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CHAPTER 1

Introduction and Preliminary De�nitions

1.1 Introduction

How many equivalence classes of geodesic rays does a planar graph contain? How

many bounded automorphisms does a planar graph have? The main purpose of this

paper is to answer these two questions for the class of planar graphs that are 3-

connected, 1-ended, and have positive excess at each vertex. This extends a result by

Neimayer and Watkins [NW] where they answered these questions for a certain class

of graphs. Chapter 4 contains the answer to the �rst question and chapter 5 answers

the second question. The rest of Chapter 1 introduces the reader to concepts in graph

theory that are used throughout the paper. Chapter 2 contains results concerning the

concept of excess in planar graphs that are useful in answering the two main questions.

Chapter 3 discusses the key concept of a Bilinski Map and extends this concept to

constructing Bilinski Lines. Chapter 3 also contains many technical lemmas which

are vital in answering the two main questions.

Motivation for answering these two questions comes from Bonnington, Imrich and

Watkins [BIW] where they conjecture that if � is a simple, locally �nite, 1-ended,

vertex-transitive graph, then � is planar if and only if every geodesic double ray

bisects �. Bonnington, Imrich, and Seifter [BIS] suggest that this conjecture could

be answered by studying the structure of the underlying geodesic rays of the graph.

Also, by examining the automorphism group of a graph it gives information on what
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sort of automorphisms are possible. This information may be of use in anwering the

conjecture and other questions related to in�nite planar graphs.

1.2 Preliminary De�nitions

Basic concepts of graph theory can be found in [We] [Go]. A proper embedding

of a graph in the plane is a planar embedding so that the set of vertices has no

accumulation point. When a graph � is described in this paper as planar, it is meant

that � can be embedded properly in the plane. � has bounded degree if there is a

positive integer d such that every vertex has degree at most d. A planar graph has

bounded codegree if there is a positive integer ` such that each face is bounded by a

polygon with at most ` sides. A graph is 3-connected if there are 3 internally disjoint

paths between every pair of vertices in the graph. Graphs considered in this paper are

in�nite, locally �nite, and properly embedded in the plane unless otherwise indicated.

The symbols V (�) and E(�) will denote respectively the vertex set and edge set of

a graph �. A disk is a �nite connected planar graph embedded in the plane so that

the union of its closed �nite regions is a topological disk.

The distance between two vertices x and y in a graph � is the length of a shortest

path connecting the vertices and will be denoted by d(x; y). A ray is a one way

in�nite path and a double ray is a two way in�nite path. A path, ray, or double ray

P is said to be geodesic if the distance between any two vertices along P is the same

as the distance between them in the graph. Halin [Ha] de�nes two rays in a graph

to be end-equivalent if there exists another ray whose intersection with each of them

is in�nite. An end is an equivalence class of rays with respect to this equivalence
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relation. In particular a graph is 1-ended if the removal of a �nite set of vertices

yields at most one in�nite component.

1.3 Excess of a Vertex

Recall that for a regular k-gon in the Euclidean plane an interior angle has size

(1 � 2
k
)�. If there are deg(v) regular polygons incident to a vertex v and these

polygons have ni edges respectively, where 1 � i � deg(v), then the sum of the angles

at v is
Pdeg(v)
i=1 (1� 2

ni
)�. For convenience the factor of � is ommited and excess of a

vertex in general is de�ned as follows. (Loosely speaking the excess measures how far

the sum of the angles incident to a vertex deviates from the normal Euclidean sum

of 2�.)

The excess [BMV] of a vertex v in a disk is given by

Ex(v) =

"X
i

(1�
2

ni
)

#
� 2 + bv;

where ni is the number of edges bounding the i
th face incident with v and bv is one if

v is incident with the unbounded face and zero otherwise. The number ni is counted

with multiplicity. Furthermore, the same face is counted with multiplicity in the sum.

Thus, for the examples in this paper

Ex(v) =

"X
i

(1�
2

ni
)

#
� 2;

if the vertex v is in the interior of a disk. If the vertex v is on the boundary of a disk

D, denote the excess at v as Ex�(v) and then by the de�nition of excess,

Ex�(v) =

"X
i

(1�
2

ni
)

#
� 1:
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x

y

D

Figure 1.1: A disk D with interior vertex x and boundary vertex y

When there is ambiguity as to which disk that is considered, the boundary excess for

the disk D is denoted as Ex�D(v).

Note that if � has bounded degree d and codegree `, then for any vertex v in �,

Ex(v) � d(1� 2
`
)� 2 and Ex�(v) � (d� 1)(1� 2

`
)� 1. Thus for a given planar graph

� with bounded degree and codegree, both Ex(v) and Ex�(v) are bounded.

Consider the following examples as illustrated in Figure 1.1. Note that D is a disk

with x in the interior and y on the boundary. Thus since x is adjacent to faces of

codegree 3, 4, 5, and 6,

Ex(x) = (1�
2

3
) + (1�

2

4
) + (1�

2

5
) + (1�

2

6
)� 2 =

1

10
:

Since y is on the boundary and adjacent to faces of codegree 5 and 6,

Ex�(y) = (1�
2

5
) + (1�

2

6
)� 1 =

4

15
:

This example illustrates how excess will be calculated throughout the paper.

1.4 Bounded Automorphisms and Whitney's Theorem

An isomorphism from a graph � to a graph � is bijection � : V (�)! V (�) such that

(u; v) 2 E(�) i� (�(u); �(v)) 2 E(�): An automorphism of a graph is an isomorphism
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from � to itself. An automorphism is bounded if there exists some real number � > 0

such that the distance between a vertex v and �(v) is less than or equal to � for all

v 2 V (�)

By Whitney's Theorem [Wh] and its extension to in�nite planar graphs (by [Im]

or [Th]), the cyclic orderings around the vertices of a 3-connected planar graph are

unique (up to the simultaneous reversal of all orderings) in any planar embedding.

An automorphism of the graph is a map from one planar embedding of the graph

to another and maps vertices to vertices and edges to edges. Thus, an isomorphism

extends to a homeomorphism of the plane. This assures that in any automorphism

of a graph � that the automorphism preserves the property of excess of a vertex.



CHAPTER 2

Results Concerning Excess

This chapter presents results concerned with excess of vertices and how they relate

to planar graphs. These results are key ingredients in many of the proofs that are

presented throughout the paper.

2.1 The Euler Characteristic Equation and Excess

Since this paper deals with planar graphs, an interesting idea to investigate is the

Euler Characteristic equation as it applies to excess. This result can be found in

[BMV] and is included for completeness because of its usefullness in the proofs of

many of the results in this paper.

Lemma 2.1 If D is a disk, then
P
v2V (D) Ex(v) = �2

Proof. Let Vint(D) denote the set of vertices on the interior of D and Vbndy(D)

denote the set of vertices on the boundary of D. From the de�nition of excess,

X
v2D

Ex(v) =
X

v2Vint(D)

Ex(v) +
X

v2Vbndy(D)

Ex�(v)

=
X

v2Vint(D)

0
@
2
4deg(v)X

i=1

�
1�

2

ni

�35� 2

1
A+

X
v2Vbndy(D)

0
@
2
4deg(v)�1X

i=1

�
1�

2

ni

�35� 1

1
A

=
X

v2Vint(D)

deg(v)X
i=1

�
1�

2

ni

�
� 2jVintGj+

X
v2Vbndy(D)

deg(v)�1X
i=1

�
1�

2

ni

�
� jVbndyGj

=
X

all regions Rj

 
1�

2

nRj

!
nRj

� 2jVint(D)j � jVbndy(D)j

6
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=
X

all regions Rj

nRj
� 2jVint(D)j � jVbndy(D)j � 2f

where nRj
is the number of edges incident to region Rj and f is the number of regions

in D.

Let v be the number of vertices in D, vx be the number of boundary vertices, vi

be the number of internal vertices, and e be the number of edges. Then v = vx + vi

and by Euler's formula, vx + vi � e + f = 1. Since on the boundary of the region

ex = vx,
P
all regions Rj

nRj
= 2e� vx. Thus

X
all regions Rj

nRj
� 2jVint(D)j � jVbndy(D)j � 2f

=
X

all regions Rj

nRj
� 2vi � vx � 2f

= 2e� vx � 2vi � vx � 2f

= 2e� 2v � 2f

= �2:

2.2 Bounds on Positive Excess

The next results are bounds on excess that will be useful throughout the paper.

Theorem 2.2 If a vertex v in a planar graph has positive excess, then Ex(v) � 1
903

.

Proof. Let v be a vertex with positive excess in a planar graph. Note that v

cannot have degree 2 since this would require Ex(v) < 0. If v has degree 3, start
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by supposing one incident face is 3-sided. This forces the other two incident faces

to each have codegree greater than or equal to 7, or else v would not have positive

excess. Suppose the second face has codegree 7. For the third incident face, the lowest

codegree that gives v positive excess is when the third face is codegree 47 (This was

done by a computer check). In this case Ex(v) = 1
903

. If the third face has codegree

greater than 47 then Ex(v) > 1
903

.

Next, consider when the second face size is 8 and repeat he process. Then for

this case a computer check reveals that Ex(v) > 1
903

. Keep increasing the codegree of

the second face. When the second face gets to codegree 47, all the cases have been

checked for the �rst face having codegree 3. Increase the �rst face codegree to 4 and

repeat the process. All cases for v having degree 3 will be checked when the �rst face

codegree is increased to codegree 7. In all cases for v having degree 3, a computer

check reveals that Ex(v) � 1
903

.

If v has degree 4, adjust the process by starting out with the �rst two faces having

codegree 3, and complete the process as was done for the cases when the degree was

3. Continue the process, if v has degree 5 by letting the �rst 4 faces have codegree 3,

and in the case where v has degree 6, letting the �rst 5 faces have codegree 3.

