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Let (T;A) be a toral arrangement over C , where T is a complex torus and A is a

�nite set of kernels of rational characters of T . The complement of the arrangement,

M , is formed by taking the union of the kernels of the characters inA and deleting this

from T . Let �1 � �1; : : : ; �s � �s be the distinct irreducible factors of the characters

minus 1 in A, where �i is a character of T with connected kernel and �i is a nth

root of unity for some n. Let Mj = C
l n

Sl
k=1

ker(zk) [
Sj
i=1

ker(�i � �i). Using

de Rham cohomology with complex coe�cients, we show that if, for all 1 � r � s,

H�

DR(Mr�1 \ Zr) is generated as a C -algebra by the set

��
dCz1j(Mr�1\Zr)

z1j(Mr�1\Zr)

�
; : : : ;

�
dCzlj(Mr�1\Zr)

zlj(Mr�1\Zr)

�
;

�
dC�1j(Mr�1\Zr)

(�1��1)j(Mr�1\Zr)

�
; : : : ;

�
dC�r�lj(Mr�1\Zr)

(�r�l��r�l)j(Mr�1\Zr)

��
;

then the cohomology H�

DR(M) is generated as a C -algebra by the set

f[dCz1
z1

]; : : : ; [dCzl
zl

]; [ dC�1

�1��1
]; : : : ; [ dC�s

�s��s
]g:
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CHAPTER 1

INTRODUCTION

Let k be a �eld, V be a l-dimensional vector space over k, andA = fker(�1); : : : ; ker(�s)g

be a a �nite set of hyperplanes formed from the linear functionals �i : V ! k,

i = 1; : : : ; s. Then recall that the pair (A; V ) is called a hyperplane arrangement

[OT]. The complement of the arrangement is

M = V n
s[

i=1

ker(�i):

In 1971, E. Brieskorn proved that the cohomology ring of M with coe�cients in Z is

generated by s anticommuting elements, one for each hyperplane [Br, Lemma 3].

Let A be a connected, graded, skew-commutative k-algebra with identity, and

let V be a r-dimensional k-vector space with basis fv1; : : : ; vrg. We say that A is

generated by the set fa1; : : : ; arg if there exists a surjective k-algebra homomorphism

f :
V� V ! A such that f(vi) = ai for 1 � i � r. In particular, Aq = f(

Vq V ) and Aq

is spanned by the set fai1 : : : aiq j 1 � i1 < � � � < iq � rg.

In 1991, R. Jozsa and J. Rice [JR, Theorem 1] presented the following version of

Brieskorn's result.

Theorem 1.1 The cohomology of the complement of A, H�(M), is generated by the

cohomology classes of the di�erential forms
d�j jM
�j jM

for j = 1; : : : ; s.

In their proof Jozsa and Rice use de Rham cohomology with complex coe�cients.

However, their arguments are independent of this interpretation and apply in any

1
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cohomology theory once you replace
d�j jM
�j jM

with (�jjM)�(�) for a non-zero element �

of H1(C
�
) where C

�
represents the set of non-zero complex numbers.

Let T = (C
�
)l be a complex torus and let A0 = fker(�0

1); : : : ; ker(�
0
s)g be a �nite

set of kernels of rational characters of T . Recall that the pair (T;A0) is called a toral

arrangement over C [Dou]. We de�ne the complement of the arrangement to be

M 0 = T n
s[

i=1

ker(�0
i):

The objective of this work is to prove the analog of Theorem 1.1 for toral arrange-

ments. First we prove an extension of Jozsa and Rice's result that holds in any

cohomology with �eld coe�cients, and then we prove an analogous theorem for toral

arrangements.

In Chapter 2 we emulate the method of Jozsa and Rice to extend Theorem 1.1

as follows. Consider a cohomology theory with coe�cients in k that satis�es the

K�unneth Formula and has a ring structure that makes the cohomology groups into a

skew-commutative graded k-algebra. For q = 0; 1, we know that Hq(C
�
) is isomorphic

to C as a k-vector space [Spa, Theorem 4.6.6]. We denote a non-zero element of

H0(C
�
) by c1 and a non-zero element of H1(C

�
) by �. If X is a smooth real manifold,

f1; : : : ; fr are smooth maps fromX to C , and Zi = f�1
i (0), we analyze the cohomology

of the complements Mj = X n (
Sj
i=1 Zi) for 1 � j � r. The goal of Chapter 2 is a

proof of the following theorem.

Theorem 1.2 Assume that

(1) Zr 6�
r�1[
i=1

Zi,

(2) 0 is a regular value of frjMr�1
,
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(3) as a k-algebra H�(Mr�1 \ Zr) is generated by the set

f(f1j(Mr�1\Zr))
�(�); : : : ; (fr�1j(Mr�1\Zr))

�(�)g;

(4) as a k-algebra H�(Mr�1) is generated by the set

f(f1jMr�1
)�(�); : : : ; (fr�1jMr�1

)�(�)g:

Then as a k-algebra H�(Mr) is generated by the set f(f1jMr
)�(�); : : : ; (frjMr

)�(�)g.

In Chapter 3 we consider real and complex tangent spaces, their properties, and

how they are related. We see that complex tangent space is simply the complexi�-

cation of real tangent space, and then we use this relationship to de�ne the complex

di�erential dC . This leads to the de�nitions of real and complex q-forms and de Rham

cohomology with real and complex coe�cients. The conclusion of this chapter is the

proof that de Rham cohomology with complex coe�cients satis�es the Eilenberg-

Steenrod Axioms of cohomology and the particular properties of a cohomology theory

that we use to prove Theorem 1.2.

In order to apply Theorem 1.2 to toral arrangements, we need to know that 0 is

a regular value of holomorphic functions de�ned on C
l
. We address this problem in

Chapter 4. Showing that 0 is a regular value requires that the real di�erential of a

holomorphic function be surjective which, in turn, involves taking partial derivatives

with respect to the real coordinate functions. Since the function is de�ned on C
l

it is much easier to take partial derivatives with respect to the complex coordinate

functions. We de�ne holomorphic tangent space and the holomorphic di�erential

and then use them to show that for a holomorphic function the real di�erential is

surjective if and only if the complex di�erential is surjective.
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In Chapter 5 we �nally address the application of �nding the generators of the

cohomology of the complement of a toral arrangement, where the cohomology is de

Rham cohomology with complex coe�cients. For 1 � k � s consider the irreducible

factors of �0
k � 1. From all the irreducible factors, for all k, let �1 � �1; : : : ; �s � �s

be the distinct irreducible factors, where �i is a character of T with connected kernel

and �i is a nth root of unity for some n. We show that the de Rham cohomology of

the complement of A0, denoted by H�
DR(M

0), is generated as a C -algebra by the set

f[dCz1
z1

]; : : : ; [dCzl
zl
]; [ dC�1

�1��1
]; : : : ; [ dC�s

�s��s
]g if, for all l + 1 � r � l + s, H�

DR(Mr�1 \ Zr) is

generated as a C -algebra by the set

��
dCz1j(Mr�1\Zr)

z1j(Mr�1\Zr)

�
; : : : ;

�
dCzlj(Mr�1\Zr)

zlj(Mr�1\Zr)

�
;

�
dC�1j(Mr�1\Zr)

(�1��1)j(Mr�1\Zr)

�
; : : : ;

�
dC�r�lj(Mr�1\Zr)

(�r�l��r�l)j(Mr�1\Zr)

��
:

Unless otherwise noted the canonical references for this paper are [BT], [Spa],

[Wa]. In Chapter 2 we will continue to use k to represent any �eld. We also use the

real numbers, denoted by R , and the complex numbers, denoted by C . When either

R or C is acceptable we will use the notation F .



CHAPTER 2

EXTENSION OF BRIESKORN'S LEMMA

Before we state and prove the extension of Theorem 1.1 we �rst review the axioms of

a cohomology theory and recall the de�nition of a tangent space of a manifold.

2.1 Axiomatic Cohomology Theory

Recall that a pair of topological spaces (X;A) is a topological space X and a subspace

A of X. If A = ;, then (X; ;) is usually abbreviated by X. A cohomology theory with

coe�cients in k on a category of topological pairs is a collection of three functions

as follows. For each pair (X;A) of topological spaces, H�(X;A) = fHq(X;A)g is

a graded k-vector space. The function f � is de�ned for each map f : (X;A) !

(Y;B) of topological spaces, and its value is a homomorphism of graded vector spaces

f � : H�(Y;B) ! H�(X;A). The third function is the coboundary operator, a linear

transformation �� : Hq(A)! Hq+1(X;A). These three functions satisfy the following

properties known as the Eilenberg-Steenrod axioms [ES, Section I.3c].

(1) If f is the identity, then f � is the identity.

(2) (g � f)� = f � � g�

(3) Naturality Axiom: If f : (X;A)! (Y;B) is a map of topological spaces and

5
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f jA : A! B, then the following diagram commutes

Hq+1(Y;B)
f�

�! Hq+1(X;A)

x??��
x??��

Hq(B)
(f jA)

�

�! Hq(A):

(4) Exactness Axiom: For any pair (X;A) with inclusion maps i : A ! X and

� : X ! (X;A), there is an exact sequence

� � � ! Hq(X;A)
��

! Hq(X)
i�

! Hq(A)
��

! Hq+1(X;A)! � � � : (2.1)

(5) Homotopy Axiom: If (X;A) and (Y;B) are pairs of topological spaces and

f0; f1 : (X;A)! (Y;B) are homotopic, then f �
0
� f �

1
: H�(Y;B)! H�(X;A):

(6) Excision Axiom: For any pair (X;A), if W is an open subset of X such

that the closure of W is contained in the interior of A, then the inclusion map

j : (X nW;A nW )! (X;A) induces an isomorphism

j� : H�(X;A)! H�(X nW;A nW ): (2.2)

(7) Dimension Axiom: If X is a one point space, then Hq(X) = 0 for q 6= 0 and

H0(X) �= k.

When i : A! X is an inclusion, we will use the notation H�(i) = H�(X;A).

A consequence of these axioms is an understanding of the cohomology of C and

C
�. Cohomology is homotopy invariant by the Homotopy Axiom and C is homotopic

to a point; thus, by the Dimension Axiom the cohomology of C is k in dimension 0

and 0 in all other dimensions. A �xed generator of H0(C ) is labeled c1. The axioms
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also imply an exact Mayer-Vietoris cohomology sequence [ES, Theorem 15.3c]. Using

this together with the cohomology of C by Theorem 4.6.6 in [Spa] we have that the

cohomology of C � is

Hq(C �) �=

8>>><
>>>:

k if q = 0; 1

0 if q > 1.

We label a generator of Hq(C �) by c1 in degree 0 and by � in degree 1.

For the proofs of this section we need the cohomology to have two additional

attributes. First, it must satisfy the K�unneth Formula as follows.

Formula 2.1 K�unneth Formula Suppose X and Y are topological spaces. Let

p1 : X � Y ! X and p2 : X � Y ! Y be projections. There exists a unique map

K : H�(X) 
H�(Y ) ! H�(X � Y ) satisfying K(! 
 �) = p�
1
(!) [ p�

2
(�). The map

K is a graded k-algebra isomorphism. In particular, for all n

K :
M

p+q=n

Hp(X)
Hq(Y )! Hn(X � Y );

is an isomorphism.

Secondly, we require that the cohomology has a ring structure that makes the co-

homology groups into a skew-commutative graded k-algebra. When multiplying two

elements of the cohomology we either use the notation a [ b or we leave the symbol

out and denote it by ab if the meaning is clear. From now on we assume that we are

working with cohomology that has coe�cients in k and satis�es these two conditions.

There are many examples of cohomology theories that satisfy the Eilenberg-

Steenrod axioms as well as the two additional properties given above. One example is

singular cohomology theory on the category of topological pairs [Spa]. In Chapter 3
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we will show that de Rham cohomology on the category of pairs consisting of smooth

manifolds and submanifolds is another example.

