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GABAA receptor binding is transiently increased in rat whisker barrels during the 

second postnatal week, at a time when neurons in the developing rat cortex are vulnerable 

to excitotoxic effects.  To test whether these GABAA receptors might serve to protect 

neurons from excessive excitatory input, polymer implants containing the GABAA 

receptor antagonist bicuculline were placed over barrel cortex for a 4-day period in young 

(postnatal days 8 – 12) and adult rats.  In the cortex of young, but not adult rats, the 

chronic blockade of GABAA receptors resulted in substantial tissue loss and neuron loss.  

The greater loss of neurons in young rats supports the hypothesis that a high density of 

GABAA receptors protects neurons from excessive excitatory input during a sensitive 

period in development.  
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CHAPTER I  

INTRODUCTION 

 

GABA is the major inhibitory neurotransmitter in the cortex.  During the second 

postnatal week, there is a transient peak in GABAA receptor binding in rat whisker 

barrels.  To investigate the role of transient increase in GABAA receptor binding, the 

barrel cortex of both developing and adult rats was exposed to polymer implants that 

release bicuculline, a specific GABAA receptor antagonist.  Effects of bicuculline versus 

control implants were analyzed in Nissl-stained sections.  In young but not adult rats, 

bicuculline administration was associated with significant tissue and neuron loss.  In this 

first investigation of a chronic in vivo blockade of GABAA receptors in rat cortex, the 

results suggest a neuroprotective role of GABAA receptors in the developing rat cortex.  

 

Development of Barrel Cortex  

The posteromedial barrel field of rat somatosensory cortex, because of its 

transient increase in GABAA receptor binding, serves as a good model for studying 

developmental roles of cortical GABAA receptors.  In the well defined whisker-to-barrel 

pathway, facial vibrissae correspond somatotopically to a specific clustering of cells 

called barrelettes in the brain stem, barrelloids in the thalamus, and barrels in cortex 

(Woolsey, 1967; Woolsey et al., 1975; Welker, 1976).  At approximately postnatal day 3 
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(P3), cells in cortical layer IV begin to aggregate in barrel-like patterns imposed by the 

spatial pattern of the thalamocortical axons.  During second postnatal week in the 

development of the somatosensory cortex, there is dramatic branching of dendrites and 

synaptogenesis within layer IV (Rice, 1985; Rice et al., 1985; Micheva and Beaulieu, 

1996).  Around P8-P12, GABAA receptor binding is transiently increased in cortical 

whisker barrels to almost two times that of the newborn or adult (Fuchs, 1995).  

 

GABA and GABAA Receptor Development in the Cortex 

γ-Aminobutyric acid (GABA) is the predominant inhibitory neurotransmitter in 

the cortex.  From embryonic day 18 until the first part of the second postnatal week, 

GABAergic synapses in the rat cortex can generate membrane depolarization (Cherubini 

et al., 1990; Luhmann and Prince, 1991).  GABA-induced depolarization may be due to 

the depolarized Cl- equilibrium potential found in young neurons (Cherubini et al., 1990), 

but it may also be due to an under-developed Cl- "transport system" (Plotkin et al., 1997) 

which allows an influx, rather than efflux, of chloride ions into the cell.  Maturity of the 

inhibitory system associated with the GABAergic transition from depolarizing to 

hyperpolarizing activity may also depend on the establishment of complex cortico-

cortical synapses (Lund and Harper 1991), or on the developmental changes in receptor 

subunits (Cherubini et al., 1998; Soldo et al., 1998).  By the end of the first postnatal 

week, GABAergic responses are inhibitory (Plotkin et al., 1997; Luhmann and Prince, 

1991). 

In autoradiographic studies of the adult rat parietal cortex, approximately 70% of 

[3H]GABA binding is to the GABAA site (Bowery et al., 1987; Chu et al., 1990).  In the 
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whisker barrel of the somatosensory cortex of rats, [3H]muscimol binding to GABAA 

receptors is relatively low from P0-P4.  Around P8-P12, GABA receptor binding is 

transiently increased in cortical whisker barrels to almost two times that of the newborn 

or adult (Fuchs, 1995). 

In postnatal cortical development, spatiotemporal patterns of neurotransmitter 

receptor binding generally change (Murrin et al., 1985; Dam et al., 1988; Palacios et al., 

1988; Fuchs, 1995).  In several cases, neurotransmitter receptor binding increases 

transiently during brain development (see Table 1).  As with muscimol binding, the 

transience typically occurs in areas that receive direct thalamic input, such as in layer IV 

of the primary somatosensory or visual cortex (Insel et al., 1990; Fuchs, 1995).  While 

the purpose of transient increases in receptors is not known, perhaps the developmental 

changes in receptors assist in cortical organization, maturation, or even neuronal survival 

(review: Zilles et al., 1991; Fuchs, 1995). 

 

Development of Glutamate Receptors and Excitotoxicity 

Glutaminergic (Kaneko and Mizuno, 1988; Kharazia and Weinberg, 1994) 

thalamic afferents terminate in layer IV in the barrel cortex (Chmielowska et al., 1989).  

These receptors, functional from birth (Kim et al., 1995), play an important role in 

synaptic maturation (reviews: McDonald and Johnston, 1990; Kaczmarek et al., 1997; 

Anwyl, 1999). Glutamate receptors in barrels also demonstrate transience during 

development (Insel et al., 1990; Kossut et al., 1993; Monyer et al., 1994; Blue and 

Johnston, 1995; Glazewski et al., 1995; Blue et al., 1997).  For example, in the rat barrel 

field cortex, [3H]glutamate binding to NMDA receptors increases to a peak at P21 (Blue 
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and Johnston, 1995), while [3H]glutamate binding to quisqualate receptors peaks in the 

barrel centers at approximately P10 and then decline to adult levels by P21 (Blue and 

Johnston, 1995). 

Excitotoxicity, which can result from an over-activation of excitatory amino acid 

receptors (Choi, 1992; Olney, 1994), may initiate a cascade of cellular events that 

produce neuronal injury and death in the developing rat brain (McDonald et al., 1988).  

Perhaps due to the slower maturation of the inhibitory system (Burgard and Hablitz, 

1993), there is a transient vulnerability of cortical neurons to seizure activity (Kaminogo, 

1983; Luhmann and Prince, 1991; Agmon and O'Dowd, 1992). In the second postnatal 

week, there is also a transient sensitivity to excitotoxic injury and cell death by AMPA 

(McDonald et al., 1992) and NMDA (McDonald et al., 1988; McDonald and Johnston, 

1990; Carmignoto and Vicini, 1992; Deisz and Luhmann, 1995; Johnston, 1994, 1995).  

Given the coincident timing of increased glutamate sensitivity and the high levels of 

GABAA receptors during the second postnatal week, it is conceivable that the temporary 

increases in GABAA receptors serve to protect cortical neurons from glutamate receptor 

mediated excitotoxicity. 

