationary finite context

model produces O(1) pieces of size O(m).

23

For encoding, where the cost of an individual item l is c = Θ(log ρ(l)) instead of

c = ρ(l) and for i.p.i.d. data rather than p.i.i.d. data, Merhav [36] showed a lower

limit of
|I|∑

k=1

|sk|H(sk) + (1− ε)
(
1

2
n|I|+ |I| − 1

)
logm

for the expected cost of encoding the data, for ε > 0 and large m. We conjecture that

on i.p.i.d. data, the MTF transform followed by probability rank encoding as in the

Bentley, Sleator, Tarjan, and Wei analysis on i.i.d. sources [9], is within a constant

amount of Merhav’s limit if the pieces are of constant size.

Another aspect of the pieces is that they may be rearranged to put similar pieces

closer to one another. An ability to order the pieces is one reason the BWT output is

better modeled as p.i.i.d. rather than i.p.i.d. Given 3 pieces and a measure of distance

between pieces, such as the overwork involved in switching from one to another, the

pieces can be ordered so as to reduce the sum of the distances between adjacent

pieces, except in the highly unlikely case that the distance between all 3 pieces is

the same. Of course, the cost of describing piece boundaries and an arbitrary order

for the pieces could easily negate any savings obtained by reordering, particularly if

there are many small pieces. On the other hand, a small set of orders, obtained by

following some low cost rule such as sorting by a few particular orders, can be cheaply

encoded. This rearrangement of the pieces is what the preprocessing to find a sort

order and the Gray code sort described in Chapters 3 and 4 do.

Be cautioned (or glad to have suggestions for future work!) that better models

may be introduced and that this work does not prove any absolutes, such as that MTF

adapts to new pieces at an optimal rate (which it perhaps does not) or that a List

Update algorithm transforms p.i.i.d. data into ordered p.i.i.d. data. What is shown

in this work (aside from the improvements applied to Burrows-Wheeler compression

and empirical data supporting those improvements) are formulae for computing the

asymptotic cost and overwork of some of the List Update algorithms, and comparisons

between these algorithms. Move-To-Front, the archetypical List Update algorithm,

is used in support of some observations about p.i.i.d. data and to show aspects of

costs which may hold (but again, no ironclad proof) for all reasonable List Update

24

algorithms. The assertions in the next section hold for MTF, and probably M1FF,

Best x of 2x− 1, TP, and FC.

2.5 Overwork Formulae

2.5.1 Overwork and steady state cost of Move-to-Front

The Move-To-Front algorithm has been studied as far back as 1965. In 1976, Rivest

[40] proved that on i.i.d. data, MTF has a steady state cost of E(CostMTF) = 1 +∑n
i=1 pi

∑
j �=i

pj

pi+pj
. Calculations using the above formula with sufficiently large n show

that the cost of MTF is 1.386 times optimal on a Zipf distributed i.i.d. source.

In 1979, Bitner introduced the concept of overwork [11]. Overwork is the extra

cost of serving requests when the list order has not stabilized. E(CostMTF) = 1 +∑n
i=1 pi

∑
j �=i

pj

pi+pj
+OVMTF .

In 1985, Competitive Analysis showed MTF is 2-competitive on arbitrary sources

[48]. As do the results of Rivest [40] and Bitner, this result uses the simple cost

function c = ρ(l) where the cost of a request for l is equal to the position of l within

the list L at the time of the request.

Expected Cost from Uniform Distribution to P

We start with a review of Bitner’s results [11], analyzing the overwork of MTF as an

introduction to the analysis techniques that we will extend later to other settings and

algorithms.

Theorem 2 (Theorem 2.1 from [11]) If each initial list is equally likely, the ex-

pected cost of MTF after t requests is

1 + 2
∑

1≤i<j≤n

pipj

pi + pj
+

∑
1≤i<j≤n

(pi − pj)
2

2(pi + pj)
(1− pi − pj)

t

Proof : Given 2 symbols li, lj ∈ L, i �= j with associated probabilities pi, pj in a list

of n symbols that is maintained with MTF, the probability that lj is in front of li at

access t can be computed from the following observations:

25

Probability that ρ(li) < ρ(lj) initially, assuming all distributions are equally likely:
1
2

Probability of neither li or lj in t requests: (1− pi − pj)
t

Probability of one or more li or lj in t requests: 1− (1− pi − pj)
t

Probability of lj given that a request for li or lj has occurred:
pj

pi+pj

Combining these observations in a straightforward way, we get

Prob(ρ(lj) < ρ(li)) =
pj

pi + pj
(1− (1− pi − pj)

t) +
1

2
(1− pi − pj)

t

The expected cost of serving a request for li is the expected number of symbols in

front of li, and we use this observation to show that the expected cost of Move-To-

Front is

E(CostMTF) =
n∑

i=1

piE(ρ(li))

=
n∑

i=1

pi

1 +∑

j �=i

Prob(ρ(lj) < ρ(li))

= 1 +
n∑

i=1

pi

∑
j �=i

Prob(ρ(lj) < ρ(li))

= 1 +
n∑

i=1

∑
j �=i

piProb(ρ(lj) < ρ(li))

= 1 +
n∑

i=1

∑
j �=i

(
pipj

pi + pj

(1− (1− pi − pj)
t) +

pi

2
(1− pi − pj)

t

)

= 1 +
n∑

i=1

∑
j �=i

pipj

pi + pj
+

n∑
i=1

∑
j �=i

(
pi

2
− pipj

pi + pj

)
(1− pi − pj)

t

= 1 + 2
∑

1≤i<j≤n

pipj

pi + pj

+
n∑

i=1

∑
j �=i

pi(pi + pj)− 2pipj

2(pi + pj)
(1− pi − pj)

t

= 1 + 2
∑

1≤i<j≤n

pipj

pi + pj
+

n∑
i=1

∑
j �=i

p2
i − pipj

2(pi + pj)
(1− pi − pj)

t

= 1 + 2
∑

1≤i<j≤n

pipj

pi + pj
+

∑
1≤i<j≤n

(pi − pj)
2

2(pi + pj)
(1− pi − pj)

t,

26

which is the value claimed in the theorem statement.

The steady-state cost and overwork can taken directly from the expected cost in

the last theorem (the parts that do not and do depend on t, respectively). In other

words, we write

E(CostMTF) = 1 + 2
∑

1≤i<j≤n

pipj

pi + pj
+OVMTF ,

where the overwork, OVMTF is

OVMTF =
∑

1≤i<j≤n

(pi − pj)
2

2(pi + pj)
(1− pi − pj)

t.

This is the result Bitner obtained.

Expected Cost from Distribution Q to P

In this section we generalize the results of Bitner to an arbitrary prior distribution,

rather than the uniform case that he studied. Instead of starting the list in an arbi-

trary order, let the list be conditioned by the same algorithm on a prior i.i.d. proba-

bility distribution Q. An assumption made throughout is that enough symbols have

been drawn from Q that the overwork from distributions preceding Q is negligible.

A justification for not considering these hypothetical preceding distributions further

is that they may not matter because Q can be the actual probabilities (generated

from the probabilities and switch order of several distributions) at the instant of the

switch to P , rather than the probabilities of the last distribution used to generate the

symbols.

Theorem 3 Let MTF condition list L with probability distribution Q. Then, t re-

quests after the switch to probability distribution P , the expected cost of MTF is

E(CostMTF) = 1 + 2
∑

1≤i<j≤n

pipj

pi + pj

+OVMTF

27

and the overwork is

OVMTF =
∑

1≤i<j≤n

(qjpi − qipj)(pi − pj)

(qi + qj)(pi + pj)
(1− pi − pj)

t

Proof : Combining the same observations made in the proof of the uniform to distri-

bution P cost, we obtain

E(CostMTF)

= 1 + 2
∑

1≤i<j≤n

pipj

pi + pj
+

n∑
i=1

∑
j �=i

(
qjpi

qi + qj
− pipj

pi + pj

)
(1− pi − pj)

t

= 1 + 2
∑

1≤i<j≤n

pipj

pi + pj
+

n∑
i=1

∑
j �=i

qjpi(pi + pj)− pipj(qi + qj)

(qi + qj)(pi + pj)
(1− pi − pj)

t

= 1 + 2
∑

1≤i<j≤n

pipj

pi + pj
+

n∑
i=1

∑
j �=i

qjp
2
i + qjpipj − pipjqi − pipjqj
(qi + qj)(pi + pj)

(1− pi − pj)
t

= 1 + 2
∑

1≤i<j≤n

pipj

pi + pj
+

n∑
i=1

∑
j �=i

qjp
2
i − pipjqi

(qi + qj)(pi + pj)
(1− pi − pj)

t

= 1 + 2
∑

1≤i<j≤n

pipj

pi + pj
+

∑
1≤i<j≤n

qjp
2
i − pipjqi + qip

2
j − pipjqj

(qi + qj)(pi + pj)
(1− pi − pj)

t

= 1 + 2
∑

1≤i<j≤n

pipj

pi + pj

+
∑

1≤i<j≤n

(qjpi − qipj)(pi − pj)

(qi + qj)(pi + pj)
(1− pi − pj)

t

Separate the parts dependent on t from the rest and we obtain the overwork

E(CostMTF) = 1 + 2
∑

1≤i<j≤n

pipj

pi + pj

+OVMTF

OVMTF =
∑

1≤i<j≤n

(qjpi − qipj)(pi − pj)

(qi + qj)(pi + pj)
(1− pi − pj)

t

which completes the proof.

If one sets all the q’s to 1/n, these equations reduce to Bitner’s.

28

2.5.2 Overwork of MTF is usually positive

For the overwork to be negative, the list must start “closer” to the optimum order.

The expected cost of the encoding the initial list must be less than the expected cost

of encoding the list as t goes to infinity. That this can happen is easily demonstrated

by starting a list in the optimum order for a distribution with high entropy (the

probabilities of all the symbols are nearly equal) and then performing MTF on the

sequence. The list might be in such an order if the previous distribution had the same

ordering of probabilities but with lower entropy. For example, a switch from a prob-

ability distribution on 3 symbols a, b, c at probability 0.9, 0.09, and 0.01 respectively

to 0.6, 0.24, and 0.16 respectively will produce negative overwork. The list is more

likely to be in the correct order for the second distribution after processing requests

drawn according to the first than after processing requests drawn according to the

second.

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

-50 0 50 100 150 200 250 300 350 400

co
st

time

Move-To-Front

Figure 2.2: Negative overwork with alphabet of 16 symbols. Q is a geometric distri-
bution 0.6, 0.24, 0.096, ... and P is a Zipf distribution 0.296, 0.148, 0.099, Switch
from Q to P at time 0, and back to Q at time 200.

29

We show that overwork is usually positive with a few lemmas. We show that if

overwork for a pair of symbols is negative in one direction, then it is positive in the

other. We also show that overwork for a pair can be positive in both directions.

Lemma 1 If the overwork from Q to P for a pair of symbols li and lj is negative,

then overwork from P to Q for that pair is positive.

Proof : W.l.o.g., assume that pi ≥ pj . The overwork is zero when pi = pj so we

concentrate below on pi > pj .

The overwork from Q to P for a pair of symbols li and lj is (piqj − pjqi)(pi − pj)

times the non-negative quantity
(1−pi−pj)t

(pi+pj)(qi+qj)
. Negative overwork therefore means

(piqj − pjqi)(pi − pj) < 0. Since pi > pj , this reduces to piqj − pjqi < 0. The part of

overwork from P to Q that can be negative is (qipj − qjpi)(qi − qj). We show that
if piqj − pjqi < 0, each of qipj − qjpi and qi − qj is positive, and so the product is
positive.

For both parts of this proof, we start with the fact that piqj − pjqi < 0 because

overwork for li and lj from Q to P is negative.

1. Show that qi − qj > 0.

0 > piqj − pjqi

= pjqj

(
pi

pj
− qi
qj

)

> pjqj

(
1− qi

qj

)
since pi

pj
> 1

= pj(qj − qi)

Therefore qi − qj > 0.
2. qipj −qjpi > 0 is obvious from a simple rearranging of terms, since qipj −qjpi =

−(piqj − pjqi).

Therefore (qipj − qjpi)(qi − qj) > 0.

30

Lemma 2 If pi > pj, the overwork for 2 symbols li and lj from Q to P is negative

iff qi >
pi

pj
qj.

Proof : Overwork is negative iff
(qjpi−qipj)(pi−pj)

(qi+qj)(pi+pj)
(1− pi − pj)

t < 0.

Since probabilities are non-negative and pi > pj by conditions of the lemma,

OVMTF is negative iff qjpi − qipj < 0. Therefore OVMTF < 0 iff qipj > qjpi, which is

equvalent to qi >
pi

pj
qj .

Lemma 3 If pi > pj and qi ≤ qj then the overwork for a pair of symbols li and lj

from Q to P and from P to Q is non-negative.

Proof : As in previous lemmas, overwork for li and lj from P to Q is negative only

if (qipj − qjpi)(qi − qj) < 0. Since qi ≤ qj , (qi − qj) ≤ 0. Since qi ≤ qj and pj ≤ pi,

(qipj − qjpi) ≤ 0. Therefore (qipj − qjpi)(qi − qj) ≥ 0. Furthermore, Lemma 2 directly
implies that (piqj − pjqi)(pi − pj) ≥ 0.

Theorem 4 When switching from one probability distribution Q to another P , where

P and Q are randomly chosen probability distributions and P �= Q, overwork of MTF
for any pair of symbols li and lj is non-negative with probability at least 0.75.

Proof : As before, assume w.l.o.g. that pi ≥ pj.

First, if pi = pj , the overwork is zero. If the symbols are equally likely, it does not

matter what order they are in.

This leaves the case pi > pj . If the overwork from Q to P is negative, then

qi >
pi

pj
qj , by Lemma 2. Therefore negative overwork implies qi > qj because

pi

pj
> 1.

If all pairs of distributions Q and P are equally likely, qi ≤ qj represents 0.5 of the

occurrences, in which the overwork is non-negative in both directions, by Lemma 3.

In the remaining 0.5, where qi > qj, one of the overworks from Q to P or from P

to Q must be positive, by Lemma 1. The probability is at least 0.5 that the overwork

from Q to P is positive, and at least 0.5 that the overwork from P to Q is positive.

Thus, for MTF, the overwork of adapting from a distribution Q to a new distribution

P for a pair of symbols li and lj is non-negative with probability at least 0.75.

31

2.5.3 Less overwork from smaller changes

We attempt to show that a switch to a “closer” distribution will, in general, produce

less overwork. We show this for the MTF algorithm and conjecture that a probability

distribution switch that is closer and less overwork for MTF will be similarly beneficial

for all reasonable on-line algorithms. We concern ourselves with positive overwork

only. Although overwork can be negative, it is more likely to be positive as was shown

in the previous section.

We will define a probability distribution D that lies “between” Q and P . We will

show that if MTF is adapted to Q, there will be less overwork in a switch to D than

in a switch to P .

Theorem 5 Let P,Q, and D be probability distributions and 0 ≤ x ≤ 1 such that

D = xP +(1−x)Q. Let OVMTF (Q, t) be the overwork of MTF at time t on some data

assumed to be distributed according to Q. If OVMTF (Q, t) = 0 and OVMTF (P, t) ≥ 0,
then OVMTF (P, t) ≥ OVMTF (D, t).

Proof : Compare the overwork from Q to P to the overwork from D to P for one pair

of symbols li and lj.

0 ≤ (qjpi − qipj)(pi − pj)

(qi + qj)(pi + pj)
(1− pi − pj)

t − (djpi − dipj)(pi − pj)

(di + dj)(pi + pj)
(1− pi − pj)

t

≤ (qjpi − qipj)(pi − pj)

(qi + qj)(pi + pj)
− (djpi − dipj)(pi − pj)

(di + dj)(pi + pj)

=
pi − pj

(di + dj)(qi + qj)(pi + pj)
((qjpi − qipj)(di + dj)− (djpi − dipj)(qi + qj))

=
pi − pj

(di + dj)(qi + qj)(pi + pj)
(diqjpi − djqipj − djqipi + diqjpj)

=
pi − pj

(di + dj)(qi + qj)(pi + pj)
(diqj − djqi)(pi − pj)

⇒ 0 ≤ diqj − djqi

Substitute x(P −Q) +Q for D

32

0 ≤ (x(pi − qi) + qi)qj − (x(pj − qj) + qj)qi
= x(pi − qi)qj + qiqj − x(pj − qj)qi − qjqi
= xpiqj − xqiqj + qiqj − xpjqi + xqjqi − qjqi
= xpiqj − xpjqi

= x(piqj − pjqi)

Sum up all pairs to obtain difference in total overwork

x
∑

1≤i<j≤n

(piqj − pjqi) ≥ 0

As x goes to 1, the distance from D to P goes to 0 and the difference in the

overwork between Q to P and Q to D increases. Thus, as D gets closer to P , the

overwork from Q to D increases.

