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Keeling, Kellie Bliss, Developing criteria for extracting principal components and

assessing multiple significance tests in knowledge discovery applications.  Doctor of

Philosophy (Management Science), August, 1999, 229 pp., 62 tables, 52 illustrations,

references, 100 titles.

With advances in computer technology, organizations are able to store large

amounts of data in data warehouses.  There are two fundamental issues researchers must

address:  the dimensionality of data and the interpretation of multiple statistical tests. 

The first issue addressed by this research is the determination of the number of

components to retain in principal components analysis. This research establishes

regression, asymptotic theory, and neural network approaches for estimating mean and

95th percentile eigenvalues for implementing Horn’s parallel analysis procedure for

retaining components. Certain methods perform better for specific combinations of sample

size and numbers of variables.  The adjusted normal order statistic estimator (ANOSE), an

asymptotic procedure, performs the best overall. Future research is warranted on

combining methods to increase accuracy.

The second issue involves interpreting multiple statistical tests.  This study uses

simulation to show that Parker and Rothenberg’s technique using a density function with a

mixture of betas to model p-values is viable for p-values from central and non-central t

distributions. The simulation study shows that final estimates obtained in the proposed

mixture approach reliably estimate the true proportion of the distributions associated with

the null and nonnull hypotheses.  Modeling the density of p-values allows for better

control of the true experimentwise error rate and is used to provide insight into grouping



hypothesis tests for clustering purposes.  Future research will expand the simulation to

include p-values generated from additional distributions.

The techniques presented are applied to data from Lake Texoma where the size of

the database and the number of hypotheses of interest call for nontraditional data mining

techniques.  The issue is to determine if information technology can be used to monitor the

chlorophyll levels in the lake as chloride is removed upstream.  A relationship established

between chlorophyll and the energy reflectance, which can be measured by satellites,

enables more comprehensive and frequent monitoring.  The results have both economic

and political ramifications.    
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CHAPTER 1

INTRODUCTION

With advances in computer technology, organizations are able to store large

amounts of data in data warehouses. The data are cleansed and integrated for use with

techniques such as data mining to determine patterns in the information. There are many

statistical techniques as well as artificial intelligence approaches such as neural networks

that can be used to uncover complex patterns. These tools are capable of creating accurate

statistical estimates, insightful descriptive measures, and models that can indicate an

organization’s current and future prospects. There are several fundamental issues

researchers must address in examining information from large databases.  One is the

dimensionality of data and another is the interpretation of multiple statistical tests.  A

statistical approach used in the interpretation of dimensions, data reduction, and

visualization in a data set is principal components analysis.

The first issue discussed in this research is the problem of assessing the

dimensionality of a data set. Principal components analysis is used to assess the

dimensionality of the data. There are many methods currently documented and used by

researchers to determine the number of principal components to retain (Guttman 1954;

Horn 1965; Cattell 1966). This research focuses on the implementation of Horn (1965)’s

parallel analysis method. Parallel analysis requires the use of mean (or some other

percentile) eigenvalues generated from random data.  No closed form solution exists for
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the percentiles of eigenvalues. In this research, several previously documented methods

are compared with several new methods for predicting average and 95th percentile

eigenvalues generated from random data. The new methods include regression, asymptotic

theory, and neural networks.

A literature review reveals that business research has not yet embraced the use of

the parallel analysis procedure though there have been several works that have supported

its use (Hakstian, Rogers, and Cattell 1982; Zwick and Velicer 1986; Glorfeld 1995). 

Therefore, an example from the psychology literature is used to illustrate an application in

which parallel analysis is useful.  Müller and Wetzel (1998) present a study to determine if

the Bech-Rafaelsen Melancholia Scale (BRMES) could be shown to be unidimensional for

acutely schizophrenic patients.  The scale has previously been confirmed to have one

dimension for patients with major depression. 

Their sample includes 132 acutely schizophrenic patients who completed the 11

item BRMES. Each item is scored on a 5-point scale. Principal components analysis

results in eigenvalues of 4.0, 1.5, 1.2, and 0.8 for the first four principal components are

4.0, 1.5, 1.2, and 0.8.  The authors use simulation to randomly draw ten samples of size

132 from normally distributed values with a mean and standard deviation equal to that of

the sample.  These simulated eigenvalues are compared to the sample data and lead to the

retention of 3 components.  The results conclude that the BRMES has three dimensions

and is therefore not unidimensional for acutely schizophrenic patients.

The second issue facing researchers using large databases involves performing

multiple statistical tests; for example, an experiment with multiple statistical tests to
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determine the number of uncorrelated variables in a data set with a large number of

variables.  A consequence of multiple testing is that the experimentwise error rate can

easily become inflated. Because of the inflation of the experimentwise error rate, several

multiple comparison procedures have been proposed including Tukey’s HSD procedure,

Dunnet’s C test, and the Fisher-Hayter test (Tukey 1953; Dunnet 1980; Hayter 1986).

One popular solution in controlling for inflation of the type I error is to use an overall test,

such as an overall F test in the analysis of variance procedure or a Bonferroni adjustment.

However, though many researchers have used the Bonferroni adjustment, often

researchers understand that this approach does not take into account the true number of

null hypotheses.  

This research investigates a viable approach to statistically estimating the

distribution of the p-values and evaluates its performance in a simulation study.  The

knowledge of this distribution allows for better control of the true experimentwise error

rate by estimating the true number of null hypotheses.  This distribution is also used to

provide insight into grouping hypothesis tests for clustering purposes in knowledge

discovery applications with large databases.

Multiple testing and the problems associated with these are represented in the

business literature in areas such as accounting, management, and economics (Nakamura,

Nakamura, and Duleep 1990; Castañeda, Levin, and Dunham 1993; Lindsay 1997).  

A hypothetical illustration of the use of multiple testing in a one-factor design with the use

of the Bonferroni adjustment is presented in Castañeda, Levin, and Dunham (1993).  
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Statement and Purpose of the Problem

This research addresses the problem of providing accurate and readily accessible

estimates of mean and 95th percentile eigenvalues across a large range of numbers of

variables and sample sizes.  In addition, this research addresses the difficulties of

examining results from multiple hypothesis tests occurring in applications using large

databases. An evaluation of an estimation procedure of the density of p-values is

conducted to allow for insight into the results from multiple tests.

Purpose of Investigating Methodology for
Estimating Mean Eigenvalues

Researchers have regarded interpretation of eigenvalues and eigenvectors as being

essential to decision making processes involving multivariate statistical analyses. This

research investigates the interpretation of eigenvalues from correlation matrices.

Correlation matrices are used frequently in the analysis of survey research data across a

variety of disciples as well as in numerous applications such principal component

regression analysis.  A comparison of observed sample eigenvalues to expected

eigenvalues from random data can provide insight into this interpretation. Several methods

are available for obtaining a meaningful number of eigenvalues. These methods have often

been criticized for retaining too many eigenvalues.  In this case, some of the eigenvalues

do not explain a sufficient amount of variation in the data. 

Dimensionality is a term used to describe the minimum number of constructs or

latent factors that underlie the data set.  For example, if a set of variables has a
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dimensionality of two, then two new variables which may be linear combinations of the

existing variables would explain most of the variability of the data. Knowing the number of

eigenvalues to retain in a study is important for understanding the dimensionality of data.

Often visual representation is needed to obtain insight into relationships in a large

database. Since graphs using pairs of principal components can be used for descriptive or

clustering purposes, only essential principal components should be used. Horn (1965)’s

parallel analysis method, which uses the mean (or another percentile) value of eigenvalues

generated from random data, has been recommended. However, these random data

eigenvalues may not be readily available unless a researcher has access to tables of

previously simulated mean eigenvalues or to tables with coefficients to be used in a

regression equation to approximate the eigenvalues. The methodology introduced in this

paper allows for eigenvalue estimates to be obtained from standard tables of order

statistics for the standard normal distribution as well as from two new regression

equations that do not require extensive tables. In addition, eigenvalues estimated with

neural networks are also investigated.

Purpose of Investigating Methodology for 
Estimating the Density of P-values

The problem of multiple tests or multiple steps in various statistical procedures has

been a call for alarm in assessing the merits of procedures such as step-wise regression,

path analysis, multiple comparisons, and data mining procedures. The problem here is that

when many statistical tests are conducted; for example, several hundred or even
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thousands, many tests will show significance merely because of the random nature of the

experiment. Separating significant tests that occur because the alternative hypothesis is

true from the those tests that are significant because of experimental error is a problem

that has long plagued practitioners who conduct multiple statistical tests. While an attempt

is usually made to control the experimentwise error rate in many studies, an approach in

which the distribution of the p-values is estimated has received little attention. This

distribution of p-values is used to provide insight into grouping hypothesis tests for

clustering purposes in knowledge discovery with large databases. This approach is also

beneficial to researchers wishing to obtain an experimentwise error rate which is neither

too liberal nor too conservative.

Significance of the Study

1. Principal component scores can be used as input variables for further analysis of

the data using other multivariate techniques such as cluster analysis, regression,

and discriminant analysis. Researchers typically can interpret statistical analyses

easier with uncorrelated variables than with correlated ones. Principal component

scores are newly created variables that possess the desired characteristic of being

uncorrelated (Sharma 1996). Therefore, the problem of multicollinearity, which

occurs in many statistical procedures, can be circumvented by using principal

components as independent variables.   Principal component scores can also be

used in variable subset selection procedures.
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2. Parallel analysis provides a method of determining the number of components to

retain.  This research provides quick methods of computing mean and 95th

percentile eigenvalues without extensive tables of coefficients or requiring a

simulation study. These methods give researchers a rapid method of determining a

starting point for the number of components problem.

3. Researchers need to be concerned with the experimentwise error rate when

performing multiple hypothesis tests, but they may be unnecessarily reducing the

value of the error rate. If an estimation of the density of p-values can be used

based on a revised estimate of the true number of null hypotheses, then an

experimentwise error rate can be properly determined.  In addition, the distribution

of p-values provides a procedure to group hypothesis tests into clusters for

knowledge discovery with large databases.

Framework of the Study

A literature review in the beginning of chapter 2 provides the basis for the

theoretical development of the research questions presented at the end of that chapter.

Chapter 3 discusses the methodology used in creating several proposed techniques as well

as existing methods and in testing the research questions that address the feasibility of

these techniques.  In chapter 4, these techniques are developed and illustrated in an

application to a real world set of data that are currently under examination to address the

future of a major recreational center.  Chapter 5 answers the research questions and the
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appendix provides additional tables to support the viability and limitations of techniques

used in this investigation.
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CHAPTER 2

LITERATURE REVIEW

This chapter includes a literature review of the research surrounding the problems

associated with determining the dimensionality of data and with interpreting the results of

a large number of statistical tests. First, a discussion of knowledge discovery in databases

is presented. Knowledge discovery in databases (KDD) involves discovering useful

knowledge from data (Fayyad, Piatetsky-Shapiro, and Smyth 1996). Principal components

analysis and the methods currently documented and used by researchers (Guttman 1954;

Horn 1965; Cattell 1966) to retain components and select a subset of variables are

introduced next. This research focuses on the implementation of Horn (1965)’s parallel

analysis method. Several regression procedures have been proposed to predict eigenvalues

for the parallel analysis procedure. These regression procedures are also documented. In

addition, a neural network procedure is presented to predict eigenvalues and therefore

some previous literature on neural networks is included. A description of p-values,

multiple significance tests, and mixture models concludes the report of previous literature.

This literature review is followed by discussion of a real world data set that is used to

assess the applicability of the procedures. The theoretical development surrounding this

study is presented next. The definition of the research questions along with the motivation

for their study conclude this chapter. 
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Knowledge Discovery in Databases

The technology has been developed to collect and store large volumes of business

data, but readily available procedures to analyze and understand the data are lacking.

Traditionally, manual analysis and interpretation have been required to turn data into

knowledge. With the increasing use of data warehouses to store large volumes of data,

new technologies are being developed to address this shortcoming. This collection of tools

is important to the emerging field of KDD. The KDD process involves discovering useful

knowledge from data (Fayyad, Piatetsky-Shapiro, and Smyth 1996).

The steps of the KDD process can be summarized as follows:

1. Selecting the application domain and the data set: This step involves focusing prior

knowledge, identifying the goals of the application, and focusing on a subset of

variables.

2. Data cleaning and preprocessing: Data cleaning and preprocessing involves

removing outliers or noise if applicable, collecting information to model noise,

creating a strategy to handle missing data, and determining database management

system (DBMS) issues such as data types and a schema.

3. Data Transformation: The data transformation step entails reducing and projecting

data, finding useful features to represent the data, and using dimensionality

reduction or transformation methods to reduce the number of variables or find

invariant representations.
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4. Data Mining: Data Mining involves first understanding the data well enough to

choose from among numerous procedures such as statistical techniques, artificial

intelligence approaches, or optimization algorithms.  This choice is made based on

obtaining a representative model that illustrates hidden insights into the data, new

models to examine variables of interest, and patterns that can be studied in

exploratory research.  .

5. Interpretation/Evaluation: The interpretation/evaluation step involves interpreting

the discovered patterns, visualizing the extracted patterns, translating the patterns

into a form useful to users, taking actions based on knowledge, and resolving

potential conflicts with previously believed (or extracted) knowledge.

As can be seen, transformation and data mining are important steps in the KDD process.

These steps involve reducing or transforming the data and then determining patterns or

fitting models to data. Steps one through three are performed in data warehousing.

Principal Components

Principal components analysis (PCA) is a technique to form new variables which

are linear composites of the original variables. Essentially, a new set of orthogonal axes

are identified. For example, if there were p variables, one may want to represent that data

in a lower m-dimensional space where m is much less than p. Dimensional reduction is

based on a mathematical transformation (eigenvalue decomposition) of a covariance or

correlation matrix. The loss of information resulting from dimensional reduction is
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typically calculated as the sum of the variances of the new variables not used to represent

that data (Sharma 1996).

Exploratory factor analysis is one of the more commonly applied multivariate

procedures in the behavioral and social sciences (Glorfeld 1995). The purpose of

exploratory common factor analysis (ECFA) is to discover and represent underlying

unobservable latent variables which are manifest by a larger set of observable variables. An

assumption is that the number of factors is known a priori. While specialized EFCA

procedures exist, PCA is often used to accomplish the primary objective of ECFA. The

most important decision to be made in the application of ECFA is choosing the method 

determine the correct number of factors to retain (Fava and Velicer 1992; Glorfeld 1995). 

A variety of rationales upon which to base the number of factors decision rule have

been discussed in the literature (Hakstian and Muller 1973).   For example, the algebraic

criteria stems from the work on algebraic bounds on the rank of the reduced correlation

matrix (Ledermann 1937; Albert 1944; Guttman 1954, 1958). The psychometric criteria is

from Kaiser (1960, 1965) who specified that for standardized data the amount of variance

extracted by each component should, at a minimum, be equal to the variance of at least

one variable. Statistical criteria arise from inferential statistical procedures that specify the

number of correct factors being the number that yields a reproduced dispersion or

correlation matrix that has entries that are simultaneously within normal sampling error of

the observed coefficients. Finally, another criteria involves psychological importance or

interpretability. 
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Various researchers have proposed modifications and new approaches based on

these rationales for deciding how many factors to retain. Barlett (1950) develops a

procedure for methodically removing each successive eigenvalue until the null hypothesis

on the remaining eigenvalues fails to be rejected. Cattell (1958) creates rules for

determining how much variance should be accounted for before factoring is terminated.

Horn (1965) uses random data generation to determine the number of non-error latent

roots (eigenvalues).  Catell (1966) outlines the scree test which is performed by plotting

the observed eigenvalues on a graph with lines connecting the points. The point in the

graph where the line forms an “elbow” is considered to be the point where the eigenvalue

position equals the number of components to retain. Velicer (1976) creates an approach

based on the matrix of partial correlations.  The average squared partial correlation is

calculated after each of the components has been partialed out.  No further components

are extracted when the average squared partial correlation matrix reaches a minimum

which occurs when the residual matrix most closely resembles an identity matrix.  More

recent work includes Krzanowski and Kline (1995) who propose a leave-one-out cross-

validation method for selecting the significant principal components.  Finally, Zoski and

Jurs (1996) propose a linear regression approach to match the visual solution of the scree

plot.  According to Sharma (1996) the most common rules include the eigenvalue greater

than one rule (Kaiser 1960), the scree plot (Cattell 1966), and to a lesser extent, Horn’s

parallel analysis (Horn 1965) procedure. An example is presented next to illustrate the

conflicting results generated by some common extraction techniques.
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Example of Number of Factors Problem

Igbaria and Baroudi (1993) develop a short form of a career orientation survey

originated by Schein (1985). The original survey consists of 41 items while the proposed

short form scale contains 25 items.  These include 15 items on the importance of an

employee’s career measured on a 5-point scale ranging from 1 (of no importance) to 5

(centrally important).  Examples include: “To be in charge of a whole organization is …”

and “Remaining in my area of expertise throughout my career is …”  The survey also

includes 10 career preference items measured using a 5-point scale ranging from 1 (not

true at all) to 5 (completely true).  Examples include: “I have always wanted to start and

build up a business of my own.” and “A career is worthwhile only if it enables me to lead

my life in my own way.”

Igbaria and Baroudi (1993) use factor analysis to determine if the new survey

contains the same number of factors as the original survey.  They have a sample of 396

members of Mid-Atlantic chapters of the Data Processing Management Association.  The

first 9 sample eigenvalues are 3.91, 2.53, 2.03, 1.51, 1.46, 1.18, 1.04, 0.97, and 0.92.

Igbaria and Baroudi (1993) use Bartlett’s (1950) test to conclude that there are 9 factors

which matched the number of factors in the original survey.  As a comparison, table 1

shows the results from using several of the number of factors techniques on their data. 

The “eigenvalue greater than one” rule results in 7 factors.  Figure 1 shows the

results from a scree plot of the sample eigenvalues.  The “elbow” of this data is a bit

subjective.  The result could be either 4 or 6 factors.  To implement the parallel analysis

procedure, the Longman, Cota, Holden, and Fekken (1989) regression equation is chosen
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because of the odd number of observations and variables (N = 396, p = 25).  The tables of

simulated values do not include this combination of N observations and p variables.  Using

the regression equation to estimate the random eigenvalues resulted in the eigenvalues

shown in figure 2.  Therefore, the parallel analysis procedure indicates 5 factors. Table 1

summarizes these four techniques.  Further discussion on the accuracy of these methods is

presented in the discussion of the parallel analysis methodology.

Table 1. Comparison of extraction rules

Extraction Method # Factors
Horn's Parallel Analysis 5

Catell's Scree Plot 4 or 6
Kaiser Eigenvalue > 1 7

Barlett’s Test 9

Subset Selection Techniques

Choosing a subset of principal components or variables is an important part of

many statistical procedures.  Subset selection techniques are used in determining the

number of components in principal components analysis, in determining the number of

factors in factor analysis, and in determining of the number of variables in regression

analysis.  The decision for determining the number of components is based on accounting

for most of the variation in the p variables with m components where m is much less than

p.  But usually all the values of the p variables are still needed since each component may

be a function of all p variables.  Therefore, it might be preferable instead of using m

principal components to use m (or slightly more) variables (Jolliffe 1986).  
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There are several methods for selecting a subset of variables that are based on

principal components.  These are described by Jolliffe (1972, 1973, 1986). The first

involves associating one variable with each of the last m1* = p - m1 principal components

and deleting those m1* variables.  This could be done once or iteratively.  The iterative

procedure would involve performing a second principal components analysis on the m1

remaining variables and deleting a further set of m2* variables. In this analysis, the number

of variables to be deleted is chosen by a criterion based on the size of eigenvalues λk. 

Possible criterion for selecting m1*, m2*,... would be the average eigenvalues generated

from random matrices or λk* where

1

The reasoning supporting this method is that small eigenvalues correspond to near-perfect

relationships between a subset of variables.  Therefore, if one of the variables in this

relationship is deleted, then little information will be lost.  The choice of the variable to be

deleted can be the variable with the highest coefficient in absolute value in the certain

principal component.

A second method involves deleting a set of m* variables that are associated with

the last m* principal components.  The choice of m* is based on the size of the λk’s.

Jolliffe (1972) determined that this method was unsatisfactory in selecting an appropriate

subset for some simple correlation structures.  The final method associates one variable
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with each of the first m principal components successively.  These m variables are retained

and the remaining m* = p - m variables are deleted.  This approach is an obvious

complementary approach to the first method.  In addition, in cases where there are groups

of highly correlated variables, a single variable from each group should preserve most of

the information given by that group.

Two other works have adopted a somewhat different approach to the variable

selection problem.  McCabe (1984) proposes a method of creating principal variables that

would contain as much information as possible.  Tanaka and Mori (1997) propose a

modified principal components analysis that derives principal components which are linear

combinations of a subset of variables based on the work of Rao (1964)’s principal

components analysis of instrumental variables and Robert and Escoufier (1976)’s

approach using the RV-coefficient.  This recent work shows that principal components

analysis continues to be refined in the literature.

Parallel Analysis

Estimating the expected value of the eigenvalue of a sample correlation matrix is

be a mathematically intractable problem. Yet researchers need to make important

decisions in multivariate statistical analyses that require interpretations based on the values

of the sample eigenvalues. For example, the retention of factors in an exploratory factor

analysis, the importance of only a few principal components, and the percentage of

variation explained by several factors are issues typically resolved through an investigation

of the eigenvalues of the sample correlation matrix (Johnson and Wichern 1992). As
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discussed earlier, there have been several procedures that have been commonly used to

determine the number of components to retain in principal components analysis and these

are listed in table 2.

Table 2. List of extraction rules

Technique Reference

Bartlett’s test Bartlett 1950

Eigenvalue greater than 1 Kaiser 1960

Parallel analysis Horn 1965

Scree plot Catell 1966

Minimum average partial Velicer 1976

Zwick and Velicer (1986) present a comprehensive comparison of a number of

procedures used to retain principal components.  Velicer’s Minimum Average Partial

method is correct for 84% of the cases considered and when it is incorrect it tends to

underestimate the number of factors.  Fava and Velicer (1996) note that underextraction

of factors is a more severe problem that overextraction.  Zwick and Velicer (1986)

conclude that although the scree plot is considered subjective it is still correct for 57% of

the cases considered.  When it is incorrect, it tends to overestimate the number of factors. 

The remainder of the procedures also tend to overestimate when incorrect.  Bartlett’s test

is correct for 30% of the cases considered. The eigenvalue greater than one rule is highly

inaccurate, only being correct for 22% of the cases considered.  And finally, the parallel

analysis method is correct for 92% of the cases considered.  Therefore, the parallel

analysis procedure performs comparatively well.
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Another study that supports the use of parallel analysis is Hubbard and Allen

(1987). Their study suggests that parallel analysis will typically extract fewer principal

components than the Kaiser (1960) criterion and that components retained by this method

are generally interpretable. These authors consider parallel analysis to be a more objective

alternative than Cattell’s (1966) scree test. 

While there is a large amount of empirical support for using Horn’s (1965) parallel

analysis method (Hakstian, Rogers, and Cattell 1982; Zwick and Velicer 1986; Buja and

Eyuboglu 1992; Glorfeld 1995), this technique is not widely known and is usually not

included as an option in standard statistical packages such as SAS and SPSS. This paired

with the lack of understanding of the problems with the most common techniques has

caused the procedure to only slowly gain popularity. The computational complexity of

performing Monte Carlo simulations required in the previous implementations of parallel

analysis or having to refer to extensive tables of simulated values has also been a burden to

researchers wishing to employ the method. 

In addition, there is concern about whether to use the mean or a percentile, such as

the 95th percentile, as the reference mark to declare an eigenvalue as being important

enough to warrant the retention of the corresponding principal component (Glorfeld

1995). Gorsuch (1983) noted that Barlett’s (1950) chi-square test of the significance of a

correlation matrix with unities as diagonal elements should be performed before the

parallel analysis procedure is implemented.  The rationale is that if the correlation matrix

itself is truly random, then the odds are 50/50 that the first root will be higher than the

root given by the parallel analysis procedure.
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Briefly, the parallel analysis procedure can be described as follows. Plot the sample

eigenvalues, with lines connecting the values, in order from largest to smallest on a scree

plot. Similarly, include a plot of eigenvalues considered to have come from a random

matrix (these could be the expected sample eigenvalues or, say, the 95th percentile of the

distribution of the sample eigenvalues). The cutoff for determining the number of factors

or principal components would be determined by the intersection of the two lines. Figure 3

illustrates the parallel analysis procedure. 

Note that the two sample eigenvalues above the mean eigenvalues in the figure are

the eigenvalues that a researcher would consider retaining. One drawback to the parallel

analysis method is that it requires knowledge of either the mean eigenvalue or some

selected percentile of the distribution of the sample eigenvalues. Therefore, several

regression equations and tables of simulated eigenvalues have been produced by

researchers to help determine estimates of the mean eigenvalue or selected percentile.

Figure 3. Demonstration of parallel analysis procedure
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Regression Procedures

The development of regression equations has helped researchers to implement the

parallel analysis procedure (Montanelli and Humphreys 1976; Allen and Hubbard 1986;

Lautenschlager, Lance, and Flaherty 1989; Longman et al. 1989). Longman et al. (1989)

compared their regression approaches to Allen and Hubbard (1986)’s regression model.

Longman et al. (1989)’s study showed that their proposed model (LCHF) was more

accurate than Allen and Hubbard (1986)’s model (AH). Lautenschlager, Lance, and

Flaherty (1989) also published a regression model (LLF), but their model has not been

extensively compared to the LCHF.

The AH equation is able to predict all but the last two eigenvalues for any value of

k (eigenvalue position or eigenroot) less than or equal to 48. The AH equation has been

created with sample sizes ranging from N = 30 to 1000.  Cota, Longman, Holden, and

Fekken (1991) note that several anomalies occur when using this iterative equation. The

LLF model improves upon the performance of the AH equation by adding an additional

term, p/N. Sample sizes of N = 50 to 1000 are used.  This equation has been created to

predict up to the 48th eigenvalue.  Longman et al. (1989) present the LCHF equation with

two tables of coefficients; one table to allow for the prediction of the mean and the other

table for the prediction of the 95th percentile eigenvalue. This equation provides a

noniterative approach to estimating the mean eigenvalue as well as the 95th percentile of

the eigenvalue. Their study uses sample sizes of N from 50 to 500. 

Another approach to making parallel analysis more accessible is to use published

tables of simulated eigenvalues, such as those presented in Buja and Eyuboglu (1992) and
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Lautenschlager (1989). However, the combinations of sample size and number of variables

is limited for these tables. For values of the sample size and the number of variables not

presented in the published tables, a researcher can use interpolation. The accuracy of this

procedure needs to be compared with that of regression equations to determine its merits

(Cota, Longman, Holden, and Fekken 1993). 

While regression models have not been provided for estimating the median value

of an eigenvalue, the regression equations for the mean could be used to estimate the

median. A comparison of the median eigenvalues and mean eigenvalues as presented in

Buja and Eyuboglu (1992) and Lautenschlager (1989) reveals that the median and mean

eigenvalues are very close in value for values of the sample size and number of variables

that are found in these papers. The availability of the median and mean eigenvalues

obtained through extensive simulation studies conducted by Buja and Eyuboglu (1992)

and Lautenschlager (1989) facilitates determining the accuracy of the regression

procedures as shown in the next four figures. 

Figures 4, 5, 6, and 7 show the performance of the three regression equations

within the bounds of N and p that are used in the creation of these equations.   When N

=50 and p = 15, figure 4 shows that the LCHF equation performs the best.  This selection

of N and p approaches the lower bound of the combinations of N and p.  All three

equations perform better at the beginning eigenvalue positions.  The LLF equation, which

was created as an improvement to the AH equation, performs better than the AH equation

for k =1, 2, and 3.  When k = 11, the LCHF equation begins to perform worse than the

AH equation.  The AH and LCHF equations perform within ± 0.07 for all values of k.
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When N = 100 and p = 25, figure 5 demonstrates the errors occurring for each

regression equation.  The AH equation performs the best until k = 4.  The LCHF equation

errors are all within ± 0.06. The LLF equation begins to perform better than the AH

equation when k $ 13.

As N and p are increased, figures 6 and 7 show the performance of the three

regression equations.  Figure 6 shows a comparison of the errors when N = 300 and p =

35.  The LCHF equation’s errors are all within ± 0.015.  The AH equation’s errors are all

within ± 0.10.  The LLF equation performs better than the AH equation until k = 10 where

the equation results in underestimation of the mean eigenvalue.

Figure 7 shows the errors when N = 500 and p = 50.  The LCHF equation has

errors that stay within ± 0.12.  The LLF equation performs consistently better than the AH

equation at this combination of N and p.  The AH equation performs very poorly in this

figure and at k = 2 the predicted value is already farther than 0.10 from the simulated

value. The AH equation continues down to -12.5 when k = 33.

Figures 8 and 9 show the performance of the three regression equations outside of

the bounds of N and p that were used to create the equations.  Figure 8 shows that when

N is small, that the LCHF equation still performs the best.  The AH equation is closer than

the LLF equation when k = 1, but when k = 2 and 3, their performance is similar. 
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Figure 6. Errors when N=50, p=15

Figure 7. Errors when N=100, p=25

Figure 8. Errors when N=300, p=35
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 Figure 9 shows that when N is large, the LLF equation performs the best.  All

errors for the LLF are within ±0.07. This can be attributed to the fact that the LLF and

AH equation have a larger upper bound for N.  Both equations used values of N up to

1000.  The LCHF equation only goes to values of N = 500.  At this level of N, the

correction that the LLF equation provides to the AH equation is evident. 

The AH and LLF equations also contain anomalies within the bounds of N and p

that are used to create the equations. While the LCHF equation does not have any

anomalies within the bounds of N and p used to create its equation, as N and p increases

past the specified bounds, anomalies do occur. Another problem with the previously 

proposed regression equations is the reliance on tables of coefficients in order to predict

eigenvalues. 

The LCHF equation performs the best within the bounds of N and p used to create

the equation.  This paper extends the LCHF equation by model building with second order

terms.  In addition, the new models do not need tables of coefficients for different values

of k.  The new models are also evaluated to determine if estimates of mean eigenvalues are

accurate beyond the bound of the LCHF equation of N = 500.

For researchers concerned that a percentile value other than the median or mean

should be used in parallel analysis to determine the dimensionality of the data, Glorfeld

(1995) has suggested using a 95th percentile. While several regression equations have

appeared for estimating the mean value of an eigenvalue, only one regression equation, to

date, has appeared for estimating a percentile other than the median. Longman et al.
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(1989) have proposed a regression model for the 95th percentile. This study includes an

examination of a new equation to predict 95th percentiles.

 

Neural Networks

Neural networks have not been previously used to predict eigenvalues. But, it is

believed that they would be a good tool to use in the prediction of eigenvalues. Neural

networks have been used in many business applications including airline security, futures,

and banking (Brody 1990; Ruggiero 1994; Norton 1994). This technique has performed

fairly well in comparisons with other statistical techniques in applications such as

forecasting (Yi, Mitchell, and Prybutok 1996). Neural networks have many of the same

underlying ideas as statistical regression analysis and can be thought of as a nonparametric

regression method (Warner and Misra 1996).  Since neural networks are data dependent,

their performance often improves with increases in sample size (Warner and Misra 1996).

Since the published regression procedures have performed relatively well, it is reasonable

to explore the development of a neural network model to estimate mean eigenvalues.

Back propagation is one algorithm used in neural networks. The basic back

propagation algorithm minimizes the mean squared error using the gradient descent

method. Variations of this algorithm have been used in the literature. Selection of the

number of hidden neurons and the selection of several parameters are important in

implementing this algorithm. Back propagation is a powerful tool with applications in

pattern recognition, dynamic modeling, sensitivity analysis, and the control of systems

over time (Werbos 1990). Back propagation neural networks (BPNN) have been
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successfully applied to modeling and regression situations such as household trip forecasts

(Mitchell, Yi, and Govind 1996), control systems (Nguyen and Widrow 1990), and audio

signal processing (Hoyt and Wechsler 1990).   In this study, the BPNN is used to predict

mean eigenvalues and the 95th percentile of eigenvalues. 

P-values and Multiple Significance Tests

The p-value is the value of alpha (type I error) at which the hypothesis test

procedure changes conclusions based on a given set of data.  The type I error rate is the

probability that under the hypothetical null distribution a test statistic would produce an

observed value that is considered extreme. Researchers would like to use statistical

procedures that control the type I error and provide maximum power. The power of the

test is the probability of making a correct decision when the null hypothesis is false.  When

many of these statistical procedures are used at a fixed significance level, the chance of

detecting differences that are not real increases (Kirk 1995). For multiple comparison

procedures, the inflation of the type I error has received much attention. Research in this

area has spawned a number of multiple comparison procedures, including Tukey’s HSD

procedure, Dunnet’s C test, and the Fisher-Hayter test (Tukey 1953; Dunnet 1980; Hayter

1986). Controlling for the experimentwise error rate has thus been a major concern for

researchers.

 Researchers have been warned of the problem of controlling for the

experimentwise error rate in various statistical procedures including step-wise regression,

path analysis, and data mining procedures. One popular solution in controlling for inflation
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of the type I error is to use an overall test, such as an overall F test in analysis of variance,

or a Bonferroni adjustment. However, studies such as Kromrey and Dickinson (1995)

illustrate through a limited simulation study that these procedures are not satisfactory in

controlling for experimentwise error. 

Bobko (1986) suggests that, rather than routine application of a standard analysis,

theory should guide the choice of analytic technique. All comparisons and statistical tests,

if planned by the researcher’s knowledge of the theoretical aspects of psychology,

managerial decision making, and published findings of theoretical constructs, will have

increased power and will reduce the experimentwise error rate. Many proponents of

structural equation modeling (SEM) also have proposed that only theory-driven

hypotheses be tested. Bollen (1989) states that SEM models need to be based on a

theoretical relationships and thus be used to confirm relationships rather than to do

exploratory analysis.  Therefore the process should be limited by methods and theory, but

controlling the type I error is also a useful device to limit searches. Users who do not

control type I error across multiple tests of individual parameters may include parameters

in the model that are statistically significant only because of random sample fluctuation

(Green and Babyak 1997).

 Often exploratory analysis needs to be performed without undue control of the

experimentwise error rate. Even in a planned experiment with only one a priori hypothesis

there may be hundreds or thousands of statistical tests. A researcher may think that the

Bonferroni adjustment is a reasonable approach. But this procedure does not take into

account an estimate of the number of hypothesis that may in fact be true. There may be
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situations where the number of true null hypotheses is less than 20% of the entire number

of statistical tests performed. Yet the Bonferroni adjustment will be used assuming that all

of the statistical tests are coming from true null hypotheses.

Schweder and Spjotvoll (1982) proposed an approach using a p-value plot of

cumulative p-values to determine the true number of null hypotheses. Schweder and

Spjotvoll (1982) state that their technique is intended for informal inference and that it is

difficult to make exact probability statements.  An example of their technique is explained

next.  

To illustrate this procedure, the results of a bread-baking experiment are shown in

table 3.  These results are presented in Scheffé (1959, 143) and discussed in Duncan

(1965) and Schweder and Spjotvoll (1982).  The table lists the volumes in milliliters of

loaves of bread made under controlled conditions from 100-gram batches of dough. The

dough is made with 17 different varieties of wheat flour and contains x milligrams of

potassium bromate, for x = 0, 1, 2, 3, and 4. The residual mean square is 1713.17 with 64

degrees of freedom.  The overall F test is significant (F = 28.34 > 1.80) and there are 136

pairwise multiple comparisons that can be made between the 17 varieties of wheat flour. 

Using the Fisher Least Significant Difference rule with a significance level of 0.05, the

FSD = 52.30.  All of the differences which are less than the FSD, of which there were 34, 

are not significant. The 102 remaining do show a significant difference.  

A plot of the p-values of the 136 pairwise tests comparing means is shown in

figure 10.  The plot begins on the left with the p-values falling close to a straight line. 

There is a line that is fitted visually in the figure.  The slope of this line corresponds to



32

0

20

40

60

80

100

120

140

0.0 0.2 0.4 0.6 0.8 1.0

1 - p-value

Np

Table 3. Bread volumes

Loaf Volume for x=
Variety 0 1 2 3 4 Mean

1 950 1075 1055 975 880 987
2 890 980 955 865 825 903
3 830 850 820 770 735 801
4 770 815 765 725 700 755
5 860 1040 1065 975 945 977
6 835 960 985 915 845 908
7 795 900 905 880 785 853
8 800 860 870 850 850 846
9 750 940 1000 960 960 922

10 885 1000 1015 960 895 951
11 895 935 965 950 920 933
12 685 835 870 875 880 829
13 615 665 650 680 660 654
14 885 910 890 835 785 861
15 985 1075 1070 1015 1005 1030
16 710 750 740 725 720 729
17 785 845 865 825 820 828

Figure 10. Plot of p-values for bread making data
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where the line crosses at (1 - p-value) = 1 and estimates the true number of null

hypotheses to be 25.  The Fisher procedure concludes that there are 34 hypotheses that

are not rejected.  A conclusion made by Schweder and Spjotvoll (1982) is that the

standard multiple comparison methods do not detect differences due to low power.  Most

likely, 9 of these are due to false null hypotheses.  One would expect at most 1 or 2 false

rejections at a significance level of 0.05.  In order to determine a more exact method to

identify null hypotheses that should clearly be rejected, Schweder and Spjotvoll (1982)

propose an adjustment to the Bonferroni approach.  Since there are approximately 25 null 

hypotheses, when aiming for an overall significance level α, a level of α/25 should be used

for the individual tests.  This is an improvement over the traditional level of α/136 for the

individual tests which might be considered too stringent.

To make Schweder and Spjotvoll (1982)’s approach less subjective, Parker and

Rothenberg (1988) have proposed a technique to provide more accurate information

about the distribution of p-values coming from true and false null hypothesis. These

authors propose using a density function with a mixture of betas to model p-values.  The

EM algorithm is used to obtain maximum likelihood estimates of the parameters. The next

section presents an explanation of mixture models and the difficulties in using these

models.

While the mixture approach to obtaining information about the distribution of p-

values for the null and nonnull hypotheses appears to offer a fresh look at how to control

for type I error, very little attention has been given to it in the literature, particularly in

business problems. Parker and Rothenberg (1988) did not examine the accuracy of the
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parameter estimates via a simulation study where estimates of the parameters can be

manipulated. This research assesses the performance of their approach and implements

their approach to create a distribution of p-values generated from central t and noncentral

distributions as well as p-values from uniform and a beta distribution.  The knowledge of

this distribution of p-values allows for an estimate of the true experimentwise error rate.

Mixture Models

Mixtures of distributions have been used to model the distribution of data for a

wide variety of important practical situations. Any situation where data can be viewed as

arising from two or more distributions can be modeled using mixtures of distributions.

However, obtaining the correct decomposition of a finite mixture model can be a very

difficult problem. The basic difficulty is that a researcher typically never knows the form of

distribution in the mixture nor does the researcher know the number of distributions in the

mixture model. Another difficulty is that the probability density function in the mixture

model may not have the property of identifiability. That is, the density functions may not

uniquely determine the distribution being modeled. In addition, using a nonlinear

optimization approach to obtain the estimates of the parameters in a mixture model may

have convergence problems.  Pearson (1894) discusses a method of moments approach in

the case of a mixture of two univariate distributions with unequal variances. This method

requires the solution of a ninth degree polynomial equation. Fowlkes (1979) speculated

that the intractability of moment estimators and the absence of modern computer
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technology caused researchers to focus their attention on graphical techniques for

mixtures (Harding 1948; Cassie 1954; Bhattacharya 1967; Wilk and Gnanadesikan 1968). 

As high speed computers become less expensive and more available, researchers

are increasingly resorting to efficient optimization algorithms to obtain likelihood

estimates of the parameters in a mixture distribution. Rao (1948) pioneered work on the

detection of distributions in a mixture model and used likelihood estimation to implement

the procedure. He examined a mixture of two univariate distributions with equal variances

using Fisher’s method of scoring. However, Butler (1986) noted that Newcomb (1886)

suggested an iterative reweighting procedure, that is similar to the EM algorithm

(Dempster, Laird, and Rubin 1977). Hasselblad (1966, 1969) continued Rao’s work as he

examined a mixture of g univariate normal distributions with equal variances and then

mixtures of distributions from the exponential family.  This study examines the distribution

of p-values as a mixture of beta distributions.

Real World Data Set

A real world application using water data from a lake in the southern United

States, Lake Texoma, is used to demonstrate the use of the eigenvalue and p-value

techniques.  The water in the lake is being considered for use as a water source for an area

town.  The level of chloride (salt) in the water must be reduced in order for the water to

be used for drinking.  But this reduction may reduce the chlorophyll level in the water. 

The chlorophyll-a concentration in the water is the best estimator for determining algal

biomass, and thus the productivity, of a body of water (Atkinson, Acevedo, Dickson, and
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Rolbecki 1998).   There is concern that reducing the level of chlorophyll-a in the water

will have a detrimental effect on plant and animal life in the region, particularly the striped

bass fisheries.  But chlorophyll-a is a relatively expensive parameter to measure manually.  

The use of information technology to estimate the chlorophyll-a levels is planned in

order to help determine the economic impact of controlling these variables. It is

hypothesized that there is a relationship between reflectance of the electromagnetic energy

at different wavelengths and the level of chlorophyll-a.  If there is a relationship between

the chlorophyll-a and the energy reflectance, then in the future satellites can be used to

measure the energy output and the energy reflectance will be used to estimate the

chlorophyll-a levels. The use of satellites for sampling could result in more frequent

monitoring of the water as well as an expanded sampling area.

Theoretical Development

The theory surrounding the research in determining the dimensionality of data as

discussed in this study begins with the functions of data mining. Data mining functions can

be broken down into five main areas: associations, modeling, classification, time series,

and sequential patterns (figure 11). 

Modeling is the area of research that is discussed in this research. Modeling

involves the relating of inputs to outputs based on previous examples. Modeling allows a

researcher to make accurate predictions from complex examples with many variables.

Several techniques have been used to accomplish the modeling functions. These are shown

in figure 12 and include modeling nonlinear relationships with neural networks and
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nonlinear regression.  Multidimensional relationships are modeled with principal

components analysis and multivariate statistics.  In addition, linear and logistic regression

can be used to model relationships.  Hypothesis testing can be used in logistic regression,

linear regression, and multivariate statistics. 

Figure 11. Functions of data mining

Figure 12. Techniques used in modeling
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Figure 13 illustrates a grouping for principal component techniques.  Horn’s

parallel analysis and Cattell’s scree test methods are classified as a psychological

importance or interpretability measures.  The psychological importance approach

considers the number of eigenvalues to retain by using a technique that does not require

statistical significance testing. The Kaiser eigenvalue greater than one rule is classified as a

psychometric measure which states that the latent root must exceed unity in order for the

component to have positive alpha internal consistency. The Barlett’s test for the equality

of eigenvalues is a statistical measure. Statistical measures are created from inferential

statistical procedures based on analyses of the reproduced covariance or correlation

matrix.

Figure 13. View of principal components analysis

Multiple hypothesis testing may be necessary when researchers are faced with

databases with large numbers of variables. Figure 14 documents several adjustments to the

experimentwise error rate.  The estimation of the experimentwise error rate is an area of

concern. Adjustments of the experimentwise error rate can occur with an overall F test
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that can be followed with multiple comparison procedures such as Dunnet’s C, Tukey’s

HSD, or the Fisher-Hayter test (Tukey 1953; Dunnet 1980; Hayter 1986). In addition, the

Bonferroni adjustment can be implemented. The p-value approach provides an adjustment

for the experimentwise error rate that is neither too liberal nor too conservative.  It also

provides a method for interpreting multiple statistical tests by the use of a clustering

procedure.