2.2 Tangent Spaces

Let X be a real smooth manifold. For an open subset U of X, let C1
F
(U) denote

the ring of smooth functions from U to F . Consider m an element of X. Let U and

V be open subsets of X containing m. If f and g are smooth function on U and

V respectively, we say that (U; f) is related to (V; g) if f and g agree on some open

neighborhood of m. This is clearly an equivalence relation. Let [U; f ] denote the

equivalence class of (U; f). Then [U; f ] is called a germ of a smooth function on X

near m. We can add germs by [U; f ] + [V; g] = [U \ V; f + g], multiply germs by

[U; f ] � [V; g] = [U \ V; fg], and multiply by an element � in F by �[U; f ] = [U; �f ]. It

is straightforward to see that these operations are well-de�ned. It is also easy to see

that the set of germs of smooth functions on X near m forms a F -algebra. We call it

the ring of germs of C1
F

at m and denote it by C1
F;m; that is

C1
F;m = f[U; f ] j m 2 U � X;U open; f 2 C1

F
(U)g:

If [U; f ] is in C1
F;m we will say that f is in C1

F;m.

We can make F into a C1
F;m-module, denoted by Fm, where the multiplication is

de�ned by [V; g] �� = g(m)�, for � in F and [V; g] in C1
F;m. This is well-de�ned because

if [U; f ] is equivalent to [V; g], then f and g agree on an open set containing m, so

f(m) = g(m). De�ne the F -tangent space at m of X, TF;mX, to be the set of F -linear
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derivations from C1
F;m to Fm. Thus

TF;mX = DerF(C
1
F;m; Fm)

= f� : C1
F;m ! Fm j �(fg) = f(m)�(g) + g(m)�(f)8f; g 2 C1

F;mg:

When the �eld F is the reals we denote the tangent space simply by TmX. De�ne

(�1 + �2)(f) = �1(f) + �2(f) and (��)(f) = �(�(f)) for �1; �2 in TF;mX and � in F . It

is easy to see that these de�nitions do not depend on the choice of equivalence class

of the representative f . Then by following through the de�nitions we see that �1+ �2

and �� are again tangent vectors at m. In this way TF;mX is a F -vector space.

When F = R , recall that the di�erential of a smooth map at m in X is a map on

real tangent spaces. Suppose Y is a smooth real manifold and � : X ! Y is a smooth

mapping. Then the di�erential of � at m is the map (d�)m : TmX ! T�(m)Y de�ned

by ((d�)m(�)) (g) = �(g � �) for � in TmX and g in C1
R;�(m)

.

2.3 Tubular Neighborhoods

Let X and Y be real manifolds and f : X ! Y be a smooth map. The next Theorem,

a version of the implicit function theorem, is proven in [Wa, Theorem 1.38].

Theorem 2.2 If p is a point of Y such that f�1(p) is non-empty and the map of

tangent spaces (df)x : TxX ! Tf(x)Y is surjective for all x in f�1(p), then f�1(p) is

a submanifold of X. Moreover, the real dimension of f�1(p) is dimX � dimY .

Given p an element of Y , we say that p is a regular value of f if the map of tangent

spaces (df)x : TxX ! Tf(x)Y is surjective for all x in f�1(p). Theorem 2.2 implies
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that when p is a regular value of f , f�1(p) is a submanifold of X of real dimension

dimX � dimY . A fact about regular values that we will �nd useful is given in the

next lemma.

Lemma 2.3 If p in Y is a regular value of f and V is an open subset of X, then p

is a regular value of f jV .

Proof. The fact that V is open in X yields that for all x in V , the tangent spaces

at x are equal; i.e. TxV = TxX. By assumption we have that (df)x : TxX ! Tf(x)Y

is surjective for all x in f�1(p). So (df jV )x : TxV ! Tf(x)Y is surjective for all x in

(f jV )
�1(p).

Let N be a n-dimensional submanifold of X. Recall that a tubular neighborhood of

N is de�ned to be a subset U ofX which has the structure of a (l�n)-dimensional real

vector bundle over N with N as the zero section [Ko]. Now assume that f : X ! C

is a smooth map and 0 is a regular value of f . Let Z = f�1(0). It follows from

Theorem 2.2, that Z is a closed submanifold of X. Let n = dimX � dimZ. We will

consider a tubular neighborhood of Z.

Before stating the next result we establish some notation. If g : A ! B and

h : A ! C then the product map, g � h : A ! B � C, is the map that sends an

element a in A to the element (g(a); h(a)) in B � C.

Proposition 2.4 There is a tubular neighborhood U of Z and a smooth projection

map, � : U ! Z, such that (� � f jU)
� : Hq(Z � C )! Hq(U) is an isomorphism.

Proof. Since Z is closed submanifold the existence of a tubular neighborhood

is guaranteed [Ko, Corollary 2.3]. Let U be a tubular neighborhood of Z. Then
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U has the structure of a real vector bundle over Z and so there exists a smooth

projection map � : U ! Z. This implies that Z is a deformation retract of U with

retraction �, and so � is a homotopy equivalence with inverse i where i : Z ! U is

the inclusion map. Now we have the composition (� � f jU) � i : Z ! Z � C with

image Z�f0g. If we compose this map with the restriction map � : Z�C ! Z�f0g

de�ned by �(z; �) = (z; 0) for � in C , we have a di�eomorphism, and thus a homotopy

equivalence, from Z to Z � f0g. Since C is homotopic to f0g and Z is homotopic

to itself, we also have that the product map j : Z � f0g ! Z � C is a homotopy

equivalence. Combining this with the previous composition we have

(� � f jU) � i = j � � � (� � f jU) � i : Z ! Z � C

is a homotopy equivalence. By the Homotopy Axiom, it follows that the map on

cohomology ((�� f jU) � i)
� is an isomorphism. The Homotopy Axiom also gives that

�� is an isomorphism with inverse i�. Thus composing these two isomorphisms we

have

�� � ((� � f jU) � i)
� = �� � i� � (� � f jU)

� = (� � f jU)
�;

which is also an isomorphism.

From Theorem 2.2 and the de�nition of a tubular neighborhood, we see that U

has the structure of a 2-dimensional real vector bundle over Z. Thus as real vector

spaces the �bers over Z are isomorphic to C . We use this result in the next corollary.

Corollary 2.5 When we restrict the product map � � f jU to U n Z, the map

(�jUnZ � f jUnZ)
� : Hq(C �)! Hq(U n Z) is an isomorphism:
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Proof. Let e� = �jUnZ and ef = f jUnZ. Then e� : U nZ ! Z is a �ber bundle, and

the �bers are C � because by de�nition of tubular neighborhood Z is the zero section

of the vector bundle. Additionally we have the natural projection p : Z � C
� ! Z

which is also a bundle with �ber C �. We have the commutative diagram connecting

these two bundles:

U n Z
e��ef
�! Z � C

�

??ye�
??yp

Z
id
�! Z:

Corollary 2.7.14 of [Spa] states that a �ber bundle is a �bration. By the results of

Section 7.2 in [Spa] we see that a �bration is a weak �bration and that weak �brations

have long exact homotopy sequences where the � map is a natural transformation.

Thus the vertical maps in the diagram each give rise to long exact homotopy se-

quences. Let z be in Z and let � be an element of the �ber C �. We have the following

commutative diagram of long exact homotopy sequences

� � � ! �n(C
�; �)

i0
#
! �n(U n Z; �)

e�#
! �n(Z; z)

�@0

! �n�1(C
�; �) ! � � �

??y=
??y

??y=
??y=

� � � ! �n(C
�; �)

i00
#
! �n(Z � C

�; �)
p#
! �n(Z; z)

�@00

! �n�1(C
�; �) ! � � � ;

where i0 : (C �; �) ! (U n Z; �) and i00 : (C �; �) ! (Z � C
�; �) are inclusions. By

the Five Lemma U n Z and Z � C
� have isomorphic homotopy groups. The map

e� � ef : U n Z ! Z � C
� is a weak homotopy equivalence [Spa, Section 7.6].

An application of Morse Theory, Theorem 6.6 in [Mi], shows that a smooth man-

ifold is homotopy equivalent to a CW complex. The sets U n Z and Z � C
� are

manifolds and therefore homotopy equivalent to CW complexes. Moreover, a weak
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homotopy equivalence between CW complexes is in fact a homotopy equivalence [Spa,

Corollary 7.6.24]. Therefore, e� � ef is a homotopy equivalence and by the Homotopy

Axiom the corresponding map in cohomology is an isomorphism.

2.4 Extension of Theorem 1.1

Let X be a real smooth l-dimensional manifold, let f1; : : : ; fr be smooth maps from

X to C , and let Zi = f�1i (0). Let M = X n (Z1

S
: : :
S
Zr�1) and suppose that 0 is a

regular value of frjM . Then (frjM)�1(0) = M \Zr. Proposition 2.4 and Corollary 2.5

yield the fact thatM \Zr has a tubular neighborhood U inM such that (��f)� and

( g� � f)� = (�jUnZr � frjUnZr)
� are isomorphisms, where � is the natural projection

map from U into M \ Zr and f = frjU .

Consider the inclusions maps

iU : U n Zr ! U and i = id� i1 : (M \ Zr)� C
� ! (M \ Zr)� C ;

where id : M \ Zr ! M \ Zr is the identity map and i1 : C
� ! C is the inclusion

map. Notice that for iU and i we have the commutative diagram:

U
��f
�! (M \ Zr)� C

x??iU
x??i

U n Zr

g��f
�! (M \ Zr)� C

�:

Furthermore, by the Exactness Axiom of cohomology, each of the horizontal inclusion

maps induces a long exact sequence in cohomology. Using the fact that (�� f)� and

( g� � f)� are isomorphisms, together with the Five Lemma, we conclude that these

sequences are isomorphic. Accordingly, by functorality and the Naturality Axiom we
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have the following commutative diagram of long exact sequences:

� � �
��
U! Hq(iU)

��
U! Hq(U)

i�
U! Hq(U n Zr)

��
U! � � �

??y�=
x??(� � f)�

x??( g� � f)�

� � �
��

! Hq(i)
��

! Hq((M \ Zr)� C )
i�

! Hq((M \ Zr)� C
�)

��

! � � � :

(2.3)

Our goal is to show that these long exact sequences split into short exact sequences.

First we consider the bottom row of the diagram. We have two natural projection

maps from (M \ Zr) � C . The projection onto M \ Zr is denoted by p1 and the

projection onto C is denoted by p2. Associated with these maps are the maps on

cohomology,

p�
1
: H�(M \ Zr)! H�((M \ Zr)� C ) and p�

2
: H�(C )! H�((M \ Zr)� C ):

Lemma 2.6 The map p�
1
: Hq(M \ Zr)! Hq((M \ Zr)� C ) is an isomorphism.

Proof. We know that Hq(C ) = 0 for q � 1. Thus
L

m+n=qH
m(M \Zr)
H

n(C )

reduces to Hq(M \ Zr) 
 H0(C ). The K�unneth Formula 2.1 gives the isomorphism

K : Hq(M \ Zr)
H0(C )! Hq(M \ Zr � C ). The following diagram relates K and

p�
1
:

Hq(M \ Zr)
H0(C )
K
�! Hq(M \ Zr � C )

??y� % p�
1

Hq(M \ Zr);

where � is the natural isomorphism between Hq(M \ Zr)
H0(C ) and Hq(M \ Zr).

Since p�
2
is a k-algebra homomorphism, p�

2
(c1) is the identity in Hq(M \ Zr � C ). So

K(! 
 c1) = p�
1
(!) [ p�

2
(c1) = p�

1
(!). Therefore, the diagram commutes and so p�

1
is

an isomorphism.
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Using the result that p�
1
is an isomorphism yields the fact the cohomology map

�� : Hq(M \Zr) �! Hq(U) is also an isomorphism. We will interrupt the proof that

the bottom row of Diagram 2.3 is exact to prove this fact about ��.

Lemma 2.7 The map �� = (�� f)� � p�
1
: Hq(M \Zr)! Hq(U) is an isomorphism.

Proof. Notice that the following diagram commutes

U
��f
�! (M \ Zr)� C

??y� . p1

M \ Zr:

Thus the corresponding diagram with the induced cohomology maps also commutes.