2.6 Summary

This chapter defined terms used throughout this work and gave a description of the

Burrows-Wheeler Transform. We discussed ways of characterizing BWT output, then

pointed out that BWT output is like piecewise independent identically distributed

(p.i.i.d.) data. We also discussed the analysis techniques Competitive Analysis and

overwork, the cost of adapting to a change. We analysed the asymptotic cost and

overwork of the Move-To-Front algorithm on p.i.i.d. data, showing that overwork is

usually positive for any pair of symbols, and that overwork is proportional to the

“distance” between the distributions of the pieces.

33

CHAPTER 3

Preprocessing for Burrows-Wheeler Compression

3.1 Introduction

In this chapter we talk about some of the ways in which data can be modified before

applying Burrows-Wheeler Compression. We refer to these modifications as “prepro-

cessing”; another term is “filtering”, which suggests lossiness. The goal of most of the

preprocessing is to increase the amount of compression. But preprocessing can also

increase the speed (sometimes at the cost of a small loss in the compression ratio) by,

for instance, reducing the amount of data to process.

One description of the Burrows-Wheeler Transform (BWT) is that it takes a file

of n bytes and creates n permutations of the data by moving the first 1 to n bytes of

the data to the end of the remaining data, in effect rotating the data. The n strings

of n bytes each are then sorted, which groups similar contexts together, and the last

byte of each string is the output data. Since similar contexts are grouped together,

this sequence of “last characters” is highly compressible. To compress the data, the

output of the transform is run through a Move-To-Front encoder, and the output of

that is compressed with arithmetic coding [13].

The choice of Move-To-Front (MTF) coding is important. While contexts are

grouped together, there is no per-context statistical information kept, and so the

encoder must rapidly adapt from the distribution of one context to the distribution

of the next context. The MTF coder has precisely this rapidly adapting quality.

The order of sorting determines which contexts are close to each other in the

resulting output, and so the sort order (including the ordering of the source alphabet)

can be important in BWT-based compression. We are not aware of any investigation

prior to our original DCC presentation of this work, and many people seem to consider

sorting a fixed part of the algorithm. For example, in an extensive study of BWT-

based compression [21], Fenwick states that “anything other than a standard sort

upsets the detailed ordering and prevents recovery of the data” — however, this is

34

not entirely true, as any reversible transformation (such as a modified sorting order)

can be used for this first phase.

Even with the rapid adaptability of the MTF coder, placing contexts with similar

probability distributions close together reduces the cost of switching from one context

to another (as justified theoretically in Theorem 5), resulting in reduction in the fi-

nal compressed size. This dependence on input alphabet encoding is a characteristic

that is fairly unique among general-purpose compression schemes. Previous tech-

niques, including statistical techniques (such as the PPM algorithms) and dictionary

techniques (represented by LZ77, LZ78, and their descendants), are largely based on

pattern matching which is entirely independent of the encoding used for the source

alphabet.

It is easy to test a compression algorithm’s dependence on alphabet ordering —

simply run the source through a randomly chosen alphabet permutation and see how

subsequent compression is affected. Using readily available programs gzip (version

1.2.4) as a representative of LZ77-based compression and bzip (version 0.21) as a

representative of BWT-based compression, the following results were obtained in

performing this simple experiment. The input file is a 24 bit color version of the

popular image of Lena (original size 786,488 bytes).

Order

Algorithm Original Random

BWT 586,783 671,612

LZ77 730,980 731,170

Note that the random alphabet reordering has very little effect on the dictionary

technique, but makes a huge difference to the BWT-based algorithm. Clearly, using

an arbitrarily chosen order can have a significant negative impact on the size of the

compressed output. In the case of images, like in this test, the natural intensity-level

encoding is not arbitrary and is quite natural (and is taken advantage of by image

coders such as DPMC), and so it seems unlikely that a modified sorting order would

make a significant improvement. However, for text files and other files where the

input coding is initially quite arbitrary, it is reasonable to ask whether reordering

35

the sorting stage can produce better compression results. Our experiments show that

finding other orders that improve the compression by small amounts is not difficult.

3.1.1 Previous Work

The paper of Burrows and Wheeler describing the BWT [13] is only 7 years old, and

yet the technique has captured the interest of people in both the research commu-

nity [21] and the popular computer press [38]. There are at least two publicly released

programs based on this technique: bzip, an implementation by Julian Seward that in-

cludes coding improvements suggested by Fenwick [21], and szip, an implementation

by Michael Schindler that concentrates on speed improvements.

Attempted improvements on the original algorithm (BWT followed by MTF cod-

ing) have shown very limited success. The most prominent improvements come from

the extensive study done by Peter Fenwick [21] in which some improvements were

made to the final coding stage of the Burrows-Wheeler algorithm. The work presented

in this chapter also provides modest improvements in the compression performance,

but we focus on the initial sorting phase of the Burrows-Wheeler algorithm. We are

not aware of any prior published research into this particular aspect.

3.2 Improving the Sort Order

When the data rotations are ordered in the BWT, the sorting is done in standard

lexicographical order1. If the initial alphabet encoding is assigned in an arbitrary

manner (such as ASCII encoding or opcode encoding in an object file), then the

resulting sorted order is also fairly arbitrary. As demonstrated above, the ordering of

the characters can make a significant difference in the size of the BWT compressed

output. An improvement to the ordering could center on finding a better arbitrary

ordering, or perhaps by having a small library of 4 or so orderings and picking the

best one based upon some test or user choice. The speed of the algorithm would be

preserved and the ordering could be saved in a few bits.

1In this paper, “lexicographical order” always means the standard lexicographical ordering using
the original alphabet encoding.

36

Another way to improve on the order would be to spend time analyzing the data

to determine the best ordering. The order would then need to be saved with the data

which would take about 211 bytes (actually log2(256!)� bits). The 211 byte overhead
may be mitigated somewhat by using that order as an initial ordering for the MTF

coder. This idea could in fact be applied to representative data from some large class

(such as English text), and the resulting order could be one of the small number of

available fixed orderings as described previously. This provides the reordering benefit

to commonly encountered classes of data, and yet avoids the overhead of initially

selecting the order for each compressed file. Our experiments show that this is indeed

useful for classes such as English text.

These ideas are explored in detail in the next two sections.

3.2.1 Heuristic Orders

Our first attempt in reordering the input alphabet was simply hand-selecting order-

ings that seemed to make sense to us heuristically. One of the best heuristic orderings

was the one that grouped the vowels together, but kept capital and lower case letters

separate as in ASCII. Other seemingly sensible heuristic orderings, such as grouping

capitals with their lower case equivalent: “AaBbCc...”, did not perform as well. Or-

dering by frequency of occurrence, which has the advantage of no overhead since the

decoder can determine the correct ordering from the data, turned out to be one of

the worst orderings.

Much uncompressed data is English or some other human language (text data).

A heuristic order optimized for text would be useful. In fact, the alphabetical or-

der of ASCII is not the best order. Experiments show that an order which groups

similar symbols near each other gets a small but noticeable (0.25% to 0.5%) im-

provement over the ASCII ordering. Symbols that are similar are what one would

intuitively expect to be similar. The best heuristic orderings tried on text group

vowels, similar consonants, and punctuation together. One hand coded ordering,

“AEIOUBCDGFHRLSMNPQJKTWVXYZ” plus a few punctuation groupings (“?!”

and “+-,.”), does well on text, and, since it is close to the original ordering, it does

37

File Original “aeioubcdgf...”
bib 27,097 26,989
book1 230,247 229,558
book2 155,944 155,515
geo 57,358 57,369
news 118,112 117,734
obj1 10,409 10,402
obj2 76,017 76,062
paper1 16,360 16,221
paper2 24,826 24,705
pic 49,422 49,427
progc 12,379 12,331
progl 15,387 15,304
progp 10,533 10,503
trans 17,561 17,514
total 821,652 819,634
lena 586,783 589,913
lesms10 923,850 920,558

Table 3.1: Performance of hand-selected heuristic alphabet reordering.

not usually perform much worse on non-text data than the original order. Table 3.1

shows the performance of the selected ordering on files from the Calgary Compres-

sion Corpus, as well as on the 24-bit version of lena and the very large (3,334,517

byte) text file of Les Misérables (lesm10), obtained from Project Gutenberg [53].

For comparison, an order computed (with methods discussed in the next section and

summarized in Table 3.3) from text data outside the Calgary Compression Corpus

improved compression similarly for the text files of the corpus, but suffered a worse

penalty for the non-text files.

3.2.2 Computed Orders

A good way to analyze the data to determine the best ordering uses the idea that a

pair of different byte values that are likely to be followed (or preceded) by the same set

of byte values should be close to each other in an ordering of the data. This reduces

38

the “change in probability distribution” overhead (or overwork) encountered in the

encoding phase. For example, when “?” and “!” are encountered, it is often at the

end of a sentence. Sentences are very often followed by a space or a line feed/carriage

return.

To utilize the above idea, consider an ordering of contexts as a walk through the

various contexts. The overwork of going from one context to the next is related to the

dissimilarity of the context probability distributions, and we would like to minimize

this cost. For reordering the input alphabet, the problem can be viewed as an instance

of the traveling salesperson problem (TSP) in which each vertex is a single character

context, and the edge costs are computed based on some probability distribution

distance measure. We then try to minimize the cost of the TSP tour. Since this is an

NP-hard problem [22], we tried various approximation algorithms in order to select

an alphabet reordering, and we also tried various distance measures for computing

the edge costs.

For all distance measures, start by creating a histogram for each of the n possible

characters. Each histogram contains counts of the characters immediately preceding

each occurrence in the data of the character represented by that histogram. Char-

acters are “close” to each other if their histograms are “close”. In the first distance

measure, the “distance” between two histograms is captured by summing the squares

of the differences of the logarithms of each of the 256 counts. The second distance

measure uses a standard measure from probability theory and information theory,

the Kullback-Leibler distance, or relative entropy [17]. The third and fourth distance

measures are based on distance measures used in the algorithms literature when an-

alyzing the move-to-front algorithm [48] (which is the basis for the coding phase of

the BWT-based compressor): the histograms are sorted in decreasing order of fre-

quency, and then the number of “inversions” between the two lists are counted. The

third distance measure is precisely the number of inversions, and the fourth distance

measure is the logarithm of the number of inversions.

For one approximate solution to the resulting TSP, we used a simple approxima-

tion algorithm based on minimum spanning trees due to Rosenkrantz, Stearns, and

Lewis [41]. For distance measures satisfying the triangle inequality, the tour produced

39

Orig order MST tour addition farinsert multifrag loss

230,247 229,561 229,921 229,777 231,210 229,458
Orig metric 230,247 229,351 229,710 229,566 230,998 229,247

0 210 211 211 212 211
26,860 9,415 8,824 8,587 10,829 9,300
230,247 230,216 230,017 229,868 230,079 230,424

KL dist 230,247 230,007 229,801 229,652 229,867 230,212
0 209 216 216 212 212

111.71 44.73 39.42 37.59 45.91 37.62
230,247 229,712 229,455 230,446 229,496 229,780

Inv 230,247 229,500 229,244 230,230 229,281 229,566
0 212 211 216 215 214

274,756 147,632 132,702 131,756 133704 131,622
230,247 229,712 229,569 229,808 229,496 229,832

LogInv 230,247 229,500 229,358 229,597 229,281 229,620
0 212 211 211 215 212

682.1 613.5 571.7 572.2 571.8 584.8

Table 3.2: TSP reordering results using file book1. Numbers in each box, from top to
bottom, are the total compressed size, the compressed size of just the reordered data,
the size of encoding the reordering permutation, and finally the TSP tour length.

by this algorithm is guaranteed to be no worse than twice the optimal tour length,

but in our case the distances do not necessarily satisfy the triangle inequality and

so there is no guarantee on the performance of the algorithm. We also used several

of the approximation algorithms included in the TspSolve package distributed by

Chat Hurwitz [25] — specifically, we used the addition, farinsert, multifrag, and loss

techniques from this package. The results of these tests are summarized in Table 3.2.

Trials indicate that the various TSP algorithms do find orderings that are better

(in terms of TSP tour length) than the original alphabet encoding. In this particular

text file, the improvement in TSP lengths is roughly reflected in improvements to the

compressed output size. Even with the additional overhead of encoding the reordering

permutation, the total compressed size is decreased in the better orderings.

For files in the Calgary Compression Corpus, gains were observed for all of the

English text files, and substantial gains were obtained for the file geo. On the other

40

hand, very little gain was observed for the pic file, and reordering resulted in signifi-

cantly degraded performance for the obj2 file. In the case of images such as pic, the

pixel value ordering is very natural and seems to be the best possible.

For non-text files, the weight of the order found by TSP was almost always much

less than the weight of the lexicographical order, yet the sizes of the compressed data

for each ordering did not always correspond. Clearly, the correlation in such cases is

weak. Perhaps reordering contexts with more than one character would result in a

more direct correlation.

The largest improvement occurs in files that are not text or true color images

but have some non-standard organization for which lexicographical order is not very

good. Such files would include 256 color images done with a colormap. Perhaps a

measure for determining when to apply TSP would be to compare the compressed

size for lexicographical order with the compressed size for a random order. If the two

are close, then TSP will likely produce a better order.

Table 3.3 shows the results of using a computed reordering for all the files in the

Calgary Compression Corpus. Each file was run through the reordering process using

our first distance measure and the farinsert TSP approximation algorithm, and the

resulting output size (including the size required to encode the alphabet permutation)

is given in the 2nd column. We also performed a test where we took a large amount

of English text unrelated to the corpus (obtained from Project Gutenberg) and com-

puted a good general English text ordering from this data. This fixed reordering was

then used in encoding all the data files — the results benefit from the fact that you do

not have to encode the fixed permutation of the input alphabet with the compressed

data. In Table 3.3, the last column shows the best compression achieved on each file,

and this value is marked in bold in each row. The most interesting thing about the

ordering computed from the Project Gutenberg files is that it is an excellent selector

of files written in English. With one exception, all of the files from the Calgary Com-

pression Corpus that performed best under this ordering were in fact the English text

files (even though they were not used in computing the ordering). The one exception

is the LISP program, which when examined was in fact discovered to have large pieces

of English text within it in the form of both comments and function names. The large

41

TSP (farinsert, Fixed (text)
Orig order 1st metric) reorder Best

bib 27,097 27,199 26,977 26,977
book1 230,247 229,777 229,071 229,071
book2 155,944 156,077 155,613 155,613
geo 57,358 55,897 57,565 55,897
news 118,112 118,385 117,978 117,978
obj1 10,409 10,647 10,511 10,409
obj2 76,017 77,450 77,080 76,017
paper1 16,360 16,477 16,264 16,264
paper2 24,826 25,132 24,654 24,654
pic 49,422 49,682 49,518 49,422
progc 12,379 12,579 12,427 12,379
progl 15,387 15,571 15,364 15,364
progp 10,533 10,734 10,568 10,533
trans 17,561 17,887 17,663 17,561
Total size 821,652 823,494 821,253 818,139
lena 586,783 599,883 600,872 586,783
lesms10 923,850 920,541 921,392 920,541

Table 3.3: Computed alphabet reordering for all files in the Calgary Compression
Corpus

Les Misérables text file also was not best with this fixed text reordering. For such

a large file, a data-dependent ordering saves enough space to more than compensate

for the overhead of including the ordering.

It is interesting to compare this table with the results for the hand-selected or-

dering of the previous section. The performance of the fixed, computed ordering is

comparable to that of the hand-selected ordering on the text files. This is encour-

aging for other arbitrarily encoded input sources, suggesting that we do not have to

examine and hand-tune orderings for each input source.

3.3 Other Preprocessing

The simplest preprocessing is run-length coding, which increases compression in 2

ways. Occasionally, runs can be more efficiently compressed before BWT rather than

42

after. But mostly, compressing runs before performing a block sort allows more data

to fit inside a fixed-size block. Run-length coding does not destroy the contexts,

which the BWT needs. When compressing more data than will fit in a single block,

Burrows-Wheeler compression is almost always more efficient as block size increases.

bzip2 uses this method of preprocessing.

