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Tyagi,Satyam, Extensions to Jinni Mobile Agent Architecture. Master of Science

(Computer Science), December 2000, 57 pp., 1 table, 4 �gures, 46 references.

We extend the Jinni mobile agent architecture with a multicast network transport

layer, an agent-to-agent delegation mechanism and a reection based Prolog-to-Java

interface. To ensure that our agent infrastructure runs eÆciently, independently of

router-level multicast support, we describe a blackboard based algorithm for locating

a randomly roaming agent. As part of the agent-to-agent delegation mechanism, we

describe an alternative to code-fetching mechanism for stronger mobility of mobile

agents with less network overhead. In the context of direct and reection based

extension mechanisms for Jinni, we describe the design and the implementation of

a reection based Prolog-to-Java interface. The presence of subtyping and method

overloading makes �nding the most speci�c method corresponding to a Prolog call

pattern fairly diÆcult. We describe a run-time algorithm which provides accurate

handling of overloaded methods beyond Java's reection package's limitations.
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CHAPTER 1

INTRODUCTION

1.1 What are the problems?

The problems we deal with can be divided into three sub-categories based on how

they were dealt with:

1.1.1 Multicast

A major concern with distributed agent programming is to separate as much as possi-

ble the distributed aspects and application functionality. We want to make sure even

with the advantages and problems with distributed programming the view presented

to the programmer is that the application is running on a single machine.

Some of the problems we tried tackling with multicast were :

� Simultaneous propagation of agents to di�erent sites specially on a LAN.

� The agents when they propagate are unable to carry TCP/IP ports with them.

We tried to tackle this with location independent property of multicast.

� The need to know the location or the IP address of an agent to communicate

with the agent. This is also solved by location independent multicast addressing.

� Sharing of Blackboards for exible and easier agent communication.

� Fault tolerant computing.

� Synchronization of distributed network applications(Java3D games, Teleteach-

ing)

1
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� We also address the problem of agent location tracking in absence of multicast

enabled routers.

1.1.2 Fallback Mechanism

Mobile agents when they move need to execute there code at di�erent sites. Some-

times the code is available at di�erent sites and sometimes it is not under such situ-

ations agents typically fetch code from there home site or some sort of a code server.

Sometimes this code maybe large or compiled and not so easy to fetch due to network

and security constraints. We try to address this problem in a novel way in which agent

can fallback to the homesite and execute code there and only carry results to remote

site.

1.1.3 Reection based Java API for Prolog

As our prolog is written in Java we already had an extension mechanism in place to

extend our Prolog by mapping new predicates to Java function calls. This mechanism

was quite diÆcult and cumbersome. When providing a simple interface to Java we

came across the problem of method-overloading and selection of most speci�c method

at runtime for accurate Java compile time implementation. We address this problem

with our own algorithm.

1.2 Why they are signi�cant?

The signi�cance of the problems we deal with lies in various areas of distributed agent

programming. We deal with separating the concerns of distributed agent program-

ming from application programming and therefore making distributed agent program-

ming conceptualy simpler. We deal with reducing network overhead and speeding up

of agent applications. Also, we deal with extending our agent architecture with the
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latest Java libraries and in the process solving object oriented programming concerns

arising due to run time execution of reected code.

We are able to parallelize searches and make agent propagation to a group of sites

a single step operation with multicast. Also communication ports and communication

are made site (address) independent. We are able to synchronize real time distributed

applications and make applications fault tolerant with multicast. The sharing of

blackboards through multicast channels makes agent communication more exible

and powerful.

We address the agent location tracking problem in the absence of multicast using

linda blackboards. The blackboards alleviate the need for code fetching with our

fallback mechanism.

The Java extension mechanism with Java reection allows for inclusion of Java

libraries for our Prolog based agent infrastructure. The architecture can use any

of the Java libraries with the provided API almost completely in Prolog as shown

by our example application. In making the Java reection interface with Prolog

we realised certain shortcomings of the reection package in method overloading.

We describe a new run-time algorithm which closely mimics Java's own compile-

time method dispatching mechanism and provides accurate handling of overloaded

methods beyond the reection package's limitations. The algorithm is not speci�c to

our interface but makes Java's reection package more powerful.

1.3 Overview

The thesis is divided into several chapters. We start of with describing the mobile

agent architecture of Jinni (Java Inference Network Engine). The architecture briey

describes the ontology to support mobile agents and some basic features which help

us to execute mobile agent Prolog scripts at remote sites and to help mobile agents
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to coordinate and communicate.

Next we describe mechanism for extending Jinni with new Java based builtins and

the mapping between Prolog predicates and Java methods, and mapping between Pro-

log terms and other Prolog types to Java classes. The reection based Java extension

method is explained next, which makes the process of extending Jinni a much simpler

process with automated data-type conversion and our runtime algorithm for �nding

most speci�c method amongst overloaded methods. We end the chapter by explaining

an example application, which helps us to understand the power and usage of this

extension mechanism.

Local delegation mechanism from Jinni's fast compiler and easy to extend inter-

preter are briey stated. Our alternative to code fetching - remote agent delegation

mechanism to an agent's homesite or a code-server are described. We also discuss the

cases where this maybe more advantageous as compared to code fetching and how it

can be used more exibly.

The multicast networking layer for Jinni is described next. We discuss the API

and implementation briey. We then describes its impact on Linda blackboards the

way each agents view to the blackboard world depends on which group it belongs to.

Protocol for multicasting and collecting data and code from groups of blackboards at

remote sites. The impact of properties of multicast on mobile and transient IP address

systems is discussed with emphasis on new possibilities with location independent

property of multicast addresses and groups. We describe an architecture for an IP

transparent mobile agent architecture using new multicast layer and a fault tolerant

protocol. We also discuss an algorithm and it's complexity for agent location tracking

in absence of multicast enabled routers. Finally we describe two possible applications:

Teleteaching and Java3D games and their implementations on our enhanced mobile

agent system.

We discuss other work taking place in related �elds; mainly in Java reection based
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language extensions and Prolog based distributed mobile agent architectures. We

explain the related directions and highlight the di�erences in our approach. Finally

we conclude with the current achievements and possible directions for future research.



CHAPTER 2

OVERVIEW OF JINNI

2.1 Ontology

Jinni is based on simple Things, Places, Agents ontology.

Things are Prolog terms (trees containing constants and variables, which can be

uni�ed and other compound sub-terms).

Places are processes with at least one server and a blackboard allowing syn-

chronized multi-user Linda and Remote Predicate Call transactions. The blackboard

stores Prolog terms, which can be retrieved by agents.

Agents are collections of threads executing various goals at various places. Each

thread is mobile, may visit multiple places and may bring back results.

2.2 Basic Features

Jinni is a Prolog interpreter written in Java, which provides an infrastructure for mo-

bile logic programming (Prolog) based agents. It spawns interpreters as threads over

various network sites and each interpreter has its own state. Computation mobility

is mapped to data mobility (through use of meta-interpreters, data can be treated as

code). Mobile threads can capture �rst order \AND"-continuations (as \OR" con-

tinuations would cause backtracking, which is not a good idea over the network) and

resume execution at remote site by fetching code as needed.