We have the following commutative diagram

H�(U)
(��f)�

 � H�((M \ Zr)� C )

x??�� % p�
1

H�(M \ Zr):

By Proposition 2.4 and Lemma 2.6 we know that (� � f)� and p�
1
are isomorphisms,

we conclude that �� = (� � f)� � p�
1
is an isomorphism.

Now consider Hq((M \ Zr) � C
�). We know that Hq(C �) = 0 for q � 2. Thus

M
m+n=q

Hm(M \ Zr)
Hn(C �) reduces to

�
Hq(M \ Zr)
H0(C �)

�
�
�
Hq�1(M \ Zr)
H1(C �)

�
:

The K�unneth Formula 2.1 gives the isomorphism

K :
�
Hq(M \ Zr)
H0(C �)

�
�
�
Hq�1(M \ Zr)
H1(C �)

�
! Hq((M \ Zr)� C

�):
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As in Lemma 2.6 we also have the natural isomorphism

� : Hq(M \ Zr)
H0(C �)! Hq(M \ Zr):

It follows that the map

��1 � id : Hq(M \ Zr)�
�
Hq�1(M \ Zr)
H1(C �)

�

�!
�
Hq(M \ Zr)
H0(C �)

�
�
�
Hq�1(M \ Zr)
H1(C �)

�

is an isomorphism. Let P = K � (��1 � id). Thus we have proved that P is an

isomorphism as stated in the next Lemma. In addition we will consider how elements

are mapped under P . We use the notation ~p1 to denote the projection map onto the

�rst coordinate of (M \Zr)�C
� and ~p2 to denote the projection map onto the second

coordinate.

Lemma 2.8 The map

P : Hq(M \ Zr)�
�
Hq�1(M \ Zr)
H1(C �)

�
! Hq((M \ Zr)� C

�)

is an isomorphism. In particular, Hq((M \ Zr)� C
�) is spanned as a k-vector space

by f ~p1
�(!) j ! 2 Hq(M \ Zr)g

S
f ~p1

�(�) [ ~p2
�(�) j � 2 Hq�1(M \ Zr)g:

Proof. We saw that P is an isomorphism by the proceeding discussion. If ! is

in Hq(M \ Zr) and � is in Hq�1(M \ Zr), then

P (!; � 
 �) = K � (��1 � id)(!; � 
 �) = K(! 
 c1; � 
 �)

= ~p1
�(!) [ ~p2

�(c1) + ~p1
�(�) [ ~p2

�(�) = ~p1
�(!) + ~p1

�(�) [ ~p2
�(�):

Where the last equality holds since ~p2
� is a k-algebra homomorphism and so ~p2

�(c1)

is the identity in Hq(M \ Zr � C
�). Thus we have the desired result.
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Now that we have described Hq((M \ Zr) � C ) and Hq((M \ Zr) � C
�) we can

explore the map between them. Let i = id � i1 : (M \ Zr) � C
� ! (M \ Zr) � C ,

where id is the identity map on M \ Zr and i1 is the inclusion from C
� into C .

Lemma 2.9 The cohomology map i� : Hq((M \ Zr) � C ) ! Hq((M \ Zr) � C
�) is

injective.

Proof. Recall the projection map p1 : (M \ Zr) � C ! M \ Zr. Also note that

the composition p1 � i is the same map as the projection ~p1 : (M \Zr)�C
� !M \Zr.

If ! is in Hq(M \Zr) then i
� �p�

1
(!) = (p1 � i)

�(!) = ~p1
�(!). Using this together with

the isomorphisms given in Lemmas 2.6 and 2.8, we have that the following diagram

commutes,

Hq((M \ Zr)� C )
i�

�! Hq((M \ Zr)� C
�)

x??p�
1

x??P

Hq(M \ Zr)
I
�! Hq(M \ Zr)� (Hq�1(M \ Zr)
H1(C �));

where the map on the bottom row is the injection I(!) = (!; 0). This diagram

commutes since i� � p�
1
(!) = ~p1

�(!) and

P � I(!) = P (!; 0) = K � (��1 
 id)(!; 0)

= K(! 
 c1; 0) = ~p1
�(!)
 ~p2

�(c1) = ~p1
�(!):

Thus the map i� is injective since the two vertical maps are isomorphisms and the

bottom map is an injection.

We will use Lemmas 2.6 and 2.8 to show that the bottom row of the long exact

sequence from Diagram 2.3 breaks into short exact sequences. Since the two rows are

isomorphic this results in the top row splitting into short exact sequences.
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Proposition 2.10 The top row of Diagram 2.3 splits into short exact sequences of

the form

0! Hq(U)
i�
U�! Hq(U n Zr)

��
U�! Hq+1(iU)! 0:

Proof. By Lemma 2.9, the map i� (from the bottom row of Diagram 2.3) is

injective, whence ker(i�) = 0. Since the sequence is exact we have that im(��) =

ker(i�) = 0, and so �� = 0. It follows that ker(��) = Hq+1(i), and by exactness

we have im(��) = ker(��). Thus im(��) = Hq+1(i) and �� is surjective. This yields

the fact that the bottom row breaks into short exact sequences. Moreover, we saw

in Diagram 2.3 that the two rows are isomorphic, hence the top row also splits into

short exact sequences.

As a consequence of Proposition 2.10 we have that Diagram 2.3 breaks into a

commutative diagram of short exact sequences. We can use this to investigate the

make-up of Hq(U) and Hq(U n Zr).

Proposition 2.11 Hq(U) = f��(!) j ! 2 Hq(M \ Zr)g and Hq(U n Zr) is spanned

by f~��(!) j ! 2 Hq(M \ Zr)g
S
f~��(�) [ ~f �(�) j � 2 Hq�1(M \ Zr)g:

Proof. We have the commutative diagram

Hq(U)
i�
U�! Hq(U n Zr)

x??(� � f)�
x??( g� � f)�

Hq((M \ Zr)� C )
i�

�! Hq((M \ Zr)� C
�)

x??p�
1

x??P

Hq(M \ Zr)
I
�! Hq(M \ Zr)� (Hq�1(M \ Zr)
H1(C �)):
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From Lemma 2.6 we have that

Hq((M \ Zr)� C ) = fp�
1
(!) j ! 2 Hq(M \ Zr)g:

Now using Lemma 2.7, we obtain that (� � f)�p�
1
(!) = ��(!) is the image of p�

1
(!)

under this isomorphism. Hence, Hq(U) = f��(!) j ! 2 Hq(M \ Zr)g.

From Lemma 2.8 we have that Hq((M \ Zr)� C
�) is spanned by

f ~p1
�(!) j ! 2 Hq(M \ Zr)g

[
f ~p1

�(�) [ ~p2
�(�) j � 2 Hq�1(M \ Zr)g:

Using the facts that ~p1 is projection on the �rst coordinate, ~p2 is projection on the

second coordinate, and g� � f = ~� � ~f , we have the following results. First,

( g� � f)� ( ~p1
�(!)) = ( ~p1 � (

g� � f))�(!) = ~��(!):

Second,

( g� � f)� ( ~p1
�(�) [ ~p2

�(�)) = ( ~p1 � (
g� � f))�(�) [ ( ~p2 � (

g� � f))�(�)

= ~��(�) [ ~f �(�):

Therefore, Hq(U n Zr) is spanned by

f~��(!) j ! 2 Hq(M \ Zr)g
S
f~��(�) [ ~f �(�) j � 2 Hq�1(M \ Zr)g:

Before we continue, we shall require a deeper understanding of the action of ~��.

We have the commutative diagram

U n Zr
iU�! U

??y~� . �

M \ Zr
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Thus,

~�� = i�U � �
�: (2.4)

Now consider the inclusion map iM : M n Zr ! M and the corresponding long

exact sequence,

� � � ! Hq(iM)
��
M�! Hq(M)

i�
M�! Hq(M n Zr)

��
M�! Hq+1(iM)! � � � :

Let j be the inclusion from U into M and ~| be the restriction of j to U n Zr, that is

~| : U n Zr !M n Zr. We have the following commutative diagram:

M n Zr
iM�! M

x??~|
x??j

U n Zr
iU�! U:

(2.5)

We also have the excision isomorphism in Equation 2.2 with X = M , A = M n Zr,

and W = M n U yielding an isomorphism between H�(iM) and H�(iU ). Thus we

obtain the following commutative diagram of exact sequences:

� � �
��
M�! Hq(M)

i�
M�! Hq(M n Zr)

��
M�! Hq+1(iM)

��
M�! � � �

??yj�
??y~|�

??y�=

0 �! Hq(U)
i�
U�! Hq(U n Zr)

��
U�! Hq+1(iU) �! 0:

(2.6)

In the next theorem we will see that the top row of Diagram 2.6 actually splits

into short exact sequences and we will prove that H0(M) = k and if q � 1 then

Hq(M) is spanned as a k-algebra by ff �i1(�) � � � f
�
iq
(�)j1 � i1 < � � � < iq � rg. We

will use the following notation in the theorem: M0 = X and Mj = X n (
Sj
i=1 Zi) for

1 � j � r. So, in the theorem M =Mr�1 and M n Zr = Mr.

Theorem 2.12 Suppose f1; : : : ; fr are smooth maps from X to C such that
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(1) Zr 6�
r�1[
i=1

Zi,

(2) 0 is a regular value of frjMr�1
and

(3) the map j� : H�(Mr�1)! H�(U) is surjective.

Then as a k-algebra H�(Mr) is generated by i�M(H�(Mr�1))
S
f(frjMr

)�(�)g.

Proof. Let M = Mr�1. By assumption 0 is a regular value of frjM . Using this

together with the fact that (frjM)�1(0) = M \ Zr, we have that the previous results

in this chapter hold and we will continue to use the preceding notation. In particular

we have Diagram 2.6, a commutative diagram of exact sequences. Since Mr = M nZr

we will �rst show that the top row of this diagram breaks into short exact sequences

and then use this to determine k-algebra generators of H�(Mr). To show that the top

row of this diagram splits into short exact sequences it is enough to show that ��M is

surjective, since using the fact that the sequence is exact implies that i�M is injective.

To show that ��M is surjective it su�ces to show that ~|� is surjective since the diagram

commutes and ��U is surjective.

From Proposition 2.11, Hq(U nZr) is spanned by elements of the form ~��(!) and

~��(�) [ (frjUnZr)
�(�) where ! is in Hq(M \ Zr) and � is in Hq�1(M \ Zr). To show

that ~|� is surjective we shall divide the argument.

Showing �rst that ~��(!) is in the image of ~|�. Notice that since j� is surjective
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there exists a � in Hk(M) such that j�(�) = ��(!). Now observe that

~��(!) = (i�U � �
�)(!) (by Equation 2.4)

= (i�U � j
�)(�)

= (~|� � i�M)(�) (by Diagram 2.5)

= ~|�(i�M(�)):

Thus ~��(!) is in the image of ~|�. Similarly,

~��(�) = ~|�(i�M (�0)); (2.7)

where �0 is in Hq�1(M).

Next we will show that (frjUnZr)
�(�) is in the image of ~|�. We have the commu-

tative diagram

U n Zr

frjUnZr
�! C

�

&~|
x?? frjMnZr

M n Zr:

So ~|� � (frjMnZr)
� = (frjUnZr)

�. Combining this with Equation 2.7 we have

~��(�) [ (frjUnZr)
�(�) = ~|�

�
i�M (�0) [ (frjMnZr)

�(�)
�
;

which is an element in the image of ~|�. Therefore, ~|� is surjective since a spanning

set of Hq(U n Zr) is in the image of ~|�.

Therefore, we have the commutative diagram of short exact sequences

0 �! Hq(M)
i�
M�! Hq(M n Zr)

��
M�! Hq+1(iM) �! 0

??yj�
??y~|�

??y�=

0 �! Hq(U)
i�
U�! Hq(U n Zr)

��
U�! Hq+1(iU) �! 0:
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Using this exact sequence, Hq(M n Zr) is spanned by the images under i�M of the set

that spans Hq(M) and a set of elements whose image under ��M span Hq+1(iM). For

the second set we use the facts that we know the spanning set of Hq(U nZr) together

with the fact that ~|� and ��U are surjective. We arrive at the fact that Hq+1(iM ) is

spanned by ��M of the elements that map to the spanning set of Hq(U nZr) under ~|
�.