A possible way to gain the advantages of increased block sizes without the simple

expedient of using more memory for larger blocks, is coding the data with some kind

of static Huffman coding. The use of static Huffman leaves the contexts sortable.

More sophisticated are the data dependent techniques. These techniques can help

any general purpose compression method. Tailoring them specifically for Burrows-

Wheeler compression yields even more gain. On English and other natural languages,

significant increases in amount of compression comes through such ideas as tagging

words and phrases with parts of speech identifiers, thus allowing the BWT to sort

noun from verb rather than just letter from letter [28]. There are many image specific

techniques, including such simple ideas as rotating the image 90 degrees, or taking

the difference of each pixel with a neighboring pixel, or transforming from red, green,

blue (RGB) colors to luminance, hue, and saturation values. More complex are the

discrete cosine transform (DCT), used in JPEG [26], and wavelets [23].

3.4 Summary

Some of the preprocessing ideas require minor changes to the parameters of the

Burrows-Wheeler Transform, such as bit-based BWT rather than byte based for com-

pressing data that has been preprocessed with standard static Huffman coding. Alter-

natively, Huffman coding could be performed with bytes rather than bits. Variations

on the BWT are covered in the next chapter.

Preprocessing is not independent of the data compression technique it aids, as is

seen in the alphabet reordering. Dictionary methods are not significantly affected

by the order of the alphabet, while Burrows-Wheeler can be. Other preprocessing

methods work with more than Burrows-Wheeler based algorithms, but can be tailored

to better fit the particular compression algorithm used.

43

preprocessing preprocessing
yes no yes no

bib 26726 26870 barb 194759 194759
book1 205537 215353 bird 30963 30963
book2 143199 148049 boat 165914 165915
geo 52333 57740 bridge 51773 51777
news 111512 113016 camera 39460 39460
obj1 10668 10671 circles 1058 777
obj2 75632 75632 clegg 489938 889977
paper1 15636 15993 crosses 1052 997
paper2 23196 24077 france 15972 13178
pic 30158 46008 frog 131575 121163
progc 12075 12244 frymire 195602 190851
progl 14861 15160 goldhil1 47580 47580
progp 10720 10525 goldhil2 173923 173923

horiz 212 226
bible.txt 729468 737387 lena1 46772 46772
cp.html 7723 7723 lena2 166149 166149
e.coli 1144042 1144042 lena3 513065 575445
kennedy.xls 25347 111812 library 88480 85394
sum 12690 12689 mandrill 209397 209397
world192.txt 417476 414948 monarch 642463 665097
xargs.1 1769 1787 montage 27681 27681

mountain 184090 184084
h.influenza 444863 444863 peppers2 165852 165852
lena.bmp 526207 580755 peppers3 436420 565707
lesms10 748266 783536 sail 733767 733767

serrano 81686 81686
slope 13098 13098
squares 211 196
text 1544 1465
trans 17811 17261
tulips 727457 806005
washsat 71552 71552
zelda 159123 159123

Table 3.4: Value of Preprocessing: DC 1.24 on files from various corpi

44

Since real data seldom fits the simpler model of stationary and ergotic, transform-

ing the data before applying a universal compression algorithm can give dramatic

improvements in the amount of compression obtained. Temptations to dismiss pre-

processing techniques as “cheating”, or unworthy of mention because most are not

general to all data, should be curbed. Otherwise, one may as well ignore all the

methods designed specifically for image or sound data, such as PNG. The more one

knows about the data to be compressed, the more one can compress it.

45

CHAPTER 4

The Burrows-Wheeler Transform and Variations

4.1 Introduction

The Burrows-Wheeler Transform (BWT) is described in chapter 2 and again briefly

at the start of chapter 3. In this chapter, we explore the BWT in more detail. We

explain why BWT is fast and why it achieves high compression. We examine some

not so trivial modifications to the BWT.

The key to the Burrows-Wheeler Transform is sorting, a well understood and

thoroughly researched area of Computer Science. Sorting groups substrings with

similar contexts close to each other, resulting in long runs of similar symbols in the

output column. This output is easy to compress. A nice feature is the ability to

handle contexts of unlimited length. Some versions of PPM cannot handle unlimited

length contexts.

The speed of the transform is the speed with which the data can be sorted. It is

well known that Ω(m logm) is the lower bound time complexity for comparison based

sorting of m items, where each comparison can be performed in O(1) time. But in a

variety of special cases, sorting can be performed in O(m) time. The sorting required

in the Burrows-Wheeler Transform on a block of size m is, in theory, such a special

case because the strings to be sorted are all suffixes of the input data.

Practical algorithms for performing the sort have a running time greater than

O(m). Running times and memory requirements differ, and can depend on the data.

Among the algorithms used to sort the suffixes are the original one presented in BW94,

the suffix array method of Sadakane [42], and the Forward Radix Sort of Andersson

and Nilsson [3]. The Bentley-Sedgewick algorithm [10], used in the original Burrows-

Wheeler paper, completely sorts all suffixes of a particular context, that is, all suffixes

beginning with the same small set of symbols, before moving on to other suffixes.

Sorting of further contexts is accelerated by referring back to already sorted contexts

where possible. The suffix array algorithm of Sadakane sorts all suffixes out to k

46

characters. The speed of the method comes from the fact that k can be doubled in

each pass. Analysis of those two methods [45] and others [42, 30, 3] show that the

time complexity of the various methods depends upon the data being sorted. Let A

be the average match length, which is the average number of symbols that must be

compared to find a difference between two adjacent sorted suffixes. Then the original

sort method has time complexity of O(Am logm). Sadakane’s suffix array method has

time complexity of O(m logm) but with a higher constant than Bentley-Sedgewick.

The Forward Radix Sort is O(m logA), which is the fastest, but takes more memory.

To get the best of the original and Sadakane’s methods, later versions of Seward’s

bzip2 program, an implementation of Burrows-Wheeler compression, start with the

Bentley-Sedgewick algorithm, then start over with Sadakane’s if running estimates of

A are too large.

The inverse BWT is easily done in linear time. Decompression is faster than

compression. For many applications, decompression speed is more important than

compression speed. For instance, decompression is performed each time compressed

software is installed, and compression is done only once when the software is created.

Data intended for broadcast, if compressed, will be compressed once and decom-

pressed many times. Another instance is in compressed hard drives (Stacker, and

MS-DOS dblspace and drvspace are some examples, also, so called executable com-

pressors such as pklite and, on the Unix side, gzexe); hard drive accesses are more

often reads than writes. On the other hand, data backup systems, video security

systems, and other systems in which information that may not be needed is tem-

porarily stored, and space probes, where resources available for compression of Earth

bound data are extremely limited, are applications where speed and simplicity of

compression are more important than decompression.

Memory requirements are linear in m which is a significant amount of memory on

machines of the 1990’s. The dictionary based algorithms can be implemented with a

fairly small amount of memory for the dictionary. In environments where memory is

very limited, Burrows-Wheeler compression may not be suitable.

The BWT is not well suited for on-line applications. Before the transform or

inverse may be performed, all the data in a given block must be available. The block

47

size can be reduced, of course, but this costs in compression efficiency.

Schindler created a limited context version of the Burrows-Wheeler Transform

[43]. Each suffix is sorted out to some user specified (or hardcoded) k places. Ties

are resolved with the unique position (t) of each suffix in the original string. As

might be expected, in most cases compression improves as k increases. For most data

therefore, the limited context transform does not compress as well. One exception

is the concatenated files of the Calgary Corpus, where the position in the original

string is significant because the data changes considerably from individual file to file.

Limited context sorting is faster (replace the A value of the BWT algorithm times

with min(A, k)), so the transform is faster, however, the inverse transform is slower.

Another variation, introduced here but not explored in detail, is “interleaved”

context-position sort. Since data is usually not stationary, its approximate position

within a file can be a better predictor than the kth symbol of its context. A sort can

be done using the first x symbols of context followed by the most significant part of

the position, then followed by more context and the next most significant part of the

position, etc. Thus, limited context sort is just one way in which context and position

can be mixed.

In the Roman alphabet based ASCII world, people are so accustomed to 8 bit codes

that the existence of others is easily overlooked. The Burrows-Wheeler Transform can

be adapted to any desired alphabet size, including 16 bit codes (Unicode) used for

international alphabets. Alphabets of variable length symbols are also possible and

some experiments have been performed with word based BWT on natural languages.

Because the BWT sorts infinitely long contexts, it performs reasonably well on 2

symbol alphabets. A bit-based BWT can be performed on data encoded with a static

Huffman code for reasonable results.

4.2 Gray Code Sort

Sorting is typically done in lexicographic order using a standard character encoding

such as ASCII. For example, the phrases “ayz, aza, azz, baa, baz, bba, bbz, bza,

bzz, caa, caz” are sorted in order. But typical sorting is not always the best way to

48

organize the data for BWT, as has already been demonstrated. If the sorting method

is changed to put similar strings closer to each other, an improvement of around 0.5%

can be achieved, including an additional 0.5% when combined with one of the better

orders discussed in the previous chapter. The binary reflected Gray code minimizes

changes in bits between adjacent binary codes. The sorting of strings can be done in

an analogous fashion.

Sorting is changed by inverting the sort order for alternating character positions.

Let the jth column of the data in the n × n BWT matrix be the jth character of
all the strings created by rotating the data. The first column is sorted as before.

But all following columns will be sorted in forward and backward orders according to

data from previous columns. Specifically, whenever a character in a column changes

between string i and string i + 1, the sort order of all following columns is inverted.

Only the leftmost change (the lowest column) is considered if more than one column

changes. Sorting in this fashion will produce an ordered list reflected in a way anal-

ogous to the binary reflected Gray codes. Below is an example, using lexicographical

order on the phrases given earlier.

Inversion Point

For Columns

Normal Reflected 2 3

ayz ayz
√

aza azz

azz aza
√ √

baa bza

baz bzz
√

bba bbz

bbz bba
√

bza baa

bzz baz
√ √

caa caz

caz caa

49

File Number of columns sorted in reflected order
0 1 2 4 8 max

bib 27,097 27,053 27,032 27,030 27,031 27,051
book1 230,247 230,158 230,130 230,134 230,069 230,074
book2 155,944 155,885 155,809 155,708 155,663 155,666
geo 57,358 56,924 56,850 56,850 56,855 56,859
news 118,112 117,996 117,944 117,899 117,932 117,897
obj1 10,409 10,388 10,384 10,382 10,381 10,381
obj2 76,017 75,978 75,922 75,851 75,817 75,829
paper1 16,360 16,347 16,350 16,347 16,334 16,341
paper2 24,826 24,808 24,819 24,810 24,818 24,828
pic 49,422 49,415 49,405 49,420 49,407 49,406
progc 12,379 12,364 12,357 12,348 12,341 12,340
progl 15,387 15,378 15,357 15,366 15,380 15,355
progp 10,533 10,529 10,536 10,523 10,529 10,527
trans 17,561 17,519 17,525 17,518 17,484 17,488
total 821,652 820,742 820,420 820,186 820,041 820,042
lena 586,783 584,060 582,742 582,657 582,664 582,664
lesms10 923,850 923,608 923,472 923,282 922,975 923,000

Table 4.1: The result of ordering data based on the reflected ordering described in
Section 4.2.

Notice how the 2nd and 3rd character positions are more homogeneous in the

reflected ordering. This greater homogeneity also exists in the last column of the

BWT, which is the column used as input to the MTF coder. Unlike the simple

alphabet reordering, reflection improved the compression of the BWT algorithm on

every file tested.

One does not need to extend the reflection of sorting to all n columns to gain

improvement in the compression size. As one might expect, experiments show that

the greatest improvement occurred when reflection was done on the 2nd column.

Reflecting the 2nd and 3rd columns further improved compression and reflecting the

2nd through jth columns where j ranged from 4 up to several hundred usually reaped

further improvements, decreasing as j increased until very little change occurred for

j > 8. This is summarized in Table 4.1.

50

file aeiou TSP (MST, TSP (farinsert, Fixed (text)
bcdgf 1st metric) 1st metric) reorder

bib 26,960 27,406 27,160 26,935
book1 229,391 229,452 229,623 228,938
book2 155,207 155,809 155,957 155,399
geo 56,887 56,081 55,297 57,041
news 117,557 118,109 118,331 117,913
obj1 10,383 10,801 10,639 10,483
obj2 75,818 77,693 77,181 76,922
paper1 16,237 16,503 16,466 16,257
paper2 24,728 25,167 25,166 24,622
pic 49,390 49,011 49,594 49,531
progc 12,300 12,653 12,582 12,419
progl 15,283 15,684 15,555 15,304
progp 10,489 10,805 10,758 10,566
trans 17,463 17,793 17,837 17,631
total 818,093 822,967 822,146 819,961
lena 585,754 598,230 595,720 597,031
lesms10 920,352 919,424 920,067 921,149

Table 4.2: Combining reflected-order sorting with alphabet reordering.

The reflected ordering can of course be combined with the alphabet reordering

as described in the preceding chapter. Table 4.2 shows the results of combining

reflection (using maximum number of columns) with some of the sort orders from

previous chapter.

4.3 Best overall results

Table 4.3 takes the best compression results from previous tables and shows the

methods used on each file to achieve the result. Since much of the corpus is text,

the hand coded order “aeiou” is best for most of the files. The TSP schemes did

better than ASCII order on text files, but usually not as well as “aeiou”. On geo,

the one non-text file for which lexicographical order was bad, all the TSP schemes

found much better orders. For all files (except paper1 when reordered with “aeiou”),

51

File Original BZIP Our Best Size method
bib 27,097 26,935 Fixed text + reflect
book1 230,247 228,938 Fixed text + reflect
book2 155,944 155,207 aeiou + reflect
geo 57,358 55,297 TSP(farinsert) + reflect
news 118,112 117,557 aeiou + reflect
obj1 10,409 10,381 reflect
obj2 76,017 75,818 aeiou + reflect
paper1 16,360 16,221 aeiou
paper2 24,826 24,622 Fixed text + reflect
pic 49,422 49,011 TSP(MST) + reflect
progc 12,379 12,300 aeiou + reflect
progl 15,387 15,283 aeiou + reflect
progp 10,533 10,489 aeiou + reflect
trans 17,561 17,463 aeiou + reflect
total 821,652 815,522
lena 586,783 582,664 reflect
lesms10 923,850 919,424 TSP(MST) + reflect

Table 4.3: Overall best results

reflected-order sorting improved compression.

The savings due to the combination of the two techniques of this and the previous

chapter (alphabet reordering and reflected order sorting) is actually greater than

the sum of the savings due to the individual techniques. Considering the individual

pieces of the compression algorithm, we estimate that the alphabet reordering is

responsible for approximately 67% of the savings, the reflected sorting is responsible

for approximately 26% of the savings, and the remaining 7% of savings comes from

the combination of the two techniques.

Gains on image data can be as much as 1.5%. Tests of bzip2 and bzip2r, a

version modified for Gray code sort, on the Waterloo corpus yielded the usual 0.25%

gain on most files but with up to 1.5% on several and in one case a loss of 12%.

52

bzip2 bzip2r
barb 262274 200723 200268
bird 65666 33646 33544
boat 262274 174829 174509
bridge 65666 54193 54196
camera 65666 42051 41991
circles 65666 1008 997
clegg 2149096 910813 911696
crosses 65666 1137 1121
france 333442 16334 16382
frog 309388 133849 133776
frymire 3706306 205429 207574
goldhill1 65666 50185 50132
goldhill2 262274 183516 183294
horiz 65666 179 195
lena1 65666 48668 48593
lena2 262274 173865 173323
lena3 786568 584357 575918
library 163458 91482 91360
mandrill 262274 216484 216246
monarch 1179784 686317 676798
montage 65666 28826 28719
mountain 307330 197096 197095
peppers2 262274 174664 174343
peppers3 786568 567303 557424
sail 1179784 762464 750626
serrano 1498414 87066 98098
slope 65666 13527 13407
squares 65666 171 185
text 65666 1671 1659
tulips 1179784 837698 826471
washsat 262274 82762 82607
zelda 262274 168020 167733
total 16466106 6730333 6690280

Table 4.4: Standard BWT and Gray code sort BWT on image data from the Waterloo
Corpus

53

4.4 Adding Gray Code Sort to BWT Algorithms

The “relative” Gray code sort described in the preceding section likely cannot be

computed in O(m) time. The sort direction of a column k + 1 cannot be determined

until column k is completely sorted. The same problem also slows the computation of

the inverse BWT. A much more feasible Gray code sort is the “absolute” one where

the symbols in the alphabet are assigned alternating sort directions. With one bit

per symbol, the sort order of a suffix di...dm$ can be determined with exclusive-ors:

XORk
j=iGrayOrder(dj) where GrayOrder(dj) returns 0 if strings following dj are

sorted in standard forward order or 1 if the strings are sorted in reverse order. This is

the kind of Gray-code sorting done by Richards [39]. Both Gray code sorts improved

compression by a very small amount (0.25%) on most data, so one can expect the

gain of the relative version over the absolute to be miniscule, and certainly not worth

an increase in the time complexity of the BWT.