Shared blackboards are used for communication and coordination of agents. Jinni

has an orthogonal design and separates high level networking operations (support-

ing remote predicate calls and code mobility), from Linda coordination code. It has

various plugins for GUI, di�erent Network layers (in particular the multicast layer

6
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described in this paper) and a Java3d interface, which can be plugged in as an exten-

sion. Jinni 2000 embeds a fast incremental compiler, which provides Prolog processing

within a factor of 5-10 from the fastest C-based implementations around.

For more details on Jinni see [8, 9].



CHAPTER 3

EXTENDING JINNI WITH JAVA BASED BUILTINS

Term

Var NonVar

Num JavaObject Const

FunRealInteger

FunBuiltin

Figure 3.1: Java Classes of Prolog Term Hierarchy

3.1 The Term Hierarchy

The base class is Term which has two subclasses: Var and NonVar. The NonVar

class is in turn extended by Num, JavaObject and Const. Num is extended by

Integer and Real. Term represents the generic Prolog term which is a �nite tree

with uni�cation operation distributed across data types - in a truly object oriented

style [36]. The Var class represents a Prolog variable. The Integer and Real are the

Prolog Numbers. Const represents all symbolic Prolog constants, with the compound

8
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term (called functor in Prolog) constructor class Fun designed as an extension of

Const.

JavaObject is also a subclass of Const which uni�es only with itself1 and is used

like a wrapper around Objects in Java to represent Prolog predicates.

3.2 The Builtin Registration Mechanism

Jinni's Builtins class is a specialized subclass of Java's Hashtable class. Every new

component we add to Jinni 2000 can provide its own builtin predicates as a subclass

of the Builtins class. Each added component will have many predicates, which are to

be stored in this Hashtable mapping their Prolog representation to their Java code,

for fast lookup. Let us assume the Prolog predicate's name is prologName and the

corresponding Java classes name is javaName. We make a class called javaName

which extends FunBuiltin (a descendant of Term with which we represent a Prolog

functor (compound term). It accepts a string (the functor's name) and an integer

in its constructor (arity). When we call the register method of the appropriate

descendant of the Builtins class, a new Hashtable entry is generated with the supplied

prologName and the arity as key and javaName as its value. Whenever the Prolog

predicate prologName with appropriate arity is called, we can look up in constant time

which class (javaName) actually implements theexec method of the builtin predicate

in Java. Each component extending the Builtins class will bring new such predicates

and they will be added to the inherited Hashtable with the mechanism described

above - an therefore will be usable as Prolog builtins as if they were part of the Jinni

2000 kernel.

1Modulo Java's equals relation.
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3.3 The Builtin Execution Mechanism

The descendents of the FunBuiltin class implement builtins which pass parameters,

while the descendents of the ConstBuiltin class implement parameterless builtins.

Both FunBuiltin and ConstBuiltin have an abstract method called exec to be be

implemented by the descendent javaName class. This is the method that is actually

mapped to the Prolog builtin predicate with prologName and gets invoked on exe-

cution of the predicate. The exec method implemented by the javaName class will

get arguments (Term and its subclasses) from the predicate instance using getArg

methods and will discover their dynamic through a specialized method. Once we

have the arguments and know their types we can do the required processing. The

putArg method, used to return or check values, uses the unify method of Terms

and its subclasses to communicate with the actual (possible variable) predicate argu-

ments. On success this method returns 1. If putArg does not fail for any argument

the exec method returns 1, which is interpreted as a success by Prolog. If at least

one uni�cation fails we return 0, which is interpreted as a failure by Prolog. We

call this mapping a conventional builtin as this looks like a builtin from Prolog side,

which is known at compile time and can be seen as part of the Prolog kernel.



CHAPTER 4

EXTENDING JINNI WITH JAVA REFLECTION

4.1 The Method Signature Problem

Most modern languages support method overloading (the practice of having more

than one method with same name). In Java this also interacts with the possibility of

having some methods located in super classes on the inheritance chain. On a call to

an overloaded method, the resolution of which method is to be invoked is based on

the method signature. Method signature is de�ned as the name of the method, its

parameter types and its return type1.

The problem initially seems simple: just look for the methods with the same name

as call, number and type of parameters as the arguments in the call and pick that

method.

The actual problem arises because Java allows method invocation type conversion.

In other words this means that we are not looking for an exact match in the type of

a parameter and the corresponding argument, but we say it is a match if the type

of argument can be converted to the type of a corresponding parameter by method

invocation conversion [35]. Apparently, this also does not seem to be very complicated:

we just check if the argument type converts to the corresponding parameter type or

not. The problem arises because we may �nd several such matches and we have

to search among these matches the most speci�c method - as Java does through

compile time analysis. If such a method exists, then that is the one we invoke.

However, should this search fail, an error has to be reported stating that no single

method can be classi�ed as the most speci�c method.

1In resolving the method call Java ignores the return type.

11
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This chapter will propose a comprehensive solution to this problem, in the context

of the automation of type conversions in Jinni 2000's bidirectional Prolog to Java

interface.

4.2 The Prolog predicate API for reection based Java Interface

Our reection based Jinni 2000 Java Interface API is provided through a surprisingly

small number of conventional Jinni builtins. This property is shared with the JIPL

[42] interface from C-based Prologs to Java. The similarity comes ultimately from

the fact that Java's reection package exhibits to Java the same view provided to C

functions by JNI - the Java Native Interface:

new java class(+'ClassName',-Class).

This takes in as �rst argument the name of the class as a constant. If a class

with that name is found it loads the class and a handle to this class is returned in

the second argument wrapped inside our JavaObject. Now this handle can be used

to instantiate objects.

new java obj(+Class,-Obj):-new java obj(Class,new,Obj).

new java obj(+Class,+new(parameters),-Obj).

This takes in as the �rst argument a Java class wrapped inside our JavaObject. In

the case of a constructor with parameters, the second argument consists of new and

parameters (Prolog numeric or string constants or other objects wrapped as JavaOb-

jects) for the constructor. As with ordinary methods, the (most speci�c constructor)

corresponding to the argument types is searched and invoked. This returns a handle
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Java Prolog

int

maybe (short,long) Integer

double

maybe (oat) Real

java.lang.String Const

any other Object JavaObject is

a bound variable,

which uni�es only

with itself

Table 4.1: Data Conversion

to the new object thus created again wrapped in JavaObject in the last argument of

the predicate. If the second parameter is missing then the void constructor is invoked.

The handle returned can be used to invoke methods.

invoke java method(+Object,+methodname(parameters),-ReturnValue).

This takes in as the �rst argument a Java class's instantiated object (wrapped

in JavaObject), and the methodname with parameters (these can again be numerical

or,string constants or objects wrapped as JavaObjects) in the second argument. If

we �nd such an (accessible and unambiguously most speci�c) method for the given

object, then that method is invoked and the return value is put in the last argument.

If the return value is a number or a string constant it is returned as a Prolog number

or constant else it is returned wrapped as a JavaObject.