In our proof that ~|� is surjective, we showed that these elements are of the form

i�M (�) and
�
i�M (�0) [ (frjMnZr)

�(�)
�
;

where � is in Hq(M) and �0 is in Hq�1(M). Since M nZr =Mr we have that H
q(Mr)

is spanned by fi�M(�) j � 2 Hq(M)g
S
fi�M(�0) [ (frjMr

)�(�) j �0 2 Hq�1(M)g; and so

H�(Mr) is generated as a k-algebra by fi�M(H�(M))
S
f(frjMr

)�(�)g.

We have two corollaries of this Theorem.

Corollary 2.13 Suppose f1; : : : ; fr are smooth maps from X to C such that

(1) Zr 6�
r�1[
i=1

Zi,

(2) 0 is a regular value of frjMr�1
,

(3) as a k-algebra H�(Mr�1 \ Zr) is generated by the set

f(f1j(Mr�1\Zr))
�(�); : : : ; (fr�1j(Mr�1\Zr))

�(�)g;

(4) as a k-algebra H�(Mr�1) is generated by the set

f(f1jMr�1
)�(�); : : : ; (fr�1jMr�1

)�(�)g:

Then as a k-algebra H�(Mr) is generated by the set f(f1jMr
)�(�); : : : ; (frjMr

)�(�)g.
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Proof. Observe that conditions (3) and (4) imply that H0(Mr�1 \ Zr) and

H0(Mr�1) are di�eomorphic to k, and therefore Mr�1 \ Zr and Mr�1 must be con-

nected.

Again we let M =Mr�1. By the third assumption, the generators of i�M (H�(M))

are f(f1jMr
)�(�); : : : ; (fr�1jMr

)�(�)g. Therefore, by Theorem 2.12 the results will hold

if j� is surjective.

If r = 1 then by de�nitionM0 = X, and by assumption H0(X) �= k and Hq(X) =

0 for q � 1. Also M0 \ Z1 = Z1 and H0(Z1) �= k and Hq(Z1) = 0 for q � 1. By

Lemma 2.7 we have that �� : Hq(Z1) ! Hq(U) is an isomorphism. Since j� is a

k-algebra homomorphism, it maps the identity of H0(X) to the identity in H0(U). It

follows that j� is an isomorphism.

Assume r > 1. For i = 1; : : : ; r�1 the intersection Zi\M = Zi\
�
X n (

Sr�1
i=1 Zi)

�

is empty, implying that fi(M) � C
�. We will consider fijM : M ! C

�. Now using the

isomorphism �� from Lemma 2.7 together with the cohomology map corresponding

to fijM we obtain the following commutative diagram

Hq(M)
j�

�! Hq(U)

x??(fijM)�
x??�= ��

Hq(C �)
(fij(M\Zr))

�

�! Hq(M \ Zr):

Now let ! be in Hq(M \ Zr). By the assumption ! is a k-linear combination of

elements of the form

(fi1j(M\Zr))
�(�) � � � (fiq j(M\Zr))

�(�) for 1 � i1 < : : : < iq � r � 1:
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By Proposition 2.11, every element of Hq(U) is of the form ��(!). Moreover,

��((fi1 j(M\Zr))
�(�) � � � (fiq j(M\Zr))

�(�)) = j�((fi1 jM)�(�) � � � (fiq jM)�(�)); (2.8)

the latter of which is an element in the image of j�, since we assumed the elements

of H�(M) have the form (fi1 jM)�(�) � � � (fiq jM)�(�) for 1 � i1 < : : : < iq � r � 1.

Therefore, j� is surjective.

The next corollary follows from Corollary 2.13.

Corollary 2.14 Suppose f1; : : : ; fs are smooth maps from X to C . Assume that

n � 1 and that for all r such that n � r � s the following conditions hold

(1) Zr 6�
r�1[
i=1

Zi,

(2) 0 is a regular value of frjMr�1
,

(3) as a k-algebra H�(Mr�1 \ Zr) is generated by the set

f(f1j(Mr�1\Zr))
�(�); : : : ; (fr�1j(Mr�1\Zr))

�(�)g;

(4) as a k-algebra H�(Mn�1) is generated by the set

f(f1jMn�1
)�(�); : : : ; (fn�1jMn�1

)�(�)g:

Then as a k-algebra H�(Ms) is generated by the set f(f1jMs
)�(�); : : : ; (fsjMs

)�(�)g.

Proof. By conditions (1)-(3) and Corollary 2.13 we have that H�(Mn) is gener-

ated by the set f(f1jMn
)�(�); : : : ; (fnjMn

)�(�)g. Now apply Corollary 2.13 and we get

the results for H�(Mn+1). By recursion we get the desired result.



CHAPTER 3

DE RHAM COHOMOLOGY

3.1 Properties of Real and Complex Tangent Space

Let X be a real l-dimensional smooth manifold with m an element of X. Let U

be open in X. If f is in C1C (U), then f = u + iv where u; v are in C1R (U). De�ne

 : C1
C
(U)! C1

R
(U)
R C by  (u+ iv) = u
 1 + v 
 i.

Proposition 3.1 The map  gives an isomorphism of C -algebras

C1
C
(U) �= C1

R
(U)
R C :

Proof. It follows from the de�nitions that  is a C -linear map. In the other

direction, there is the C -linear map g 
 � 7! �g for g in C1R (U) and � in C . These

two maps are inverses since their composition is the identity. The group C1
C
(U) is

a C -algebra under pointwise multiplication, and C1
R
(U) 
R C is a C -algebra using

the tensor and multiplying component-wise. Therefore, we have an isomorphism of

C -algebras.

Recall the de�nition of the tangent space from Chapter 2. In the next proposition

we show that the complexi�cation of real tangent space is the complex tangent space.

First we de�ne maps between TC ;mX and TmX 
R C . If � is in TC ;mX and f is in

C1C ;m, then �(f) is in C , and so it is straightforward to check that there exists R -

linear derivations �1; �2 : C
1
C
! R where �(f) = �1(f) + i�2(f). It follows that the
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restrictions of �1 and �2 to C
1
R;m are in TmX; denote these restrictions by �1 and �2

respectively. De�ne

	 : TC ;mX ! TmX 
 C by 	(�) = �1 
 1 + �2 
 i:

For the map in the other direction we de�ne f�� for � in TmX and � = a+ ib in C as

follows:

f��(f) = �[�(Ref) + i�(Imf)] = [a�(Ref)� b�(Imf)] + i[b�(Ref) + a�(Imf)]:

It follows from the de�nitions that e� is a C -linear derivation and that f�� = �e�. Thus

it is readily seen that f�� is in TC ;mX. The mapping (�; �) 7! f�� is bilinear, so there

exists a unique

� : TmX 
 C ! TC ;mX with �(� 
 �) = f��:

The next proposition will show that 	 and � are inverse functions.

Proposition 3.2 The map 	 : TC ;mX ! TmX 
R C is an isomorphism of C -vector

spaces with inverse �.

Proof. By following the de�nition of 	 and using the fact that restriction is

R -linear, it is easy to see that 	 is a C -linear mapping. It is straightforward to check

that the mapping � is also C -linear. To prove that these maps are isomorphisms we

will show that their composition is the identity. First observe that for � in TC ;mX

and f in C1C ;m,

�(f) = �(Ref + iImf)

= �(Ref) + i�(Imf)

= [�1(Ref)� �2(Imf)] + i[�2(Ref) + �1(Imf)]:
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It follows that

� �	(�)(f) = �(�1 
 1 + �2 
 i)(f)

=
f
�1(f) +

f
i�2(f)

= �1(Ref) + i�1(Imf)� �2(Imf) + i�2(Ref)

= �(f):

Secondly, for � in TmX and � = a + ib in C , we have

	 � �(� 
 �) = 	(f��)

= (a� � Re� b� � Im)
 1 + (b� � Re + a� � Im)
 i

= � � Re
 (a+ ib) + � � Im
 (�b + ia)

= � 
 �;

since this is applied to a real valued function f , so Ref = f and Imf = 0. Therefore,

� and 	 are isomorphisms.

SinceX is a real manifold, there exists a neighborhood ofm and a set of coordinate

functions fx1; : : : ; xlg that form a coordinate system for X near m.

Theorem 3.3 The set f @
@xj
jm j 1 � j � lg is a basis of TmX.

Proof. This is Remark 1.20(a) in [Wa].

We have similar results for complex tangent space. By Theorem 3.2 we know

that � : TmX 
R C ! TC ;mX is an isomorphism of complex vector spaces, with

�( @
@xj
jm 
 1) =

g@
@xj
jm. Thus f

g@
@xj
jm j 1 � j � lg is a complex basis of TC ;mX.
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When f is in C1
R;m the di�erential of f is a mapping from TmX into Tf(m)R . We

can identify Tf(m)R with R via the mapping a d

dt
jf(m) 7! a for a in R . Thus we can view

(df)m as a mapping from TmX into R , and [Wa, 1.22(5)] shows that (df)m(�) = �(f)

for � in TmX. In this way we can consider the di�erential of a smooth real-valued map

as an element in the dual space of TmX. We call the dual space of TmX the cotangent

space of X at m, and denote it by T �mX. Using the evaluation of a di�erential of a

real-valued map together with Theorem 3.3 we see that

f @

@xj
jm j 1 � j � lg and f(dxj)m j 1 � j � lg (3.1)

are dual bases of TmX and T �mX, respectively.

Next we will de�ne a map on complex tangent spaces, the complex di�erential of

a smooth map at m in X. Suppose Y is a smooth real n-manifold and � : X ! Y is

a smooth map. The complex di�erential of � at m is the map �� : TC ;mX ! TC ;�(m)Y

de�ned to be the composition

TC ;mX
	
�! TmX 
R C

(d�)m
1
�! Tf(m)Y 
R C

�
�! TC ;mY: (3.2)

If f is in C1C ;m then the complex di�erential is f� : TC ;mX ! TC ;f(m)C . In analogy

with the real case we want a linear functional associated with f that maps TC ;mX to

C . When our manifold is C we denote the two coordinate functions by x and y, and

so a complex basis of TC ;f(m)C is f
f@
@x
jf(m);

f@
@y
jf(m)g. We can map TC ;f(m)C into C via

the mapping

�(�
f@
@x
jf(m) + �

f@
@y
jf(m)) = � + i�

for �; � in C . For f in C1
C ;m we de�ne

(dC f)m = � � f� : TC ;mX ! C :
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The next Proposition simpli�es the computation of (dC f)m.

Proposition 3.4 If f is an element of C1
C ;m and � is an element of TC ;mX, then

(dC f)m(�) = �(f):

Proof. Let � be in TC ;mX, so � is a derivation from C1
C ;m to C m. There exists

�1; �2 : C
1
C ! R with � = �1 + i�2. For each j = 1; 2 the derivation (df)m(�j) is in

Tf(m)C , so we may express it in terms of the basis f @

@x
jf(m);

@

@y
jf(m)g. Let f = u+ iv

where u; v are in C1
R;m. Since x � f = u and y � f = v, we have

(df)m(�j) = (df)m(�j)(x)
@

@x
jf(m) + (df)m(�j)(y)

@

@y
jf(m)

= �j(u)
@
@x
jf(m) + �j(v)

@
@y
jf(m);

for j = 1; 2. Using this formula together with the de�nition of f� and
e�, if g is in

C1
C ;f(m) we can evaluate f�(�)(g) as follows:

f�(�)(g) = � � ((df)m 
 1) �	(�1 + i�2)(g)

=
g

(df)m(�1)(g) +
g

i(df)m(�2)(g)

= (df)m(�1)(Reg) + i(df)m(�1)(Img)

+ i
�
(df)m(�2)(Reg) + i(df)m(�2)(Img)

�

= �1(u)
@

@x
jf(m)(Reg) + �1(v)

@

@y
jf(m)(Reg)

+ i�1(u)
@

@x
jf(m)(Img) + i�1(v)

@

@y
jf(m)(Img)

+ i�2(u)
@
@x
jf(m)(Reg) + i�2(v)

@
@y
jf(m)(Reg)

� �2(u)
@

@x
jf(m)(Img)� �2(v)

@

@y
jf(m)(Img)

= �(u) @

@x
jf(m)(Reg) + �(v) @

@y
jf(m)(Reg)
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+ i�(u) @
@x
jf(m)(Img) + i�(v) @

@y
jf(m)(Img)

= �(u) @

@x
jf(m)(g) + �(v) @

@y
jf(m)(g):

Thus f�(�) = �(u) @

@x
jf(m)+�(v)

@

@y
jf(m): Now compose with the mapping � of TC ;f(m)C

into C , and we have (dC f)m(�) = �(u) + i�(v) = �(f).