GABAA Receptor Blockade 

Small changes in the balance between cortical excitation and inhibition during 

development can lead to changes in cortical structure and function (Charpier and Deniau, 

1997; Wallace and Fox, 1999).  GABA, through its hyperpolarizing effects on neurons, 

serves to balance excitatory neurotransmission, and contributes to the overall level of 

cortical activity (Tasker and Dudek, 1991; Bernardo and Wong, 1995; Burgard and 
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Hablitz, 1993; Douglas et al., 1995).  Both development and maintenance of inhibitory 

circuits contribute to neuronal survival (Mattson and Kater, 1989; Ikeda et al., 1997).  

Bicuculline can block the inhibitory effects of GABAA receptor mediated activity 

(Curtis et al., 1971).  Blockade of cortical GABAA receptors can lead to increased activity 

and epileptiform activity, both in vivo (Pernberg et al., 1998) and in vitro (Chagnac-

Amitai and Connors, 1989; Burgard and Hablitz, 1993).  Blockade of GABAA receptors 

can also influence NMDA receptor activity (Luhmann and Prince, 1990; McCormick et 

al., 1993).  Beginning at approximately P6-P8, bicuculline can increase excitatory 

postsynaptic potentials by electrical stimulation (Burgard and Hablitz, 1993) and lead to 

epileptiform bursting by P9 (Burgard and Hablitz, 1993). 

In vivo, ionophoretic application of bicuculline increases the electrophysiological 

activity of cortical neurons (Hicks and Dykes, 1983; Kyriazi et al., 1998).  Locally 

applied bicuculline has also been used to induce focal seizures (Soukupova et al., 1993; 

Stein et al., 2000).  Cell injury following bicuculline-induced seizures has been 

demonstrated in rats (Soderfeldt et al., 1981, 1983; Turski et al., 1985; Sasahira et al., 

1995).  To block GABAA receptors, intraperitoneal (i.p.) bicuculline injections have often 

been employed. Developing rats show epileptiform seizures including shaking, rearing, 

and alternating muscle contraction and relaxation, known as clonus following i.p.  

injections of bicuculline (Turski et al., 1985; Zouhar, 1989; Baram and Snead, 1990).  

However, bicuculline injections are also accompanied by pulmonary edema and 

decreased cerebral oxygenation (Kiessling et al., 1981; Soderfeldt et al., 1983; Kreisman 

et al., 1987).  By applying the GABAA receptor antagonist, bicuculline methiodide (BMI) 
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(Olsen, 1975), directly to the cortex, one can avoid the complications of systemic 

application. 

  

 

Methodology 

The implant material used was an ethylene vinyl acetate copolymer (Evatane, Elf 

Atochem North America, Philadelphia, PA) similar to Elvax 40P (Dupont).  These 

polymers have been used to deliver drugs locally, bypassing systemic interaction and 

degradation.  They also have an advantage over osmotic pumps and iontophoresis that are 

not designed for chronic applications in small mammals like the developing rat.  In vivo, 

Elvax and similar polymer implants have been successfully used to deliver insulin, 

growth factors, immunoglobulins, neurotransmitters, or their antagonists (Table 2).  

Release of drugs within hours of implantation has been demonstrated in vivo (TTX: 

Chiaia et al., 1992; [3H]APV: Fox et al., 1996) for a period of one week (Schlagger et al., 

1993) and longer (Schnupp et al., 1995; Smith et al., 1995; Mooney et al., 1998; Prusky 

and Ramoa, 1999).  
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Table 1. 

Examples of Receptors Displaying Transience During Rat Cortical Development 

 

Receptor Type Method Reference 

GABAA A 
Schliebs and Roth, 1988; Kumar 

and Schliebs, 1993; Fuchs, 1995 

GABAB A Turgeon and Albin, 1994 

Benzodiazepine A Schliebs et al., 1986 

A 
Insel et al., 1990; Blue and 

Johnston, 1995 NMDA 

A, I Brennan et al., 1997 

A Insel et al., 1990; Miller et al., 1990 

Kainate / Quisqualate 
A, I 

Blue and Johnston, 1995; Brennan 

et al., 1997 

Metabotropic glutamate A Blue et al, 1997 

Nicotinic acetylcholine A Fuchs, 1989 

A Kumar and Schliebs, 1992 
Muscarinic acetylcholine 

I Buwalda et al., 1995 

 

A = Receptor autoradiography; I = Immunohistochemistry 
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Table 2. 

Examples of In Vivo Use of Polymer Implants in Rat 

 

Reference Substance Delivered Age  Exposure 
Periods 

Aamodt et al., 2000 

NMDA; Bicuculline; 

NMDA with 

Bicuculline 

P8 2 - 12 days 

Boison et al., 1999 Adenosine Adult 1 - 14 days 

Brown et al., 1986 [3H]Insulin Adult 100 days 

Chiaia et al., 1992; 1994 TTX P0 6 - 11 days 

Doulazmi et al., 1998 Immunoglobulins P4 – P5 4 - 5 days 

Fox  et al., 1996 APV; [3H]APV P0 3 - 6 weeks 

Graber and Prince, 1999 TTX P28 – P30 10 - 15 days 

Kokaia et al., 1994 GABA; Noradrenaline Adult 2 - 14 days 

Penschuck et al., 1999 
BDNF; MK-801; 

[3H]MK-801 
P0 6 - 14 days 

Persico et al., 1997 
p-Chloroamphetamine 

(PCA) 
P0 6 days 

Rhoades et al., 1996; 1998 TTX P0 6 days 

Rozas et al., 1996 GABA Adult 1 - 14 days 

Schlaggar et al., 1993 APV P0 8 days 

Simon et al., 1992 

APV; MK-801; 

dihydro-B-

erythroidine 

P0 19 days 
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CHAPTER II  

MATERIALS AND METHODS 

 

Polymer Implants 

A 10% solution of ethylene-vinyl acetate copolymer beads (Evatane, Elf Atochem 

North America, Philadelphia, PA, N. 24937-78-8) in methylene chloride was prepared 

using methods previously described (Rhine et al., 1980; Silberstein and Daniel, 1982).  