If we wish to invoke static methods the �rst argument needs to be a class wrapped

in JavaObject - otherwise the calling mechanism is the same

The mapping of datatypes between Prolog and Java looks like this:
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4.3 The details of implementation

4.3.1 Creating a class

The reection package uses the Java reection API to load Java classes at runtime,

instantiate their objects and invoke methods of both classes and objects. The Java

Reection Class.forName("classname") method is used to create a class at runtime.

In case an exception occurs, an error message stating the exception is printed out

and a 0 is returned, which is interpreted as a failure by Prolog. The error message

printing can be switched on/o� by using a ag.

This is interfaced with Prolog using the conventional Builtin extension mechanism

getting the �rst argument passed as a Prolog constant seen by Java as a String. After

this, the Java side processing is done and the handle to the required class is obtained.

Finally this handle wrapped as a JavaObject is returned in the second argument.

Example:

new java class('java.lang.String',S)

Output:

S=JavaObject(java.lang.Class 623467)

4.3.2 Instantiating an Object

First of all, the arguments of a constructor are converted into a list, then parsed in

Prolog and provided to Java as JavaObjects. Then each one is extracted individually.

If the parameter list is empty then a special token is passed instead of the JavaObject,

which tells the program, that a void constructor is to be used to instantiate a new

object from the class. This is done by invoking the given class' newInstance()method,

which returns the required object.

If the argument list is not empty, the class (dynamic type) of the objects on
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the argument list is determined using the getClass() method and stored in an ar-

ray. This array is used to search the required constructor for the given class using

the getConstructor(parameterTypes) method. Once the constructor is obtained, its

newInstance(parameterList) method is invoked to obtain the required object. The

exception mechanism is exactly the same as for creating a new class as explained

above.

This also uses the conventional Builtin extension mechanism to interface with

Java, therefore Objects are wrapped as JavaObjects. Prolog Integers are mapped to

Java int and Prolog's Real type becomes Java double. The reverse mapping from

Java is slightly di�erent as long, int, short are mapped to Prolog's Int, which holds

its data in a long �eld and the oat and double types are mapped to Prolog's Real

(which holds its data in a double �eld). Java Strings are mapped to Prolog constants

and vice versa (this is symmetric).

Example:

new java obj(S,new(hello),Mystring)

Output:

MyString=JavaObject(java.lang.String 924598)

4.3.3 Invoking a method

The method invoking mechanism is very similar to the object instantiation mecha-

nism. The mapping of datatypes remains the same. The exception mechanism is also

exactly same as that of constructing objects and classes.

First we determine the class of the given object. The getConstructor method

is replaced by getMethod(methodName, parameterTypes) except that it takes in as

the �rst argument a method name. Once the method is determined, its return type
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is determined using the getReturnType().getName() for the mapping of Prolog and

Java datatypes following the convention described earlier. If the return type is void

the value returned to Prolog will be the constant 'void'. To invoke the required

method (the method we wish to invoke) we call the obtained method's invoke.(Object,

parameterList) method and will return after conversion the return value for the given

method.

To invoke static methods, �rst we determine whether the object passed as the �rst

argument is an instance of the class Class. If so, this is taken to be the class whose

method is to be searched, and the call to invoke looks like invoke.(null, parameterList)

Example

invoke java method(Mystring,length,R)

Output:

R=5

Example

invoke java method(Mystring,toString,NewR)

Output:

NewR=hello

4.4 Limitations of Reection

An important limitation of the reection mechanism is that when we are searching

for a method or a constructor for a given class using the given parameter types. The

reection package looks for exact matches. That means if we have an object of class

Sub and we pass it to a method, which accepts as argument an object of class Super,

which is Sub's super-class, we are able to invoke such a method in normal Java,
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but in case of reection our search for such a method would fail and we would be

unable to invoke this method. The same situation occurs in the case for an accepting

an interface method, which actually means accepting all objects implementing the

interface. The problem arises in the �rst place because method could be overloaded

and Java decides, which method to call amongst overloaded methods at compile-time

and not at runtime. We discuss in the next section how the Java compiler decides,

which method to call at compile time.

4.5 Java Compile Time Solution

The steps involved in the determination of which method to call once we supply the

object whose method is to be invoked and the argument types.

4.5.1 Finding the Applicable Methods

The methods that are applicable have the following two properties:

� The name of the method is same as the call and the number of parameters is

same as the arguments in the method call.

� The type of each argument can be converted to the type of corresponding pa-

rameter by method invocation conversion.

This broadly means that either the parameter's class is the same as the corresponding

argument's Class, or that it is on the inheritance chain built from the argument's class

upto Object. If parameter is an interface, the argument implements that interface.

We refer to [35] for a detailed description of this mechanism.
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4.5.2 Finding the Most Speci�c Method

Informally, method1 is more speci�c than method2 if any invocation handled by

method1 can also be handled by method2.

More precisely, if the parameter types of method1 are M11 to M1n and parameter

types of method2 are M21 to M2n method1 is more speci�c then method2 if M1j can

be converted to M2j for allj from 1 to n by method invocation conversion.

4.5.3 Overloading Ambiguity

In case no method is found to be most speci�c then method invocation is ambiguous

and a compile time error occurs.

Example:

Consider class A superclass of B and two methods with name m.

m(A,B)

m(B,A)

Now an invocation which can cause the ambiguity is.

m(instance of B, instance of B)

In this case both method are applicable but neither is the most speci�c asm(instance

of A,instance of B) can be handled only by �rst one while m(instance of B,instance

of A) can be handled only by second one i.e. either of the method's all parameters

can not be converted to other's by method invocation conversion.
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4.5.4 Example: Method Resolution at Compile time

Method resolution takes place at compile time in Java and is dependent on the code

for call to the method. This becomes clear from the following example.

Consider two classes Super and Sub where Super is superclass of Sub. Also con-

sider class A with a method m and class Test with a method test, the code for the

classes looks like this:

Super.java

public class Super {}

Sub.java

public class Sub extends Super{}

A.java

public class A {

public void m(Super s) { System.out.println("super");}

}

Test.java

public class Test {

public static void test(){

A a=new A();

a.m(new Sub());

}

}
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On invocation of method test() of class Test, method m(Super) of class A is invoked

and super is printed out. Let's assume that we change the de�nition of the class

A and overload the methodm(Super) with methodm(Sub) such thatA looks like this:

A.java

public class A {

public void m(Super s) {System.out.println("super");}

public void m(Sub s) {System.out.println("sub");}

}

On invocation of method test() of class Test, method m(Super) of class A is invoked

and super is printed out. Let's assume that we change the de�nition of the class

A and overload the methodm(Super) with methodm(Sub) such thatA looks like this:

A.java

public class A {

public void m(Super s) {System.out.println("super");}

public void m(Sub s) {System.out.println("sub");}

}

If we recompile, and run our test method again, we expect sub to be printed out since

m(Sub) is more speci�c than m(Super) but actually super is printed out. The fact

is method resolution is done when we are compiling the �le containing the method

call and when we compiled the class Test we had the older version of class A and

Java had done resolution based on that class A. We can get the expected output by

recompiling class Test, which now views the newer version of class A and does the

resolution according to that, and hence we get the expected output sub.
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4.6 Finding a Most Speci�c Method at Runtime

We will follow a simple algorithm. Let's assume that the number of methods which

are accessible and have same name and number of parameters as the call is M (small

constant) and the number of arguments in the call is A (a small constant). Let

us assume that the maximum inheritance depth of a the class of an argument from

Object down to itself in the class hierarchy tree is D (a small constant) It can be

trivially shown that the complexity of our algorithm is bounded by O(M * A * D).