Notice that for f in C1
C ;m the notion of (dC f)m : TC ;f(m)C ! C allows us to view

(dC f)m as an element of the dual space of TC ;mX. We shall refer to the dual space of

TC ;mX as the complex cotangent space of X at m and shall denote it by T �
C ;mX. The

next Proposition shows that the complexi�cation of real cotangent space is complex

cotangent space. We de�ne a mapping from T �C ;mX to T �mX 
R C as follows. From

Proposition 3.2 we have an isomorphism � : TmX 
R C ! TC ;mX. There exists a

natural isomorphism � : C ! R 
R C by �(a + ib) = a 
 1 + b 
 i. We also have

the natural isomorphism from HomR
RC (TmX
R C ;R
R C ) to HomR(TmX;R)
R C .

Combining these maps we have:

T �C ;mX = HomC (TC ;mX; C )

��
�! HomC (TmX 
R C ; C )

��
�! HomR
RC (TmX 
R C ;R 
R C )

�=
�! HomR(TmX;R)
R C

= T �mX 
R C :

Label the composition of these maps by �.

Proposition 3.5 � : T �
C ;mX ! T �mX 
R C is an isomorphism, with �((dC f)m) =

(du)m 
 1 + (dv)m 
 i where f = u+ iv is in C1
C ;m and u; v are in C1

R;m.
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Proof. Since each of the maps is an isomorphism we have the desired result. Let

� be an element of TmX and � = a+ ib be in C . Then

� � (dC f)m ��(� 
 �) = �(f��f)

= �(a�(u)� b�(v) + i(b�(u) + a�(v)))

= a�(u)
 1� b�(v)
 1 + b�(u)
 i + a�(v)
 i

= (du)m(�)
 a� (dv)m(�)
 b

+ (du)m(�)
 ib + (dv)m(�)
 ia

and

((du)m 
 1 + (dv)m 
 i)(� 
 �) = (du)m(�)
 (a+ ib) + (dv)m(�)
 i(a+ ib)

= (du)m(�)
 a� (dv)m(�)
 b

+ (du)m(�)
 ib + (dv)m(�)
 ia:

Since these are the same we have the desired result.

3.2 De Rham Cohomology

Consider the qth exterior power of the cotangent bundle

�qT �
F
X =

[
m2X

�qT �
F;mX;

with projection map � : �qT �FX ! X. Note that �0T �FX = X � F and �1T �FX is

simply the cotangent bundle. The space �qT �
F
X has a natural manifold structure

such that � is smooth. Recall from Section 2.15 of [Wa] that a q-form on X is a
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smooth map s : X ! �qT �
F
X such that � � s = idX . Let A

q
F
(X) be the set of q-forms

on X.

Observe that A
q
F
(X) forms an F -vector space under pointwise operations. There

is also a product (the wedge product) on forms. For !1 in A
q
F
(X) and !2 in A

r
F
(X),

!1 ^ !2 satis�es (!1 ^ !2)(m) = !1(m) ^ !2(m). For f in C1F (X) and ! in A
q
F(X),

observe that f ^ ! = f!. It follows that A�
F
(X) has the structure of both a C1

F
(X)-

module and of a graded algebra over F with wedge multiplication.

Next we consider maps on q-forms. Theorem 2.20 in [Wa] states that there exists

a unique R -linear anti-derivation d : Aq(X)! Aq+1(X) such that

(1) d2 = 0

(2) df(m) = (df)m for f in C1
R
(X).

This anti-derivation is called the exterior derivative. The de�nition of an anti-

derivation is that d(! ^ �) = d! ^ � + (�1)r! ^ d� for ! in Ar(X) and � in Aq(X).

Now we will de�ne a C -linear anti-derivation dC : A
q
C
(X)! A

q+1
C

(X) that satis�es

the property that d2C = 0. To de�ne this anti-derivation we need the next Proposition

which shows that the set of complex q-forms on X is isomorphic to the set of real

q-forms on X with scalars extended to C . For q = 0, this follows from Proposition 3.1,

so we assume that q > 0. If ! is in A
q
C
(X), there exists !1; !2 in A

q(X) such that for

each m in X, !(m) = !1(m)
 1 + !2(m)
 i. De�ne 	0 : A
q
C (X)! Aq(X)
R C by

the rule

	0(!) = !1 
 1 + !2 
 i:

For the map in the other direction, de�ne g�! in A
q
C (X) by g�!(m) = !(m)
 � for !
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in Aq(X), � in C , and m in X. The mapping (!; �) 7!g�! is bilinear, so there exists

a unique

�0 : Aq(X)
R C ! A
q
C
(X) with �0(! 
 �) =g�!:

Proposition 3.6 If q > 0 the mapping 	0 : A
q
C (X)! Aq(X)
RC is an isomorphism

of C1
C
(X)-modules with inverse �0.

Proof. To see that 	0 is C -linear, let � = a + bi be in C . Then �! = a!1 �

b!2 + i(b!1 + a!2), and so 	0(�!) = !1 
 � + !2 
 i� = �	0(!). It also follows

from the de�nitions that 	0(! + !0) = 	0(!) + 	0(!0) for !; !0 in A
q
C
(X). It is also

straightforward to check that the mapping �0 is C -linear.

Next we show that the composition of these two maps is the identity. For ! in

A
q
C (X), we have �0 � 	0(!) = �0(!1 
 1 + !2 
 i) = f!1 + g{!2. For m in X notice

(f!1 +g{!2)(m) = !1(m)
 1 + !2(m)
 i = !(m), so this composition is the identity.

Now for the reverse composition, let ! be in Aq(X) and � = a + ib be in C . Then

	0 � �0(! 
 �) = 	0(g�!) = a! 
 1 + b! 
 i = ! 
 a + ! 
 ib = ! 
 �. Thus both

compositions are the identity, and therefore the mappings are isomorphisms.

Observe that this is a C1
C
(X)-module isomorphism. Indeed, if f is in C1

C
(X), !

is in A
q
C
(X), and m is in X then (f!)(m) = f(m)!1(m)
 1 + f(m)!2(m)
 i and so

	0(f!) = f!1 
 1 + f!2 
 i = f	0(!).

Now we de�ne dC : C1
C
(X)! A1

C
(X) so that the following diagram commutes:

C1R (X)
R C
d
1
�! A1(X)
R C

x?? 
??y�0

C1
C
(X)

dC
�! A1

C
(X);
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where the left and right isomorphisms are given in Propositions 3.1 and 3.6, respec-

tively. If we follow through these maps for f in C1
C
(X) and m in X, we see that

dC (f)(m) = (dC f)m.

For q > 0 de�ne dC : A
q
C
(X)! A

q+1
C

(X) to be the unique function for which the

diagram commutes:

Aq(X)
R C
d
1
�! Aq+1(X)
R C

x??	0
??y�0

A
q
C (X)

dC
�! A

q+1
C (X):

(3.3)

In other words, dC is the composition

A
q
C (X)

	0

�! Aq(X)
R C
d
1
�! Aq+1(X)
R C

�0
�! A

q+1
C (X):

Since d2 = 0 it follows that d2
C
= 0. Moreover, as d is an anti-derivation so is dC .

Now we use the set of q-forms together with the exterior derivative to form a

complex. We will then use this complex to de�ne the de Rham cohomology of X.

Temporarily let dq denote the exterior derivative from Aq(X) to Aq+1(X). Consider

the complex

0! A0(X)
d0

! A1(X)
d1

! � � �Aq�1(X)
dq�1

! Aq(X)
dq

! � � �Al(X)! 0: (3.4)

A q-form ! in Aq(X) is called closed if dq! = 0 and it is called exact if there exists

a (q � 1)-form � such that ! = dq�1�. Let Zq = ker(dq) denote the set of closed

q-forms, and let Bq = dq�1(Aq�1(X)) denote the set of exact q-forms. These sets are

real vector spaces under pointwise operations. Moreover, as d2 = 0 we have Bq � Zq.

The qth de Rham cohomology group of X with real coe�cients is de�ned to be the

quotient space

H
q
DR(X;R) = Hq(A�(X); d) = Zq=Bq:
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Tensoring with C is exact, so applying � 
R C to Complex 3.4 gives a new com-

plex. Combining this sequence with Diagram 3.3, we get the following commutative

diagram:

0 �! A0(X)
R C
d
1
�! A1(X)
R C

d
1
�! � � �

d
1
�! Al(X)
R C �! 0

??y�=
??y�=

??y�=

0 �! A0
C (X)

dC
�! A1

C (X)
dC
�! � � �

dC
�! Al

C (X) �! 0:

The qth de Rham cohomology group of X with complex coe�cients is

H
q
DR(X; C ) = Hq(A�

C
(X); dC ) = ker(dC )=dC (A

q�1
C

(X)):

Let the qth cohomology group of the complex A�(X)
 C be represented by

Hq(A�(X)
 C ; d
 1) = ker(d
 1)=(d
 1)(Aq�1(X)
 C ):

Since the two complexes in the diagram are isomorphic, their cohomologies are iso-

morphic, thus Hq(A�
C (X); dC ) �= Hq(A�(X) 
 C ; d 
 1). Moreover, the fact that

tensoring with C is exact implies that Hq(A�(X); d) 
 C �= Hq(A�(X) 
 C ; d 
 1).

This leads to the fact thatH
q
DR(X; C ) �= H

q
DR(X;R)
C , and so de Rham cohomology

with complex coe�cients is simply de Rham cohomology with real coe�cients with

scalars extended to the complexes.

An element of H�
DR(X; F) is a coset, so for ! 2 ker(dF) � A

q
F
(X) we will represent

the cohomology class ! + im(dF) by [!]. De�ne the wedge product of two elements

in H�
DR(X; F) with coe�cients in F as follows: if [!1] is in H

q
DR(X; F) and [!2] is in

Hr
DR(X; F) then de�ne [!1] ^ [!2] in H

q+r
DR (X; F) to be [!1 ^ !2].

Proposition 3.7 The wedge product on H�
DR(X; F ) is well-de�ned and H�

DR(X; F) is

a graded, skew-commutative, F -algebra.
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Proof. The de�nition of the wedge product makes sense as follows. If [!1] is in

H
q
DR(X; F) and [!2] is in H

r
DR(X; F) then dF(!1) = dF(!2) = 0. So dF(!1 ^ !2) = 0

which implies that [!1 ^ !2] is in H
q+r
DR (X; F). Suppose [!1] = [!3] and [!2] = [!4].

Then

[!1 ^ !2] = [!1] ^ [!2]

= (!1 + im(dF)) ^ (!2 + im(dF))

= (!3 + im(dF)) ^ (!4 + im(dF))

= [!3 ^ !4];

thus the wedge product is well-de�ned. Since the wedge product on ��T �
F;pX is skew-

commutative, the wedge product on the quotient space is skew-commutative. That

is, for [!1] in H
q
DR(X; F ) and [!2] in H

r
DR(X; F ) we have [!1 ^ !2] = (�1)q[!2 ^ !1].

Lastly, as A�
F(X) is an F -algebra, so is H�

DR(X; F).

Recall in Chapter 2 that [�] denoted the �xed generator of H1(C �). Next we

will see that [�] corresponds to dCz

z
in H1

DR(C
�; C ). First use the fact that dC is a

derivation to see that

dC
�
dCz

z

�
= dC

�
1
z
^ dC z

�
= dC

�
1
z

�
^ dC z +

1
z
^ dC (dC z) =

�1
z2
dC z ^ dC z + 0 = 0:

Thus [dCz
z
] is in H1

DR(C
�; C ). It follows that for all � 2 C , we have [dC�z

z
] is in

H1
DR(C

�; C ). Thus in de Rham cohomology with complex coe�cients the generator

of H1
DR(C

�; C ) is [dCz
z
].