Figure 14. Multiple hypothesis testing

Research Questions

This research study involves the investigation of six research questions that deal

with the issues of determining the dimensionality of data and exploring relationships in

databases.  The investigation of these questions help to create new methods of accurately
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identifying the number of principal components to retain and addresses issues concerning

the interpretation of multiple significance tests that may be associated with applications in

KDD. 

Research Question 1

Can an improved regression equation be found for predicting the mean eigenvalue?

Would this improved regression equation require a table with an extensive list of

coefficients? How does this compare to the two previously recommended regression

equations?

Motivation for Research Question 1

The development of regression equations has helped researchers to implement the

parallel analysis procedure (Montanelli and Humphreys 1976; Allen and Hubbard 1986;

Lautenschlager, Lance, and Flaherty 1989; Longman et al. 1989). Longman et al. (1989)

compared their regression approach to Allen and Hubbard (1986)’s regression models.

Their study showed that the LCHF model is more accurate than Allen and Hubbard’s

model.  Lautenschlager, Lance, and Flaherty (1989) also published a regression model

(LLF), but their model has not been extensively compared to Longman et al. (1989).

The previously proposed regression models have been questioned with regard to

their accuracy. In addition, large tables of coefficients are needed with the Longman et al.

(1989) procedures. Furthermore, the LLF equation is an iterative process and therefore

errors in the prediction could be compounded. 



41

The Allen and Hubbard equation is examined in regards to anomalies by Cota et al.

(1991). An anomaly is defined at the onset of degeneracy in the prediction of the

eigenvalues. Degeneracy occurs when successively larger eigenvalues are predicted when

in fact, the actual eigenvalues are decreasing. Further examination showed that, within the

range of N and p used to construct their respective equations, the LCHF equation does

not incur degeneracy while the LLF equation does show anomalies.

The previously proposed regression equations only cover data sets with 1000

observations for LLF and 500 observations for LCHF. These also only use 5 to 50

variables. If an organization has a data set that contains more than 50 variables, then a

researcher would have to look to other procedures for determining the number of

components to retain. The new regression equation is designed to extend the values of N

and p used in the previous regression equations.

Research Question 2

Can an asymptotic prediction method be used to accurately predict mean

eigenvalues? How does this method compare with the previously recommended regression

equations and with the new regression equation? 

Motivation for Research Question 2

Many papers in the literature have analytically investigated the distribution of

eigenvalues of a random matrix. Anderson (1963) determined that the sample eigenvalues

are asymptotically normal and asymptotically independent. This holds for eigenvalues from
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a sample covariance matrix under the assumption that the eigenvalues of the population

matrix are positive, distinct, and nonzero. 

Glorfeld (1995) concluded from 5000 replications that the empirical distribution of

the eigenvalues is approximately normal for the sample sizes he considered. The approach

used in this paper is first to assume that the sample eigenvalues are approximately

distributed normal with mean equal to one and variance determined by incorporating the

change in variance for different values of N and p. Once the variance is estimated, the

eigenvalues are estimated by using tables of normal order statistics and the distribution

theory of percentiles. Since the tables of normal order statistics are fairly accessible to

most researchers, this method has the advantage of being accessible and easy for

researchers to calculate. 

Research Question 3

Can a neural network prediction model be used to accurately predict mean

eigenvalues? How does this method compare with the regression and asymptotic methods?

Motivation for Research Question 3

Neural networks – including BPNN – have been used in many business

applications: airline security control (Brody 1990), stock portfolio management (Ruggiero

1994) and credit card fraud (Norton 1994). The BPNN model has been compared with

other statistical techniques in applications such as forecasting and has performed well (Yi,

Mitchell, and Prybutok 1996). Schalkoff (1997) stated that problems dealing with flawed,
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missing, contradicting, fuzzy, or probabilistic data are suitable for artificial neural

networks. These problems are characterized by some or all of the following: a high-

dimensional problem space; complex, unknown, or mathematically intractable interactions

between problem variables; and a solution space that may contain a unique solution.

Neural networks have many of the same underlying ideas as statistical regression

analysis and can be thought of as a nonparametric regression method (Warner and Misra

1996). Neural networks can be useful when the functional relationship between the

independent and dependent variables are not know. Since neural networks are data

dependent, their performance often increases with sample size (Warner and Misra 1996).

Regression analysis may perform well with smaller sample sizes and when theory or

experience indicates an underlying relationship (Warner and Misra 1996). Since the

published regression procedures have performed relatively well, it is reasonable to think

that a neural network model has the potential to perform at least as well.  Neural networks

may outperform regression techniques due to their ability to fit nonlinear relationships.

Research Question 4

Can an improved regression equation to predict the 95th percentile eigenvalue be

formulated?  Can a neural network topology be found which will be a viable approach to

predicting the 95th percentile eigenvalue?
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Motivation for Research Question 4

The regression equation proposed by Longman et al. (1989) requires the use of

extensive tables of coefficients. This study investigates the creation of a regression

equation similar to the equation developed in Research Question 1. In addition, a neural

network model is also investigated.  The implications for using a higher percentage such as

the 90th or 95th percentile is to produce a slightly more conservative number of

components to be retained than using the mean eigenvalue approach. More conservative

numbers would help to prevent the overextraction of factors. Overextraction has been

reported to cause a negative effect by an overall degradation of the true component scores

(Fava and Velicer 1992). They determined that the effects are accentuated if saturation is

low or for small sample sizes. More study is needed to determine the effect of using a

higher percentile because Wood, Tataryn, and Gorsuch (1996) have determined that

overextraction is preferable to underextraction, assuming that no factor splitting occurs

and that the false factors are eventually eliminated.

Research Question 5

 In considering large numbers of independent variables, can a method be

implemented to determine the number of true null hypotheses?  Will a new method using a

mixture of beta distributions be useful in determining the distribution of the p-values in

studies which result in multiple hypotheses that may in fact be too numerous for traditional

experimentwise error controlling procedures to perform satisfactorily?
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Motivation for Research Question 5

When performing exploratory analysis researchers may need less stringent control

over their experimentwise error rate.  While a researcher may think that the Bonferroni

adjustment is a reasonable approach, this procedure does not take into account an estimate

of the true number of null hypotheses.  The Bonferroni adjustment assumes that all of the

statistical tests are coming from true null hypotheses.  In the case of using large numbers

of variables, even if a planned experiment only has one a priori hypothesis there may be

hundreds or thousands of statistical tests.

To address the problem of controlling for experimentwise error, Schweder and

Spjotvoll (1982) propose an approach using a p-value plot of cumulative p-values. P-

values are the observed significance probabilities. Their idea was simple: the cumulative

number of statistical tests plotted with the p-values that correspond to true null hypotheses

forms a straight line and the point at which p-values mostly corresponde to false

alternative hypotheses is where the p-values deviate from the line. Their approach of

visually selecting a deviation point on the graph provides an estimate of the number of the

true null hypotheses. Schweder and Spjotvoll (1982) state that their technique is intended

for informal inference and that it is difficult to make exact probability statements. 

To make Schweder and Spjotvoll (1982)’s approach less subjective, Parker and

Rothenberg (1988) have proposed a density function with a mixture of betas to model the

p-values. The EM algorithm is used to obtain maximum likelihood estimates of the

parameters. Several examples of real-world data taken from the medical area were used in

their paper to illustrate this approach.
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While the mixture approach to obtaining information about the distribution of p-

values for the null and alternative hypotheses appears to offer a fresh look at how to

control for type I error, very little attention has been given to this procedure in the

literature, particularly in business problems. Parker and Rothenberg (1988) did not

examine the accuracy of the parameter estimates via a simulation study where estimates of

the parameters can be manipulated. The purpose of this study is to assess the performance

of their approach by using a simulation study with data sets consisting of p-values

generated by beta distributions and with data sets consisting of p-values generated by t and

noncentral t distributions. The data sets from the central and noncentral t distributions

would correspond to p-values from popular statistical tests. The distribution of these p-

values may only have an approximate beta distribution. 

Research Question 6

Can the number of variables be reduced in the lake data set?  What is the

interpretation of multiple tests conducted on this real world data set?

 

Motivation for Research Question 6

The techniques in this study are designed to be useful to researchers.  The

demonstration of the applicability of this data shows that the techniques are viable in a real

world situation.
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Summary of Literature Review

This chapter presents a literature review surrounding the techniques in this study

and outlines the research questions.  Parallel analysis has been recommended by

researchers as an extraction technique, but its lack of inclusion in statistical packages and

the previous difficulties of performing simulations for the random eigenvalues has caused

it to be ignored in the business literature.  This research extends previously proposed

regression techniques used in parallel analysis as well as investigates asymptotic and neural

network approaches. Furthermore, the new techniques enhance the accessibility of parallel

analysis to practitioners. The extensions to the parallel analysis techniques allow for an

improved approach in addressing the number of factors to retain.

Currently, the business literature has given little attention to controlling the

experimentwise error rate for multiple hypothesis tests. With the advent of large databases

and growing interest in data mining/knowledge discovery techniques, an approach of

controlling the experimentwise error rate is beneficial.  In addition, the p-value approach

may be useful; for example, for a corporation that is searching for new relationships within

their customer base and must interpret a large number of statistical tests.  The next chapter

outlines the research methodology used to answer the research questions.
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CHAPTER 3

RESEARCH METHODOLOGY

This chapter discusses the research methodology used in this study. The chapter

begins with a discussion of the previous techniques that are examined. These include

regression techniques for predicting mean eigenvalues, back propagation neural networks,

and p-value plots and mixture models. This is followed by a discussion of the research

design. The procedures used to assess and validate the new eigenvalue estimation

approaches are presented next. Finally, the simulation design implemented to estimate the

distribution of the p-values is constructed and its validation procedures are detailed. 

Previous Regression Techniques

The use of regression equations has made parallel analysis more accessible. There

have been three major studies that have developed regression equations to estimate the

mean eigenvalues from a sample correlation matrix. Notation used in these equations are

1) N = sample size, 2) p = the number of variables, and 3) k = the ordered position of the

eigenvalue (ordered from largest to smallest). Allen and Hubbard (1986) published a

regression equation based on previous work by Humphreys and Montanelli (1975) and

Montanelli and Humphreys (1976) to estimate the mean value of an eigenvalue. This

equation is able to predict all but the last two eigenvalues for any value of p less than or

equal to 48. Sample sizes of N = 30, 60, 90, 120, 240, 500, and 1000 are used in
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combination with p values from 5 to 50 in steps of 5 to develop the regression model.

Since p represents the number of variables in the data, it also represents the maximum

number of eigenvalues. In addition, only eigenvalues such that N > 3p/2 is satisfied are

included in constructing the regression model. This equation provided an R2 value of .931

for the first eigenvalue and .998 or above for the successive eigenvalues. It is noted that

several anomalies exist in this iterative regression equation (Cota, Longman, Holden, and

Fekken 1991). The equation1 below is referred to as the AH equation.

(1) 

Equation (1) has been improved by Lautenschlager, Lance, and Flaherty (1989) to

provide a more exact estimate of the first eigenvalue. Since factor analysis and

psychometric texts had indicated the importance of an “adequate” p/N ratio,

Lautenschlager et al. (1989) investigated the AH regression model with the additional

predictor variable p/N. Sample sizes of N = 50, 75, 100, 150, 200, 300, 400, 500, 750,

and 1000 are used in combination with p values from 5 to 50 in steps of 5. Combinations

of N and p that did not satisfy N $3p/2 are not examined. This equation can be used to

predict up to the 48th eigenvalue. Therefore, the parameters (N and p) are similar to that in

the AH study, with the main difference being the values of N that were selected. It is

noted that use of this derived equation and equation (1) without Monte Carlo analyses
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restricts the accuracy of the estimates of subsequent eigenvalues based on the accuracy of

the first eigenvalue (Lautenschlager et al. 1989). The equation below is referred to as the

LLF equation.

(2)

Longman et al. (1989) present a regression equation and two tables of coefficients;

one table to allow for the prediction of the mean and the other table for the prediction of

the 95th percentile eigenvalue. This equation provides a noniterative alternative to the

previous equations as well as providing the 95th percentile criterion eigenvalue. The use of

the 95th percentile has been suggested by Longman et al. (1989) based on previous

research (Skinner 1979). However, researchers need to decide the importance of using the

mean and possibly overextracting the number of eigenvalues versus using a high

percentile, such as the 95th and possibly underextracting eigenvalues. Their study uses

sample sizes N = 50, 75, 100, 125, 150, 175, 200, 300, 400, and 500. The number of

variables included were p = 5, 10, 15, 20, 25, 35, and 50. These parameter values are

similar to that in Lautenschlager et al. (1989) with the main difference being that N

stopped at 500. The eigenvalues for which k > 33 are not included in this study. This

restriction is in place because Longman et al. (1989) determined that there is no variability

in the value of the eigenvalue after the 33rd ordinal value.  The resulting equation is

suggested to be used for k # 33 and it is also not applicable for estimating the last two
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eigenvalues. Longman et al. (1989) did not use the last two eigenvalues to obtain their

regression model. The equation below is referred to as the LCHF equation. 

(3) 

The equation using the 95th percentile table of coefficients will be referred to as the

LCHF95 equation.  Equations (2) and (3) have been shown to be accurate over the range

of N and p for which they were created (Lautenschlager et al. 1989; Longman et al. 1989).

A limitation to both of these equations is the dependency upon the tabled values of the

coefficients. In the next chapter of this paper, regression equations that are noniterative

and do not require the use of coefficient tables are presented.

Back Propagation Neural Networks

Neural networks are defined by their learning paradigm, topology, and algorithm

(Bigus 1996). The back propagation network uses a supervised learning paradigm. In this

paradigm, the network is fed a database that contains the problem and the solution. The

network will then make a prediction and assess the error. This error is used by the

algorithm to adjust the weights. A feedforward topology is used in the back propagation

procedure as shown in figure 15. 



52

Hidden Layer

Inputs

Output

Bias

Figure 15. Back propagation neural network model

The data flows through the network in a single direction and the output is based on

the current set of inputs. The back propagation neural network uses the generalized delta

rule (back propagation) neural network. The generalized delta rule is a general-purpose

algorithm that can be used to perform linear regression if no hidden layers are included.

The addition of a single hidden layer will turn the linear neural network into a nonlinear

model that is capable of performing multivariate logistic regression with multiple outputs

(Bigus 1996). 

The back propagation algorithm as described by Schalkoff (1997) consists of six

steps. The notation used in this discussion follows:

ii
p: input pattern (vector) - the ith element of ip

oj
p: corresponding output pattern or response (vector) - the jth element of op where

op is the actual network output resulting from input ip and the current set of

weights w
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wji: network weights (vector) - strength of interconnection from input unit i to

output unit j

tj
p: desired (or target) system output (vector) - jth element of tp

õi
p: generalized notation for ith input to neuron j to allow for hidden layers where

= oi
p if input is output of another neuron

= ii if input is direct input to the network

*j
p: sensitivity of the pattern error on the net activation of the jth unit

g: learning rate

i: designates the ith input unit

j: designates the jth output unit

k: designates the kth hidden unit

n: number of hidden layers

p: designates the pth input/output pair

1. Initialize all weights, w, in the network with random values.

2. Introduce an input (stimulus) vector to the network.

3. Propagate (feed forward) the input vector to compute the unit responses.

oj
p = fj(wij, i

p)

where f(netj) is some transfer function such as the sigmoid function, i.e.,

 f(netj ) = and 
1

1+
−

e
net j

net w i biasj ji i j
i

= +∑

4. Compare the unit responses in the output layer with the target response.
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5. Compute and propagate an error sensitivity measure backward from the output

layer to the input layer.

Error measure E t op
j
p

j
p

j
= −∑

1

2
2( )

If the Ep is less than maximum acceptable error, or if the maximum number of

iterations were reached, then stop. If not, continue by adjusting the weights and

returning to step 2.

Weight correction ∆ p
ji j

p
i
pw o= εδ ~

Output unitsδ j
p

j
p

j
p

j j
pt o f net= − ′( ) ( )

Internal units δ δj
p

f k netk
p

n
p

wnkn
= ′ ∑( )

where is obtained from the output layerδn
p

Back propagation neural networks can be used for classification, modeling, and

time-series forecasting. There are two major learning parameters that can be used to

control the training process of a back propagation network. The learn rate determines

whether the adjustments after each learning trial will be major or minor. The momentum is

used to control possible oscillations in the weights. These might occur due to alternately

signed errors. These two parameters usually produce the most impact on the training and

performance of a neural network (Bigus 1996). The values chosen depend on the type of
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problem that is presented. The sigmoid is the most widely used activation function for the

back propagation algorithm (Cheng 1995).

P-value Plots and Mixture Models

To obtain an estimate of the number of statistical tests corresponding to true null

hypothesis, Schweder and Spjotvoll (1982) recommended a graphical approach. These

authors suggested visually drawing a line through a plot with the horizontal axis

representing (1 - p-value)’s and the vertical axis representing the cumulative number of

statistical tests up that point which had (1 - p-value)’s that were less than or equal to the

(1 - p-value) on the horizontal axis. The line would ignore the points that started deviating

from the line since these points would correspond to false null hypotheses. Their approach

is based on the result that the distribution of the cumulative density function of a random

variable is uniformly distributed. Their technique is performed visually and therefore is

somewhat subjective.

If all of the statistical tests corresponded to true null hypotheses then the plot of (1

- p-value) and Np, where Np is the cumulative number of statistical tests, would

approximate a straight line. The value of the straight line at (1 - p-value) = 1 would be an

estimate of the number of true null hypotheses. Consider figure 16. Note that a turning

point (a bend in the line) occurs around the p-value of 0.7. An estimate of the number of

null hypotheses can be obtained by extending the straight line going through the (1 - p-

values) of 0 to 0.7 to the (1 - p-value) of 1.0. The value of the straight line at this value is

an estimate of the number of true null hypotheses. If a researcher wanted to use the
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Bonferroni argument in controlling for the overall type I error for 500 tests in the situation

illustrated by figure 16, then all tests would be given a significance level of α/250 rather

than a significance level of α/500, representing an improvement by providing less stringent

experimentwise error control.

Figure 16. Plot of p-values

A later study by Parker and Rothenberg (1988) also illustrates the advantages of

using a plotting procedure for estimating the number of hypothesis with true nulls.

However, this study uses a mixture of distributions to estimate the density of the p-values.

Parker and Rothenberg (1988) fit real data from the medical world to illustrate the

potential of the procedure. No simulation study is presented in their paper and hence the

true merits of approximating the density of the p-values with a mixture of beta

distributions has not been assessed. 

Hung, O’Neill, Bauer and Köhne (1997) show that the distribution of the p-values

can be obtained for any test statistic. If the alternative hypothesis has a distribution of

values which make it true, then the density function for the p-values may be somewhat
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complicated and difficult to use in obtaining maximum likelihood estimates for the mixture

density. The results in their paper are considered in using the beta distribution as an

approximation for these more complicated density functions.  

The mixture of density functions to model the distribution of p-values can be

written as follows:

where xi represents a p-value, pj represents a proportion of the p-values having a particular

density function, and B(rj, sj)(xj) represents the value of the beta density function with

parameters r and s. Note that a B(1,1)(x) is simply a uniform distribution. The beta

distribution can be described as follows with the symbol Γ( ) representing the gamma

function:

with shape parameters r > 0, s > 0. An obvious attraction to using the beta distribution is

that the beta has a distribution where x ranges from 0 to 1.  In addition, the beta

distribution is

1. U shaped if r < 1 and s < 1

2. J shaped if (r - 1)(s - 1) < 0

3. otherwise is unimodal.

Since a polynomial distribution of sufficient order can be used to approximate any

distribution, the sum of weighted betas is used to approximate a polynomial distribution.
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Research Design for Estimating Eigenvalues

This research study investigates three new methods for estimating the mean

eigenvalue: two regression approaches, two neural network approaches, and three

asymptotic approaches. In addition, a regression procedure and a neural network is

investigated to predict the 95th percentile of the eigenvalue.  The basis for each of these

new approaches is described next.

 

Developing a New Regression Model for Estimating Mean
and 95th Percentile Eigenvalues

For the regression approach to estimating eigenvalues, model building approaches

are used to determine a response surface to predict the mean and 95th percentile

eigenvalues by specifying values of the sample size (N), number of variables (p), and

eigenvalue position (k).  These regression models include terms used in previous

regression procedures as well as second order terms and their respective interactions. The

new models are evaluated to determine if the extensive tables of coefficients used in prior

models are necessary. 

Developing a Neural Network Model for Estimating
Mean and 95th Percentile Eigenvalues

For the neural network approach to estimating the mean and 95th percentile

eigenvalues, a neural network architecture used in previously promising approaches to

predicting real-world data is used. The most parsimonious model is retained. Since the use

of neural networks has become more widespread, a neural network configuration could be
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readily used by a practitioner to estimate eigenvalues by using sample size, number of

variables, and position of eigenvalues as inputs.  An advantage to this procedure is that

tables of coefficients are not necessary as is required in the previously published regression

models. 

 

Developing Asymptotic Estimates of Mean Eigenvalues

For the asymptotic approach to estimating the mean eigenvalue, published tables of

order statistics for the normal distribution are used.  These order statistics for the normal

distribution are available in handbooks of statistical tables. As the sample size increases,

the distribution becomes normally distributed and estimates of the eigenvalues become

mutually independent. Correcting for biases in the estimation, especially near the beginning

and end of the ordering of the eigenvalues is addressed. The distribution theory of

percentiles is also investigated to determine the role that this theory can play in obtaining

better asymptotic estimates of the mean eigenvalues. 

Assessment and Validation of New Eigenvalue
Estimation Approaches

In this study, the three new mean eigenvalue approaches are assessed against two

previously recommended regression procedures for estimating mean eigenvalues (LLF and

LCHF). The AH equation is not used in the comparison since the LLF is an improved

modified version of the AH equation.  These comparisons occur over a variety of values

for N, p, and k, with N ranging from 50 to 2000, p ranging from 5 to 80, and k ranging
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from 1 to 78.  The mean squared error, maximum absolute deviation, R-squares, and

maximum absolute percentage error are used to determine the error in each prediction

method.  A frequency table of the errors is also used to classify the errors.  The

performance of the eigenvalue procedures is illustrated for specified values of N.  In

addition, a randomized block design is used for fixed values of N to perform multiple

comparisons between the different techniques.  The regression equation and neural

network to predict the 95th percentile eigenvalues are analyzed in a similar fashion.  Since

only the LCHF95 procedure includes an approach to predict 95th percentile eigenvalues,

the comparisons are made against this single equation.

Simulation Design for Estimating the Density of P-values

For the p-value approach, a model is investigated to determine a mixture of

densities that can best describe the density of the p-values for the case of t-statistics and

noncentral t-statistics. Finding initial estimates of the parameters of this mixture of

densities is one of the contributions of this study. Good initial estimates may be important

for convergence and computational efficiency. Nonlinear estimation of the parameters is

used in finding maximum likelihood estimates.

Developing a Mixture Model to Estimate the Density of P-values

The approach in this study is to use a simulation study with data sets consisting of

p-values generated by beta distributions and with data sets consisting of p-values

generated by t and noncentral t distributions. The data sets from the central and noncentral
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t distributions correspond to p-values from statistical tests. The distribution of these p-

values may only have an approximate beta distribution.  Furthermore, this study creates

initial estimates for the case of a mixture of 2 components for the density function of the

p-values.

Assessment of the Simulations

For the simulations, different combinations of sample size for the null and nonnull

hypotheses are investigated.  In order to determine the accuracy of the simulations, 

MADs and MSEs of the parameter estimates with respect to the true values of these

estimates are calculated.  In addition, paired t tests are used to determine whether the

initial and final estimates are significantly different.   

Summary of Research Methodology

This chapter presented the previous methods used to predict mean and 95th

percentile eigenvalues.  These include the LCHF, LLF, and LCHF95 regression equations. 

The motivation and methodology used to create the seven new procedures is discussed. 

The measures used to assess the validity of the new procedures are presented.  In addition,

the background of the investigation into the distribution of the p-values is examined.  The

need for the simulation is documented and the plan for performing and evaluating the

simulation is discussed.  The next chapter reports the results from these analyses.  
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CHAPTER 4

DATA ANALYSIS

This chapter discusses the data analysis procedures used in this study.  First, the

analysis of the eigenvalues is presented.  The analysis begins with a presentation of the

new regression, asymptotic theory, and neural network methods to predict mean

eigenvalues.  These models were created through experimentation and have been found to

be reasonable.  A comparison is made between the previous methods and the new models. 

New regression and neural network models are also presented to predict the 95th

percentile eigenvalue.  A comparison of a single previous regression equation (Longman et

al. 1989) to predict the 95th percentile eigenvalue is compared with the new regression and

neural network models.

The second part of the study includes a mixture approach for analyzing p-values.

In addition, a procedure to estimate the proportion of true null and false null hypotheses is

presented.  A simulation study is conducted to determine the feasibility of this approach. 

The results from this analysis are presented.  This chapter concludes with an example of

real-world data showing the application of the procedures outlined in this study.

Models Used in the Eigenvalue Analysis 

There have been several regression models used to predict mean eigenvalues

(Allen and Hubbard 1986; Lautenschlager et al. 1989; Longman et al. 1989).  The LLF
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and LCHF regression equations are compared to the new methods in this study.  This

chapter begins with a discussion of the new regression, asymptotic, and neural network

methods for predicting mean eigenvalues.

Regression Models for Predicting Mean Eigenvalues

Two models are used to create regression models for predicting mean eigenvalues. 

The first model is created with a reduced selection of values similar to the restrictions

placed on the LCHF and LLF regression equations.  The second model is created across

all values of N in the Lautenschlager (1989) tables of simulated mean eigenvalues. 

The first discussion is about the new model with the reduced selection of N and p

values.  For the new model, values of N are 50, 75, 100, 150, 200, 300, 400, and 500 and

values of p are 5 to 50 in steps of 5. Performance of the model has been found to improve

with the following restrictions: 1) The number of eigenvalues estimated was no greater

than 34 when the number of variables are 40, 45, and 50.  2) The last two (three)

eigenvalues were not estimated for 5 variables (greater than 5 variables). These

restrictions are in contrast to the LCHF model which used the following restrictions: 1)

The number of eigenvalues estimated was less than 33.  2) The sample size must be

greater than or equal to 3p/2. 

(4)  
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Equation (4) is referred to as the REGEXT equation.  This equation has 11 regression

terms. This compares to 4 regression terms for the AH equation, 5 regression terms for

the LLF equation, and 4 regression terms for the LCHF equation. While at first this may

seem like a more cumbersome equation, one should note that the REGEXT equation is a

function of k (the ordered eigenvalue number) and k is not incorporated into LCHF

equation. An advantage to the REGEXT equation is that a table of coefficients is not

necessary. For example the LCHF equation, while only having 4 regression terms, requires

a table of 132 regression coefficients for eigenvalues numbered 1 through 33. The LLF

equation requires a table of 240 regression coefficients for eigenvalues numbered 1

through 48. 

The motivation for the REGEXT equation is that it is actually an extension of the

LCHF equation. If all of the terms with k are eliminated from the REGEXT equation, then

the resulting terms are from the LCHF equation. Now, if the first- and second-order terms

of k and the interactions of these terms with each of the terms in the LCHF equation are

included with the terms in the LCHF equation then the new model is the REGEXT

equation. The use of first- and second-order terms of k in the LCHF model became a

reasonable choice after experimentation with the columns of table 1 in Longman et al.

(1989).   A regression model has been analyzed with the dependent variable being one of

the coefficients in Longman et al.’s table 1 (columns headed a, b, c, and d) and the

independent variables being k, k2, dummy variables representing either 70, 60, 50, 40, 30,

or 20 (these are the number of data points used) and the interaction of these dummy
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variables with k and k2..  Since the regression model with second-order terms provides a

good fit, the REGEXT model has been investigated with second-order terms of k.  

The second regression model includes a more complete set of the simulated

Lautenschlager (1989) mean eigenvalues.  The motivation for this equation is similar to

the REGEXT equation with the difference occurring in the increased number of

combinations of N and p.  For this model, values of N are 50, 75, 100, 150, 200, 300, 400,

500, 750, 1000, 1500, and 2000. The values of p are 5 to 50 in steps of 5 and also values

of 60, 70, and 80.   The restrictions on the REGEXT model are: 1) The last two

eigenvalues are not estimated for the case in which there are 5 variables.  2) The last three

eigenvalues are not estimated for the case in which there are more than 5 variables.  This

regression equation is shown in equation (5) also has 11 regression coefficients and it is

referred to as REGEXTALL.

(5)  

Both of these regression equations performs well for certain combinations of N

and p.  This is shown later in this chapter and in the conclusions in chapter 5.  The next

section introduces the neural network models.

Neural Network Models for Predicting Mean Eigenvalues

With the relatively promising performance of the previous and new regression

equations, the use of neural networks to predict mean eigenvalues is also explored.  Two
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models are created to mirror the conditions placed on the REGEXT and REGEXTALL

regression equations.  The same sets of N and p with their simulated values from

Lautenschlager (1989) are used to create an NN and an NNALL neural network model. 

The neural network models are created with parameters common in the literature.  The

choice of parameters is defined by refinement towards a smaller root mean square.  The

NN model used N, p, k, and p/N as inputs with a single hidden layer with 2 neurons.  The

NNALL model used N, p, k and p/N as inputs with a single hidden layer with 3 neurons. 

Table 4 shows the input parameters and root mean square for the NN and NNALL

models.

Table 4. NN and NNALL input parameters

NN NNALL

Learning Coefficient 1.2 1.8

Momentum 0.7 0.7

Output Coefficient 2.4 1.8

Root Mean Square .006796 .008509

Systematic procedures are used to vary these input parameters until no

improvement in the root mean square is gained.   Both models use the same

backpropagation options.  First, bipolar inputs and the minimum/maximum table are used

to store the highest and lowest values for each data field and to map the input data into

values between -1 to 1.  The learn rule is the delta-rule.  This rule uses the differences

between the actual and the desired outputs to make adjustments to the connection
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weights. The transfer function transforms the weighted sum of the effective inputs to a

potential output value.  The sigmoid transfer is chosen because it is a commonly used,

continuous, monotonic mapping of the inputs into values between 0 and 1.  A random

number seed of 257 is also used for both models.  The performance of the neural network

models is compared in a later section after the discussion of the asymptotic and order

scores approaches to estimating the mean eigenvalues.

Normal Scores and Asymptotic Approaches for Predicting Mean Eigenvalues

Based on information in the literature about the distribution of the mean

eigenvalues being approximately normal, several approaches are created to predict the

mean eigenvalues.  The introduction to these approaches begins with a discussion of the

distribution of eigenvalues.  After this discussion, the three approaches are described in

detail. 

Understanding the Distribution of Eigenvalues

Eigenvalues are also referred to in the literature as characteristic roots or latent

roots. Many papers in the literature analytically investigate the distribution of eigenvalues

of a random matrix. For example, Silverstein and Bai (1995) study the convergence of the

empirical distribution function of eigenvalues from a random matrix and Romanazzi

(1991) examine properties of the jackknife statistic for the eigenvalues of the covariance

matrix.  Anderson (1963) establishes the following large-sample distribution result for

eigenvalues from a sample covariance matrix under the assumption that the eigenvalues of
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the population matrix are positive, distinct, and nonzero. His result is as follows for

sample size N, number of variables equal to p, and the ith ordered eigenvalue represented

by :λk

      

Thus the sample eigenvalues are asymptotically normal and asymptotically independent.

The notation N(µ, σ2), used above, represents a standard normal distribution with the first

and second parameter being the mean and variance, respectively.  While this result holds

for large sample sizes, its accuracy needs to be investigated for samples that are not very

large.

According to Anderson (1984), for random variables from a standard multivariate

normal distribution (mean equal to zero and population covariance matrix = I), the joint∑

density function of the ordered eigenvalues from largest to smallest, that is

f  for eigenvalues from the usual sample covariance estimator multiplied( , ,..., )λ λ λ1 2 p

by N-1, denoted as (N-1) , is as follows:$∑
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for  over the range where the density is not equal to 0.  Asλ λ λ1 2 0≥ ≥ ≥ ≥... p

Glorfeld (1995) emphasizes, finding the expected value of a particular eigenvalue using an

analytical approach may be impractical for many researchers desiring a straightforward

solution.

Glorfeld (1995) considers a nine-variable set of data with 90 observations and a

36-variable set of data with 180 observations. He generates both normal and nonnormal

observations for these data sets and concluded from 5000 replications that the empirical

distribution of the eigenvalues is approximately normal. The approach that is used in this

discussion is first to assume that the sample eigenvalues are approximately distributed

normal with mean equal to one and variance equal to some constant times 2/N. The reason

for a mean of one is simply that the population correlation matrix is assumed to be the

identity matrix.  The reason for 2/N for a parameter in the variance formula follows from

the asymptotic results of Anderson (1963). Furthermore the sample eigenvalues are

assumed to be approximately independent. Next, the order statistics for the standard

normal distribution as presented in the CRC Handbook of Tables for the Use of Order

Statistics in Estimation (Harter and Balakrishnan 1996) are used to estimate the average

value of the ith sample eigenvalue from a random correlation matrix. This order statistic

must be multiplied by the standard deviation of the eigenvalue to estimate the average of

the eigenvalue.  The order statistics for standard normal random variables can be

calculated from the following formula using numerical techniques. The notation p

represents the number of variables and represents the kth order statistic.Xk,p
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The CRC Handbook of Tables presents values of the calculations of the above formula for

values of p from 1 to 100 and then for many selected values from 100 to 400. The results

in this study illustrate that these tabled values of order statistics are useful in forming

tables of expected eigenvalues similar to that in Lautenschlager (1989).

Average Values for Sample Eigenvalues from a Random Correlation Matrix 

 The average value of sample eigenvalues are presented in Lautenschlager (1989)

starting with N=50. The study in this paper first compares the expected values of order

statistics from a standard normal population to the average values of sample eigenvalues

presented in the Lautenschlager (1989) paper. The averages presented in Lautenschlager

(1989) need to be standardized in this comparison. So these averages are centered by

subtracting 1 from each average and then dividing by ,  where is an2 N 2 N

estimate of the asymptotic standard deviation as suggested by Anderson (1963). However,

the variance of the sample eigenvalues is also a function of p as suggested by the joint

density function of the eigenvalues. Intuitively and as suggested by CRC Handbook of

Tables, the variance of the sample eigenvalues increases as p increases. Furthermore the

variance of the sample eigenvalues also varies by the eigenvalues’ order among the

eigenvalues.  
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An appropriate constant needs to be found to adjust the value of used as2 N

an estimate of the standard deviation. A regression analysis, with no intercept term, has

been performed to predict the tabled order statistics of a standard normal population with

the standardized values of Lautenschlager. The constant  appears to be generallyp 2

close to the regression beta coefficient. Therefore a reasonable estimate of the average of

the kth sample eigenvalue is as follows:

a. Find the expected value of the kth order statistic of a random variable from a

standard normal population (CRC Handbook of Tables).

b. Multiply the expected value found in part a by the constants and  .p 2 2 N

c. Add 1 to the value found in part b.  If less than 0, then set the estimator to 0.

The estimator constructed from this procedure is referred to as the normal order statistic

estimator (NOSE).

After viewing the differences between the values of the average eigenvalues in

Lautenschlager (1989) and the estimates from the new procedure, a further adjustment is

made. As illustrated in figures 17 and 18, the estimates of the new procedure were smaller

in magnitude for the first few eigenvalues and smaller in magnitude for the last few

eigenvalues. Figure 17 shows that for p = 20 and N=50, that the normal order statistic

estimators for k between 1 and 5 and for k equal to 19 and 20 are less than the average

eigenvalues obtained through simulation. The points near the ith position labeled ‘change
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Figure 18. Difference between NOSE and simulated eigenvalues N=50, p=20
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points’ illustrate where the average values from simulation agree with the NOSE.  Also for

the eigenvalues in the middle (that is, when k is around [p+1]/2), the new procedure

appeared to sometimes produce  s that were much larger than the average eigenvalues$λk

tabled in Lautenschlager (1989). 

Therefore, the following additional adjustment is suggested after the NOSEs ,

represented by  s below, are calculated:$λk

a. If 1.6 then replace  by $λk ≥ $λk

1 + (  -1) * (1 + (1/3)(p/N)).$λk

b. If k  (p+1)/2 and if either of the following two conditions hold:≤

1. 1.2 and p > 10 $λk ≤

2.  1.10 and p 10 then replace by$λk ≤ ≤ $λk

1 + [( -1) * (1 + (1/3)(p/N))]   - [(1/3)*(p/N)].$λk

c. If .40 and k > (p+1)/2 then replace  by$λk ≥ $λk

(1 - (1/3)(p/N)) * $λk

d. If  .15 and  > 0 then replace  by $λk ≤ $λk
$λk

(N/p) * .$λk

e. If  < 0 then replace  by 0.$λk
$λk

This estimator is called the adjusted normal order statistic estimator (ANOSE).  The rules

used in the procedure for calculating ANOSE have been established by trial and error

procedures and by viewing figures such as those presented in figures 17 and 18.  It is

recognized that the order statistics near the smallest and largest statistics have larger
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variances than those order statistics near the middle. In addition, the term p/N was used in

the adjustments since this same term appears in step b of the procedure to calculate the

NOSE. Also, it is noted that p and N are the only two parameters in the joint density

function of the sample eigenvalues.  

To make further use of normal approximation theory, an additional procedure that

does not rely on the use of tabled values of order statistics is outlined. This procedure

assumes that the kth order statistic is a reasonable estimator of the (p - k + 1)/(p + 1)th

percentile. This procedure to find the average of the kth sample eigenvalue is presented

below.

a. Find the (p - k + 1)/(p+1)th percentile of a standard normal random variable.

b. Multiply the expected value found in part a by the constants  and .p 2 2 N

c. Add 1 to the value found in part b.  If less than 0, then set the estimator to 0.

The estimator constructed from this procedure is termed the normal approximation

estimator (NAE).  The next section outlines the development of the models to predict 95th

percentile eigenvalues.

Regression Model to Predict 95th Percentile Eigenvalues

The motivation for the 95th percentile regression equation follows the reasoning for

the mean regression equation.  This model is created using the values of N and p used to

construct the LCHF regression equations. The simulated 95th percentile eigenvalues are

taken from Cota, Longman, Holden, Fekken, and Xinaris (1993). These authors used a
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Monte Carlo simulation approach to predict the eigenvalues.  For the model, values of N

are 50, 75, 100, 125, 150, 175, 200, 300, 400, and 500 and values of p are 5, 10, 15, 20,

25, 35, and 50. In keeping with the restrictions placed on the LCHF model, the regression

equation has been developed over all combinations of N and p selected for the study such

that k # 33. Also, the last two eigenvalues for each value of p are not included in

developing this regression equation. Equation (6) is referred to as the REGEXT95

equation. 

(6)  

The REGEXT95 equation has 12 regression coefficients. This compares to 4

regression coefficients for the LCHF equation. As with the other regression models, while

this may seem like a more cumbersome equation, the cause is the incorporation of the

value of k.  An advantage to the REGEXT95 equation is that a table of coefficients is not

necessary. For example the LCHF equation, while only having 4 regression coefficients,

requires a table of 132 regression coefficients for eigenvalues numbered 1 through 33.

Neural Network Model for Predicting 95th Percentile Eigenvalues

The results of the regression equation used to predict the 95th percentile lead to the

proposition that a neural network model might also predict eigenvalues with a similar level

of accuracy.  For this neural network model, the combinations of N and p of the simulated
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values from Cota, Longman, Holden, Fekken, and Xinaris (1993) that are used in the

regression approach are used to create an NN95 neural network model.  The development

of this model is similar to the development of the NN and NNALL models using

parameters common in the literature.  The choice of parameters is defined by refinement

toward a smaller root mean square. The NN95 model used N, p, k and p/N as inputs with

a single hidden layer with 2 neurons.    Table 5 shows the input parameters and root mean

square for the NN95 model.

Table 5. NN95 input parameters

NN95

Learning Coefficient 1.9

Momentum .6

Output Coefficient 2.4

Root Mean Square .009099

The input parameters have been varied until no improvement in the root mean

square appeared.   The NN95 model uses bipolar inputs and the minimum/maximum table,

the delta-rule as the learn rule, the sigmoid transfer function, and a random number seed of

257.  The performance of this model with the REGEXT95 and LCHF95 models is

compared later in this chapter.
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Performance of the Previous and New Mean Eigenvalue Predictors

The performance of these previous and new models to predict mean eigenvalues

are assessed by several measures.  First the methods are compared showing the R-squares

between the predicted and SIME values across each eigenvalue position.  The mean

absolute prediction error (MAPE) and mean absolute deviation (MAD) are also calculated

across each eigenvalue position.  Tukey multiple comparisons are also performed to show

the performance of the estimators within each sample size.  The mean squared error

(MSE), maximum absolute deviation (MAX DEV), and MAPE are used in the Tukey

tests.  In some instances, line graphs are also presented to further enhance the

comparisons.  

Performance of Models on Reduced Data Set

A reduced data set is used to compare the performance of the previous and new

eigenvalue prediction methods.  This is done because of the limits placed on N and p for

the LCHF and LLF equations during their creation.  Another reason for the reduced data

set is that these are the values of N and p that are more commonly be used in traditional

factor and principal components analysis.  Similar limits are also placed on the creation of

the REGEXT and the NN models in this study.  Therefore this reduced data set used for

comparison uses sample sizes of N = 50, 75, 100, 150, 200, 300, 400, and 500.  The

number of variables include p = 5, 10, 15, 20, 25, 35, and 50.  In addition, combinations

that did not satisfy N $ 3p/2 are excluded from the comparisons.  The restrictions on the

eigenvalue position are that the last two eigenvalues are not included and k # 33.  The
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LCHF, LLF, NOSE, ANOSE, NAE, REGEXT, NN, REGEXTALL, and NNALL models

are compared.  Performance is evaluated with R-squares, MAPEs, MADs, and MAX

DEVs.  The analysis begins with graphs of their performance using the R-squares,

MAPEs, and MADs.  Tables A1-A3 include the complete set of values used to create the

graphs and are included in the appendix.

Figure 19 shows that most of the procedures stay above an R-square of 0.90 for

the eigenvalue position (k) lower than 24.  The ANOSE performs well for all of the values

of k except 33.   The adjustment to the NOSE in the form of the ANOSE does increase its

accuracy in most of the analyses.  The LLF method performs the worst and when k > 23

the performance begins to drop off to 0.44 at k = 33.  The performance of the REGEXT

and REGEXTALL is similar to the LCHF regression equation.  The NN and NNALL

neural networks perform similarly to the LCHF and REGEXT, and perform even better

when k > 17.  

Figure 20 shows a comparison of the MADs using a line graph.  This figure shows

that the LLF equation again performs increasingly worse up to 0.43 at k = 33.  The

remainder of the procedures stay below 0.10 after the first eigenvalue position.  The best

performers are the LCHF, NN, REGEXT, and ANOSE.  The NNALL performs well after

k > 3.  The NAE and NOSE show similar performances with the NOSE performing better

on the first few eigenvalue positions.