Evatane (0.049 g) was dissolved in methylene chloride (0.44 ml) and thoroughly mixed 

with 0.01 g BMI, yielding a 40 mM bicuculline methiodide (BMI) solution 

(approximately 200 mg per g polymer).  Implants prepared without a drug were used as 

controls.  The suspension was vortexed for 4-5 min, poured into a pre-cooled glass plate 

or metal mold (6.0 cm X 6.0 cm X 0.3 cm), and kept covered at -80°C for 10 min.  The 

frozen polymer was removed from the metal mold, placed on ParaFilm (American 

National Can, Greenwich, CT), wrapped in foil and sealed in a plastic freezer bag.  The 

polymer remained in the -80°C freezer for 4 days and then was transferred to a -20°C 

freezer for an additional 4 days.  Over the first four days, the polymer block was 

periodically removed from the bag and vented under a fume hood.  The polymer was 

sectioned at 100 µm thickness using a sliding mictrotome (Microm Heidelberg, Zeiss), 

and a stereomicroscope was used to aid in cutting the polymer sheets into 2 mm X 2 mm 

implants.  All implants were wrapped in foil and stored at –20°C.  Prior to use, each 
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implant was presoaked overnight (12-16 hours) in 0.9% saline to avoid a high initial rate 

of release (Reh and Constantine-Paton, 1985).  

 

Subjects 

The subjects were Long-Evans hooded rats (Simonsen, Gilroy, CA).  Rats were 

used at P8, where P0 is the day of birth.  Adult male rats at least 3 months of age, but less 

than 1 year old (268 ± 90 g, mean ± S.D.), were also examined.  Animals were kept on a 

12:12 light-dark cycle, had food and water available ad libitum, and were sacrificed 

between 9:00 and 16:00. 

 

Surgery 

Postnatal day 8 rat pups were anesthetized with inhaled methoxyflurane (Pitman-

Moore, Inc., Mundelein, IL).  A midline incision was made in the scalp, and the fibrous 

sheath of periosteum that covers the bone was removed by gentle scraping.  A circular 2 

mm diameter “window” of skull was removed over the barrel field on each side of the 

midline.  The barrel field in the P8 rat was determined to be located approximately 1.2-

2.1 mm posterior to bregma and 3.0-3.5 mm from midline, (Sherwood and Timiras, 

1970).  The dura mater over SI was removed with a fine-curved microhook, and the 

implant was placed over the exposed cortex.  The BMI implant was placed on either the 

right or the left SI; the control implant was placed on the contralateral side (See Fig. 1).  

All implants were secured by gently tucking the corners of the implant under the skull.  

The incision was held together by alpha-cyanoacrylate and without sutures.  While 

recovering from anesthesia, the animal was warmed in an incubator and returned to its 
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mother within 1 hour.  During recovery and for the four days after implant surgery, there 

were no noticeable seizure-like behaviors (convulsions, whisker twitching).    

  Adult rats were anesthetized with ketamine (100 mg/ml solution, i.p.; 90 mg/kg) 

and xylazine (100 mg/ml solution, i.p.; 10 mg/kg).  Under surgical anesthesia, the head 

was shaved and a midline incision made in the scalp.  Using the same procedure as 

above, the periosteum and the musculature were dissected away from the barrel region.  

In adults, the boundaries of the posteromedial barrel field are located approximately 4.0-

6.0 mm from midline and 0.2 mm anterior to and 2.7 mm posterior from bregma (Paxinos 

and Watson, 1986).  After the implantation, the incision was sutured with 4-0 silk, and 

the animals were returned to their home cages and monitored for recovery.   

 

Tissue Preparation 

 Four days after the implant surgery, animals were deeply anesthetized and perfused 

intracardially with 200 ml room temperature 0.9% saline solution, followed by chilled 

4% paraformaldehyde in 0.1 M phosphate buffer at pH 7.4.  P12 rat pups were 

anesthetized with inhaled Metofane (Pitman-Moore, Inc., Mundelein, IL), and adult rats 

were anesthetized with ketamine (100 mg/ml solution, i.p.; 90 mg/kg) followed by 

xylazine (100 mg/ml solution, i.p.; 10 mg/kg).  Following a 24-48 hour postfixation, 

perfused brains were cryoprotected in 30% sucrose in 0.1 M phosphate buffer for 1 to 2 

days.  Brains were frozen by submersion in –35°C isopentane for 5 minutes, followed by 

-80°C isopentane for 5 minutes, and then were wrapped in foil and stored at –80°C until 

use.  Whole brains were mounted with O.C.T. (TissueTek, Inc. Elkhart, IN), cut at 50 µm 

thickness using a sliding microtome (Microm Heidelberg, Zeiss), and collected in 0.1 M 
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phosphate buffer.  Coronal brain sections were mounted on gelatinized subbed slides and 

stained for Nissl substance with 0.25% thionin.  The stained slides were then dehydrated 

in a series of alcohols, cleared in xylenes, and coverslipped with DPX (BDH Microscopy 

Material Ltd., England). 

 

Data Analysis 

Drawings from each of the Nissl stained sections through the barrel field were made 

using a camera lucida.  Four serial 50-µm coronal sections (a total of 200 µm anterior-

posterior) were chosen to represent the area of maximum damage under the implant.  

Using a camera lucida at a final magnification of 40X, affected areas in each section were 

outlined and measured in mm2 using a digitizing data tablet. 

For each section, effects of bicuculline were calculated as the mean affected area 

on the BMI side minus that on the control side.  Statistical analysis was performed using 

Jandel SigmaStat software.  Effects of age and treatment were assessed with Student’s t-

tests and analyses of variance (ANOVAs) followed by Tukey’s or Dunnett’s post-hoc 

analysis. 

 

Electrophysiology 

To assess the effectiveness of bicuculline release from the implant, cortical 

electrophysiological recordings were made under both the control and bicuculline 

implants.  These recordings were performed four days post-implantation (in three P12 

rats), or one day post-implantation (in two P18 rats).  Animals were surgically 

anesthetized with urethane (1.0 g/kg, i.p.; 20% solution) and mounted in a stereotaxic 
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instrument.  After removal of the skin from the surgical area, the implants were removed.  

Within 20 min of implant removal, the first electrical recordings were made by lowering 

a 10 Ω tungsten recording electrode with a 5-µm tip into the center of the implant site.  

Electrical activity was recorded by multiple passes beginning at the surface of the cortex 

and at 100 µm intervals throughout the depth of the cortex. 
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Figure 1.  Surgical procedure in a P8 rat.  (A) Anesthetized animal with inhaled 

Metofane.  (B) Window in skull over posteromedial barrel field.  (C) Polymer implants 

placed over both cortices prior to incision closure. 

A 

B C
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CHAPTER III  

RESULTS 

 

Drug Release from Implants 

The coloring of the polymer implant that accompanied the doping of the implant 

indicated that the drug was distributed throughout the polymer.  For example, when the 

polymer was mixed with methylene blue, the implant appeared light to deep blue 

depending on concentration.  The introduction of the 40 mM BMI changed the normally 

clear polymer to a golden yellow.  In vivo and in vitro release of drug from the polymer 

was also assessed by visual inspection.  When implants were retrieved from the cortex 

post-termination, methylene blue implants were lighter in color; BMI implants had 

changed to a pale translucent yellow shade.  These changes in implant color intensity 

were similar to studies in this laboratory, when doped polymer implants were placed in 

saline for four days (unpublished observations).   