Modifying Burrows-Wheeler algorithms to do Gray code sorting (absolute, not

relative) instead of standard sorting is easy. For the algorithms that use a doubling

technique (sort all strings by first 1, 2, 4, 8, 16, ..., m characters after each pass over

the data) such as Sadakane’s algorithm and the Forward Radix Sort, one more bit

of memory per string is needed to store the sorting direction of data following each

string. For the direct comparison algorithms such as the original Burrows-Wheeler

sort, no extra memory is needed. The direction bits can be computed from the single

character being compared. In both cases, for each comparison of strings made, an

additional XOR on the direction bits is needed, which does not increase the time

complexity of the algorithms. For sorting into buckets, the direction bits determine

whether a bucket is filled starting at the first element of the bucket as is done in a

standard sort, or filled starting at the last element.

Modifying limited context versions of the block sort algorithms to do Gray code

sort is not as straightforward. The direction bits maintained in algorithms which use

a doubling technique do not help in determining sort direction for contexts limited

to lengths that are not a power of 2. See Table 4.4 for an example on the data

“abracadabra” with a context limit of 7 characters. There is no way to determine

54

abracadabra
1 01100010110
2 10100111010
4 00111010000
8 10011010011
7 11111100010

Table 4.5: Direction bits for each 1, 2, 4, 8, and 7 character wrap-around substrings
of “abracadabra”

the length 7 direction bits from only the length 4 direction bits. In a standard sort,

determining the order of the substrings out to 7 characters from the order out to

length 4 is done simply by overlapping, (ex. “abra” with “acad” to sort “abracad”)

which does not work for the direction bits.

More elaborate sorting schemes may be devised. Rather than order only single

symbols, which can be done in a preprocessing step, an order for all pairs (or longer

strings) can be defined. For example, in English, ‘c’ might be more like an ‘s’ when

preceded by certain letters and more like a ‘k’ otherwise. Ordering ‘c’ next to ‘s’ when

preceded by ‘n’ and next to ‘k’ when preceded by ‘o’ could improve compression. As

noted previously on the reflected sort, the greatest gains came from reflecting the first

columns. So such additional ordering would likely not improve compression much.

4.5 Summary

Sorting is a central part of compression based on the Burrows-Wheeler transform,

and yet standard lexicographic sorting is only one of many possible ways to sort.

In the previous chapter we considered alternative alphabet orderings based on both

hand-selected (heuristic) and structured techniques (such as using a reduction to the

traveling salesperson problem to compute an alphabet reordering). In this chapter,

we considered reorderings based on larger sequences of characters and modifications of

BWT algorithms needed to perform Gray code sorting. Improvements in compressed

size were obtained by both alphabet reordering and selective reversal of ordering

within columns of the sorted matrix.

55

Both techniques add to the compression time, but alphabet reordering adds almost

nothing to the decompression time (and reordering with a fixed permutation adds

almost nothing to the compression time). The reflected sorting provided additional

improvements, and was only slightly slower in both compression and decompression.

56

CHAPTER 5

Analysis of Dynamic Update Algorithms

5.1 Introduction

There are several ways of analyzing dynamic update algorithms such as Move-To-

Front. Early efforts focused on their performance as a strategy for dynamically up-

dating a list data structure. In the List Update (also called Dictionary) problem,

there is a list L of items and a series S of requests for those items. For any of a vari-

ety of reasons, the list is accessed sequentially when searching for a requested symbol.

Obviously, searching time can be reduced by putting the most commonly requested

symbols at the front of the list. Dynamic update algorithms reorder the list between

requests to try to reduce the search time. The effectiveness of the various algorithms

is really the second aspect to consider. First is the exact problem the algorithms are

addressing.

Some ways in which dynamic update algorithms have been analyzed:

• S is independent identically distributed (i.i.d.)

• S is arbitrary

– S must be served on-line

– update algorithm must be memoryless

in combination with

• cost of request is rank of requested symbol in L

• cost of request is cost of describing the rank in L

Any convex cost function will serve; an algorithm that orders the list well for the

simple “cost is equal to the rank” function does so for any convex function such as

log [48]. Jensen’s inequality, states that f(E(cost)) ≤ E(f(cost)) for any convex

57

function f . Most of the attention has been focused on the easy c = ρ(st) function as

some upper bound results can be extended to any convex cost function.

The cost function of interest is the cost function of an entropy coder. probability

rank codes are a favorite in proofs, providing a simple c(l) = 2 log ρ(l) function that

is close to the lower bound cost given by the Kraft inequality,
∑

l∈L |C|−c(l) ≤ 1 where
C is the coding alphabet for L. One can achieve good results with cost functions

that are less than perfect. Throughout this chapter, we prove results using c = ρ(st).

We note here that one can use Jensen’s inequality to extend some of the results to

the cost of probability rank codes which are close to the actual costs of the entropy

coder.

If S is i.i.d., then optimal performance can be approached. Frequency Count

(with unlimited counters) will order the list optimally in the limit. Transpose has

been conjectured to be the lowest cost memoryless algorithm. (It is interesting to note

the severe emphasis papers of this era put on memory or “core” as it was commonly

called– 256 bytes was considered a lot of core!) Move-To-Front performs relatively

poorly at 1.386 times optimal on Zipf distributed data for large alphabets [40].

Experiments show the increase in entropy on data transformed by Move-To-Front is

highest on data with entropy half of the maximum possible entropy. At maximum

entropy, in which the distribution is uniform, all reasonable algorithms are optimal

because the list order does not matter. Intuitively, MTF’s performance should be

worst at the balance point between where the order matters but is hard to determine

because the entropy is high.

For data that is not i.i.d., we analyse the performance with different methods,

since optimal performance is no longer easy. In Competitive Analysis, we pit an

“adversary” against an algorithm. The adversary generates worst-case data so as to

maximize the ratio of that algorithm’s cost to the optimum cost. One of the inter-

esting features of Competitive Analysis is that, unlike earlier methods, it shows that

randomization can help. Randomized algorithms have better performance against

some kinds of adversaries. The randomization prevents the adversary from comput-

ing the algorithm’s state and therefore which request will maximize the cost ratio.

However, randomization is not useful for the problems studied in this dissertation.

58

If S is arbitrary rather than i.i.d., and c = ρ(st), then Move-To-Front is never

worse than 2 times the cost of S to an optimum algorithm [40]. This result was later

improved to 2 − 2
|L|−1

and shown, through Competitive Analysis, to be optimal for

deterministic on-line algorithms [27]. The same worst-case type of analysis showed

that Frequency Count and Transpose, the “best” algorithms for i.i.d., can be arbi-

trarily bad on worst-case data. No non-exponential optimal off-line algorithm for the

List Update problem is known, which limits the experimental comparisons that can

be easily made.

When we switch from the data structures problem to the problem of encoding i.i.d.

data, the cost function changes. The cost is now the cost of describing the location

of the requested item in the list, which is O(logn). Huffman coding is optimal per

request, and arithmetic coding is optimal over the entire request sequence. Move-To-

Front, with probability rank codes for describing the position within L, achieves cost

of Θ(H logH) where H is the entropy of the sequence [9].

The output of the Burrows-Wheeler Transform can be described as piecewise i.i.d.

although it is not actually p.i.i.d. To demonstrate this, consider binary data in which

‘0’ is more common than ‘1’. Long strings of ‘0’s occur first in the sort and may

be preceded by a ‘0’ or a ‘1’. But the longest strings of ‘0’s will be first in the sort

order and are always preceded by a ‘1’. The sorting process does not collect the

similar contexts together in a random fashion. Thus, unless the input data is all one

character, the first symbol of BWT output cannot be the first symbol of the alphabet

and the last symbol of output cannot be the last symbol of the alphabet. The set of

output strings that BWT can produce is only a subset of the set of strings a p.i.i.d.

source with analogous probabilities can produce. Another way to see this is to note

that the BWT produces the same output string for each of m rotations of some input

block of length m. Only the logm size pointer will differ. Also, not all rotations of

valid BWT output are also valid BWT output.

Even so, algorithms suitable for p.i.i.d. data (good for encoding i.i.d. data and

good at adapting to new data– a new piece of i.i.d. data) perform well on BWT

output. The strategy of maintaining a list of symbols in the order of probability

and then rapidly reordering the list as the probabilities seem to change, followed

59

by entropy coding, produces among the best experimental results on BWT output.

When adapting a list to a new distribution, there is naturally some overhead. This

“overwork” becomes insignificant as the size of the i.i.d. piece goes to infinity, and so

was at first ignored. But in p.i.i.d. data, overwork is important and rapid adaptation

can reduce that cost. The tradeoff to continuous rapid adaptation is the higher cost

incurred when no change is occurring, as happens when in the middle of coding a

large i.i.d. piece.

Before the advent of Competitive Analysis, Bitner analyzed the overwork of Move-

To-Front, Transpose, and other algorithms when starting with an arbitrary list on

i.i.d. data [11]. He showed that although Transpose and Frequency Count are low

cost in the limit, they can converge very slowly. Move-To-Front converges much more

rapidly. In short, Move-To-Front has less overwork.

In the following sections, we extend this idea to analyze the overwork incurred

when switching distributions, rather than just the overwork from starting the list

in some arbitrary order. Much work on the steady state costs of MTF [40] and

Timestamp [2] has been done, but we are not aware of any previous analysis of

overwork for these algorithms. We show that M1FF has superior performance to

MTF in steady state cost and similar total cost (asymptotic cost plus overwork).

We introduce the Best x of 2x− 1 family of algorithms, of which MTF, Timestamp,
and Frequency Count are members, and show that the steady state cost is inversely

proportional to x and the overwork is proportional.

Much of this analysis uses “list factoring”, meaning we can concentrate on one

pair of symbols at a time, independently of all other pairs. Most of the following

algorithms order a pair ‘a’ and ‘b’ in the list relative to one another according to a

limited number of recent occurrences of those symbols in the request sequence. In

determining whether ‘a’ should be somewhere in front of ‘b’ or not, occurrences of

other symbols can be ignored. Two algorithms that do not determine list order as

described above are Transpose and Move One From Front (discussed later). As far

as we know, no one has found a way to analyze asymptotic cost and overwork of

Transpose and Move One From Front using list factoring or any other method.

60

5.2 Overwork and Steady State Cost

5.2.1 Timestamp Analysis

Following is an analysis of part of the Timestamp algorithm. In Albers’ paper [1],

Timestamp is a randomised algorithm which updates its list according to the MTF

strategy with probability p or with the following strategy with probability 1−p: move
the requested item a in front of the frontmost item that was requested at most once

since the previous request for a. The strategy chosen with probability 1− p, the only
part of Timestamp we are interested in, is actually Best 2 of 3, which is discussed

later. To avoid confusion, we will use “Best 2 of 3” and not “Timestamp” when we

mean the part of Timestamp selected with probability 1− p.

Theorem 6 The expected cost of Best 2 of 3 t requests after a switch from probability

distribution Q to P is

E(CostB2) = 1 +
∑

1≤i<j≤n

pipj(p
2
i + 6pipj + p

2
j)

(pi + pj)3
+OVB2

and the overwork is

OVB2 =
n∑

i=1

∑
j �=i

pi

[(
q3j + 3qiq

2
j

(qi + qj)3
− p3

j + 3pip
2
j

(pi + pj)3

)
(1− pi − pj)

t +

(
(pi + pj)q

2
j + 2pjqiqj

(qi + qj)2
− p3

j + 3pip
2
j

(pi + pj)2

)
t(1− pi − pj)

t−1 +

(
2qjpipj

qi + qj
− 2pip

2
j

pi + pj

)(
t

2

)
(1− pi − pj)

t−2

]

Proof : We begin with observations similar to those made for MTF in chapter 2.

Probability of neither li or lj in t requests: (1− pi − pj)
t

Probability of exactly one li or lj in t requests: t(pi + pj)(1− pi − pj)
t−1

Probability of exactly u li or lj in t requests:
(

t
u

)
(pi + pj)

u(1− pi − pj)
t−u

Given 3 occurrences of li or lj , ρ(lj) < ρ(li) if the following sequences occurred,

ignoring requests for other items: ljljlj, liljlj , ljlilj , and ljljli. The description of Best

61

2 of 3 is “put a in front of b if at least 2 of the last 3 occurrences for either were for

a”, which is exactly what determines which of li and lj is in front of the other. The

probability of lj being in front of li is

Prob(ρ(lj) < ρ(li))

=
q3j + 3qiq

2
j

(qi + qj)3
(1− pi − pj)

t +

(pi + pj)q
2
j + 2pjqiqj

(pi + pj)(qi + qj)2
t(pi + pj)(1− pi − pj)

t−1 +

(qi + qj)p
2
j + 2qjpipj

(qi + qj)(pi + pj)2

(
t

2

)
(pi + pj)

2(1− pi − pj)
t−2 +

p3
j + 3pip

2
j

(pi + pj)3

(
1−

2∑
u=0

(
t

u

)
(pi + pj)

u(1− pi − pj)
t−u

)

=
p3

j + 3pip
2
j

(pi + pj)3
+

(
q3j + 3qiq

2
j

(qi + qj)3
− p3

j + 3pip
2
j

(pi + pj)3

)
(1− pi − pj)

t +

(
(pi + pj)q

2
j + 2pjqiqj

(pi + pj)(qi + qj)2
− p3

j + 3pip
2
j

(pi + pj)3

)
t(pi + pj)(1− pi − pj)

t−1 +

(
(qi + qj)p

2
j + 2qjpipj

(qi + qj)(pi + pj)2
− p3

j + 3pip
2
j

(pi + pj)3

)(
t

2

)
(pi + pj)

2(1− pi − pj)
t−2

=
p3

j + 3pip
2
j

(pi + pj)3
+

(
q3j + 3qiq

2
j

(qi + qj)3
− p3

j + 3pip
2
j

(pi + pj)3

)
(1− pi − pj)

t +

(
(pi + pj)q

2
j + 2pjqiqj

(qi + qj)2
− p3

j + 3pip
2
j

(pi + pj)2

)
t(1− pi − pj)

t−1 +

(
(qi + qj)p

2
j + 2qjpipj

qi + qj
− p3

j + 3pip
2
j

pi + pj

)(
t

2

)
(1− pi − pj)

t−2

=
p3

j + 3pip
2
j

(pi + pj)3
+

(
q3j + 3qiq

2
j

(qi + qj)3
− p3

j + 3pip
2
j

(pi + pj)3

)
(1− pi − pj)

t +

(
(pi + pj)q

2
j + 2pjqiqj

(qi + qj)2
− p3

j + 3pip
2
j

(pi + pj)2

)
t(1− pi − pj)

t−1 +

(
2qjpipj

qi + qj
− 2pip

2
j

pi + pj

)(
t

2

)
(1− pi − pj)

t−2

62

a a a b b b b c c b b a a c c

b 1 a 2 a 2 b 3 b 1 c 2 b 3 a

c b a a b b c b

a c b a a a b c

b b c c a a a b

c c c c c c c a

Table 5.1: Best 2 of 3 algorithm on request sequence “abbcbac”

The above expression can be explained thus: The probability that ρ(lj) < ρ(li) is

the probability that lj is in front of li in the steady state, achieved for 3 or more occur-

rences of the 2 symbols, plus the overwork incurred for 0 occurrences plus overwork

for 1 occurrence plus overwork for 2 occurrences.

E(CostB2) = 1 +
n∑

i=1

∑
j �=i

piProb(ρ(lj) < ρ(li))

= 1 +
n∑

i=1

∑
j �=i

pi

p3
j + 3pip

2
j

(pi + pj)3
+OVB2

= 1 +
∑

1≤i<j≤n

pip
3
j + 3p

2
i p

2
j + 3p

2
i p

2
j + p

3
i pj

(pi + pj)3
+OVB2

= 1 +
∑

1≤i<j≤n

pipj(p
2
i + 6pipj + p

2
j)

(pi + pj)3
+OVB2

Best 2 of 3 Algorithm

A simple algorithm to perform Best 2 of 3 is to use a double length list. That is, if

the alphabet has 256 symbols, the list for Best 2 of 3 will contain 512. Each symbol

occurs in the list twice. When a request is made, the position of an item is 1 plus the

number of symbols for which both occurrences are in front of the second occurrence

of the requested symbol. Then the list is updated by moving that second occurrence

63

to the front. Table 5.1 demonstrates this algorithm on a sample sequence. See the

section on Best x of 2x− 1 for another better algorithm.