In any case for v having degree 6 or less, there is only a �nite number of cases

for the computer to check and Ex(v) � 1
903

. The only case where there is equality is

when v is degree 3 and has face sizes of 3, 7, and 43.

If v has degree d, where d � 7, then

Ex(v) � d(1�
2

3
)� 2 >

1

903
:
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So in all cases,

Ex(v) �
1

903
:

The bound for a vertex on the boundary of a disk may be found in a similar

manner and the result is given in Corollary 2.3.

Corollary 2.3 If a vertex v in a planar graph that is on the boundary of a disk, then

Ex�(v) � 1
21

Note that equality for this case only occurs when there are two faces incident to

v with face sizes of 3 and 7.

2.3 Geodesic Paths and Excess

In [NW], properties of a shy ray, which is a ray that is incident with only one edge

of any face in the graph, are exploited. The proof in [NW] that G4;5 [ G5;4 has

only one bounded automorphism relies on the fact that there is a shy ray S through

every vertex and that the geodesic �ber cointaining S is �nite (geodesic �bers will

be de�ned in Chapter 5). A logical extension would be to exploit geodesic rays using

similar arguments that were used in [NW]. However, to extend the argument in [NW]

there would need to be a lower bound on the sum of the Ex�(v) for any consecutive

vertices v on the geodesic path (It is easy to come up with an example to show there

is no upper bound). However, this cannot be done. Consider the repeated pattern

with geodesic path P starting with v0 and continuing to v2; v3; ::: in Figure 2.1.
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P

Q
v vv v

v

vv v vv

v

v v v0 1 2 3

4

5 76 8

9

10 11 12 13

Figure 2.1: A geodesic path P with no lower bound.

Note that if Ex�(v) is summed up for vertices v6 through v10, illustrated as path

Q in Figure 2.1, the sum is �3
10
. This pattern repeats inde�nitely for all vertices v5k+1

through v5k+5 to make the sum of Ex�(v) for all v in P have no lower bound. Thus, a

geodesic path cannot be characterized in terms of excess without more assumptions.



CHAPTER 3

Technical Lemmas using Bilinski Maps

In this chapter a Bilinski Map is de�ned and several technical lemmas that are nec-

essary for the main results are proved.

The regional distance between two vertices is the least number of adjacent faces

in a path between the vertices. A Bilinski Map [Bi] [NW] is a way of labeling vertices

in a planar graph that measures how far a vertex is from a �xed vertex using the

regional distance. For a nicely embedded graph � with a speci�ed vertex v0, let F1

be the set of faces incident with v0. For m � 1 Vm is the set of vertices not in Vm�1

(V0 = fv0g) that are incident with a face in Fm. For m � 1 Fm+1 is the set of faces

not in Fm that are incident with a vertex in Vm. An example of a Bilinski Map is

given in Figure 3.1 with speci�ed vertex labelled 0.

3.1 Technical Lemmas

Let � be a 3-connected, 1-ended, planar graph with positive excess at each vertex.

Fix a vertex v0 of �. As shown in [BMV], for each m � 1 there is a cycle Cm whose

vertices are in Vm with the property that v0 is in the �nite component of � � Cm.

Furthermore in [BMV], it is shown that jV (Cm)j grows exponentially with m.

For each vertex v of Cm, Ex
�(v) has been de�ned to be the excess for the vertex

v on the disk bounded by Cm. Let the quantity Ex+(v) =
hP

i(1�
2
ni
)
i
� 1, where in

this sum the index i labels faces incident to v which are exterior to Cm. Note that

11



12

0

1

1 1

1

1

1

1
1

11

1

1

2

2

2

2

2

2 2

2

2

2

2

22

2

2

2
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2

2

2

2

2

2

2

3

3

3

3

3

3

3 3

3
3

3

3

3

3

3

3

Figure 3.1: An example of a Bilinski Map with speci�ed vertex labelled 0.

Ex�(v) + Ex+(v) = Ex(v). Refer to Ex�(v) as the inner excess and Ex+(v) as the

outer excess. If there is ambiguity about which disk is being considered, the inner

excess is denoted as Ex�D(v) and the outer excess is denoted as Ex+D(v) for a disk D.

The following technical lemmas lay the groundwork for the main results.

Lemma 3.1 For each vertex v in Cm with m � 1, there is a face incident with v that

is also incident with a vertex in Cm�1.

Proof. Since v is in Vm, it is incident with a face containing a vertex w in Vm�1.

If w is not in Cm�1, then there is a path from v0 to w that does not intersect Cm�1.

Consequently, there is a path from v0 to v 2 V (Cm) that does not intersect Cm�1.

But then, V (Cm) is in the component of � � Cm�1 containing v0. This implies that

v0 is in the in�nite component of �� Cm which is a contradiction.

Note that Lemma 3.1 ensures that a geodesic path from a vertex in Cm back to

v0 has length at most 1
2
ml, where l is an upper bound on codegree.
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In [BMV] it is shown that for planar graphs where every region is a triangle, if

the excess at each vertex is at least 0, then the graph is concentric. That is, all the

vertices in Vm are in Cm. A key part of the inductive argument is that Ex�(v) � 0

for each vertex in Cm. In this setting, this is certainly not the case. However, it is

important to establish an upper bound on the excess sum around consecutive vertices

on the cycle Cm. The next few lemmas give an upper bound on the inner excess sum

around consecutive vertices on the cycle Cm. Let ` be an upper bound on codegree,

d be an upper bound on degree, and � be a lower bound on excess. Note that by

Theorem 2.2, � is at least 1
903

for any graph.

Lemma 3.2 On the cycle Cm, for any consecutive set of vertices R,

X
v2R

Ex�(v) <
2

3
m`:

Proof. In the cases where R contains all vertices in Cm or all except one vertex

in Cm, the statement follows from Euler's formula involving excess since the excess

of each internal vertex is positive. For the remaining cases, let u and w be the end

vertices for R. That is, u and w are vertices not in R, but incident in Cm with vertices

in R. By Lemma 3.1 there are paths p and q of length at most 1
2
`m starting at u and

w respectively and ending at a common vertex x on some Ci, 0 � i < m. Furthermore

it may be assumed that x is the only vertex common to the two paths. Let D be

the disk bounded by the cycle consisting of the paths p and q together with the part

of Cm induced by the vertices of R [ fu; wg. Each vertex of the paths p and q have

excess at least �2
3
and the sum of the disk excess for D is �2. Let E =

P
v2R Ex

�(v)

and E 0 =
P
v2int(D) Ex(v) � 0. Then E+E 0

�
2
3
(`m+ 1) � �2. Therefore, E < 2

3
`m.



14

In the case that jRj is large, Lemma 3.2 can be improved to insure that the excess

sum is negative.

Lemma 3.3 If R is a set of consecutive vertices on Cm and jRj � 2d`2m
3�

, then

P
v2R Ex

�(v) < �1.

Proof. As in Lemma 3.2 construct paths from end vertices u and w of R that

meet at vertex x and each having length at most `m
2
. Also form the disk D as in

Lemma 3.2. Let R0 denote the vertices interior to D which are on the cycle Cm�1.

Each vertex v of R is connected by a face to a vertex in R0. Therefore, jR0
j > jRj

d`
.

De�ne E and E 0 as in Lemma 3.2 and note that E 0 > jRj

d`
�. Since

E +
jRj

d`
��

2

3
(`m+ 1) � �2;

it follows that

E <
2

3
`m�

jRj

d`
�� 1

<
2

3
`m�

2d`2m

3�

�

d`
� 1

= �1

Given two vertices v and w in Cm, let B(v; w) denote the vertices encountered in

a counterclockwise walk around Cm from v to w, but including neither v nor w. Refer

to the set B(v; w) as the set of vertices between v and w. Note that the set of vertices
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between v and w is not the same as the set of vertices between w and v. In general,

the notation B(v; w) is used as the vertices encountered in a counterclockwise walk

around the boundary of any �xed disk D

Let v 2 V (Cm) and say that the vertex v links outward to w if there is a face

incident with both v and w, and w 2 V (Cm+1). A key part of the proof of Theo-

rem 4.1 is to establish how the total excess grows from cycle Cm to cycle Cm+1. Not

every vertex of Cm links outward. Lemmas 3.4 and 3.5 give bounds on the excess

sum between consecutive vertices that link outward and the excess sum between the

vertices in Cm+1 to which they link.

Lemma 3.4 Suppose that p1 and p2 are paths from x 2 V (Cm) to x
0
2 V (Cm+1) and

y 2 V (Cm) to y
0
2 V (Cm+1) respectively, and there is a face A whose bounding cycle

contains p1 and a face B whose bounding cycle contains p2. Furthermore, assume

there are no vertices incident with either A or B that are in B(y; x)[B(y0; x0). Then

X
v2B(y0;x0)

Ex�(v) �
X

v2B(y;x)

Ex�(v)� �jB(y; x)j:

Proof. Let D be the disk whose boundary consists of the cycle Cm restricted to

the vertices fx; yg[B(y; x), the path p2, the cycle Cm+1 restricted to fx
0; y0g[B(y0; x0),

and the path p1. Then

�2 =
X

v2V (p1)

ExD(v) +
X

v2V (p2)

ExD(v) +
X

v2B(y;x)

Ex+(v)

+
X

v2B(y0 ;x0)

Ex�(v) +
X

v2int(D)

Ex(v):

It is easy to verify that
P
v2V (p1) ExD(v)+

P
v2V (p2) ExD(v) � �2. Also,

P
v2int(D) Ex(v) �

0 since the excess at each vertex of � is positive. Consequently,
P
v2B(y0 ;x0) Ex

�(v) �
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x y x y

D D
R

t

a) b)

Figure 3.2: Faces having at most a point in common.