Our algorithm mimics exactly the functionality of Java and the following example

would run exactly the same on both Java and our interface, the only di�erence being

that since Java does the resolution at compile time, in case of an ambiguous call

Java would report a compile time error while we do the same thing at runtime and

hence, throw an exception with appropriate error message. So if class A looks like this:

A.java

public class A {

public void m(Super s1,Sub s2) {System.out.println("super");}

public void m(Sub s1, Super s2) {System.out.println("sub");}

}

and the class Test looks like this: Test.java

public class Test {

public static void test(){

A a=new A();

a.m(new Sub(),new Sub());

}

}
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then Java will not compile class Test and give an error message. In our case there is

no such thing as the class Test, but the equivalent of the above code would look like

follows:

new_java_class('A',Aclass),

new_java_object(Aclass,Aobject),

new_java_class('Sub',Subclass),

new_java_obj(Subclass,Subobject1),

new_java_obj(Subclass,Subobject2),

invoke_java_method(Aobject,m(Subobject1,Subobject2),Return).

The result will be an ambiguous exception message and the goal failing with no.

Our Algorithm We will now describe our algorithm in detail:

� 1. If the method is an exact match and hence reection gives a valid method

object, call the method and stop, else:

� 2. Get the accessible methods with same name and number of arguments as

the call and store in an array (MethodArray). (Size M)

� 3. Declare a corresponding MethodPropertyarray (Size M*A)

� 4. Get the parameter types for each member of MethodArray in an array of

ParameterTypes (ParameterArray). (Size M*A)

� 5. For Arguments a = 0 to A do (6,7,8,9,10,11,12).

� 6. Depthcounter = 0.

� 7. While Arguments[a].type != null do (8,9,10,11).

� 8. For methods m = 0 to M do (9).
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� 9. If ParameterArray[m][a] = the Argument[a].type

MethodProperty[m][a] = DepthcounterLoops over D

end For (9)

� 10. Argument[a].type = Super(Argument[a].type).

� 11. Increment depthcounter.

end While (7)

� 12. For methods m = 0 to M do

If MethodProperty[m][a]=no value then MethodProperty[m][a]=in�nity. (Since,

this does not come in argument types hierarchy chain to object, it is not an ac-

ceptable method)

end For (5).

� 13. For m = 0 to M do

Find a uniquem such that Sum of MethodProperty[m][a] over all a is minimum.

Store this in mChosen.

� 14. For m = 0 to M and m != mChosen do (15,16)

� 15. For a = 0 to A do (16)

� 16. If(MethodProperty[m][a] > MethodProperty[mChosen][a])

Throw ambiguous exception

end For (14)

end For (15)

� 17. Call the Method[mChosen] with given arguments.
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Figure 4.1: Screenshot of Prolog IDE written in Prolog

4.7 An example application/GUI using reection API

This GUI has almost completely been implemented in Prolog using the reection

API. A special builtin which, allows us to redirect output to a string is used to

interface default Prolog i/o to text�eld/textarea etc. The total Java code is less

than 10 lines. Jinni provides, on the Java side, a simple mechanism to call Prolog

Init.jinni(\Prolog command"). Since we do not have references to di�erent objects

in the Java code, but everything is in the Prolog code, we need a mechanism to

communicate between Java's action-listener and Prolog. Jinni's Linda blackboards

have been used for this purpose [8, 9]. Whenever an action takes place the Java side

calls Jinni and does a out with a number for type of action on the blackboard by

calling something like Init.jinni(\out(a(1))"). On the Prolog side we have a thread

waiting on the blackboard for input by doing an in(a(X)). After the out variable X

gets uni�ed with 1 and depending on this value, Prolog takes the appropriate action

and again waits for a new input. Hence, we can make action events such as button

clicks communicate with Prolog.



CHAPTER 5

DELEGATION MECHANISM

5.1 Local Delegation Mechanism

Jinni has two parts a fast incremental compiler and an interpreter. Some of the

features are on the compiler while some are on the interpreter. By default Jinni is

supposed to be running in compiler mode.

Whenever the compiler is unable to �nd de�nition of some predicate in it's compiled

code it falls back on the interpreter.

The interpreter in turn falls back on the compiler but as is obvious this can go on

in an in�nite loop. This is handled by the predicate iscompiled(unde�ned predicate).

The interpreter before falling back on the compiler checks if the compiled de�nition

already exists else it simply fails with an error message.

5.2 Remote Agent Delegation Mechanism

5.2.1 Case for Fall Back Mechanism

The Fall Back Mechanism is proposed as an alternative to mobile live code. When

an agent moves from one place to another with prolog predicates it may not carry

the complete de�nitions of predicates. Now if the code is available at the target site

it is executed there else the agent falls back to it's home site and executes the code

for the unde�ned predicate and carries the results and bindings to the target site.

The main advantage of this is that the code never moves. This is an advantage

when we have proprietary algorithms and do not wish to reveal our algorithm. Sec-

ondly when the network is of low bandwidth and predicates have large de�nitions and

25
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code. Also if there is compiled code it can not be executed remotely, thus extending

the concept of mobile code from interpreted code to compiled code as well.

5.2.2 Implementation

The implementation of the mechanism has been achieved utilizing the existing in-

frastructure of Jinni. Jinni has Blackboards at each place to which clauses can be

asserted where the de�nition of currently available prolog clauses are already there.

Next we explain the algorithm followed by the agent and the interpreter at each site.

5.2.3 Algorithm

The agent on arriving at the destination asserts it's hosts IP with it's current thread

id as it's unique identi�er at that site. Now whenever the interpreter fails to �nd

de�nition for a predicate in it's database (and the predicate is not found in the

compiled code) it searches for the IP address of the agent and sends request for

results to it's home machine at a �xed port. At the home machine a server is running

on this �xed port which responds to such request.

The prolog implementation looks like this.

undefined(G):-

not(iscompiled(G)),

current\_thread(ID),

ip(Host,ID), /*searches for the IP using the current thread as key*/

remote\_run(Host,8001,Gs,findall(G,G,Gs),none,the(Gs),

member(G,Gs).