Now if X and Y are smooth real manifolds we want to de�ne maps between

H
q
DR(X; F) and H

q
DR(Y ; F ). To do this we use a map on q-forms that commutes with
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dF. Again suppose that � : X ! Y is a smooth mapping, then [Wa, Section 2.22]

shows that � determines a function, �� : Aq(Y )! Aq(X). This function satis�es the

following properties:

Proposition 3.8 If ! is in A�(Y ) and g is in C1R (Y ), then

1. ��(g) = g � �

2. ��(g!) = ��(g) � ��(!) = g � � � ��(!),

3. the map �� commutes with the exterior derivative, that is d�� = ��d:

Proof. This is Proposition 2.23 of [Wa].

From this map on real q-forms we de�ne ��C : A
q
C (Y ) ! A

q
C (X) to be the unique

function for which the following diagram commutes:

Aq(Y )
R C
��
1
�! Aq(X)
R C

x??	0
??y�0

A
q
C
(Y )

��
C

�! A
q
C
(X);

where the vertical isomorphism were given in Proposition 3.6.

Proposition 3.9 If ! is in A
q
C (Y ) and g is in C1C (Y ), then

1. ��
C
(g) = g � �,

2. ��
C
(g!) = ��

C
(g) � ��

C
(!) = g � � � ��

C
(!);

3. dC �
�
C = ��C dC .
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Proof. The proof of these facts follow immediately from Proposition 3.8 together

with the de�nition of ��
C
.

Since ��
C
and dC commute, ��

C
induces a map on cohomology,

��
C
: H

q
DR(Y ; C )! H

q
DR(X; C ) by ��

C
([!]) = [��

C
(!)]:

We can use this to see how non-zero functions in C1
C

act on the special element [dCz
z
]

of H1
DR(C

�; C ).

Proposition 3.10 If g is in C1
C

with g(x) 6= 0 for all x in X, then

g� : H1
DR(C

�; C )! H1
DR(X; C ) and g�([dCz

z
]) = [dCg

g
]:

Proof. Using parts (1) and (2) of Proposition 3.9,

g�
�
dCz

z

�
= g�

�
1
z

�
g�(dC z) =

1
z�g
dC g

�(z) = 1
g
dC (g);

since z : C ! C is the identity and so z � g = g. The result now follows.

3.3 Properties of de Rham Cohomology

In Chapter I, Bott and Tu [BT] show that real de Rham cohomology satis�es the

Eilenberg-Steenrod Axioms except for the Excision Axiom (Example 1.6, Section 2,

Proposition 2.1, Example 2.6, and Proposition 6.49). They also show that it satis�es

the K�unneth Formula (Equation 5.9). A special case of the Universal Coe�cient

Theorem [Dol, VI.7.1] states that the formal properties of cohomology carry over to

arbitrary coe�cients. So these properties that are true for real coe�cients are also

true for complex coe�cients. In Proposition 3.7 we showed that de Rham cohomology
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with complex coe�cients has a ring structure that makes it into a graded C -algebra.

Thus, in order to see that the results of Chapter 2 hold for de Rham cohomology with

complex coe�cients, we need only check that it satis�es the Excision Axiom. From

now on we will assume that de Rham cohomology has complex coe�cients, denoted

simply H�
DR(X).

Suppose that A is a closed submanifold of X with inclusion i : A ! X. Recall

from Section I.6 of [BT] that Ak
C
(i) = Ak

C
(X)

L
Ak�1
C

(A) and the exterior derivative

dC : Ak
C (i) ! Ak+1

C (i) is de�ned by dC (!; �) = (dC!; i
�! � dC �) for ! 2 Ak

C (X) and

� 2 Ak�1
C

(A). It is a straightforward result of the de�nition to see that d2
C
= 0.

Suppose that U is an open subset of X such that A � U � X. We have the natural

inclusion maps iX : X nA! X, iU : U nA! U , j1 : U ! X, and j2 : U nA! X nA,

giving the commutative diagram:

U n A
iU
�! U

??yj2
??yj1

X n A
iX
�! X:

Each inclusion yields a complex as above. Combining these with the above diagram

we get the commutative diagram

0 ! A0
C
(X)

dC
�! A1

C
(X)� A0

C
(X n A)

dC
�! A2

C
(X)� A1

C
(X n A) �! � � �

??yj�1
??yj�1 + j�2

??yj�1 + j�2

0 ! A0
C
(U)

dC
�! A1

C
(U)� A0

C
(U n A)

dC
�! A2

C
(U)� A1

C
(U n A) �! � � � :

Lemma 3.11 The relative cohomologies of the inclusion maps iX : X n A! X and

iU : U n A! U are isomorphic. That is Hk
DR(iX)

�= Hk
DR(iU) for all k.
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Proof. Let [!; �] be inHk
DR(iX) so that (!; �) is an element of A

k
C
(X)�Ak�1

C
(XnA)

and dC (!; �) = 0. The image of [!; �] under (j�1 + j�2) is [! � j1; � � j2] in H
k
DR(iU). We

want to see that this is an isomorphism. To do so we will �rst show it is surjective

and then that it is injective. For both arguments we shall require a partition of unity.

Since X is a manifold it is regular and paracompact. By regularity we can choose

an open subset W such that A � W � W � U , where W is the closure of W . Then

the complement of W , W
c
, and U form an open cover of X. By paracompactness

there is a partition of unity for X subordinate to the open cover fW
c
; Ug. So there

exists smooth functions �1; �2 : X ! R such that the support of �1 is contained in U ,

the support of �2 is contained in W
c
, and (�1+ �2)(x) = 1 for all x 2 X. Combining

these we see that �1 � 1 on W .

Now let [!1; �1] 2 Hk
DR(iU) so (!1; �1) 2 Ak

C (U) � Ak�1
C (U n A) and dC (!1; �1) =

(dC !1; !1jUnA � dC �1) = 0. This implies that dC !1 = 0 and !1jUnA = dC �1. We want

to show that this is in the image of the map (j�1 + j�2). De�ne [!; �] 2 Hk
DR(iX) as

follows:

! =

8>>>>>>><
>>>>>>>:

0 on X n U

dC (�1�1) on U n A

!1 on W

and � =

8>>><
>>>:

0 on X n U

�1�1 on U n A.

To see that this is well-de�ned we need to show that ! and � are smooth, and that

dC (!; �) = 0. To see that ! is smooth we notice that it agrees on the intersection of

these sets in the de�nition. Observe �rst that dC (�1�1) = �1!1 + dC �1 ^ �1, and so

the support of dC (�1�1) is contained in the support of �1, a subset of U . Outside the

support of �1 the form dC (�1�1) is 0. Also dC (�1�1)jWnA equals !1, since �1 � 1 onW .
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So the de�nitions agree on (U nA)\W = W nA. The form � is smooth since if x =2 U

then �1 � 0 on some neighborhood of x, and so � agrees on the intersection of the

sets. Next, consider dC (!; �) = (dC !; !jXnA� dC �). The �rst term is 0 since dC ! = 0

for all x. The second term is 0 on all of X since ! = dC � as follows. If x 2 X n U

then ! = dC � = 0 on a neighborhood of x, and if x 2 U nA then ! = dC � = dC (�1�1)

on a neighborhood of x. Thus dC (!; �) = 0.

Finally, we show that (j�1 + j�2)[!; �] = [!jU ; �jUnA] = [!1; �1]. To do this we will

show that (!jU ; �jUnA)� (!1; �1) = (!jU � !1; �jUnA� �1) = (!jU �!1; �1�1� �1) is in

the image of dC . De�ne a new form, � 2 Ak�1
C

(U), by

� =

8>>><
>>>:

(�1 � 1)�1 on U n A

0 on W .

Note that � is smooth since �1 � 1 on W . We need to explore the de�nition of � and

dC � in terms of our original forms !1, !, and �1. On U n A, observe that

� = �1�1 � �1 = �1jUnA � �1 and

dC � = dC (�1�1��1) = �1dC �1+dC �1^�1!1�dC �1 = �1!1+dC �1^�1!1�!1 = !jU�!1:

On W , dC � = 0 = !jU � !1. So we see that on all of U , dC � = !jU � !1. Using

these equalities, we see that dC (�; 0) = (dC �; �jUnA) = (!jU � !1; �jUnA � �1) =

(!jU ; �jUnA) � (!1; �1). Thus (!jU ; �jUnA) and (!1; �1) are in the same coset, and so

(j�1 + j�2) maps [!; �] to [!1; �1]. Thus (j
�
1 + j�2) is surjective.

Now we show that (j�1 + j�2) is an injection. Suppose that (j�1 + j�2)[!; �] =

[!jU ; �jUnA] = 0. Then dC (!; �) = 0 and there exists (!1; �1) 2 Ak
C
(U)� Ak�1

C
(U n A)

such that (!1jU ; �1jUnA) = dC (!1; �1) = (dC!1; !1jUnA � dC �1). This implies that
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dC !1 = !jU and !1jUnA = �1jUnA + dC �1. Our goal is to show that [!; �] = 0, or

equivalently, to show that (!; �) = dC (!
0; �0) where (!0; �0) 2 Ak�1

C
(X)�Ak�2

C
(X nA).

We will now de�ne !0, �0, and � 2 Ak�2
C

(U), a form needed in the de�nition of !0,

�0 =

8>>><
>>>:

0 on X n U

�1�1 on U n A,

� =

8>>><
>>>:

��2�1 on U n A

0 on W ,

and !0 =

8>>><
>>>:

� + dC �
0 on X n A

!1 + dC � on U .

Since each of their parts are smooth, to see that these forms are all well-de�ned and

smooth we only need to show that they agree on the intersection of the spaces in

their de�nitions. If x =2 U then �1�1 � 0 on a neighborhood of x as �1 � 0 since the

support of �1 is contained in U , and so �0 is well-de�ned. If x 2 W nA then �2�1 � 0

on a neighborhood of x as �2 � 0 since the support of �2 is contained in X nW . Thus

� is well-de�ned. Thus !0 is well-de�ned because on U n A, !1 + dC � = � + dC �
0 as

follows:

(!1 + dC �)jUnA = !1jUnA + dC �jUnA

= �jUnA + dC �1 � dC (�2�1)

= �jUnA + dC (�1 � �2�1)

= �jUnA + dC ((1� �2)�1)

= �jUnA + dC (�1�1)

= �jUnA + dC �
0jUnA

= (� + dC �
0)jUnA:

Using the fact that dC (!; �) = (dC !; !jXnA � dC �) = 0, observe that

dC !
0 =

8>>><
>>>:

dC � on X n A

dC!1 on U .

=

8>>><
>>>:

!jXnA on X n A

!jU on U .

= !:
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Thus dC (!
0; �0) = (dC !

0; !0jXnA� dC �
0) = (!; �+ dC �

0� dC �
0) = (!; �) and so the map

(j�1 + j�2) is injective. Thus the mapping H
k
DR(iX)! Hk

DR(iU) is an isomorphism.



CHAPTER 4

COMPLEX MANIFOLDS AND HOLOMORPHIC MAPS

4.1 Complex Tangent and Cotangent Spaces

In this chapter we will suppose that X is a complex l-manifold. This implies that X

is a smooth real 2l-manifold. All the results of Chapter 3 hold with dimension 2l.

Let m be an element of X with U a neighborhood of m. Let fz1; : : : ; zlg be a

set of local holomorphic coordinates for X at m on U , with zj = xj + iyj where xj

and yj are real valued maps. Thus fx1; y1; : : : ; xl; ylg are local coordinates for the

real manifold structure of X at m. Recall that by Equation 3.1 we have the bases

f @
@xj
jm;

@
@yj
jm j 1 � j � lg of TmX and f(dxj)m; (dyj)m j 1 � j � lg of T �

mX.