Further evidence of drug release in vivo was noted in electrophysiological studies 

following the one or four days of exposure to cortical implants.  Observations of 

multiunit recordings in the P18 animals after the one-day of exposure revealed different 

activity levels under the bicuculline and control implants.  Periodic electrophysiological 

bursting was observed in the cortex under the bicuculline implant, but was not quantified.  

Acute delivery of 40 mM bicuculline methiodide solution to the surface of the cortex in 

one P18 animal resembled the electrophysiological activity after one-day exposure to the 
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bicuculline implant. There was less bursting under the control implant compared to the 

bicuculline implant in these experimental animals. 

In the P12 animals following 4 days of implant exposure, both driven and 

spontaneous electrophysiological activity were increased under the bicuculline implant 

compared to the control implants.  As seen in the example presented in Figure 2, 

spontaneous activity appeared slightly greater under the bicuculline implant than under 

the control implant from the cortical surface to depths of 1200 – 1400 µm.  In the 

developing cortex, these depths correspond approximately to layers I-IV. In a few 

animals, bicuculline-associated increase extended down to layers V and VI.  The increase 

in electrophysiological spontaneous activity under the bicuculline implant compared to 

the control implant suggests GABAA blockade was still effective after four days in vivo.  

Evidence of sustained in vivo drug release is in agreement with results from other studies 

utilizing ethylene vinyl copolymer methodology (Mooney et al., 1998; Penschuck et al., 

1999). 

 

Histologic Observations 

As with other studies using implants (Jablonska et al., 1999; Penschuck et al., 1999) 

brains with hematomas or gross surgical trauma, or whose implants had shifted from the 

barrel region, were not included in the study.  Macroscopically, slight depressions 

remained over the barrel cortex where either implant had been placed.  Microscopic 

examinations of sections under the implants suggested three categories of 

cytoarchitectural effects (see Figs. 3 and 4 and 5).  
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Tissue loss.  Areas with a complete absence of tissue were measured from an 

interpolated cortical surface.  The loss of tissue was generally conical in shape with the 

widest area being directly under the implant, occasionally tapering through all layers of 

cortex. 

Neuron loss.  Nissl-stained sections also contained areas with an apparent loss of 

neurons.  Neurons, which are characteristically large cells with pale cytoplasm, a visible 

nucleus, and darkly staining nucleoli (Vaughan, 1984), were not present in this area, but 

glial cells were seen.  Neuron loss was often seen adjacent to areas of tissue loss. 

Histological disruption.  In addition to tissue and neuron loss under implants, 

some areas contained disrupted lamination or cells with abnormal morphology.  Damaged 

cells appeared similar to those in rat cortex following systemic bicuculline 

administrations, as described by Soderfeldt (1981, 1983).  For example, many neurons 

were shrunken in size and/or had dark staining cytoplasm.  These neurons however, were 

still relatively larger than glia.  There were also degenerating neurons, cells with large 

cytoplasmic vacuoles, and cells containing membrane-bound apoptotic bodies.  Such 

affected cells were not restricted to a specific layer, and were often found adjacent to the 

area of neuronal loss.  Also in this category, there were areas with disturbances in 

numerical cell density and cortical lamination.  Often there was a blurring of the normally 

distinct boundaries of layers IV and V, or general loss in the clarity of the barrel 

cytoarchitecture.  Occasionally, cells and laminae shifted and extended above the 

interpolated normal cortical surface.  This area of  “tissue gain” was subtracted from the 

calculated tissue loss for an area of net tissue loss. 
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Summed Effect.  The total area of cortex affected by the implant was calculated as 

the sum of the areas of tissue loss, neuron loss, and histological disruption. 

 

Data Analysis 

For the pups exposed to implants from P8-P12, effects of implants containing 

bicuculline methiodide were greater than those of the control implant (Table 3).  The area 

of tissue loss was greater by 0.32 mm2 (P < 0.001) and that of neuron loss was greater by 

0.28 mm2 (P < 0.003) (Table 4, Fig. 6).  The area of histological disruption under 

bicuculline implants was not significantly greater than under the control implant (0.90 

mm2, P < 0.07).  The summed effect was significantly greater under the bicuculline than 

control implant (1.50 mm2, P < 0.001; Fig. 6).  For adults, however, no significant 

difference was observed in any of the categories (Tables 3 and 4; Fig. 6).  The results of a 

two-way ANOVA suggested that tissue loss was affected by treatment (bicuculline vs. 

control) (F1,44 = 5.60, P < 0.02), but not age (F1,44 = 3.02, P < 0.09; Table 5). There was 

not a significant interaction between the two (P < 0.145; Fig. 7A).  For neuron loss, there 

was a significant effect of both age (F1,44 = 9.69, P < 0.003) and treatment (F1,44 = 7.38, P 

< 0.01). Again, there was no significant interaction between age and treatment (P < 0.07, 

Table 5; Fig. 7B). In the category of histological disruption there was a significant effect 

of age (F1, 44  = 55.33, P < 0.001) but not of treatment (P < 0.07).  There was significant 

interaction between age and treatment (F1,44 = 4.17, P < 0.05, Table 5; Fig. 7C).    When 

all categories were combined for the summed effect, there were effects of both age (F1,44 

= 39.34, P < 0.001) and treatment (F1,44 = 4.05, P < 0.05), and a significant age by 

treatment interaction (F1,44 = 5.68, P < 0.02, Table 5; Fig. 7D). 
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The effects of the control implant were significantly greater in young than adult 

cortex in tissue loss (F1,23 = 9.51, P < 0.005; Table 6), histological disruption (F1,23 = 

20.61, P < 0.0002), and summed effect (F1,23 = 11.17, P < 0.003; Table 6).  The effects of 

the bicuculline implant were significantly greater in young than adult cortex in neuron 

loss ((F1,23 = 8.23, P < 0.01; Table 6), histological disruption (F1,23 = 34.75, P < 0.0001; 

Table 6), and summed effect (F1,23 = 28.32, P < 0.0001; Table 6). 
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Figure 2.  Spontaneous activity under cortical implants.  Shown are data from 

barrel cortex of a P12 rat, 4 days after placement of the implants.  In this example, 

spontaneous activity appears slightly increased under the bicuculline implant than 

under the control implant from the cortical surface to a depth of 1300 µm.  

Electrophysiological data were box-car averaged over three points. 