Code for Agent

out_name(Y):-
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current_thread(X), /*gives identifier for current thread*/

assert(ip(Y,X)). /*asserts to the data base*/

in_name(Y):-

current_thread(X), /*gives identifier for current thread*/

retract(ip(Y,X)). /*retracts from the data base*/

remote_do(Name,G):-

remote_run((out_name(Name),G,in_name(Name))). /*executes predicate remotely*/

remote_exec(G):-

my_host_name(Name), /*gives the current host name*/

remote_do(Name,G). /*executes predicate remotely*/

Properties There are some properties for this mechanism which make it even more

interesting

� No trail or trace of agent is left on the destination machines.

� There is complete transparency as to where the unde�ned predicates are exe-

cuted.

� If the agent moves from one machine to another and so on the encapsulation

is such that the unde�ned predicate is always executed at the place where it

originated.

The encapsulation looks like this:

X:-

remote_exec(Host1,(G1,remote_exec(Host2,G2),G3))

The expanded encapsulated code looks like this:

X:-
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my_host_name(Name), /*where Name is Initial Host*/

remote_run(Host1,

(out_name(Name),

G1,remote_exec(Host2,G2),

G3,in_name(Name)

)

).

remote_exec(Host2,G2):-

my_host_name(Name), /*where Name is Host1*/

remote_run(Host2,(out_name(Name),G2,in_name(Name))).

This makes sure the 'Name' gets bound at the home machine and hence the delegation

is directly to home machine. Since the name is speci�ed we have an option to specify

a special code server where we want all our agents unde�ned predicate to be executed.



CHAPTER 6

MULTICAST NETWORKING LAYER FOR JINNI

6.1 Multicast

De�nition: 1. In a network, a technique that allows data, including packet form, to

be simultaneously transmitted to a selected set of destinations. Some networks, such

as Ethernet, support multicast by allowing a network interface to belong to one or

more multicast groups.

2. To transmit identical data simultaneously to a selected set of destinations in

a network, usually without obtaining acknowledgment of receipt of the transmission.

[6].

The key concepts of Multicast Networks are described in [4]. On an Ethernet

(Most popular LAN architecture) each message is broadcasted and the machine seeing

its own address grabs the message. The multicast packets are also sent in a similar

way except that more than one interface picks them up.

The multicast packets received at the interface but not subscribed to are rejected

at interface level, if the interface has hardware and software to support it. Interfaces

are able to handle often 64 but up-to 512 groups. On overloading interfaces go into

\multicast promiscuous" mode and send all packets to the TCP/IP stack. Here after

searching through the list of groups a host is subscribed to packets are accepted or

rejected. This requires some CPU cycles [2].

We consider 512 is a pretty signi�cant number presently and even if it does go

into the \multicast promiscuous" mode the penalty is insigni�cant. Thus the spread-

ing and cloning of agent threads/agents themselves on the whole network or a subset

29
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multicast group is now a single step operation. This leads to important speed up espe-

cially when multiple copies of same code need to be executed at di�erent places (like

for parallel searches or for simultaneous display in shared virtual reality applications).

6.2 Multicast in Jinni

Multicasting has various interesting properties, which make it well suited for an agent

platform like Jinni. An important advantage of multicasting agents is that, the same

code can be run in parallel at the same time in one single operation at di�erent remote

sites, retrieving di�erent data available at di�erent sites.

6.2.1 The API

A minimal API consists of two predicates one to run multicast servers, which service

requests for multicast clients and second to send multicast requests to these servers:

run mul server This joins a multicast group with an address and port. The server

now is listening on this port and can receive remote requests for local execution.

(When we join a group we are telling the kernel, \I am interested in this multicast

group. So, deliver (to any process interested in them, not only to me) any datagram

that you see in this network interface with this multicast group in its destination

�eld.")

run mul server(Host, Port)

Notice that run mul server has a Host �eld as well, because it does not run on the

local IP but on a multicast address i.e. 224.x.x.x 239.x.x.x
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remote mul run(G) This is kind of a goal (G), which is multi-casted to the group

to be run remotely on all the multicast servers accepting requests for this group.

remote mul run(Host, Port, Answer, Goal, Password, Result)

A set of multicast servers is run, which listen for packets on their group and re-

spond back on the group multicast address. All the clients listening on this group

receive these results. An important issue here is that the server should be able to

distinguish between a request and a reply. Otherwise it would keep responding back

to its own replies. This is solved by introducing a simple header distinguishing the

two types of messages, which are stripped of when appropriate.

6.3 Synchronizing Multicast Agents with Blackboard Constraints

The synergy between mobile code and Linda coordination allows an elegant, compo-

nent wise implementation. Blackboard operations are implemented only between local

threads and their (shared) local blackboard. If interaction with remote blackboard

is needed, the thread simply moves to the place where it is located and proceeds

through local interaction. The interesting thing with multicast is that the thread can

be multi-casted to a set of places and can interact at all these places locally. This

gives an appearance that all these blackboards are one to the members of this mul-

ticast groups. For example the remote mul run(mul all(a(X),Xs)) operation is

multi-casted to all servers in the group. It collects lists of matching results at these

remote servers and the output is unicast-ed from all these remote sites to the local

blackboard.
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This can be achieved as follows:

mul all(X,Xs):-mul all('localhost',7001,X,Xs).

mul all(Port,X,Xs):-mul all('localhost',Port,X,Xs). - (the defaults where our

server, which receives the results is running)

mul all(Host,Port,X,Xs):-all(X,Xs), - executes on remote servers.

remote run(Host,Port,forall(member(Y,Xs),out(Y))) - executes back on our

server.

Host and Port determine the address we want the answers to come back on and

the answers are written on the local blackboard from where they can be collected.

Note: in/1 and out/1 are basic Linda blackboard predicates[15]

WORLD WORLD

UNICAST

UNICAST

UNICAST

MULTICAST

BLACKBOARD BLACKBOARD

BLACKBOARD

MULTICAST WORLD

out(a(1))

out(a(2))

a(1) a(2)

all(a(X),Xs)

mul_all(a(X),Xs)

a(3) a(3)

out(a(3))

MULTICAST

X=[a(2),a(3)]

A

B

C

D

E

X=[a(1),a(3),a(2),a(3)]

Figure 6.1: Basic Linda operations with Multicast

Places are melted into peer-to-peer network layer forming a `web of interconnected
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worlds'. Now di�erent worlds can be grouped into multicast groups. The member of

multicast groups viewed as these groups as one world. The concept extends further

as groups can intersect and be subsets or supersets and basically have combination

of unicast and multicast worlds. The point is that each agents views the world it is

interacting with depends on how it is moving its threads to di�erent places.

In the Fig. 1 A, B unicast outputs to two di�erent worlds while C multicasts

output to both. The `unicast all' in E is able to collect from only one blackboard

while `multicast all' in D collects from both. The all operations collect multiple copies

of the term a(3), but a sort operation could remove such duplication.

6.4 Some Properties and Consequences

There are various interesting properties of multicast networks, which open up many

possibilities for future work especially regarding mobile agents and new architectures

for their implementation.

As previously discussed there are three types of mobility in a network software

environment:data mobility, code mobility and computation or thread mobility. An

important shortcoming of computation mobility was that if the thread was providing

a service or listening on a particular (host, port) it could no longer do so once it

moved. In other words, ports are not mobile.