5.2.2 Move One From Front Analysis

An improvement over MTF suggested by Balkenhol and co-authors [6, 7, 8] and by

Schindler shall be referred to here as Move One From Front (M1FF).

Experimentally, M1FF performs better than MTF in BW compression.

The Move One From Front (M1FF) heuristic works as follows: After accessing

an item at rank i, if i ≥ 3 move the item to rank 2 (and move all items in ranks 2

through i− 1 back one position) else move the item to rank 1.

From the standpoint of the List Update problem, M1FF is 2-competitive, which

is optimal but not strictly optimal. Strictly optimal on-line algorithms such as MTF

are 2 − 2/(|L| − 1)-competitive, which converges to 2 as |L| goes to infinity. An
algorithm’s optimality under Competitive Analysis is important for BW compression

(otherwise Transpose would be just as good an algorithm) but optimal vs. strictly

optimal may not matter too much.

For the following proof, we use a cost function from Irani [27] with corrections

to account for the necessity of paid exchanges in an optimal List Update algorithm

from Borodin and El-Yaniv’s book on Competitive Analysis [12].

Theorem 7 M1FF is 2-competitive.

Proof : To see that M1FF is 2-competitive, compare M1FF with MTF. The cost to

M1FF to access a symbol is at most 1 more than the cost to MTF. Intuitively, one

can see this by observing that M1FF behaves exactly like MTF except that a symbol

can become lodged in position 1, increasing the cost of access for all other symbols

by 1 over MTF’s cost.

We use the following cost function for MTF on a pair of symbols li and lj when a

request for li has occurred:

cMTF (i, j) =

 1 + 1/(|L| − 1) if lj in front of li

1/(|L| − 1) if li in front of lj

64

The cost to serve one request for li is
∑

j �=i c(i, j) = ρ(li).

An optimum algorithm, OPT, has the same costs, but may have ordered the list

better and so pay the lower 1/(|L|−1) more often than MTF. For every two requests
for li where MTF pays for lj being in front of li at a cost of 1 + 1/(|L| − 1), there
must be at least one request in between for lj. If OPT does not pay for lj (pays

1/(|L| − 1) each time) to serve the two requests for li, then to serve the request for
lj OPT pays 1 + 1/(|L| − 1) for li or pays 1/(|L| − 1) plus 1 per the one or more
paid exchanges of li with lj . Therefore the ratio of MTF’s cost to OPT’s is at most
2+2/(|L|−1)
1+2/(|L|−1)

= 2− 2/(|L|+ 1).
Since M1FF can have at most a cost of 1 more per request than MTF, M1FF’s

cost is at most

cM1FF (i, j) =

 1 + 2/(|L| − 1) if lj in front of li

2/(|L| − 1) if li in front of lj

Therefore the ratio of M1FF’s cost to OPT’s is at most 2+4/(|L|−1)
1+2/(|L|−1)

= 2.

For a tight bound, consider the following sequence on an alphabet of 3 symbols,

‘a’, ‘b’, and ‘c’: aacbcbcbcbcb.... M1FF will put ‘a’ in position 1. ‘b’ and ‘c’ will

continually swap in positions 2 and 3, and M1FF will spend 3 per occurrence. The

optimal algorithm will put the list in the order ‘cba’ and never change it, spending 1

for each access to ‘c’ and 2 for each access to ‘b’ for an average cost of 1.5, which is

exactly half of M1FF’s cost.

Therefore M1FF is 2-competitive.

The argument for the upper bound can be applied to M1FF2 and M1FF3, showing

that they also are at least 2-competitive.

Why M1FF does better than MTF

The most common symbol in an alphabet is special. It is the only symbol which

cannot occur with probability less than 1
|L| and the only one which can occur with

probability greater than 0.5. All other symbols may have a probability of occurrence

as low as zero. Therefore, moving the most common symbol away from the front

65

of the list should be avoided as that inversion is potentially more expensive than

any other. MTF does this every time any other symbol is encountered. M1FF may

mistakenly move the most common symbol away from the front but does so less often

and so performs better than MTF.

An improvement to M1FF

Can this desirable property of M1FF be retained while modifying it so that an ad-

versary cannot generate a sequence costing 2 times optimal on an alphabet of only 3

symbols? Yes. Let version 2 (M1FF2) be defined as follows: After accessing item at

position i, move the item to position 2 if the previously accessed item is in position

1 and i ≥ 3. Otherwise move the item to position 1.

Comparisons of the compression rates achieved with the 2 versions show that they

are very close. Both are much better than MTF. M1FF2 achieved higher compression

than M1FF as one of the pair of algorithms used in the switching scheme (discussed

later), while M1FF was the superior of the 2 when used alone.

But neither M1FF nor M1FF2 are easy to analyze. For M1FF, a symbol can

becomed lodged in the first position. For M1FF2, consider a list of 3 items abc and

a request sequence (abc)+. If the list started in order abc, the final list order will be

bca. But if the list started in order cba then the list will end in order cab. Equations

that model this behavior are difficult to find.

M1FF3

The reasons for considering another version of M1FF are

• The expected cost can be formulated

• The overwork can be formulated

• Like other M1FF versions, it is better than MTF in practice

• It is strictly optimally competitive

66

How M1FF3 works: if the last two requests are for the same item (st−2 = st−1)

and the current request is for a different one (st �= st−1), move the requested item to

rank 2, else move it to the front. Item lj is in front of item li if lj is the most recently

requested of the two, with one exception. If the last request for lj is preceded by two

requests for li, then li will be in front of lj and vice versa.

First, we show that M1FF3 is strictly optimally competitive. We already know

M1FF3 is 2-competitive because, like M1FF, it never pays more than 1 above MTF’s

cost per request. The argument used to prove MTF 2−2/(|L|+1)-competitive works
for M1FF3.

Theorem 8 M1FF3 is 2− 2/(|L|+ 1)-competitive.

Proof : The following cost function for a pair of symbols li and lj when a request for

li has occurred holds for M1FF3 as well as MTF:

cM1FF3(i, j) =

 1 + 1/(|L| − 1) if lj in front of li

1/(|L| − 1) if li in front of lj

The cost to serve one request for li is
∑

j �=i c(i, j) = ρ(li).

Consider 2 requests for li which are adjacent in the request sequence if requests

for all other items are removed, and in which both times an optimal algorithm OPT

does not pay for lj and M1FF3 does. Then, exactly like MTF, either at least one

request for lj occurred between the two requests for li, or, specific to M1FF3, at least

2 requests for lj immediately preceded the first request for li. For the first case, refer

back to the proof of MTF’s competitive ratio. In the second case, since there are two

adjacent requests for lj, an optimum strategy is to move lj to the front before serving

either. Then, after serving the 2 requests for lj and before serving the first of the 2

requests for li, OPT must make at least 1 paid exchange to put lj behind li. In both

cases, the ratio of M1FF3’s cost to OPT’s is at most 2+2/(|L|−1)
1+2/(|L|−1)

= 2−2/(|L|+1).
And now, we present the formula for M1FF3’s cost on p.i.i.d. data.

67

Theorem 9 The expected cost of M1FF3 t requests after a switch from probability

distribution Q to P is

E(CostM1FF3) = 1 +
n∑

i=1

pi

∑
j �=i

pj + p
2
jpi − p2

i pj

pi + pj
+OVM1FF3

and the overwork is

OVM1FF3 =

(
qj + q

2
j qi − q2i qj
qi + qj

− pj

pi + pj

)
(1− pi − pj)

t

+

 0 if t = 0

(q2jpi − q2i pj)(1− pi − pj)
t−1 if t ≥ 1

+

p2
i pj−p2

jpi

pi+pj
if t ≤ 1

(qjpjpi − qipipj +
p2

i pj−p2
jpi

pi+pj
)(1− pi − pj)

t−2 if t ≥ 2

Proof : Probability lj is most recently requested, given that a request for li or lj has

occurred:
pj

pi+pj
.

Probability that an occurrence of li or lj is the end of the sequence lililj :
p2

i pj

pi+pj
.

Probability of no li or lj in t requests: (1− pi − pj)
t.

Probability of one or more li or lj in t requests: 1− (1− pi − pj)
t.

Probability that most recent li or lj is part of lililj in t ≥ 2 requests:
p2

i pj

pi+pj
(1 −

(1− pi − pj)
t−2).

Probability that lililj occurred at time 0 and no li or lj has occurred since: q
2
i pj(1−

pi − pj)
t−1.

Probability that lililj occurred at time 1 and no li or lj has occurred since:

qipipj(1− pi − pj)
t−2.

E(CostM1FF3) = 1 +
n∑

i=1

pi

∑
j �=i

pj + p
2
jpi − p2

i pj

pi + pj

+OVM1FF3

OVM1FF3 =

(
qj + q

2
j qi − q2i qj
qi + qj

− pj

pi + pj

)
(1− pi − pj)

t

68

+

 0 if t = 0

(q2jpi − q2i pj)(1− pi − pj)
t−1 if t ≥ 1

+

 0 if t ≤ 1
(qjpjpi − qipipj)(1− pi − pj)

t−2 if t ≥ 2

−

p2
jpi−p2

i pj

pi+pj
if t ≤ 2

p2
jpi−p2

i pj

pi+pj
(1− pi − pj)

t−2 if t ≥ 3

OVM1FF3 =

(
qj + q

2
j qi − q2i qj
qi + qj

− pj

pi + pj

)
(1− pi − pj)

t

+

 0 if t = 0

(q2jpi − q2i pj)(1− pi − pj)
t−1 if t ≥ 1

+

p2
i pj−p2

jpi

pi+pj
if t ≤ 1(

qjpjpi − qipipj +
p2

i pj−p2
jpi

pi+pj

)
(1− pi − pj)

t−2 if t ≥ 2

5.2.3 Best x of 2x− 1

A simple way to describe the second part of Timestamp, which is “move the requested

item a in front of the frontmost item that was requested at most once since the

previous request for a”, is to note that, for any two symbols li and lj , the one closest

to the front will be the one that was requested 2 or more times in the last 3 requests

for either. Call it “2 out of 3”. Modifying that part of Timestamp to be “3 out of

5” or “4 out of 7” makes it roughly 3 or 4 competitive respectively, but reduces the

steady state cost. This leads to a family of algorithms we call “Best x of 2x− 1”, or
just “Best x” for brevity, because the symbol that goes to the front is the one that

“wins” the most games, as is done in the playoffs of baseball and other sports. (And

sports championship series are often called “Best of 2x − 1”, but we have not used
that term in this work.) The Best x of 2x− 1 heuristic is “given 2 symbols a and b,
put a in front of b if a was requested x or more times in the last 2x− 1 requests for

69

either a or b.”

We initialized Best x of 2x − 1 by setting all the counts as if the algorithm had

been conditioned on the following request sequence: a string, repeated x times, which

contains one occurrence of every symbol in the source alphabet, in reverse order of

the order desired in the initial list of Best x of 2x− 1. Since all the counts start the
same, Best x of 2x− 1 will behave like Frequency Count with all frequencies started
at 0, adjusting quickly to the first data no matter how large x is.

A caution for those trying to invent new dynamic update algorithms (or most any

other similar endeavor) is to beware of the impossible. One algorithm that defined

how two symbols should be ordered relative to each other seemed very promising until

we realized it wasn’t possible because in some sequences, such as “aaccbabca” the

list had to be ordered so that ‘a’ is in front of ‘b’, ‘b’ in front of ‘c’, and ‘c’ in front

of ‘a’. And that algorithm? Given all occurrences of two symbols ‘a’ and ‘b’ (ignore

occurrences of other symbols), put in front whichever one most recently occurred two

times in succession. For example, put ‘b’ in front of ‘a’ if the sequence is “bb(ab)∗a”.

Best x of 2x − 1 is a valid algorithm. The relationship between two symbols is
consistent for all pairs. That is, if a precedes b and b precedes c, then a precedes c.

The following theorem formalizes this and provides a proof.

Theorem 10 Let L be an ordered list dynamically updated according to Best x of

2x − 1’s rule. For any a, b, c ∈ L if ρ(a) < ρ(b) and ρ(b) < ρ(c) then ρ(a) < ρ(c)

where ρ(a) is the position of a in L.

Proof : Consider the xth occurrence, counting backward from a time t, of each of a,

b, and c in a sequence of requests. If a is in front of b in Best x of 2x− 1’s list, then
the xth occurrence of a must be at a later time than the xth occurrence of b. Equally,

if b precedes c in Best x of 2x−1’s list, the xth occurrence of b is at a later time than
that of c. Therefore, the xth occurrence of a comes later than the xth occurrence of

c, and a precedes c in Best x of 2x− 1’s list.
Having established that Best x of 2x−1 works, how much does it cost? We derive

formulas for the overwork when switching from one i.i.d. distribution to another and

asymtotic cost on an i.i.d. sequence for Best x of 2x− 1.

70

Theorem 11 The expected cost of Best x of 2x − 1 t requests after a switch from
distribution Q to P is

E(CostBx) = 1 +
n∑

i=1

pi

∑
j �=i

(pi + pj)
1−2x

x−1∑
w=0

(
2x− 1
w

)
pw

i p
2x−1−w
j +OVBx

and the overwork is

OVBx =
n∑

i=1

pi

∑
j �=i

2x−2∑
v=0

(
t

v

)
(1− pi − pj)

t−v

(qi + qj)−v

min(x−1,v)∑
w1=0

min(x−1−w1,v)∑
w2=0

(
v

w1

)
pw1

i p
v−w1
j

(
v

w2

)
qw2
i q

v−w2
j

−(pi + pj)
−v

x−1∑
w=0

(
2x− 1
w

)
pw

i p
2x−1−w
j

)

where v = 2x− 1− v.

Proof : The equation is the sum of the probabilities of all the different possibilities.

In the asymptotic cost, at least 2x− 1 of each li or lj has occurred. Given the 2x− 1
occurrences (probability (pi+ pj)

1−2x), if a majority are for lj, then lj is in front of li.

So lj is in front with 0 ≤ w ≤ x−1 occurrences of li. The probability of an individual
sequence that puts lj in front of li is p

w
i p

2x−1−w
j . The number of such sequences is(

2x−1
w

)
. Combining all the probabilities yields the asymptotic cost of Best x of 2x−1.

Overwork is present as long as distribution Q affects the algorithm’s list order.

For each pair of symbols li, lj , overwork is present if at least 1 li or lj was drawn with

probability qi or qj, leaving up to 2x − 2 symbols drawn from P . 0 ≤ v < 2x − 2
symbols are drawn according to P . Then 2x−2−v ≥ 1 symbols are drawn according
to Q and so contribute to the overwork. w and w1 are the number of li’s drawn

according to P . For lj to be in front of li, 0 ≤ w ≤ x− 1 and 0 ≤ w1 < min(x− 1, v).
w2 is the number of li’s drawn according to Q. 0 ≤ w2 < min(x − 1 − w1, v). The

nested summation for the q’s enumerates every combination in which

• The total degree of qi’s, qj’s, pi’s, and pj’s is 2x−1. So w1+v−w1+w2+v−w2 =

2x− 1.

71

• The power of pj ’s plus qj ’s is x or greater, and therefore greater than the power

of pi’s plus qi’s.

• There is at least one qi or qj .