Lemma 4.1 If X is a complex l-manifold and m in X, let

� =
n
1
2
( @
@xj
jm 
 1� @

@yj
jm 
 i); 1

2
( @
@xj
jm 
 1 + @

@yj
jm 
 i) j 1 � j � l

o
and

�� = f((dxj)m 
 1 + (dyj)m 
 i) ; ((dxj)m 
 1� (dyj)m 
 i) j 1 � j � lg :

Then � and �� are dual bases of the complex vector spaces TmX
R C and T �

mX
R C ,

respectively.

Proof. First we will see that �� is a complex basis of T �

mX 
R C . To see that �
�

spans, it is su�cient to notice that we can obtain (dxj)m 
 1, (dxj)m 
 i, (dyj)m 
 1,

and (dyj)m 
 i for all 1 � j � l from linear combinations of the elements in ��. To

see that �� is linearly independent, use the fact that f(dxj)m; (dyj)m j 1 � j � lg is

a real basis of T �

mX.

45
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Now to see that � and �� are dual bases:

((dxj)m 
 1 + (dyj)m 
 i)(1
2
( @
@xk

jm 
 1� @
@yk
jm 
 i))

= 1
2
(dxj)m(

@
@xk

jm)
 1� 1
2
(dxj)m(

@
@yk
jm)
 i +

1
2
(dyj)m(

@
@xk

jm)
 i + 1
2
(dyj)m(

@
@yk
jm)
 1

= 1
2
�jk 
 1 + 1

2
�jk 
 1

= �jk 
 1 = �jk:

Similar arguments show that

((dxj)m 
 1� (dyj)m 
 i)(1
2
( @
@xk

jm 
 1 + @
@yk
jm 
 i)) = �jk;

((dxj)m 
 1 + (dyj)m 
 i)(1
2
( @
@xk

jm 
 1 + @
@yk
jm 
 i)) = 0;

((dxj)m 
 1� (dyj)m 
 i)(1
2
( @
@xk

jm 
 1� @
@yk
jm 
 i)) = 0:

Therefore, � and �� are dual bases.

We will use the isomorphisms T �

mX 
R C
�= T �

C ;mX and TmX 
R C
�= TC ;mX to

�nd bases of the complex tangent and cotangent spaces that correspond to � and

��. The conjugate of zj, zj : U ! C , is de�ned by zj = xj � iyj. It follows from

Proposition 3.5 that under the isomorphism � : T �

C ;mX ! T �

mX 
R C ,

�((dC zj)m) = ((dxj)m 
 1 + (dyj)m 
 i)

and

�((dC zj)m) = ((dxj)m 
 1� (dyj)m 
 i):

We also have the isomorphism � : TmX 
R C ! TC ;mX given in Proposition 3.2.

De�ne the partial with respect to zj at m, @
@zj
jm, to be the image under the map � of
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1
2
( @
@xj
jm 
 1� @

@yj
jm 
 i);

@
@zj
jm = 1

2
(
g@
@xj
jm � i

g@
@yj
jm): (4.1)

De�ne the partial with respect to zj at m, @
@zj
jm, to be the image under the map � of

1
2
( @
@xj
jm 
 1 + @

@yj
jm 
 i);

@
@zj
jm = 1

2
(
g@
@xj
jm + i

g@
@yj
jm): (4.2)

Thus @
@zj
jm and @

@zj
jm are C -linear derivations.

We can now restate Lemma 4.1 for complex tangent and cotangent spaces.

Proposition 4.2 If X is a complex l-manifold and m is in X, then the sets

f @
@zj
jm;

@
@zj
jm j 1 � j � lg and f(dC zj)m; (dC zj)m j 1 � j � lg

are dual bases of TC ;mX and T �

C ;mX, respectively.

Proof. The proof follows from the preceding de�nitions and Lemma 4.1.

Before we continue, observe that we can use the fact that @
@zj
jm is a C -linear

derivation to see that on rational functions in z1; : : : ; zl, where the functions are

de�ned, @
@zj
jm is actually a partial derivative.

Proposition 4.3 Let m be in X and nj be in Z for j 2 f1; : : : ; lg. If zn11 � � � z
nl
l (m)

is de�ned, then

@
@zj
jm(z

n1
1 � � � z

nl
l ) = njz

n1
1 � � � z

nj�1
j � � � z

nl
l (m):
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Proof. Recall that zk = xk + iyk for 1 � k � l, so

@
@zj
jm(zk) = 1

2
(
g@

@xj
jm � i

g@
@yj
jm)(xk + iyk)

= 1
2

�
@
@xj
jm(xk) + i @

@xj
jm(yk)� i @

@yj
jm(xk) +

@
@yj
jm(yk)

�

= 1
2
(�jk + �jk)

= �jk:

Now use the fact that @
@zj
jm is a C -linear derivation to see that

@
@zj
jm(z

nk
k ) = nkz

nk�1
k (m)�jk

and that

@
@zj
jm(z

n1
1 � � � z

nl
l ) =

lX
k=1

nkz
n1
1 � � � z

nk�1
k � � � z

nl
l (m)�jk

= njz
n1
1 � � � z

nj�1
j � � � z

nl
l (m):

This is the desired result.

4.2 Holomorphic Tangent Space

Recall that U is a neighborhood ofm and that fz1; : : : ; zlg is a set of local holomorphic

coordinates for X at m on U . For f in C1
C
(U), f is said to be holomorphic on U if

@f

@zj
jm = 0 for all j 2 f1; : : : ; lg and for all m in U . The fact that @

@zj
jm is a C -linear

derivation implies that the sum, di�erence, product, and quotient (when it is de�ned)

of holomorphic functions are holomorphic. The following computation shows that the

function zk is holomorphic for all 1 � k � l:

@
@zj
jm(zk) = 1

2

� g@
@xj
jm + i

g@
@yj
jm

�
(zk)
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= 1
2

�
@
@xj
jm(xk) + i @

@xj
jm(yk) + i @

@yj
jm(xk)�

@
@yj
jm(yk)

�

= 1
2
(�jk � �jk) = 0:

Thus polynomial and rational functions on U are holomorphic. The next Proposition

gives another method of determining whether a function is holomorphic.

Proposition 4.4 Let f be in C1
C
(U) with f = u+ iv. Then f is holomorphic if and

only if f satis�es the generalized Cauchy-Riemann equations,

@u
@xj
jm = @v

@yj
jm and @u

@yj
jm = � @v

@xj
jm;

for all j 2 f1; : : : ; lg and all m in U .

Proof. First let m be in U and notice that

@
@zj
jm(f) =

1
2

�
@
@xj
jm(u) + i @

@xj
jm(v) + i @

@yj
jm(u)�

@
@yj
jm(v)

�

for all 1 � j � l and m in U . Thus

@f

@zj
jm = 1

2

�
@u
@xj
jm + i @v

@xj
jm + i @u

@yj
jm �

@v
@yj
jm

�
(4.3)

for all 1 � j � l. Now if f is holomorphic, Equation 4.3 implies that

0 = @u
@xj
jm + i @v

@xj
jm + i @u

@yj
jm � @v

@yj
jm:

So the real part is 0 and the imaginary part is 0, and this results in the Cauchy-

Riemann equations. For the other direction, assume that the Cauchy-Riemann equa-

tions hold for all j, then make substitutions into Equation 4.3 to obtain

@f

@zj
jm = 1

2

�
@u
@xj
jm + i @v

@xj
jm � i @v

@xj
jm �

@u
@xj
jm

�
= 0:
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Thus we have the desired result.

The complex di�erential of a holomorphic function has an especially nice form

in local coordinates since all the partials with respect to zj are 0. Using this fact

together with Proposition 4.3, we obtain the following result.

Corollary 4.5 Let m be in X and nj be in Z for j 2 f1; : : : ; lg. If zn11 � � � z
nl
l (m) is

de�ned, then

(dC (z
n1
1 � � � z

nl
l ))m =

lX
j=1

njz
n1
1
���z

nl
l
(m)

zj(m)
(dC zj)m:

Proof. If f is in C1
C
(U) and f is holomorphic then (dC f)m =

Pl
j=1

@f

@zj
jm(dC zj)m

for allm in U . The proof now follows from Proposition 4.3 and the fact that zn11 � � � z
nl
l

is holomorphic.

In Proposition 4.2 we saw that f @
@zj
jm;

@
@zj
jm j 1 � j � lg is a basis of the complex

tangent space TC ;mX. This basis and the de�nition of a holomorphic function lead to

two new notions of a tangent space that are each subspaces of TC ;mX. The subspace

of TC ;mX spanned by f @
@zj
jm j 1 � j � lg will be denoted by TH;mX and is called

the holomorphic tangent space at m of X. Similarly the subspace of TC ;mX spanned

by f @
@zj
jm j 1 � j � lg will be denoted by TA;mX and is called the antiholomorphic

tangent space at m of X. Evidently

TC ;mX = TH;mX � TA;mX:

In the next Proposition we prove that the di�erential of a holomorphic function maps

holomorphic tangent spaces to holomorphic tangent spaces and antiholomorphic tan-

gent spaces to antiholomorphic tangent spaces. To do this we �rst need the following

lemma.
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Lemma 4.6 If f is in C1
C
(U) and f is holomorphic, then @

@zj
jm(z � f) =

@
@zj
jm(f):

Proof. Using the fact that z = x + iy and z = x � iy as well as the de�nitions

of @
@zj
jm and @

@zj
jm given in Equations 4.1 and 4.2, we can expand both sides of the

equality. We see that

@
@zj
jm(z � f) = 1

2

�g@
@xj
jm(z � f)� i

g@
@yj
jm(z � f)

�

= 1
2

h
@
@xj
jm(x � f)� i @

@xj
jm(y � f)� i @

@yj
jm(x � f)�

@
@yj
jm(y � f)

i

and

@
@zj
jm(f) = @

@zj
jm(z � f) =

1
2

�g@
@xj
jm(z � f) + i

g@
@yj
jm(z � f)

�

= 1
2

h
@
@xj
jm(x � f) + i @

@xj
jm(y � f) + i @

@yj
jm(x � f)�

@
@yj
jm(y � f)

i
:

Since f is holomorphic, it satis�es the Cauchy-Riemann Equation @x�f

@yj
jm = �@y�f

@xj
jm

by Proposition 4.4. Using this substitution in the middle two terms, we see that these

two equations are equivalent.

Proposition 4.7 If f is in C1
C
(U) and f is holomorphic, then

f�(TH;mX) � TH;f(m)C and f�(TA;mX) � TA;f(m)C

for all m in U .

Proof. Since f @
@zj
jm;

@
@zj
jm j 1 � j � lg is a basis of TC ;mX and f @

@z
jf(m);

@
@z
jf(m)g

is a basis of TC ;f(m)C , by the de�nition of holomorphic and antiholomorphic tangent

space it is su�cient to show that

f�
�

@
@zj
jm

�
= � @

@z
jf(m) and f�

�
@
@zj
jm

�
= � @

@z
jf(m)
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for some �; � in C . Since f�(
@
@zj
jm) is in TC ;f(m)C we can expand it in terms of the

basis and use Lemma 4.6 together with the fact that f is holomorphic to obtain

f�
�

@
@zj
jm

�
= f�

�
@
@zj
jm

�
(z) @

@z
jf(m) + f�

�
@
@zj
jm

�
(z) @

@z
jf(m)

= @
@zj
jm(z � f)

@
@z
jf(m) +

@
@zj
jm(z � f)

@
@z
jf(m)

= @
@zj
jm(f)

@
@z
jf(m) +

@
@zj
jm(f)

@
@z
jf(m)

= @
@zj
jm(f)

@
@z
jf(m):

Similarly f�(
@
@zj
jm) =

@
@zj
jm(f)

@
@z
jf(m) +

@
@zj
jm(zj � f)

@
@z
jf(m) =

@
@zj
jm(zj � f)

@
@z
jf(m).

If f is in C1
C
(U) and f is holomorphic, Proposition 4.7 implies that we have

another notion of di�erential,

f� : TH;mX ! TH;f(m)C ;

called the holomorphic di�erential. We now have several notions of di�erentials. The

real di�erential (df)m : TmX ! Tf(m)C , the real di�erential with scalars extended

to the complexes (df)m 
 1 : TmX 
R C ! Tf(m)C 
R C , the complex di�erential

f� : TC ;mX ! TC ;f(m)C , and now the holomorphic di�erential f� : TH;mX ! TH;f(m)C .