Some properties of multicast addresses and ports overcome exactly this shortcom-

ing. These properties are:

� multicast address and port are same for a multicast group and are independent

of host or IP address of the host(IP Transparent)

� it is possible to have two servers with same multicast address and port running

on the same machine. (In other words we do not need to investigate if a server
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with same port and IP is already running.) Both servers can respond to the

request, a client can chose if it wants one or all answers. Also a header can be

put, which helps servers discard requests not intended for them.

This means that when live code or a thread migrates it can just does a joingroup

1 on the same group it belonged to and start listening or providing service on

the same multicast address and port.

6.4.1 Impact on mobile Computers and transient IP-address systems

A mobile computer like a laptop, palmtop etc. does not have a permanent IP-address

because one may connect to one's oÆce, home, in an airplane etc. The transient IP

address can also come from one connecting through a dialup connection to an ISP.

Such systems can launch mobile agents and receive results when connected and hence

can be clients [3].

An important impact of the proposed multicast agent architecture on such tran-

sient IP-address systems is that they can also provide a service and listen on a known

multicast address and port whenever they are connected to the Internet. This is pos-

sible because to listen on a multicast port one's IP address is not needed. One can

have any IP address and still listen on the same Multicast address and port.

Another concept in the Jinni architecture is that of mobile Linda servants[7].

A servant is an agent, which is launched and on reaching the destination can pull

commands from the launching site or other clients, and run them locally.

servant:-

in(todo(Task)),

call(Task),

1When we join a group we are telling the kernel, \I am interested in this multicast group. So,

deliver (to any process interested in them, not only to me) any datagram that you see in this network

interface with this multicast group in its destination �eld."
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servant.

Note that the servant is a background thread and blocks when none of the clients

in the group have a task to be done i.e. no `busy wait' is involved [7].

We will try to expand on these two concepts of multicast and servants to generalize

the client/server architecture especially for mobile and transient IP-address systems.

Case 1 Mobile Servers

Even when the mobile server is disconnected it can have servant agents running

on it, doing the processing for its clients and posting results or queries on the local

blackboard. In the mean time, the clients keep making lists of the tasks they want to

get done on the server. When the server comes up, the servant can pull the list of tasks

to be done by clients and run them. Also the server can have a new IP address but the

same multicast address, when the server reconnects. The clients having knowledge of

this can collect the required responses from the servers' blackboard.

Case 2 Mobile Clients

Even when disconnected, the mobile client can launch an agent on a di�erent machine,

which can do the listening for it. Whenever the client reconnects it can pull list of

tasks and results (the agents do processing) from the agent and destroy the agent.

Whenever the client is disconnecting it can launch the agent again.

This concept can also be extended, as both clients and servers can be made mobile

or with unknown or transient IP-addresses with multicasting. As we discussed before,

to communicate on a multicast channel we do not need to know the IP. We explore

this concept of IP transparent communication further in the next subsection. Some

ideas of this mixed mobility of computers and agents are discussed in [1].

Applets as servers

Another possible use can be in the case of applets, which can not listen on ports but

can connect to the server they are coming from. This means they can connect to their
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server pull tasks from it and execute them locally on their current machine (hence

pretend to be servers).

This architecture could possibly be three-tier. The applets connect to their server,

which o�ers services to other clients. The server now posts the requests on the local

blackboard to be pulled by the applets and executed locally on their machine.

6.4.2 IP Transparent Architecture for a Platform of Mobile Agents.

Consider a group of agents moving freely in the network. Let's assume each agent

is a member of two multicast groups: a common shared group address between all

agents and a unique personal multicast address. Whenever they propagate they do a

joingroup on both these multicast groups.

The analogy for private address is that of a cell phone. Each agent can commu-

nicate with the others on its private multicast address being completely unaware

about the location of one it is sending messages to. The best analogy for the

shared common address is that of a broadcast radio channel. Whenever an existing

agent spawns a new agent it gives the new agent the set of addresses known to it and

the new agent chooses a new private multicast address and communicates to the rest

of the agents (via the shared common group address) its private address. Metaphor-

ically, this is like (broadcasting on the radio channel its cell phone number

to communicate with it)

The main advantage of this architecture is that it carries out communication

amongst di�erent agents without any knowledge of each others current location, i.e.

no agent requires the knowledge of other's IP address to communicate whether they

want the communication to be public within a group or private.

Among the application of a such an architecture could be found in situations where

the agents need to communicate with each other but do not have a �xed itinerary or
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the itinerary changes with the decision the agent makes. The address need not be

communicated on each hop but only when a new agent is spawned it needs to make

its address known.

For now, the important question of lost messages during transportation of agents

remains unanswered. One must not forget multicast is based on UDP and messages

can be lost. However, real-time applications like video games, which consider late

messages as lost messages could be target applications. Also one of the reliable

multicast protocols [5] may be used.

6.4.3 Fault tolerant computing

Here we suggest a protocol, which tries to make sure that even when some agents

crash the number of agents is preserved.

Consider the above architecture with each agent having k (k is a small number

greater than 1 say 2 or 3) copies and its own number. Each agent issues a heart

beat message on its private channel with its number with a �xed beat time interval

(Tbeat). The agents will have an expiry timeout in case the beat is not received for

a particular amount of time from a particular agent (Texp). The agent with the next

number in cyclic [(n+1) mod k] order generates a new agent with id number n on

expiry of timer (Texp). Although, each agent is listening for only the previous agent

in the cyclic order but even if one agent is left the whole agent group will grow back

again. Consider a group of three agents 1, 2 and 3. If any two die let's say 2 and 3

then 1 will spawn 3, which will in turn eventually spawn 2 and hence the group will

grow back again.

This makes sure with a good probability that we always have approximately k

agents on each private channel.
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6.5 Overcoming Agent Location Problem in absence of Multicast enabled routers

In large mobile agent systems agents frequently need to delegate services to other

agents. This ability of mobile agents comes from their ability to communicate. This

gives arise to the problem of locating a randomly roaming agent for message delivery.

In the previous section we proposed an approach based on multicast which is highly

eÆcient within a LAN but outside is dependent on network routers being capable of

multicast.

In this section we propose another approach which is based on Linda blackboards

and does not require any network router support.

The problem can be trivially solved if a home site is associated with an agent. As,

when looking for a particular agent one can simply check at the home site where the

agent is currently located and deliver the message to it, while the agent updates only

its home site, every time before leaving for a new site. In this way even if the message

arrives before the agent leaves the message is simply posted on the blackboard and

when the agent arrives it can check for its messages.

The real problem arises in large multi-agent systems in which agents have dif-

ferent capabilities, agents receive tasks dynamically. In such a system agents can

receive a task which they can not perform due to incompatible capability or exper-

tise and need to locate other agents in their vicinity with required capability. In our

approach as an agent moves from site to site minimally it posts its presence mes-

sage on the blackboard (out(i am here(MyID))). As the agent is about to move

it removes its entry (in(i am here(MyID))) and posts the next location it is going

to (out(nexthop(MyID, NextAdd))). Hence, the agent leaves in some sense its

trace. This trace may have mechanisms such as timeouts to insure that it is not

greater than a de�nite length. The ID of the agent has certain capabilities associated

with it. An agent would do an associative lookup on the blackboard for agents with
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a particular capability, obtain the ID of a capable agent with its trace on the black-

board, and start following the trace to catch-up with the capable agent to delegate a

service or deliver a message.