�

P
v2B(y;x) Ex

+(v). Since Ex+(v)+Ex�(v) = Ex(v) � � for every vertex v 2 B(y; x),

thus

X
v2B(y0;x0)

Ex�(v) �
X

v2B(y;x)

Ex�(v)� �jB(y; x)j:

Lemma 3.5 If x and y are vertices in Cm incident with faces containing vertices in

Cm+1 and there is no vertex in B(y; x) incident with a face containing a vertex of

Cm+1, then

X
v2B(y;x)

Ex+(v) � 0:

Proof. First note that by a minor modi�cation of the construction of Cm given

in [BMV], it is possible to allow only edges in Cm that bound faces incident with both

a vertex in Vm and a vertex in Vm�1. As a result, there are only two possible cases.

Either the face incident with x and incident with a vertex of Cm+1 is the same face

as the face incident with y and incident with a vertex in Cm+1 or else the two faces

intersect in a vertex t on Cm+1. See Figures 3.2a and 3.2b respectively.

First consider the case shown in Figure 3.2a where the faces are the same. Let A

be the set of vertices on the boundary of the face R in Figure 3.2a. Then
P
v2A Ex(v)+
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P
v2B(y;x) Ex

+(v) � �2. But
P
v2A Ex(v) � �2, as the sum of the excess over all the

vertices bounding the face R is �2. It follows that
P
v2B(y;x) Ex

+(v) � 0:

For the case illustrated in Figure 3.2b, let D be the disk whose boundary contains

x, y and t, then
P
v2D ExD(v) = �2. The vertices x, y, and t contribute at least �2 to

the sum. Each vertex in the interior of D contributes a positive amount to the sum,

and each vertex on the interior of the paths from x to t and t to y on the boundary

of D contribute a positive amount to the sum. Therefore,
P
v2B(y;x) Ex

+(v) � 0:

Corollary 3.6 gives a lower bound on how far around the cycle Cm one travels in

order to come to a vertex that links outward.

Corollary 3.6 For any vertex v 2 V (Cm), there is a vertex w on Cm such that

1. w links outward, and

2. the path from v to w on Cm in a clockwise direction has length at most d
2d`2m
3�

e.

Furthermore, in condition 2) clockwise can be replaced with counterclockwise.

Proof. From v travel around Cm in a clockwise direction until you �nd the �rst

vertex that links outward. Call this vertex x. From v travel counterclockwise to

�nd the �rst vertex y that links outward. Suppose there are at least d2d`
2m
3�

e vertices

in B(y; x). Then
P
v2B(y;x) Ex

�(v) < 0 by Lemma 3.3. Since for any v 2 V (Cm),

Ex(v) = Ex+(v) + Ex�(v), it follows that
P
v2B(y;x) Ex

+(v) > 0. This contradicts

Lemma 3.5.

Corollary 3.7 gives a convenient summary of Lemma 3.4 and Corollary 3.6.
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Corollary 3.7 There is a � > 0 such that if R is a set of consecutive vertices around

Cm with jRj > �m, then

1.
P
v2R Ex

�(v) < �1, and

2. among the vertices of R at least one vertex links outward.

Note that � depends on �, d, and `, but does not depend on m.

It is necessary to have some control of how the total excess changes from Cm

to Cm+1. The excess sum between vertices on Cm gives a measure of the distance

between the vertices. Lemma 3.8 gives the desired bound.

Lemma 3.8 Let x and y be vertices in Cm which link outward to x0 and y0 respec-

tively. If
P
v2B(y;x) Ex

�(v) � �
2
3
�m, where m > 2�

�
, � = 1+ �, and � is some positive

number, then
P
v2B(y0;x0) Ex

�(v) < �
2
3
�(m + 1)�.

Proof. By Lemma 3.4,
P
v2B(y0;x0) Ex

�(v) �
P
v2B(y;x) Ex

�(v)� �jB(y; x)j. Since

P
v2B(y;x) Ex

�(v) � �
2
3
�m, jB(y; x)j � �m. Consequently,

X
v2B(y0;x0)

Ex�(v) � �

2

3
�m� ��m

= ��m

�
2

3
+ �

�

= �

2

3
� (m+ 1) � +

2

3
� (m + 1) � � �m

�
2

3
+ �

�

= �

2

3
� (m+ 1) � + �m

�
2

3
� �

2

3
� �

�
+

2

3
��

= �

2

3
� (m+ 1) � + �m

�
�

1

3
�

�
+

2

3
��

= �

2

3
� (m+ 1) � + �

�
��m

3
+

2

3
�

�

< �

2

3
� (m+ 1) � + �

�
�

�m

3
+

2

3

�m

2

�

= �

2

3
� (m+ 1) �
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3.2 Main Technical Lemmas

The proof of Theorem 4.1 relies on an iterative process for selecting special clusters

of vertices on cycles of the Bilinski Map. Lemma 3.9 is the �rst of the main technical

lemmas that are needed. Condition 5 will ensure that the inner excess sum of the

vertices in each special cluster will depend mainly on the index of the Bilinski cycle

it lies on. Conditions 3 and 4 allow the required number of disjoint special clusters

to be identi�ed on the next appropriate Bilinski cycle.

Recall that � is the minimum excess of the vertices of the graph, ` is the maximum

face size and � = 1 + �. For Lemma 3.9 it is assumed that � < 1. Since it is only

assumed that the excess at each vertex is at least �, � can always be replaced with a

smaller positive value.

Lemma 3.9 Let � > � and let �0 = max
�
36
�
�; `

�
. Suppose that x and y are vertices

in Cm with m > 2�
�
,
P
v2B(y;x) Ex

�(v) � �
2
3
�0m, x links outward to x0, and y links

outward to y0. Then there are vertices u; w 2 B(y0; x0) such that

1. both u and w link outward, and

2. on Cm+1 starting at x0 and walking clockwise the order in which vertices are

traversed is x0; u; w; y0, and

3. �3� (m + 1) <
P
v2B(u;x0) Ex

�(v) < �� (m + 1), and

4. �3� (m + 1) <
P
v2B(y0 ;w) Ex

�(v) < �� (m + 1), and
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5.
P
v2B(w;u) Ex

�(v) � �
2
3
�0(m + 1)(1 + 3

4
�):

Proof. Let R be the set of vertices between x0 and y0. By Lemma 3.4 the inner

excess sum for these vertices is at most �2
3
�0(m+1)(1+ �). Each vertex has excess at

least �2
3
so there are at least �0(m+1)(1+ �) vertices in R. Since �0 � 36�

�
it follows

that �0(m+ 1)(1+ �) > 36�(m+1), that is, there are at least 36�(m+1) vertices in

R. By Corollary 3.8, starting at x0 and moving around Cm+1 in a clockwise direction,

there is a �rst vertex u which links outward and satis�es condition 3. Similarly, by

starting at y0 and moving around Cm+1 counterclockwise, there is a �rst vertex w

which links outwards and satis�es condition 4.

Suppose that the order of u and w indicated in condition 2 is reversed. Let

r0 =
X

v2B(u;w)

Ex�(v)

r1 =
X

v2B(u;x0)

Ex�(v)

r2 =
X

v2B(y0;w)

Ex�(v)

r3 =
X

v2B(y0;x0)

Ex�(v):

Then the sum of the excess for the vertices in B(u; w) is given by

r0 = r1 + r2 � r3

> �6�(m + 1) +
2

3
�0(m + 1)(1 + �)

� �6�(m + 1) +
2

3

36�

�
(m+ 1)�+

2

3
�0(m+ 1)

= �6�(m + 1) + 24�(m+ 1) +
2

3
�0(m+ 1)

�

2

3
�0(m + 1)

�

2

3
`(m + 1):
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Note that this contradicts Lemma 3.2. Therefore, the order indicated in condi-

tion 2 is correct.

It remains to show condition 5. Let r1, r2, and r3 be de�ned as above, but let

r0 =
P
v2B(w;u) Ex

�(v). A calculation similar to the previous one gives:

r0 = r3 � r1 � r2

< �

2

3
�0(m+ 1)(1 + �) + 6�(m+ 1)

= �

2

3
�0(m+ 1)�

2

3
�0(m + 1)�+ 6�(m+ 1)

� �

2

3
�0(m+ 1)�

2

3

36�

�
(m+ 1)�+ 6�(m+ 1)

= �

2

3
�0(m+ 1)� 18�(m+ 1)

= �

2

3
�0(m+ 1)(1 +

3

4
�)

Lemma 3.10 is the second main technical lemma. It shows that any geodesic path

which starts at the center z of the Bilinski Map and passes through a special cluster

of vertices on Cm+ik also passes through a previous such cluster on each of the cycles

Cm; Cm+k; :::Cm+(i�1)k. Recall that Lemma 3.1 implies that a geodesic path from z

to Cm has at length at most `m
2
and that if a graph has bounded degree and codegree

then excess and inner and outer excess has an upper bound. Call the common bound

k.

Lemma 3.10 Let � > �(`m)4 + k
�
`m+`
4

�
and x; y; u; w be vertices which satisfy the

conditions of Lemma 3.9. Any geodesic path from the center of the Bilinski Map to a
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z

z'

x

u
x y

y

w
' '

P

Q

D

Figure 3.3: The case where P does not intersect B(u; x0)

vertex in B(w; u) contains a vertex from B(y; x).

Proof. Let z be the center of the Bilinski Map, construct a geodesic path P from

a vertex z0 in B(w; u) to z. Note that jP j � `(m+1)

2
. Suppose that P does not intersect

a vertex in B(y; x). There are two main cases to consider.