• All q’s occur before all p’s. So qqp is acceptable but pqq and qpq are not.
Best 1 of 1 is MTF and Best 2 of 3 is the second part of Timestamp, which have

already been given. Examining the pattern of the equations from those two and Best

3 of 5, given below, it is easy to derive a generalized form for Best x of 2x− 1.
The costs for Best 3 of 5 and Best 4 of 7 are

E(CostB3)

= 1 +
n∑

i=1

∑
j �=i

pi

p5
j + 5pip

4
j + 10p

2
ip

3
j

(pi + pj)5
+OVB3

= 1 +
∑

1≤i<j≤n

pipj(p
4
j + 5pip

3
j + 20p

2
i p

2
j + 5p

3
i pj + p

4
i)

(pi + pj)5
+OVB3

E(CostB4)

= 1 +
∑

1≤i<j≤n

pipj(p
6
j + 7pip

5
j + 21p

2
i p

4
j + 70p

3
i p

3
j + 21p

4
i p

2
j + 7p

5
i pj + p

6
i)

(pi + pj)7
+OVB4

and the overwork for Best 3 of 5 is

OVB3

=
n∑

i=1

pi

∑
j �=i

(
q5j + 5qiq

4
j + 10q

2
i q

3
j

(qi + qj)5
− a

(pi + pj)5

)
bt +

(
(pi + pj)q

4
j + 4(pi + pj)qiq

3
j + 6pjq

2
i q

2
j

(qi + qj)4
− a

(pi + pj)4

)
tbt−1 +

(
(pi + pj)

2q3j + 3(2pipj + p
2
j)qiq

2
j + 3p

2
jq

2
i qj

(qi + qj)3
− a

(pi + pj)3

)(
t

2

)
bt−2 +

(
(3p2

i + 3pjpi + p
2
j)pjq

2
j + 2(3pi + pj)p

2
jqjqi + p

3
jq

2
i

(qi + qj)2
− a

(pi + pj)2

)(
t

3

)
bt−3 +

(
(6p2

i + 4pipj + p
2
j)p

2
jqj + (4pi + pj)p

3
jqi

qi + qj
− a

pi + pj

)(
t

4

)
bt−4

72

where

a = p5
j + 5pip

4
j + 10p

2
ip

3
j

and

b = 1− pi − pj

.

Algorithms for Best x of 2x− 1

We extended the algorithm used for Best 2 of 3 for our experiments. Best 2 of 3 used

a double sized list. Best x of 2x−1 can be implemented with a list containing x copies
of each symbol. In practice, with x seldom larger than 6, the above algorithm’s time

dependence on x was not a problem. Below, we give a better algorithm with time

complexity independent of x.

The proof of Best x of 2x − 1’s validity was the inspiration for this algorithm.

Maintain |L| linked lists, each composed of x nodes. When a request is served for
some symbol s, attach a new node to the head of the linked list for s containing the

current time t and remove the tail node of s. To determine the new order, sort the

time given in the new tail into the time sorted list L.

5.2.4 Other Dynamic Update Algorithms

We briefly mention a few other dynamic update algorithms. As one has probably

guessed by now, there are a very large number of dynamic update algorithms, each

with its own features. The ones mentioned here are some of the more popular ones

that have not been analysed with respect to steady state cost and overwork.

No formulas for Transpose are known. In part, this is because requests that

occurred an arbitrarily long time ago can still be influencing all current list positions,

and not, say, just the relative positions of only 2 items. The original M1FF has the

same difficulty, as does M1FF2 and Frequency Count. For Frequency Count though,

one can come up with formulas based on the Best x of 2x − 1 family. Set the x

parameter to more than the number of requests m (actually 2x − 1 ≥ m), and Best

73

x of 2x − 1 behaves the same as Frequency Count, with two cautions. Frequency

Count is usually started with frequencies of zero, which is not the same as starting

Best x of 2x − 1 by conditioning it on the uniform distribution. Also, Frequency

Count’s behavior when ties occur is usually minimum movement, meaning that if the

frequency of ‘a’ is one greater than ‘b’ (and so ‘a’ is in front of ‘b’), and a request for

‘b’ occurs, ‘a’ remains in front of ‘b’. Best x of 2x− 1 can, of course, be conditioned
with an arbitrary request sequence in which the alphabet is listed x times as described

in the initialization of Best x of 2x− 1’s list, in which case for 2x− 1 ≥ m, Best x of
2x − 1 will behave the same as a Frequency Count that resolves ties by putting the
more recently requested items closer to the front.

Even when fairly simple equations do exist, simulations and experiments are an

important way of learning about the properties of various algorithms. Bachrach and

El-Yaniv experimented with many dynamic update algorithms [5], such as Move-

Fraction(k), which moves the requested item forward a fraction (half, for instance)

of its position in the list. Move-Fraction(k) is a popular and obvious choice when

first dreaming up alternates to MTF. Many of the algorithms Bachrach and El-Yaniv

tested beat MTF in Burrows-Wheeler compression on various test files. This demon-

strates that perhaps MTF is not a very good strategy.

With equations for several dynamic update algorithms in hand, comparisons other

than the empirical can be made. In the following sections, we compare Best x of 2x−1
to Best x+ 1 of 2x+ 1, which covers Best 1 of 1 (MTF) and Best 2 of 3.

5.3 Comparing Best x of 2x− 1 to Best x+ 1 of 2x+ 1

Best x of 2x−1 always has higher asymptotic cost than Best x+1 of 2x+1. Overwork
is not as simple. Eventually (for high enough t), the overwork of Best x is always

smaller (closer to 0) than Best x+ 1. But as t increases, overwork goes to 0 anyway.

We are more interested in the overwork when t is small. Overwork of Best x is more

likely to be smaller for any value of t, but just as overwork can be negative, overwork

can be smaller for Best x and for Best x+ 2 than for Best x+ 1 at low t.

One can use similar methods to show that M1FF3 has lower asymptotic cost than

74

MTF (Best 1 of 1).

Theorem 12 The asymptotic cost on a distribution P of Best x+1 of 2x+1 is less

than or equal to the asymptotic cost on P of Best x of 2x − 1 for all x ≥ 1, with

equality if and only if pi = pj for all i, j.

Proof : The asymptotic cost of Best x of 2x− 1 is

1 +
n∑

i=1

pi

∑
j �=i

(pi + pj)
1−2x

x−1∑
w=0

(
2x− 1
w

)
pw

i p
2x−1−w
j

and the asymptotic cost of Best x+ 1 of 2x+ 1 is

1 +
n∑

i=1

pi

∑
j �=i

(pi + pj)
−1−2x

x∑
w=0

(
2x+ 1

w

)
pw

i p
2x+1−w
j

Let w = 2x− 2− w. The part of the asymptotic cost we concentrate upon is the
cost of some two symbols li and lj which, for Best x of 2x− 1 is

pi(pi + pj)
1−2x

x−1∑
w=0

(
2x− 1
w

)
pw

i p
w+1
j + pj(pi + pj)

1−2x
x−1∑
w=0

(
2x− 1
w

)
pw

j p
w+1
i

= pipj(pi + pj)
1−2x

x−1∑
w=0

(
2x− 1
w

)
pw

i p
w
j + pjpi(pi + pj)

1−2x
x−1∑
w=0

(
2x− 1
w

)
pw

j p
w
i

= pipj(pi + pj)
1−2x

x−1∑
w=0

(
2x− 1
w

)
(pw

i p
w
j + p

w
j p

w
i)

and, for Best x+ 1 of 2x+ 1 is

pipj(pi + pj)
−1−2x

x∑
w=0

(
2x+ 1

w

)
(pw

i p
2x−w
j + pw

j p
2x−w
i)

With some work on the above part of the asymptotic cost for Best x of 2x− 1 we
show that it is always more than that of Best x+ 1 of 2x+ 1.

(pi + pj)
1−2x

x−1∑
w=0

(
2x− 1
w

)
(pw

i p
w
j + p

w
j p

w
i)

75

= (pi + pj)
−1−2x

x−1∑
w=0

(
2x− 1
w

)
(p2

i + 2pipj + p
2
j)(p

w
i p

w
j + p

w
j p

w
i)

Expanding the summation, we have

...(
2x−1
x−2

)
(px+2

i px−2
j +2px+1

i px−1
j + px

i p
x
j)+(

2x−1
x−1

)
(px+1

i px−1
j + 2px

i p
x
j+ px−1

i px+1
j)+(

2x−1
x−1

)
(px+1

i px−1
j + 2px

i p
x
j+ px−1

i px+1
j)+(

2x−1
x−2

)
(px

i p
x
j+ 2px−1

i px+1
j +px−2

i px+2
j)+(

2x−1
x−3

)
(px−1

i px+1
j +2px−2

i px+2
j +px−3

i px+3
j)+

...(
2x−1

3

)
(p5

i p
2x−5
j + 2p4

i p
2x−4
j + p3

i p
2x−3
j)+(

2x−1
2

)
(p4

i p
2x−4
j + 2p3

i p
2x−3
j + p2

i p
2x−2
j)+(

2x−1
1

)
(p3

i p
2x−3
j + 2p2

i p
2x−2
j + pip

2x−1
j)+(

2x−1
0

)
(p2

i p
2x−2
j + 2pip

2x−1
j + p2x

j)

Since
(

a−1
b−1

)
+
(

a−1
b

)
=
(

a
b

)
, each column except the middle 3 sums to

[(
2x− 1
w − 2

)
+ 2

(
2x− 1
w − 1

)
+

(
2x− 1
w

)]
pw

i p
2x−w
j

=

(
2x+ 1

w

)
pw

i p
2x−w
j

This holds for the incomplete outer columns because
(

a
b

)
= 0 for b < 0 or b > a.

So the asymptotic cost of Best x of 2x− 1 is equal to the asymptotic cost of Best
x+ 1 of 2x+ 1 plus a low positive amount which decreases as x increases.

(pi + pj)
1−2x

x−1∑
w=0

(
2x− 1
w

)
(pw

i p
w
j + p

w
j p

w
i)

76

= (pi + pj)
−1−2x

x∑
w=0

(
2x+ 1

w

)
(pw

i p
2x−w
j + pw

j p
2x−w
i) +

(
2x− 1
x− 1

)
(px+1

i px−1
j − 2px

i p
x
j + p

x−1
i px+1

j)

= (pi + pj)
−1−2x

x∑
w=0

(
2x+ 1

w

)
(pw

i p
2x−w
j + pw

j p
2x−w
i) +

(
2x− 1
x− 1

)
(pipj)

x−1(pi − pj)
2

> (pi + pj)
−1−2x

x∑
w=0

(
2x+ 1

w

)
(pw

i p
2x−w
j + pw

j p
2x−w
i) if pi �= pj

Thus, the asymptotic cost of Best x of 2x − 1 is inversely proportional to x.

Next we show that the overwork is usually proportional to x. Similar to the proof of

asymptotic cost, we multiply the middle part of Best x by (q2i +2qiqj + q
2
j)/(qi+ qj)

2,

and compare to Best x + 1. Thus, we can account for most of the terms in Best x.

The few unmatched terms are more than balanced by the many unmatched terms

in Best x + 1 when t or x is sufficiently large, so that eventually the overwork on

a distribution P is always related as follows: |OVBx+1(P, t)| ≤ |OVBx(P, t)|. But
overwork tends to 0 as t grows, and adaptation is too slow at large x, so this is not

particularly interesting.

When t and x are small, matters are not so clear cut. Imagine a weighted die and

a history of the rolls it has made. The amount of history is dependent on x. At some

unknown time, the die will be switched for a different weighted die. The obvious

action, to achieve the best guesses shortly after the switch occurs, is to discard old

history quickly. But this can actually be bad if the new die is similar to the old one,

creating a situation in which the old history provides the right answers for the wrong

reasons. Overwork can fluctuate on data drawn from alphabets as small as 3 letters.

It is easiest to examine the relationship between 2 symbols li and lj . Upon switch-

ing from Q to P , the probabilities are 0.5 that li and lj should be swapped. If li and

lj are already in the best order, then the probability is 0.5 (0.25 of the total) that

they are more likely to be in that order under P than under Q. So in 0.75 of the

switches, more rapid adaptation to P is beneficial. However, proving this is difficult.

77

We showed 0.75 probability of positive overwork for MTF in Chapter 2. The speed

of the adaptation is proportional to x.

We point out that because
(

a
b

)
= 0 for b > a or b < 0, the minimum functions

in the overwork formula are not necessary. Specifically,
∑min(x−1,v)

w1=0

∑min(x−1−w1,v)
w2=0 can

instead be
∑x−1

w1=0

∑x−1−w1
w2=0 .

Theorem 13 Given random probability distributions P and Q and overwork

OVBx+1(Q, 0) = 0 and OVBx(Q, 0) = 0, the overwork of Best x + 1 of 2x + 1 on P

at time t for two symbols li and lj, OVBx+1(P, t, i, j), is greater than OVBx(P, t, i, j)

with probability > 0.5.

Proof : The overwork of Best x of 2x− 1 is

OVBx =
n∑

i=1

pi

∑
j �=i

2x−2∑
v=0

(
t

v

)
(1− pi − pj)

t−v

(qi + qj)−v

min(x−1,v)∑
w1=0

(
v

w1

)
pw1

i p
v−w1
j

min(x−1−w1,v)∑
w2=0

(
v

w2

)
qw2
i q

v−w2
j

−(pi + pj)
−v

x−1∑
w=0

(
2x− 1
w

)
pw

i p
2x−1−w
j

]

where v = 2x− 1− v. The overwork of Best x+ 1 of 2x+ 1 is

OVB(x+1) =
n∑

i=1

pi

∑
j �=i

2x∑
v=0

(
t

v

)
(1− pi − pj)

t−v

(qi + qj)−v−2

min(x,v)∑
w1=0

(
v

w1

)
pw1

i p
v−w1
j

min(x−w1,v+2)∑
w2=0

(
v + 2

w2

)
qw2
i q

v+2−w2
j

−(pi + pj)
−v−2

x∑
w=0

(
2x+ 1

w

)
pw

i p
2x+1−w
j

]

W.l.o.g. pi ≥ pj. We move the pi inside and rearrange some terms to get

OVBx =
n∑

i=1

∑
j �=i

2x−2∑
v=0

(
t

v

)
(1− pi − pj)

t−v

78

(qi + qj)−v

min(x−1,v)∑
w1=0

min(x−1−w1,v)∑
w2=0

(
v

w1

)(
v

w2

)
pw1+1

i pv−w1
j qw2

i q
v−w2
j

−pipj(pi + pj)
−v

x−1∑
w=0

(
2x− 1
w

)
pw

i p
2x−2−w
j

]

This quantity is the total cost minus the asymptotic cost, multiplied by (1− pi −
pj)

t−v, a factor dependent on t. Let Qx,v and Px,v represent these quantities.

Qx,v(i, j) = (qi + qj)
−v ∑min(x−1,v)

w1=0

∑min(x−1−w1,v)
w2=0

(
v

w1

)(
v

w2

)
(pw1+1

i pv−w1
j qw2

i q
v−w2
j +

pw1+1
j pv−w1

i qw2
j q

v−w2
i)

Px,v(i, j) = pipj(pi + pj)
−v ∑x−1

w=0

(
2x−1

w

)
(pw

i p
2x−2−w
j + pw

j p
2x−2−w
i)

We will show that the signs of Q and P depend on pi, pj , qi, and qj . W.l.o.g.

pi ≥ pj. Since overwork is 0 if pi = pj , we concentrate on pi > pj.

qi ≤ qj qj < qi ≤ pi

pj
qj

pi

pj
qj < qi

probability 0.5 0.25 0.25

−Px+1,v(i, j) + Px,v(i, j) + + +

Qx+1,v(i, j)−Qx,v(i, j) + − −
Qx,v(i, j)− Px,v(i, j) + +? −?

From the previous proof, which compares asymptotic costs of Best x of 2x− 1 to
Best x+ 1 of 2x+ 1, we know that Px,v(i, j) ≥ Px+1,v(i, j) with equality only if P is

uniform. So −Px,v(i, j) ≤ −Px+1,j(i, j).