There are two extreme approaches in the task of locating an agent based on how

the agent performs updates as it moves. The agent could update whole of its path

on a movement, which makes movement an expensive operation. Another extreme

is that the agent updates only its local blackboard, which requires a traversal of its

whole path by every message making message delivery an expensive operation. In

our approach we hybridize the two extremes and share update operation task among

agents and messages (message agents) and analyze the cost of update and search for

delivery of a message.

In our proposal the agent only updates its local blackboard with its next hop

information. The message (message agent) executes a (cin(i am here(ID other)))

which is an advanced Linda construct translating to an atomic (rd(i am here(ID other))

-> in(i am here(ID other));false). This makes sure message agent never blocks.

In case it fails to �nd the agent it executes an (in(nexthop(ID other, NextAdd)))

and (out(nexthop(ID other, NextAdd))) and departs to the next hop. If the

message agent is able to �nd the other agent it holds the found agent (as this agent

can not move unless its ID is kept back on the blackboard), communicates with the

agent, and updates all the sites it had visited till now with the location information.

Let's now analyze the complexity of our approach.

(N) maximum distance of agent from current site (maximum possible length of trace

of path).

(Tn) Time for movement of agent from one site to another (Large processing time is

+ time for movement)

(Tm) Time for movement of message from one site to another (Negligible processing
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time + time for movement)

Assumption: Tn > Tm

(E) Extra Nodes traversed by agent once tracking starts:

Tn � E = Tm � (E +N)

E = N=(Tn� Tm)

Total nodes traversed by the message:

= E +N

= N(1 + 1=(Tn� Tm)

Update time of one node Tu = Tm (Negligible processing time)

Total nodes searched = E +N

Total nodes updated = E +N

Total Time to search and Update Tsu = 2 � Tm �N � (1 + 1=(Tn� Tm))

After the update operation if the agent has moved K places and a message origi-

nating at one of the updated places wants to �nd the agent then its

Tsu = 2 � Tm �K � (1 + 1=(Tn� Tm))orderofK

If a message comes after the agent has moved another K places then there are two

possibilities either the message is from one of the places updated in the current step

or in the previous step. In the worst case

Tsu = 2 � Tm � (K + 1) � (1 + 1=(Tn� Tm)) order of K + 1

After S such steps the worst case

Tsu = 2 � Tm � (K + S) � (1 + 1=(Tn� Tm)) order of K + S

If N is the maximum number of nodes (Path Length) then we know that K is the

number of nodes it visits in every step and S is the number of steps thus

K � S < N .

In the best case K = S (approx.) then K + S < 2 � sqrt(N) and

Tsu = 4 � Tm � sqrt(N) � (1 + 1(Tn� Tm)).



41

Figure 6.2: Synchronized Java3d worlds using multicast.

In the worst case messages are sent after everyNmoves of the agent (K=N), they

have to trace all N nodes to �nd the agent (In this case messages are so infrequent

that it maybe unimportant). Also, if messages are sent after every move (K=1),

from a recently updated node, the nexthop information does not propagate and is

only at the previous node. This means a search beginning at the start of chain will

need to go through all N nodes (but the probability of this should become low as S

increases).

The code for experimentation with the agent location problem is available from

[45]. It also shows how simple it is to experiment with mobile agent algorithms with

the Jinni's Mobile Agent Infrastructure.
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6.6 Java3D based Shared Virtual Reality

The three concepts of intelligent logic programmable agents, multicast single step syn-

chronization and Java3D visualization provide an interesting synergy for game pro-

gramming. We will now explore an implementation architecture we have prototyped

on Jinni 2000's multicast layer.

6.6.1 The User's interface

The user interface is based on shared Java3D virtual worlds.

Each user can join at anytime by joining a given multicast group.

Each user can create and own objects, which he/she/it can manipulate.

The user is opaque to the knowledge if he/she/it is playing against/with another user

or an intelligent agent.

The implementation The main advantage we have in our implementation is that

there is no centralized server. The application is completely distributed. If one

user's machine goes down only the objects controlled by him/her go down. This is

achieved by having the state being multi-casted to all users and stored only on the

local blackboards from where it is to be collected when a new user logs in. The next

subsection describes a basic Java3D API on which the virtual world is built and the

interface is provided.

6.6.2 The basic API

java3d init initializes and opens Java3d window and joins the multicast group and

collects (remote mul run(mul all(a(X)))) current state from the blackboards of

other users.

new obj creates a new object and puts the state on local blackboard (out(a(X)))
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and multicasts the predicate call to currently subscribed users.

move obj moves the object if owned and modi�es (in(a(X)),out(a(Y))) the state

on local blackboard and multicasts the predicate call to currently subscribed users.

remove obj removes the current object clears entry (in(a(X))) from local black-

board and multicasts the change to currently subscribed users.

The blackboards preserve the current state. The multicasting makes sure all

updates are single step. The agent scripts are written in Prolog and the visualization

is based on Java3D. The logic of agents can be changed and di�erent agents can have

di�erent personalities as per the learning logic, algorithm and experience of the agent.

The agents generate keyboard and mouse events to play with humans (making them

more similar to human interaction).

The Fig. 2 shows three multicast synchronized Java3D worlds, running under our

prototype, in three process windows. In a real game they are distributed over the

network.

6.7 Tele-teaching

A set of intelligent agents on student machines, join the multicast group of a teaching

server (run mul server).

The agents can always be given required information or `todo' tasks from the

server as needed on the multicast channel (remote mul run(out(a(X)))).

The server can collect responses posted on the local blackboards by the agents

with the extended blackboard concept (remote mul run(mul all(a(X)))) .

The application is more suited to present circumstances as most routers are in-

capable of multicast. It is however easy to ensure that classrooms are on a single

LAN capable of multicast. The main advantage here is that even though the system



44

is interactive the model is not message based - query/response. The agents are re-

active and intelligent and the responses/queries are posted on the local blackboard

from which the server can collect periodically or be informed to collect after a certain

time. The model is exible and can be extended and made more exible by adding

unicast channels and subset multicast groups for teamwork in students.



CHAPTER 7

RELATED WORK

7.1 Mobile Agents Architectures

Here we discuss certain other mobile agent architectures, their approaches to agent

mobility, distibuted computing, code and computation mobility etc.

An interesting distributed mobile agent architecture we consider is Mozart [46].

The Mozart system also provides network transparency. It allows remote references

to objects, functions and variables and other entities. Di�erent entities have di�erent

protocols for maintaining consistency of remote access. It has certain similar concepts

such as holding or locking of an entity unless its state is updated at remote site or

multicasting of updates at remote sites [46].