Case 1: P does not intersect either B(u; x0) or B(y0; w). This case is illustrated

(without loss of generality) in Figure 3.3. Create a disc D by constructing a

path Q from x to z, now follow along P from z to z0 (if P and Q intersect at

a vertex before z, use that vertex in place of z), then along Cm+1 to x0, and

�nally back to x. By Lemma 3.9 it follows that

X
v2B(u;x0)

Ex�(v) < ��(m+ 1)

on the boundary of disk Cm+1, hence

X
v2B(u;x0)

Ex�(v) > �(m+ 1)
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on the boundary of D.

Case 1-1: Note that if jB(z0; u)j � �, by Lemma 3.7 it follows that

X
v2B(z0;x0)

Ex�(v) > �(m+ 1);

thus summing up the excess of the disk D

�2 =
X

v2B(z0;x0)

Ex�(v) +
X

v2B(x0 ;z0)

Ex�(v) + Ex�(x0) + Ex�(z0) +
X

v2Dint

Ex(v)

> �(m+ 1) +
�2

3
`(m + 1)

> 0:

Case 1-2: If jB(z0; u)j < �, then summing up the excess of the disk D

�2 =
X

v2B(u;x0)

Ex�(v) +
X

v2B(z0;u)

Ex�(v) +
X

v2B(z0;x0)

Ex�(v)

+Ex�(x0) + Ex�(z0) + Ex�(u) +
X

v2Dint

Ex(v)

> �(m+ 1) +
�2

3
� +

�2

3
`(m + 1)

> 0:

Case 2: Suppose that P does intersect either B(u; x0) or B(y0; w) and consider when

it intersects B(u; x0) (when P intersects B(y0; w) the proof is similar). Create

disks by constructing a path Q from x to z, now follow along P from z to z0

(if P and Q intersect at a vertex before z, use that vertex in place of z), then

along Cm+1 to x
0, and �nally bach to x. Since jP j � `(m+1)

2
, and choosing Cm+1

as a bounding cycle, there may be
�
`(m+1)

2

�
=2 = `m+`

4
points of intersection of

P with Cm+1, and therefore at most `m+`
4

disks created as illustrated in Figure

3.4. Note that � > �(`m)4 + k
�
`m+`
4

�
, so at least one of the regions, call it D,
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z

z'

x

u
x y

y

w
' '

P

Q

Figure 3.4: The case where P does intersect B(u; x0)

has the sum of the Ex�(v) greater than (`m)2� for all vertices v that intersect

Cm+1. The rest of the region is bounded by P , thus it is less than `(m+1)

2
edges

bounding it.

Case 2-1: If the region D along Cm+1 is a subset of B(u; x0) then along D, as

illustrated in Figure 3.5,

�2 =
X

v2B(b;a)

Ex�(v) +
X

v2B(a;b)

Ex�(v) + Ex�(a) + Ex�(b) +
X

v2Dint

Ex(v)

> (`m)2� +
�2

3

 
`(m+ 1)

2

!
+ 0 +�2

�
�2

3

�

> 0:

Case 2-2: If this region contains x0 then as illusrtated in Figure 3.5,

�2 =
X

v2B(b;x0)

Ex�(v) +
X

v2B(x0;b)

Ex�(v) + Ex�(b) + Ex�(x0) +
X

v2Dint

Ex(v)

> (`m)2� +
�2

3
`(m + 1)

> 0
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z
z'

x

u

x'

P

Q

b

Case 2-2

b

P

Case 2-3

P

b ux'

Case 2-1

a

D

D

D

Figure 3.5: Three subcases of case 2

Case 2-3: The third subcase, as illustrated in Figure 3.5 occurs if the region

contains u. If jB(z0; u)j � � by Lemma 3.7
P
v2B(z0 ;b) Ex

�(v) > (`m)2, thus

�2 =
X

v2B(z0;b)

Ex�(v) +
X

v2B(b;z0)

Ex�(v) + Ex�(z0) + Ex�(b) +
X

v2Dint

Ex(v)

> (`m)2� +
�2

3

 
`(m + 1)

2

!
� 2

�
�2

3

�

> 0

If jB(z0; u)j < �,

�2 =
X

v2B(u;b)

Ex�(v) +
X

v2B(z0;u)

Ex�(v) +
X

v2B(b;z0)

Ex�(v)

+Ex�(z0) + Ex�(b) + Ex�(u) +
X

v2Dint

Ex(v)

> (`m)2� +
�2

3

 
`(m+ 1)

2

!
+
�2

3
� + 3

�
�2

3

�

> 0

For all cases there is a contradiction, so P passes through B(y; x).

The third of the main technical lemmas shows that if two vertices are far apart on
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Cm then the distance they are apart in the graph is also large. Recall again that if a

graph has bounded degree and codegree then excess, inner excess, and outer excess

have an upper bound. Call the common bound k.

Lemma 3.11 Let � be a positive integer. If x and y are on Cm for m > 2� with

P
v2B(y;x) Ex

�(v) < �2�2(`d)� + k� then d(x; y) > �.

Proof.

Suppose that d(x; y) � �. Since Cm grows exponetially [BMV], for some positive

integerm there are vertices x and y on Cm so that
P
v2B(y;x) Ex

�(v) < �2�2(`d)�+k�.

Construct a geodesic path P between x and y and thus, jP j � �.

Suppose that P intersects B(y; x) on Cm. Then there are at most � regions created

by P and B(y; x). One of the regions has an x0 and a y0 so that
P
v2B(y0;x0) Ex

�(v) <

�2�2(`d)�

�
= �2�(`d)�. So it is enough to consider the case that a region is bounded

by a geodesic ray P where jP j � � and the vertices B(y; x) where
P
v2B(y;x) Ex

+(v) >

2�(`d)�. The region, call it D, stays completely on the interior or exterior of the disk

created by Cm.

Suppose �rst P stays only on the exterior of Cm. Since there is positive excess at

each vertex,
P
v2B(y;x) Ex

+(v) > 2�(`d)�. For the region D,

�2 =
X

v2B(y;x)

Ex�(v) +
X

v2B(x;y)

Ex�(v) + Ex�(x) + Ex�(y) +
X

v2Dint

Ex(v)

> 2�(`d)� +
�2

3
� + 2

�
�2

3

�

> 0

which is a contradiction.

Now suppose that P traverses only on the interior of Cm. Since
P
v2B(y;x) Ex

�(v) <



27

�2�(`d)�, it follows that jB(y; x)j > 2�(`d)� on Cm. P is geodesic, so jP j � �. Each

vertex on Cm has maximum degree d and is incident with a face with maximum size `

on Cm�1. Thus, if P does not intersect Cm�1 there are at least
2�(`d)�

`d
vertices between

x and y along P . However, jP j � 2�(`d)�

(`d)
> � which is a contradiction. So P intersects

Cm�1.

Similarly, each vertex on Cm�1 has maximum degree d and is incident with a face

with maximum size ` on Cm�2. Thus, if P does not intersect Cm�2 there are at least

2�(`d)�

(`d)2
vertices between x and y along P . However, jP j � 2�(`d)�

(`d)2
> � which is a

contradiction. So P intersects Cm�2.

Each vertex on Cm�j has maximum degree d and is incident with a face with

maximum size ` on Cm�(j+1). Thus, if P does not intersect Cm�(j+1) there are at

least 2�(`d)�

(`d)j
vertices between x and y along P . So when j = � it follows that jP j �

2�(`d)�

(`d)�
> � which means that P intersects Cm���1. However, any path starting and

ending in Cm and intersecting Cm���1 has length greater than 2�. Thus there is a

contradiction, so jP j > � and d(x; y) > �.

3.3 Bilinski Lines

In this section, the concept of a Bilinski Map is extended to consider the face distance

from a double ray rather than a vertex. Suppose � is a planar graph and there is

a geodesic double ray R in � that separates � into two in�nite regions (Since the

ray is geodesic, it may never intersect itself ). Consider one of the regions and call

it �1. Let F1 be the set of faces in �1 incident with R. For m � 1 Vm is the set

of vertices not in Vm�1 (V0 = R) that are incident with a face in Fm. For m � 1
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Fm+1 is the set of vertices not in Fm that are incident with a vertex in Vm. Let Em

be the set of edges that have a vertex labelled m and m is the maximum label of

its vertices. The following theorem is an extension of the existence of a bounding

cycle of the Bilinski Map proved in [BMV]. The theorem uses the idea in [BMV] of

a bounding cycle. The corresponding result would be sets of bounding lines Lm for

m a positive integer. Each Lm would consist of vertices from Vm and edges on Em

such that the connected component of the complement of Lm not containing R has

an in�nite number of vertices of �1, but none from V0 [ V1 [ ::: [ Vm.

Theorem 3.12 Let �1 and R be as above. Then there is a double ray Lm consisting of

vertices from Vm and edges on Em such that connected component of the complement

of Lm not containing R has an in�nite number of vertices of �1, but none from

V0 [ V1 [ ::: [ Vm.

Proof. Let �1 and R be as above. Construct Lm in the following manner. Let

x0 be a vertex on R. Follow a path along R starting x0 and label the vertices x1, x2,

. . . In the opposite direction along the ray R, label the vertices x�1, x�2, . . . Let

R(xj; xh) denote the vertices xj to xh along R. Next, construct the Bilinski Map in

� for each vertex xi and a bounding cycle at stage m in the Bilinski Map guaranteed

by [BMV]. Label each cycle as Cm;i for each vertex xi and consider its restriction on

�1.

The construction will proceed by induction. Consider �rst the union of the cycles

Cm;�`m through Cm;`m. Note that this union is a �nite union of intersecting cycles.