For each v from 0 to 2x − 2, we examine the difference between Qx+1,v(i, j) and

Qx,v(i, j). We expand the summations in Qx,v(i, j) for Best x. For each value of v

79

from 0 to 2x− 2, we get
(

v
0

) (
v
0

)
(p1

i pv
j q0i qv

j + p1
j pv

i q0j qv
i)+(

v
0

) (
v
1

)
(p1

i pv
j q1i qv−1

j + p1
j pv

i q1j qv−1
i)+

...(
v
0

) (
v

x−1

)
(p1

i pv
j qx−1

i q0j + p1
j pv

i qx−1
j q0i)+(

v
1

) (
v
0

)
(p2

i pv−1
j q0i qv

j + p2
j pv−1

i q0j qv
i)+

...(
v
1

) (
v

x−2

)
(p2

i pv−1
j qx−2

i q0j + p2
j pv−1

i qx−2
j q0i)+

...(
v

v−1

) (
v
0

)
(pv

i p1
j q0i qv

j + pv
j p1

i q0j qv
i)+(

v
v−1

) (
v
1

)
(pv

i p1
j q1i qv−1

j + pv
j p1

i q1j qv−1
i)+(

v
v

) (
v
0

)
(pv+1

i p0
j q0i qv

j + pv+1
j p0

i q0j qv
i)

Similar to the proof for asymptotic cost, we multiply Qx,v(i, j) by (qi + qj)
−2(q2j +

2qiqj + q
2
i) and subtract from Qx+1,v(i, j) And, as in the previous proof, we use the

properties of the binomials:

[(
v

w2

)
+ 2

(
v

w2 − 1
)
+

(
v

w2 − 2
)]
qw2
i q

v+2−w2
j

=

(
v + 2

w2

)
qw2
i q

v+2−w2
j

Also (
v

w

)
=

min(c,v−c)∑
k=0

(
c

k

)(
v − c

min(w, v − w)− k
)

80

Most of the terms cancel out, leaving

(
v
0

)(
v
x

)
(p1

i pv
j qx

i qv
j + p1

j pv
i qx

j qv
i

− p0
i pv+1

j qx
i qv

j − p0
j pv+1

i qx
j qv

i)+(
v
1

)(
v

x−1

)
(p2

i pv−1
j qx−1

i qv+1
j + p2

j pv−1
i qx−1

j qv+1
i

− p1
i pv

j qx−1
i qv+1

j − p1
j pv

i qx−1
j qv+1

i)+(
v
2

)(
v

x−2

)
(p3

i pv−2
j qx−2

i qv+2
j + p3

j pv−2
i qx−2

j qv+2
i

− p2
i pv−1

j qx−2
i qv+2

j − p2
j pv−1

i qx−2
j qv+2

i)+
...(

v
x

)(
v
0

)
(px+1

i p0
j q0i qx+1

j + px+1
j p0

i q0j qx+1
i

− px
i p1

j q0i qx+1
j − px

j p1
i q0j qx+1

i)

Each of the polynomials with more j’s matches one with more i’s, and vice-versa. All

are paired off to get

c((pi − pj)q
x−w2
i qv+w2

j + (pj − pi)q
x−w2
j qv+w2

i)

= c((pi − pj)(q
x−w2
i qv+w2

j − qx−w2
j qv+w2

i))

for some w2 and c ≥ 0, which is non-negative when qi ≤ qj which occurs with

probability 0.5. This holds for all v.

Conjecture 1 With probability 0.75, the overwork of Best x of 2x − 1 on ran-

dom probability distribution P at time t for two symbols li and lj is non-negative.

OVBx(P, t, i, j) ≥ 0 with probability 0.75.

We continue examining the formulae from the previous proof to show how the

conjecture of positive overwork with probability 0.75 might be proven. We conjecture

that for each value of of v from 0 to 2x − 2 the probability is 0.75 that Qx,v(i, j) −
Px,v(i, j) is non-negative. That is,

(qi + qj)
−v−2

x∑
w1=0

min(x−w1,v+2)∑
w2=0

(
v

w1

)(
v + 2

w2

)
pw1+1

i pv−w1
j qw2

i q
v+2−w2
j

81

−pipj(pi + pj)
−v−2

x∑
w=0

(
2x+ 1

w

)
pw

i p
2x−w
j

> 0

The degree of the polynomials is the same. That is, w1+ v−w1+w2+ v+ 2−w2 =

2x+ 1 = w + 2x+ 1− w. And the number of polynomials is the same.

x∑
w=0

(
2x+ 1

w

)
= 2x−1 =

x∑
w1=0

min(x−1−w1,v)∑
w2=0

(
v

w1

)(
v + 2

w2

)

By the properties of the binomials,
(

2x−1
w

)
=
∑w

w3=0

(
v

w3

)(
v

w3

)
. When qi =

pi

pj
qj it

is easy to see Px,v(i, j) = Qx,v(i, j).

(qi + qj)
−v(pw3+1

i pv−w3
j qw3

i q
v−w3
j + pw3+1

j pv−w3
i qw3

j q
v−w3
i)

= (qi + qj)
−v

pw+1

i pv−w
j

(
pj

pi
qi

)w3

qv−w3
j + pw+1−v

j pw
i q

w3
j

(
pj

pi
qi

)v−w3

= (qi + qj)
−v

(
pj

qj

)−v

pw+1

i pw
j

(
pj

pi

qi
qj

)w3

+ pw+1
j pw

i

(
pj

pi

qi
qj

)v−w3

=

(
pj
qi
qj
+ pj

)−v

pw+1

i pw
j

(
pj

pi

qi
qj

)w3

+ pw+1
j pw

i

(
pj

pi

qi
qj

)v−w3

= (pi + pj)
−v(pw+1

i pw
j + p

w+1
j pw

i) if qi =
pi

pj
qj

When qi <
pi

pj
qj (and pi > pj), for w < x (and v < 2x − 1), we need more to show

that Px,v(i, j) < Qx,v(i, j).

To represent all values of w1 and w2 in Qx,v(i, j), we can make a triangular array

with w1 going from 0 to x− 1 on one axis and w2 doing the same on the other axis.

The array is triangular because w1 + w2 < x. The elements can be grouped into

triplets with (w1, w2) = (0, 0), (x− 1, 0), (0, x− 1) and (1, 0), (x− 2, 1), (0, x− 2) and
so on. We believe these triplets sum to more than the matching parts of Px,v(i, j)

when qi <
pi

pj
qj . That is, for (0, 0), (x− 1, 0), (0, x− 1):

82

(qi + qj)
−v

[(
v

0

)(
v

0

)
(pip

v
jq

v
j + pjp

v
i q

v
i) +(

v

x− 1
)(
v

0

)
(px

i p
v−x+1
j qv

j + p
x
j p

v−x+1
i qv

i) +(
v

0

)(
v

x− 1
)
(pip

v
jq

x−1
i qv−x+1

j + pjp
v
i q

x−1
i qv

j)

]

> (pi + pj)
−v

[(
v

0

)(
v

0

)
(pip

2x−1
j + pjp

2x−1
i) +

((
v

x− 1
)(
v

0

)
+

(
v

0

)(
v

x− 1
))
(px

i p
x
j + p

x
j p

x
i)

]

The final part we conjecture is that when qi <
pi

pj
qj , the overwork is greater when

x is greater. Specifically,

Qx+1,v(i, j)− Px+1,v(i, j)− (Qx,v(i, j)− Px,v(i, j))

= Qx+1,v(i, j)−Qx,v(i, j)− Px+1,v(i, j) + Px,v(i, j)

> 0 ?

And we conjecture that if qi >
pi

pj
qj, then overwork, which is negative, is less when x

is greater.

Conjecture 2 Given random probability distributions P and Q and overwork

OVBx+1(Q, 0) = 0 and OVBx(Q, 0) = 0, the magnitude of the overwork of Best x+ 1

of 2x + 1 on P at time t for two symbols li and lj is greater than that of Best x of

2x− 1. |OVBx+1(P, t, i, j)| > |OVBx(P, t, i, j)|.

5.4 Costs on Zipf distribution

In this section, we give some data generated from the asymptotic cost and overwork

formulae. In all cases, the cost function used is c = ρ(l). As is traditional, the graphs

83

Algorithm Cost Ratio
Move-To-Front 2208.68 1.386
Move 1 From Front 3 2208.67 1.386
Best 2 of 3 1901.33 1.193
Best 3 of 5 1801.75 1.131
Best 4 of 7 1751.96 1.099
Best 5 of 9 1721.87 1.081
Best 6 of 11 1701.64 1.068
Best 7 of 13 1687.07 1.059
Best 8 of 15 1676.04 1.052
Best 9 of 17 1667.40 1.046
Optimal 1593.57 1

Table 5.2: Asymptotic cost on Zipf distribution

show time t (number of characters) on the x axis and cost c on the y axis.

Move-To-Front costs 1.386 times optimal on an i.i.d. source over a large alphabet

distributed according to Zipf’s law: pi = i−1H−1
n [40]. The asymptotic costs and

ratio to optimal at n = 16384, which is large enough for our calculations of MTF’s

cost to reach 1.386 times optimal, for the algorithms with known equations are given

in Table 5.2. There is not much difference between MTF and M1FF3 at such a large

value of n. The ratio of Best x of 2x−1’s cost to optimal approaches 1 as x increases.
The total cost (overwork plus asymptotic) for the algorithms when switching from

the uniform distribution to a Zipf distribution, for n = 64 is in Figure 5.1. As can be

seen, MTF and M1FF3 are very similar at this value of n.

The total cost when switching from a Zipf to a different Zipf distribution, for one

of the 23 possibilities for n = 4 is graphed in Figure 5.2. The overwork in these cases

is symmetric, the same from P to Q as from Q to P . This value of n is small enough

for the difference between M1FF3 and Best 1 of 1 to be significant.

84

14

16

18

20

22

24

26

28

30

32

34

0 50 100 150 200 250 300 350 400 450 500

co
st

time

Move 1 From Front 3
Best 1 of 1
Best 2 of 3
Best 3 of 5
Best 4 of 7
Best 5 of 9

Figure 5.1: Total cost from uniform to Zipf distribution on alphabet of 64 symbols

5.5 Solo Performance of Dynamic Update Algorithms

Table 5.3 gives performance data of the various dynamic list updating algorithms on

the Calgary Corpus and other files. The particular variations of the basic Burrows-

Wheeler compression scheme used to produce the statistics in this chapter are the

Gray code sort and a better order for only the text files [15], and an adaptive

arithmetic coder similar to the one presented by Balkenhol, Kurtz, and Shtarkov [7].

It codes all 8 bit characters rather than only the ones actually used in the data. Each

file was encoded in one block.

5.6 Combining two algorithms

The ideas for getting more compression by switching between the outputs of two

universal source coding algorithms, presented by Volf and Willems [50], can be used

to get higher compression of the p.i.i.d. data. In Volf and Willems’ algorithm, an

85

Best x of 2x− 1
File M1FF MTF 2 3 4 5
bib 26,886 26,979 28,400 29,477 30,336 31,038
book1 224,018 225,980 223,729 224,541 226,107 227,719
book2 153,034 153,968 157,089 160,143 163,204 165,617
geo 57,197 57,386 56,853 56,333 56,073 55,297
news 116,753 117,240 123,570 127,016 129,859 131,963
obj1 10,517 10,579 10,945 11,248 11,488 11,648
obj2 75,454 75,822 82,139 85,885 88,623 90,853
paper1 16,250 16,305 17,489 18,279 18,920 19,394
paper2 24,626 24,708 25,570 26,237 26,856 27,388
pic 48,222 49,133 47,654 47,135 47,002 46,932
progc 12,332 12,368 13,324 13,968 14,508 14,895
progl 15,287 15,337 16,836 17,718 18,526 19,079
progp 10,532 10,539 11,991 12,800 13,324 13,817
trans 17,349 17,373 20,541 22,477 24,219 25,249
total 808,457 813,717 836,130 853,257 869,045 880,889
lena 582,732 583,003 580,230 582,377 585,697 589,164
lesms10 820,774 828,638 816,364 816,466 820,505 825,080

Table 5.3: Solo performance of dynamic update algorithms.

86

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

0 10 20 30 40 50 60

co
st

time

Move 1 From Front 3
Best 1 of 1
Best 2 of 3
Best 3 of 5
Best 4 of 7
Best 5 of 9

Figure 5.2: Total cost from Q = {0.12, 0.16, 0.24, 0.48} to P = {0.48, 0.24, 0.16,
0.12}

estimator determines when it is profitable to switch between universal algorithms

such as PPMD and LZ77. In BW compression, one can use the same technique to

choose between two algorithms such as MTF and Best 2 of 3. With complementary

algorithms, this can result in significant improvement.

The optimal switching algorithm is O(m2) which is not practical. Two variants,

“snake”, and “reduced complexity”, (we call it “fat snake”), are linear in m. The

switching algorithms can be described as state machines with the number of states

dependent on m. Each state has two outgoing arcs and the arc chosen is based on

whether the switching algorithm decided to stay with the current source coder for the

next symbol, or switch to the other source coder. Switching decisions can be explicitly

coded with bits. The switching algorithm makes decisions based on the cost to each of

the source coders plus the cost of encoding the switching decision. The less switches

are made, the more expensive a decision to switch becomes. These costs are computed

with weighting functions which blend all decisions that lead to the same number of

87

switches having occurred by a specific time into one state. So 5 switches over the

course of 100 decisions will put the machine in the same state no matter which 5 of

the 100 decisions were the switches. The snake algorithm further reduces the number

of states from quadratic to linear by putting a ceiling on the number of switches the

states can represent and wrapping around to a state representing 0 switches whenever

that threshold is exceeded. A diagram of the states with a ceiling of 1 switch looks

somewhat like a snake (or perhaps the path of arcs taken looks snake-like), hence the

name. The higher the ceiling, the “fatter” the snake is.

By delaying the switch for one symbol, switches can be computed by the decoder.

Thus, explicitly encoding when the switches occur is unnecessary and, in experiments,

reduced the size of the compressed data.

The first attempt used the two extremes: MTF, the algorithm with the smallest

overwork, with Transpose, the algorithm with the lowest asymptotic value. But since

Transpose can be arbitrarily bad, a failure to change to MTF when desirable can

significantly degrade the compression rate. Also, Transpose’s speed of adaptation

was so slow that it often had not adapted to a previous switch before a new switch

occurred.

The first significant improvement used MTF and Best 2 of 3. Better yet was

M1FF and Best 2 of 3. M1FF has overwork similar to MTF but better asymptotic

performance. Since M1FF2 has a little less overwork than M1FF, using M1FF2 with

Best 2 of 3 was even better.

This lead naturally to the idea of finding a competitive algorithm with lower

steady state work than Best 2 of 3 to pair with M1FF2. Such an algorithm might

not need to be 2-competitive to complement M1FF2. Modifications of the algorithm

to perform part of Timestamp, which became the Best x of 2x − 1 family, gave yet
more improvement. Results of “snaking” between M1FF2 and various members of

Best x of 2x− 1 are given in Table 5.4 using the same BWT and entropy coder as in
Table 5.3.

All the switching algorithms weigh based on the probabilities each of the two

algorithms assigns to the symbol. For each symbol, new weights are computed from

old ones by multiplying them by the probabilities each algorithm assigns to that

88

symbol at that time. Thus, the weights must be normalized frequently or they will go

to zero. The first implementation of the snake algorithm used single precision floating

point values. When that was changed to double precision, compression improved

slightly. Because the significant part of the values is the exponent, computing with

logarithms of those values yields increased accuracy for the same machine precision.

The first trial of the snake algorithm did not use the actual probabilities generated

by the arithmetic coder backends of each of the two algorithms. Instead, a simple

coder was used to generate probabilities for both algorithms. This, of course, meant

that if both dynamic update algorithms output the same value, the snake algorithm

decided not to switch. When the scheme performed well, we naturally thought to get

even better performance by using the actual probabilities generated by the arithmetic

coder back ends of each algorithm. Instead, the performance was worse. So the results

in Table 5.4 are those of the simple scheme, which performed better in practice. In the

snake algorithm, more accurate probabilities should increase compression. Instead

compression actually decreased, and it is not clear why. Perhaps more accurate

computation is needed, or the snake needs to be “fatter”, that is, contain more states

so that less mistakes are made on switching or not switching. Delaying switches for

one symbol also hurts compression and compromises the accuracy of the statistics,

but in experiments, explicitly coding the switches and not delaying was worse. The

O(m2) weighting algorithm always makes the best decisions on when to switch and

one would expect higher compression from more accurate statistics since the switches

are optimal. The snake algorithm is O(m) but pays for that speed with occasional

bad decisions on when to switch or not, and so more accurate statistics may not

always increase compression.

An idea for further improvement would be to switch between more than 2 algo-

rithms. Start with a version of M1FF, then switch to Best 2 of 3, then Best 3 of 5,

and so on. Eventually, restart the cycle with M1FF when a new piece of the BWT

output is detected.

The pieces of independent identically distributed (i.i.d.) data are not independent

(p.i.i.d., not i.p.i.d.). Assuming that detecting the piece boundaries of the BWT out-

put presents no difficulty, care must be taken in the use of that knowledge. Resetting

89

file Best x of 2x− 1
2 3 4 5

bib 26,927 26,953 27,005 27,065
book1 222,121 220,971 220,614 220,470
book2 153,128 152,804 152,796 152,840
geo 56,744 56,458 56,263 56,091
news 117,022 116,955 117,083 117,169
obj1 10,596 10,649 10,671 10,683
obj2 76,158 76,424 76,623 76,733
paper1 16,295 16,300 16,334 16,336
paper2 24,615 24,616 24,588 24,618
pic 47,860 47,347 47,174 47,066
progc 12,409 12,429 12,429 12,439
progl 15,362 15,378 15,350 15,373
progp 10,550 10,557 10,558 10,582
trans 17,380 17,380 17,403 17,395
total 807,167 805,221 804,891 804,860
lena 579,528 579,746 580,341 580,943
lesms10 812,187 806,577 804,875 804,265

Table 5.4: Snake algorithm switching between M1FF2 and Best x of 2x− 1.