Figure 21 shows the relative prediction error by using the MAPE.  Again, the LLF

begins to perform worse as k increases beyond 12 up to 75.5 when k = 33.  Most of the

procedures stay below the 10% mark.  Once k >23 several of the procedures begin to 
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show a larger error.  The ANOSE again is a good performer but begins to increase in

error when k > 31.  The LCHF, REGEXT, NN, REGEXTALL, and NNALL all perform

similarly.  The NNALL performs better for the last eigenvalue positions.

A second part of the analysis includes Tukey multiple comparison tests on the

MSE, MAX DEV, and MAPE.  The Tukey multiple comparison procedure is used

because it is the most widely used procedure and has more power than the popular Scheffé

test which is only recommended if some nonpairwise comparisons are of interest (Kirk

1995). These Tukey analyses are done with a randomized block design.  For each value of

N, the MSE (and also MAX DEV and MAPE) is calculated for a particular number of

variables p across all eigenvalues. The factor in the analyses is the method of prediction

(LCHF, REGEXT, etc.) and the blocks are the number of variables p.  The complete

tables of the MSEs, MAX DEVs, and MAPEs are included in the appendix in tables A4-

A6.  The output from the Tukey multiple comparisons tests is shown in tables 6-8.  

The Tukey tests for the MSE in table 6 shows that for N = 75, 400, and 500 that

the different techniques all perform similarly.  For N = 200 and 300, the LLF technique

has a higher MSE than the other techniques.  For the smaller value of N = 50, the NNALL

equation performs the worst.  The ANOSE equation is never different from the LCHF

equation in any of these tests on the MSE. 

The MAX DEV Tukey tests are shown in table 7.  For N = 75, 400 and 500 there

is no difference between the techniques.  For N = 300, the LLF equation performs worse

than the other techniques.  For N = 50, the NNALL performs the worst and the LCHF,

ANOSE, NOSE, LLF and REGEXT perform the best.  For N = 100, there are increased
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Critical

N Distance Alpha = 0.05 Means joined by a double line are not significantly different

50 0.0114 ANOSE LCHF REGEXT NOSE REGEXTALL LLF NN NAE NNALL

0.0011 0.0015 0.0029 0.0077 0.0079 0.0083 0.0109 0.0130 0.0271

75 0.0793 LCHF ANOSE REGEXT REGEXTALL NN NOSE NNALL NAE LLF

0.0007 0.0018 0.0018 0.0040 0.0040 0.0101 0.0103 0.0141 0.0555

100 0.0090 LCHF ANOSE REGEXT REGEXTALL NN NNALL NOSE NAE LLF

0.0012 0.0014 0.0020 0.0022 0.0027 0.0051 0.0058 0.0084 0.0133

150 0.0105 ANOSE LCHF REGEXT NN REGEXTALL NNALL NOSE NAE LLF

0.0010 0.0010 0.0015 0.0016 0.0019 0.0021 0.0028 0.0044 0.0133

200 0.0102 LCHF ANOSE REGEXT NN NNALL NOSE REGEXTALL NAE LLF

0.0007 0.0009 0.0011 0.0012 0.0013 0.0018 0.0022 0.0029 0.0133

300 0.0054 LCHF REGEXT ANOSE NN NOSE NNALL NAE REGEXTALL LLF

0.0002 0.0005 0.0007 0.0008 0.0010 0.0014 0.0016 0.0022 0.0094

400 0.0206 ANOSE NOSE REGEXT LCHF NN NAE NNALL REGEXTALL LLF

0.0005 0.0007 0.0007 0.0007 0.0008 0.0011 0.0016 0.0017 0.0166

500 0.0742 ANOSE NOSE NAE NN REGEXTALL NNALL REGEXT LCHF LLF

0.0004 0.0005 0.0008 0.0010 0.0012 0.0017 0.0017 0.0021 0.0498

Table 6. Tukey test on MSE - Reduced data set
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Critical

N Distance Alpha = 0.05 Means joined by a double line are not significantly different

50 0.1167 LCHF ANOSE NOSE LLF REGEXT NN REGEXTALL NAE NNALL

0.0647 0.0742 0.1205 0.1233 0.1307 0.2144 0.2199 0.2234 0.3640

75 0.2902 LCHF ANOSE REGEXT NN NOSE REGEXTALL NAE NNALL LLF

0.0517 0.0990 0.1109 0.1236 0.1323 0.1907 0.2071 0.2606 0.2761

100 0.0900 LCHF NN REGEXT ANOSE NOSE REGEXTALL NAE LLF NNALL

0.0618 0.0735 0.0857 0.0906 0.1024 0.1155 0.1604 0.1687 0.1858

150 0.0698 NN LCHF ANOSE REGEXT NOSE REGEXTALL NNALL NAE LLF

0.0533 0.0573 0.0624 0.0639 0.0689 0.0725 0.0989 0.1115 0.1279

200 0.0731 NNALL LCHF NN REGEXT ANOSE NOSE REGEXTALL NAE LLF

0.0483 0.0510 0.0515 0.0536 0.0543 0.0562 0.0704 0.0874 0.1357

300 0.0620 LCHF REGEXT NOSE ANOSE NN NNALL NAE REGEXTALL LLF

0.0272 0.0400 0.0429 0.0439 0.0465 0.0582 0.0660 0.0686 0.1532

400 0.1649 NOSE ANOSE NN LCHF NAE REGEXT REGEXTALL NNALL LLF

0.0352 0.0384 0.0487 0.0520 0.0543 0.0558 0.0601 0.0682 0.1950

500 0.3419 NOSE ANOSE NAE NN REGEXTALL NNALL REGEXT LCHF LLF

0.0297 0.0341 0.0449 0.0501 0.0507 0.0727 0.0859 0.0875 0.2915

Table 7. Tukey test on MAX DEV - Reduced data set
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 differences between the techniques.  The NAE, LLF, and NNALL perform the worst. 

For N = 200, the LLF was significantly worse than the others and the REGEXTALL and

NAE were not different from the LLF.

The MAPE Tukey tests are also performed and are shown in table 8.  For N = 75

and N = 500, there is no significant difference between the techniques.  For N = 300, the

LLF performs significantly worse than the others.  For N = 50, there was a significant

difference between several of the techniques.  The ANOSE performs better than the NAE

and NNALL and the NNALL is significantly worse than the other methods.

Graphs of the MSE values for each method have been created for the sample sizes

in the comparison.  Figures 29-36 are located at the end of chapter 4.  These graphs show

that the LLF equation has a much larger MSE for most cases when the sample size gets

larger and the eigenvalue position is higher.  The larger errors of the LLF cause are

truncated so that the other methods can be compared.  In most cases, the remainder of the

procedures perform similarly.  For N = 50, all of the values have an MSE below 0.025. 

Once N increases, the value of the MSE for most methods stays below 0.01.  For N = 300

and 400, all but the LLF stay below 0.005.  The differences between the methods are most

pronounced for the first and last few eigenvalues.  

The MAX DEVs are also used to create graphs comparing each method.  These

are shown in figures 37-44 at the end of the chapter.  For N = 50, 75, and 100, the values

of the MAX DEV stayed below 0.5.  The NNALL and NAE procedures do not perform

as well for the smaller sample sizes.  The LCHF performs consistently with lower values

than the other procedures until the sample size reaches 400 and 500.  Once N is 150 or
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Critical

N Distance Alpha = 0.05 Means joined by a double line are not significantly different

50 5.68 ANOSE LCHF REGEXT REGEXTALL NOSE NN LLF NAE NNALL

2.88 4.42 5.10 8.31 8.40 9.80 10.07 10.13 15.91

75 13.73 LCHF REGEXT REGEXTALL ANOSE NN NNALL NOSE NAE LLF

1.77 2.69 3.15 3.41 4.91 8.08 8.85 10.02 14.75

100 5.97 ANOSE LCHF REGEXTALL REGEXT NN NNALL NOSE NAE LLF

2.98 3.04 3.47 3.72 4.05 5.15 6.23 7.18 11.32

150 6.15 ANOSE LCHF NN REGEXT NNALL REGEXTALL NOSE NAE LLF

2.29 2.82 3.18 3.40 3.45 3.76 4.30 5.32 10.13

200 5.59 ANOSE LCHF NNALL REGEXT NN NOSE REGEXTALL NAE LLF

2.06 2.33 2.72 2.91 3.09 3.31 4.07 4.23 9.65

300 3.67 LCHF REGEXT ANOSE NOSE NN NNALL NAE REGEXTALL LLF

1.08 1.56 1.76 2.46 2.47 2.94 3.24 4.01 7.89

400 4.20 ANOSE REGEXT NOSE LCHF NN NAE NNALL REGEXTALL LLF

1.66 1.87 2.05 2.05 2.33 2.73 3.19 3.51 7.33

500 8.41 ANOSE NOSE NAE NN REGEXTALL REGEXT NNALL LCHF LLF

1.47 1.75 2.35 2.60 2.95 3.14 3.29 3.51 8.79

Table 8. Tukey test on MAPE - Reduced data set
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larger, all procedures except the LLF perform below 0.20 for sample sizes greater than

200.  The ANOSE and NOSE perform the best for samples sizes 400 and 500. Overall

there is a tendency for higher MADs as the number of variables increases within a certain

sample size.  

The final set of graphs for the reduced data set are using the MAPE values to

compare the performance of the nine different methods.  These are at the end of the

chapter in figures 45-52.  When N gets larger than 150, all models have MAPEs less than

8% except for the LLF equation.  As indicated by the MAX DEV also, the larger numbers

of variables have slightly higher errors in most cases.   The NAE and NOSE have larger

error values for the smaller N values, but when N is greater than 300, their performance

improves.   For N = 400 and 500, the ANOSE has MAPE values less than 3%.

A table of frequencies of the absolute errors is also presented.  This table breaks

down the number of absolute errors that fall into specific size ranges.  The results are

shown in table 9.  For this reduced data set, the ANOSE, LCHF, REGEXT, and NN

procedures all perform similarly with 99.0%, 98.6%, 98.4%, and 97.4%, respectively, of

their errors below 0.1.  The ANOSE and LCHF both have close to 88% of their errors

that are smaller than 0.05.  All of the procedures except the LLF have more than 80% of

their errors below 0.1.  In addition to evaluating these models with the reduced data set, a

smaller selection of values from the reduced data set was examined.  These comparisons

are presented in the next section. 
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LCHF Rel. Freq. LLF Rel. Freq. NOSE Rel. Freq. ANOSE Rel. Freq. NAE Rel. Freq.

> = .3 0 0.0% 55 5.6% 0 0.0% 0 0.0% 5 0.5%
.2 to < .3 0 0.0% 81 8.2% 19 1.9% 1 0.1% 29 3.0%
.1 to < .2 14 1.4% 186 18.9% 123 12.5% 9 0.9% 155 15.8%
.05 to < .1 104 10.6% 281 28.6% 237 24.1% 112 11.4% 282 28.7%

< .05 864 88.0% 379 38.6% 603 61.4% 860 87.6% 511 52.0%
Total 982 982 982 982 982

REGEXT Rel. Freq. NN Rel. Freq. REGEXTALL Rel. Freq. NNALL Rel. Freq.
> = .3 1 0.1% 0 0.0% 4 0.4% 8 0.8%

.2 to < .3 2 0.2% 4 0.4% 4 0.4% 14 1.4%

.1 to < .2 13 1.3% 22 2.2% 35 3.6% 64 6.5%
.05 to < .1 168 17.1% 141 14.4% 292 29.7% 147 15.0%

< .05 798 81.3% 815 83.0% 647 65.9% 749 76.3%

Total 982 982 982 982

Table 9. Frequency of absolute errors using reduced data set

Performance of Models on Reduced Data Set Top p/3

In addition to the comparisons made with the reduced data set, additional

comparisons are made that include the top p/3 eigenvalues from the reduced data set.  The

rationale for this is to determine which methods performed best on the first one-third

eigenvalues since often when determining the number of principal components, only the

first few eigenvalues are examined.  In order to evaluate the performance, first Tukey

multiple comparisons were performed similar to those performed on the reduced data set. 

Table 10 shows the Tukey test on the MSE values.  Table A7 in the appendix

includes all of the actual values used in the Tukey test.  For N = 500, there is no

significant difference in the models.  The LCHF and ANOSE perform the best for N = 50

and 75.  For these same N values, the NAE and NNALL perform the worst using the

MSE criteria.  The NNALL method is significantly different from the others when N =
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Critical

N Distance Alpha = 0.05 Means joined by a double line are not significantly different

50 0.0146 LCHF ANOSE REGEXT LLF NOSE NN REGEXTALL NAE NNALL

0.0011 0.0016 0.0040 0.0050 0.0075 0.0090 0.0116 0.0185 0.0366

LCHF ANOSE NN REGEXT REGEXTALL NOSE LLF NNALL NAE

75 0.0143 0.0011 0.0022 0.0031 0.0032 0.0075 0.0090 0.0091 0.0144 0.0173

100 0.0059 LCHF ANOSE NN REGEXT LLF REGEXTALL NOSE NNALL NAE

0.0011 0.0019 0.0020 0.0023 0.0028 0.0030 0.0053 0.0066 0.0110

150 0.0034 LCHF NNALL NN ANOSE REGEXT REGEXTALL NOSE LLF NAE

0.0011 0.0017 0.0017 0.0017 0.0018 0.0019 0.0025 0.0038 0.0057

200 0.0027 LCHF NNALL REGEXT NN ANOSE NOSE REGEXTALL LLF NAE

0.0009 0.0010 0.0013 0.0013 0.0016 0.0017 0.0021 0.0032 0.0038

300 0.0013 NN LCHF REGEXT LLF NOSE ANOSE NNALL REGEXTALL NAE

0.0003 0.0004 0.0008 0.0010 0.0010 0.0012 0.0018 0.0022 0.0022

400 0.0011 NN LCHF NOSE REGEXT LLF ANOSE NAE REGEXTALL NNALL

0.0002 0.0004 0.0007 0.0007 0.0007 0.0010 0.0016 0.0018 0.0026

500 0.0026 NN NOSE ANOSE LCHF REGEXT NAE REGEXTALL LLF NNALL

0.0004 0.0005 0.0008 0.0009 0.0011 0.0012 0.0014 0.0021 0.0029

Table 10. Tukey test on MSE - Reduced data set top p/3
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400.  The NN model performs significantly better than the NNALL and REGEXTALL for

N = 300, 400, and 500. 

The MAX DEV is also used to compare the methods.  Table 11 shows the output

from the Tukey test and the appendix contains a complete listing of the MAX DEV values

in table A8.  The Tukey test shows that for N = 500, there is no significant difference

between the models.  The NNALL has significantly higher deviations than the LCHF,

ANOSE, LLF, REGEXT, and NOSE for N < 150.  For values of N = 300 and 400, the

NNALL, REGEXTALL, and NAE all have a significantly higher deviation than the other

methods. 

The final Tukey comparison on the reduced data set using the top p/3 values is

made using the MAPE.  The results are shown in table 12.  For N = 200, there is no

significant difference between the methods.  The LCHF, REGEXT, ANOSE, NOSE, NN,

and LLF are not significantly different.  The NNALL performs worse for the larger values

of N.  The ANOSE performs better than the NOSE until the sample size is greater than

150.  

Performance of Models on Full Data Set

In order to fully evaluate the performance of the new estimators of the mean

eigenvalue, a set of comparisons in this study focuses on the full set of values available to

compare to the predicted eigenvalues.  Because of the restrictions placed on the LCHF

and LLF equations as well as the REGEXT and NN models, they are not included in this
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Critical

N Distance Alpha = 0.05 Means joined by a double line are not significantly different

50 0.1202 LCHF ANOSE LLF NOSE REGEXT NN REGEXTALL NAE NNALL

0.0426 0.0684 0.0860 0.1205 0.1307 0.1946 0.2199 0.2234 0.3588

75 0.1098 LCHF ANOSE LLF NN REGEXT NOSE REGEXTALL NAE NNALL

0.0500 0.0853 0.0905 0.1084 0.1103 0.1323 0.1899 0.2071 0.2511

100 0.0713 LCHF NN LLF REGEXT ANOSE NOSE REGEXTALL NAE NNALL

0.0524 0.0647 0.0671 0.0801 0.0801 0.1021 0.1137 0.1604 0.1758

150 0.0443 LCHF NN ANOSE REGEXT NOSE REGEXTALL LLF NNALL NAE

0.0487 0.0519 0.0620 0.0626 0.0687 0.0690 0.0735 0.0901 0.1115

200 0.0396 NNALL LCHF NN REGEXT ANOSE NOSE REGEXTALL LLF NAE

0.0417 0.0467 0.0496 0.0530 0.0543 0.0557 0.0611 0.0676 0.0874

300 0.0238 LCHF NN REGEXT NOSE LLF ANOSE NNALL REGEXTALL NAE

0.0265 0.0267 0.0400 0.0426 0.0430 0.0439 0.0567 0.0587 0.0660

400 0.0249 NN LCHF NOSE ANOSE LLF REGEXT REGEXTALL NAE NNALL

0.0203 0.0286 0.0345 0.0384 0.0391 0.0464 0.0533 0.0543 0.0682

500 0.0438 NOSE NN ANOSE NAE LCHF REGEXTALL LLF REGEXT NNALL

0.0291 0.0313 0.0341 0.0449 0.0461 0.0465 0.0503 0.0612 0.0727

Table 11. Tukey test on MAX DEV - Reduced data set top p/3
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Critical

N Distance Alpha = 0.05 Means joined by a double line are not significantly different

50 3.1222 LCHF ANOSE REGEXT NOSE NN REGEXTALL LLF NAE NNALL

1.7981 2.0465 2.8768 3.6832 4.0443 4.0671 4.5157 5.9880 7.7079

75 3.1241 LCHF ANOSE REGEXT NN REGEXTALL NOSE LLF NNALL NAE

1.5517 2.2824 2.6734 2.7255 2.8227 3.7891 3.7898 4.9346 5.6317

100 2.0331 LCHF ANOSE NN REGEXTALL REGEXT LLF NOSE NNALL NAE

1.8263 2.3695 2.5254 2.5636 2.7315 3.1068 3.3059 3.5346 5.0458

150 2.0686 LCHF NNALL ANOSE NN NOSE REGEXT REGEXTALL LLF NAE

1.9808 1.9835 2.4782 2.5598 2.5646 2.6880 2.7425 3.5006 4.1385

200 2.0563 LCHF NNALL NOSE REGEXT NN ANOSE REGEXTALL LLF NAE

1.8609 2.0382 2.1572 2.4328 2.4340 2.4618 3.0862 3.1926 3.5877

300 1.4085 NN LCHF NOSE REGEXT LLF ANOSE NAE NNALL REGEXTALL

1.1474 1.3306 1.8456 1.8537 1.9162 2.2842 3.0501 3.1590 3.3467

400 1.4125 NN LCHF REGEXT LLF NOSE ANOSE NAE REGEXTALL NNALL

0.8243 1.0575 1.4999 1.5615 1.7090 2.1804 2.7647 3.0769 3.7349

500 1.9140 NN NOSE LCHF REGEXT ANOSE LLF NAE REGEXTALL NNALL

1.3504 1.5302 1.7202 1.7702 1.9927 2.1263 2.4695 2.7752 3.9558

Table 12. Tukey test on MAPE - Reduced data set top p/3
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analysis.  Therefore, the NOSE, ANOSE, NAE, REGEXTALL, and NNALL models are

included in these comparisons.

This full data set includes sample size values of N = 50, 75, 100, 150, 200, 300,

400, 500, 750, 1000, 1500, and 2000.  The values of p range from 5 to 50 in steps of 5

and also p = 60, 70, and 80.  The one exclusion is that the last two eigenvalues are not

included.  In order to compare these models, R-squares, MAPEs, MADs, and MAX

DEVs are created.  The first look at the full data set includes graphs of  R-squares,

MAPEs, and MADs presented by eigenvalue position.  Tables A10-A12 with the complete

set of values used to create the graphs are included in the appendix.

Figure 22 shows the R-square comparisons.  The NNALL performs the best and

the ANOSE performs second best.  All of the R-squares are above 0.81.  The performance

of the NAE and NOSE estimators are similar.  Their values are above 0.90 for k < 48. 

The MADs are presented in figure 23.  The MAD values are the smallest for the NNALL

procedure.  The ANOSE also performs well but for the larger eigenvalues its performance

begins to decline.  The NAE and REGEXTALL do not perform comparatively well for the

first eigenvalue positions.  The NAE, NOSE, and ANOSE begin to perform worse for the

ending eigenvalue positions with the NAE reaching a MAD of 0.20 for k = 78.  Figure 24

includes the MAPEs for the 5 different models.  The NAE model begins to increase in

error for the last few eigenvalue positions up to a very large 275% for k = 78.  The

remainder of the eigenvalues perform under 25% for most of the eigenvalue positions.  All

of the models perform similarly with prediction errors under 10% error for k < 28.
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In addition to the examination of the previous graphs, Tukey multiple comparison

tests are performed in a similar fashion as those used on the reduced data set.  A

randomized block design has been created for each value of N.  The complete tables of the

MSEs, MAX DEVs, and MAPEs are included in the appendix in tables A13-A15.  The

Tukey multiple comparison output is shown in tables 13,15 and 16.  

The Tukey tests for the MSE in table 13 show that the REGEXTALLN is

significantly higher than the other methods for N =400, 1500, and 2000.  The NNALL is

significantly higher for N=750.  The ANOSE always performs in the lowest group of

MSEs.  For N > 50 and N < 500, the ANOSE and NNALL are not significantly different.

The next Tukey test uses the MAX DEV values and the results are in table 15. 

For N = 300 and 400, there are no significant differences between the methods.  For N =

750, the NNALL is significantly worse than the others.  For N = 1500 and 2000, the

REGEXTALL is significantly worse than the others.  The NNALL performs the best

when N = 200.  The ANOSE and NOSE are significantly better than the others when N =

50 and N = 75.

The MAPE values are used to create a final Tukey test shown in table 16.  In this

analysis, for N = 50, there is no significant difference between the methods.  The ANOSE

is in the smallest group for all values of N.  The REGEXTALL MAPE values were

significantly different from the other 4 methods when the sample size was 400, 500, 1500

and 2000.  For N = 200, the NNALL and ANOSE have significantly smaller MAPE

values.  
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Critical

N Distance Alpha = 0.05 Means joined by a double line are not significantly different

50 0.0153 ANOSE REGEXTALL NNALL NOSE NAE

0.005971 0.017564 0.021676 0.025437 0.032611

75 0.0082 ANOSE REGEXTALL NNALL NOSE NAE

0.002121 0.004034 0.008631 0.012182 0.016167

100 0.0083 ANOSE NNALL REGEXTALL NOSE NAE

0.002967 0.004115 0.004780 0.012796 0.017845

150 0.0040 NNALL ANOSE REGEXTALL NOSE NAE

0.001617 0.001752 0.003250 0.006627 0.008737

200 0.0023 NNALL ANOSE REGEXTALL NOSE NAE

0.001217 0.001508 0.003739 0.004251 0.005261

300 0.0014 ANOSE NNALL NOSE NAE REGEXTALL

0.001207 0.001383 0.002293 0.002867 0.003937

400 0.0010 ANOSE NOSE NNALL NAE REGEXTALL

0.000980 0.001493 0.001582 0.001895 0.003186

500 0.0007 ANOSE NOSE NAE NNALL REGEXTALL

0.000793 0.001086 0.001376 0.001681 0.002274

750 0.0005 ANOSE REGEXTALL NOSE NAE NNALL

0.000535 0.000579 0.000627 0.000803 0.001344

1000 0.0004 ANOSE NOSE REGEXTALL NAE NNALL

0.000407 0.000443 0.000486 0.000562 0.000845

1500 0.0017 NNALL ANOSE NOSE NAE REGEXTALL

0.000274 0.000280 0.000283 0.000350 0.004831

2000 0.0052 NOSE ANOSE NNALL NAE REGEXTALL

0.000206 0.000211 0.000248 0.000256 0.013805

Table 13. Tukey test on MSE - Full data set
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Critical

N Distance Alpha = 0.05 Means joined by a double line are not significantly different

50 0.1051 ANOSE NOSE NAE NNALL REGEXTALL

0.143412 0.242255 0.361820 0.427366 0.437289

75 0.0685 ANOSE NOSE REGEXTALL NAE NNALL

0.107729 0.159913 0.235827 0.236095 0.275254

100 0.0871 ANOSE NOSE NNALL REGEXTALL NAE

0.148733 0.163539 0.184894 0.226723 0.251568

150 0.0541 NNALL ANOSE NOSE REGEXTALL NAE

0.095824 0.112891 0.119179 0.128578 0.171748

200 0.0352 NNALL ANOSE NOSE REGEXTALL NAE

0.052324 0.103990 0.105646 0.106292 0.121133

300 0.0346 NNALL ANOSE NOSE REGEXTALL NAE

0.063788 0.083383 0.085883 0.092826 0.093844

400 0.0265 NOSE ANOSE NAE NNALL REGEXTALL

0.068046 0.072156 0.074350 0.074579 0.080968

500 0.0225 NOSE NAE ANOSE REGEXTALL NNALL

0.056134 0.060904 0.062934 0.068471 0.079211

750 0.0179 REGEXTALL NOSE NAE ANOSE NNALL

0.039496 0.041828 0.046080 0.048630 0.070538

1000 0.0152 NOSE NAE ANOSE NNALL REGEXTALL

0.036160 0.037412 0.041533 0.050878 0.055023

1500 0.0347 NNALL NAE NOSE ANOSE REGEXTALL

0.025670 0.028072 0.031453 0.033123 0.147184

2000 0.0614 NAE NOSE ANOSE NNALL REGEXTALL

0.024048 0.030033 0.030791 0.031123 0.245996

Table 15. Tukey test on MAX DEV - Full data set
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Critical

N Distance Alpha = 0.05 Means joined by a double line are not significantly different

50 24.018 ANOSE NNALL NOSE NAE REGEXTALL

12.30 16.26 22.49 23.98 33.18

75 6.137 REGEXTALL ANOSE NNALL NOSE NAE

4.116623 6.289144 7.894862 13.277493 14.136032

100 11.698 NNALL REGEXTALL ANOSE NOSE NAE

6.993568 7.112562 7.692902 14.272840 22.997519

150 4.077 NNALL ANOSE REGEXTALL NOSE NAE

3.498180 4.660089 5.709528 9.095906 10.466473

200 2.648 NNALL ANOSE REGEXTALL NOSE NAE

2.817899 3.655272 6.484456 6.618448 7.187608

300 1.681 ANOSE NNALL NOSE NAE REGEXTALL

2.868290 3.091306 4.445838 4.949471 6.464438

400 1.294 ANOSE NNALL NOSE NAE REGEXTALL

2.508792 3.300153 3.467655 3.927384 5.603239

500 1.046 ANOSE NOSE NAE NNALL REGEXTALL

2.189717 2.872128 3.285748 3.382375 4.624535

750 0.760 ANOSE REGEXTALL NOSE NAE NNALL

1.777104 2.084359 2.127740 2.479825 3.002709

1000 0.761 ANOSE REGEXTALL NOSE NAE NNALL

1.537325 1.746879 1.756441 2.065960 2.395941

1500 1.187 ANOSE NNALL NOSE NAE REGEXTALL

1.261718 1.340439 1.370936 1.617331 5.483181

2000 2.029 NNALL ANOSE NOSE NAE REGEXTALL

1.090134 1.105651 1.172944 1.386085 9.108421

Table 16. Tukey test on MAPE - Full data set
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NOSE Rel. Freq. ANOSE Rel. Freq. NAE Rel. Freq. REGEXTALL Rel. Freq. NNALL Rel. Freq.
> = .3 38 0.7% 2 0.0% 58 1.1% 49 1.0% 15 0.3%

.2 to < .3 176 3.5% 28 0.5% 198 3.9% 82 1.6% 33 0.6%

.1 to < .2 657 12.9% 171 3.4% 713 14.0% 519 10.2% 135 2.6%
.05 to < .1 1011 19.8% 584 11.5% 1093 21.4% 1509 29.6% 741 14.5%

< .05 3218 63.1% 4315 84.6% 3038 59.6% 2941 57.7% 4176 81.9%
Total 5100 5100 5100 5100 5100

A final comparison is made by looking at a frequency table of the size of the

absolute errors for each of the models using the full data set.  The NNALL and ANOSE

procedures perform similarly with 96.8% and 96.1%, respectively, of their errors being

below 0.1 and 81.9% and 84.6% being below 0.05. The remainder of the procedures have

more than 80% of their errors being less than 0.1.

Table 17. Frequency of absolute errors using full data set

Performance of Models on Full Data Set Top p/3

The analysis of the full data set is further refined to only include the top p/3

eigenvalue positions.  This procedure is similar to the one for the reduced data set.  The

same five models compared using the full data set are used in this analysis: NOSE,

ANOSE, NAE, REGEXTALL, NNALL.  These procedures are analyzed with Tukey

multiple comparison procedures.  The full set of data used for the analysis of MSE, MAX

DEV, and MAPE can be found in tables A16-A18 in the appendix.

Tukey tests are performed on the full data set top p/3 values using the MSE, MAX

DEV, and MAPE values.  For the MSE values, the results are shown in table 20. When N

= 50, the ANOSE performs significantly better than the other methods. For the sample
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Critical

N Distance Alpha = 0.05 Means joined by a double line are not significantly different

50 0.017 ANOSE NOSE REGEXTALL NNALL NAE

0.0084 0.0262 0.0374 0.0381 0.0433

75 0.009 ANOSE REGEXTALL NOSE NNALL NAE

0.0022 0.0097 0.0118 0.0138 0.0213

100 0.007394 ANOSE NNALL REGEXTALL NOSE NAE

0.003685898 0.00647164 0.009528995 0.012293304 0.019642217

150 0.003449 NNALL ANOSE REGEXTALL NOSE NAE

0.0017 0.0022 0.0041 0.0058 0.0098

200 0.001901 NNALL ANOSE REGEXTALL NOSE NAE

0.0013 0.0021 0.0034 0.0036 0.0061

300 0.001 ANOSE NOSE NNALL REGEXTALL NAE

0.0019 0.0020 0.0020 0.0030 0.0034

400 0.001 NOSE ANOSE REGEXTALL NAE NNALL

0.0014 0.0016 0.0023 0.0023 0.0027

500 0.001 NOSE ANOSE REGEXTALL NAE NNALL

0.0011 0.0014 0.0017 0.0017 0.0029

750 0.001 REGEXTALL NOSE ANOSE NAE NNALL

0.0007 0.0007 0.0010 0.0010 0.0023

1000 0.001 REGEXTALL NOSE NAE ANOSE NNALL

0.0004 0.0005 0.0007 0.0008 0.0012

1500 0.000 NNALL NOSE NAE ANOSE REGEXTALL

0.0003 0.0004 0.0005 0.0005 0.0013

2000 0.001 NOSE NAE ANOSE NNALL REGEXTALL

0.0003 0.0003 0.0004 0.0005 0.0032

Table 17. Tukey test on MSE - Full data set top p/3
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sizes N = 500 and 750, the NNALL method performs significantly higher than the others.

For N = 1500 and 2000, the REGEXTALL equation performs significantly worse.  The

ANOSE method is always in the smallest group of MSE values.  

When examining the MAX DEV values, the Tukey test shows several differences. 

The results are in table 18. The ANOSE and NOSE are significantly different from the

others for sample sizes N = 50 and 75.  When N = 1000, there are no significant

differences.  For N = 500 and 750, the NNALL is higher than the others.  For N = 1500

and 2000, the REGEXTALL is significantly higher.  The NNALL performs significantly

better than the others when N = 200.

The final Tukey test includes the MAPE values.  For this selection of top p/3

eigenvalue positions, the output is in table 19.  When N = 50, the NAE and NNALL are

significantly higher than the others.  For N = 75, 100, and 150, the NAE is higher than the

rest of the methods.  When N = 500 and 750, the NNALL performs worse than the other

four techniques.  For sample size N = 2000, the REGEXTALL performs the worst.  The

ANOSE technique is in the smallest group of MAPE values for all sample sizes except N

= 1000.

Performance of Models on Full Data Set Bottom 10%

A final analysis is made using the full data set of values.  This analysis examines the

bottom 10% of the eigenvalue positions.  The rationale is to determine which methods

could produce estimates for the lower eigenvalues which could in turn be used for various

variable subset selection applications.  The NOSE, ANOSE, NAE, REGEXTALL and



100

NNALL techniques are compared.  The Tukey multiple comparison procedures are used. 

The MSE, MAX DEV, and MAPE values are tested.  The full listing of values used for

the Tukey tests can be found in the appendix in tables A19-A21. 

The first examination is of the MSE values for the bottom 10% of eigenvalue

positions in the full data set.  The output is shown in table 20.  For N = 1000, there are no

significant differences.  For N = 1500 and 2000, the REGEXTALL performs significantly

worse than the other MSE values.  The REGEXTALL performs significantly better when

the sample size is 150.  The REGEXTALL is in the lower group for all sample sizes

except N = 1500 and 2000.  

Tukey tests are also performed on the MAX DEV values.  The output is shown in

table 21.  For N = 50 and 75, there is no difference in the techniques.  For N = 200, the

NNALL and REGEXTALL performs better than the others.  The REGEXTALL performs

the worst for the sample sizes of N =1500 and 2000.  The NNALL is always included in

the smallest group.  The REGEXTALL is also in this group except for N = 1500 and

2000.  

The MAPE values are also examined.  Since some of the SIME values are close to

zero for the bottom 10% of the eigenvalues, this skews the results of the MAPE

calculations. Therefore, when the SIME value is less than 0.01, these values are eliminated

from the analysis.  This includes combinations where N = 50 and p = 40, 45 or 50 and N =

100 and p = 70 or 80.  The results of this analysis are shown in table 22.  For N = 50 and

75, there is no difference between the techniques.  For N = 150, the REGEXTALL and

NNALL performs better than the others.  For N = 400, the NNALL performs the best. 
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Critical

N Distance Alpha = 0.05 Means joined by a double line are not significantly different

50 0.024 ANOSE NAE NOSE REGEXTALL NNALL

0.0046 0.0051 0.0070 0.0155 0.0350

75 0.016 REGEXTALL NAE ANOSE NOSE NNALL

0.0045 0.0086 0.0101 0.0123 0.0219

100 0.012 REGEXTALL NAE NNALL ANOSE NOSE

0.0022 0.0107 0.0111 0.0134 0.0148

150 0.009 REGEXTALL NNALL NAE ANOSE NOSE

0.0015 0.0062 0.0116 0.0152 0.0170

200 0.008 NNALL REGEXTALL NAE ANOSE NOSE

0.0031 0.0031 0.0111 0.0143 0.0157

300 0.009 NNALL REGEXTALL NAE NOSE ANOSE

0.0012 0.0049 0.0082 0.0124 0.0151

400 0.005 NNALL REGEXTALL NAE ANOSE NOSE

0.0011 0.0045 0.0058 0.0092 0.0094

500 0.004 NNALL REGEXTALL NAE NOSE ANOSE

0.0012 0.0032 0.0040 0.0071 0.0076

750 0.003 REGEXTALL NNALL NAE NOSE ANOSE

0.0004 0.0015 0.0021 0.0038 0.0044

1000 0.002 NNALL NAE NOSE REGEXTALL ANOSE

0.0013 0.0014 0.0026 0.0027 0.0030

1500 0.010 NNALL NAE NOSE ANOSE REGEXTALL

0.0005 0.0008 0.0015 0.0017 0.0268

2000 0.029 NNALL NAE NOSE ANOSE REGEXTALL

0.0001 0.0005 0.0010 0.0012 0.0750

Table 20. Tukey test on MSE - Full data set bottom 10%
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Critical

N Distance Alpha = 0.05 Means joined by a double line are not significantly different

50 0.082 ANOSE NAE NOSE REGEXTALL NNALL

0.0961 0.0978 0.1072 0.1383 0.1640

75 0.084 REGEXTALL NAE ANOSE NNALL NOSE

0.0853 0.1264 0.1387 0.1395 0.1501

100 0.076 REGEXTALL NNALL NAE ANOSE NOSE

0.0559 0.1028 0.1455 0.1602 0.1640

150 0.075 REGEXTALL NNALL NAE ANOSE NOSE

0.0512 0.0810 0.1529 0.1851 0.1859

200 0.072 NNALL REGEXTALL NAE ANOSE NOSE

0.0556 0.0631 0.1536 0.1810 0.1850

300 0.084 NNALL REGEXTALL NAE NOSE ANOSE

0.0328 0.0760 0.1373 0.1744 0.1914

400 0.065 NNALL REGEXTALL NAE ANOSE NOSE

0.0365 0.0720 0.1226 0.1596 0.1602

500 0.060 NNALL REGEXTALL NAE ANOSE NOSE

0.0393 0.0613 0.1033 0.1421 0.1426

750 0.045 REGEXTALL NNALL NAE NOSE ANOSE

0.0257 0.0415 0.0760 0.1072 0.1119

1000 0.039 NNALL NAE REGEXTALL NOSE ANOSE

0.0395 0.0618 0.0668 0.0882 0.0927

1500 0.042 NNALL NAE NOSE ANOSE REGEXTALL

0.0242 0.0462 0.0673 0.0718 0.1770

2000 0.068 NNALL NAE NOSE ANOSE REGEXTALL

0.0106 0.0384 0.0566 0.0603 0.2854

Table 21. Tukey test on MAX DEV - Full data set bottom 10%
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For N = 1500 and 2000, the REGEXTALL performs the worst.  The NNALL is in the

smallest group for all sample sizes except N = 750.  The next section is about the

performance of the predictors of the 95th percentile eigenvalues.

The MAPE values are also examined.  Since some of the SIME values are close to

zero for the bottom 10% of the eigenvalues, this skews the results of the MAPE

calculations. Therefore, when the SIME value is less than 0.01, these values are eliminated

from the analysis.  This includes combinations where N = 50 and p = 40, 45 or 50 and N =

100 and p = 70 or 80.  The results of this analysis are shown in table 22.  For N = 50 and

75, there is no difference between the techniques.  For N = 150, the REGEXTALL and

NNALL performs better than the others.  For N = 400, the NNALL performs the best. 

For N = 1500 and 2000, the REGEXTALL performs the worst.  The NNALL is in the

smallest group for all sample sizes except N = 750.  The next section is about the

performance of the predictors of the 95th percentile eigenvalues.

Performance of the Previous and New 95th Percentile Eigenvalue Predictors

The performance of the previous LCHF95 regression equation, the REGEXT95

regression equation, and NN95 neural network are assessed by several measures including

R-squares, MAPEs, MADs, and MSEs, and MAX DEVs.  Tukey multiple comparisons

are also made to further enhance the conclusions.  The analysis begins with graphs of the

R-Squares, MADs, and MAPEs for the three different techniques.  The full listing of

values used to create the graphs are in the appendix in tables A22-A24.



104

Critical

N Distance Alpha = 0.05 Means joined by a double line are not significantly different

50 37.974 ANOSE NAE NOSE NNALL REGEXTALL

41.23 43.89 49.40 70.25 72.71

75 23.191 REGEXTALL NNALL NAE ANOSE NOSE

31.75 38.94 45.61 47.82 51.52

100 21.051 REGEXTALL NNALL NAE ANOSE NOSE

11.34 24.14 40.84 43.45 46.26

150 16.609 REGEXTALL NNALL NAE ANOSE NOSE

10.21 16.78 34.61 36.72 39.77

200 14.259 NNALL REGEXTALL NAE ANOSE NOSE

7.66 11.71 25.04 27.45 29.47

300 9.176 NNALL REGEXTALL NAE NOSE ANOSE

3.97 12.99 15.10 18.62 19.76

400 5.934 NNALL NAE REGEXTALL NOSE ANOSE

4.49 10.42 11.14 13.19 13.70

500 4.304 NNALL NAE REGEXTALL NOSE ANOSE

5.05 7.75 8.62 10.07 11.06

750 2.717 REGEXTALL NAE NNALL NOSE ANOSE

2.38 4.86 5.32 6.29 7.13

1000 2.526 NAE NOSE NNALL ANOSE REGEXTALL

3.67 4.66 4.76 5.33 6.43

1500 4.940 NAE NNALL NOSE ANOSE REGEXTALL

2.53 2.59 3.18 3.55 19.51

2000 8.554 NNALL NAE NOSE ANOSE REGEXTALL

0.92 2.04 2.53 2.78 31.11

Table 22. Tukey Test on MAPE - Full data set bottom 10%
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Figure 25 shows the R-squares for the techniques used to predict the 95th

percentile eigenvalues.  All of the techniques have R-squares above 0.90.  The

REGEXT95 and LCHF95 regression approaches perform similarly across all eigenvalue

positions.  The NN95 neural network procedure performs better than the regression

procedures in predicting the final eigenvalue positions.  The MADs are compared in figure

26.  For most of the eigenvalue positions, the three prediction methods have similar

MADs.  The REGEXT95 did not perform as well for the first eigenvalue.  The NN95

performs slightly worse for the eigenvalue positions 8 to 16.  The MAPE values are also

considered and the comparison graph is shown in figure 27.    The REGEXT95 again

performs worse for the first eigenvalue, but after the first it has values similar to the

LCHF95.  Once k > 19, the NN95 procedure performed better than both regression

equations.  

Tukey multiple comparison procedures are used to evaluate the MSE, MAX DEV,

and MAPE as is done in the comparisons for the mean eigenvalues.  The complete set of

values used to calculate the tests are included in the appendix in tables A25-A26.  Table

23 shows the Tukey test for the MSE values. For N = 100, 125, 150, 175, 200, 400, and

500, there is no significant difference between the three methods.  The NN95 procedure

does perform worse than the LCHF95 for N = 50, 75, and 300.  In table 24 the analysis of

the MAX DEV values is presented.  For N = 100, 125, 150, 175, 200, 300, and 400, there

is no significant difference between the methods.  For N = 50 and 75, the LCHF95

procedure performs better than the other methods.  For N = 500, the NN95 procedure

performs significantly better than the REGEXT95 method.
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Figure 25. R-Squares for 95th percentile

Figure 26. MADs for 95th percentile

Figure 27. MAPEs for 95th percentile
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Critical

N Distance Alpha = 0.05     Means joined by a double line are not significantly different

50 0.006 LCHF95 REGEXT95 NN95

0.0042 0.0100 0.0118

75 0.003 LCHF95 REGEXT95 NN95

0.0007 0.0032 0.0046

100 0.003 LCHF95 REGEXT95 NN95

0.0007 0.0022 0.0031

125 0.002 LCHF95 REGEXT95 NN95

0.0009 0.0020 0.0024

150 0.002 LCHF95 REGEXT95 NN95

0.0018 0.0023 0.0024

175 0.001 LCHF95 REGEXT95 NN95

0.0008 0.0014 0.0017

200 0.001 LCHF95 REGEXT95 NN95

0.0007 0.0011 0.0014

300 0.001 LCHF95 REGEXT95 NN95

0.0002 0.0006 0.0010

400 0.001 LCHF95 REGEXT95 NN95

0.0006 0.0008 0.0009

500 0.001 NN95 LCHF95 REGEXT95

0.0012 0.0018 0.0019

Table 23. Tukey test on MSE - 95th percentile
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Critical

N Distance Alpha = 0.05     Means joined by a double line are not significantly different

50 0.110 LCHF95 NN95 REGEXT95

0.1329 0.3136 0.3339

75 0.088 LCHF95 NN95 REGEXT95

0.0550 0.1585 0.1761

100 0.069 LCHF95 NN95 REGEXT95

0.0535 0.0991 0.1202

125 0.056 LCHF95 NN95 REGEXT95

0.0571 0.0665 0.0966

150 0.033 NN95 LCHF95 REGEXT95

0.0761 0.0864 0.0884

175 0.038 LCHF95 NN95 REGEXT95

0.0552 0.0590 0.0752

200 0.031 LCHF95 NN95 REGEXT95

0.0498 0.0542 0.0661

300 0.027 LCHF95 NN95 REGEXT95

0.0313 0.0571 0.0582

400 0.018 LCHF95 NN95 REGEXT95

0.0484 0.0501 0.0661

500 0.037 NN95 LCHF95 REGEXT95

0.0536 0.0782 0.0918

Table 24. Tukey test on MAX DEV - 95th percentile
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The final comparison is made with the MAPE values.  The output is shown in table

25.  For N = 50, 100, 125, 150, 175, 400, and 500, there is no significant difference

between the methods.  For N = 75 and 200, the LCHF95 procedure performs significantly

better than the NN95 procedure.  For N = 300, the NN95 procedure performs worse than

the other two procedures.  For many of the sample sizes, the three different measures of

error are not significantly different across the three prediction techniques. 