Thus, there is a bounding cycle. At the �rst step of the induction let P0 be the
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x xx0 lm-lm

P

R

0

C0

Figure 3.6: The constuction of P0.

bounding path that comes from restricting the bounding cycle to �1 and C0 be the

cycle that results from P0 and R. This process is illustrated in Figure 3.6.

Next consider R(x`m; x3`m) and R(x�`m; x�3`m) centered around vertices x2`m

and x�2`m respectively. Consider the union of C0 and Cm;i for every vertex xi 2

R(x`m; x3`m) [ R(x�`m; x�3`m) and call this union C1. Note that this is also a �nite

union of intersecting cycles, thus there is a bounding cycle. Restrict the cycle to �1

and call its bounding path P1. Let
Si2
i=i1

Cm;i refer to the union of the Cm;i for each

vertex xi 2 R(xi1 ; xi2).

Note that if
S3`m
i=`mCm;i intersects

S
�`m
i=�3`mCm;i, then for some xi 2 R(x`m; x3`m)

and some xj 2 R(x�3`m; x�`m) that the intersection between Cm;i and Cm;j is not

empty. Consider a geodesic path from a point on the intersection to both xi and xj.

This creates a path from xi to xj that is at most length `m by Lemma 3.1. This is a

contradiction since R is geodesic and the path length along R between xi and xj is

greater than `m. Thus,
3`m[
i=`m

Cm;i
\ �`m[

i=�3`m

Cm;i = ;:
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L m,1

P

x xx xx lm-lm-3lm 3lm

1

0
R

Figure 3.7: The constuction of Lm;1 and P1.

Since the intersection is empty, there is subpath of P0 that is not in the interior of

S3`m
i=`mCm;i or in the interior of

S
�`m
i=�3`m Cm;i. Call this subpath Lm;1 and note that

Lm;1 = P0

\0
@ 3`m[
i=`m

Cm;i
[ �`m[

i=�3`m

Cm;i

1
A

The construction of Lm;1 is illustrated in the following Figure 3.7.

So suppose at step k you have a Pk and a Lm;k. Create a Pk+1 and Lm;k+1

in a similar manner. Let R(x(2k+1)`m; x(2k+3)`m) and R(x�(2k+1)`m; x�(2k+3)`m) each

centered around vertices x2(k+1)`m and x�2(k+1)`m respectively. Consider the union of

Pk the Cm;i for each vertex xi 2 R(x(2k+1)`m; x(2k+3)`m) [ R(x�(2k+3)`m; x�(2k+1)`m).

Note that this is also a �nite union of intersecting cycles, thus there is a bounding

cycle. Restrict the cycle to �1 and call its bounding path Pk+1. Similarly as in the

�rst step,
(2k+3)`m[
i=2k+1)`m

Cm;i
\ �(2k+1)`m[

i=�(2k+3)`m

Cm;i = ;:

Since the intersection is empty, there is subpath of Pk that is not in the interior of

S(2k+3)`m

i=(2k+1)`m Cm;i or in the interior of
S�(2k+1)`m

i=�(2k+3)`m Cm;i. Call this subpath Lm;k+1 and

note that

Lm;k+1 = Pk
\0
@ (2k+3)`m[
i=(2k+1)`m

Cm;i
[ �(2k+1)`m[

i=�(2k+3)`m

Cm;i

1
A
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Note that Lm;k is a subpath of Lm;k+1 since Lm;k does not intersect the union of

the Cm;i for each vertex xi 2 R(x(2k+1)`m; x(2k+3)`m) or the union of the Cm;i for each

vertex xi 2 R(x�(2k+1)`m; x�(2k+3)`m). This is because Lm;k is a subpath of Pk�2 and

which consists of vertices xi 2 B(x(2k�1)`m; x�(2k�1)`m). Without loss of generaltiy, if

(2k+3)`m[
i=(2k+1)`m

Cm;i
\ �(2k�1)`m[

i=(2k�1)`m

Cm;i 6= ;;

then for some xi 2 R(x(2k+1)`m; x(2k+3)`m) and some xj 2 R(x(2k�1)`m; x�(2k�1)`m) the

intersection between Cm;i and Cm;j is not empty. Consider a geodesic path from a

point on the intersection to both xi and xj. This creates a path from xi to xj that is

at most length `m by Lemma 3.1. This is a contradiction since R is geodesic and the

path length along R between xi and xj is greater than `m. Thus, Lm;k is a subpath

of Lm;k+1.

Continuing by induction, the double ray Lm that results from this process consists

of vertices from Vm and edges on Em such that connected component of the comple-

ment of Lm not containing R has an in�nite number of vertices of �1, but none from

V0 [ V1 [ ::: [ Vm due to the properties of the Bilinski Maps from [BMV].



CHAPTER 4

Geodetic Fibers in Graphs with Positive Excess

For a connected graph � the concept of distance can be generalized to de�ne the

distance between subgraphs X; Y in � as

d(X; Y ) = minfd(x; y) : x 2 X; y 2 Y g:

For any non-negative integer N , the n-neighborhood of X is the set

Nn(X) = fv 2 V (X) : d(v;X) � ng:

The Hausdor� distance between subgraphs X and Y is de�ned to be

dHsdf(X; Y ) = minfn : V (X) � Nn(Y ) and V (Y ) � Nn(X)g:

Rays P and Q are said to be equivalent, denoted P � Q, if dHsdf (P;Q) <1. For �

locally �nite, � is an equivalence relation on the set of rays of �, and the equivalence

classes are called the �bers of � [JN]. A geodesic �ber is a �ber that contains at least

one geodesic ray.

Neimayer and Watkins [NW] ask the question `How many geodesic �bers does

a graph contain?'. They prove that there are uncountably many geodesic �bers for

the class G4;6

S
G5;4 of 1-ended, planar, 3-connected graphs all of whose degrees and

codegrees are �nite along with the assuptions that degree is at least 4 and codegree

is at least 6, or degree is at least 5 and codegree is at least 4. G4;6

S
G5;4 is a subset

of the class of graphs mentioned in the following theorem and thus Theorem 4.1 is an

extension of the result by Neimayer and Watkins.
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Figure 4.1: The start of the procedure.

Theorem 4.1 Let � be an in�nite, 1-ended, locally �nite, planar graph with bounded

degree and codegree. If every vertex of � has positive excess, then � has an uncountable

number of geodesic �bers.

The �rst part of the proof uses Lemma 3.9 to select special vertex clusters and

the second part relies on Lemma 3.10 to show that � has an uncountable number of

geodesic �bers. Recall that � > �(`m)4+jh where j > `m+`
4

and h is an upper bound

on the excess of a vertex and that �0 = max
�
36
�
�; `

�
.

Proof. Choose z 2 V (�) and create the Bilinski Map centered at z. Let �0 be

as stated above. Since the growth of the cycles of the Bilinski Map is exponential

[BMV], by Corollary 3.7 there exists a cycle Cm containing vertices y1, y2, and y3

with the property that B(y2; y1) \ B(y3; y2) is empty,
P
v2B(y2 ;y1) Ex

�(v) � �2
3
�0m

and
P
v2B(y3;y2) Ex

�(v) � �2
3
�0m. Let �0 = B(y2; y1) and �1 = B(y3; y2). Note that

�0

T
�1 = ;. The sets of vertices �0 and �1 form two special clusters on Cm which

are the beginning of the iterative process. �0 will `spawn' all special clusters �0;I and

�1 will `spawn' all special clusters �1;I , where I is any sequence of 0's and 1's.

The general iterative step is now described. Let In be the �rst n tems of a bi-
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Figure 4.2: After j steps of the procedure.

nary sequence. Without loss of generality begin with �In;0 = B(u0; v0) and �In;1 =

B(w0; u0) inCm, where v0; u0, and w0 each link outward to Cm+1, with
P
v2B(u0;v0) Ex

�(v) �

�2
3
�0m,

P
v2B(w0;u0) Ex

�(v) � �2
3
�0m, and �In;0

T
�In;1 = ;. First consider �In;1, sup-

pose u0 links outward to a1 and w0 links outward to b1. Determine special clusters

�In;1;0 and �In;1;1 by the following procedure.

Take u1 and w1 on Cm+1 (Figure 4.1) as in Lemma 3.9, then

�

P
v2B(w1;u1) Ex

�(v) � �
2
3
�0(m+ 1)(1 + 3

4
�),

� � 3� (m+ 1) <
P
v2B(u1 ;a1) Ex

�(v) < �� (m + 1), and

� � 3� (m+ 1) <
P
v2B(b1;w1) Ex

�(v) < �� (m+ 1).

Now apply Lemma 3.9 repeatedly by replacing � with �
�
1 + 3

4
�
�
and use B(uk; wk)

as the starting set. After j steps this gives (Figure 4.2):

�

P
v2B(wj ;uj)

Ex�(v) � �
2
3
�0(m + j)(1 + 3

4
�)j,

� � 3� (m+ j) (1 + 3
4
�)j <

P
v2B(uj ;aj)

Ex�(v) < �� (m+ j) (1 + 3
4
�)j, and

� � 3� (m+ j) (1 + 3
4
�)j <

P
v2B(bj ;wj) Ex

�(v) < �� (m + j) (1 + 3
4
�)j.

Eventually, for some value of j, say j = k,

X
v2B(wk ;uk)

Ex�(v) � �

2

3
�0(m+ k)(1 +

3

4
�)k < 3(

�2

3
)�0(m+ k):
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Figure 4.3: The creation of the next step of special clusters.