0

500

1000

1500

2000

2500

 Multiple unit firing rate (Hz)

D
ep

th
 fr

om
 c

or
tic

al
 s

ur
fa

ce
 ( 
µ

m
)

Control
BMI

     0                  2                   4                     6                     8                 10



 

 21

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Examples of thionin-stained cells within the area of histological 

disruption, including apoptotic neurons (A and C, closed arrows), apoptotic glial cells (B, 

closed arrow), and degenerating neurons (C, open arrow).  Scale bars, 10 µm. 
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Figure 4.  Tissue disruption under a polymer implant.  (A) Photograph of thionin-

stained section after a four-day exposure to a control implant on the left and bicuculline 

implant on the right.  (B) Schematic reconstruction to illustrate defined areas of effects 

under an implant.  
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Figure 5.  Affected areas under the implant.  (A) Photograph of cortex under a bicuculline 

implant on a P12 rat. (B) Boundaries of areas of cortical effects are superimposed over 

the image.  Numbers refer to (I) tissue loss, (II) neuron loss, and (III) histological 

disruption.  Scale bars, 1 mm. 

A B I 

II

III



 

 24

  

Table 3. 

Effects of Bicuculline and Control Implants in Rats 

 

  Tissue 
Loss 

Neuron 
Loss 

Histological 
Disruption 

Summed 
Effect 

Bicuculline 
 0.30 ± 0.07 0.38 ± 0.09 3.10 ± 0.40 3.77 ± 0.45 

Control 
 -0.03 ± 0.06 0.10 ± 0.05 2.20 ± 0.26 2.27 ± 0.29 

(B minus C) 
 0.32 ± 0.08 0.28 ± 0.09 0.90 ± 0.23 1.50 ± 0.27 PUPS 

(n = 13) 

One-Way 
ANOVA 

P <  0.001; 
Post-hoc 
P < 0.05 

P < 0.003  
(KW); 

Post-hoc 
P < 0.05 

(Dunnett's) 

P < 0.07 

P < 0.01; 
Post-hoc 
P < 0.05 

(Tukey ‘s) 

Bicuculline 
 0.32 ± 0.13 0.08 ± 0.05 0.42 ± 0.12 0.82 ± 0.28 

Control 
 0.24 ± 0.07 0.03 ± 0.03 0.68 ± 0.20 0.95 ± 0.26 

(B minus C) 
 0.07 ± 0.10 0.05 ± 0.06 -0.25 ± 0.13 -0.13 ± 0.14

ADULTS 
(n = 11) 

One-Way 
ANOVA 

P <  0.82 
(KW) 

P < 0.48 
(KW) 

P < 0.38 
(KW) P < 0.74 

 

Effects were calculated in mm2 for each section as mean area of affected tissue 

under the implant on the bicuculline side minus that on the control side (B minus 

C).  Shown are the mean ± S.E.M. (KW = Kruskal-Wallis). 
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Table 4. 

Cortical Effects of Bicuculline 

 

 Pups 
(n = 13) 

Adults 
(n = 11) 

Pups Minus 
Adults 

Tissue Loss 0.32† ± 0.08 
P < 0.001 

0.07 ± 0.10 
P < 0.82 

 
0.25 

F1,22 = 3.98 
P < 0.06 

 

Neuron Loss 0.28 ± 0.09 
P < 0.003 

0.05 ± 0.06 
P < 0.48 

 
0.23 

F1,22 = 4.01 
P < 0.06 

 

Histological 
Disruption 

0.90 ± 0.23 
P < 0.07 

-0.25 ± 0.13 
P < 0.38 

 
1.15 

F1,22 = 17.36 
P < 0.001 

 

Summed Effect 1.50 ± 0.27 
P < 0.01 

-0.13 ± 0.14 
P < 0.74 

 
1.63 

F1,22 = 23.12 
P < 0.001 

 
 

†Areas (in mm2) of affected tissue under the implant for each section (bicuculline 

side minus control side).  Shown are the mean ± S.E.M. 
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Figure 6. Effects of bicuculline. Shown are mean areas per section of neuron loss, 

tissue loss, histological disruption, and summed effect under the bicuculline 

minus the control implant.  In cortex of pups, but not adults, bicuculline was 

associated with significant neuron loss, tissue loss, and summed effect  (one-way 

ANOVA ** P < 0.003, *** P < 0.001, and, * P < 0.01, respectively).  Each value 

represents the mean ± S.E.M.  
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Table 5. 

Results of Two-Way ANOVA in Rat Barrel Cortex Following Bicuculline 

Implants 

 

  Tissue Loss Neuron Loss Histological 
Disruption 

Summed 
Effect 

F = 3.02 F = 9.69 F = 55.33 F = 39.34 
Age 

P < 0.09 P <  0.003 P <  0.001 P < 0.001 

F = 5.60 F = 7.38 F = 1.33 F = 4.05 
Treatment 

P <  0.02 P < 0.01 P < 0.26 P < 0.05 

F = 2.21 F = 3.55 F = 4.17 F = 5.68 

Two -Way 
ANOVA 

Age X 
Treatment 

P < 0.15 P < 0.07 P < 0.05 P < 0.02 
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Figure 7.  Graphs of means tested for effects of age, treatment, and age-by-treatment 

interactions (see Table 5).  
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Table 6. 

Effects of Cortical Implants 

 

  Tissue Loss Neuron Loss Histological 
Disruption 

Summed 
Effect 

F = 9.51 F = 1.56 F = 20.61 F = 11.17 
Control 

P < 0.005 P <  0.22 P <  0.0002 P < 0.003 

F = 0.02 F = 8.23 F = 34.75 F = 28.32 

One -Way 
ANOVA 

Bicuculline 
P <  0.88 P < 0.01 P < 0.0001 P < 0.0001 
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CHAPTER IV 

DISCUSSION 

 

 The developmental role of GABAA receptors was explored in rat whisker barrel 

cortex.  Blockade of GABAA receptors in young (P8-P12), but not adult cortex, resulted 

in significant neuron loss and tissue loss.  In addition, histological disruption was greater 

in young than adult cortex.  The results of this study suggest there is a neuroprotective 

role of GABAA receptors in developing cortex.  

GABA can act as a trophic signal that can accelerate growth and facilitate synapse 

formation during development (Belhage et al., 1988).  Increased synaptogenesis occurs 

during the second postnatal week (Kristt, 1978; White et al., 1997), and a marked 

increase in GABAergic synapses occurs between P10 and P15 (Micheva and Beaulieu, 

1996).  Blocking GABAA receptors at such a critical time in development could lead to a 

loss of GABAergic synapses, and possibly a consequent loss of neurons, particularly 

GABAergic neurons.  

Decreasing inhibition by GABAA receptor blockade could tip the balance in favor 

of increased cortical activity and release of glutamate.  The loss of neurons resulting from 

GABAA receptor blockade in young animals was coincident with a time when the cortex 

is transiently vulnerable to excitotoxic influences (Johnston 1995, 1996) mediated by 

glutamate receptors (McDonald et al., 1988; McDonald and Johnston, 1990, 1993). 
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Although specific characteristics of neurons lost in the present study were not 

determined, other studies have described populations of neurons with a selective 

vulnerability to excitotoxic injury (Tecoma and Choi 1989; Weiss et al., 1990; Storey et 

al., 1992; Young et al., 1999). 