An interesting abstraction for mobile computations with regards to agents, chan-

nels and mobile network components is described in [1]. This explores a uni�ed

framework for various diÆculties in mobile computing and computations.

An important number of early software agent applications are described in [23]

and, in the context of new generation networking software, in [24, 25].

Mobile code/mobile computation technologies are pioneered by General Magic's

Telescript (see [11] for their Java based mobile agent product) and IBM's Java based

Aglets [10]. Other mobile agent and mobile object related work illustrate the rapid

growth of the �eld: [26, 14, 27, 28, 29, 30, 31]

Implementation technologies for mobile code are studied in [32]. Early work on

the Linda coordination framework [15, 12, 33] has shown its potential for coordination

of multi-agent systems. The logical modeling and planning aspects of computational

Multi-Agent systems have been pioneered by [17, 18, 21, 22, 19, 20, 34, 16].

45
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7.2 Reection based Language Extensions

Here we discuss a few other approaches followed for interfacing Prolog to Java using

reection or the Java Native Interface (JNI), and also a Scheme interface to Java using

reection. First, Kprolog's JIPL package provides an interesting API from Java to a

C-based Prolog and has a more extensive API for getting and setting �elds. It also

maps C-arrays to lists. The Kprolog's JIPL has dynamic type inference for objects,

but the problem of method signature determination and overloading has not been

considered in the package [42].

SICStus Prolog actually provides two interfaces for calling Java from Prolog. One

is the JASPER interface which uses JNI to call Java from a C-based Prolog. To obtain

a method handle from the Java Native Interface requires to specify the signature of

the method explicitly. So JASPER requires the user to specify as a string constant

the signature of the method that the user wishes to call. This transfers the burden

of �nding the correct method to the user [43], who therefore needs to know how to

specify (sometimes intricate) method signatures as Strings.

SICStus Prolog also has another interesting interface for calling Java from Prolog

as a Foreign Resource. When using this interface the user is required to �rst declare

the method which he wants to call and only then can the user invoke it. Declaring

a method requires the user to explicitly state the ClassName, MethodName, Flags,

and its Return Type and Argument Types and map it to a Prolog predicate. Now

the Prolog predicate can be used directly. This feature makes the Java method call

look exactly like a Prolog builtin predicate at runtime - which keeps the underlying

Java interface transparent to, for instance, a user of a library. (This is very much

similar to our old Builtin Registration and Execution mechanism, with one di�erence:

here registration or declaration is on the Prolog side, while we were doing the same

on Java side - for catching all errors at compile time.) The interface still requires



47

the programmer to explicitly specify types and other details as the exact method

signature [43].

Kawa Scheme also uses Java reection to call Java from Scheme. To invoke a

method in Kawa Scheme one needs to specify the class, method, return type and

argument types. This gives a handle to call the method. Now the user can supply

arguments and can call this method. Again, the burden of selecting the method is

left to the user as he speci�es the method signature [41].

In our case, like JIPL and unlike other interfaces, we infer Java types from Pro-

log's dynamic types. But unlike JIPL, and like with approaches explicitly specifying

signatures, we are able to call methods where the argument type is not exactly same

as the parameter type. Hence, our approach mimics Java exactly. The functionality

is complete and the burden of specifying argument types is taken away from the user.



CHAPTER 8

FUTURE WORK AND CONCLUSION

8.1 Future Work

8.1.1 Reection based Prolog Extension

Future work includes extending our API, as currently we do not support getting and

setting �elds and arrays. Another interesting direction which is a consequence of the

development of a reection based API, is the ability to quickly integrate Java appli-

cations. We have shown the power of the API with the simple GUI application. Such

applications can be built either completely in Java with an API based on methods

to be called from Prolog, or almost completely in Prolog using only the standard

packages of Java.

Jinni 2000 has support for plugins such as di�erent Network Layers (TCP/multicast/CORBA)

and a number applications such as Teleteaching, Java3D animation toolkit developed

with its conventional builtin interface. New applications and plugins can now be

added by writing everything in Prolog while using various Java libraries. Arguably,

the main advantage of such an interface is that it requires a minimal learning e�ort

from the programmer.

8.1.2 Multicast Protocols

There are some inherent problems with multicast. The protocol is UDP based (prob-

ably because it is not a great idea for each receiver to send an acknowledgment to

each sender and ood the network). Also one can never know how many users are

currently subscribed to a group. This makes blocking reads (in(a(X))) impossible,

as we do not know how many responses to loop for. Currently we have implemented

48
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multicast outs, which do not require responses and non blocking multicast reads

(mul all), which collect responses from remote sites and respond on a unicast chan-

nel. Some possible scenarios for experimentation would be �rst matching response or

�rst (k) matching response. Also currently multicast application remains untested on

the Internet, as we are con�ned to the Ethernet LAN. We have overcome the problem

of locating randomly moving mobile agents without multicast enabled routers, but

with the new generation routers capable of multicast, it would be interesting to test

the applications and protocols over larger domains. The unreliability in the protocol

makes it unsuitable for some applications. Our multicast agents work well in real

time applications for which a delayed packet is equivalent to a lost packet. Some

future work would depend on implementation of reliable multicast protocols and its

impact assuming that Internet routers will become more and more multicast aware.

8.2 Conclusion

We have described a new reection based Prolog to Java interface which takes advan-

tage of implicit dynamic type information on both the Prolog and the Java sides. Our

interface has allowed to automate data conversion between overloaded method param-

eters, through a new algorithm which �nds the most speci�c method corresponding to

a Prolog call. The resulting run-time reective method dispatching mechanism pro-

vides accurate handling of overloaded methods beyond the reection package's limi-

tations, and is powerful enough to support building a complete GUI library mostly

in Prolog, with only a few lines of application speci�c Java code.

The ideas behind our interfacing technique are not speci�c to Jinni 2000 - they

can be reused in improving C-based Prolog-to-Java interfaces like JIPL or Jasper or

even Kawa's Scheme interface. Actually our work is reusable for any languages with

dynamic types, interfacing to Java, as our work can be seen as just making Java's



own Reection package more powerful.

In the agent-to-agent delegation mechanism we proposed a simple alternative to

code fetching mechanism for stronger mobility of agents. The alternative is specially

well suited for low bandwidth networks and systems with security restrictions on

execution of code. The concept of delegating code to home-site can be further explored

with delegation to other agents and automated delegation of heavy computational jobs

to more powerful servers.

We have outlined here an extension of Jinni with a transport layer using mul-

ticast sockets. We have also shown some interesting properties of multicast, which

have opened various new possibilities for mobile agents and mobile computers. We

have also described a blackboard based algorithm for locating a randomly roaming

agent for message delivery. We are currently working on certain applications, which

we have shown can be greatly simpli�ed, speeded up and improved with multicast

extended version of Jinni. We suppose that the possibilities and applications we have

shown here is only a starting point for an unusual niche for Logic Programming based

software tools. The spread of multicast technology from simple LANs to the complete

Internet and the development of reliable protocols for multicast [5] will necessitate

further exploration, to achieve greater insights on mobile agent technology and realize

its full potential and possible impact.
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