Repeating these steps starting with �I;0 gives vertices u
0

k, vk on Cm+k such that

X
v2B(vk ;u

0

k
)

Ex�(v) � �

2

3
�0(m + k)(1 +

3

4
�)k < 3(

�2

3
)�0(m + k)

where starting at vk and walking clockwise the order of these vertices is vk; u
0

k; uk; wk.

Without loss of generality, choose k large so that Cm+k is the same cycle for both �I;0

and �I;1.

Corollary 3.7 ensures that there exists a vertex yk in B(wk; uk) (Figure 4.3) so

that yk links outward to Cm+1, and

�

P
v2B(uk ;yk)

Ex�(v) � �
2
3
�0(m+ k) and,

�

P
v2B(yk ;wk)

Ex�(v) � �
2
3
�0(m+ k).

Let B(uk; yk) = �In;1;0 and B(yk; wk) = �In;1;1. Form �In;0;0 and �In;0;1 from

B(u0k; vk) in a similar fashion. Continue this iterative process inde�nitely. At each

step Lemma 3.9 ensures that �In;0;0
T
�In;0;1 = ;, and the inner excess sum of each

special cluster will always be su�ciently negative to ensure that it contains a vertex

with an outward link.

It remains to show that there are an uncountable number of geodesic �bers. To

do this, �rst �x an in�nite binary sequence I. Let In be the �rst n terms of I, let
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Pv denote the set of geodesic paths from a vertex v to z, and let HS = fPvjv 2 Sg.

De�ne a geodesic ray associated to I in the following manner. For each �In construct

H�In
.

Note �rst that there are only a �nite number of geodesic paths in H�I1
. By

Lemma 3.10, any geodesic path through �In+1 passes through �In on its way back

to z. Thus, one of the paths, say P1 2 H�I1
, must be a subpath of an in�nite

number of paths P 2

S
1

n=1H�In
. Call this in�nite subset of paths K1 and note that

K1

T
H�In

6= ; for any positive integer n.

Now consider H�I2
. Note that H�I2

is �nite and K1

T
H�I2

6= ;. By Lemma 3.10,

there is a P2 2 H�I2
so that P1 is a subpath of P2 and P2 is a subpath of an in-

�nite subset of paths P 2 K1. Call this in�nite subset of paths K2 and note that

K2

T
H�In

6= ; for any positive integer n.

Continue this process for each H�In
to get a path Pn so that Pn�1 is a subray of

Pn. Thus by induction, every binary sequence constructs a geodesic ray.

Now let IA and IB be two di�erent binary sequences with associated rays A and

B. Suppose that the sequnces �rst di�er on the nth term with In1 the �rst n terms

of IA and In2 the �rst n terms of of IB . Let Cm be the cycle associated with �In1

and �In2

Note that Lemma 3.9 implies that the distance on the cycle between any vertices

in A
T
Cm+1 and any verices in B

T
Cm+1 is more than 2�m (Figure 4.4). Note also

that since each special cluster splits at the same cycle for any two sequences In1 and

In2 of the same length, then �In1
T
�In2 = ;. Lemma 3.9 shows that this distance on

the cycle grows exponentially inm. Consequently the Hausdor� distance between any
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Figure 4.4: The distance between rays A and B.

two rays associated with di�erent binary sequences is in�nite and thus these rays are

in di�erent Hausdor� classes. Hence � contains an uncountable number of geodetic

�bers.

Neimayer and Watkins [NW] include examples of planar graphs with quadratic

growth where all vertices have negative or zero excess. In Figure 4.5, graph a) is the

grid graph where excess at each vertex is zero. In any geodesic ray, all the horizontal

edges point in the same direction (right or left) and the same holds for all the vertical

edges (up or down). There are two types of geodesic rays. One kind contains �nitely

many vertical edges or �nitely many horizontal edges. The other contains countably

many instances of a horizontal edge immediately followed by a vertical edge. An

equivalent geodesic ray can be made in an uncountable number of ways. Graph a)

contains uncountably many geodesic �bers.

Graph b) has either excess negative or zero at each vertex. There are two kinds of

geodesic rays depending on whether the ray contains in�nitely many or �nitely many

vertical edges. If there are in�nitely many vertical edges, the geodesic ray contains

a vertical subray that points upward or downward. That vertical ray is contained in
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a) b)

Figure 4.5: Examples of graphs from [NW].

the central vertical line of the �gure. Thus, the geodesic rays containing in�nitely

many vertical edges belong to either of exactly two geodesic �bers. The geodesic rays

that contain only �nitely many edges contain a horizontal subray which may point

to the right or left. Any two such right (or left) pointing rays are in the same �ber.

Thus, there are four geodesic �bers in graph c).

Consequently the condition of positive excess is su�cient but not necessary to

ensure the existence of an uncountable number of geodesic �bers in in�nite, locally

�nite, planar graphs with bounded degree and codegree.



CHAPTER 5

Bounded Automorphisms of Graphs with Positive Excess

Neimayer and Watkins [NW] discovered that the only bounded automorphism on

G4;5 [ G5;4, which is the set of planar graphs that are 3-connected, 1-ended, have

�nite degree and codegree, with codegree at least 5 and degree at least 4 or with

codegree at least 4 and degree at least 5, was the identity automorphism. The graphs

inG4;5[G5;4 form a subset of all 3-connected, 1-ended planar graphs that have positive

excess at each vertex. A natural extension of the result by Neimayer and Watkins is

to prove that if � is a 3-connected, 1-ended, planar graph that has positive excess at

each vertex, the only bounded automorphism on � is the identity automorphism.

The following lemmas construct continuous functions that are useful in certain

situations. Let � be a 3-connected, 1-ended, planar graph and consider the Bilinski

Map with center vertex z.

For the �rst lemma, suppose there is a path P that intersects Cm and Cm�1

at intersection vertices x, u, w, and y as illustrated in Figure 5.1 part a). Let

Q1 = B(y; x)
S
fxg

S
fyg along Cm, let Q2 = B(u; x)

S
fug

S
fxg along P , let Q3 =

B(w; u)
S
fwg

S
fug along Cm�1, and Q4 = B(y; w)

S
fwg

S
fyg along P .

For the second lemma, suppose there is a path R that intersects Cm and Cm�1

at intersection vertices a, b, c, and y as illustrated in Figure 5.1 part b). Let

S1 = B(d; a)
S
fag

S
fyg along Cm�1, let S2 = B(b; a)

S
fag

S
fbg along R, let S3 =

B(c; b)
S
fcg

S
fbg along Cm, and S4 = B(d; c)

S
fdg

S
fcg along R.

39
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Figure 5.1: The situations for Lemma 5.1 and Lemma 5.2.

Recall that ` is an upper bound on codegree.

Lemma 5.1 Suppose the situation where Q1; Q2; Q3; and Q4 are constructed as listed

above. There exists a continuous orientation preserving map r such that r maps the

Q1 to Q2

S
Q3

S
Q4 Furthermore, for any vertex v on Q1, d(v; r(v)) � `.

Proof. First note that every vertex in Cm is contained in a face that is adjacent

to Cm�1. Thus, every vertex on Q1 is contained on a face adjacent to Q2

S
Q3

S
Q4.

For each vertex v on Q1, walk clockwise around the face until the �rst vertex �(v)

on Q2

S
Q3

S
Q4 is reached. If there is more than one face, choose the face that is

the most counterclockwise direction along Q1. Note that � de�nes a mapping from

the vertices of Q1 to the vertices of Q2

S
Q3

S
Q4. Extend � to a continuous map

r by stretching any edges between consecutive vertices v1 and v2 on Q1 to the path

B(�(v1); �(v2)) along Q2

S
Q3

S
Q4. If �(v1) = �(v2) = v, r maps the edge between

v1 and v2 to v. Since clockwise ordering of the vertices of Q1 is preserved under �, r

is a continuous orientation preserving map from Q1 to Q2

S
Q3

S
Q4. Note also that

for any vertex v on Q1, d(r(v); v) = d(�(v); v) � `.
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Lemma 5.2 Suppose the situation where S1; S2; S3; and S4 are constructed as listed

earlier. There exists a continuous orientation preserving map s such that s maps the

S1 to S2
S
S3
S
S4 Furthermore, for any vertex v on S1, d(v; s(v)) � � + `, where

� = d
2d`2m
3�

e.

Proof. First note that by Corollary 3.6 every vertex in Cm�1 is at most distance

� along Cm�1 away from a vertex that is contained by a face that is adjacent to Cm.

Thus, every vertex on S1 is at most � away from a vertex that is contained by a face

that is adjacent to S2
S
S3
S
S4. For each vertex v on S1, walk clockwise along S1 until

the a vertex that is on a face adjacent to Cm is reached, and then counterclockwise

around the face until the �rst vertex �(v) on S2
S
S3
S
S4 is reached. If there is more

than one face, choose the face that is the most clockwise direction along S1. Note that

� de�nes a mapping from the vertices of S1 to the vertices of S2
S
S3
S
S4. Extend

� to a continuous map r by stretching any edges between consecutive vertices v1

and v2 on S1 to the path B(�(v1); �(v2)) along S2
S
S3
S
S4. If �(v1) = �(v2) = v,

s maps the edge between v1 and v2 to v. Since clockwise ordering of the vertices

of S1 is preserved under �, s is a continuous orientation preserving map from S1 to

S2
S
S3
S
S4. Note also that for any vertex v on S1, d(s(v); v) = d(�(v); v) � � + `.

An automorphism is said to be orientation preserving if identifying a face of a

graph under the automorphism and ordering the vertices in a clockwise manner, then

the vertices under the image are also ordered clockwise. It is said to be orientation

reversing if the vertices are ordered counterclockwise under the automorphism.
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The following theorem proves that a bounded automorphism is orientation pre-

serving. Recall that an automorphism on a planar graph preserves excess and that

that if a graph has bounded degree and codegree then excess, inner excess, and outer

excess have upper bounds. Call the common bound k.