Summary of Performance of Eigenvalue Prediction Methods

The first part of this chapter presents 7 new methods for predicting mean

eigenvalues and 2 new methods for predicting 95th percentile eigenvalues.   These methods

have been motivated by previous methods and by the literature on the distribution of the

mean eigenvalues.  The methods have been compared based on their R-squares, MADs,

MAPEs, MSEs, MAX DEVs, and frequencies of errors.  The second part of this chapter

presents the analysis and results from the simulation of the density of p-values.

Estimating the Density of P-values

The problem of the type I error in multiple tests or multiple steps in various

statistical procedures has caused the examination of ways to control this error.  The

investigation of the distribution of p-values can be useful in controlling the type I error. 

Approaches by Schweder and Spjotvoll (1982) and Parker and Rothenberg (1988) have

been explained in chapters 2 and 3.  In the next section, these approaches are introduced
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Critical

N Distance Alpha = 0.05     Means joined by a double line are not significantly different

50 4.608 LCHF95 REGEXT95 NN95

5.36 5.79 6.52

75 1.838 LCHF95 REGEXT95 NN95

1.50 2.68 4.25

100 2.205 LCHF95 REGEXT95 NN95

2.10 3.10 3.61

125 2.018 LCHF95 REGEXT95 NN95

2.54 3.32 3.48

150 1.646 LCHF95 REGEXT95 NN95

2.93 3.46 3.61

175 1.272 LCHF95 REGEXT95 NN95

2.34 2.93 3.21

200 0.929 LCHF95 REGEXT95 NN95

2.11 2.63 3.06

300 0.970 LCHF95 REGEXT95 NN95

1.00 1.49 2.53

400 1.164 LCHF95 REGEXT95 NN95

1.80 1.89 2.18

500 1.501 NN95 REGEXT95 LCHF95

2.35 3.06 3.18

Table 25. Tukey test on MAPE - 95th percentile
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again and the simulation study to test the Parker and Rothenberg (1988) procedure is

explained. In addition, initial estimates for the proportions in the case of a mixture of 2

densities are presented. In the following two sections, the simulation study and the results

are presented.  

Approaches for Analyzing P-values

The Schweder and Spjotvoll (1982) graphical approach to obtain an estimate of

the number of statistical tests corresponding to true null hypothesis is an informal

approach.  Parker and Rothenberg (1988) expanded on the work by Schweder and

Spjotvoll (1982) to make it less subjective.  They propose using a mixture of betas to

model the density of p-values.  A simulation was not done to test their approach. 

Therefore, this study includes a simulation as well as a procedure for finding initial

estimates for the case of a mixture of 2 densities for the density function of the p-values. 

The simulation study consists of data sets with p-values generated by beta

distributions and with data sets consisting of p-values generated by t and noncentral t

distributions. The data sets from the central and noncentral t distributions would

correspond to p-values from statistical tests. The distribution of these p-values may only

have an approximate beta distribution.  Furthermore, this study proposes initial estimates

for the case of a mixture of 2 densities for the density function of the p-values.  An

advantage to having these initial estimates is that they can be used as starting values for

the parameters in a numerical optimization approach to obtaining maximum likelihood

estimates of the density function.
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The mixture of density functions to model the distribution of p-values was

presented in chapter 3.  For problems associated with estimating the parameters of a

mixture model, see McLachlan and Basford (1988). These authors state that convergence

of the estimates of a mixture density function may be very slow with algorithms such as

the EM, and that poor choices of the initial estimates may exacerbate this situation. They

also state that the problem of testing for the number of components in the mixture has

been a very difficult problem and has not been completely resolved.  The next section

outlines the procedure for estimating the parameters.

Estimates of the Parameters

A procedure is presented next to obtain initial estimates of the proportions and

beta parameters. To first obtain an estimate of the proportion of true null hypotheses, a

sequence of estimates of Np are used.  These estimates are obtained using a fraction with

the numerator being the cumulative number of tests corresponding to (1 - p-value)s that

are less than or equal to the specified value and the denominator being the (1 - p-value). 

This sequence of estimates of Np is continually obtained until two of the estimates are

higher than three standard deviations of the previous (1 - p-value)’s.  Then p0 is estimated

by Np/N where N is the total number of hypotheses. Since this paper only considers the

two density case, an estimate of p1 is simply 1 - p0.    Next the estimates of the beta

parameters r and s are obtained by using matching moments. That is, the following

formulas are used.
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r̂ ' x̄ [ x̄ ( 1 & x̄ ) / s 2 ] & 1
ŝ ' (1 & x̄) [ x̄ ( 1 & x̄ ) / s 2 ] & 1

where the sample mean is the estimate of the average of the p-values corresponding to

false null hypotheses and the s2 is the sample variance of these p-values. To get these

sample means and sample variances, first estimates are obtained of the sample mean and

variance of the p-values up to the point where Np is estimated. Then the mean and

variance of all of the p-values are obtained. From these estimates, the estimates of the

sample mean and variance of the p-values corresponding to false null hypotheses can be

obtained from formulas for the mean and variance of a mixture model with two densities.

In mixture theory, there are issues that present difficulties to practitioners wishing

to correctly interpret these models in the context of an application.  First, there is the

problem of knowing how many distributions should be in a mixture model.  Second, there

is the possibility of obtaining distributions within the mixture model that may in fact be

approximately represented by a mixture of distributions already used in a mixture model. 

The initial estimates may be useful in protecting against this problem of identifiability. 

Since it is possible for a beta distribution to in fact be mixture of betas, there is a potential

problem with identifying and interpreting the correct distributions that can explain the

distribution of the data (Rao 1992, Titterington, Smith, and Makov 1985). To understand

how a beta distribution can be represented by other betas, the following example is

presented. A beta distribution with r and s assumed to be integers can be defined as

follows: 
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B(r, s)(x) = where '(r)=(r-1)! if r is an integer
Γ

Γ Γ
( )

( ) ( )
(

r s

r s
x x)r -1 s-1+

−1

Now a mixture of betas (r/(r+s))B(r+1, s) + (s/(r+s))B(r, s+1) can be written as

(
(

(
(

(
r / (r + s))

(r + s)!x x)

r!(s-1)!
s / (r +s))

(r + s)!x x)

r -1)!s!

r s-1 r-1 s1 1−
+

−

with the coefficients r/(r+s) and s/(r+s) representing the probability of the associated

distribution occurring. This mixture simplifies to

(r + s)!x x)

(r -1)!(s-1)!
= B(r,s)(x)

r -1 s-1(1−

If the estimate obtained from the optimization program for determining estimates of the

beta parameters is much different from the initial estimates proposed in this study, then the

obtained beta distributions should be further examined to assess the uniqueness of the beta

distributions.  A discussion of the simulation study is presented next.

Simulation Study

In this study, (1 - p-values) are generated by a beta distribution with an r = 2 and

s= 6 to represent p-values corresponding to false null hypotheses. In addition, p-values are

generated by a central t distribution used to test the zero-mean null hypothesis with 25

degrees of freedom and from the noncentral t distribution with the same number of

degrees of freedom and noncentrality parameter equal to 1 to represent p-values from a

false null hypothesis. A uniform distribution is always used to generate p-values
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corresponding to true null hypotheses. Six different combinations of sample size are used

for the number of true and false null hypotheses and these are as follows:

Sample Size Notation True Null Hypothesis
Sample Size

False Null Hypothesis
Sample Size

200_200 200 200

300_100 300 100

500_500 500 500

750_250 750 250

1000_1000 1000 1000

1500_500 1500 500

All estimates of the parameters of the mixture are obtained from 50 replications of the

experimental situation. If parameter estimates are not reasonable, possibly due to

convergence difficulty, these estimates are deleted and are listed in the appendix in table

A28. The nonlinear optimization procedure in SAS is used to find the maximum likelihood

estimates of the parameters.

Results of the Simulations

To understand how accurate the estimates of the mixture model are for the

distribution of the p-values, the mean and standard deviation of the estimates, the MSE

and MAD estimates (for estimating the deviation from the true parameter values), and

paired t tests on initial and final parameter estimates are presented. The notation “init” ,

“final”, and “real” are used with the parameters in the tables in this section to denote the

initial estimates of the parameters using the technique of estimation outlined, the estimates
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obtained after a nonlinear optimizing program is used in SAS (proc nlp), and the estimates

that the parameters have in the true model.

Table 26 shows the estimates of the relative proportions of true and false null

hypotheses and the estimates of the parameters of the B(r1, s1) density function for the

case where the (1 - p-values) are generated from a beta distribution with r = 2 and s = 6.

Both the initial estimates and the final estimates are presented along with their standard

deviations. Several observations have been deleted because the data produced estimates

for one or more parameters that were clearly out of line with reasonable estimates for the

parameters. A researcher would probably not use these values and thus they are eliminated

from the means. A list of these deleted values for each of the combinations of sample sizes

is presented in the appendix in table A28.  

Table 26. Means and standard deviations - B(2,6)

Sample Size p0init p0final p1init p1final r1init r1final s1init s1final
200_200 Mean 0.50 0.50 0.50 0.50 2.35 2.10 7.35 6.41

StDev 0.06 0.05 0.06 0.05 0.88 0.36 3.37 1.44

300_100 Mean 0.72 0.74 0.28 0.26 1.94 2.44 5.21 7.70
StDev 0.10 0.08 0.10 0.08 1.47 0.88 4.88 3.96

500_500 Mean 0.51 0.50 0.49 0.50 2.37 2.06 7.51 6.22
StDev 0.05 0.03 0.05 0.03 0.86 0.21 3.58 0.81

750_250 Mean 0.73 0.75 0.27 0.25 1.99 2.06 5.92 6.28
StDev 0.07 0.04 0.07 0.04 1.25 0.44 5.10 1.80

1000_1000 Mean 0.50 0.50 0.50 0.50 2.14 2.06 6.52 6.21
StDev 0.04 0.02 0.04 0.02 0.54 0.18 2.13 0.63

1500_500 Mean 0.74 0.75 0.26 0.25 2.40 2.16 7.46 6.54
StDev 0.05 0.03 0.05 0.03 1.23 0.36 4.95 1.36
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The estimates for p0 and p1 should be either .5 or .75 depending on whether the

sample combination has equal numbers of true and false null hypotheses or unequal

numbers. For the combination of 300_100, the estimates are off the most. This same

combination also produced the estimates of r and s of the beta density function that are off

the most from the values of r=2 and s=6. For all estimates, the standard deviation of the

final estimates are smaller than that of the initial estimates.

To gain further insight into the results in table 26, table 27 illustrates the MAD and

MSE of the parameter estimates with respect to the true values of these estimates. As

expected, the large sample size combination of 1000_1000 showed the smallest values and

thus illustrates that for this large of a sample size the estimates (particularly the final

estimates) are very accurate. 

Table 27. MAD and MSE - B(2,6)

Sample Size p0init -
realp0

p0final -
realp0

r1init -
realr1

r1final -
realr1

s1init -
reals1

s1final -
reals1

200_200 MAD 0.05 0.04 0.75 0.28 2.86 1.01
MSE 0.00 0.00 0.88 0.14 12.98 2.20

300_100 MAD 0.08 0.06 1.13 0.74 4.11 3.07
MSE 0.01 0.01 2.11 0.94 23.97 18.25

500_500 MAD 0.04 0.03 0.62 0.16 2.50 0.54
MSE 0.00 0.00 0.86 0.04 14.83 0.69

750_250 MAD 0.06 0.03 0.94 0.34 3.57 1.34
MSE 0.01 0.00 1.54 0.19 25.45 3.26

1000_1000 MAD 0.03 0.02 0.43 0.13 1.60 0.46
MSE 0.00 0.00 0.31 0.03 4.72 0.43

1500_500 MAD 0.04 0.02 0.95 0.30 3.84 1.12
MSE 0.00 0.00 1.63 0.15 26.14 2.09
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For all estimates, the standard deviation of the final estimates are smaller than that

of the initial estimates.  The MSE and MAD for the initial estimates of the s parameter of

the beta density function are much larger than that of the final estimates. The MSEs for

the estimates of the relative proportions of the true and null hypotheses are rather small,

thus indicating that either the initial or final estimates are fairly accurate. 

Table 28 illustrates the results of the paired t test for testing whether the initial and

final estimates are significantly different. Significant differences appear the most in the

small sample combinations. For the sample size combination of 300_100, 200_200, and

500_500 all of the initial estimates for r and s for the beta density function are significantly

different from that of the final estimates.  At the 0.05 significance level, only for the

sample size combination of 750_250 is there a significant difference between the initial and

final estimates of the proportion of true and null hypotheses. In general, the results in this

table illustrate that in many cases the initial estimates may be almost as good as using the

final estimates, particularly for the estimates of the proportions. 

Tables 29, 30, and 31 give insight into the accuracy of the estimates of the mixture

density function with data (possibly from a real-world situation) where multiple t tests are

performed independently. These three tables are similar to tables 26, 27, and 28 except

that the p-values are generated from a central and noncentral t distribution. Using just the

data from the noncentral t distribution, maximum likelihood estimates for the r and s

parameters of the beta distribution are found to be 0.66 and 2.45, respectively. These

parameters are taken to be the realr1 and reals1 values used in table 30. 
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Table 28. Paired t-tests between initial and final estimates

Sample Size p0final vs. p0init r1final vs r1init s1final vs. s1init
200 Correlation 0.60 0.44 0.32

t Stat -0.18 -2.23 -2.06
two-tail p-value 0.86 0.03 0.04

300_100 Correlation 0.64 0.08 -0.08
t Stat 1.82 2.09 2.65
two-tail p-value 0.08 0.04 0.01

500 Correlation 0.73 0.47 0.55
t Stat -0.69 -2.80 -2.78
two-tail p-value 0.49 0.01 0.01

750_250 Correlation 0.56 0.27 0.27
t Stat 2.03 0.44 0.50
two-tail p-value 0.05 0.66 0.62

1000 Correlation 0.53 0.46 0.38
t Stat 1.02 -1.12 -1.09
two-tail p-value 0.31 0.27 0.28

1500_500 Correlation 0.52 -0.01 -0.06
t Stat 1.52 -1.29 -1.23
two-tail p-value 0.14 0.20 0.22

Table 29. Means and standard deviations - Central and noncentral t distributions

Sample Size p0init p0final p1init p1final r1init r1final s1init s1final
200_200 Mean 0.59 0.58 0.41 0.42 0.73 0.72 3.32 3.44

Stdev 0.07 0.12 0.07 0.12 0.19 0.07 1.68 1.32

300_100 Mean 0.76 0.74 0.24 0.26 0.79 0.84 2.95 5.70
Stdev 0.09 0.18 0.09 0.18 0.37 0.26 2.46 6.33

500_500 Mean 0.57 0.58 0.43 0.42 0.66 0.69 2.68 3.21
Stdev 0.06 0.09 0.06 0.09 0.14 0.06 1.07 1.28

750_250 Mean 0.77 0.69 0.23 0.31 0.77 0.72 3.00 3.32
Stdev 0.07 0.21 0.07 0.21 0.29 0.07 2.04 2.39

1000_1000 Mean 0.55 0.57 0.45 0.43 0.64 0.68 2.44 2.84
Stdev 0.05 0.05 0.05 0.05 0.08 0.03 0.67 0.55

1500_500 Mean 0.77 0.71 0.23 0.29 0.76 0.71 3.39 3.11
Stdev 0.06 0.22 0.06 0.22 0.33 0.06 3.02 1.71
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In contrast to table 26, table 29 shows that the initial estimates of the proportions

of true and false null hypotheses generally have smaller standard deviations than the final

estimates. Also, the standard deviations for the estimates of the r and s parameters appear

to be somewhat closer than they were in table 26. For the sample size combination 300_

100 the estimates of r and s for the final estimates are the farthest off, similar to the case

with p-values generated from the beta distribution. For the sample size combination

1000_1000, the estimates of the parameters are the closest to the real values, similar to

that in table 26.   

From table 30, the MAD and MSE for the initial estimates of the proportions

appear to be somewhat more accurate than that of the final estimates of the proportions.

In addition, the initial estimates of the r and s parameters appear to be competitive with

the final estimates of these parameters. In table 31, at the 0.05 significance level, the

sample size combinations of 1000_1000, 1500_500, and 750_250 revealed a significant

difference between the initial and final estimates of the proportions of true and false null

hypotheses. This is important because the initial estimates appear to be giving somewhat

more accurate estimates than the final estimates. Significant differences in the initial and

final estimates for either the r or s estimates are found in three of the sample size

combinations: 1000_1000, 500_500, and 300_100. 



121

Table 30. MAD and MSE - Central and noncentral t distribution

Sample Size p0init -
realp0

p0final -
realp0

r1init -
realr1

r1final -
realr1

s1init -
reals1

s1final -
reals1

200_200 MAD 0.09 0.12 1.27 1.28 2.93 2.58
MSE 0.01 0.02 1.66 1.64 9.94 8.28

300_100 MAD 0.08 0.14 1.21 1.16 3.68 4.67
MSE 0.01 0.03 1.59 1.42 15.27 39.25

500_500 MAD 0.08 0.10 1.34 1.31 3.38 2.92
MSE 0.01 0.01 1.82 1.71 12.12 9.39

750_250 MAD 0.06 0.15 1.23 1.28 3.45 3.25
MSE 0.01 0.05 1.60 1.65 13.04 12.76

1000_1000 MAD 0.06 0.08 1.36 1.32 3.56 3.16
MSE 0.00 0.01 1.86 1.75 13.13 10.31

1500_500 MAD 0.05 0.13 1.24 1.29 3.69 3.12
MSE 0.00 0.05 1.64 1.67 15.75 11.18

Table 31. Paired t-tests between initial and final estimates

Sample Size p0final vs. p0init r1final vs r1init s1final vs. s1init
200_200 Correlation 0.52 0.12 0.17

t Stat -0.40 -0.21 0.39
P(T<=t) two-tail 0.69 0.84 0.70

300_100 Correlation 0.64 0.08 -0.08
t Stat 1.82 2.09 2.65
P(T<=t) two-tail 0.18 0.51 0.00

500_500 Correlation 0.82 -0.06 0.05
t Stat 1.73 1.71 2.22
P(T<=t) two-tail 0.09 0.09 0.03

750_250 Correlation 0.65 -0.20 -0.05
t Stat -3.08 -1.07 0.67
P(T<=t) two-tail 0.00 0.29 0.51

1000_1000 Correlation 0.56 0.11 0.10
t Stat 3.39 16.21 3.39
P(T<=t) two-tail 0.00 0.00 0.00

1500_500 Correlation 0.74 -0.07 0.33
t Stat -2.44 -1.08 -0.64
P(T<=t) two-tail 0.02 0.29 0.52
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Summary of P-value Density Estimation 

The results of the simulation study are presented to assess the applicability of the 

suggested mixture of densities.  Overall, the results from these tables show that for p-

values coming from central and noncentral t distributions, the initial estimates may in many

cases be viable alternatives to estimating the parameters of the mixture model.

Real World Application

A set of data collected from Lake Texoma has been used to apply these procedures

to real world data.   The data set contains measures of the chlorophyll-a level and

hyperspectral data on the measurement of energy coming out of the water. These samples

have been collected manually from a boat.  It is hypothesized that there is a relationship

between the reflectance of electromagnetic radiation and the level of chlorophyll-a.  If this

can be proven true then, as an alternative to manual sampling, information technology

could be used to measure the electromagnetic radiation.   Eventually, the plan is to pay for

commercial satellites to take these measurements and to use these measurements to

predict the chlorophyll-a levels.  With satellites, monitoring of the water could be done

more frequently and at more locations throughout the lake.  Advancements in satellite

imaging by Kodak are allowing multispectral imagery to expand beyond the traditional

three bands (blue, green, and red) to include a fourth band (near-infrared) on a single

integrated array (Jurgens 1999). The four bands are used in this analysis.
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Lake Texoma’s water consists of numerous particles, wildlife, and algae. Each of

these substances reflect energy from wavelengths (light visible to the eye as well as

infrared light)  to a certain degree. Because of the turbidity of the water,  the amount of

energy reflected by wavelengths from algae is difficult to measure.  A well known formula

for the energy of wavelengths is the following:

Etotal = Ea + Et + Er

where Etotal is the total amount of energy of the light or wavelengths, Ea is the energy

absorbed by the algae, Et is the amount of energy transmitted by the algae, and Er is the

amount reflected.

According to Raven and Johnson (1996), the amount of energy transmitted by

algae is concentrated in the blue and red bandwidths. This energy transmitted peaks at

approximately 415 nm and the a range of 400-440 for blue light.  Two other definitions

that will be discussed in the analysis include the red edge which is the side of the red

wavelength bandwidth closest to the infrared wavelengths and the yellow edge which is

the side of the red wavelength bandwidth closest the green spectrum.  The green part of

the spectrum may not be as useful as the other colors because plants do not transmit

green.

There are political as well as economic ramifications to the study of this

relationship.  Therefore, the study of this data will affect the future of the lake.  The

current state of the lake is recreational use.  But there is a federal plan in place to remove

salt from the Red River which feeds into Lake Texoma in order to provide water to users

further downstream.  The reduction of chloride will affect the chlorophyll-a levels and
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could affect life in the water.  Opponents to the plan point out that potential damage could

occur to Lake Texoma’s multi-million-dollar striped bass fishery (Hodge 1996).

Therefore, careful monitoring of the level of chlorophyll-a is warranted.  There are two

issues that are addressed using this data.  First, can a relationship be established between

the energy reflectance and chlorophyll-a?  Second, are all of the stations and date/time

locations useful in the analysis of the chlorophyll-a data?

In this study there are 2 large data sets investigated, one for the 0.5 and one for the

1 meter data, to try to find any relationship between the chlorophyll-a and the reflectance

measurements.  The data have been collected at 5 different sampling stations and on

different days across a 10 month time period.  The data were also collected at 0.5 and 1

meter depths and the chlorophyll-a data were taken in 10 replicates.   There were 752

wavelengths ranging from 400.04 to 799.97.  

The second derivative of the reflectance data is taken to transform the following

the work of Atkinson, Acevedo, Dickson, and Rolbecki (1998) who found a significant

correlation between chlorophyll-a and the second derivative of the reflectance data.  The

wavelengths can be broken into the four colors: blue (400-499 nanometers (nm)), green

(500 - 599 nm), red (600 - 699 nm), and infrared (700 - 799 nm).  The approach in this

study is to create all possible tuples from values in each of the four colors.  Within the 752

wavelength values collected, successive values such as 400.04 and 400.62 result in similar

values.  In order to reduce the number of tuples, every 18th wavelength was selected.  This

results in 42 wavelength values.  In addition, there are 32 station/time periods for the 0.5

meter data and 38 for the 1 meter data.  The difference in these is accounted for by the
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removal of data for particular dates, depths, and/or wavelengths for which there are

inaccurate measurements due to cloud cover or other anomalies. The chlorophyll-a data

has been matched to each date/station/wavelength combination and an average of the 10

chlorophyll-a replicates is used in the analysis.

These tuples are each used to regress chlorophyll-a on the second derivative of the

reflectance data.  There were 10,890 regressions for the 0.5 meter depth and 12,100

regressions for the 1 meter depth. The highest R-squares reached 0.50 for the 0.5 meter

data and 0.41 for the 1 meter data.  The p-values from these tests have been fitted with the

mixture approach presented in this study.  In this application, 3 betas plus the uniform are

used in the mixture.  There were 5,011 tests for the 0.5 meter data and 4,802 tests for the

1 meter data in the smallest p-value group which could correspond to those tests that

show the strongest relationship between the energy reflectance and chlorophyll-a.  This

smallest p-value group has p-values ranging from 0.0006 to 0.282 for the 0.5 meter data

and 0.001 to 0.059 for the 1 meter data.  

The group considered to come from the null hypothesis contained 2,916 of the

tuples for the 0.5 meter data and 525 for the 1 meter data.  This null group had p-values

ranging from 0.282 to 0.374 and 0.707 to 0.999 for the 0.5 meter data and 0.511 to 0.986

for the 1 meter data.  The skip in the range of p-values in the 0.5 meter data occurs

because beta distributions essentially cancel each other out and resemble the uniform

distribution for 0.707 to 0.999.  A summary of the number and proportion in each group is

shown in table 32. In order to ascertain information from these results, these tuples have
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been examined until several combinations are identified as belonging to each group.  These

groups are labeled the"smallest p-value" group and the "null” group.  

Table 32. Number and proportion in groups

0.5 Meter 1 Meter

Number of
Observations

Proportion Number of
Observations

Proportion

Null Group 2916 27% 525 4%

Smallest P-Value Group 5011 46% 4802 40%

Table 33 shows the main combinations that have been identified in each group for

the 0.5 meter and 1 meter data.  For the 0.5 meter data, there are 5 combinations

identified in the smallest p-value and 3 in the null group.  The 1 meter data have 6

combinations in the smallest p-value group and 2 in the null group.  These combinations

are created by selecting a wavelength from each of the colors in a row.  For example,

combination 1 for the 0.5 meter smallest p-value group indicates that all tuples containing

the infrared wavelength 734.90 are in this group.  Combination 2 in the smallest p-value

group for the 1 meter data indicates that all combinations that contain green wavelengths

of either 585.21 or 594.87 are in this group.  

In addition, frequencies of the occurrences of each wavelength in the analysis have

been examined for the null and smallest p-value groups in each data set.  Based on Table

33 and the frequency analysis, some conclusions are drawn. The 0.5 meter data will be

examined first.  This data could be more accurate because the extra 0.5 meter depth for

the 1 meter data may be shifting the graph of the amount of reflected light due to

reflectance from other substances in the water at the 1 meter depth.  In the smallest p-
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Table 33. Combinations in null and smallest p-value groups

0.5 Meter 1 Meter

Combination Blue Green Red Infrared Blue Green Red Infrared

Smallest 
P-Value
Group

1 All All All 735 All All 643 All

2 435
486

All 643
652
661

All All 585 
595

All All

3 All All 605 762
780

All All 652
661

726
771

4 All All 698 735 404 All All 717

5 All 546
595

All 735
761
780

496 All All 735

6 All All 671 726

Null
Group

1 404
415
425
435
466
496

556
566
576
585

624
633
680
689
698

717
753
771

415
425
435
445
455
465
476

506
516
526
536
546
556

680 744
753
77`
788

2 446
456
486

566
576
585

689
698

726 415
425
435
445
456
466
476

536
546
556

605  744
753
762
788

3 446
456
486

566
576
585

624 726

Note: Combinations are created by selecting one value from each color
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value group, specific values of red occur most often, then blue, and then green.   The red

range from 642 - 661 is most predominant.  The red wavelengths of 604 and 698 also

appear.  These two values fall into the yellow edge and red edge, respectively, mentioned

earlier in this section.  Red also appears The blue ranges from 442 - 456 and 470 - 491 in

combination with the red range of 642 - 661 is unique to this group.  The green range of

542 - 548 and 594 also occur frequently.  This value of green at 594 occurs where a dip in

the graph of reflectance may occur.  The infrared wavelengths that occur most often are

735 and 761.

In examining the null group for the 0.5 meter data, the red ranges from 621 - 635

and 670 - 691 appear to be most frequent in being associated with regression equations

that are not good predictors of chloropyll-a.  In addition, infrared 752 is not a good

predictor across several combinations of blue, green, and red.

The 1 meter data are also examined.  The smallest p-value group has a high

frequency of the red range from 642 - 663.  This range has a dip in the graph of the energy

reflectance for these wavelengths.  In addition, the blue ranges from 400 - 407 and 491 -

498 also appear most frequently.  The green range of 585 - 594 and the infrared

wavelength of 725 also occur most often.  The null group for the 1 meter data is a small

group with only 525 combinations out of 12,100.  Therefore, the patterns are harder to

detect. 

This technique can be compared to the Bonferroni approach.  If the significance

level is set at 0.05 and the 0.5 meter data are used, then each of the 10,890 tests would be

evaluated using α = .05/10,890 = .0000005.  The smallest p-value for the 0.5 meter data is
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0.00062.  In this case, none of the tests would be considered significant and the result

would be that none of the tuples are able to predict the chlorophyll-a levels.  

The approach in this study using the mixture of betas allows a researcher to relax

the restriction of the experimentwise error rate and using a clustering procedure based on 

the mixture proportions in order to discover patterns in the data.  Further testing can be

concentrated on the combinations identified to build models that may more accurately

predict chlorophyll-a.  Although the patterns discovered do not completely describe these

groups, they are insights into the characteristics that are exhibited by types of blue, green,

red, and infrared wavelengths that appear to have either a strong or very weak relationship

with chlorophyll-a.

The lake data are also used to determine which locations and dates could be

eliminated from the analysis.  The 1 meter data are examined across 1029 wavelengths

from 260.07 to 853.42.  There are 38 station/date valid combinations.  Principal

components analysis is used to determine if the data could be represented with a fewer

number of dimensions.  A varimax rotation is used to fit the groups to the factors.  Since

the sample size N = 1029 and there are p = 38 variables, the ANOSE procedure is used to

predict eigenvalues to use for Horn (1965)’s parallel analysis procedure.  From the results

of the simulation study, the ANOSE procedure performs well for similar combinations of

N and p.  The first four random ANOSE eigenvalues are 1.415, 1.337, 1.292, and 1.259. 

The first sample eigenvalues are 24.114, 6.165, 1.680, and 1.128.  Therefore, 3

dimensions should be retained.  
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The first dimension consists of all observations in November and January.  In

addition, for station 3, September, the beginning of May and the end of June are also

included.  For station 9, there is an additional observation in the beginning of June.  For

station 17, the observations are from March, April, and the beginning of May.  For station

22, the months include September, March and the beginning of June.  Finally, for station

24, March, April and the beginning of June are also included.  The second dimension

consists of March, end of May, and beginning of June for station 3.  For station 9, it

includes September, March, and both samples for May.  For station 17, only the beginning

of June.  For station 24, September and both samples for May are included. 

The final dimension is station 3 in April.  This station is in a more sediment-rich

section of the river entering into the lake.  This may point to a difference in the

relationship between the reflectance and chlorophyll-a due to the turbidity in the water

during April.  There are other circumstances that may account for the creation of these

dimensions.  The flow that goes past the points at different times of the year may affect the

reflectance.  In addition, some of the areas such as station 3 are more constricted and this

may cause the reflectance to react more as river conditions rather than lake conditions. 

Therefore, even though these dimensions do not appear to mean anything, it may be that

additional analysis of the flow or turbidity in the water at certain times/locations would

provide additional explanation.  

The next situation uses a subset selection procedure on this data set.  The goal is

to eliminate variables so that 95% of the variability would still be explained under the

assumption that the variables are independent. The last three eigenvalues predicted by the
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ANOSE procedure are 0.726, 0.686, and 0.625.  These explain approximately 5% of the

data. Note that we have 0.0536 =(0.726 + 0.6863 + 0.6254)/ 38 .  In this case, 3 variables

can be deleted leaving at least 95% of the variation of the data to be explained by the other

variables. 

Examination of the smallest eigenvalues results in the possible deletion of the

following 3 variables:  Station 3 measurements in September and March and station 24

measurements in April.  Figure 28 shows that both station 3 and station 24 are located

farthest from the main lake body which could account for differing conditions at these

locations.  In addition, most of the growth has taken place before September and will

occur after March, so the data could be stagnant at these station/date combinations. 

Those knowledgeable about this data and the effects of the locations of the sampling

stations and the dates of the collection periods can determine if these stations/dates should

be dropped from the analysis in order to provide a better prediction model for chlorophyll-

a.  This analysis illustrates that if samples had to be reduced that these station/date

locations would be primary candidates for deletion.

Summary of Real World Application

The two situations in this real world application demonstrate how the concepts

discussed in this paper can be applied to data mining applications. The further analysis of

this data is beyond the scope of this paper, but this initial analysis shows how these

techniques can support a researcher in examining relationships within a data set.
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Figure 28. Sampling locations within five major zones of Lake Texoma (adapted from
Atkinson, Acevedo, Dickson, and Rolbecki 1998)

Summary of Data Analysis

This chapter begins with a discussion of the models that were used to predict mean

eigenvalues.  The 2 regression models, the 2 neural network models, and the 3 asymptotic

theory models are explained and then compared with the previous approaches.  These

comparisons are made using a full data set of the values from Lautenschlager (1989) and

then a reduced data set that would include values of sample size and numbers of variables

used in many applications.  The next section explains the new regression and neural

network models used to create 95th percentile eigenvalues.  These are compared to the

previous regression equation estimates.  
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A third section outlines the simulation study on the density of p-values and the

estimation procedure for the proportions in this mixture of betas.   The final section

introduces a real world data set on Lake Texoma and shows how the techniques presented

can be used in a real application.  The last chapter in this study reports the conclusions of

the research questions presented in chapter 2.
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ADDITIONAL FIGURES FOR CHAPTER 4
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Figure 29. MSE for N = 50 - Reduced data set

Figure 30. MSE for N = 75 - Reduced data set

Figure 31. MSE for N = 100 - Reduced data set
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Figure 32. MSE for N = 150 - Reduced data set

Figure 33. MSE for N = 200 - Reduced data set

Figure 34. MSE for N = 300 - Reduced data set
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Figure 35. MSE for N = 400 - Reduced data set

Figure 36. MSE for N = 500 - Reduced data set
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Figure 37. MAX DEV for N = 50 - Reduced data set

Figure 38. MAX DEV for N = 75 - Reduced data set

Figure 39. MAX DEV for N = 100 - Reduced data set
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Figure 40. MAX DEV for N = 150 - Reduced data set

Figure 41. MAX DEV for N = 200 - Reduced data set

Figure 42. MAX DEV for N = 300 - Reduced data set
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Figure 43. MAX DEV for N = 400 - Reduced data set

Figure 44. MAX DEV for N = 500 - Reduced data set
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Figure 45. MAPE for N = 50 - Reduced data set

Figure 46. MAPE for N = 75 - Reduced data set

Figure 47. MAPE for N = 100 - Reduced data set
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Figure 48. MAPE for N = 150 - Reduced data set

Figure 49. MAPE for N = 200 - Reduced data set

Figure 50. MAPE for N = 300 - Reduced data set
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Figure 51. MAPE for N = 400 - Reduced data set

Figure 52. MAPE for N = 500 - Reduced data set
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CHAPTER 5

DISCUSSION OF RESULTS

This chapter discusses the results of this dissertation research.  The estimators to

predict the mean and 95th percentile eigenvalues have been compared to the previous

regression approaches and the published tables of simulated values.  There are many cases

where the new approaches perform as well or better than the previous techniques.  A

simulation was performed to analyze the density of p-values as a mixture of 2 beta

distributions.  The results show that this procedure is viable for estimating p-values from

central and non-central t distributions.  In addition, an application to real world data is

used to demonstrate these concepts.  The conclusions of these analyses are presented next.

Conclusions

The conclusions presented in this section are based on the results in chapter 4.  For

the estimation of the eigenvalues, the previous and new methods have been compared

based on their prediction errors using the tabled simulated values from Lautenschlager

(1989) as the actual values.  These comparisons are made based on several subsets of the

data.  These subsets of N and p values are used to make recommendations for using a

particular method based on the particular data in the study.  

For the simulation study testing the mixture model for the p-values, the results are

analyzed using MADs and MSEs of the parameter estimates with respect to the true
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values of these estimates.  The analysis of real world data using the methodology

investigated in this study has also been presented in chapter 4.  In this section, each

research question from chapter 2 is presented separately and conclusions are made.  

Research Question 1

Can an improved regression equation be found for predicting the mean eigenvalue?

Would this improved regression equation require a table with an extensive list of

coefficients? How does this compare to the two previously recommended regression

equations?

In this study, two regression equations are presented, the REGEXT and the

REGEXTALL equations.  An advantage to these equations is that they do not require

tables with extensive lists of coefficients. When using the reduced data set for the

comparisons, the REGEXT equation performs similarly to the LCHF equation and

outperforms the LLF equation on almost all of the comparisons. Therefore it is determined

that an improved equation can be found.  

The REGEXTALL equation has been created to use the full data set from

Lautenschlager (1989). It does not perform better than the REGEXT equation on the

reduced data set.  But, when examining the full data set, the REGEXTALL equation does

perform comparably well with the ANOSE method.  The ANOSE is discussed under

research question 3 and is determined to perform the best overall.  Therefore, comparison

to the ANOSE is part of the conclusions.  In most cases, for sample sizes of 150, 200,

750, and 1000, the REGEXTALL is not significantly different from the ANOSE
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procedure.  When examining the top p/3 eigenvalues for the full data set, the

REGEXTALL is not significantly different from the ANOSE for sample sizes of 100, 150,

200, 400, 500, 750, and 1000.  And finally, for the comparisons made using the bottom 10

% of the full data set, the REGEXTALL performs well for all sample sizes except 1500

and 2000.  Therefore it is determined that the REGEXTALL equation does not perform

well when the sample size is above 1000. 

Research Question 2

Can an asymptotic prediction method be used to accurately predict mean

eigenvalues? How does this method compare with the previously recommended regression

equations and with the new regression equation? 

To answer this research question, two approaches to estimating eigenvalues have

been created based on theory that eigenvalues are asymptotically normal.  The first

approach uses order statistics to estimate the eigenvalues.  This procedure is called the

NOSE.  An adjustment to the procedure is also implemented and this new method is called

the ANOSE.   A second approach uses the distribution theory of percentiles and is called

the NAE.  

The NAE and NOSE procedures are similar when comparing across the eigenvalue

positions.  The ANOSE procedure performs better overall and is often better than the

LCHF and REGEXT equations, especially for the higher eigenvalue positions.  The NAE

and NOSE procedures perform worse when the sample size is small.  When looking at the

reduced data set, all three procedures perform well if the sample size is greater than 50. 
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The ANOSE performs very well in almost all cases when examining the full data set. The

NOSE performs similarly to the ANOSE if the sample size is greater than 150 and the

NAE performs similarly if the sample size is greater than 300.  When examining the

bottom 10 % of the eigenvalue positions, the NAE performs well if the sample size is

greater than 400 and the ANOSE and NOSE perform well if the sample size is greater

than 750.  If the sample size is 750 or below, the REGEXTALL procedure performs the

best on the bottom 10% data set. 

Research Question 3

Can a neural network prediction model be used to accurately predict mean

eigenvalues?

This study creates two neural network procedures for predicting mean eigenvalues. 

The NN uses a reduced set of values where the sample size is 500 or less and the number

of variables is no greater than 50.  The NNALL uses the complete set of simulated values

from the Lautenschlager (1989) study.   Both procedures perform similar to the LCHF,

ANOSE, and REGEXT models on the reduced data once N was greater than 50.  For the

reduced data set with the top p/3 eigenvalues, the NN still performs similarly to the

REGEXT and ANOSE for sample sizes greater than 50.  The NNALL performs

comperable when N = 150 and 200.  When N > 200, the NNALL performs worse.  This is

similar to the performance of the REGEXTALL equation.

When examining the eigenvalue position graphs using the full data set, the NNALL

and ANOSE perform the best.  The NNALL performs the best on the full data set when
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the sample size is 1000, 1500, and 2000.  Its performance for these sample sizes is similar

to the ANOSE.  And finally, when looking at the bottom 10 % of eigenvalue positions, the

NNALL performs the best for almost all the cases.  The one exception is when the sample

size is 750 when the REGEXTALL and NAE have the smallest prediction errors.

Research Question 4

Can an improved regression equation to predict the 95th percentile eigenvalue be

formulated?  Can a neural network topology be found which will be a viable approach to

predicting the 95th percentile eigenvalue?

The REGEXT95 and NN95 methods are compared to the LCHF95 in chapter 4. 

The results show that when comparing based on the eigenvalue position, the REGEXT95

equation performs similarly to the LCHF95 equation.  The REGEXT95 equation does

have the advantage of not requiring a table of coefficients in order to predict the

eigenvalues.  The Tukey tests show that in many cases there is no difference between the

three techniques.  The NN95 and REGEXT95 equations do not perform as well as the

LCHF95 when the sample size is small.  In most of the other cases, there is no significant

difference between the three techniques. 

Research Question 5

 In considering large numbers of independent variables, can a method be

implemented to determine the number of true null hypotheses?  Will a new method using a

mixture of beta distributions be useful in determining the distribution of the p-values in
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studies which result in multiple hypotheses that may in fact be too numerous for traditional

experimentwise error controlling procedures to perform satisfactorily?

This study uses simulation to validate the use of a mixture of beta distributions to

model p-values from central and noncentral t distributions as well as to model p-values

from the uniform distribution and a beta distribution.  In addition, a procedure is presented

that creates estimates of the proportions for the mixture.  The results show that this

procedure does have merit and would allow a researcher to estimate the number of true

null hypotheses. 

Research Question 6

Can the number of variables be reduced in the lake data set?  What is the

interpretation of multiple tests conducted on this real world data set?

The Lake Texoma data have been used to demonstrate the procedures outlined in

this dissertation.  The first goal is to reduce the number of variables in the data set.  In this

case, the variables represent location/date combinations.  If it is determined that 95% of

the variation in the data should be explained by the data, then the variables associated with

the last 3 eigenvalues can be removed.  Since the ANOSE procedure has proven to be the

best in the case of this particular sample size and number of variables, it is used to estimate

the last 3 eigenvalues.  In the case of using exploratory data mining techniques such as a

large number of regressions, the reduction of the number of variables from 38 to 35 can be

a cost savings measure for the researcher.  The second goal in analyzing that data is to

determine if a relationship exists between the energy reflectance and the chlorophyll-a
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levels.  A large number of regressions to predict chlorophyll-a with the energy reflectance

data have been performed and the resulting p-values have been analyzed with the mixture

approach.  The results identified a set of reflectance that could possibly be removed from

the analysis in order refine the data for  further study of relationship of chlorophyll-a and

the energy reflectance.

Other Conclusions

Some final conclusions about the eigenvalue prediction methods are noted in this

section.  If the number of observations in a study is between 50 and 500 and the number of

variables is less than 50, then the ANOSE, NN, REGEXT, or LCHF procedures could be

used.  If a researcher wants to estimate the bottom 10% of the eigenvalues, then the

REGEXTALL or NNALL should be used up to sample sizes of 1000 at which point the

ANOSE, NOSE, or NAE procedure should be used.  But if the researcher does not have

access to tables of order statistics, then the NAE procedure should be used.  If the

researcher has a large sample size of 1000 or more, then the ANOSE or NNALL should

be used.