Although GABAA receptors are not present on glia in vivo in barrel cortex 

(Fritschy et al., 1994; Lin et al., 1994), application of bicuculline in the developing rat 

cortex resulted in a significant loss of tissue, apparently including glia.  It is known that 

excitatory amino acids can also cause swelling and destruction of astrocytes (Kimelberg, 

1996).  Furthermore, the excitotoxic damage can become cyclic as the response of the 

swelling of the astrocytes causes the release of more glutamate (Choi and Rothman, 

1990; Choi, 1992).   

The mechanical insult of the surgery or implant contributed more to neuron loss 

and disruption in cortex of the pup than in the adult.  Cortical insults may result in loss of 

cells through temporary hypoxia, disturbances of the blood-brain barrier, or secondary 

apoptotic mechanisms (Wyszynski et al., 1989; Persico et al., 1997).  However, surgical 

procedures of the two implant sites did not differ, and trauma effects would have been 

comparable within animal.  Nevertheless, the effects of bicuculline in these experiments 

might be amplified by the perturbation of cortical surgery.  Furthermore, bicuculline 

methiodide may act on sites other than the GABAA receptor complex (Olsen et al., 1976; 

Mestagh and Wulfert, 1999, Seutin and Johnson, 1999). Additionally, there may be 

variability in the distribution of bicuculline through the cortex as dictated by differences 

in cortical density between the two age groups. 
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The age-dependent effect of bicuculline on histological disruption suggests that 

GABAA receptors may also be necessary for proper cortical organization during 

development.  Perhaps due to the substantial tissue and neuron loss, the surviving cells 

expand and/or shift to the newly vacated space, altering the cytoarchitecture.  

Cytoarchitectural remodeling following injury has been described previously (Isacson 

and Sofroniew, 1992; Ferrer, 1993; Redecker et al., 1998).  Activation of microglia 

(Streit, 1996), or an increase in the replication or migration of astrocytes (Norton et al., 

1992; Burtrum and Silverstein, 1993; Norenberg, 1996) may have also contributed to 

disruption of the normal cortical architecture.   

The results presented here indicate a significant loss of neurons and tissue in the 

developing rat cortex following a chronic application of bicuculline methiodide.  It is 

unclear if these effects are due to increased glutamate-receptor mediated activity or if the 

receptor blockade led to a loss of functional synapses and a subsequent loss of neurons. 

These results are consistant with the current theory that during the second postnatal week, 

cell survival requires an appropriate balance between excitatory and inhibitory systems 

(Ohkuma, et al., 1994; van den Pol et al., 1996; Ikonomidou et al., 1999, 2000). 

Furthermore, the neuroprotective role of GABAA receptors proposed here adds to the 

current view that GABA contributes to cortical development (Lauder et al., 1986, 1998; 

Belhage et al., 1988; LoTurco et al., 1995; Berninger et al., 1995; Kellogg 1998; Owens 

et al., 1999).   
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APPENDIX A 

ENZYME HISTOCHEMISTRY 
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ENZYME HISTOCHEMISTRY 

Background 

Cytochrome oxidase (CO) staining is used as a marker of mitochondrial oxidative 

metabolism.  Cytochromes are responsible for electron transport and oxidative 

phosphorylation that yield ATP.  It has been hypothesized that the more active the 

neuron, the greater the need for ATP, and the greater the cytochrome oxidase activity 

(Wong-Riley, 1979).  This link between metabolic processes and neuronal activity has 

been proposed in the somatosensory cortex (Wong-Riley and Welt, 1980, Land and 

Simons, 1985a).  CO staining is decreased with deafferentation (Land and Simons, 

1985b; Mjaatvedt and Wong-Riley, 1991) and other forms of sensory deprivation (Land 

and Akhtar, 1987; Wong-Riley and Welt, 1980; Rhoades et al., 1993; although see 

Garraghty et al., 1991).  Conversely, CO staining increases in the cortex following 

epilepsy (Gerebtzoff et al., 1979) or injury (Martin et al., 1997; Valla et al., 1999).  The 

predicted response in this study was greater CO staining in the cortex under the 

bicuculline than control implants, due to disinhibited activity. 

 

Methods 

Data presented here were obtained from some of the animals used for the 

experiment described in the main thesis.  Sections from 10 pups and 4 adults were used 

for CO staining.  Based on the procedure previously described (Wong-Riley, 1979), 

sections were stained for CO activity.  The slides were then dehydrated in a series of 
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alcohols, cleared in xylenes, and then coverslipped with DPX.  Qualitative comparison of 

staining was done within section. 

 

Results and Discussion 

Under both bicuculline and control implants, there was a decrease in cytochrome 

oxidase in areas with neuron loss (Fig. 8).  Occasionally there was an increase in 

cytochrome oxidase activity in areas adjacent to the site of neuron loss.  The decrease in 

staining is consistent with reduced CO activity in atrophic neurons following a cortical 

stab wound (Al Ali and Robinson, 1984).  The increased metabolic activity in the 

surrounding tissue may be due to reduction of GABAergic inhibition from adjacent 

cortex.
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Figure 8.  Photograph of cytochrome oxidase staining in a P12 rat cortex that was 

exposed to a bicuculline polymer implant.  Increased CO staining  (arrows) can 

be seen adjacent to areas with neuron loss.  Scale bar, 500 µm. 
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APPENDIX B 

GABAA RECEPTOR BINDING 
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GABAA RECEPTOR BINDING 

Background 

GABAA receptor binding has been shown to be regulated with sustained changes 

in neural activity.  For example, following sensory deprivation, GABAA receptor binding 

is reduced in rat cortex (visual: Gordon et al., 1997; somatosensory: Skangiel-Kramska et 

al., 1994; Fuchs and Salazar, 1998).  The changes in activity-dependent receptor 

regulation may also depend on age.  For example, in response to increased activity, 

GABAA receptors are down-regulated in juvenile (P20-30) and up-regulated in adult rat 

slices (Shaw and Scarth, 1992).  In the present experiment, receptor autoradiography was 

used to estimate changes in GABAA receptor binding following chronic localized 

bicuculline application. 

 

Methods 

Data presented here were obtained from some of the animals used for the 

experiment described in the main thesis.  Sections from three pups and three adults were 

used for these experiments.  The procedure for [3H]muscimol binding to GABAA was 

based on the methods of Mower et al. (1986).  Sections were preincubated in 0.31 M 

Tris-citrate (pH 7.1, 4ºC) solution for 20 min to remove endogenous GABA, then 

incubated in 10 nM [3H]muscimol (specific activity = 20 Ci/mmol; New England 

Nuclear, Boston, MA) at 4ºC for 40 min.  The sections were rinsed twice for 30 sec each 

in 4ºC Tris-citrate, followed by a brief dip in distilled water.  GABA (final concentration 
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1 mM) was added to the incubation solution to determine nonspecific binding.  Excess 

liquid from the rinses was removed quickly by aspiration and the sections were dried with 

a fan.  The autoradiography sections and tritium standards were exposed to tritium-

sensitive film (3H-Hyperfilms, Amersham, Arlington Heights, IL) in X-ray cassettes at 

4ºC for approximately 10 wk. 