Lemma 5.3 Let � be a 3-connected, 1-ended, planar graph with positive excess at

each vertex. If � is a bounded automorphism on �, then � is orientation preserving.

Proof. Let � be a bounded automorhism with bound � on �. Suppose by way

of contradiction that � is orientation reversing. Choose a vertex z. Construct the

Bilinski Map with center z and look at its image under � centered around �(z).

Choose Cm in the Bilinski Map centered around z with m > � and j = � + ` so that

X
v2Cm

Ex�(v) < �6(� + j�)2(`d)(�+j�) + k(� + j�):

Note also that for vertices in �(Cm)

X
v2�(Cm)

Ex�(v) < �6(� + j�)2(`d)(�+j�) + k(�+ j�):

Cm and �(Cm) cannot be concentric since the disk contained by Cm and �(Cm) bounds

the same number of faces. Thus Cm and �(Cm) intersect as illustrated in Figure 5.2

part a). Note that � can be extended to a homeomorphism � where � agrees with �

on the vertices of Cm and maps the edges homeomorphically to their images under �.

Since Cm and �(Cm) are homeomorphic and intersect, construct a continuous map

r from �(Cm) to Cm by projecting �(Cm) to Cm in the following manner which is

illustrated in Figure 5.2 parts b) c). Note that since � is a bounded automorphism

with bound �, (Cm) is between �(Cm+�) and �(Cm��).
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Figure 5.2: The projection of �(Cm) to Cm.

Consider �rst the case where a region R is such that Cm is on the interior of

�(Cm) between intersection points as illustrated in part b) of Figure 5.2. Note that

Cm is between �(Cm) and �(Cm��). Construct �(Cm�1); �(Cm�2); :::�(Cm�i) where

m� i is the smallest index such that �(Cm�i)
T
Cm = ;. Project �(Cm) to �(Cm�1)

using the map r1 described in Lemma 5.1. Consider the restriction of the map on R.

Note that for any v 2 �(Cm), d(v; r1(v)) � `. Similarly map Cm�1 to Cm�2 by r2

and restricting it to R. Continue this process. There will be at most � maps ri until

�(Cm) is mapped to Cm along R. Thus by Lemma 5.1 if r is the composition of the

ri's, then d(x; r(x)) � �` for any vertex x on �(Cm).

Consider next the case where a region S is such that �(Cm) is on the interior of

Cm between intersection points as illustrated in part c) of Figure 5.2. Note that Cm

is between �(Cm) and �(Cm+�). Construct �(Cm+1); �(Cm+2); :::�(Cm+i) where m+ i

is the smallest index such that �(Cm+i)
T
Cm = ;. Project �(Cm) to �(Cm+1) using

the map s1 described in Lemma 5.2. Consider the resrtiction of the map on S. Note

that for any v 2 �(Cm), d(v; r1(v)) � � + `. Similarly map Cm+1 to Cm+2 by s2

and restricting it to S. Continue this process. There will be at most � maps si until
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�(Cm) is mapped to Cm along S. Thus by Lemma 5.2 if s is the composition of the

si's, then d(x; r(x)) � (� + `)� = j� for any vertex x on �(Cm).

Consider the map  = s � r � �. By the triangle inequality, d(v;  (v)) � � + j�

for every vertex v on Cm. Also  is a continuous map and since � is orientation

reversing, r and s orientation preserving,  is orientation reversing. Since  (Cm) =

Cm, Theorem 21.5 in [Mu] gives that some point p on Cm maps to its antipodal point

under  . Consider the vertices u and w that are closest to the point p (choose p = u

and a vertex adjacent to it as w if  (p) is a vertex) and look at u,  (u), w and  (w).

Note that d(u;  (u)) � �+ j� and d(w;  (w)) � �+ j�. Thus, by Lemma 3.11 on the

cycle Cm,

X
v2B(u; (u))

Ex�(v) < �2(� + j�)2(`d)�+j� + k(� + j�)

and

X
v2B( (w);w)

Ex�(v) < �2(� + j�)2(`d)�+j� + k(� + j�):

Cm was chosen so that

X
v2Cm

Ex�(v) < �6(� + j�)2(`d)(�+j�) + k(� + j�);

so there exists a vertex x so that

X
v2B(u;x)

Ex�(v) > �2(� + j�)2(`d)�+j� + k(�+ j�)

and

X
v2B(x;v)

Ex�(v) > �2(�+ j�)2(`d)�+j� + k(� + j�):

Note that either x is between  (p) and  (u) in the counterclockwise direction along

Cm or x is between  (w) and  (p). in the counterclockwise direction along Cm.  
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Figure 5.3: The relation of vertices u and w in  (Cm) and Cm.

is a continuous orientation reversing map, so  (x) must be between w and u in the

counterclockwise direction along Cm. Since  maps vertices to vertices,  (x) = u or

 (x) = w as illustrated in Figure 5.3. Thus, d(u; x) � � + j� or d(w; x) � � + j�.

This contradicts Lemma 3.11.

Thus � cannot be orientation reversing

One consequence of an orientation preserving automorphism is that if � has two

vertices with an edge incident to both of the vertices that are �xed under �, then �

is the identity automorphism.

Lemma 5.4 Let � be a 1-ended, 3-connected, planar graph with �nite degree and

co-degree. Let � be an orientation preserving automorphism such that two adjacent

vertices are �xed under �. Then � is the identity automorphism.

Proof. Let � be as above with an edge e conisting of two �xed vertices under an

orientation preserving automorphism �

Let z 2 V (e) and construct the Bilinski Map centered at z. Consider the vertices

that are labelled 1 in the Bilinski Map. Since z 2 V (e), it is adjacent to a vertex
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y1 2 V (e) where y1 is labelled 1 in the Bilinski Map. Thus both z and y1 are �xed

vertices under �. Thus the edge (z; y1) 2 E(�) is also �xed under �. Since � is

orientation preserving, any face incident with (z; y1) is also �xed under �. Thus all

vertices incident to those faces are also �xed under �. Similarily any faces incident

to an edge containing z are also �xed under �. Thus, every face containing z is �xed

under � and every vertex labelled 1 in the Bilinski Map centered at z is also �xed

under �.

Now suppose every vertex and face labelled n�1 for n � 1 is a �xed vertex under

�. Consider a vertex yn labelled n in the Bilinski Map centered at z. Note that yn

is contained in a face Fn labelled n in the Bilinski map. Thus Fn has at least one

vertex yn�1 labelled n � 1. Note that yn�1 is contained by at least one face labelled

Fn�1 labelled n � 1 in the Bilinski Map. Thus every face incident with yn�1 is �xed

since this face contains a path of �xed vertices containing yn�1. Thus Fn and in turn

yn are �xed under �.

So by induction, every vertex is �xed under �, thus � is the identity automorphism.

Now consider the case where � is a bounded automorphism and has a �xed vertex

in � under the automorphism. An example of this case is illustrated by the Poincare

plane. Note that for the graph in Figure 5.4, If the center vertex is a �xed point, then

every orientation preserving automorphism of the graph is a rotation. A rotation

requires that a vertex close to the line at in�nity will have a large distance from

its image under the automorphism. The general proof of this case uses the Bilinski

Map and a geodesic ray through the �xed point to show that vertices far from the
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Figure 5.4: A graph with positive excess at each point as illustrated in the Poincare

Plane.

�xed point on the geodesic ray are a large distance from their images under any

automorphism other than the identity.

Lemma 5.5 Let � be a 1-ended, 3-connected, planar graph with bounded degree and

codegree. Suppose that � is a bounded automorphism with �xed vertex x and the excess

is positive at each vertex except for possibly x and the neighbors of x. Then � is the

identity automorphism.

Proof. Note that since there are only a �nite number of vertices with negative

excess, let �n for some positive integer n be a lower bound on the sum of their excess.

Let x be a �xed vertex of �. Construct a geodesic ray R = x; x1; x2; ::: starting from

x. Consider its image �(R). First suppose that R does not intersect �(R) except

at x. Since � is a bounded automorphism, it has a maximum distance � between a

vertex and its image under �. Let y = xj where j � 903(� + n + 5). Construct a
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Figure 5.5: The case where R and �(R) do not intersect.

geodesic path Q from y to �(y).

Note that if Q intersects R or �(R) on any vertices between x and y on R or

between x and �(y) on �(R), a geodesic path P so that jP j � � can be created from

a vertex w = xi where i � 903(� + n + 4). This is done by looking at the vertex

w = xi where i is the minimum integer where Q intersects R or �(R). Note that

i � 903(�+ n + 4) since if it were not, it would contradict the fact that R and �(R)

are geodesic rays. Construct P by using the shortest path from w to �(w) along R,

then Q, then �(R). Note that jP j � jQj or there would be a contradiction to Q being

a geodesic ray. Create a disk D by starting at x, going along R to w, then to �(w)

along P , then back to x along �(R), as illustrated in Figure 5.5.