Table 34 is presented to allow a researcher quick access to recommended

eigenvalue prediction methods based on the characteristics of their study.  Each method

compared in this study is rated using the scale: Recommended, acceptable, discouraged, or

highly discouraged.  The entries in this table are based on the multiple comparison

procedures and graphs created in chapter 4 and are somewhat subjective.  The first

column gives boundaries for sample size and numbers of variables.  The first six rows
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LCHFa LLFa NOSEb ANOSEb NAE REGEXT NNc REGEXTALL NNALLc

N=50 to 150
p <= 50 ♦ ◊ ◊ ♦ ◊ ♦ × × ×

N=50 to 150
50 < p <= 80 ⊗ ⊗ ◊ ♦ ◊ ⊗ ⊗ × ×

150 < N <= 500
p <= 50 ♦ ⊗ ♦ ♦ ♦ ♦ ♦ ◊ ◊

150 < N <= 500
50 < p <= 80 ♦ ⊗ ◊ ♦ ◊ ♦ ♦ ◊ ◊

500 < N <= 750
p <= 80 ⊗ ⊗ ♦ ♦ ♦ ⊗ ⊗ × ×

1000 < N <= 2000
p <= 80 ⊗ ⊗ ♦ ♦ ♦ ⊗ ⊗ ⊗ ♦

Top p / 3
N=50 to 150
p <= 50

♦ ♦ ♦ ♦ × ♦ ♦ ♦ ◊

Top p / 3
N=50 to 150
50 < p <= 80

⊗ ⊗ ◊ ♦ × ⊗ ⊗ ◊ ◊

Top p / 3
150 < N <= 500
p <= 50

♦ ♦ ♦ ♦ × ◊ ♦ ◊ ×

Top p / 3
150 < N <= 500
50 < p <= 80

⊗ ⊗ ◊ ♦ × ⊗ ⊗ ◊ ×

Top p / 3
500 < N <= 2000
p <= 80

⊗ ⊗ ♦ ♦ ♦ ⊗ ⊗ × ◊

Bottom 10%
N=50 to 1000
p <= 80

⊗ ⊗ × × × ⊗ ⊗ ♦ ♦

Bottom 10%
1000 < N <=  2000
p <= 80

⊗ ⊗ ♦ ♦ ♦ ⊗ ⊗ × ♦

aRequires table of coefficients ♦ Recommended

bRequires table of order statistics ◊ Acceptable
cNeural network software makes implementation easier × Discouraged

⊗ Highly discouraged

Table 34. Recommendations for mean eigenvalue estimation
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recommend procedures for general use.  The next five rows recommend procedures when

the first p/3 eigenvalue positions are of interest.  The final two rows detail

recommendations when the bottom 10% of eigenvalue positions are to be examined.  The

final sections of this study contain the limitations of this research and the plans for future

research.

Limitations of this Study

This study does include several limitations.  Only the mean eigenvalue and 95th

percentile of the eigenvalues are considered.  Further research may be warranted in

considering a methodology for estimating other percentiles. The question of comparing

the number of components extracted versus the number of known components is not

addressed.  The neural network models are designed to be as parsimonious as possible. 

All three models presented used only 4 inputs: N, p, k, and p/N to create their models.  In

addition, only a single hidden layer is used with either 2 or 3 hidden neurons.  If this

restriction had not been used and the model included more inputs such as the logNlogp

and other interaction terms used in the regression equations, for example, the models may

have produced a better fit. 

The inability of assessing the true distribution of p-values in any real world data set

restricts this study to assessing the ability of the mixture approach to fit only the p-values

generated from a t and a noncentral t distribution as well as p-values for the uniform and a

beta distribution.  The use of the mixture to form a distribution has inherent problems.  In

practice, the value of k (number of densities) is never known in the mixture model for
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estimating the density of the p-values.  Also, the question of identifiability can cause the

results of a mixture to be misleading.  Another point to be made is that the p-value

technique should be used more for exploratory analysis because the clusters generated by

the distribution in the mixture may not be the true representation of the underlying

population.  Finally, the beta distribution may not be a good fit for all the possible

distributions from which p-values could be generated. 

Future Research

This study showed that there are other techniques that can be used to predict

eigenvalues of a correlation matrix from random data.  The regression, asymptotic, and

neural network approaches each perform well for certain combinations of N and p.  Future

research should examine combining these models to see if more accurate results can be

achieved across a greater range of sample size and numbers of variables.  

The ANOSE procedure performs the best overall.  Further refinement of those

adjustments made to the NOSE to create the ANOSE should be examined.  In addition,

the neural network models have been created using very parsimonious models and a basic

selection of back propagation parameters.  It could be that better fitting networks could be

found by using additional input options.  Finally, continuation with the simulation study

should be performed to expand it to include p-values generated from additional

distributions.  
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Table A1. R-Squares for reduced data set

LCHF LLF NOSE ANOSE NAE REGEXT NN REGEXTALL NNALL
1 0.9877 0.9930 0.9917 0.9948 0.9880 0.9868 0.9783 0.9678 0.9063
2 0.9892 0.9895 0.9962 0.9966 0.9950 0.9892 0.9872 0.9765 0.9463
3 0.9909 0.9852 0.9981 0.9969 0.9978 0.9911 0.9876 0.9810 0.9665
4 0.9943 0.9811 0.9980 0.9953 0.9981 0.9926 0.9948 0.9871 0.9759
5 0.9957 0.9744 0.9975 0.9949 0.9979 0.9944 0.9924 0.9891 0.9843
6 0.9969 0.9651 0.9961 0.9949 0.9966 0.9959 0.9882 0.9906 0.9850
7 0.9976 0.9571 0.9950 0.9919 0.9955 0.9966 0.9847 0.9922 0.9813
8 0.9971 0.9467 0.9930 0.9918 0.9939 0.9962 0.9804 0.9910 0.9726
9 0.9980 0.9440 0.9877 0.9857 0.9881 0.9971 0.9910 0.9933 0.9859

10 0.9976 0.9332 0.9852 0.9832 0.9855 0.9967 0.9887 0.9923 0.9788
11 0.9953 0.9188 0.9839 0.9862 0.9842 0.9946 0.9859 0.9897 0.9701
12 0.9935 0.9079 0.9815 0.9860 0.9823 0.9931 0.9837 0.9868 0.9634
13 0.9896 0.8963 0.9780 0.9925 0.9800 0.9901 0.9809 0.9830 0.9580
14 0.9904 0.8818 0.9692 0.9912 0.9691 0.9900 0.9854 0.9842 0.9714
15 0.9869 0.8684 0.9687 0.9878 0.9687 0.9868 0.9825 0.9793 0.9676
16 0.9839 0.8586 0.9665 0.9853 0.9671 0.9841 0.9811 0.9758 0.9659
17 0.9802 0.8473 0.9649 0.9815 0.9663 0.9809 0.9790 0.9727 0.9658
18 0.9758 0.8342 0.9598 0.9755 0.9629 0.9771 0.9774 0.9699 0.9656
19 0.9818 0.8061 0.9611 0.9650 0.9607 0.9821 0.9832 0.9745 0.9792
20 0.9780 0.7901 0.9620 0.9701 0.9618 0.9778 0.9826 0.9714 0.9791
21 0.9755 0.7765 0.9609 0.9950 0.9612 0.9748 0.9824 0.9698 0.9791
22 0.9718 0.7585 0.9602 0.9935 0.9612 0.9706 0.9802 0.9683 0.9780
23 0.9678 0.7423 0.9544 0.9889 0.9564 0.9662 0.9799 0.9684 0.9787
24 0.9567 0.6325 0.8533 0.9981 0.8528 0.9598 0.9857 0.9620 0.9910
25 0.9540 0.6115 0.8631 0.9978 0.8629 0.9565 0.9851 0.9611 0.9901
26 0.9502 0.5927 0.8754 0.9984 0.8756 0.9519 0.9841 0.9627 0.9896
27 0.9470 0.5646 0.8830 0.9995 0.8836 0.9469 0.9809 0.9624 0.9884
28 0.9430 0.5339 0.8888 0.9988 0.8898 0.9417 0.9768 0.9624 0.9873
29 0.9402 0.5176 0.8918 0.9922 0.8934 0.9371 0.9727 0.9634 0.9865
30 0.9352 0.5009 0.8916 0.9896 0.8938 0.9312 0.9691 0.9640 0.9869
31 0.9313 0.4771 0.8913 0.9853 0.8943 0.9252 0.9650 0.9655 0.9862
32 0.9265 0.4588 0.8886 0.9612 0.8926 0.9194 0.9615 0.9680 0.9851
33 0.9181 0.4368 0.8849 0.8991 0.8903 0.9089 0.9613 0.9704 0.9854
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Table A2. MADs for reduced data set

LCHF LLF NOSE ANOSE NAE REGEXT NN REGEXTALL NNALL
1 0.0405 0.0256 0.0445 0.0330 0.1077 0.0601 0.0488 0.0791 0.1207
2 0.0334 0.0289 0.0629 0.0314 0.0963 0.0340 0.0363 0.0531 0.0824
3 0.0286 0.0329 0.0607 0.0353 0.0811 0.0298 0.0344 0.0458 0.0656
4 0.0201 0.0348 0.0601 0.0402 0.0765 0.0294 0.0221 0.0468 0.0472
5 0.0159 0.0397 0.0501 0.0365 0.0614 0.0281 0.0202 0.0439 0.0412
6 0.0122 0.0465 0.0444 0.0319 0.0528 0.0259 0.0201 0.0396 0.0400
7 0.0102 0.0511 0.0390 0.0284 0.0452 0.0236 0.0224 0.0350 0.0378
8 0.0117 0.0589 0.0370 0.0280 0.0425 0.0205 0.0270 0.0313 0.0393
9 0.0088 0.0663 0.0366 0.0268 0.0399 0.0186 0.0217 0.0270 0.0253

10 0.0094 0.0718 0.0380 0.0258 0.0408 0.0170 0.0253 0.0245 0.0266
11 0.0127 0.0797 0.0396 0.0235 0.0428 0.0169 0.0295 0.0230 0.0284
12 0.0157 0.0860 0.0408 0.0227 0.0449 0.0175 0.0320 0.0244 0.0323
13 0.0204 0.0933 0.0392 0.0176 0.0449 0.0197 0.0341 0.0264 0.0361
14 0.0160 0.1074 0.0453 0.0198 0.0473 0.0211 0.0294 0.0267 0.0246
15 0.0196 0.1147 0.0480 0.0225 0.0508 0.0234 0.0303 0.0311 0.0285
16 0.0227 0.1207 0.0509 0.0237 0.0536 0.0248 0.0299 0.0338 0.0318
17 0.0269 0.1282 0.0510 0.0248 0.0550 0.0265 0.0310 0.0362 0.0346
18 0.0314 0.1363 0.0503 0.0281 0.0545 0.0286 0.0312 0.0380 0.0377
19 0.0218 0.1447 0.0626 0.0274 0.0652 0.0258 0.0238 0.0358 0.0282
20 0.0251 0.1533 0.0643 0.0249 0.0681 0.0283 0.0240 0.0399 0.0296
21 0.0271 0.1603 0.0617 0.0180 0.0671 0.0301 0.0243 0.0444 0.0323
22 0.0305 0.1707 0.0572 0.0157 0.0638 0.0323 0.0264 0.0480 0.0340
23 0.0339 0.1791 0.0631 0.0211 0.0622 0.0349 0.0274 0.0502 0.0360
24 0.0271 0.2062 0.0875 0.0187 0.0894 0.0366 0.0244 0.0529 0.0201
25 0.0292 0.2201 0.0893 0.0169 0.0919 0.0393 0.0278 0.0566 0.0198
26 0.0325 0.2361 0.0898 0.0155 0.0932 0.0420 0.0310 0.0598 0.0187
27 0.0353 0.2560 0.0881 0.0169 0.0922 0.0442 0.0345 0.0628 0.0188
28 0.0392 0.2825 0.0840 0.0163 0.0891 0.0458 0.0388 0.0656 0.0191
29 0.0417 0.3106 0.0795 0.0196 0.0857 0.0463 0.0425 0.0665 0.0187
30 0.0451 0.3288 0.0716 0.0200 0.0793 0.0466 0.0457 0.0677 0.0182
31 0.0486 0.3560 0.0662 0.0238 0.0702 0.0476 0.0481 0.0683 0.0181
32 0.0516 0.3937 0.0738 0.0362 0.0705 0.0486 0.0499 0.0676 0.0190
33 0.0566 0.4322 0.0960 0.0604 0.0834 0.0512 0.0503 0.0671 0.0198
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Table A3. MAPEs for reduced data set

LCHF LLF NOSE ANOSE NAE REGEXT NN REGEXTALL NNALL
1 2.41 1.45 2.26 1.75 5.76 3.26 2.61 3.95 6.31
2 2.16 1.80 3.45 2.01 5.45 2.13 2.45 3.09 5.09
3 1.97 2.26 3.54 2.37 4.80 2.08 2.70 3.02 4.75
4 1.39 2.26 3.60 2.74 4.65 2.01 1.60 3.24 3.37
5 1.14 2.79 3.14 2.61 3.88 2.00 1.64 3.22 3.20
6 0.92 3.55 3.03 2.34 3.61 1.94 1.82 3.08 3.44
7 0.83 4.22 2.96 2.21 3.43 1.82 2.21 2.92 3.64
8 1.10 5.28 3.12 2.28 3.63 1.74 2.93 2.86 4.33
9 0.75 5.68 3.07 2.10 3.29 1.43 1.93 2.24 2.38

10 0.90 6.50 3.58 2.18 3.81 1.40 2.41 2.21 2.79
11 1.33 7.64 4.11 2.07 4.45 1.58 3.01 2.30 3.36
12 1.75 8.71 4.59 2.10 5.11 1.83 3.57 2.74 4.29
13 2.43 10.05 4.63 1.74 5.48 2.35 4.23 3.35 5.42
14 1.87 11.14 5.33 2.05 5.59 2.27 3.08 2.98 3.03
15 2.43 12.53 6.00 2.52 6.42 2.73 3.47 3.74 3.86
16 2.97 13.92 6.60 2.75 7.09 3.15 3.77 4.41 4.72
17 3.75 15.59 6.79 2.90 7.55 3.69 4.30 5.18 5.72
18 4.67 17.51 6.75 3.73 7.53 4.45 4.89 6.07 7.05
19 2.88 17.17 8.25 3.11 8.75 3.41 2.89 4.72 4.12
20 3.54 19.15 8.67 2.94 9.44 4.00 3.17 5.57 4.80
21 4.05 21.03 8.27 2.64 9.42 4.47 3.48 6.53 5.74
22 4.94 23.59 7.29 2.21 8.70 5.16 4.22 7.70 6.98
23 5.75 26.07 10.22 3.64 9.08 6.03 4.76 8.74 8.41
24 3.31 25.18 11.48 2.66 11.78 4.74 2.69 6.55 2.45
25 3.65 28.00 12.21 2.60 12.63 5.28 3.15 7.25 2.54
26 4.23 31.34 12.75 2.52 13.31 5.86 3.64 7.93 2.53
27 4.78 35.40 13.00 2.72 13.74 6.35 4.26 8.59 2.69
28 5.59 40.70 12.79 2.50 13.74 6.81 5.09 9.25 2.90
29 6.22 46.02 12.35 3.40 13.59 7.07 5.92 9.75 3.11
30 7.04 50.77 11.07 3.36 12.71 7.26 6.81 10.36 3.29
31 7.88 57.39 10.74 4.41 11.04 7.61 7.65 11.00 3.67
32 8.83 65.91 14.64 7.91 12.95 8.08 8.57 11.41 4.30
33 10.25 75.52 23.32 17.03 19.26 9.01 9.44 12.02 5.08



158

Table A4. Randomized block for MSE - Reduced data set

p LCHF LLF NOSE ANOSE NAE REGEXT NN REGEXTALL NNALL
50

5 0.00275 0.01221 0.00024 0.00038 0.00271 0.00360 0.01547 0.00405 0.01010
10 0.00085 0.01303 0.00437 0.00153 0.00974 0.00289 0.01700 0.00784 0.03471
15 0.00110 0.00662 0.00686 0.00130 0.01261 0.00234 0.01086 0.00789 0.03588
20 0.00129 0.00374 0.01038 0.00114 0.01664 0.00241 0.00664 0.00863 0.03078
25 0.00142 0.00568 0.01660 0.00138 0.02331 0.00317 0.00428 0.01112 0.02402

75
5 0.00162 0.00495 0.00039 0.00032 0.00240 0.00241 0.01326 0.00232 0.00769

10 0.00029 0.00245 0.00171 0.00092 0.00458 0.00042 0.00661 0.00190 0.01492
15 0.00039 0.00012 0.00326 0.00111 0.00681 0.00091 0.00335 0.00217 0.01588
20 0.00042 0.00261 0.00530 0.00134 0.00902 0.00070 0.00150 0.00149 0.01316
25 0.00018 0.00642 0.00849 0.00109 0.01263 0.00109 0.00119 0.00221 0.01097
35 0.00028 0.00344 0.01617 0.00234 0.02027 0.00164 0.00082 0.00403 0.00506
50 0.00173 0.36872 0.03530 0.00517 0.04275 0.00517 0.00153 0.01361 0.00453

100
5 0.00156 0.00184 0.00052 0.00049 0.00240 0.00239 0.00995 0.00189 0.00621

10 0.00043 0.00054 0.00105 0.00059 0.00309 0.00031 0.00378 0.00098 0.00859
15 0.00069 0.00133 0.00207 0.00108 0.00449 0.00070 0.00101 0.00090 0.00772
20 0.00318 0.01640 0.00236 0.00237 0.00434 0.00393 0.00142 0.00280 0.00424
25 0.00069 0.01780 0.00534 0.00131 0.00820 0.00122 0.00025 0.00092 0.00511
35 0.00110 0.02462 0.00922 0.00200 0.01195 0.00221 0.00051 0.00223 0.00249
50 0.00074 0.03024 0.01975 0.00199 0.02448 0.00324 0.00191 0.00540 0.00165

150
5 0.00095 0.00036 0.00017 0.00026 0.00120 0.00157 0.00606 0.00078 0.00490

10 0.00037 0.00002 0.00074 0.00054 0.00218 0.00022 0.00148 0.00060 0.00427
15 0.00086 0.00335 0.00117 0.00077 0.00260 0.00074 0.00031 0.00093 0.00226
20 0.00103 0.01348 0.00172 0.00085 0.00329 0.00134 0.00043 0.00147 0.00132
25 0.00118 0.02711 0.00259 0.00112 0.00428 0.00167 0.00055 0.00195 0.00089
35 0.00173 0.04593 0.00453 0.00134 0.00616 0.00274 0.00066 0.00386 0.00059
50 0.00082 0.00318 0.00878 0.00180 0.01120 0.00252 0.00191 0.00346 0.00065

200
5 0.00081 0.00007 0.00009 0.00014 0.00078 0.00147 0.00321 0.00057 0.00459

10 0.00050 0.00022 0.00032 0.00023 0.00115 0.00021 0.00066 0.00063 0.00252
15 0.00070 0.00383 0.00067 0.00054 0.00165 0.00068 0.00053 0.00130 0.00092
20 0.00083 0.01327 0.00110 0.00070 0.00214 0.00104 0.00089 0.00198 0.00033
25 0.00061 0.02607 0.00206 0.00123 0.00333 0.00099 0.00073 0.00235 0.00016
35 0.00126 0.04639 0.00269 0.00125 0.00369 0.00203 0.00096 0.00510 0.00031
50 0.00044 0.00360 0.00581 0.00190 0.00742 0.00145 0.00174 0.00341 0.00028
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Table A4-Continued

p LCHF LLF NOSE ANOSE NAE REGEXT NN REGEXTALL NNALL
300

5 0.00087 0.00036 0.00010 0.00013 0.00064 0.00177 0.00036 0.00061 0.00388
10 0.00014 0.00029 0.00023 0.00018 0.00081 0.00004 0.00015 0.00044 0.00166
15 0.00022 0.00271 0.00038 0.00029 0.00100 0.00030 0.00076 0.00137 0.00091
20 0.00017 0.00870 0.00071 0.00054 0.00143 0.00031 0.00101 0.00193 0.00075
25 0.00009 0.01688 0.00106 0.00072 0.00182 0.00030 0.00094 0.00273 0.00087
35 0.00005 0.02500 0.00164 0.00105 0.00231 0.00034 0.00075 0.00476 0.00100
50 0.00020 0.01195 0.00265 0.00165 0.00343 0.00042 0.00152 0.00349 0.00071

400
5 0.00107 0.00121 0.00006 0.00009 0.00045 0.00218 0.00017 0.00078 0.00285

10 0.00007 0.00021 0.00022 0.00017 0.00070 0.00012 0.00046 0.00026 0.00128
15 0.00017 0.00137 0.00038 0.00038 0.00091 0.00016 0.00075 0.00083 0.00092
20 0.00036 0.00422 0.00050 0.00040 0.00100 0.00025 0.00080 0.00152 0.00138
25 0.00053 0.00758 0.00068 0.00052 0.00120 0.00038 0.00068 0.00221 0.00174
35 0.00139 0.00437 0.00103 0.00075 0.00147 0.00092 0.00056 0.00378 0.00191
50 0.00133 0.09722 0.00173 0.00137 0.00225 0.00079 0.00207 0.00263 0.00109

500
5 0.00116 0.00193 0.00004 0.00005 0.00033 0.00240 0.00078 0.00084 0.00224

10 0.00019 0.00016 0.00013 0.00013 0.00049 0.00027 0.00082 0.00019 0.00105
15 0.00055 0.00051 0.00028 0.00029 0.00067 0.00042 0.00069 0.00059 0.00110
20 0.00114 0.00143 0.00031 0.00030 0.00067 0.00079 0.00054 0.00118 0.00188
25 0.00215 0.00169 0.00053 0.00044 0.00091 0.00154 0.00032 0.00147 0.00218
35 0.00561 0.00340 0.00078 0.00059 0.00111 0.00396 0.00054 0.00247 0.00230
50 0.00384 0.33925 0.00134 0.00116 0.00174 0.00264 0.00331 0.00167 0.00121
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Table A5. Randomized block for MAX DEV - Reduced data set

p LCHF LLF NOSE ANOSE NAE REGEXT NN REGEXTALL NNALL
50

5 0.06306 0.12778 0.02424 0.02424 0.08607 0.09347 0.17514 0.10652 0.13181
10 0.05352 0.18193 0.09885 0.08118 0.18989 0.10176 0.20223 0.15932 0.32518
15 0.06610 0.12315 0.11548 0.08593 0.22473 0.10217 0.20328 0.19633 0.40745
20 0.07334 0.08329 0.15290 0.08652 0.27882 0.14690 0.23699 0.27300 0.46347
25 0.06754 0.10059 0.21116 0.09303 0.33725 0.20944 0.25454 0.36430 0.49188

75
5 0.04825 0.08512 0.02973 0.02973 0.08021 0.07651 0.15582 0.08073 0.12782

10 0.03003 0.08347 0.05536 0.05536 0.12346 0.02980 0.12937 0.06533 0.19118
15 0.04058 0.02314 0.08468 0.07790 0.17492 0.04764 0.11146 0.10029 0.28170
20 0.05102 0.07112 0.11012 0.08898 0.18845 0.05205 0.11427 0.12374 0.30433
25 0.02538 0.11276 0.15694 0.06949 0.23577 0.09507 0.13847 0.19169 0.33957
35 0.03549 0.10266 0.19835 0.17124 0.28014 0.16513 0.11794 0.29382 0.31863
50 0.13134 1.45448 0.29123 0.20044 0.36708 0.31005 0.09809 0.47944 0.26096

100
5 0.04771 0.05334 0.03695 0.03695 0.08068 0.07451 0.13049 0.07279 0.11618

10 0.03855 0.03793 0.04140 0.04140 0.10578 0.03002 0.08732 0.03715 0.14411
15 0.06428 0.04940 0.06767 0.06767 0.12984 0.05382 0.05288 0.04683 0.18519
20 0.09676 0.20264 0.08278 0.11572 0.16287 0.09958 0.06813 0.08319 0.22684
25 0.05983 0.18093 0.11585 0.09360 0.16859 0.05658 0.05780 0.09319 0.22708
35 0.06275 0.22810 0.15205 0.13522 0.20944 0.08198 0.04312 0.16359 0.21433
50 0.06262 0.42875 0.22038 0.14339 0.26557 0.20372 0.07465 0.31191 0.18671

150
5 0.03350 0.02087 0.02167 0.02167 0.05737 0.05392 0.08999 0.04427 0.09895

10 0.03228 0.00996 0.03845 0.03845 0.09026 0.02797 0.04886 0.03944 0.09961
15 0.07348 0.08132 0.04794 0.04737 0.08787 0.04954 0.03528 0.05577 0.08056
20 0.07075 0.16538 0.06302 0.06302 0.10679 0.06432 0.03804 0.06866 0.10326
25 0.06372 0.23028 0.07143 0.07048 0.11788 0.06587 0.04175 0.06163 0.11153
35 0.06725 0.31290 0.09973 0.08427 0.14440 0.07650 0.04944 0.09290 0.11167
50 0.05993 0.07483 0.13991 0.11178 0.17560 0.10951 0.06994 0.14497 0.08645

200
5 0.03432 0.01054 0.01612 0.01612 0.04704 0.04911 0.06678 0.03414 0.08636

10 0.04068 0.02453 0.02609 0.02609 0.06144 0.02632 0.04018 0.04218 0.07037
15 0.06175 0.09207 0.03777 0.04333 0.07086 0.04546 0.04017 0.06052 0.04768
20 0.06654 0.17446 0.04629 0.04944 0.07641 0.05804 0.05189 0.07382 0.03315
25 0.05504 0.24218 0.07055 0.07055 0.10381 0.04751 0.03881 0.06778 0.04076
35 0.05547 0.32792 0.07942 0.07931 0.10645 0.06276 0.06329 0.10739 0.03118
50 0.04305 0.07825 0.11713 0.09526 0.14564 0.08587 0.05965 0.10706 0.02847
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Table A5-Continued

p LCHF LLF NOSE ANOSE NAE REGEXT NN REGEXTALL NNALL
300

5 0.03328 0.02311 0.01586 0.01586 0.04111 0.05503 0.02325 0.03297 0.07654
10 0.01792 0.02236 0.02222 0.02218 0.05023 0.00976 0.01878 0.03520 0.04730
15 0.03062 0.08578 0.03095 0.03095 0.05596 0.03468 0.04308 0.06226 0.05307
20 0.02748 0.15357 0.03959 0.04249 0.06297 0.03292 0.04937 0.06802 0.05196
25 0.01905 0.21638 0.05248 0.05248 0.07433 0.03433 0.05421 0.07294 0.05112
35 0.01495 0.25732 0.05944 0.05944 0.08062 0.03365 0.07468 0.10282 0.06341
50 0.04741 0.31402 0.07958 0.08419 0.09704 0.07991 0.06192 0.10569 0.06394

400
5 0.03897 0.04289 0.01298 0.01298 0.03484 0.05951 0.02010 0.03270 0.05971

10 0.01769 0.01939 0.02067 0.02067 0.04889 0.02890 0.02944 0.02739 0.04730
15 0.03342 0.05684 0.02848 0.03869 0.05192 0.02627 0.04208 0.04840 0.05469
20 0.04490 0.11105 0.03300 0.03922 0.04894 0.03628 0.04830 0.06349 0.07242
25 0.05646 0.15618 0.04230 0.04284 0.05548 0.05057 0.05389 0.06662 0.07656
35 0.09187 0.12322 0.04726 0.04521 0.06190 0.08591 0.07207 0.09028 0.08646
50 0.08069 0.85578 0.06149 0.06930 0.07847 0.10290 0.07488 0.09188 0.08050

500
5 0.04472 0.05082 0.01070 0.01070 0.03026 0.06436 0.03819 0.03402 0.05331

10 0.02194 0.01620 0.01639 0.01727 0.04118 0.03969 0.03906 0.02280 0.04864
15 0.05434 0.03419 0.02386 0.03221 0.04028 0.04462 0.03685 0.04034 0.05865
20 0.08170 0.06176 0.02592 0.03468 0.03817 0.07019 0.03998 0.05482 0.07819
25 0.10643 0.07933 0.03315 0.03997 0.04612 0.09511 0.04495 0.05895 0.08389
35 0.18501 0.15675 0.04113 0.04694 0.05105 0.15815 0.06126 0.07260 0.10223
50 0.11860 1.64146 0.05669 0.05693 0.06718 0.12895 0.09022 0.07169 0.08375
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Table A6. Randomized block for MAPE - Reduced data set

p LCHF LLF NOSE ANOSE NAE REGEXT NN REGEXTALL NNALL
50

5 4.3353 9.6307 1.0452 1.4942 3.1097 4.1427 9.9532 3.5022 8.1535
10 2.6723 11.5718 5.9495 2.6065 7.7380 4.6314 12.7956 7.7356 16.3555
15 3.7650 9.9023 8.3069 2.7370 10.4237 5.1190 11.2254 9.0449 18.5604
20 5.0718 8.5777 10.9136 3.2684 12.7215 5.3938 8.9314 9.8861 18.9020
25 6.2463 10.6577 15.7767 4.2746 16.6708 6.2186 6.0930 11.3588 17.5823

75
5 3.4006 6.2478 1.4688 1.1376 3.2222 3.4839 9.7691 2.8104 7.4701

10 1.2694 4.8114 3.7269 2.0565 5.3827 1.9380 7.8882 4.0329 10.6910
15 1.4796 0.9175 5.4893 2.0948 7.1593 2.2539 5.7999 4.3667 11.2940
20 1.5782 6.1658 7.1592 2.8884 8.9246 1.8929 3.5223 3.2336 10.5808
25 1.2239 10.9884 9.6431 3.3153 10.6477 2.6006 2.3003 2.2547 8.9858
35 1.9308 10.1968 17.2545 7.6585 17.0625 3.7378 2.3788 3.1772 3.8935
50 1.4943 63.9410 17.1787 4.6945 17.7574 2.9460 2.6927 2.2060 3.6448

100
5 3.4061 3.8133 1.5976 1.4178 3.1492 3.6857 8.6060 2.5179 6.7094

10 1.5312 2.2160 2.8213 1.6650 4.2798 1.3561 5.9554 3.0247 8.2082
15 1.3226 3.8013 4.3454 2.2945 5.7757 1.5869 3.2424 2.5944 7.8376
20 5.4883 13.6339 4.0850 4.5578 4.3840 6.3582 3.5254 5.4047 2.5948
25 2.5931 16.7929 7.3266 2.8586 8.3572 3.5341 1.1710 2.5219 5.7187
35 4.7571 23.0020 11.2881 5.0523 11.5784 5.5646 2.4606 4.7345 2.8858
50 2.1688 15.9518 12.1446 3.0289 12.7070 3.9559 3.4176 3.4852 2.0682

150
5 2.8114 1.6996 0.8903 1.3018 2.2117 3.3758 7.0251 2.0652 5.6055

10 1.6168 0.2739 2.3425 1.7108 3.5604 0.9786 3.5820 2.0563 6.0027
15 1.7914 5.7853 3.1901 2.0615 4.4334 2.0372 1.1416 2.0336 4.5002
20 2.5712 12.4957 3.9021 2.2020 5.1293 3.2296 1.8274 3.3314 3.0418
25 3.3048 18.9539 4.9301 2.7334 6.0219 4.0806 2.3491 4.6160 1.9005
35 5.2105 27.4716 7.1114 3.3984 7.6282 6.0672 2.9713 7.5020 1.5086
50 2.4451 4.2213 7.7215 2.6220 8.2657 4.0437 3.3887 4.7397 1.5779

200
5 2.6162 0.7114 0.5012 1.0160 1.6738 3.3771 5.1747 1.9618 5.9312

10 1.8488 1.2686 1.5896 1.2364 2.6686 1.0975 2.0481 1.7876 4.7377
15 1.7846 5.9330 2.3606 1.7632 3.4444 2.0677 2.0194 2.7804 3.0147
20 2.0767 11.8046 3.1642 2.0661 4.2327 2.7582 2.8442 3.9765 1.6155
25 2.2681 17.7300 4.2246 2.6860 5.2366 3.0981 2.8701 4.9637 0.9006
35 4.0609 25.6719 5.1942 3.0818 5.7056 4.9527 3.2899 8.1829 1.6482
50 1.6672 4.4105 6.1177 2.5972 6.6180 3.0224 3.4113 4.8488 1.1602
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Table A6-Continued

p LCHF LLF NOSE ANOSE NAE REGEXT NN REGEXTALL NNALL
300

5 2.7135 1.7326 0.8108 0.8239 1.7910 3.7450 1.6658 2.1860 5.6949
10 1.0307 1.5607 1.3256 1.1027 2.2268 0.4892 1.1131 1.5682 3.8788
15 0.8935 4.7181 1.7480 1.3649 2.6438 1.0942 2.6218 2.9893 2.1986
20 0.9633 9.0141 2.4129 1.8290 3.2910 1.2840 3.1209 4.0183 1.9994
25 0.7182 13.1881 2.9286 2.0473 3.7963 1.4178 3.0767 5.0998 2.5007
35 0.6290 17.3324 3.8946 2.6666 4.4310 1.6991 2.4091 7.3693 2.7937
50 0.6069 7.7173 4.1020 2.5162 4.4711 1.2072 3.2869 4.8285 1.5366

400
5 3.0157 3.2351 0.5581 0.8207 1.4217 4.2368 1.0155 2.5792 4.9839

10 0.6637 1.3343 1.3100 1.1010 2.1006 0.5188 1.9898 1.2772 3.2650
15 0.9733 3.3731 1.7431 1.5805 2.5340 1.0858 2.4714 2.3439 2.0989
20 1.5960 6.0583 2.0590 1.6120 2.8346 1.4190 2.6384 3.4317 2.9492
25 2.0794 8.2473 2.3629 1.7554 3.1114 1.6963 2.3791 4.4505 3.5838
35 3.4343 6.6858 3.0144 2.3118 3.4873 2.5682 1.9986 6.3088 3.7555
50 2.6043 22.3938 3.2909 2.4638 3.6066 1.5517 3.7929 4.1654 1.6638

500
5 3.0669 4.1480 0.4291 0.5740 1.2112 4.4365 2.4846 2.7017 4.4573

10 1.1203 1.1560 1.0249 0.9375 1.7406 1.0330 2.7107 1.1528 2.6998
15 1.9325 2.0250 1.5245 1.3326 2.2307 1.6406 2.5376 2.0344 2.5631
20 2.7791 3.4350 1.6139 1.3580 2.2907 2.2777 2.0948 3.0111 3.6320
25 4.0834 3.7653 2.1024 1.7159 2.7448 3.2909 1.4571 3.5513 3.9946
35 6.9388 5.4555 2.6271 2.0040 3.0443 5.6179 2.0920 4.9250 4.0388
50 4.6568 41.5592 2.9133 2.3959 3.2094 3.6635 4.8283 3.2980 1.6290
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Table A7. Randomized block for MSE - Reduced data set top p/3

p LCHF LLF NOSE ANOSE NAE REGEXT NN REGEXTALL NNALL
50

5 0.00334 0.01016 0.00030 0.00030 0.00401 0.00512 0.00787 0.00607 0.00646
10 0.00068 0.00364 0.00445 0.00270 0.01367 0.00293 0.00823 0.00744 0.03379
15 0.00019 0.00173 0.00718 0.00243 0.01962 0.00247 0.01017 0.00940 0.05041
20 0.00022 0.00262 0.01007 0.00167 0.02378 0.00366 0.00976 0.01362 0.04878
25 0.00097 0.00674 0.01556 0.00112 0.03121 0.00601 0.00883 0.02127 0.04338

75
5 0.00200 0.00380 0.00046 0.00046 0.00348 0.00344 0.00775 0.00346 0.00337

10 0.00047 0.00067 0.00159 0.00159 0.00644 0.00038 0.00218 0.00121 0.01129
15 0.00078 0.00012 0.00360 0.00239 0.01117 0.00179 0.00298 0.00285 0.02193
20 0.00081 0.00106 0.00498 0.00249 0.01284 0.00159 0.00209 0.00275 0.02144
25 0.00021 0.00219 0.00810 0.00157 0.01739 0.00229 0.00260 0.00528 0.02159
35 0.00012 0.00029 0.01475 0.00143 0.02610 0.00322 0.00162 0.01057 0.01330
50 0.00323 0.05538 0.02925 0.00562 0.04350 0.00969 0.00236 0.02639 0.00805

100
5 0.00187 0.00134 0.00073 0.00073 0.00354 0.00330 0.00641 0.00283 0.00256

10 0.00072 0.00027 0.00097 0.00097 0.00444 0.00053 0.00205 0.00091 0.00519
15 0.00168 0.00041 0.00219 0.00229 0.00724 0.00160 0.00083 0.00147 0.00921
20 0.00143 0.00281 0.00336 0.00192 0.00909 0.00209 0.00076 0.00191 0.01048
25 0.00083 0.00627 0.00532 0.00258 0.01147 0.00155 0.00045 0.00166 0.00988
35 0.00030 0.00695 0.00842 0.00253 0.01562 0.00208 0.00067 0.00318 0.00634
50 0.00073 0.00155 0.01629 0.00225 0.02530 0.00463 0.00265 0.00927 0.00265

150
5 0.00087 0.00042 0.00025 0.00036 0.00180 0.00186 0.00504 0.00107 0.00246

10 0.00057 0.00003 0.00082 0.00097 0.00330 0.00041 0.00144 0.00086 0.00190
15 0.00200 0.00068 0.00121 0.00157 0.00409 0.00161 0.00074 0.00204 0.00157
20 0.00196 0.00280 0.00160 0.00170 0.00477 0.00230 0.00063 0.00262 0.00188
25 0.00147 0.00698 0.00241 0.00211 0.00582 0.00196 0.00053 0.00205 0.00163
35 0.00072 0.01128 0.00409 0.00218 0.00816 0.00202 0.00068 0.00205 0.00131
50 0.00031 0.00450 0.00744 0.00286 0.01203 0.00237 0.00258 0.00273 0.00085

200
5 0.00063 0.00008 0.00013 0.00017 0.00118 0.00155 0.00309 0.00064 0.00316

10 0.00077 0.00019 0.00029 0.00039 0.00168 0.00038 0.00113 0.00115 0.00127
15 0.00160 0.00041 0.00070 0.00114 0.00265 0.00144 0.00087 0.00277 0.00073
20 0.00171 0.00220 0.00096 0.00143 0.00293 0.00185 0.00094 0.00325 0.00053
25 0.00074 0.00578 0.00220 0.00259 0.00472 0.00106 0.00044 0.00211 0.00032
35 0.00069 0.00834 0.00247 0.00224 0.00481 0.00149 0.00091 0.00265 0.00037
50 0.00021 0.00512 0.00538 0.00318 0.00842 0.00132 0.00185 0.00213 0.00035
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Table A7-Continued

p LCHF LLF NOSE ANOSE NAE REGEXT NN REGEXTALL NNALL
300

5 0.00100 0.00027 0.00014 0.00019 0.00095 0.00214 0.00028 0.00071 0.00288
10 0.00019 0.00014 0.00024 0.00029 0.00120 0.00007 0.00008 0.00082 0.00170
15 0.00056 0.00013 0.00036 0.00055 0.00157 0.00070 0.00029 0.00279 0.00192
20 0.00038 0.00078 0.00072 0.00110 0.00207 0.00068 0.00031 0.00295 0.00170
25 0.00018 0.00190 0.00112 0.00150 0.00257 0.00056 0.00029 0.00273 0.00161
35 0.00004 0.00288 0.00168 0.00208 0.00313 0.00045 0.00033 0.00271 0.00181
50 0.00037 0.00067 0.00263 0.00278 0.00407 0.00067 0.00073 0.00255 0.00119

400
5 0.00122 0.00089 0.00010 0.00012 0.00068 0.00253 0.00021 0.00075 0.00260

10 0.00010 0.00011 0.00024 0.00029 0.00107 0.00022 0.00025 0.00045 0.00174
15 0.00002 0.00009 0.00043 0.00075 0.00147 0.00018 0.00007 0.00166 0.00214
20 0.00003 0.00027 0.00049 0.00078 0.00139 0.00023 0.00008 0.00241 0.00283
25 0.00005 0.00040 0.00070 0.00108 0.00167 0.00028 0.00007 0.00241 0.00301
35 0.00022 0.00020 0.00104 0.00145 0.00192 0.00033 0.00006 0.00258 0.00359
50 0.00144 0.00298 0.00186 0.00235 0.00282 0.00113 0.00047 0.00214 0.00201

500
5 0.00147 0.00160 0.00006 0.00007 0.00050 0.00292 0.00094 0.00083 0.00217

10 0.00024 0.00009 0.00015 0.00022 0.00075 0.00048 0.00073 0.00030 0.00177
15 0.00014 0.00007 0.00033 0.00058 0.00108 0.00027 0.00033 0.00115 0.00240
20 0.00012 0.00013 0.00032 0.00061 0.00094 0.00024 0.00007 0.00193 0.00347
25 0.00032 0.00011 0.00054 0.00086 0.00120 0.00034 0.00004 0.00184 0.00368
35 0.00094 0.00037 0.00084 0.00121 0.00147 0.00073 0.00008 0.00192 0.00427
50 0.00328 0.01216 0.00147 0.00197 0.00221 0.00251 0.00095 0.00155 0.00229
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Table A8. Randomized block for MAX DEV - Reduced data set top p/3

p LCHF LLF NOSE ANOSE NAE REGEXT NN REGEXTALL NNALL
50

5 0.06306 0.11058 0.02424 0.02424 0.08607 0.09347 0.12370 0.10652 0.10602
10 0.03494 0.09351 0.09885 0.08118 0.18989 0.10176 0.15451 0.15932 0.32518
15 0.02762 0.06539 0.11548 0.08593 0.22473 0.10217 0.20328 0.19633 0.40745
20 0.02410 0.05988 0.15290 0.08652 0.27882 0.14690 0.23699 0.27300 0.46347
25 0.06314 0.10059 0.21116 0.06392 0.33725 0.20944 0.25454 0.36430 0.49188

75
5 0.04825 0.06872 0.02973 0.02973 0.08021 0.07651 0.11742 0.08073 0.06168

10 0.03003 0.02945 0.05536 0.05536 0.12346 0.02585 0.06108 0.05973 0.19118
15 0.04058 0.02314 0.08468 0.07790 0.17492 0.04764 0.11146 0.10029 0.28170
20 0.05102 0.04622 0.11012 0.08898 0.18845 0.05205 0.11427 0.12374 0.30433
25 0.02538 0.07123 0.15694 0.06949 0.23577 0.09507 0.13847 0.19169 0.33957
35 0.02310 0.03126 0.19835 0.07495 0.28014 0.16513 0.11794 0.29382 0.31863
50 0.13134 0.36368 0.29123 0.20044 0.36708 0.31005 0.09809 0.47944 0.26096

100
5 0.04771 0.04308 0.03695 0.03695 0.08068 0.07451 0.10517 0.07279 0.05929

10 0.03855 0.01909 0.04140 0.04140 0.10578 0.03002 0.05998 0.03494 0.13124
15 0.06428 0.03145 0.06767 0.06767 0.12984 0.05382 0.04394 0.04683 0.18519
20 0.06144 0.06970 0.08050 0.07822 0.16287 0.05979 0.06813 0.07296 0.22684
25 0.05983 0.10412 0.11585 0.09360 0.16859 0.05658 0.05780 0.09319 0.22708
35 0.03216 0.11797 0.15205 0.09963 0.20944 0.08198 0.04312 0.16359 0.21433
50 0.06262 0.08452 0.22038 0.14339 0.26557 0.20372 0.07465 0.31191 0.18671