A qualitative analysis of [3H]muscimol binding under each implant site was 

performed using a video-based computerized analysis system (MCID, Imaging Research, 

St. Catherines, Ont. Canada).  

 

Results and Discussion 

In this study, [3H]muscimol binding was reduced in areas of neuron and tissue 

loss under both bicuculline and control implants.  There appeared to be no obvious 

changes in [3H]muscimol levels within the laminae and cortical barrels of the area of 

histological disruption between the bicuculline and control sides.   GABAA receptor 

binding in relation to neuron density might reveal a bicuculline-induced change. 
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APPENDIX C 

SYSTEMIC APPLICATION OF BICUCULLINE 
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SYSTEMIC APPLICATION OF BICUCULLINE 

Background 

In order to avoid the potential interaction between GABAA receptor blockade and 

the effects of the surgical implant procedure, bicuculline was systemically administered 

to developing rats.  Evidence of neuronal damage following systemic application of 

bicuculline in adult rat cortex has been demonstrated in another lab (Soderfeldt et al., 

1981, 1983).  Doses of 1.0 – 8.0 mg/kg bicuculline (i.p.) in developing pups can lead to 

epileptiform seizures including shaking, rearing, and alternating muscle contraction and 

relaxation, known as clonus (Turski et al., 1985; Zouhar, 1989; Baram and Snead, 1990).  

As described in the main text, significant neuron loss under the bicuculline implant was 

present after four days in the developing cortex.  By using cortical thickness as an index 

of tissue volume, substantial loss of neurons in the cortex following four days of systemic 

bicuculline administration might be uncovered.   

Methods 

The solution of GABAA receptor antagonist was prepared by dissolving 

bicuculline (Sigma Chemical Co., St. Louis, MO) in 0.1 M HCl, buffered to pH 5.0 with 

0.1 M NaOH.  The control solution was vehicle alone.  In trial experiments, a single dose 

of 2 mg/kg i.p. was sufficient to cause seizures, and often death within minutes. A 

concentration of 1.5 mg/kg was found to induce seizures, with no mortality. Death from 

systemic bicuculline application is possibly due to pulmonary edema (Kiessling et al., 

1981; Soderfeldt et al., 1983; Kreisman et al., 1987).  
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For 4 days, beginning on P8, unanesthetized rats were given a 0.1 ml daily 

injection of either the bicuculline solution (1.5 mg/kg i.p.; n = 3) or the control solution 

(n = 4).  After injections, the pups were monitored for 1 hr before they were returned to 

the mother.   

Tissue was prepared as previously described in the main thesis.  Drawings from 

Nissl stained somatosensory cortex were made using a camera lucida at a final 

magnification of 20X. The barrel field in the P8 rat was determined to be located 

approximately 1.2-2.1 mm posterior to bregma and 3.0-3.5 mm from midline (Sherwood 

and Timiras, 1970).  Cortical thickness from upper white matter through layer I was 

measured in mm using a digitizing data tablet.  Thirty-two measurements per animal were 

chosen to represent changes in cortical thickness (4 serial coronal sections in the 

posteromedial barrel field, 8 measurements from each hemisphere).  The thickness of the 

cortex from the two groups of animals was compared using a Student’s t-test.  

 

Results and Discussion 

In this experiment, the somatosensory cortical thickness with bicuculline 

injections was 1.41 ± 0.02 mm and with control injections, 1.42 ± 0.01 mm.  There was 

no significant difference (P < 0.50) in somatosensory cortical thickness between the 

control and bicuculline injections.  Perhaps the lack of significant loss in tissue volume 

may be due to a daily single exposure to the GABAA receptor rather than the chronic 

blockade provided by the implant.  However, the possibility of neuron loss from systemic 

bicuculline application cannot be rejected and could be further examined using 

stereological counts of neurons in semithin sections.   
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APPENDIX D 

BDNF AND CORTICAL ACTIVITY 
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BDNF AND CORTICAL ACTIVITY 

Background 

Neurotrophins have been associated with trophic support in the developing 

nervous system.  Recent literature suggests that brain-derived neurotrophic factor 

(BDNF) may go beyond this traditional role.  BDNF in adults appears to play a role in 

regulation of cortical activity and the GABAergic system.  

BDNF is upregulated by increased electrical activity.  For example, while BDNF 

mRNA levels are barely detectable in barrels normally, whisker stimulation increases it 

markedly (Rocamora et al., 1996).  It has been proposed that the up-regulation of BDNF 

is by the excitatory glutaminergic neurons (Zafra et al., 1992).  The rise in BDNF can 

also be demonstrated following periods of hyperexcitability (Zafra et al., 1990; Ernfors et 

al., 1991) and kainic acid seizure-induced activity (Zafra et al., 1990; Ballarin, 1991; Gall 

et al., 1991).  There is also an increase in BDNF in areas adjacent to electrolytic 

(Rocamora et al., 1992) and chemical (Kokaia et al., 1993) lesions.  Additionally, 

reduction of BDNF by antisense to BDNF mRNA in the developing brain increases 

neuronal loss following kainic acid seizures (Tandon et al., 1999).  

The barrel cortex, where there is a large concentration of GABAergic neurons and 

synapses, provides a good model to examine the relationship between BDNF and GABA.  

The disinhibition of the GABAergic system, as in the chronic application of bicuculline, 

may result in an increase in BDNF, whose role may also be one of neuroprotection. 
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Methods 

Immunohistochemical methods were based on the protocol of Conner et al. 

(1997).  Implanted pups (n = 5) were prepared for antibody staining by perfusion with 2% 

paraformaldehyde (in 0.1 M phosphate buffer, pH 7.4.  Coronal sections (50-µm thick) 

were obtained using a sliding microtome and were stored free-floating in 0.1 M 

Millonig's buffer for no more than 24 hr, until processed.   