Summing up the excess of D,

�2 =
X

v2B(w;x)

Ex�(v) +
X

v2B(x;�(w))

Ex�(v) +
X

v2B(�(w);w)

Ex�(v)

+Ex�(x) + Ex�(w) + Ex�(�(w)) +
X

v2Dint

Ex(v):

Since � is orientation preserving and since there is positive excess at least 1
903

at
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each vertex by Theorem 2.2 except for possibly x and its neighbors,

X
v2B(w;x)

Ex�(v) +
X

v2B(x;�(w))

Ex�(v) =
X

v2B(w;x)

Ex(v)

�

1

903
(903(�+ n+ 4)� 1) + Ex(x1)

> �+ n + 1

Thus,

�2 =
X

v2B(w;x)

Ex�(v) +
X

v2B(x;�(w))

Ex�(v) +
X

v2B(�(w);w)

Ex�(v)

+Ex�(x) + Ex�(w) + Ex�(�(w)) +
X

v2Dint

Ex(v)

� �+ n + 1 +
X

v2B(�(w);w)

Ex�(v)� 3

�
2

3

�
� n

= �� 1 +
X

v2B(�(w);w)

Ex�(v)

This yields that �(�+1) �
P
v2B(�(w);w) Ex

�(v) and since the least excess a vertex can

have is �2
3
, jP j > �. This is a contradiction because P is geodetic and the maximum

distance between w and �(w) is �. Thus R intersects �(R)

Now suppose R and �(R) intersect each other at a vertex other than x. Let xi 2 R

be the �rst intersection vertex of R and �(R) after x. Note that x1 = �(x1) since

if not, then both R and �(R) could not be geodesic. Also note that if xi = x1 then

by Lemma 5.4 � is the identity automorphism. Let xi for some i � 2 be the �rst

intersection vertex and consider R0 = xi; xi+1; ::: as a geodesic subray of R. Every

vertex of R0 has positive excess since R0 cannot contain a neighbor of x. Note that xi

is a �xed vertex under � and that R0 is a geodesic path starting with xi. By the same

argument as the �rst part of the proof R0 intersects �(R0). Let w be the �rst vertex

along R0 after xi where they intersect. Note that �(w) = w since if not, then both
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R' (R')

x

w

φD

i

Figure 5.6: The case where R0 intersects �(R0).

R0 and �(R0) would not be geodesic. Consider the sum of the excess of the disk D

created by R0 and �(R0) when they intersect at w as illustrated in Figure 5.6. Note

that the interior of D could not contain x or any neighbors of x or it would contradict

that the original R is a geodesic. Since � is orientation preserving by Lemma 5.3,

along the boundary of D

0 <
X

v2B(w;x0)

Ex(v)

=
X

v2B(w;x0)

Ex�(v) +
X

v2B(x0;w)

Ex�(v)

Thus the sum of the excess of D is

�2 =
X

v2B(w;x0)

Ex�(v) +
X

v2B(x0;w)

Ex�(v) +
X

v2Dint

Ex(v) + Ex�(x0) + Ex�(w)

=
X

v2B(w;x0)

Ex(v) + Ex�(x0) + Ex�(w)

� 0� 2

�
2

3

�

= �

4

3

which is a contradiction.

Thus, every geodesic ray is �xed under � and since � is orientation preserving by
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Figure 5.7: A graph with positive excess at each vertex and a geodesic translation

invariant double ray.

Lemma 5.4, � is the identity automorphism.

Next consider the case where � has no �xed points. A double ray L is translation

invariant under an automorphism � if L = �(L). In Figure 5.7, an example is given

of a graph with a translation invariant geodesic double ray. The next lemma shows

that the farther you travel away from the geodesic translation invariant double ray

to a vertex x, the farther the distance between x and �(x).

Lemma 5.6 Suppose that � is a 1-ended, 3-connected, planar graph with positive

excess at each vertex and with bounded degree and codegree. Suppose also that there

is a geodesic translation invariant double ray L under an automorphism � on �. If �

is a bounded automorphism on �, then � has a �xed vertex.

Proof. Let � be a bounded automorphism with bound �, and let L be a geodesic

translation invariant double ray in �. Since each vertex has positive excess, at least

one side is such that
P
v2L Ex

�(v) > 0. Since L is geodesic, construct Bilinski Lines

using L on the side with positve excess as illustrated in Theorem 3.12.
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L

L

R

x (x)

2

1

φL0

L3

Figure 5.8: The Construction of Ray R.

Choose vertices x and �(x) on L so that both are adjacent to L1. Since L is

translation invariant and the
P
v2L Ex

�(v) > 0, each pair of vertices x and �(x) on

L are such that
P
v2B(�(x);x) Ex

�(v) > 0. It is assumed that �(x) is on the right of x

(the case where �(x) is on the left is similar).

Construct a ray R by starting at x, following along an edge to L1. If this vertex

is adjacent to L2, continue along this edge to L2. If it is not adjacent to L2 continue

along L1 to the right until reaching the �rst vertex adjacent to L2 then following the

edge to L2. Continue this pattern as illustrated in Figure 5.8.

Consider the image of R under �. If R and �(R) intersect, then the last vertex of

R along Lk has a preimage of � on R. Call these vertices z and �(z) and note �(z) is

adjacent to Lk+1. Since � is an automorphism, y is also adjacent to Lk+1. However,

this contradicts the construction of R since R would follow the edge connecting z to

Lk+1 instead of continuing along Lk to �(z). Thus, R\ �(R) = ;. This contradiction

is illustrated in Figure 5.9.
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R
φ(R)z

(z)φ

L

L

L

k-1

k

k+1

Figure 5.9: The Reason R and �(R) May Not Intersect.

Since � is a bounded automorphism, it has a maximum distance � between a

vertex and its image under �. Let y 2 R where y 2 Lt and t > 903(�+2). Construct

a geodesic path Q from y to �(y).

Note that if Q intersects R or �(R) on any vertices between x and y on R or

between x and �(y) on �(R), a path P so that jP j � � can be created from a vertex

w 2 R
T
Ls where s > 903(�+ 1) to �(w). Since Q is geodesic and of length at most

�, Q cannot intersect L903(�+1) so choose the smallest index s so that Q intersects

Ls on either R or �(R). Call this vertex w. Create the shortest path P following w

along R to Q, then along Q to �(R), then along �(R) to �(w). Note that jP j � jQj

or it would contradict the fact that Q is geodesic.

Consider the disk D created by starting at x and following R to w, then along P

to �(w), then along �(R) to �(x), then �nally along L back to x. This constuction is

illustrated in Figure 5.10.

Note that along the disk D,
P
v2B(�(x);x) Ex

�(v) > 0. Also, since � is orientation

preserving,

X
v2B(w;x)

Ex(v) =
X

v2B(w;x)

Ex�(v) +
X

v2B(�(x);�(w))

Ex�(v):
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x
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(w)

R (R)

φ

φ

φ

s+1

s

s-1

D

Figure 5.10: The construction of disk D.

Note that since the length of the disk along R is at least 903(�+ 1) by theorem 2.2,

X
v2B(w;x)

Ex(v) >

�
1

903

�
903(�+ 1) = � + 1:

Thus, summing the excess of the disk D,

�2 =
X

v2B(w;x)

Ex�(v) +
X

v2B(�(w);w)

Ex�(v) +
X

v2B(�(x);�(w))

Ex�(v)

+
X

v2B(x;�(x))

Ex�(v) +
X

v2Dint

Ex(v)

+Ex�(x) + Ex�(w) + Ex�(�(w)) + Ex�(�(x))

>
X

v2B(w;x)

Ex(v) +
X

v2B(�(w);w)

Ex�(v) + 4

�
�2

3

�

= �+ 1 +
�8

3
+

X
v2B(�(w);w)

Ex�(v)

This yields that �� >
P
v2B(�(w);w) Ex

�(v) and since Ex�(v) � �
2
3
for all vertices v,

jP j > �. This is a contradiction because P is geodetic and the maximum distance

between w and �(w) is �. Thus � is not bounded.

The last four lemmas are now combined to extend the Neimayer and Watkins

result.

Theorem 5.7 Suppose that � is a 1-ended, 3-connected, planar graph with positive

excess at each vertex with bounded degree and codegree. If � is a bounded automor-
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Figure 5.11: The extension of disk P to L.

phism on �, then it is the identity automorphism.

Proof. Let � be as stated above. Suppose that � is a bounded automorphism and

that � is not the identity automorphism. By Lemma 5.3, � is orientation preserving

and by Lemma 5.5, � does not have a �xed vertex under �. Let x be a vertex so

that d(x; �(x)) is minimal. Construct a geodesic path P between x and �(x). Let x1

be the vertex on P adjacent to x. Note that �(x1) cannot be on P since if it were

d(x1; �(x1)) < d(x; �(x)) which would contradict the minimality of d(x; �(x)). Since �

is an automorphism, �(x) and �(x1) are adjacent since x and x1 are adjacent. Extend

P to the vertex �(x1) by adding the edge (�(x); �(x1)). Continue this extension by

using the next vertex in the path adjacent to x1, call it x2 and extend it to �(x2)

in a similar manner. Continue this process. Also, extend P (in the other direction)

by looking at the vertex adjacent to �(x) on the original P , call it y1 and extending

P to ��1(y1) similarly. This construction is illustrated in Figure 5.11. This process,

de�nes a doubly in�nite walk L.

There are only two possibilities for L. L is either a cycle or a geodesic double ray.

If L intersects itself, then xi = xi+j for some positive integers i and j,

xi+1 = xi+j+1; xi+2 = xi+j+2; :::xi+j = xi+2j = xi:
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Thus, L is a cycle. If L does not intersect itself it is a translation invariant geodesic

double ray.

If L is a translation invariant geodesic double ray then it is the situation in

Lemma 5.6 exists, giving a contradiction.

If L is a cycle, create a new graph �0 by deleting the inside of the cycle and putting

in a vertex x adjacent to every vertex of L. Note that in �, �(L) = L. So for �0,

de�ne an automorphism  so that  (v) = �(v) for every vertex that is in both � and

�0 and let  (x) = x. Note that  is an automorphism on �0. Lemma 5.5 gives that

 is the identity automorphism. Every vertex that is in both � and �0 is �xed by

� which means � has a �xed path under �. Thus, by Lemma 5.4, � is the identity

automorphism.
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