150
5 0.02976 0.02087 0.02167 0.02167 0.05737 0.05392 0.08610 0.04427 0.06989

10 0.03228 0.00996 0.03845 0.03845 0.09026 0.02797 0.04886 0.03944 0.06702
15 0.07348 0.04252 0.04737 0.04737 0.08787 0.04954 0.03528 0.05577 0.08056
20 0.07075 0.08413 0.06302 0.06302 0.10679 0.06432 0.03804 0.06866 0.10326
25 0.06372 0.12454 0.07048 0.07048 0.11788 0.06587 0.04175 0.06163 0.11153
35 0.04348 0.15779 0.09973 0.08156 0.14440 0.06732 0.04308 0.06856 0.11167
50 0.02710 0.07483 0.13991 0.11178 0.17560 0.10951 0.06994 0.14497 0.08645

200
5 0.02558 0.01054 0.01612 0.01612 0.04704 0.04911 0.06678 0.03414 0.07488

10 0.04068 0.02453 0.02609 0.02609 0.06144 0.02632 0.04018 0.04218 0.04801
15 0.06175 0.03116 0.03646 0.04333 0.07086 0.04546 0.04017 0.06052 0.03554
20 0.06654 0.07707 0.04436 0.04944 0.07641 0.05804 0.05189 0.07382 0.03315
25 0.05504 0.11239 0.07055 0.07055 0.10381 0.04751 0.03243 0.06377 0.04076
35 0.04790 0.13914 0.07942 0.07931 0.10645 0.05846 0.05628 0.07534 0.03118
50 0.02916 0.07825 0.11713 0.09526 0.14564 0.08587 0.05965 0.07816 0.02847
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Table A8-Continued

p LCHF LLF NOSE ANOSE NAE REGEXT NN REGEXTALL NNALL
300

5 0.03328 0.01972 0.01586 0.01586 0.04111 0.05503 0.02261 0.03297 0.06601
10 0.01792 0.01694 0.02218 0.02218 0.05023 0.00976 0.01411 0.03520 0.04730
15 0.03062 0.01937 0.03095 0.03095 0.05596 0.03468 0.02307 0.06226 0.05307
20 0.02748 0.05012 0.03799 0.04249 0.06297 0.03292 0.02758 0.06802 0.05196
25 0.01905 0.07039 0.05248 0.05248 0.07433 0.03433 0.02825 0.06717 0.05112
35 0.00998 0.08419 0.05944 0.05944 0.08062 0.03365 0.03360 0.07199 0.06341
50 0.04741 0.04026 0.07958 0.08419 0.09704 0.07991 0.03802 0.07327 0.06394

400
5 0.03897 0.03340 0.01298 0.01298 0.03484 0.05951 0.02010 0.03270 0.05971

10 0.01769 0.01612 0.02067 0.02067 0.04889 0.02890 0.02422 0.02739 0.04730
15 0.00605 0.01317 0.02848 0.03869 0.05192 0.02240 0.01558 0.04840 0.05469
20 0.00904 0.03082 0.03206 0.03922 0.04894 0.02318 0.01669 0.06349 0.07242
25 0.01449 0.03797 0.04230 0.04284 0.05548 0.03647 0.01735 0.06662 0.07656
35 0.03310 0.02619 0.04374 0.04521 0.06190 0.05124 0.01415 0.07066 0.08646
50 0.08069 0.11592 0.06149 0.06930 0.07847 0.10290 0.03424 0.06396 0.08050

500
5 0.04472 0.04277 0.01070 0.01070 0.03026 0.06436 0.03819 0.03402 0.05331

10 0.02194 0.01449 0.01639 0.01727 0.04118 0.03969 0.03906 0.02280 0.04864
15 0.01769 0.01468 0.02386 0.03221 0.04028 0.03402 0.02820 0.04034 0.05865
20 0.02254 0.01882 0.02481 0.03468 0.03817 0.03769 0.01978 0.05482 0.07819
25 0.03496 0.01609 0.03163 0.03997 0.04612 0.04909 0.01858 0.05895 0.08389
35 0.06237 0.02497 0.03990 0.04694 0.05105 0.07479 0.02320 0.05934 0.10223
50 0.11860 0.22016 0.05669 0.05693 0.06718 0.12895 0.05240 0.05532 0.08375
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Table A9. Randomized block for MAPE - Reduced data set top p/3

p LCHF LLF NOSE ANOSE NAE REGEXT NN REGEXTALL NNALL
50

5 4.506 7.993 1.063 1.063 4.159 5.022 6.085 5.035 5.573
10 1.689 4.053 3.593 2.951 5.849 2.511 5.128 3.933 8.874
15 0.716 2.543 4.129 2.449 6.700 2.109 3.901 3.681 9.631
20 0.768 3.129 4.440 1.959 6.431 2.291 2.982 3.700 8.055
25 1.312 4.861 5.191 1.811 6.801 2.451 2.126 3.985 6.406

75
5 3.621 5.046 1.390 1.390 4.020 4.295 6.736 3.916 4.710

10 1.461 1.939 2.467 2.467 4.803 1.369 3.295 2.034 5.433
15 1.519 0.415 3.154 2.598 5.485 2.861 2.514 2.761 6.559
20 1.231 2.110 3.690 2.591 5.494 2.441 1.271 2.286 6.095
25 0.785 2.935 4.074 2.029 5.585 2.412 1.445 2.395 5.265
35 0.470 0.959 5.219 1.839 6.494 2.067 1.526 2.527 3.046
50 1.775 13.125 6.529 3.063 7.541 3.269 2.293 3.839 3.434

100
5 3.544 3.023 1.840 1.840 4.168 4.323 6.312 3.664 4.191

10 1.910 1.253 1.947 1.947 4.063 1.728 3.383 2.318 3.999
15 2.179 1.392 2.905 3.173 5.041 2.582 1.821 2.664 4.321
20 1.888 3.603 3.217 2.450 4.962 2.959 1.063 2.710 4.245
25 1.316 5.294 3.774 2.745 5.303 2.405 0.793 2.130 3.961
35 0.883 5.192 4.156 2.488 5.464 2.345 1.445 1.900 2.633
50 1.064 1.991 5.301 1.942 6.320 2.779 2.862 2.559 1.394

150
5 2.535 1.755 1.135 1.596 3.117 3.479 6.020 2.414 3.441

10 1.792 0.350 1.902 2.358 3.718 1.541 2.853 2.222 2.963
15 2.583 1.753 2.383 2.856 4.255 2.886 1.909 3.252 2.070
20 2.581 3.706 2.428 2.629 4.067 3.196 1.446 3.411 1.834
25 1.956 5.786 2.814 2.826 4.267 2.694 1.195 2.956 1.244
35 1.454 7.026 3.257 2.489 4.498 2.575 1.490 2.559 1.017
50 0.964 4.128 4.033 2.594 5.047 2.444 3.005 2.383 1.315

200
5 2.208 0.757 0.752 1.107 2.511 3.262 4.823 1.906 4.579

10 2.091 0.836 1.238 1.588 2.877 1.493 2.734 2.749 2.783
15 2.597 1.408 1.831 2.535 3.526 2.863 2.188 4.014 2.003
20 2.435 3.124 2.094 2.769 3.588 2.983 1.816 4.055 1.650
25 1.433 5.419 2.830 3.442 4.167 2.111 1.260 3.094 1.035
35 1.456 6.216 2.709 2.869 3.856 2.353 1.632 3.151 1.098
50 0.805 4.588 3.646 2.921 4.588 1.964 2.584 2.634 1.120
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Table A9-Continued

p LCHF LLF NOSE ANOSE NAE REGEXT NN REGEXTALL NNALL
300

5 2.823 1.438 0.965 1.208 2.435 4.020 1.330 2.270 4.696
10 1.153 0.891 1.195 1.436 2.587 0.730 0.657 2.404 3.454
15 1.748 0.761 1.328 1.830 2.787 1.963 1.264 4.210 3.462
20 1.403 1.927 1.813 2.505 3.105 1.943 1.173 4.139 3.140
25 0.952 3.135 2.102 2.780 3.272 1.735 1.048 3.808 2.896
35 0.442 3.810 2.544 3.142 3.495 1.385 0.904 3.468 2.629
50 0.793 1.452 2.972 3.089 3.670 1.200 1.655 3.128 1.835

400
5 3.144 2.710 0.787 0.973 2.083 4.442 1.091 2.412 4.588

10 0.678 0.802 1.267 1.450 2.499 0.735 1.260 1.761 3.585
15 0.283 0.735 1.596 2.153 2.896 0.981 0.525 3.307 3.778
20 0.380 1.178 1.604 2.143 2.766 1.167 0.577 3.806 4.073
25 0.432 1.317 1.783 2.466 2.840 1.100 0.527 3.678 3.997
35 0.697 0.941 2.213 2.836 2.963 0.891 0.422 3.542 3.861
50 1.789 3.247 2.713 3.241 3.306 1.184 1.369 3.032 2.262

500
5 3.443 3.679 0.594 0.744 1.767 4.818 2.660 2.574 4.246

10 1.168 0.734 0.998 1.284 2.122 1.440 2.261 1.447 3.677
15 0.900 0.566 1.436 1.895 2.627 0.823 1.437 2.800 4.016
20 0.712 0.734 1.320 1.894 2.338 0.801 0.420 3.514 4.587
25 1.049 0.696 1.730 2.293 2.590 0.797 0.292 3.268 4.394
35 1.777 1.490 2.093 2.661 2.759 1.261 0.437 3.125 4.261
50 2.993 6.986 2.540 3.179 3.084 2.452 1.947 2.699 2.509
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Table A10. R-Squares on full data set

NOSE ANOSE NAE REGEXTALL NNALL
1 0.988183 0.995148 0.984908 0.964939 0.953570
2 0.992158 0.996822 0.990605 0.969729 0.972648
3 0.994575 0.997226 0.993808 0.973278 0.981863
4 0.996135 0.996716 0.995656 0.975273 0.987473
5 0.997467 0.995308 0.997352 0.979349 0.990369
6 0.997704 0.992713 0.997801 0.982351 0.989315
7 0.997369 0.990072 0.997623 0.985090 0.986402
8 0.996248 0.987348 0.996696 0.987138 0.980327
9 0.993012 0.982849 0.993498 0.987560 0.982256

10 0.989591 0.978364 0.990079 0.989110 0.977082
11 0.985800 0.976383 0.986265 0.989799 0.971175
12 0.981695 0.971747 0.982255 0.989219 0.966357
13 0.976440 0.976818 0.977492 0.987676 0.962494
14 0.962163 0.962036 0.962629 0.988389 0.963921
15 0.955377 0.968937 0.955790 0.985609 0.963402
16 0.949970 0.963950 0.950541 0.982257 0.965571
17 0.944514 0.967334 0.945622 0.977973 0.968060
18 0.937966 0.966487 0.940317 0.973019 0.971165
19 0.920005 0.952427 0.920115 0.972046 0.975411
20 0.918828 0.962846 0.919144 0.966115 0.978816
21 0.917275 0.972440 0.918115 0.960091 0.981948
22 0.916219 0.987331 0.918022 0.954872 0.983979
23 0.910520 0.984344 0.914142 0.949198 0.985299
24 0.900134 0.978630 0.900495 0.944427 0.989246
25 0.903269 0.982674 0.904198 0.939125 0.990273
26 0.904840 0.981071 0.906618 0.934691 0.990921
27 0.904084 0.978238 0.907102 0.928548 0.991177
28 0.901656 0.969897 0.903930 0.923038 0.991217
29 0.907037 0.980060 0.908345 0.919025 0.994123
30 0.910602 0.979024 0.912187 0.914530 0.994431
31 0.910117 0.973221 0.912595 0.909795 0.994615
32 0.911368 0.974232 0.912832 0.905410 0.994446
33 0.910797 0.965467 0.914896 0.900269 0.994278
34 0.923604 0.990547 0.924848 0.898115 0.996135
35 0.924293 0.986852 0.926111 0.893344 0.995953
36 0.926721 0.986416 0.927631 0.889182 0.995548
37 0.926340 0.972296 0.928993 0.884232 0.995176
38 0.925802 0.972432 0.928826 0.879185 0.994687
39 0.929292 0.983290 0.930606 0.878589 0.995624
40 0.932026 0.988416 0.932778 0.874751 0.994742
41 0.931074 0.982690 0.933121 0.869990 0.993798
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Table A10-Continued

NOSE ANOSE NAE REGEXTALL NNALL
42 0.930397 0.984868 0.932548 0.865154 0.993513
43 0.926192 0.970557 0.928547 0.859605 0.992744
44 0.914171 0.992039 0.915616 0.861330 0.992059
45 0.910448 0.983959 0.913212 0.857173 0.990522
46 0.908013 0.983273 0.910889 0.852165 0.989494
47 0.902718 0.972677 0.905734 0.847625 0.988287
48 0.895350 0.964342 0.894963 0.841878 0.987527
49 0.883222 0.991742 0.885440 0.850330 0.981266
50 0.887123 0.989682 0.889625 0.848577 0.980203
51 0.889252 0.989003 0.892089 0.845047 0.979234
52 0.894732 0.986051 0.893732 0.842082 0.978378
53 0.888305 0.984496 0.892070 0.839161 0.977335
54 0.886794 0.962033 0.891180 0.836027 0.976866
55 0.885252 0.952897 0.887247 0.831783 0.976963
56 0.885904 0.956753 0.881018 0.827976 0.976926
57 0.878064 0.914834 0.870633 0.823248 0.976995
58 0.872124 0.935437 0.857637 0.818003 0.978047
59 0.948371 0.991893 0.950153 0.853532 0.977602
60 0.946984 0.993731 0.948987 0.851786 0.977711
61 0.944892 0.967647 0.947156 0.849677 0.978162
62 0.941676 0.962864 0.944284 0.848970 0.978118
63 0.943226 0.962430 0.940860 0.847125 0.978386
64 0.945598 0.968602 0.936635 0.844970 0.979093
65 0.942152 0.956835 0.930072 0.844687 0.980506
66 0.938211 0.947349 0.922335 0.842287 0.982546
67 0.931817 0.939412 0.911268 0.839500 0.984115
68 0.920468 0.854904 0.895099 0.836761 0.985192
69 0.995831 0.997761 0.995831 0.870882 0.982098
70 0.994573 0.996195 0.994573 0.870831 0.985005
71 0.997808 0.978817 0.993322 0.870682 0.989088
72 0.997407 0.996151 0.991553 0.871528 0.992102
73 0.992654 0.996835 0.990158 0.870322 0.994751
74 0.985094 0.957381 0.988289 0.870360 0.996290
75 0.979135 0.984940 0.985519 0.872054 0.996687
76 0.962907 0.964231 0.982654 0.873868 0.996386
77 0.953871 0.860002 0.974194 0.875948 0.995492
78 0.925383 0.950551 0.954940 0.879158 0.994029
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Table A11. MAD on full data set

NOSE ANOSE NAE REGEXTALL NNALL
1 0.052939 0.058069 0.091568 0.108807 0.098264
2 0.062905 0.025703 0.093468 0.073856 0.067945
3 0.068117 0.027674 0.089253 0.058972 0.05463
4 0.071528 0.033763 0.088213 0.052535 0.042814
5 0.065425 0.035623 0.078031 0.045562 0.037155
6 0.059918 0.036539 0.069985 0.040767 0.034355
7 0.053564 0.035599 0.061749 0.0365 0.032236
8 0.048141 0.035615 0.055248 0.033369 0.031825
9 0.044637 0.036177 0.050244 0.031388 0.027486

10 0.040834 0.035348 0.045287 0.02966 0.027519
11 0.03838 0.033836 0.042267 0.028208 0.028274
12 0.036984 0.033385 0.040282 0.028224 0.029633
13 0.036243 0.029751 0.039472 0.029114 0.031112
14 0.038575 0.032471 0.040344 0.029539 0.028616
15 0.039865 0.031185 0.041665 0.031732 0.029955
16 0.041305 0.030936 0.042961 0.03364 0.030906
17 0.042307 0.028689 0.044227 0.03611 0.031307
18 0.042878 0.027644 0.044909 0.038775 0.032308
19 0.04788 0.027554 0.049249 0.039375 0.029363
20 0.049831 0.024514 0.051354 0.042185 0.029518
21 0.051063 0.021949 0.052997 0.04498 0.029804
22 0.051602 0.019706 0.053985 0.047218 0.029384
23 0.053847 0.021829 0.05492 0.049198 0.029096
24 0.059944 0.023512 0.061566 0.049937 0.024739
25 0.060579 0.022292 0.06271 0.052461 0.023729
26 0.059996 0.023 0.062681 0.054589 0.022561
27 0.060876 0.025202 0.062534 0.057149 0.021675
28 0.063678 0.029506 0.064258 0.05925 0.0207
29 0.067443 0.025407 0.069639 0.058135 0.016537
30 0.065361 0.024261 0.068416 0.060236 0.015703
31 0.065391 0.025539 0.067478 0.062251 0.014951
32 0.065754 0.025964 0.06736 0.064387 0.015097
33 0.068005 0.029648 0.06788 0.066487 0.015455
34 0.067929 0.021228 0.07135 0.064292 0.013648
35 0.066183 0.020126 0.068819 0.066552 0.014518
36 0.065114 0.020793 0.06734 0.06857 0.016414
37 0.065713 0.025232 0.066529 0.070405 0.018405
38 0.067129 0.027285 0.066825 0.072284 0.019998
39 0.06576 0.020329 0.068448 0.069181 0.021159
40 0.063896 0.019134 0.066284 0.071145 0.02291
41 0.063984 0.023019 0.065115 0.07331 0.024368
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Table A11-Continued

NOSE ANOSE NAE REGEXTALL NNALL
42 0.065182 0.025184 0.064991 0.075125 0.025047
43 0.068768 0.032068 0.067884 0.077059 0.025758
44 0.067463 0.020812 0.069353 0.071545 0.028006
45 0.068936 0.02586 0.069683 0.073454 0.028967
46 0.071035 0.029882 0.070697 0.07556 0.029467
47 0.075224 0.036847 0.073745 0.077433 0.030017
48 0.079535 0.040794 0.079622 0.079148 0.029967
49 0.076712 0.025761 0.079961 0.0705 0.032757
50 0.073109 0.025206 0.076723 0.07235 0.032957
51 0.068465 0.024247 0.072493 0.074532 0.033134
52 0.064098 0.023814 0.068515 0.076501 0.033669
53 0.063941 0.024826 0.066008 0.078174 0.034049
54 0.063942 0.032973 0.06496 0.080049 0.034254
55 0.06599 0.038427 0.066305 0.082058 0.034444
56 0.068534 0.036659 0.069759 0.083449 0.034593
57 0.073443 0.047102 0.076601 0.084964 0.034784
58 0.077499 0.049374 0.085765 0.086206 0.033743
59 0.056326 0.02137 0.061193 0.075658 0.034115
60 0.050954 0.019837 0.054906 0.077262 0.032026
61 0.047714 0.024201 0.050303 0.078722 0.030597
62 0.047324 0.029741 0.049102 0.07969 0.029845
63 0.047538 0.034213 0.049087 0.080717 0.030166
64 0.048825 0.030849 0.051998 0.081753 0.030676
65 0.053063 0.042896 0.0577 0.082 0.030921
66 0.057639 0.043127 0.066879 0.082609 0.030436
67 0.0624 0.054883 0.079194 0.08315 0.03013
68 0.071277 0.067801 0.097327 0.083965 0.030191
69 0.022888 0.013704 0.025058 0.073118 0.023405
70 0.025811 0.025267 0.02606 0.073715 0.020601
71 0.02715 0.027988 0.030486 0.074271 0.01884
72 0.03334 0.032504 0.038976 0.074386 0.019324
73 0.044123 0.050812 0.052988 0.075057 0.021126
74 0.058363 0.058299 0.072256 0.075284 0.025981
75 0.071829 0.069709 0.097155 0.074665 0.030603
76 0.089061 0.094038 0.127819 0.074 0.035176
77 0.104393 0.105428 0.161288 0.073787 0.039583
78 0.125835 0.116446 0.201092 0.073504 0.043009
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Table A12. MAPE on full data set

NOSE ANOSE NAE REGEXTALL NNALL
1 2.538382 2.829654 4.245703 5.080094 4.874025
2 2.979551 1.467762 4.645465 3.844278 3.989269
3 3.475105 1.759174 4.687533 3.394699 3.61535
4 3.833908 2.215322 4.824558 3.204709 2.87126
5 3.689329 2.392035 4.452395 2.97875 2.589603
6 3.571418 2.482266 4.202934 2.816725 2.51495
7 3.386019 2.492265 3.924583 2.643911 2.490029
8 3.240543 2.545876 3.755454 2.5431 2.666719
9 3.049413 2.563009 3.421641 2.312872 2.014317

10 3.004476 2.597098 3.31642 2.252377 2.145657
11 3.046076 2.564372 3.347878 2.232118 2.369992
12 3.150383 2.60224 3.45221 2.359096 2.712656
13 3.23111 2.372883 3.600864 2.605594 3.132968
14 3.499163 2.63706 3.654968 2.486959 2.468242
15 3.869306 2.653758 4.054325 2.835098 2.786373
16 4.252277 2.718725 4.452905 3.189269 3.09829
17 4.577869 2.597117 4.850782 3.647049 3.418125
18 4.827191 2.759254 5.120043 4.188963 3.872778
19 5.538919 2.663869 5.726729 3.936962 3.033729
20 6.044125 2.469423 6.296609 4.450406 3.276522
21 6.408973 2.449107 6.768451 5.009454 3.565277
22 6.622928 2.238312 7.081785 5.589785 3.862606
23 7.620413 2.695282 7.591981 6.179238 4.22701
24 8.279537 2.96204 8.598947 5.912192 2.985406
25 8.626572 2.846633 9.073954 6.549322 3.073347
26 8.691493 2.950347 9.271076 7.19988 3.168212
27 9.618554 3.556749 9.696441 8.006591 3.385313
28 11.23625 5.658116 11.21086 8.887057 3.654569
29 10.69993 3.897634 11.24851 8.093972 2.240801
30 10.50475 3.649543 11.25271 8.878353 2.306878
31 11.52575 4.888959 11.66983 9.744561 2.374873
32 12.85283 6.095538 13.04813 10.82962 2.648429
33 14.24173 7.720169 14.09172 12.12614 3.0108
34 11.85974 4.880151 12.79996 10.72542 2.284577
35 12.76772 5.374499 12.99063 11.97053 2.695399
36 13.676 6.427546 14.03379 13.28379 3.358973
37 14.7013 8.762928 14.77308 14.94447 4.259382
38 15.50886 9.397493 15.48113 17.17784 5.48997
39 13.29908 6.977262 13.36618 14.16656 5.277041
40 13.4644 6.609338 13.87244 15.82581 6.340718
41 14.19153 8.363717 14.32231 18.35505 7.167859
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Table A12-Continued

NOSE ANOSE NAE REGEXTALL NNALL
42 14.92529 8.721534 14.49022 21.7631 7.610085
43 17.81351 12.42343 17.5562 27.42337 8.083957
44 13.60376 6.035202 13.56036 18.84364 6.818017
45 15.69071 8.734036 15.19912 23.26685 7.273487
46 17.36776 10.17657 16.94172 30.44676 7.763693
47 19.466 12.98805 19.05925 45.87301 8.367931
48 21.40141 14.33832 22.41408 96.96384 9.013923
49 13.38491 4.597255 14.02715 10.57724 4.94939
50 12.96211 4.507667 13.71132 11.05016 5.16035
51 12.25039 4.305636 13.13007 11.64246 5.413034
52 12.02324 4.582798 12.67456 12.2477 5.777433
53 13.0556 4.72342 13.1097 12.8204 6.174817
54 14.49841 8.306659 14.23084 13.51362 6.587719
55 16.44547 11.10381 16.3193 14.22187 7.109289
56 17.92084 10.47179 19.45759 14.85636 7.736992
57 20.17237 14.61132 24.33372 15.59066 8.509554
58 22.03075 15.42647 31.73909 16.42539 9.162635
59 12.00123 4.579843 13.24703 13.76885 7.451766
60 11.55058 4.815516 12.14605 14.50749 7.682721
61 12.26338 7.029 12.30883 15.24783 8.11941
62 14.21336 10.54443 13.91657 15.93468 8.767641
63 15.8668 13.17558 16.40143 16.63478 9.849672
64 17.16282 11.83588 20.49073 17.57798 11.19975
65 19.21228 16.58248 26.49325 18.37026 12.09986
66 21.19209 17.22869 35.39342 19.42903 12.83016
67 22.7725 21.68946 48.54281 20.6594 13.78072
68 26.55001 25.53624 69.80378 22.4764 15.06226
69 8.722019 6.445164 8.050508 18.48751 12.32259
70 13.76339 14.04239 12.19093 19.70798 12.72695
71 15.85439 15.66288 18.92015 21.1437 12.82129
72 19.29365 16.62322 28.65578 22.51272 13.50526
73 24.31913 24.25838 42.93835 24.57687 14.58083
74 30.25894 28.42054 62.86085 26.91381 16.54277
75 35.03002 32.21437 90.49694 29.36431 18.6072
76 41.30139 42.04737 130.9067 32.8894 20.95745
77 46.23708 45.81892 184.887 36.47421 23.51481
78 53.14535 49.37806 275.0229 42.96141 26.26657
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Table A13. Randomized block for MSE - Full data set

p NOSE ANOSE NAE REGEXTALL NNALL
50

5 0.00024 0.00038 0.00271 0.00405 0.01010
10 0.00437 0.00153 0.00974 0.00784 0.03471
15 0.00686 0.00130 0.01261 0.00789 0.03588
20 0.01038 0.00114 0.01664 0.00863 0.03078
25 0.01660 0.00138 0.02331 0.01112 0.02402
30 0.02451 0.00365 0.03209 0.01505 0.01755
35 0.03291 0.00480 0.04133 0.02019 0.01305
40 0.04278 0.00827 0.05192 0.02657 0.01225
45 0.05106 0.01486 0.06067 0.03241 0.01541
50 0.06466 0.02240 0.07509 0.04188 0.02302

75
5 0.00039 0.00032 0.00240 0.00232 0.00769

10 0.00171 0.00092 0.00458 0.00190 0.01492
15 0.00326 0.00111 0.00681 0.00217 0.01588
20 0.00530 0.00134 0.00902 0.00149 0.01316
25 0.00849 0.00109 0.01263 0.00221 0.01097
30 0.01198 0.00150 0.01624 0.00304 0.00798
35 0.01617 0.00234 0.02027 0.00403 0.00506
40 0.02038 0.00316 0.02504 0.00562 0.00346
45 0.02478 0.00399 0.02991 0.00779 0.00328
50 0.02935 0.00545 0.03476 0.00978 0.00390

100
5 0.00052 0.00049 0.00240 0.00189 0.00621

10 0.00105 0.00059 0.00309 0.00098 0.00859
15 0.00207 0.00108 0.00449 0.00090 0.00772
20 0.00236 0.00237 0.00434 0.00280 0.00424
25 0.00534 0.00131 0.00820 0.00092 0.00511
30 0.00633 0.00140 0.00890 0.00144 0.00307
35 0.00922 0.00200 0.01195 0.00223 0.00249
40 0.01236 0.00200 0.01514 0.00299 0.00195
45 0.01477 0.00261 0.01797 0.00347 0.00138
50 0.01809 0.00306 0.02238 0.00404 0.00126
60 0.02358 0.00435 0.03123 0.00571 0.00198
70 0.03100 0.00666 0.04351 0.01085 0.00371
80 0.03964 0.01066 0.05839 0.02390 0.00579
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Table A13-Continued

p NOSE ANOSE NAE REGEXTALL NNALL
150

5 0.00017 0.00026 0.00120 0.00078 0.00490
10 0.00074 0.00054 0.00218 0.00060 0.00427
15 0.00117 0.00077 0.00260 0.00093 0.00226
20 0.00172 0.00085 0.00329 0.00147 0.00132
25 0.00259 0.00112 0.00428 0.00195 0.00089
30 0.00363 0.00127 0.00528 0.00282 0.00063
35 0.00453 0.00134 0.00616 0.00386 0.00059
40 0.00605 0.00181 0.00768 0.00424 0.00053
45 0.00744 0.00227 0.00895 0.00451 0.00046
50 0.00914 0.00208 0.01056 0.00457 0.00045
60 0.01285 0.00313 0.01484 0.00405 0.00063
70 0.01643 0.00349 0.02036 0.00435 0.00134
80 0.01969 0.00388 0.02620 0.00813 0.00274

200
5 0.00009 0.00014 0.00078 0.00057 0.00459

10 0.00032 0.00023 0.00115 0.00063 0.00252
15 0.00067 0.00054 0.00165 0.00130 0.00092
20 0.00110 0.00070 0.00214 0.00198 0.00033
25 0.00206 0.00123 0.00333 0.00235 0.00016
30 0.00212 0.00105 0.00327 0.00399 0.00030
35 0.00269 0.00125 0.00369 0.00510 0.00031
40 0.00398 0.00160 0.00511 0.00524 0.00022
45 0.00458 0.00175 0.00560 0.00601 0.00025
50 0.00596 0.00219 0.00697 0.00586 0.00020
60 0.00805 0.00242 0.00891 0.00557 0.00056
70 0.01063 0.00295 0.01164 0.00469 0.00171
80 0.01301 0.00354 0.01414 0.00531 0.00376

300
5 0.00010 0.00013 0.00064 0.00061 0.00388

10 0.00023 0.00018 0.00081 0.00044 0.00166
15 0.00038 0.00029 0.00100 0.00137 0.00091
20 0.00071 0.00054 0.00143 0.00193 0.00075
25 0.00106 0.00072 0.00182 0.00273 0.00087
30 0.00126 0.00082 0.00196 0.00385 0.00108
35 0.00164 0.00105 0.00231 0.00476 0.00100
40 0.00192 0.00122 0.00248 0.00581 0.00099
45 0.00258 0.00146 0.00316 0.00608 0.00062
50 0.00290 0.00168 0.00342 0.00654 0.00050
60 0.00413 0.00209 0.00460 0.00645 0.00056
70 0.00562 0.00302 0.00605 0.00554 0.00153
80 0.00726 0.00249 0.00760 0.00509 0.00362
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Table A13-Continued

p NOSE ANOSE NAE REGEXTALL NNALL
400

5 0.00006 0.00009 0.00045 0.00078 0.00285
10 0.00022 0.00017 0.00070 0.00026 0.00128
15 0.00038 0.00038 0.00091 0.00083 0.00092
20 0.00050 0.00040 0.00100 0.00152 0.00138
25 0.00068 0.00052 0.00120 0.00221 0.00174
30 0.00085 0.00063 0.00132 0.00297 0.00198
35 0.00103 0.00075 0.00147 0.00378 0.00191
40 0.00137 0.00100 0.00180 0.00433 0.00151
45 0.00170 0.00123 0.00206 0.00477 0.00120
50 0.00191 0.00134 0.00229 0.00515 0.00083
60 0.00264 0.00164 0.00293 0.00531 0.00066
70 0.00348 0.00203 0.00373 0.00505 0.00125
80 0.00458 0.00255 0.00478 0.00444 0.00305

500
5 0.00004 0.00005 0.00033 0.00084 0.00224

10 0.00013 0.00013 0.00049 0.00019 0.00105
15 0.00028 0.00029 0.00067 0.00059 0.00110
20 0.00031 0.00030 0.00067 0.00118 0.00188
25 0.00053 0.00044 0.00091 0.00147 0.00218
30 0.00059 0.00048 0.00092 0.00211 0.00255
35 0.00078 0.00059 0.00111 0.00247 0.00230
40 0.00102 0.00079 0.00131 0.00287 0.00195
45 0.00121 0.00093 0.00150 0.00319 0.00146
50 0.00147 0.00109 0.00178 0.00335 0.00098
60 0.00189 0.00143 0.00207 0.00382 0.00075
70 0.00260 0.00171 0.00279 0.00368 0.00109
80 0.00323 0.00209 0.00334 0.00379 0.00234

750
5 0.00004 0.00006 0.00025 0.00134 0.00074

10 0.00007 0.00007 0.00029 0.00005 0.00055
15 0.00020 0.00021 0.00047 0.00014 0.00094
20 0.00023 0.00023 0.00047 0.00029 0.00172
25 0.00032 0.00032 0.00054 0.00035 0.00217
30 0.00037 0.00034 0.00056 0.00042 0.00238
35 0.00047 0.00043 0.00066 0.00042 0.00215
40 0.00062 0.00053 0.00081 0.00040 0.00171
45 0.00070 0.00058 0.00089 0.00045 0.00129
50 0.00081 0.00067 0.00095 0.00050 0.00101
60 0.00110 0.00093 0.00121 0.00065 0.00058
70 0.00146 0.00121 0.00153 0.00092 0.00075
80 0.00177 0.00138 0.00181 0.00159 0.00148
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Table A13-Continued

p NOSE ANOSE NAE REGEXTALL NNALL
1000

5 0.00002 0.00003 0.00017 0.00172 0.00017
10 0.00005 0.00006 0.00020 0.00008 0.00025
15 0.00011 0.00012 0.00028 0.00004 0.00072
20 0.00016 0.00018 0.00033 0.00013 0.00121
25 0.00025 0.00026 0.00041 0.00024 0.00142
30 0.00030 0.00029 0.00045 0.00034 0.00149
35 0.00042 0.00039 0.00056 0.00048 0.00125
40 0.00041 0.00039 0.00053 0.00056 0.00111
45 0.00051 0.00046 0.00062 0.00065 0.00081
50 0.00056 0.00051 0.00065 0.00067 0.00060
60 0.00079 0.00070 0.00085 0.00056 0.00035
70 0.00095 0.00083 0.00099 0.00035 0.00049
80 0.00123 0.00107 0.00125 0.00049 0.00112

1500
5 0.00000 0.00001 0.00006 0.00243 0.00003

10 0.00003 0.00003 0.00012 0.00043 0.00010
15 0.00007 0.00007 0.00016 0.00045 0.00024
20 0.00012 0.00013 0.00023 0.00121 0.00033
25 0.00015 0.00016 0.00025 0.00231 0.00038
30 0.00019 0.00020 0.00028 0.00380 0.00034
35 0.00024 0.00025 0.00032 0.00560 0.00025
40 0.00029 0.00030 0.00037 0.00737 0.00015
45 0.00033 0.00032 0.00039 0.00885 0.00009
50 0.00039 0.00039 0.00045 0.00995 0.00006
60 0.00049 0.00048 0.00053 0.01001 0.00015
70 0.00062 0.00059 0.00064 0.00714 0.00047
80 0.00075 0.00070 0.00075 0.00325 0.00096

2000
5 0.00001 0.00002 0.00009 0.00339 0.00026

10 0.00004 0.00004 0.00012 0.00108 0.00017
15 0.00005 0.00006 0.00014 0.00147 0.00011
20 0.00008 0.00008 0.00015 0.00322 0.00008
25 0.00011 0.00012 0.00018 0.00631 0.00005
30 0.00013 0.00014 0.00019 0.01029 0.00003
35 0.00018 0.00019 0.00024 0.01528 0.00003
40 0.00021 0.00022 0.00027 0.02019 0.00004
45 0.00024 0.00025 0.00028 0.02470 0.00008
50 0.00027 0.00028 0.00029 0.02801 0.00013
60 0.00035 0.00036 0.00038 0.02999 0.00037
70 0.00044 0.00045 0.00045 0.02326 0.00069
80 0.00055 0.00054 0.00055 0.01229 0.00116
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Table A14. Randomized block for MAX DEV - Full data set

p NOSE ANOSE NAE REGEXTALL NNALL
50

5 0.02424 0.02424 0.08607 0.10652 0.13181
10 0.09885 0.08118 0.18989 0.15932 0.32518
15 0.11548 0.08593 0.22473 0.19633 0.40745
20 0.15290 0.08652 0.27882 0.27300 0.46347
25 0.21116 0.09303 0.33725 0.36430 0.49188
30 0.26556 0.13400 0.38109 0.44687 0.48519
35 0.30685 0.15549 0.44821 0.55635 0.49194
40 0.35996 0.20122 0.50053 0.65334 0.48371
45 0.40642 0.24876 0.55853 0.75755 0.48892
50 0.48113 0.32376 0.61308 0.85932 0.50412

75
5 0.02973 0.02973 0.08021 0.08073 0.12782

10 0.05536 0.05536 0.12346 0.06533 0.19118
15 0.08468 0.07790 0.17492 0.10029 0.28170
20 0.11012 0.08898 0.18845 0.12374 0.30433
25 0.15694 0.06949 0.23577 0.19169 0.33957
30 0.17182 0.09405 0.26485 0.24766 0.34128
35 0.19835 0.17124 0.28014 0.29382 0.31863
40 0.23313 0.14600 0.30205 0.34910 0.29605
45 0.26779 0.14411 0.34402 0.42647 0.29103
50 0.29123 0.20044 0.36708 0.47944 0.26096

100
5 0.03695 0.03695 0.08068 0.07279 0.11618

10 0.04140 0.04140 0.10578 0.03715 0.14411
15 0.06767 0.06767 0.12984 0.04683 0.18519
20 0.08278 0.11572 0.16287 0.08319 0.22684
25 0.11585 0.09360 0.16859 0.09319 0.22708
30 0.12146 0.08399 0.16848 0.11388 0.21166
35 0.15205 0.13522 0.20944 0.16359 0.21433
40 0.18645 0.12562 0.23115 0.21750 0.21377
45 0.19140 0.18500 0.24177 0.25672 0.19367
50 0.22038 0.17400 0.26557 0.31191 0.18671
60 0.24967 0.21681 0.37829 0.40750 0.15588
70 0.30412 0.29415 0.50033 0.51080 0.13839
80 0.35581 0.36339 0.62759 0.63237 0.18981
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Table A14-Continued

p NOSE ANOSE NAE REGEXTALL NNALL
50

5 0.02424 0.02424 0.08607 0.10652 0.13181
10 0.09885 0.08118 0.18989 0.15932 0.32518
15 0.11548 0.08593 0.22473 0.19633 0.40745
20 0.15290 0.08652 0.27882 0.27300 0.46347
25 0.21116 0.09303 0.33725 0.36430 0.49188
30 0.26556 0.13400 0.38109 0.44687 0.48519
35 0.30685 0.15549 0.44821 0.55635 0.49194
40 0.35996 0.20122 0.50053 0.65334 0.48371
45 0.40642 0.24876 0.55853 0.75755 0.48892
50 0.48113 0.32376 0.61308 0.85932 0.50412

75
5 0.02973 0.02973 0.08021 0.08073 0.12782

10 0.05536 0.05536 0.12346 0.06533 0.19118
15 0.08468 0.07790 0.17492 0.10029 0.28170
20 0.11012 0.08898 0.18845 0.12374 0.30433
25 0.15694 0.06949 0.23577 0.19169 0.33957
30 0.17182 0.09405 0.26485 0.24766 0.34128
35 0.19835 0.17124 0.28014 0.29382 0.31863
40 0.23313 0.14600 0.30205 0.34910 0.29605
45 0.26779 0.14411 0.34402 0.42647 0.29103
50 0.29123 0.20044 0.36708 0.47944 0.26096

100
5 0.03695 0.03695 0.08068 0.07279 0.11618

10 0.04140 0.04140 0.10578 0.03715 0.14411
15 0.06767 0.06767 0.12984 0.04683 0.18519
20 0.08278 0.11572 0.16287 0.08319 0.22684
25 0.11585 0.09360 0.16859 0.09319 0.22708
30 0.12146 0.08399 0.16848 0.11388 0.21166
35 0.15205 0.13522 0.20944 0.16359 0.21433
40 0.18645 0.12562 0.23115 0.21750 0.21377
45 0.19140 0.18500 0.24177 0.25672 0.19367
50 0.22038 0.17400 0.26557 0.31191 0.18671
60 0.24967 0.21681 0.37829 0.40750 0.15588
70 0.30412 0.29415 0.50033 0.51080 0.13839
80 0.35581 0.36339 0.62759 0.63237 0.18981
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Table A14-Continued

p NOSE ANOSE NAE REGEXTALL NNALL
400

5 0.01298 0.01298 0.03484 0.03270 0.05971
10 0.02067 0.02067 0.04889 0.02739 0.04730
15 0.02848 0.03869 0.05192 0.04840 0.05469
20 0.03300 0.03922 0.04894 0.06349 0.07242
25 0.04230 0.04284 0.05548 0.06662 0.07656
30 0.04338 0.04425 0.05527 0.07684 0.08539
35 0.04726 0.04521 0.06190 0.09028 0.08646
40 0.05709 0.06007 0.07230 0.10010 0.08860
45 0.06146 0.07847 0.07493 0.10702 0.09209
50 0.07581 0.09348 0.07847 0.11008 0.08050
60 0.11567 0.11567 0.09115 0.11248 0.07554
70 0.15390 0.15390 0.12767 0.10841 0.05827
80 0.19259 0.19259 0.16479 0.10878 0.09199

500
5 0.01070 0.01070 0.03026 0.03402 0.05331

10 0.01639 0.01727 0.04118 0.02280 0.04864
15 0.02386 0.03221 0.04028 0.04034 0.05865
20 0.02592 0.03468 0.03817 0.05482 0.07819
25 0.03315 0.03997 0.04612 0.05895 0.08389
30 0.03666 0.04195 0.04753 0.06342 0.09682
35 0.04113 0.04694 0.05105 0.07260 0.10223
40 0.04966 0.05446 0.06041 0.08179 0.09713
45 0.04949 0.06478 0.06108 0.08736 0.09558
50 0.06402 0.08018 0.06718 0.08977 0.08375
60 0.09450 0.11072 0.07256 0.09676 0.08956
70 0.12594 0.12594 0.10248 0.09403 0.06520
80 0.15833 0.15833 0.13346 0.09347 0.07680

750
5 0.00904 0.01106 0.02501 0.04180 0.03005

10 0.01337 0.01337 0.03183 0.01077 0.03749
15 0.02007 0.02575 0.03604 0.02153 0.05183
20 0.02160 0.02916 0.03321 0.03099 0.06748
25 0.02450 0.03318 0.03521 0.03473 0.08048
30 0.02712 0.03807 0.03580 0.03643 0.09314
35 0.03148 0.03900 0.03931 0.03654 0.09182
40 0.03611 0.04248 0.04489 0.03363 0.09082
45 0.04050 0.04463 0.04986 0.03255 0.08730
50 0.04771 0.05539 0.04856 0.03269 0.08621
60 0.06740 0.08113 0.05394 0.04774 0.07443
70 0.09019 0.10431 0.07103 0.06186 0.06663
80 0.11466 0.11466 0.09436 0.09221 0.05932
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Table A14-Continued

p NOSE ANOSE NAE REGEXTALL NNALL
1000

5 0.00677 0.00830 0.02059 0.04811 0.01551
10 0.01139 0.01151 0.02448 0.01704 0.02522
15 0.01545 0.01935 0.02611 0.01259 0.03780
20 0.01806 0.02366 0.02702 0.02377 0.05213
25 0.02230 0.02825 0.03052 0.03690 0.05945
30 0.02515 0.03250 0.03381 0.04683 0.06617
35 0.02967 0.03780 0.03864 0.05980 0.06791
40 0.03516 0.03928 0.03594 0.06640 0.06808
45 0.03833 0.04123 0.03834 0.07152 0.06655
50 0.04591 0.04591 0.03962 0.07325 0.06191
60 0.06011 0.06396 0.04366 0.06807 0.05199
70 0.07002 0.08367 0.05342 0.08367 0.03690
80 0.09178 0.10451 0.07420 0.10733 0.05180