90

the statistics of the entropy coder whenever a piece boundary is crossed can worsen

the amount of compression because often the previous piece is similar to the current

piece. The switching method does not explicitly detect piece boundaries. Rather, the

switching method weighs the cost of each algorithm’s choice plus the cost of encod-

ing a switch. Finding better places to switch between multiple algorithms, whether

computed by weighting techniques or by some other method, can certainly increase

the amount of compression. Also, better dynamic updating algorithms may yet be

found.

5.7 Entropy Coder

The final stage of Burrows Wheeler Compression is the entropy coder. In general,

entropy coders count the frequency of each symbol and use those statistics to generate

optimal length (shortest possible) codes. Static versions count the frequencies before

computing the lengths of the codes. Similar to the Frequency Count algorithm,

adaptive versions adjust the lengths on-line, incrementing frequencies as symbols are

received.

The entropy coder may be based on Huffman coding, arithmetic coding, or one

of the many variants. To increase compression for Huffman codes, symbols may

be blocked together, meaning there are codes for all pairs or all triples, etc. of the

symbols. Large blocks are used in theoretical work, since coding inefficiencies due to

using integral numbers of bits vanishes as the blocksize increases. However, this is of

limited use in practice, as the code size increases exponentially with the block size.

Arithmetic coding variants are legion. Some trade a little compression efficiency for

speed, such as the idea of keeping the total frequency count a power of 2.

Most have some means of dealing with overflowing counts. The usual method is

to divide all the frequency counts by 2, which reduces the coding efficiency slightly.

But if the data is not identically distributed, reducing the counts is beneficial. A

sliding window may be used. After the window is filled, new symbols are added to

one end and removed from the other as in a queue. The total count is then the size

of the window, which, to gain speed, should be a power of 2. Smaller windows mean

91

poorer statistics but faster adjustments to changes in the data.

The exponentially increasing frequency count is an attempt to adjust to changing

statistics. Instead of incrementing each frequency by 1, the increments are by (1+ c)t

where c is some value greater than 0. The larger c is, the more rapidly the statistics

will be adjusted but also the poorer they will be.

As noted earlier, the output of Move-To-Front and the other List Update al-

gorithms can be treated like ordered piecewise independent identically ditributed

(o.p.i.i.d.) data. o.p.i.i.d. is piecewise independent identically distributed and ordered

by frequency of occurrence. Although the exact probability of a symbol changes from

piece to piece, its order by frequency relative to the other symbols does not change.

While the assumption of o.p.i.i.d is not exactly correct, it is accurate enough to give

valuable insight into the coding process. A standard entropy coder is within 1 bit

of optimal for independent identically distributed (i.i.d.) data, but not for o.p.i.i.d.

data.

The first improvement on standard entropy coding comes from the original Bur-

rowsWheeler paper [13]. Run-length encode ‘0’, the most common symbol, similar to

the following: When encountering 3 or more ‘0’s in a row, encode the 3 ‘0’s normally

and then encode the number of ‘0’s following the initial 3.

The next improvement is Fenwick’s modification [21] which is just as efficient

as a standard coder but can adjust more quickly. Rather than encode each symbol

separately, with the implied model of independence of symbols, break a symbol value

x into 2 parts y and z where 2y + z = x and 0 ≥ z < 2y, and code using the statistics

of the y’s and z’s rather than the x’s. Experiments with other powers, specifically

the golden ratio, where 1.61y� + z = x and 0 ≥ z < 1.61y�, gave very similar
compression ratios.

Balkenhol and co-authors [6, 7, 8] replace the run-length scheme with a Markov

model. The Markov model tracks the last few values output by MTF as follows. The

run-length encoder codes 0’s only. The Markov model is order 3 and tracks 0’s, 1’s,

and 2+’s for a total of 27 models. If a z ≥ 2 is encoded, z − 2 is passed to a Fenwick
modified entropy coder. In their latest work, they merge the most similar among

the 27 models, which causes counts to increment faster, for more accuracy and faster

92

adaptation, and thus higher compression.

There are some other minor improvements worth mentioning. Balkenhol and co-

authors suggest counting the number of symbols actually present in the data, rather

than assuming 256 (for 8 bit data), and adjusting the entropy coder so that no coding

space is wasted on symbols that do not occur. Initializing the symbol counts in the

entropy coder to reflect a Zipf distribution rather than a uniform one, as is traditional,

also saves a little space.

A suggestion for more improvement is to extend Fenwick’s idea further. Break x

into y and z as before, then, for sufficiently large z, break z into two parts as was

done with x. This could be continued as long as the second part is sufficiently large.

Effectively, one would be separately counting and encoding each 1 bit of the binary

representation of x.

93

CHAPTER 6

Conclusion

Higher compression of the output of the Burrows-Wheeler Transform has been the

focus of most of the Burrows-Wheeler research following the seminal paper. Since

Move-To-Front performs relatively poorly as a stand-alone compression algorithm on

data in general, it seemed reasonable that something better for BWT output could

be easily discovered. Although algorithms such as Arnavut’s Inversion Coding and

interval coding have shown possibly better results, the original method of some dy-

namic list updating algorithm, such as Move 1 From Front, followed by an arithmetic

coder, remains viable.

From a theoretic standpoint, proofs of BW compression’s optimality suffer from

the lack of tight bounds on MTF’s performance. The proofs for the dictionary based

algorithms are tight. But all the proofs are for sources producing stationary, ergotic

data, a subset of sources producing arbitrary data. Much “real world” data is not

stationary and ergotic. In the future, new kinds of sources may be defined for which

proofs of optimality can be devised.

This work presented and analysed several techniques for getting higher compres-

sion from the Burrows-Wheeler Transform (BWT) without increasing the O(m) time

complexity of the method. No improvements in speed were presented. The ideas

that increased the amount of compression were finding a better alphabet order, per-

forming binary reflected Gray code sort instead of standard sorting in the BWT, and

switching between Move 1 From Front and Best x of 2x− 1 to encode BWT output.
The Best x of 2x − 1 family of algorithms for dynamically updating lists was

presented and analysed with respect to aymptotic cost and overwork. Also analysed

with respect to overwork were Move-To-Front, Timestamp, and Move 1 From Front

3. We observed that Move-To-Front is Best 1 of 1 and part of Timestamp is Best 2

of 3. Comparing Best 1 of 1 to Best 2 of 3 showed Best 1 of 1 has less overwork and

Best 2 of 3 has lower asymptotic cost. Although the goal was higher compression with

the BWT, the results demonstrate that, like Competitive Analysis, analysis of the

94

overwork is a worthwhile direction from which to approach List Update and similar

problems.

95

BIBLIOGRAPHY

[1] Susanne Albers. Improved Randomized On-Line Algorithms for the List Update

Problem. SIAM J. Comput., 27:682–693, 1998.

http://www.mpi-sb.mpg.de/~albers/.

[2] Susanne Albers and Michael Mitzenmacher. Average Case Analysis of List

Update Algorithms, with Applications to Data Compression. Algorithmica.,

21(3):312–329, 1998.

http://www.mpi-sb.mpg.de/~albers/.

[3] Arne Andersson and Stefan Nilsson. A new efficient radix sort. Proc. 35th Annual

IEEE Symposium on Foundations of Computer Science, pages 714–721, 1994.

http://www.nada.kth.se/~snilsson/public/papers/radix/index.html.

[4] Ziya Arnavut. Move-To-Front and Inversion Coding. Proc. Data Compression

Conf., pages 193–202, 2000.

[5] Ran Bachrach and Ran El-Yaniv. Online List Accessing Algorithms and Their

Applications: Recent Empirical Evidence. Proc. of the 8th ACM-SIAM Sympo-

sium on Discrete Algorithms, pages 53–62, 1997.

[6] Bernhard Balkenhol and Stefan Kurtz. Universal Data Compression Based on the

Burrows and Wheeler-Transformation: Theory and Practice. Sonderforschungs-

bereich: Diskrete Strukturen in der Mathematik 98-069, Universitat Bielefeld,

1998. To appear in IEEE Transactions on Computers.

http://www.mathematik.uni-bielefeld.de/~bernhard/.

[7] Bernhard Balkenhol, Stefan Kurtz, and Yuri M. Shtarkov. Modifications of the

Burrows and Wheeler Data Compression Algorithm. Proc. Data Compression

Conf., pages 188–197, 1999.

http://www.mathematik.uni-bielefeld.de/~bernhard/.

96

[8] Bernhard Balkenhol and Yuri M. Shtarkov. One attempt of a compression algo-

rithm using the BWT.

http://www.mathematik.uni-bielefeld.de/~bernhard/.

[9] Bentley, Sleator, Tarjan, and Wei. A Locally Adaptive Data Compression

Scheme. Communications of the ACM, 29(4):320–330, April 1986.

[10] J. Bentley and R. Sedgewick. Fast Algorithms for Sorting and Searching Strings.

Proc. 8th ACM-SIAM Symposium on Discrete Algorithms, pages 360–369, 1997.

[11] James R. Bitner. Heuristics that Dynamically Organize Data Structures. SIAM

J. Comput., 8:82–110, 1979.

[12] Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis.

Cambridge University Press, 40 West 20th Street, New York, NY 10011-4211,

USA, 1998. ISBN 0-521-56392-5.

[13] M. Burrows and D. J. Wheeler. A Block–sorting Lossless Data Compression

Algorithm. SRC Research Report 124, Digital Systems Research Center, Palo

Alto, CA, May 1994.

http://gatekeeper.dec.com/pub/DEC/SRC/

research-reports/abstracts/src-rr-124.html.

[14] Brenton Chapin. Switching Between Two On-line List Update Algorithms for

Higher Compression of Burrows-Wheeler Transformed Data. Proc. Data Com-

pression Conf., pages 183–192, 2000.

[15] Brenton Chapin and Stephen R. Tate. Higher Compression from the Burrows-

Wheeler Transform by Modified Sorting. Proc. Data Compression Conf., page

551, 1998.

[16] J. G. Cleary and I. H. Witten. Data compression using adaptive coding and

partial string matching. IEEE Transactions on Communications, 32(4):396–402,

1984.

97

[17] T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley

& Sons, Inc., New York, 1991.

[18] Michelle Effros. Universal Lossless Source Coding with the Burrows-Wheeler

Transformation. Proc. Data Compression Conf., pages 178–187, 1999.

[19] Michelle Effros. PPM Performance with BWT Complexity: A new method for

lossless data compression. Proc. Data Compression Conf., pages 203–212, 2000.

[20] Peter Elias. Interval and Recency Rank Source Coding: Two On-Line Adaptive

Variable-Length Schemes. IEEE Transactions on Information Theory, 33(1):3–

10, 1987.

[21] P. Fenwick. Block Sorting Text Compression — Final Report. Technical Report

130, The University of Auckland, Department of Computer Science, March 1996.

ftp://ftp.cs.auckland.ac.nz/out/peter-f/TechRep130.ps.

[22] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman and Company, New York, 1979.

[23] H. Guo and C.S. Burrus. Waveform and Image Compression Using the Burrows

Wheeler Transform and the Wavelet Transform. Proceedings of the 1997 IEEE

International Conference on Image Processing, 1997.

[24] D. A. Huffman. A method for the construction of minimum-redundancy codes.

Proc. Inst. Radio Eng., 40(9):1098–1101, September 1952.

[25] Chat Hurwitz. Traveling Salesperson Dispersion: Performance and Description

of a Heuristic. Senior project, Cal Poly San Luis Obispo, 1992. Software available

from the Stony Brook Algorithm Repository at

http://www.cs.sunysb.edu/~algorith/.

[26] Independent Joint Photography Experts Group (JPEG) Group. Source code

available at http://www.ijg.org.

98

[27] Sandy Irani. Two results on the list update problem. Information Processing

Letters, 38(6):301–306, 1991.

[28] Holger Kruse and Amar Mukherjee. Preprocessing Text to Improve Compression

Ratios. Proc. Data Compression Conf., page 555, 1998.

[29] G. G. Langdon. An introduction to arithmetic coding. IBM Journal of Research

and Development, 28:135–149, 1984.

[30] N. Jesper Larsson. The Context Trees of Block Sorting Compression. Proc. Data

Compression Conf., pages 189–198, 1998.

[31] A. Lempel and J. Ziv. A Universal Algorithm for Sequential Data Compression.

IEEE Transactions on Information Theory, 23:337–343, 1977.

[32] A. Lempel and J. Ziv. Compression of Individual Sequences via Variable-rate

Coding. IEEE Transactions on Information Theory, 24:530–536, 1978.

[33] Ming Li and Paul Vitany. An Introduction to Kolmogorov Complexity and Its

Applications. Springer-Verlag New York, Inc., 175 Fifth Av., New York, NY

10010, USA, 1997. ISBN 0-387-94868-6.

[34] Guy Louchard and Wojciech Szpankowski. Average Redundancy Rate of the

Lempel-Ziv Code. Proc. Data Compression Conf., pages 92–101, 1996.

[35] Giovanni Manzini. An Analysis of the Burrows-Wheeler Transform. Proc. 10th

ACM-SIAM Symposium on Discrete Algorithms, pages 669–677, 1999.

http://www.acm.org/pubs/citations/proceedings/

soda/314500/p669-manzini/ also

www.mfn.unipmn.it/~manzini/math/manzini0.htm.

[36] Neri Merhav. On the Minimum Description Length Principle for Sources with

Piecewise Constant Parameters. IEEE Transactions on Information Theory,

39(6):1962–1967, 1993.

99

[37] Motion Picture Experts Group. Documentation and source code for MPEG1–

layer 3 audio codec available at http://www.mp3-tech.org.

[38] M. Nelson. Data Compression with the Burrows-Wheeler Transform. Dr. Dobb’s

Journal, page 46ff, September 1996.

http://www.dogma.net/markn/articles/bwt/bwt.htm.

[39] Dana Richards. Data Compression and Gray-code Sorting. Information Process-

ing Letters 22., pages 201–205, 1986.

[40] Ronald Rivest. On Self-Organizing Sequential Search Heuristics. Communica-

tions of the ACM, 19(2):63–67, February 1976.

[41] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis. An analysis of several

heuristics for the traveling salesman problem. SIAM J. Comput., 6:563–581,

1977.

[42] Kunihiko Sadakane. A Fast Algorithm for Making Suffix Arrays and for Burrows-

Wheeler Transformation. Proc. Data Compression Conf., pages 129–138, 1998.

[43] Michael Schindler. A Fast Block Sorting Algorithm for Lossless Data Compres-

sion. Proc. Data Compression Conf., 1997.

http://www.compressconsult.com/st/.

[44] Julian Seward. bzip2. Burrows-Wheeler compression software.

http://sourceware.cygnus.com/bzip2/.

[45] Julian Seward. On the Performance of BWT Sorting Algorithms. Proc. Data

Compression Conf., pages 173–182, 2000.

[46] C. E. Shannon. A Mathematical Theory of Communication. Bell System Tech.

J., 27, 1948.

[47] Yuri M. Shtarkov and Tjalling J. Tjalkens. The Redundancy of the Ziv-Lempel

Algorithm for Memoryless Sources. In 11th Symposium on Information Theory

100

in the Benelux, 1990.

http://ei1.ei.ele.tue.nl/~tjalling/zivlem/zivlem.html.

[48] D. D. Sleator and R. E. Tarjan. Amortized Efficiency of List Update and Paging

Rules. Communications of the ACM, 28(2):202–208, 1985.

[49] Boris Teia. A lower bound for randomized list update algorithms. Information

Processing Letters, 47:5–9, 1993.

[50] Paul A. J. Volf and Frans M. J. Willems. Switching Between Two Universal

Source Coding Algorithms. Proc. Data Compression Conf., pages 491–500, 1998.

[51] Frans M. J. Willems. Coding for a Binary Independent Piecewise-Identically-

Distributed Source. IEEE Transactions on Information Theory, 42(6):2210–

2216, 1996.

[52] Portable Network Graphics.

http://www.libpng.org/pub/png.

[53] Project Gutenberg.

http://promo.net/pg/.

101