Sections were washed for 10 min in Tris-buffered saline (TBS) followed by a 20 

min incubation in TBS containing 0.25% Triton X-100.  The sections were then blocked 

in 5% goat serum and 2% bovine serum albumin in TBS for 60 min.  The free-floating 

sections were incubated with the primary anti-BDNF (50 ng/ml) provided by Dr. Qiao 

Yan (Amgen, Yan et al., 1997), containing 0.25% Triton X-100 and 5% goat serum in 

TBS.  Sections were incubated for 40-64 hr at 4ºC on a slow moving shaker.  The 

sections were then incubated with 1.5 µg/ml biotinylated goat anti-rabbit IgG (Vector 

Laboratories, Burlingame, CA) containing 0.25% Triton X-100 and 5% goat serum in 

TBS for 3 hr, followed by incubation with avidin-peroxidase complex (Elite ABC kit, 

Vector Laboratories, Burlingame, CA) for 90 min at room temperature.  The sections 

were rinsed with three changes of 0.1 M Tris-HCl buffer (15-30 min per rinse). The 

sections were then mounted and air-dried.  The sections were developed with 0.4% 

diaminobenzidine tetrahydrochloride, 0.06% nickel chloride, and 0.06% H2O2 in 0.1 M 

Tris-HCl buffer (pH 7.4), then rinsed two times in 0.1 M phosphate-buffered saline 

(PBS).  After being dehydrated in a series of ethanol and cleared in xylenes, the sections 

were mounted in DPX. 
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Results and Discussion 

BDNF immunoreactivity increased under both control and bicuculline implant sites, with 

a slightly greater increase in staining within the area of histological disruption of the 

bicuculline than the control side (Fig. 9).  These results are consistent with 

demonstrations of BDNF upregulation following addition of the GABAA receptor 

antagonist bicuculline (Metsis et al., 1993) or traumatic brain injury (Mattson and Scheff, 

1994).  However, this is the first reported example of injury or bicuculline-induced 

BDNF upregulation in developing rat cortex. 
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Figure 9.  Photograph of anti-BDNF staining under control implants in a P12 rat. 

Increased BDNF antibody staining is greater (arrow) under the bicuculline implant (A) 

than under the control implant (B).  Higher magnification (C) of cells positive for BDNF 

antibody (arrows).  Scale bars for A and B, 500 µm; C, 25 µm. 

C

A B 
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APPENDIX E 

SELECTIVE VULNERABILITIES OF NEURONAL AND GLIAL POPULATIONS 
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SELECTIVE VULNERABILITIES OF NEURONAL AND GLIAL POPULATIONS 

Background 

Apoptosis or active programmed cell death, can be seen during the first month of 

normal cortical development (Raff et al., 1993; Ferrer et al., 1994), as well as after 

excitotoxic damage (Portera-Cailliau, 1995; Bennett et al., 1998; Huang et al., 1999; 

Zipfel et al., 1999).  Apoptotic cells can also be seen following traumatic injury (Liu et 

al., 1997; Newcomb et al., 1999; Pohl et al., 1999; Raghupathi et al., 2000)..  The purpose 

of this study was to examine the time course and selective vulnerabilities of the neuron 

and glia populations following implant surgery.  

 

Methods 

Eleven rat pups (P8) were implanted bilaterally on P8 as described in the main thesis.  

After 1 day (n = 4), 2 days (n = 4), and 4 days (n = 3), the animals were perfused and 

brains cryoprotected as previously described.  Sections were cut at 40 µm thickness and 

stained, dehydrated, and coverslipped.  

Lange et al.  (1999) described a method for identifying apoptotic cells in Nissl-

stained sections following injury using dark-field microscopy.  In this study, low-

magnification dark-field was only slightly useful in screening for apoptosis.  In dark-field 

microscopy, darkly stained structures like apoptotic bodies diffract the light rays and 

become apparent.  Due to the thickness of the sections and the large numbers of pyknotic 

cells, many areas were bright under dark-field magnification.  High-magnification bright-
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field was then necessary for confirmation of apoptosis.  Drawings from each of the Nissl 

stained sections through the barrel field were made using a camera lucida.  Four serial 

coronal sections (a total of 160 µm A-P in thickness) were chosen to represent the area of 

maximum damage under the implant.  Using a camera lucida at a final magnification of 

40X, affected areas in each section were outlined and measured in mm2 using a digitizing 

data tablet.  At a final magnification of 400X, apoptotic neurons and apoptotic glia were 

counted within three 450 µm X 450 µm regions in the area of histological disruption. 

Apoptotic neurons, were distinguished from the smaller glial cells, by their 

characteristically large size and pale cytoplasm (Vaughan, 1984). 

 The proportions of apoptotic neurons to apoptotic glia were then calculated on 

each side.  Statistical analysis was performed using Jandel SigmaStat software.  Effects 

of treatment and exposure time to implants were assessed with analysis of variance 

(ANOVA) followed by Tukey’s post-hoc analysis. 

  

Results and Discussion 

Apoptotic cells were identified by their shrunken cytoplasm and spherical apoptotic 

bodies within the cell (Portera-Cailliau et al., 1997).  Apoptotic neurons in the developing 

rat brains have been seen within 24 hours following excitotoxic damage (Portera-Cailliau 

et al., 1997; Ishimaru et al., 1999) and traumatic brain injury (Bittigau et al., 1999; Pohl 

et al., 1999).  In this study, apoptotic neurons and apoptotic glia were present in all 

animals, although it should be noted that the incidence of apoptotic cells was very low 

over the 4-day period (Table 7; Fig 10).  The cortical apoptotic neuron:glia ratio between 

the control and bicuculline sides was not significantly different after 1, 2, or 4 days of 
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exposure (Table 7, Fig. 11). In addition, the neuron:glia ratio between the bicuculline and 

the control implants was not time-dependent (F1, 8 = 2.26, P < 0.17).   
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Table 7. 

Effects of Bicuculline Implants on Numbers of Apoptotic Cells 

 

 Neurons Glia 

Duration of 
exposure 
to implant 

Bicuculline Control 
Bicuculline 

minus 
Control 

Bicuculline Control 
Bicuculline 

minus 
Control 

Neuron: 
Glia Ratio

1 day      
(n = 4) 27.8 ± 8.9 11.0 ± 4.4 16.8 ± 2.2 8.0 ± 3.0 2.2 ± 1.0 5.8 ± 2.2 2.1 ± 0.8

2 day      
(n = 4) 18.0 ± 2.1 9.0 ± 2.1 9.0 ± 2.7 4.25 ± 1.6 1.2 ± 0.5 3.0 ± 1.5 3.6 ± 2.2

4 day      
(n = 3) 7.7 ± 2.2 4.0 ± 1.5 3.7 ± 3.3 0.0 2.0 ± 0.6 -2.0 ± 0.6 -1.6 ± 1.8

 

  

Numbers of apoptotic cells under the implant for each section on the bicuculline 

side minus that on the control side.  Areas represent averages within three 450 X 

450 µm boxed regions in the area of histological disruption.  Shown are the mean 

± S.E.M. 
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Figure 10.  Effects of implants on apoptotic cells.  Average numbers of apoptotic 

cells under the implant for each section. 
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Figure 11.  Apoptotic cells following cortical bicuculline implant.  Effects were 

calculated as the ratio of apoptotic neurons to apoptotic glia on the bicuculline 

side minus that on the control side.  Each value represents the mean ± S.E.M. 
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