1500
5 0.00242 0.00350 0.01215 0.05642 0.00650

10 0.00843 0.01028 0.01898 0.04061 0.01666
15 0.01151 0.01425 0.01797 0.04374 0.02549
20 0.01584 0.01863 0.02173 0.08076 0.02819
25 0.01728 0.02207 0.02331 0.11377 0.02990
30 0.01989 0.02488 0.02606 0.14610 0.02892
35 0.02479 0.02826 0.02622 0.17836 0.02715
40 0.03285 0.03285 0.02971 0.20640 0.02236
45 0.03939 0.03939 0.03135 0.22831 0.02071
50 0.04262 0.04262 0.03249 0.24042 0.02012
60 0.05386 0.05386 0.03480 0.24111 0.02299
70 0.06357 0.06357 0.03867 0.20405 0.03289
80 0.07644 0.07644 0.05150 0.13335 0.05183

2000
5 0.00585 0.00664 0.01563 0.07272 0.02399

10 0.00919 0.01074 0.01759 0.06109 0.02350
15 0.01209 0.01216 0.01838 0.07094 0.02120
20 0.01346 0.01593 0.01824 0.12414 0.01472
25 0.01479 0.01840 0.01995 0.18190 0.01576
30 0.02119 0.02119 0.02048 0.23800 0.01522
35 0.02268 0.02405 0.02452 0.29030 0.02217
40 0.03058 0.03058 0.02519 0.33572 0.02386
45 0.03616 0.03616 0.02493 0.37429 0.02869
50 0.04261 0.04261 0.02622 0.40125 0.03320
60 0.04871 0.04871 0.02987 0.41731 0.04984
70 0.06276 0.06276 0.03138 0.36917 0.05875
80 0.07035 0.07035 0.04023 0.26113 0.07371
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Table A15. Randomized block for MAPE - Full data set

NOSE ANOSE NAE REGEXTALL NNALL
50

5 1.04523 1.49417 3.10968 3.50215 8.15352
10 5.94953 2.60655 7.73801 7.73563 16.35554
15 8.30694 2.73698 10.42368 9.04492 18.56040
20 10.91358 3.26839 12.72153 9.88605 18.90203
25 15.77666 4.27459 16.67081 11.35884 17.58234
30 22.44148 10.42540 23.50617 14.80065 15.11763
35 29.12485 14.84587 30.33690 20.81710 10.17762
40 35.86950 21.16664 37.10057 32.43553 9.32915
45 43.52954 27.66922 44.57977 55.08664 19.85181
50 51.96585 34.46421 53.56667 167.17373 28.53124

75
5 1.46884 1.13761 3.22216 2.81039 7.47008

10 3.72695 2.05655 5.38269 4.03286 10.69100
15 5.48931 2.09485 7.15930 4.36675 11.29402
20 7.15918 2.88841 8.92457 3.23364 10.58082
25 9.64305 3.31533 10.64766 2.25467 8.98580
30 12.96572 4.85338 13.38185 2.58333 7.03283
35 17.25449 7.65853 17.06249 3.17717 3.89355
40 21.17445 9.94008 21.30580 4.36654 1.39759
45 24.99920 12.71224 25.13146 5.66228 5.73340
50 28.89372 16.23446 29.14233 8.67861 11.86953

100
5 1.59757 1.41781 3.14915 2.51785 6.70942

10 2.82130 1.66500 4.27981 3.02468 8.20819
15 4.34538 2.29446 5.77571 2.59438 7.83763
20 4.08504 4.55778 4.38404 5.40466 2.59475
25 7.32659 2.85864 8.35725 2.52193 5.71874
30 8.82255 3.66988 9.47018 3.79581 3.96152
35 11.28809 5.05226 11.57837 4.73448 2.88582
40 14.37228 6.12823 14.36987 5.15382 2.05056
45 17.07793 7.78354 17.47436 5.17217 2.01986
50 20.23818 9.94522 22.04443 4.95079 3.76657
60 25.53189 13.41380 34.39567 5.01875 9.52017
70 31.08891 18.24229 57.92223 13.18102 15.80084
80 36.95123 22.97881 105.76665 34.39298 19.84230
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Table A15-Continued

NOSE ANOSE NAE REGEXTALL NNALL
150

5 0.89031 1.30182 2.21167 2.06524 5.60546
10 2.34247 1.71084 3.56044 2.05630 6.00269
15 3.19010 2.06147 4.43335 2.03357 4.50018
20 3.90206 2.20200 5.12928 3.33136 3.04178
25 4.93014 2.73343 6.02194 4.61601 1.90047
30 6.01690 3.09833 6.80229 6.10911 1.44134
35 7.11145 3.39845 7.62816 7.50201 1.50857
40 8.70592 4.21800 8.97857 8.31388 1.59309
45 10.28207 5.17915 10.40090 8.84855 1.52333
50 12.04722 5.30456 12.02209 9.15422 1.19218
60 16.04085 7.48537 16.38583 8.35542 2.58125
70 19.74399 9.83124 22.32584 5.78827 5.22083
80 23.04331 12.05650 30.16377 6.04994 9.36518

200
5 0.50118 1.01603 1.67375 1.96182 5.93123

10 1.58962 1.23636 2.66863 1.78757 4.73773
15 2.36063 1.76322 3.44438 2.78042 3.01467
20 3.16423 2.06607 4.23271 3.97652 1.61552
25 4.22460 2.68603 5.23662 4.96368 0.90060
30 4.47651 2.75497 5.20226 6.85095 1.41820
35 5.19422 3.08182 5.70562 8.18290 1.64816
40 6.57958 3.63656 7.02879 8.72567 1.26042
45 7.36956 4.01222 7.67402 9.72218 1.17428
50 8.71424 4.59047 8.87020 9.93803 0.94293
60 11.08123 5.37075 10.98692 10.07248 2.12575
70 14.04327 6.77978 14.00392 8.81696 4.50216
80 16.74094 8.52426 16.71111 6.51873 7.36102

300
5 0.81080 0.82391 1.79104 2.18597 5.69486

10 1.32561 1.10269 2.22677 1.56818 3.87884
15 1.74801 1.36494 2.64385 2.98926 2.19861
20 2.41288 1.82896 3.29101 4.01834 1.99945
25 2.92861 2.04730 3.79625 5.09985 2.50072
30 3.32712 2.34836 4.01102 6.34454 2.86428
35 3.89463 2.66662 4.43099 7.36926 2.79374
40 4.31371 2.95794 4.70252 8.38648 2.64371
45 5.18118 3.32939 5.44513 8.85795 1.94199
50 5.62576 3.63738 5.84663 9.47897 1.46366
60 7.08421 4.33419 7.16497 9.89438 2.09114
70 8.66587 5.41378 8.64528 9.39057 3.94139
80 10.47753 5.43231 10.34769 8.45396 6.17458
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Table A15-Continued

NOSE ANOSE NAE REGEXTALL NNALL
400

5 0.55814 0.82066 1.42174 2.57922 4.98388
10 1.31000 1.10101 2.10058 1.27716 3.26503
15 1.74311 1.58049 2.53398 2.34395 2.09889
20 2.05898 1.61196 2.83456 3.43169 2.94921
25 2.36288 1.75541 3.11144 4.45051 3.58380
30 2.72641 2.08455 3.32560 5.39479 3.81038
35 3.01437 2.31177 3.48735 6.30883 3.75552
40 3.57800 2.64566 3.91302 6.90451 3.22227
45 4.03884 2.94813 4.30787 7.44207 2.58643
50 4.36388 3.15512 4.59213 7.94023 1.91244
60 5.34166 3.58398 5.45061 8.40079 1.90165
70 6.37621 4.15976 6.40165 8.43927 3.37926
80 7.60705 4.85578 7.57546 7.92909 5.45324

500
5 0.42911 0.57399 1.21117 2.70172 4.45728

10 1.02494 0.93746 1.74062 1.15282 2.69978
15 1.52453 1.33258 2.23071 2.03444 2.56311
20 1.61386 1.35800 2.29074 3.01107 3.63204
25 2.10238 1.71592 2.74479 3.55129 3.99459
30 2.24493 1.76967 2.75202 4.42785 4.34684
35 2.62710 2.00404 3.04426 4.92502 4.03885
40 3.01256 2.32292 3.29524 5.47432 3.60483
45 3.35477 2.55900 3.61359 5.86878 2.91570
50 3.75971 2.84521 3.99347 6.15850 2.08543
60 4.33659 3.25246 4.44155 6.80998 1.86688
70 5.26417 3.67273 5.32253 6.90208 3.09505
80 6.04301 4.12233 6.03404 7.10109 4.67048

750
5 0.48433 0.62043 1.13368 3.46234 2.59408

10 0.75544 0.71060 1.35064 0.64306 1.83069
15 1.27255 1.19355 1.85697 0.88631 2.59351
20 1.35752 1.21137 1.89791 1.34007 3.62652
25 1.63066 1.45836 2.11487 1.48228 4.05833
30 1.73317 1.49049 2.15001 1.72422 4.22789
35 1.99466 1.71460 2.32765 1.77927 3.95007
40 2.27840 1.90519 2.57644 1.80291 3.38880
45 2.45324 2.00318 2.70709 1.96788 2.78159
50 2.66330 2.16490 2.84268 2.15359 2.16067
60 3.16606 2.52548 3.29204 2.53606 1.66382
70 3.70599 2.93396 3.78329 3.12206 2.49871
80 4.16530 3.17025 4.20446 4.19660 3.66054
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Table A15-Continued

NOSE ANOSE NAE REGEXTALL NNALL
1000

5 0.36870 0.45600 0.93778 3.94309 1.23102
10 0.65133 0.65478 1.19428 0.73271 1.34242
15 0.91381 0.92232 1.43266 0.52235 2.40886
20 1.16129 1.08026 1.62295 1.03231 3.09455
25 1.43980 1.31405 1.85325 1.38865 3.35570
30 1.54294 1.40011 1.90484 1.66519 3.40691
35 1.83503 1.62764 2.13442 1.95700 3.02923
40 1.83231 1.59199 2.06981 2.12418 2.76531
45 2.04499 1.75952 2.24975 2.28330 2.17375
50 2.16453 1.87550 2.33284 2.32265 1.63516
60 2.60409 2.18368 2.72323 2.05473 1.44844
70 2.90652 2.38504 2.98342 1.17128 2.10027
80 3.36840 2.73433 3.41826 1.51197 3.15561

1500
5 0.13827 0.24252 0.61064 4.72931 0.48648

10 0.45666 0.47937 0.90565 1.60551 0.81372
15 0.73481 0.70106 1.12297 1.71114 1.36417
20 1.03304 0.99986 1.38497 2.77338 1.64041
25 1.11352 1.05439 1.42071 3.87168 1.78190
30 1.24140 1.18079 1.52952 5.04124 1.66278
35 1.38721 1.29050 1.63082 6.18789 1.37686
40 1.51088 1.39657 1.70998 7.22948 1.01327
45 1.61001 1.47343 1.77166 8.00158 0.69286
50 1.79217 1.60028 1.92116 8.63508 0.67457
60 2.01689 1.79917 2.11919 8.86772 1.15115
70 2.27561 2.01759 2.34019 7.64570 1.99788
80 2.51171 2.16682 2.55785 4.98165 2.76965

2000
5 0.32313 0.34626 0.73376 5.50701 1.37819

10 0.52972 0.54373 0.92175 2.60400 1.17466
15 0.64583 0.63709 1.01616 3.17951 0.97633
20 0.81266 0.78305 1.08879 4.67114 0.84039
25 0.95401 0.92283 1.21273 6.47807 0.65732
30 1.00309 0.97427 1.22838 8.27955 0.50371
35 1.18099 1.11974 1.40013 10.19715 0.34377
40 1.30478 1.23567 1.47228 11.80999 0.44258
45 1.38517 1.30284 1.52395 13.15676 0.65565
50 1.44246 1.34671 1.54320 14.13206 0.90936
60 1.67924 1.55255 1.77327 14.93737 1.52432
70 1.87865 1.71567 1.93882 13.46280 2.09225
80 2.10854 1.89306 2.16587 9.99407 2.67321
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Table A16. Randomized block for MSE - Full data set top p/3

p NOSE ANOSE NAE REGEXTALL NNALL
50

5 0.00030 0.00030 0.00401 0.00607 0.00646
10 0.00445 0.00270 0.01367 0.00744 0.03379
15 0.00718 0.00243 0.01962 0.00940 0.05041
20 0.01007 0.00167 0.02378 0.01362 0.04878
25 0.01556 0.00112 0.03121 0.02127 0.04338
30 0.02552 0.00255 0.04490 0.03432 0.03915
35 0.03334 0.00440 0.05450 0.04655 0.03146
40 0.04477 0.01069 0.06760 0.06105 0.03016
45 0.05352 0.02155 0.07910 0.07780 0.03960
50 0.06763 0.03616 0.09503 0.09659 0.05750

75
5 0.00046 0.00046 0.00348 0.00346 0.00337

10 0.00159 0.00159 0.00644 0.00121 0.01129
15 0.00360 0.00239 0.01117 0.00285 0.02193
20 0.00498 0.00249 0.01284 0.00275 0.02144
25 0.00810 0.00157 0.01739 0.00528 0.02159
30 0.01188 0.00179 0.02296 0.00810 0.01928
35 0.01475 0.00143 0.02610 0.01057 0.01330
40 0.01870 0.00202 0.03075 0.01461 0.00932
45 0.02456 0.00281 0.03843 0.02158 0.00839
50 0.02925 0.00562 0.04350 0.02639 0.00805

100
5 0.00073 0.00073 0.00354 0.00283 0.00256

10 0.00097 0.00097 0.00444 0.00091 0.00519
15 0.00219 0.00229 0.00724 0.00147 0.00921
20 0.00336 0.00192 0.00909 0.00191 0.01048
25 0.00532 0.00258 0.01147 0.00166 0.00988
30 0.00573 0.00229 0.01211 0.00186 0.00721
35 0.00842 0.00253 0.01562 0.00318 0.00634
40 0.01089 0.00191 0.01869 0.00492 0.00495
45 0.01328 0.00213 0.02180 0.00666 0.00339
50 0.01629 0.00225 0.02530 0.00927 0.00265
60 0.02223 0.00400 0.03228 0.01576 0.00308
70 0.03006 0.00850 0.04104 0.02681 0.00658
80 0.04033 0.01581 0.05272 0.04663 0.01261
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Table A16-Continued

p NOSE ANOSE NAE REGEXTALL NNALL
150

5 0.00025 0.00036 0.00180 0.00107 0.00246
10 0.00082 0.00097 0.00330 0.00086 0.00190
15 0.00121 0.00157 0.00409 0.00204 0.00157
20 0.00160 0.00170 0.00477 0.00262 0.00188
25 0.00241 0.00211 0.00582 0.00205 0.00163
30 0.00356 0.00236 0.00747 0.00191 0.00148
35 0.00409 0.00218 0.00816 0.00205 0.00131
40 0.00547 0.00266 0.00972 0.00181 0.00105
45 0.00660 0.00292 0.01110 0.00212 0.00087
50 0.00744 0.00286 0.01203 0.00273 0.00085
60 0.01042 0.00281 0.01559 0.00508 0.00117
70 0.01416 0.00289 0.01988 0.01007 0.00207
80 0.01761 0.00351 0.02380 0.01938 0.00354

200
5 0.00013 0.00017 0.00118 0.00064 0.00316

10 0.00029 0.00039 0.00168 0.00115 0.00127
15 0.00070 0.00114 0.00265 0.00277 0.00073
20 0.00096 0.00143 0.00293 0.00325 0.00053
25 0.00220 0.00259 0.00472 0.00211 0.00032
30 0.00205 0.00196 0.00465 0.00298 0.00055
35 0.00247 0.00224 0.00481 0.00265 0.00037
40 0.00367 0.00280 0.00646 0.00192 0.00030
45 0.00405 0.00259 0.00695 0.00234 0.00035
50 0.00538 0.00318 0.00842 0.00213 0.00035
60 0.00657 0.00312 0.00985 0.00372 0.00097
70 0.00794 0.00285 0.01130 0.00652 0.00259
80 0.01034 0.00317 0.01394 0.01196 0.00551

300
5 0.00014 0.00019 0.00095 0.00071 0.00288

10 0.00024 0.00029 0.00120 0.00082 0.00170
15 0.00036 0.00055 0.00157 0.00279 0.00192
20 0.00072 0.00110 0.00207 0.00295 0.00170
25 0.00112 0.00150 0.00257 0.00273 0.00161
30 0.00131 0.00167 0.00279 0.00311 0.00204
35 0.00168 0.00208 0.00313 0.00271 0.00181
40 0.00180 0.00219 0.00306 0.00269 0.00189
45 0.00254 0.00263 0.00403 0.00235 0.00138
50 0.00263 0.00278 0.00407 0.00255 0.00119
60 0.00343 0.00295 0.00509 0.00316 0.00105
70 0.00453 0.00332 0.00631 0.00449 0.00209
80 0.00543 0.00323 0.00730 0.00754 0.00517
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Table A16-Continued

p NOSE ANOSE NAE REGEXTALL NNALL
400

5 0.00010 0.00012 0.00068 0.00075 0.00260
10 0.00024 0.00029 0.00107 0.00045 0.00174
15 0.00043 0.00075 0.00147 0.00166 0.00214
20 0.00049 0.00078 0.00139 0.00241 0.00283
25 0.00070 0.00108 0.00167 0.00241 0.00301
30 0.00088 0.00124 0.00178 0.00273 0.00375
35 0.00104 0.00145 0.00192 0.00258 0.00359
40 0.00139 0.00195 0.00231 0.00217 0.00292
45 0.00179 0.00233 0.00265 0.00212 0.00273
50 0.00186 0.00235 0.00282 0.00214 0.00201
60 0.00245 0.00274 0.00336 0.00234 0.00150
70 0.00287 0.00294 0.00388 0.00319 0.00183
80 0.00367 0.00337 0.00472 0.00466 0.00424

500
5 0.00006 0.00007 0.00050 0.00083 0.00217

10 0.00015 0.00022 0.00075 0.00030 0.00177
15 0.00033 0.00058 0.00108 0.00115 0.00240
20 0.00032 0.00061 0.00094 0.00193 0.00347
25 0.00054 0.00086 0.00120 0.00184 0.00368
30 0.00067 0.00104 0.00128 0.00214 0.00456
35 0.00084 0.00121 0.00147 0.00192 0.00427
40 0.00110 0.00154 0.00167 0.00169 0.00374
45 0.00129 0.00180 0.00196 0.00165 0.00319
50 0.00147 0.00197 0.00221 0.00155 0.00229
60 0.00183 0.00235 0.00239 0.00174 0.00177
70 0.00236 0.00269 0.00304 0.00205 0.00158
80 0.00280 0.00308 0.00342 0.00306 0.00321

750
5 0.00006 0.00009 0.00037 0.00144 0.00075

10 0.00008 0.00012 0.00046 0.00004 0.00102
15 0.00022 0.00039 0.00074 0.00031 0.00171
20 0.00025 0.00047 0.00066 0.00062 0.00261
25 0.00034 0.00063 0.00069 0.00071 0.00323
30 0.00044 0.00072 0.00076 0.00082 0.00397
35 0.00053 0.00087 0.00085 0.00074 0.00372
40 0.00071 0.00105 0.00104 0.00058 0.00315
45 0.00082 0.00120 0.00121 0.00059 0.00265
50 0.00092 0.00127 0.00120 0.00057 0.00222
60 0.00120 0.00170 0.00149 0.00058 0.00126
70 0.00151 0.00207 0.00174 0.00067 0.00110
80 0.00170 0.00221 0.00194 0.00104 0.00197
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Table A16-Continued

p NOSE ANOSE NAE REGEXTALL NNALL
1000

5 0.00003 0.00005 0.00025 0.00190 0.00018
10 0.00005 0.00008 0.00030 0.00009 0.00039
15 0.00012 0.00023 0.00043 0.00006 0.00096
20 0.00019 0.00036 0.00048 0.00013 0.00146
25 0.00027 0.00050 0.00054 0.00015 0.00181
30 0.00036 0.00059 0.00062 0.00018 0.00220
35 0.00051 0.00080 0.00075 0.00014 0.00200
40 0.00051 0.00082 0.00070 0.00018 0.00187
45 0.00062 0.00093 0.00082 0.00021 0.00155
50 0.00064 0.00099 0.00081 0.00026 0.00119
60 0.00093 0.00133 0.00106 0.00035 0.00061
70 0.00102 0.00146 0.00115 0.00063 0.00053
80 0.00127 0.00177 0.00139 0.00099 0.00139

1500
5 0.00000 0.00001 0.00009 0.00271 0.00003

10 0.00003 0.00005 0.00019 0.00078 0.00001
15 0.00007 0.00012 0.00024 0.00044 0.00007
20 0.00014 0.00024 0.00031 0.00039 0.00016
25 0.00018 0.00032 0.00033 0.00039 0.00026
30 0.00025 0.00042 0.00038 0.00049 0.00032
35 0.00030 0.00051 0.00042 0.00059 0.00029
40 0.00038 0.00062 0.00048 0.00078 0.00017
45 0.00044 0.00068 0.00052 0.00098 0.00011
50 0.00052 0.00081 0.00060 0.00123 0.00004
60 0.00062 0.00095 0.00068 0.00188 0.00012
70 0.00073 0.00110 0.00076 0.00257 0.00061
80 0.00090 0.00128 0.00089 0.00360 0.00157

2000
5 0.00002 0.00003 0.00014 0.00416 0.00036

10 0.00004 0.00006 0.00018 0.00198 0.00026
15 0.00006 0.00009 0.00021 0.00167 0.00014
20 0.00010 0.00015 0.00020 0.00143 0.00005
25 0.00013 0.00021 0.00022 0.00147 0.00003
30 0.00018 0.00029 0.00025 0.00175 0.00003
35 0.00024 0.00039 0.00033 0.00217 0.00007
40 0.00028 0.00046 0.00034 0.00238 0.00010
45 0.00033 0.00052 0.00037 0.00287 0.00017
50 0.00037 0.00059 0.00039 0.00318 0.00027
60 0.00047 0.00074 0.00049 0.00456 0.00078
70 0.00057 0.00086 0.00056 0.00582 0.00144
80 0.00070 0.00102 0.00069 0.00808 0.00257
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Table A17. Randomized block for MAX DEV - Full data set top p/3

p NOSE ANOSE NAE REGEXTALL NNALL
50

5 0.02424 0.02424 0.08607 0.10652 0.10602
10 0.09885 0.08118 0.18989 0.15932 0.32518
15 0.11548 0.08593 0.22473 0.19633 0.40745
20 0.15290 0.08652 0.27882 0.27300 0.46347
25 0.21116 0.06392 0.33725 0.36430 0.49188
30 0.26556 0.08578 0.38109 0.44687 0.48519
35 0.30685 0.12377 0.44821 0.55635 0.49194
40 0.35996 0.18504 0.50053 0.65334 0.48371
45 0.40642 0.24876 0.55853 0.75755 0.48892
50 0.48113 0.32376 0.61308 0.85932 0.50412

75
5 0.02973 0.02973 0.08021 0.08073 0.06168

10 0.05536 0.05536 0.12346 0.05973 0.19118
15 0.08468 0.07790 0.17492 0.10029 0.28170
20 0.11012 0.08898 0.18845 0.12374 0.30433
25 0.15694 0.06949 0.23577 0.19169 0.33957
30 0.17182 0.08234 0.26485 0.24766 0.34128
35 0.19835 0.07495 0.28014 0.29382 0.31863
40 0.23313 0.11755 0.30205 0.34910 0.29605
45 0.26779 0.14411 0.34402 0.42647 0.29103
50 0.29123 0.20044 0.36708 0.47944 0.26096

100
5 0.03695 0.03695 0.08068 0.07279 0.05929

10 0.04140 0.04140 0.10578 0.03494 0.13124
15 0.06767 0.06767 0.12984 0.04683 0.18519
20 0.08050 0.07822 0.16287 0.07296 0.22684
25 0.11585 0.09360 0.16859 0.09319 0.22708
30 0.12146 0.08399 0.16848 0.11388 0.21166
35 0.15205 0.09963 0.20944 0.16359 0.21433
40 0.17255 0.08281 0.23115 0.21750 0.21377
45 0.19140 0.11913 0.24177 0.25672 0.19367
50 0.22038 0.14339 0.26557 0.31191 0.18671
60 0.24967 0.21681 0.29871 0.40750 0.15588
70 0.30412 0.29415 0.37131 0.51080 0.13839
80 0.35581 0.36339 0.41141 0.63237 0.18981
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Table A17-Continued

p NOSE ANOSE NAE REGEXTALL NNALL
150

5 0.02167 0.02167 0.05737 0.04427 0.06989
10 0.03845 0.03845 0.09026 0.03944 0.06702
15 0.04737 0.04737 0.08787 0.05577 0.08056
20 0.06302 0.06302 0.10679 0.06866 0.10326
25 0.07048 0.07048 0.11788 0.06163 0.11153
30 0.08964 0.08494 0.13316 0.05963 0.10541
35 0.09973 0.08156 0.14440 0.06856 0.11167
40 0.11961 0.09858 0.15289 0.09612 0.10790
45 0.13789 0.09393 0.16424 0.11298 0.09064
50 0.13991 0.11178 0.17560 0.14497 0.08645
60 0.16904 0.15442 0.19964 0.21409 0.07866
70 0.20595 0.19268 0.23837 0.29473 0.07826
80 0.22333 0.24833 0.25658 0.36393 0.08292

200
5 0.01612 0.01612 0.04704 0.03414 0.07488

10 0.02609 0.02609 0.06144 0.04218 0.04801
15 0.03646 0.04333 0.07086 0.06052 0.03554
20 0.04436 0.04944 0.07641 0.07382 0.03315
25 0.07055 0.07055 0.10381 0.06377 0.04076
30 0.06541 0.06541 0.09811 0.07384 0.04490
35 0.07942 0.07931 0.10645 0.07534 0.03118
40 0.09209 0.09187 0.12306 0.06386 0.03609
45 0.09720 0.08877 0.12461 0.06537 0.03553
50 0.11713 0.09526 0.14564 0.07816 0.02847
60 0.12900 0.12335 0.15670 0.13501 0.04524
70 0.15021 0.16455 0.17555 0.18494 0.07629
80 0.16976 0.20647 0.19375 0.23832 0.10419

300
5 0.01586 0.01586 0.04111 0.03297 0.06601

10 0.02218 0.02218 0.05023 0.03520 0.04730
15 0.03095 0.03095 0.05596 0.06226 0.05307
20 0.03799 0.04249 0.06297 0.06802 0.05196
25 0.05248 0.05248 0.07433 0.06717 0.05112
30 0.05141 0.05141 0.07999 0.07535 0.06297
35 0.05944 0.05944 0.08062 0.07199 0.06341
40 0.06462 0.06462 0.07850 0.07512 0.07439
45 0.07375 0.07375 0.09238 0.06934 0.06534
50 0.07958 0.08419 0.09704 0.07327 0.06394
60 0.09045 0.10036 0.10467 0.07649 0.05299
70 0.10927 0.12069 0.12564 0.11311 0.06376
80 0.11686 0.14957 0.13323 0.15246 0.10247
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Table A17-Continued

p NOSE ANOSE NAE REGEXTALL NNALL
400

5 0.01298 0.01298 0.03484 0.03270 0.05971
10 0.02067 0.02067 0.04889 0.02739 0.04730
15 0.02848 0.03869 0.05192 0.04840 0.05469
20 0.03206 0.03922 0.04894 0.06349 0.07242
25 0.04230 0.04284 0.05548 0.06662 0.07656
30 0.04224 0.04425 0.05527 0.06857 0.08539
35 0.04374 0.04521 0.06190 0.07066 0.08646
40 0.05709 0.05709 0.07230 0.06406 0.08860
45 0.06146 0.06926 0.07493 0.06436 0.09209
50 0.06149 0.06930 0.07847 0.06396 0.08050
60 0.07071 0.09817 0.08390 0.06560 0.07554
70 0.08214 0.11153 0.09594 0.07819 0.05827
80 0.09209 0.13664 0.10271 0.10878 0.09199

500
5 0.01070 0.01070 0.03026 0.03402 0.05331

10 0.01639 0.01727 0.04118 0.02280 0.04864
15 0.02386 0.03221 0.04028 0.04034 0.05865
20 0.02481 0.03468 0.03817 0.05482 0.07819
25 0.03163 0.03997 0.04612 0.05895 0.08389
30 0.03666 0.04195 0.04753 0.05996 0.09682
35 0.03990 0.04694 0.05105 0.05934 0.10223
40 0.04966 0.05446 0.06041 0.05447 0.09713
45 0.04949 0.05419 0.06108 0.05474 0.09558
50 0.05669 0.05693 0.06718 0.05532 0.08375
60 0.06137 0.09256 0.07080 0.05574 0.08956
70 0.07196 0.10204 0.07998 0.06875 0.06520
80 0.08371 0.13548 0.08683 0.08379 0.07680

750
5 0.00904 0.01106 0.02501 0.04180 0.03005

10 0.01337 0.01337 0.03183 0.00864 0.03749
15 0.01998 0.02575 0.03604 0.02153 0.05183
20 0.02160 0.02916 0.03321 0.03099 0.06748
25 0.02423 0.03318 0.03521 0.03473 0.08048
30 0.02712 0.03807 0.03580 0.03643 0.09314
35 0.03042 0.03900 0.03931 0.03654 0.09182
40 0.03611 0.04248 0.04489 0.03363 0.09082
45 0.04050 0.04463 0.04986 0.03255 0.08730
50 0.04771 0.04771 0.04856 0.03123 0.08621
60 0.05699 0.07448 0.05394 0.04774 0.07443
70 0.07630 0.09889 0.06002 0.06186 0.06663
80 0.07958 0.10776 0.06314 0.09221 0.05932
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Table A17-Continued

p NOSE ANOSE NAE REGEXTALL NNALL
1000

5 0.00677 0.00830 0.02059 0.04811 0.01551
10 0.00986 0.01151 0.02448 0.01704 0.02522
15 0.01493 0.01935 0.02611 0.00937 0.03780
20 0.01806 0.02366 0.02702 0.01384 0.05213
25 0.02133 0.02825 0.03052 0.01616 0.05945
30 0.02428 0.03250 0.03381 0.01622 0.06617
35 0.02967 0.03780 0.03864 0.01815 0.06791
40 0.03516 0.03928 0.03594 0.02612 0.06808
45 0.03833 0.04123 0.03834 0.03757 0.06655
50 0.04591 0.04591 0.03962 0.04501 0.06191
60 0.06011 0.06011 0.04366 0.06150 0.05199
70 0.06899 0.08367 0.04822 0.08367 0.03636
80 0.07639 0.09470 0.05175 0.10733 0.05180

1500
5 0.00242 0.00350 0.01215 0.05642 0.00650

10 0.00824 0.01028 0.01898 0.04061 0.00433
15 0.01123 0.01425 0.01797 0.03566 0.01234
20 0.01465 0.01863 0.02173 0.03912 0.01826
25 0.01728 0.02207 0.02331 0.04260 0.02283
30 0.01989 0.02488 0.02606 0.04964 0.02737
35 0.02479 0.02826 0.02622 0.05789 0.02715
40 0.03285 0.03285 0.02971 0.06351 0.02236
45 0.03939 0.03939 0.03135 0.07099 0.01988
50 0.04262 0.04262 0.03249 0.08194 0.01444
60 0.05386 0.05386 0.03480 0.09926 0.01632
70 0.06357 0.06357 0.03741 0.11802 0.03289
80 0.07644 0.07644 0.04111 0.13335 0.05183

2000
5 0.00585 0.00664 0.01563 0.07272 0.02399

10 0.00919 0.01074 0.01759 0.06109 0.02350
15 0.00993 0.01216 0.01838 0.06255 0.02120
20 0.01290 0.01593 0.01824 0.06286 0.01472
25 0.01473 0.01840 0.01995 0.07071 0.01576
30 0.02119 0.02119 0.02048 0.07613 0.01522
35 0.02268 0.02405 0.02452 0.08806 0.02217
40 0.03058 0.03058 0.02519 0.09384 0.02386
45 0.03616 0.03616 0.02493 0.10206 0.02869
50 0.04261 0.04261 0.02622 0.10942 0.03320
60 0.04871 0.04871 0.02987 0.13078 0.04984
70 0.06276 0.06276 0.03138 0.14380 0.05875
80 0.07035 0.07035 0.03513 0.16278 0.07371
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Table A18. Randomized block  for MAPE - Full data set top p/3

p NOSE ANOSE NAE REGEXTALL NNALL
50

5 1.06280 1.06280 4.15947 5.03496 5.57346
10 3.59331 2.95150 5.84927 3.93328 8.87381
15 4.12937 2.44861 6.69961 3.68144 9.63058
20 4.43993 1.95879 6.43063 3.70043 8.05524
25 5.19074 1.81084 6.80082 3.98527 6.40646
30 6.14793 2.36253 7.70009 5.12536 5.66797
35 6.72004 2.86663 8.03521 5.60169 5.29404
40 7.91958 4.94300 9.05772 6.20962 6.50946
45 8.10304 7.01144 9.21756 6.62046 8.47050
50 8.88174 9.12059 9.86952 7.03667 10.87149

75
5 1.39025 1.39025 4.02023 3.91596 4.71041

10 2.46713 2.46713 4.80336 2.03419 5.43266
15 3.15415 2.59794 5.48515 2.76136 6.55899
20 3.68962 2.59097 5.49367 2.28646 6.09525
25 4.07428 2.02855 5.58458 2.39544 5.26484
30 4.76515 2.09666 6.35230 2.30829 4.62770
35 5.21884 1.83884 6.49429 2.52673 3.04644
40 5.56270 1.87054 6.74320 2.81468 2.04585
45 6.05282 2.12745 7.17504 3.41548 2.74416
50 6.52922 3.06329 7.54087 3.83889 3.43388

100
5 1.84024 1.84024 4.16761 3.66400 4.19072

10 1.94731 1.94731 4.06280 2.31804 3.99894
15 2.90475 3.17344 5.04057 2.66363 4.32071
20 3.21720 2.44995 4.96240 2.70979 4.24480
25 3.77433 2.74530 5.30270 2.13022 3.96061
30 3.83285 2.56282 5.32827 1.82659 3.30390
35 4.15649 2.48842 5.46450 1.90039 2.63285
40 4.61680 2.19014 5.73950 2.04280 1.92950
45 4.92730 1.98978 6.03762 2.16971 1.43351
50 5.30093 1.94167 6.32004 2.55884 1.39376
60 5.93971 2.26785 6.81695 3.78110 2.03023
70 6.70593 3.82045 7.44894 5.67294 3.05381
80 7.45268 5.54076 8.13232 8.50860 4.07324
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Table A18-Continued

p NOSE ANOSE NAE REGEXTALL NNALL
150

5 1.13467 1.59575 3.11670 2.41402 3.44107
10 1.90236 2.35759 3.71830 2.22228 2.96324
15 2.38314 2.85557 4.25498 3.25220 2.07014
20 2.42755 2.62907 4.06669 3.41097 1.83436
25 2.81397 2.82646 4.26720 2.95578 1.24446
30 3.24893 2.73348 4.68272 2.71146 1.20705
35 3.25745 2.48930 4.49795 2.55937 1.01664
40 3.67955 2.71591 4.77430 2.21537 1.03518
45 3.91049 2.72169 5.02047 2.20562 1.22512
50 4.03276 2.59351 5.04744 2.38263 1.31461
60 4.58203 2.35878 5.45220 3.21471 1.81833
70 5.07294 2.11721 5.84043 4.65421 2.48794
80 5.42073 1.97287 6.11089 6.81804 3.25227

200
5 0.75178 1.10738 2.51063 1.90643 4.57900

10 1.23827 1.58841 2.87706 2.74885 2.78341
15 1.83146 2.53471 3.52622 4.01360 2.00291
20 2.09403 2.76944 3.58848 4.05549 1.64952
25 2.82984 3.44232 4.16702 3.09439 1.03482
30 2.68255 2.82927 4.00004 3.51784 1.36427
35 2.70926 2.86928 3.85633 3.15065 1.09831
40 3.24280 3.11603 4.31120 2.52676 0.95224
45 3.29918 2.71200 4.34746 2.82318 1.00721
50 3.64605 2.92095 4.58785 2.63402 1.11951
60 3.83711 2.71998 4.70845 3.39863 1.85742
70 4.06659 2.44007 4.81993 4.46278 2.95583
80 4.44612 2.29148 5.13529 6.07509 4.26520

300
5 0.96494 1.20795 2.43530 2.26971 4.69621

10 1.19508 1.43597 2.58662 2.40368 3.45408
15 1.32791 1.82969 2.78679 4.20993 3.46173
20 1.81343 2.50521 3.10516 4.13923 3.14034
25 2.10229 2.77989 3.27157 3.80800 2.89604
30 2.33299 2.93686 3.45401 3.85986 3.02943
35 2.54368 3.14204 3.49541 3.46831 2.62895
40 2.58937 3.06300 3.39542 3.26759 2.32855
45 3.06169 3.19417 3.83684 3.03133 1.89533
50 2.97217 3.08858 3.67010 3.12804 1.83546
60 3.22943 2.88518 3.89509 3.50636 1.95447
70 3.45098 2.92893 4.03454 4.15377 2.89077
80 3.71401 2.80728 4.25543 5.31726 4.36569
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Table A18-Continued

p NOSE ANOSE NAE REGEXTAL NNALL
400

5 0.78726 0.97292 2.08266 2.41207 4.58811
10 1.26653 1.45018 2.49868 1.76147 3.58475
15 1.59630 2.15346 2.89622 3.30696 3.77795
20 1.60377 2.14338 2.76642 3.80571 4.07268
25 1.78310 2.46632 2.83979 3.67844 3.99742
30 2.11400 2.65369 2.99159 3.77405 4.20351
35 2.21314 2.83595 2.96280 3.54217 3.86141
40 2.42774 3.20071 3.12048 3.12485 3.17382
45 2.75525 3.29911 3.32066 3.06422 2.75211
50 2.71283 3.24082 3.30633 3.03173 2.26189
60 2.97565 3.23144 3.46576 3.15785 2.15256
70 3.04134 3.16087 3.49897 3.66034 2.76664
80 3.34387 3.13308 3.75983 4.38843 4.18121

500
5 0.59362 0.74420 1.76671 2.57376 4.24614

10 0.99793 1.28391 2.12173 1.44700 3.67694
15 1.43571 1.89487 2.62731 2.80026 4.01606
20 1.32032 1.89397 2.33805 3.51406 4.58719
25 1.73032 2.29283 2.58968 3.26792 4.39425
30 1.92569 2.50568 2.63649 3.46122 4.74502
35 2.09319 2.66073 2.75914 3.12489 4.26086
40 2.27067 2.90419 2.76270 2.91135 3.73847
45 2.45217 3.09763 2.99797 2.80182 3.24163
50 2.54034 3.17864 3.08379 2.69857 2.50940
60 2.66989 3.22860 3.05173 2.85909 2.14389
70 2.88962 3.25389 3.26459 3.03862 2.60504
80 3.05693 3.23888 3.39794 3.67038 3.74583

750
5 0.67645 0.86947 1.65047 3.49876 2.53782

10 0.77165 0.96781 1.71616 0.54189 2.81817
15 1.21295 1.62649 2.22073 1.42457 3.45879
20 1.22415 1.71241 2.04689 2.06167 4.07094
25 1.47021 2.03266 2.07762 2.13966 4.23564
30 1.61457 2.11516 2.14047 2.24988 4.60096
35 1.75341 2.33014 2.21266 2.05045 4.24555
40 1.96222 2.53083 2.35593 1.81966 3.65367
45 2.07477 2.65398 2.51183 1.82143 3.23511
50 2.10844 2.67986 2.42139 1.74967 2.64170
60 2.33855 2.96225 2.64699 1.69508 1.80422
70 2.53264 3.19544 2.79993 1.73793 2.16625
80 2.62462 3.17143 2.87382 2.00700 3.09162
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Table A18-Continued

p NOSE ANOSE NAE REGEXTALL NNALL
1000

5 0.50300 0.65063 1.35662 4.06727 1.23807
10 0.63662 0.78601 1.46989 0.71612 1.71392
15 0.87138 1.19263 1.74681 0.65851 2.63031
20 1.11310 1.55504 1.80591 0.98484 3.06386
25 1.36447 1.86248 1.89042 1.02665 3.22610
30 1.53180 1.99020 1.96634 1.07524 3.54409
35 1.75973 2.27430 2.09831 0.93329 3.19520
40 1.69282 2.26432 1.98530 1.03003 2.95555
45 1.84743 2.36759 2.13759 0.97412 2.55692
50 1.83218 2.41015 2.10679 1.03193 2.03274
60 2.15606 2.73431 2.38563 0.93682 1.38845
70 2.17029 2.77734 2.38298 1.15573 1.64282
80 2.39583 3.00369 2.58385 1.23586 2.65876

1500
5 0.15746 0.25833 0.86601 4.93653 0.45455

10 0.47390 0.62238 1.16874 2.41944 0.26954
15 0.74437 0.92026 1.37382 1.65446 0.64607
20 1.03426 1.34273 1.53525 1.37653 0.95266
25 1.14513 1.53461 1.51115 1.24228 1.23084
30 1.29670 1.70878 1.61772 1.38871 1.37762
35 1.38397 1.83284 1.65702 1.49795 1.21584
40 1.51245 1.99874 1.73258 1.72548 0.91430
45 1.62117 2.07885 1.81068 1.91057 0.64835
50 1.74796 2.24293 1.92072 2.14950 0.42523
60 1.84585 2.38881 2.01566 2.64838 0.83911
70 1.95784 2.53298 2.08617 3.20459 1.92289
80 2.09338 2.67097 2.20444 3.99712 3.02636

2000
5 0.38449 0.46094 1.00044 6.09528 1.70817

10 0.57252 0.68540 1.18084 3.96593 1.40614
15 0.61886 0.81542 1.26822 3.42310 0.89767
20 0.86794 1.07320 1.23375 2.99027 0.50098
25 0.96522 1.26682 1.27007 2.84633 0.34252
30 1.09718 1.45073 1.31584 3.08504 0.28984
35 1.26759 1.64883 1.49171 3.28717 0.54624
40 1.33109 1.74088 1.51438 3.38936 0.69950
45 1.42426 1.84816 1.58467 3.72994 0.97040
50 1.47166 1.92351 1.59140 3.89071 1.23967
60 1.64640 2.13656 1.76332 4.71981 2.11885
70 1.73775 2.25186 1.83556 5.43339 2.87354
80 1.90659 2.42393 2.00892 6.62837 3.81770
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Table A19. Randomized block for MSE bottom 10%

p NOSE ANOSE NAE REGEXTALL NNALL
50

5 0.00035 0.00042 0.00251 0.00807 0.08123
10 0.00435 0.00380 0.00280 0.02891 0.11255
15 0.01649 0.00404 0.00529 0.02213 0.07628
20 0.01634 0.01064 0.01208 0.01925 0.04856
25 0.01284 0.01020 0.01113 0.01448 0.02189
30 0.00990 0.00831 0.00870 0.01401 0.00735
35 0.00587 0.00519 0.00508 0.01254 0.00055
40 0.00262 0.00262 0.00262 0.01253 0.00070
45 0.00112 0.00112 0.00112 0.01196 0.00112
50 0.00015 0.00015 0.00015 0.01141 0.00015

75
5 0.00018 0.00011 0.00195 0.00304 0.05394

10 0.00194 0.00276 0.00219 0.01205 0.06574
15 0.00807 0.00822 0.00283 0.00745 0.04300
20 0.02302 0.01048 0.00781 0.00502 0.02800
25 0.01839 0.01429 0.01448 0.00315 0.01475
30 0.02084 0.01996 0.01487 0.00295 0.00716
35 0.01712 0.01504 0.01306 0.00210 0.00159
40 0.01469 0.01259 0.01203 0.00272 0.00004
45 0.01092 0.00954 0.00919 0.00284 0.00100
50 0.00823 0.00812 0.00725 0.00379 0.00345

100
5 0.00031 0.00003 0.00217 0.00172 0.04244

10 0.00136 0.00197 0.00167 0.00515 0.04136
15 0.00407 0.00413 0.00152 0.00300 0.02720
20 0.03868 0.04086 0.01879 0.00431 0.00157
25 0.02233 0.01583 0.00928 0.00052 0.00998
30 0.02403 0.01845 0.01889 0.00032 0.00507
35 0.02297 0.02316 0.01592 0.00045 0.00207
40 0.02245 0.01865 0.01828 0.00033 0.00050
45 0.01794 0.01543 0.01564 0.00035 0.00001
50 0.01728 0.01466 0.01565 0.00052 0.00059
60 0.01214 0.01124 0.01152 0.00127 0.00489
70 0.00651 0.00651 0.00651 0.00337 0.00577
80 0.00271 0.00271 0.00271 0.00716 0.00271
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Table A19-Continued

p NOSE ANOSE NAE REGEXTALL NNALL
150

5 0.00015 0.00003 0.00122 0.00021 0.02521
10 0.00055 0.00073 0.00148 0.00161 0.02148
15 0.00254 0.00331 0.00121 0.00030 0.01082
20 0.00706 0.00777 0.00192 0.00038 0.00640
25 0.01065 0.01087 0.00386 0.00123 0.00386
30 0.03377 0.03407 0.00890 0.00218 0.00209
35 0.02520 0.02540 0.01368 0.00323 0.00100
40 0.02617 0.01814 0.02059 0.00295 0.00059
45 0.02533 0.02372 0.01872 0.00295 0.00024
50 0.02641 0.02074 0.02239 0.00224 0.00005
60 0.02538 0.02096 0.02197 0.00114 0.00050
70 0.02090 0.01754 0.01926 0.00024 0.00224
80 0.01690 0.01476 0.01589 0.00099 0.00579

200
5 0.00009 0.00001 0.00093 0.00013 0.01723

10 0.00042 0.00062 0.00091 0.00030 0.01070
15 0.00145 0.00190 0.00089 0.00024 0.00481
20  0.00484  0.00640  0.00131    0.00123  0.00191 
25 0.00617 0.00678 0.00205 0.00251 0.00140
30 0.01280 0.01344 0.00505 0.00423 0.00061
35 0.01660 0.02320 0.00764 0.00601 0.00035
40 0.02518 0.01277 0.01290 0.00599 0.00024
45 0.02544 0.03310 0.01717 0.00686 0.00010
50 0.02779 0.01853 0.02198 0.00591 0.00004
60 0.02882 0.02479 0.02485 0.00403 0.00005
70 0.02835 0.02235 0.02510 0.00206 0.00054
80 0.02632 0.02192 0.02356 0.00038 0.00177

300
5 0.00008 0.00002 0.00067 0.00030 0.00938

10 0.00020 0.00024 0.00081 0.00008 0.00377
15 0.00105 0.00139 0.00053 0.00066 0.00043
20 0.00221 0.00300 0.00059 0.00165 0.00017
25 0.00358 0.00458 0.00119 0.00359 0.00024
30 0.00674 0.00754 0.00242 0.00541 0.00027
35 0.00890 0.00993 0.00385 0.00726 0.00027
40 0.01299 0.01395 0.00602 0.00842 0.00026
45 0.01537 0.05896 0.00785 0.00958 0.00022
50 0.02129 0.01039 0.01173 0.00922 0.00011
60 0.02833 0.03557 0.01979 0.00875 0.00013
70 0.02980 0.02678 0.02393 0.00599 0.00020
80 0.03079 0.02418 0.02680 0.00341 0.00053
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Table A19-Continued

p NOSE ANOSE NAE REGEXTALL NNALL
400

5 0.00008 0.00003 0.00062 0.00049 0.00566
10 0.00016 0.00014 0.00075 0.00006 0.00133
15 0.00048 0.00050 0.00072 0.00030 0.00014
20 0.00145 0.00194 0.00044 0.00131 0.00045
25 0.00245 0.00313 0.00081 0.00293 0.00103
30 0.00452 0.00572 0.00157 0.00428 0.00110
35 0.00553 0.00618 0.00221 0.00579 0.00105
40 0.00831 0.00947 0.00359 0.00702 0.00093
45 0.01025 0.01103 0.00504 0.00814 0.00072
50 0.01351 0.01464 0.00704 0.00807 0.00045
60 0.02024 0.01964 0.01196 0.00825 0.00032
70 0.02708 0.02571 0.01725 0.00708 0.00030
80 0.02816 0.02097 0.02337 0.00519 0.00050

500
5 0.00003 0.00001 0.00035 0.00073 0.00300

10 0.00009 0.00010 0.00052 0.00008 0.00032
15 0.00046 0.00050 0.00057 0.00019 0.00022
20 0.00100 0.00130 0.00039 0.00063 0.00097
25 0.00179 0.00227 0.00061 0.00169 0.00185
30 0.00311 0.00400 0.00098 0.00255 0.00198
35 0.00409 0.00507 0.00161 0.00343 0.00175
40 0.00609 0.00693 0.00255 0.00438 0.00162
45 0.00701 0.00799 0.00324 0.00509 0.00122
50 0.00974 0.01107 0.00490 0.00530 0.00091
60 0.01473 0.01610 0.00846 0.00619 0.00071
70 0.01917 0.02646 0.01184 0.00576 0.00050
80 0.02483 0.01649 0.01633 0.00542 0.00067

750
5 0.00003 0.00001 0.00029 0.00079 0.00083

10 0.00009 0.00009 0.00037 0.00003 0.00005
15 0.00025 0.00026 0.00039 0.00010 0.00092
20 0.00061 0.00078 0.00023 0.00011 0.00208
25 0.00093 0.00114 0.00037 0.00015 0.00249
30 0.00175 0.00222 0.00054 0.00014 0.00267
35 0.00229 0.00284 0.00086 0.00016 0.00245
40 0.00316 0.00394 0.00122 0.00018 0.00189
45 0.00358 0.00444 0.00151 0.00025 0.00153
50 0.00554 0.00676 0.00264 0.00019 0.00146
60 0.00782 0.00892 0.00419 0.00037 0.00107
70 0.01051 0.01152 0.00616 0.00079 0.00091
80 0.01338 0.01441 0.00837 0.00207 0.00107
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Table A19-Continued

p NOSE ANOSE NAE REGEXTALL NNALL
1000

5 0.00002 0.00001 0.00020 0.00083 0.00016
10 0.00004 0.00003 0.00028 0.00017 0.00022
15 0.00015 0.00016 0.00027 0.00069 0.00110
20 0.00036 0.00046 0.00017 0.00154 0.00184
25 0.00068 0.00081 0.00031 0.00228 0.00209
30 0.00111 0.00139 0.00033 0.00340 0.00213
35 0.00152 0.00186 0.00057 0.00405 0.00192
40 0.00224 0.00278 0.00084 0.00502 0.00169
45 0.00264 0.00323 0.00112 0.00528 0.00139
50 0.00366 0.00449 0.00166 0.00546 0.00127
60 0.00512 0.00621 0.00263 0.00442 0.00095
70 0.00686 0.00783 0.00386 0.00194 0.00097
80 0.00901 0.01029 0.00548 0.00019 0.00127

1500
5 0.00000 0.00000 0.00009 0.00082 0.00001

10 0.00003 0.00002 0.00022 0.00094 0.00014
15 0.00011 0.00011 0.00017 0.00375 0.00050
20 0.00023 0.00026 0.00019 0.01010 0.00052
25 0.00037 0.00044 0.00017 0.01609 0.00068
30 0.00063 0.00078 0.00019 0.02569 0.00062
35 0.00084 0.00101 0.00031 0.03384 0.00051
40 0.00128 0.00156 0.00046 0.04404 0.00043
45 0.00145 0.00176 0.00058 0.05013 0.00034
50 0.00200 0.00243 0.00085 0.05631 0.00032
60 0.00296 0.00357 0.00145 0.05424 0.00036
70 0.00396 0.00476 0.00214 0.03750 0.00055
80 0.00506 0.00604 0.00294 0.01459 0.00093

2000
5 0.00001 0.00001 0.00011 0.00060 0.00003

10 0.00003 0.00002 0.00019 0.00225 0.00003
15 0.00008 0.00008 0.00013 0.00878 0.00005
20 0.00015 0.00018 0.00009 0.02282 0.00006
25 0.00030 0.00034 0.00015 0.03905 0.00004
30 0.00047 0.00057 0.00016 0.06429 0.00003
35 0.00057 0.00068 0.00021 0.08731 0.00002
40 0.00089 0.00107 0.00031 0.11611 0.00001
45 0.00097 0.00116 0.00037 0.13576 0.00002
50 0.00150 0.00180 0.00063 0.15495 0.00002
60 0.00201 0.00239 0.00096 0.16147 0.00004
70 0.00274 0.00326 0.00144 0.12193 0.00022
80 0.00340 0.00404 0.00192 0.05911 0.00061



204

Table A20. Randomized block for MAX DEV bottom 10%

p NOSE ANOSE NAE REGEXTALL NNALL
50

5 2.163 2.415 7.024 12.207 39.899
10 14.117 11.271 7.686 38.009 74.917
15 34.005 17.574 19.252 44.657 82.494
20 53.786 39.598 45.450 61.853 97.500
25 63.165 51.415 59.155 72.213 87.466
30 87.266 78.777 81.879 115.121 81.459
35 91.299 87.570 86.770 164.928 28.037

75
5 1.177 1.072 5.761 6.697 30.268

10 7.991 7.636 7.203 20.262 47.439
15 17.157 16.903 11.167 19.452 46.911
20 37.206 28.659 22.873 20.674 49.133
25 44.021 37.796 37.804 19.869 43.418
30 64.408 62.681 52.928 25.513 39.875
35 69.437 64.748 60.086 25.928 22.568
40 85.786 78.585 78.986 40.739 4.830
45 88.673 81.121 83.195 52.583 29.920
50 99.352 99.028 96.091 85.734 75.013

100
5 2.038 0.526 5.866 4.744 26.011

10 6.004 5.804 5.838 11.827 33.747
15 10.533 10.412 6.902 10.263 32.533
20 35.773 37.677 24.854 12.240 7.399
25 34.106 29.774 22.082 5.625 27.925
30 47.278 40.127 39.412 5.295 23.917
35 54.116 54.384 44.536 7.181 17.719
40 68.087 62.728 60.453 7.459 10.434
45 70.731 65.867 64.990 9.113 1.725
50 84.442 77.688 80.426 14.437 15.967
60 95.770 92.951 93.930 36.521 68.147



205

Table A20-Continued

p NOSE ANOSE NAE REGEXTALL NNALL
150

5 1.229 0.625 4.166 1.500 19.012
10 3.499 3.422 5.483 5.756 21.882
15 6.661 7.297 5.332 2.593 17.378
20 13.051 14.781 6.932 3.178 15.492
25 17.928 18.659 11.694 5.954 13.291
30 35.308 36.964 19.128 10.084 11.035
35 35.429 36.683 25.818 13.556 8.165
40 45.210 34.998 37.629 14.714 7.184
45 49.322 48.142 41.277 15.515 4.829
50 59.972 52.375 53.913 14.917 1.904
60 73.470 63.649 68.184 12.411 10.532
70 83.667 74.419 80.418 8.129 28.740
80 92.217 85.406 90.002 24.422 58.675

200
5 1.022 0.265 3.489 1.212 15.285

10 2.829 2.782 4.002 2.040 14.376
15 4.740 5.332 3.721 2.284 10.554
20 9.648 11.395 5.282 5.653 7.386
25 11.663 12.819 7.433 8.533 6.507
30 18.796 20.899 11.827 12.995 4.610
35 23.256 27.837 15.761 16.460 3.440
40 32.749 26.051 23.283 18.392 3.221
45 35.848 41.515 28.766 20.725 1.875
50 44.337 32.595 37.628 21.156 1.338
60 55.741 50.254 50.448 19.980 2.094
70 66.527 57.526 62.045 15.104 9.147
80 75.910 67.544 71.845 7.641 19.804

300
5 0.947 0.386 2.891 1.771 10.958

10 1.830 1.810 3.659 1.178 7.953
15 3.492 3.903 2.827 3.350 2.577
20 5.733 6.610 3.573 5.959 1.678
25 7.386 8.456 4.828 9.473 2.275
30 11.326 12.890 7.120 12.768 2.582
35 13.547 15.126 9.331 15.618 2.664
40 18.046 20.531 12.237 17.953 2.734
45 20.823 35.877 14.774 19.922 2.906
50 26.952 21.738 19.860 21.047 2.211
60 36.505 41.674 29.665 22.557 2.676
70 43.815 42.267 38.237 20.665 3.665
80 51.709 45.573 47.338 16.613 6.668
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Table A20-Continued

p NOSE ANOSE NAE REGEXTALL NNALL
400

5 0.989 0.568 2.643 2.249 8.351
10 1.491 1.479 3.399 0.914 4.521
15 2.759 2.320 3.262 1.842 1.239
20 4.390 4.872 2.858 4.992 2.656
25 5.685 6.370 3.694 7.956 4.542
30 8.230 9.702 5.270 10.420 5.163
35 9.336 10.559 6.301 12.567 5.168
40 12.685 14.887 8.263 14.630 5.103
45 14.295 16.125 10.237 16.412 4.835
50 17.922 20.449 12.870 17.290 4.060
60 24.539 26.009 18.727 19.030 3.765
70 31.886 33.032 25.198 18.993 3.777
80 37.213 31.721 32.791 17.489 5.161

500
5 0.555 0.219 2.006 2.907 6.002

10 1.154 1.146 2.788 0.923 2.018
15 2.636 2.276 2.678 1.490 1.685
20 3.390 3.789 2.576 3.220 4.155
25 4.654 5.159 2.996 5.680 6.037
30 6.320 7.614 3.954 7.431 6.610
35 7.467 8.494 4.981 9.024 6.504
40 9.949 11.571 6.481 10.680 6.526
45 10.859 12.586 7.555 11.856 5.860
50 13.722 15.970 9.754 12.788 5.379
60 18.376 21.001 13.836 14.857 5.141
70 23.037 27.529 18.009 15.363 4.476
80 28.761 26.447 23.166 15.861 5.295

750
5 0.626 0.402 1.788 2.961 3.109

10 1.114 1.109 2.219 0.634 0.765
15 1.855 1.620 2.219 0.977 3.659
20 2.490 2.765 1.807 1.085 5.852
25 3.212 3.314 2.356 1.371 6.622
30 4.336 4.945 2.748 1.419 7.181
35 5.072 5.656 3.394 1.605 7.074
40 6.185 7.182 4.171 1.704 6.474
45 6.681 7.782 4.594 2.105 5.954
50 8.682 10.356 6.104 1.928 6.079
60 11.124 13.057 8.180 2.821 5.473
70 13.693 15.707 10.466 4.354 5.188
80 16.663 18.828 13.169 7.975 5.773
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Table A20-Continued

p NOSE ANOSE NAE REGEXTALL NNALL
1000

5 0.466 0.299 1.459 3.002 1.339
10 0.669 0.667 1.931 1.144 1.620
15 1.346 1.179 1.833 2.879 3.893
20 1.841 2.051 1.384 4.713 5.298
25 2.581 2.580 2.124 5.958 5.846
30 3.244 3.711 2.023 7.605 6.100
35 3.875 4.234 2.749 8.518 5.943
40 4.791 5.555 3.191 9.843 5.773
45 5.277 6.006 3.714 10.286 5.350
50 6.482 7.697 4.494 10.800 5.278
60 8.084 9.638 5.899 10.162 4.772
70 9.965 11.653 7.511 6.840 4.942
80 12.017 14.027 9.404 1.890 5.751

1500
5 0.171 0.079 0.968 2.903 0.343

10 0.491 0.490 1.669 3.239 1.186
15 1.081 0.966 1.402 6.894 2.499
20 1.557 1.422 1.347 11.967 2.677
25 1.862 1.851 1.512 15.388 3.119
30 2.259 2.577 1.485 20.113 3.060
35 2.742 2.878 1.923 23.512 2.835
40 3.373 3.745 2.263 27.582 2.688
45 3.588 3.974 2.495 29.888 2.439
50 4.397 4.958 2.995 32.475 2.419
60 5.522 6.337 3.971 33.026 2.653
70 6.600 7.730 4.910 28.381 3.314
80 7.730 9.117 5.949 18.214 4.431

2000
5 0.372 0.289 1.059 2.298 0.572

10 0.435 0.435 1.508 5.079 0.567
15 0.913 0.827 1.221 10.418 0.736
20 1.061 1.150 0.899 17.506 0.790
25 1.647 1.640 1.336 23.335 0.690
30 1.977 2.047 1.335 30.818 0.574
35 2.191 2.295 1.617 36.470 0.525
40 2.725 3.010 1.811 43.024 0.440
45 2.864 3.126 1.977 47.140 0.455
50 3.564 4.026 2.406 51.293 0.511
60 4.206 4.735 3.067 54.165 0.779
70 5.102 5.804 3.789 48.357 1.975
80 5.817 6.712 4.483 34.591 3.389
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Table A21. Randomized block for MAPE bottom 10%

p NOSE ANOSE NAE REGEXTALL NNALL
50

5 0.02546 0.02883 0.05407 0.11633 0.33278
10 0.08715 0.08715 0.07473 0.18917 0.36281
15 0.21480 0.09999 0.10427 0.17990 0.31217
20 0.17500 0.17500 0.17500 0.16032 0.23931
25 0.16500 0.16500 0.16500 0.13988 0.15817
30 0.13400 0.13400 0.13400 0.13018 0.08615
35 0.10800 0.10800 0.10800 0.11830 0.02949
40 0.08000 0.08000 0.08000 0.11264 0.03614
45 0.05900 0.05900 0.05900 0.11488 0.05900
50 0.02400 0.02400 0.02400 0.12109 0.02400

75
5 0.01919 0.01482 0.05121 0.07436 0.27073

10 0.05487 0.07434 0.06328 0.12701 0.28185
15 0.14932 0.14932 0.06626 0.11112 0.23976
20 0.24836 0.15036 0.14555 0.09452 0.19302
25 0.21600 0.21600 0.21600 0.08272 0.14592
30 0.20900 0.20900 0.16902 0.07787 0.10184
35 0.18391 0.17124 0.16100 0.06805 0.05028
40 0.15529 0.14600 0.14600 0.07248 0.01162
45 0.13805 0.13200 0.13200 0.07136 0.03301
50 0.12687 0.12430 0.11400 0.07364 0.06731

100
5 0.02231 0.00749 0.05468 0.05668 0.23835

10 0.04560 0.06271 0.05472 0.08463 0.22388
15 0.10532 0.10532 0.05541 0.08184 0.20216
20 0.29416 0.29416 0.20513 0.07891 0.05642
25 0.27666 0.22462 0.17841 0.03940 0.12233
30 0.24200 0.24200 0.24200 0.03071 0.09021
35 0.23795 0.23787 0.19300 0.03325 0.06591
40 0.19700 0.19700 0.19700 0.03270 0.03552
45 0.18500 0.18500 0.18500 0.03754 0.00802
50 0.17400 0.17400 0.17400 0.04289 0.02654
60 0.14700 0.14700 0.14697 0.05392 0.08000
70 0.12100 0.12100 0.12100 0.06874 0.10266
80 0.08400 0.08400 0.08400 0.08532 0.08400
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Table A21-Continued

p NOSE ANOSE NAE REGEXTALL NNALL
150

5 0.01662 0.00652 0.04037 0.02038 0.17994
10 0.02430 0.03770 0.04644 0.05147 0.16496
15 0.08294 0.09798 0.04646 0.02748 0.12710
20 0.14091 0.14091 0.06821 0.02933 0.10047
25 0.19133 0.19133 0.11112 0.05005 0.08940
30 0.34500 0.34500 0.17172 0.06292 0.06645
35 0.30200 0.30200 0.22679 0.07655 0.05207
40 0.26300 0.26300 0.26300 0.07339 0.04014
45 0.25392 0.23038 0.22700 0.07695 0.02956
50 0.23200 0.23200 0.23200 0.06626 0.01593
60 0.20896 0.20300 0.20300 0.05194 0.02811
70 0.18700 0.18700 0.18700 0.02734 0.05907
80 0.16900 0.16900 0.16449 0.05090 0.09933

200
5 0.01173 0.00405 0.03704 0.01512 0.14879

10 0.02407 0.03501 0.03686 0.02433 0.11715
15 0.06040 0.07351 0.04305 0.02013 0.09159
20 0.11655 0.13020 0.05359 0.04419 0.05932
25 0.14784 0.14784 0.07837 0.06594 0.06121
30 0.20716 0.20716 0.13196 0.08128 0.04065
35 0.25226 0.30752 0.17189 0.09660 0.03706
40 0.30233 0.16765 0.21724 0.09486 0.02930
45 0.30400 0.30400 0.26174 0.10249 0.02230
50 0.27500 0.27500 0.27500 0.09567 0.01472
60 0.25400 0.25400 0.25400 0.08457 0.01006
70 0.23100 0.23100 0.23100 0.06431 0.03176
80 0.21924 0.21661 0.20500 0.03127 0.05949

300
5 0.01109 0.00589 0.03111 0.02241 0.10738

10 0.01518 0.02093 0.03214 0.01045 0.07173
15 0.05316 0.06336 0.03163 0.03278 0.03164
20 0.07918 0.09069 0.02935 0.05087 0.02080
25 0.11334 0.12535 0.05661 0.07241 0.02329
30 0.15098 0.15098 0.08958 0.08526 0.02362
35 0.18854 0.18854 0.12293 0.09536 0.02197
40 0.22201 0.22201 0.15253 0.10883 0.02341
45 0.25405 0.56736 0.18099 0.11472 0.01907
50 0.29218 0.16625 0.21577 0.11291 0.01328
60 0.32700 0.32700 0.28166 0.11131 0.01544
70 0.28700 0.28700 0.28700 0.09474 0.02070
80 0.27300 0.27300 0.27300 0.07641 0.03380
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Table A21-Continued

p NOSE ANOSE NAE REGEXTALL NNALL
400

5 0.00998 0.00635 0.03184 0.02890 0.08519
10 0.01567 0.01460 0.03036 0.00890 0.04379
15 0.02816 0.03646 0.03520 0.02338 0.01929
20 0.06358 0.07329 0.02828 0.04401 0.02820
25 0.09333 0.10392 0.04421 0.06410 0.04113
30 0.12543 0.13645 0.07226 0.07551 0.04082
35 0.15014 0.15014 0.09332 0.08810 0.03951
40 0.17830 0.17830 0.11813 0.09777 0.03691
45 0.21149 0.21149 0.14822 0.10434 0.03004
50 0.23717 0.23717 0.17100 0.10533 0.02424
60 0.29625 0.28031 0.22476 0.10576 0.02494
70 0.35152 0.32569 0.27520 0.10212 0.02475
80 0.32100 0.32100 0.32100 0.08739 0.03546

500
5 0.00650 0.00333 0.02326 0.03160 0.06018

10 0.01139 0.01283 0.02452 0.01197 0.02359
15 0.02967 0.03666 0.03034 0.02028 0.02077
20 0.05250 0.06085 0.02749 0.03308 0.03844
25 0.07946 0.08880 0.03552 0.04929 0.04923
30 0.10437 0.11436 0.05681 0.06250 0.05329
35 0.13036 0.14068 0.07953 0.06952 0.04720
40 0.15316 0.15316 0.09934 0.07794 0.04518
45 0.17632 0.17632 0.11973 0.08389 0.03937
50 0.20222 0.20222 0.14303 0.08502 0.03434
60 0.25742 0.25742 0.19347 0.09264 0.03133
70 0.30153 0.37710 0.23326 0.09042 0.03008
80 0.34871 0.22386 0.27648 0.08816 0.03799

750
5 0.00658 0.00445 0.02101 0.03274 0.03221

10 0.01137 0.01133 0.02210 0.00637 0.00950
15 0.02049 0.02552 0.02554 0.01721 0.03385
20 0.04096 0.04714 0.02167 0.01730 0.05040
25 0.05681 0.06394 0.02576 0.02154 0.05440
30 0.07855 0.08644 0.03972 0.01982 0.05578
35 0.09808 0.10656 0.05658 0.02004 0.05257
40 0.11301 0.12192 0.06907 0.02429 0.04713
45 0.12878 0.13796 0.08257 0.02684 0.04197
50 0.15671 0.16602 0.10838 0.02107 0.04019
60 0.19099 0.19099 0.13878 0.03003 0.03822
70 0.22930 0.22930 0.17356 0.04003 0.03901
80 0.26258 0.26258 0.20360 0.05738 0.04423
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Table A21-Continued

p NOSE ANOSE NAE REGEXTALL NNALL
1000

5 0.00500 0.00339 0.01759 0.03413 0.01543
10 0.00786 0.00670 0.01715 0.01824 0.01885
15 0.01560 0.01954 0.02135 0.03949 0.03727
20 0.03110 0.03601 0.01902 0.05394 0.04779
25 0.04874 0.05449 0.02371 0.06507 0.05002
30 0.06282 0.06928 0.02919 0.07855 0.05066
35 0.08011 0.08718 0.04417 0.08705 0.04686
40 0.09516 0.10273 0.05710 0.09545 0.04308
45 0.11133 0.11930 0.07131 0.09981 0.04035
50 0.12791 0.13619 0.08606 0.10038 0.03864
60 0.15711 0.16574 0.11189 0.09399 0.03620
70 0.18599 0.18599 0.13772 0.07168 0.04039
80 0.21839 0.21839 0.16732 0.03046 0.04779

1500
5 0.00242 0.00134 0.01215 0.03515 0.00487

10 0.00724 0.00520 0.01498 0.03923 0.01550
15 0.01359 0.01635 0.01729 0.07882 0.02519
20 0.02364 0.02712 0.01873 0.11870 0.02708
25 0.03572 0.03987 0.01831 0.15553 0.02990
30 0.04789 0.05263 0.02043 0.19025 0.02892
35 0.05979 0.06506 0.03045 0.22179 0.02539
40 0.07285 0.07861 0.04178 0.24719 0.02213
45 0.08339 0.08956 0.05072 0.26865 0.02071
50 0.09562 0.10217 0.06145 0.28063 0.02012
60 0.12086 0.12800 0.08394 0.27636 0.02379
70 0.14457 0.15214 0.10516 0.23388 0.02957
80 0.16744 0.17525 0.12574 0.15497 0.04087

2000
5 0.00385 0.00307 0.01363 0.03245 0.00610

10 0.00719 0.00564 0.01376 0.05811 0.00571
15 0.01133 0.01346 0.01517 0.11613 0.00936
20 0.01975 0.02246 0.01324 0.17690 0.01081
25 0.03173 0.03498 0.01695 0.23437 0.00848
30 0.04119 0.04494 0.01741 0.29274 0.00728
35 0.04868 0.05289 0.02327 0.34904 0.00765
40 0.06058 0.06521 0.03367 0.39427 0.00564
45 0.06716 0.07217 0.03886 0.43548 0.00792
50 0.08261 0.08798 0.05302 0.45594 0.00606
60 0.10071 0.10669 0.06874 0.46590 0.00992
70 0.12176 0.12824 0.08763 0.40754 0.01978
80 0.13935 0.14622 0.10324 0.29111 0.03251
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Table A22. R-Squares for 95th percentile

NN95 REGEXT95 LCHF95
1 0.97762 0.98078 0.98414
2 0.98917 0.98580 0.98727
3 0.99091 0.98909 0.98978
4 0.99509 0.99081 0.99195
5 0.99293 0.99284 0.99350
6 0.98979 0.99460 0.99472
7 0.98558 0.99626 0.99632
8 0.98123 0.99726 0.99744
9 0.98257 0.99786 0.99789

10 0.98227 0.99785 0.99789
11 0.98214 0.99759 0.99779
12 0.98229 0.99653 0.99692
13 0.98274 0.99489 0.99511
14 0.98316 0.99527 0.99590
15 0.98343 0.99292 0.99381
16 0.98349 0.99111 0.99191
17 0.96778 0.96847 0.96921
18 0.96600 0.96583 0.96601
19 0.95378 0.95301 0.95459
20 0.95525 0.95086 0.95239
21 0.97618 0.97342 0.97485
22 0.98001 0.97012 0.97216
23 0.98006 0.96443 0.96633
24 0.98390 0.94890 0.95184
25 0.98709 0.94297 0.94624
26 0.98644 0.93736 0.94181
27 0.98275 0.93322 0.93739
28 0.98021 0.92942 0.93379
29 0.97740 0.92408 0.92957
30 0.97293 0.91858 0.92334
31 0.97078 0.91594 0.92258
32 0.96726 0.91120 0.91786
33 0.96654 0.90601 0.91449
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Table A23. MADs for 95th percentile

NN95 REGEXT95 LCHF95
1 0.06700 0.10587 0.05256
2 0.04445 0.04503 0.04193
3 0.04327 0.03705 0.03487
4 0.03170 0.03788 0.02678
5 0.02736 0.03625 0.02141
6 0.02196 0.03080 0.01809
7 0.02250 0.02657 0.01372
8 0.02727 0.02242 0.01229
9 0.02714 0.01967 0.00936

10 0.03049 0.01709 0.00977
11 0.03254 0.01706 0.01067
12 0.03381 0.01798 0.01205
13 0.03453 0.01833 0.01586
14 0.03308 0.01989 0.01206
15 0.03253 0.02216 0.01504
16 0.03079 0.02306 0.01800
17 0.03340 0.02974 0.02678
18 0.03399 0.03092 0.03141
19 0.03205 0.03233 0.02735
20 0.03193 0.03461 0.03061
21 0.02697 0.03153 0.02775
22 0.02567 0.03227 0.02974
23 0.02680 0.03504 0.03365
24 0.02559 0.03657 0.02875
25 0.02817 0.03868 0.03178
26 0.03009 0.04187 0.03459
27 0.03292 0.04347 0.03761
28 0.03619 0.04442 0.04013
29 0.03930 0.04599 0.04296
30 0.04213 0.04776 0.04674
31 0.04482 0.04826 0.04822
32 0.04687 0.04959 0.05150
33 0.04821 0.05049 0.05397
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Table A24. MAPEs for 95th percentile

NN95 REGEXT95 LCHF95
1 3.012 4.882 2.646
2 2.664 2.321 2.351
3 3.056 2.223 2.121
4 1.989 2.411 1.628
5 1.836 2.445 1.371
6 1.590 2.127 1.190
7 1.751 1.897 0.945
8 2.304 1.695 0.965
9 1.979 1.412 0.696

10 2.396 1.294 0.809
11 2.770 1.413 1.000
12 3.111 1.655 1.247
13 3.503 1.889 1.719
14 3.020 1.946 1.284
15 3.198 2.342 1.692
16 3.256 2.604 2.104
17 3.819 3.466 3.151
18 4.271 3.933 3.941
19 3.526 3.814 3.241
20 3.788 4.327 3.847
21 3.453 4.229 3.777
22 3.528 4.559 4.312
23 3.973 5.358 5.205
24 2.739 4.668 3.710
25 3.098 5.210 4.327
26 3.437 5.885 4.961
27 3.920 6.409 5.657
28 4.553 6.991 6.454
29 5.201 7.670 7.311
30 5.889 8.598 8.444
31 6.797 9.389 9.307
32 7.665 10.807 10.734
33 8.959 12.202 12.043
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Table A25. Randomized block for MSE - 95th percentile

p NN95 REGEXT95 LCHF95
50

5 0.01728 0.01351 0.00577
10 0.01700 0.00494 0.00058
15 0.01270 0.00428 0.00093
20 0.00884 0.00442 0.00133
25 0.00610 0.00527 0.00166
35 0.00499 0.01031 0.00420
50 0.01587 0.02761 0.01467

75
5 0.01293 0.00598 0.00204

10 0.00645 0.00126 0.00023
15 0.00371 0.00163 0.00029
20 0.00201 0.00133 0.00034
25 0.00193 0.00179 0.00015
35 0.00145 0.00267 0.00020
50 0.00354 0.00757 0.00172

100
5 0.01120 0.00320 0.00089

10 0.00380 0.00105 0.00029
15 0.00111 0.00113 0.00060
20 0.00057 0.00138 0.00088
25 0.00099 0.00189 0.00063
35 0.00098 0.00239 0.00091
50 0.00289 0.00440 0.00075

125
5 0.00860 0.00226 0.00074

10 0.00237 0.00084 0.00041
15 0.00063 0.00125 0.00095
20 0.00054 0.00144 0.00085
25 0.00081 0.00209 0.00131
35 0.00085 0.00259 0.00148
50 0.00288 0.00332 0.00074

150
5 0.00660 0.00188 0.00069

10 0.00154 0.00059 0.00058
15 0.00045 0.00090 0.00121
20 0.00064 0.00136 0.00121
25 0.00096 0.00199 0.00145
35 0.00081 0.00225 0.00157
50 0.00601 0.00730 0.00559
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Table A25-Continued

p NN95 REGEXT95 LCHF95
175

5 0.00522 0.00187 0.00065
10 0.00107 0.00052 0.00052
15 0.00047 0.00083 0.00073
20 0.00082 0.00125 0.00091
25 0.00094 0.00152 0.00105
35 0.00078 0.00195 0.00134
50 0.00236 0.00208 0.00058

200
5 0.00353 0.00159 0.00069

10 0.00072 0.00041 0.00048
15 0.00064 0.00080 0.00074
20 0.00091 0.00102 0.00077
25 0.00105 0.00128 0.00078
35 0.00076 0.00145 0.00098
50 0.00236 0.00149 0.00038

300
5 0.00076 0.00139 0.00070

10 0.00025 0.00024 0.00015
15 0.00070 0.00038 0.00019
20 0.00091 0.00037 0.00022
25 0.00112 0.00046 0.00021
35 0.00065 0.00039 0.00004
50 0.00236 0.00072 0.00022

400
5 0.00039 0.00173 0.00107

10 0.00034 0.00016 0.00008
15 0.00049 0.00017 0.00010
20 0.00048 0.00031 0.00024
25 0.00039 0.00048 0.00039
35 0.00057 0.00149 0.00115
50 0.00347 0.00141 0.00127

500
5 0.00076 0.00187 0.00133

10 0.00058 0.00034 0.00024
15 0.00041 0.00041 0.00037
20 0.00023 0.00086 0.00088
25 0.00021 0.00172 0.00166
35 0.00100 0.00503 0.00467
50 0.00516 0.00325 0.00331
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Table A26. Randomized block for MAX DEV - 95th percentile

p NN95 REGEXT95 LCHF95
50

5 0.179946 0.195301 0.110518
10 0.243867 0.179805 0.04522
15 0.306782 0.20237 0.057803
20 0.329138 0.245702 0.06988
25 0.327761 0.298779 0.066586
35 0.357679 0.474345 0.188695
50 0.450163 0.74102 0.391821

75
5 0.160368 0.130424 0.060176

10 0.112666 0.08194 0.026527
15 0.173582 0.104465 0.033019
20 0.170457 0.109562 0.05214
25 0.184583 0.157658 0.025191
35 0.153208 0.232738 0.036377
50 0.154455 0.415921 0.151743

100
5 0.146682 0.095206 0.03456

10 0.07598 0.067276 0.028558
15 0.094299 0.061035 0.060966
20 0.086735 0.073784 0.08176
25 0.119169 0.110586 0.042733
35 0.076037 0.149377 0.055785
50 0.094704 0.284045 0.07034

125
5 0.123961 0.078737 0.030337

10 0.058905 0.049411 0.032957
15 0.050741 0.063481 0.068553
20 0.051213 0.070018 0.077335
25 0.046429 0.07391 0.073565
35 0.044564 0.117488 0.061676
50 0.090023 0.223322 0.054976

150
5 0.105928 0.070945 0.028857

10 0.058367 0.042581 0.044032
15 0.044946 0.059703 0.081085
20 0.039746 0.064746 0.092254
25 0.049701 0.091687 0.085068
35 0.053986 0.07515 0.06141
50 0.180082 0.214093 0.212211
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Table A26-Continued

p NN95 REGEXT95 LCHF95
175

5 0.094014 0.071876 0.028335
10 0.05345 0.040195 0.042051
15 0.040764 0.054765 0.066112
20 0.045767 0.064264 0.070138
25 0.04547 0.061489 0.070612
35 0.056296 0.074935 0.060172
50 0.077484 0.159074 0.04913

200
5 0.075905 0.06373 0.027871

10 0.043181 0.032956 0.040474
15 0.039508 0.04917 0.065364
20 0.046293 0.060083 0.069639
25 0.04732 0.058621 0.051882
35 0.060554 0.062412 0.050246
50 0.066478 0.135645 0.042995

300
5 0.037165 0.058399 0.029515

10 0.022614 0.024977 0.015388
15 0.044869 0.035984 0.028181
20 0.049976 0.0373 0.035883
25 0.09099 0.048132 0.040514
35 0.074551 0.06973 0.015067
50 0.079237 0.133013 0.054358

400
5 0.033278 0.064403 0.042666

10 0.032666 0.033952 0.017451
15 0.037849 0.027562 0.023223
20 0.040307 0.040819 0.040011
25 0.046417 0.054734 0.048533
35 0.063229 0.103309 0.083874
50 0.097161 0.138231 0.08327

500
5 0.045247 0.063573 0.047076

10 0.050488 0.048197 0.026149
15 0.044385 0.05019 0.042823
20 0.037953 0.064319 0.067819
25 0.035822 0.097125 0.091598
35 0.052259 0.170186 0.161944
50 0.109333 0.149222 0.110074
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Table A27. Randomized block for MAPE - 95th percentile

p NN95 REGEXT95 LCHF95
50

5 10.146 5.539 5.007
10 10.201 3.766 1.687
15 8.446 4.066 3.054
20 6.367 4.118 4.344
25 4.568 4.872 5.608
35 2.608 11.113 10.390
50 3.311 7.051 7.442

75
5 8.496 3.887 3.351

10 6.773 2.259 0.943
15 4.332 2.089 1.107
20 2.099 1.988 1.224
25 2.350 2.466 1.158
35 2.217 3.668 1.406
50 3.504 2.382 1.279

100
5 8.021 2.902 2.375

10 5.436 2.001 1.234
15 2.208 2.130 1.126
20 1.325 2.821 1.645
25 1.899 3.705 2.360
35 2.661 4.627 3.978
50 3.685 3.480 1.968

125
5 7.369 2.782 2.268

10 4.294 1.834 1.534
15 1.418 2.416 1.717
20 1.852 3.143 2.061
25 2.637 4.208 3.189
35 2.933 5.266 4.749
50 3.864 3.601 2.236

150
5 6.602 2.722 2.226

10 3.324 1.618 1.741
15 1.466 2.071 1.968
20 2.354 3.050 2.264
25 3.001 4.037 3.189
35 2.933 5.017 4.616
50 5.567 5.725 4.518
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Table A27-Continued

p NN95 REGEXT95 LCHF95
175

5 5.845 2.639 2.168
10 2.525 1.672 1.687
15 1.760 2.136 1.597
20 2.661 2.916 2.059
25 3.069 3.578 2.778
35 2.902 4.519 4.108
50 3.728 3.081 1.958

200
5 4.889 2.744 2.283

10 1.829 1.466 1.643
15 2.120 2.057 1.624
20 2.799 2.628 1.857
25 3.205 3.245 2.446
35 2.708 3.746 3.394
50 3.848 2.555 1.528

300
5 2.190 2.720 2.313

10 1.311 1.117 1.068
15 2.348 1.324 0.697
20 2.777 1.324 0.816
25 2.948 1.631 0.927
35 2.155 1.454 0.527
50 3.975 0.826 0.623

400
5 1.302 3.193 2.826

10 1.472 0.635 0.630
15 1.872 1.046 0.748
20 1.958 1.399 1.235
25 1.660 1.739 1.643
35 2.204 3.179 3.105
50 4.820 2.040 2.433

500
5 1.890 3.501 3.163

10 1.906 0.910 1.212
15 1.674 1.401 1.565
20 1.073 2.233 2.450
25 1.161 3.282 3.467
35 2.831 6.173 6.167
50 5.930 3.944 4.229
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Table A28. Deleted observations from simulation study

Sample B(2, 6)
Size p0init p1init r1init s1init p0final p1final r1final s1final
200_200 NONE
300_100 0.82 0.18 7.74 28.19 0.77 0.23 1.75 4.75

0.82 0.18 25.52 77.54 0.77 0.23 2.54 6.49
500_500 0.60 0.40 8.05 32.99 0.53 0.47 2.04 6.55

0.60 0.40 8.71 31.20 0.52 0.48 2.13 6.22
750_250 0.79 0.21 9.05 35.50 0.78 0.22 2.88 9.28

0.83 0.17 12.74 36.68 0.81 0.19 3.24 8.76
0.76 0.24 18.86 66.33 0.72 0.28 2.29 6.61
0.82 0.18 17.74 79.17 0.78 0.22 1.97 6.49

1000_1000 0.57 0.43 5.11 18.14 0.51 0.49 2.15 6.51
1500_500 0.79 0.21 12.87 50.13 0.76 0.24 2.19 6.78

0.78 0.22 20.33 79.88 0.73 0.27 1.66 4.87

Noncentral and Central t
1000_1000 0.46 0.54 0.53 1.43 0.00 1.00 0.66 1.09
1500_500 0.72 0.28 0.46 1.18 0.00 1.00 0.78 1.00

0.69 0.31 0.73 1.94 0.00 1.00 0.80 1.06
0.87 0.13 9.47 66.03 0.84 0.16 0.77 3.20

200_200 0.51 0.49 0.43 1.18 0.00 1.00 0.66 1.04
0.50 0.50 0.52 1.51 0.00 1.00 0.66 1.08
0.56 0.44 0.58 1.53 0.00 1.00 0.73 1.10
0.52 0.48 0.57 1.59 0.00 1.00 0.69 1.10
0.46 0.54 0.66 1.83 0.00 1.00 0.68 1.17
0.51 0.49 0.67 1.91 0.00 1.00 0.73 1.19

300_100 0.88 0.12 2.94 20.92 0.94 0.06 1.48 31.71
0.62 0.38 0.65 1.31 0.00 1.00 0.80 1.05
0.78 0.22 0.47 1.41 0.00 1.00 0.80 1.01
0.63 0.37 0.60 1.45 0.00 1.00 0.81 1.11

500_500 0.70 0.30 22.45 100.00 0.66 0.34 0.69 4.05
0.44 0.56 0.52 1.34 0.00 1.00 0.68 1.11
0.49 0.51 0.71 2.10 0.00 1.00 0.71 1.18

750_250 0.87 0.13 6.89 73.96 0.85 0.15 0.77 6.00
0.70 0.30 0.60 1.27 0.00 1.00 0.83 1.03
0.73 0.27 0.53 1.29 0.00 1.00 0.79 1.00
0.60 0.40 0.63 1.32 0.00 1.00 0.81 1.07
0.74 0.26 0.50 1.47 0.00 1.00 0.79 1.02
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