We also have maps that relate the domains and ranges of these maps. We have the

natural inclusion map � : TmX ! TmX 
R C that maps � to � 
 1, the isomorphism

� : TmX 
R C ! TC ;mX that maps � 
 � to f�� given in Proposition 3.2, and

the projection map � : TC ;mX ! TH;mX that sends
Pl

j=1 �j
@
@zj
jm +

Pl
j=1 �j

@
@zj
jm to

Pl
j=1 �j

@f

@zj
jm. In addition, we have the map � : TC ;f(m)C ! C and its restriction to

holomorphic tangent space � : TH;f(m)C ! C . Combining all these maps yields the
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following diagram:

TmX
�

�! TmX 
R C
�
�! TC ;mX

�
�! TH;mX??y(df)m ??y(df)m 
 1

??yf� ??yf�
Tf(m)C

�
�! Tf(m)C 
R C

�
�! TC ;f(m)C

�
�! TH;f(m)C??y� ??y�

C
id
�! C :

(4.4)

Lemma 4.8 Diagram 4.4 commutes.

Proof. By the de�nitions, the �rst and last squares on the top row as well as

the bottom square commute. The middle square commutes by the de�nition of the

complex di�erential given in Equation 3.2.

By composing the maps across the top of the diagram we get a mapping that we

will label � = � � � � � : TmX ! TH;mX. We will show in the next lemma that � is

a real vector space isomorphism.

Lemma 4.9 The map � : TmX ! TH;mX is an isomorphism of real vector spaces.

Proof. By Proposition 3.3 the set f @
@xj
jm;

@
@yj
jm j 1 � j � lg is a real basis of

TmX. The image of these basis elements under � � � is
g@
@xj
jm and

g@
@yj
jm. Notice that

we can use Equations 4.1 and 4.2 to solve for
g@
@xj
jm and

g@
@yj
jm in terms of @

@zj
jm and

@
@zj
jm. As a result we see that

g@
@xj
jm = @

@zj
jm + @

@zj
jm and

g@
@yj
jm = i @

@zj
jm � i @

@zj
jm:

Consider how � acts on these basis elements:

�
�

@
@xj
jm

�
= � � � � �

�
@

@xj
jm

�
= � � �

�
@
@xj
jm 
 1

�
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= �

� g@
@xj
jm

�
= �

�
@
@zj
jm + @

@zj
jm

�
= @

@zj
jm

and

�
�

@
@yj
jm

�
= � � � � �

�
@
@yj
jm

�
= � � �

�
@
@yj
jm 
 1

�

= �

� g@
@yj
jm

�
= �

�
i @
@zj
jm � i @

@zj
jm

�
= i @

@zj
jm:

Now by de�nition, TH;mX has real basis f @
@zj
jm; i

@
@zj
jm j 1 � j � lg. Thus � maps a

real basis to a real basis and is therefore an isomorphism.

We can use this fact that the maps across the top and middle rows of Diagram 4.4

are vector space isomorphisms together with the fact that Diagram 4.4 commutes to

establish relationships between the maps in Diagram 4.4. In particular, for the proof

of the extension of Brieskorn's Lemma we need to show that (df)m is surjective.

Proposition 4.10 If f is a holomorphic function in C1
C
(U) and m is in U then

(df)m is surjective if and only if (dC f)m is surjective.

Proof. Using Lemmas 4.8 and 4.9 we see that (df)m is surjective if and only if

f� is surjective. In Chapter 3 we de�ned (dC f)m to be the composition of the maps

f� : TC ;mX ! TC ;f(m)C and � : TC ;f(m)C ! C , where � was de�ned on the basis

f
f@
@x
jf(m);

f@
@y
jf(m)g of TC ;f(m)C as follows: �(

f@
@x
jf(m)) = 1 and �(

f@
@y
jf(m)) = i. By

Proposition 4.2 we now know that f @
@z
jf(m); @

@z
jf(m)g is another basis of TC ;f(m)C .

Using the de�nition of � and the de�nition of the partial derivatives we see that

�( @
@z
jm) = 1 and �( @

@z
jm) = 0:

Thus the mapping � restricted to holomorphic tangent space gives a complex vector

space isomorphism onto C . This action of � on the basis of TC ;f(m) together with
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the fact from Proposition 4.7 that the di�erential of a holomorphic function maps

holomorphic tangent space into holomorphic tangent space implies that f� is surjective

if and only if (dC f)m is surjective. This completes the proof.



CHAPTER 5

GENERATORS OF TORAL ARRANGEMENTS

We will de�ne a toral arrangement and then use Corollary 2.14 to arrive at the

generators of the cohomology of the complement of a toral arrangement in certain

cases. We will conclude by looking at some examples. For this chapter we will

assume that our �eld is C and that the cohomology is any cohomology that satis�es

the conditions given in Chapter 2 with coe�cients in C .

5.1 Theorem 1.1 for Certain Toral Arrangements

Assume that fz1; : : : ; zlg are the coordinate functions on C
l. Let T = (C �)l, then T is

a complex l-dimensional torus. By [Spr, Chapter 2] we see that T is an algebraic group

under multiplication. A rational character of T is an algebraic group homomorphism

� : T ! C
�. Let A = fker(�0

1); : : : ; ker(�
0
t)g be a �nite set of kernels of characters

of T . The pair (T;A) is called a toral arrangement over C . The complement of the

arrangement is

M = T n
t[

i=1

ker(�0
i):

For a character � of T if we let the zero set of ��1 be the set Z(��1) = (��1)�1(0),

then Z(�� 1) = ker�. So

M = T n
t[

i=1

Z(�0
i � 1):

The set of regular functions on T , C [T ], is the localization of C [z1; : : : ; zl] at the

56
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function z1 � � � zl [Spr, Theorem 2.5.2]. Thus

C [T ] = C [z1; : : : ; zl]z1���zl = C [z1; : : : ; zl; z
�1
1 ; : : : ; z�1l ]:

By Exercise III.4.6 in [Hu] the localization of a unique factorization domain (UFD)

is a UFD, and so C [T ] is a UFD. Thus we can talk about elements of C [T ] being

irreducible. By Exercise 2.5.12 in [Spr] a character � of T is of the form � = zn11 : : : z
nl
l

where ni is an integer (positive, negative, or 0). Therefore, every character of T is

a regular function of T and is consequently in C [T ]. We will consider the characters

from our arrangement A. Proposition 3.4 of [Dou] implies that for each k, there is

a factorization of �0
k � 1 into a product of irreducible factors �00

k � � where �00
k is a

character of T with a connected kernel and � is a nth root of unity for some n. These

may not all be distinct, so we let �1 � �1; : : : ; �s � �s be the distinct functions that

come from the factors of the (�0
k� 1)'s. We can use this and the de�nition of zero set

to simplify M . We have

M = T n
t[

k=1

Z(�0
k � 1)

= T n
t[

k=1

Z
�
(�00

k1
� �k1) : : : (�

00
knk

� �knk )
�

= T n
t[

k=1

0
@ nk[
j=1

Z(�00
kj
� �kj)

1
A

= T n
s[

i=1

Z(�i � �i):

Thus in considering the complement of the arrangement it is su�cient to use the

complement of the zero sets of the distinct irreducible factors of �0
1 � 1; : : : ; �0

t � 1.

We can view T as C l
n
Sl
i=1 Z(zi). So,

M = C
l
n

 
l[

i=1

Z(zi) [
s[

i=1

Z(�i � �i)

!
:
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Set fi = zi for 1 � i � l and fl+k = �k � �k for 1 � k � s. The zero set of fj will be

labeled by Zj for 1 � j � l + s. Then for 0 � k � l + s de�ne Mk as follows:

Mk =

8>>>><
>>>>:

C
l if k = 0

C
l
n (

k[
i=1

Zi) if 1 � k � l + s .

Note that Ml+s = M the complement of the toral arrangement.

Next we want to apply Corollary 2.14, so we must �rst show that 0 is a regular

value of frjMr�1
for 1 � r � l+ s. By Exercise 2.5.12 in [Spr] a character � of T is of

the form � = zn11 : : : z
nl
l where ni is an integer (positive, negative, or 0).

Lemma 5.1 If 1 � r � l + s then 0 is a regular value of frjMr�1
.

Proof. Since Mr�1 is an open subset of C l, by Lemma 2.3 it su�ces to show that

0 is a regular value of fr. Let m be an element of C l such that fr(m) = 0. We need

to show that (dfr)m : TmC
l
! T0C is surjective. According to Proposition 4.10, this

holds if and only if (dC fr)m : TC ;mC
l
! C is surjective. We divide the argument into

two cases dependent on r.

If 1 � r � l, then fr = zr. In this case we have that (dC zr)m : TC ;mC
l
! C is a

non-zero linear functional, and therefore the mapping is surjective.

On the other hand, suppose l+1 � r � l+s. Then as fr = �r�l��r�l (a rational

character of T minus a root of unity), we can write fr as z
n1
1 : : : z

nl
l � �r�l where nj

is in Z for j 2 f1; : : : ; lg. Let zj(m) = mj for 1 � j � l. The fact that fr(m) = 0

results in zn11 : : : z
nl
l (m) = mn1

1 : : :m
nl
l = �r�l, which implies that mj does not equal

0 for all j. Now using Corollary 4.5 we see that

(dC fr)m = (dC (z
n1
1 � � � z

nl
l � �r�l))m =

lX
j=1

njz
n1
1 ���z

nl
l
(m)

zj(m)
(dC zj)m =

Pl
j=1

nj�r�l
mj

(dC zj)m:
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This is not zero since at least one of the nj's is non-zero. Moreover since (dC fr)m is

C -linear, we have that it is surjective.

Now we will prove the main theorem.

Theorem 5.2 If, for all l+1 � r � l+s, H�(Mr�1\Zr) is generated as a C -algebra

by the set

f(z1j(Mr�1\Zr))
�(�); : : : ; (zlj(Mr�1\Zr))

�(�);

(�1j(Mr�1\Zr) � �1)
�(�); : : : ; (�r�lj(Mr�1\Zr) � �r�l)

�(�)g;

then as a C -algebra H�(M) is generated by the set

f(z1jM)�(�); : : : ; (zljM)�(�); (�1jM � �1)
�(�); : : : ; (�sjM � �s)

�(�)g:

Proof. The coordinate functions are fz1; : : : ; zlg. So

f1 = z1; : : : ; fl = zl; fl+1 = z
n1;1
1 � � � z

n1;l
l � �1; : : : ; fl+s = z

ns;1
1 � � � z

ns;l
l � �s;

where s � 1. By Lemma 5.1 we know that 0 is a regular value of frjMr�1
for all r. The

fact that �1��1; : : : ; �s��s are distinct and irreducible implies that Zr 6�

r�1[
i=1

Zi for all

r. It is well known that H�(Ml) is generated by the set f(z1jM)�(�); : : : ; (zljM)�(�)g

(this is a simple corollary of Theorem 1.1). Therefore, by Corollary 2.14 we know

H�(M) is generated by the set

f(z1jM)�(�); : : : ; (zljM)�(�); (�1jM � �1)
�(�); : : : ; (�sjM � �s)

�(�)g:

This is the desired result.

If we use de Rham cohomology with complex coe�cients we can rewrite the results

of Theorem 5.2. Recall that in de Rham cohomology the �xed generator of H1
DR(C

�)
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is [dCz
z
], so we can use this in place of � in Theorem 5.2. Moreover by Proposition 3.10

we also know that g�[dCz
z
] = [dCg

g
]. Therefore, we can rewrite the results of Theorem 5.2

as follows.

Theorem 5.3 If, for all l+1 � r � l+s, H�
DR(Mr�1\Zr) is generated as a C -algebra

by the set

��
dCz1j(Mr�1\Zr)

z1j(Mr�1\Zr)

�
; : : : ;

�
dCzlj(Mr�1\Zr)

zlj(Mr�1\Zr)

�
;

�
dC�1j(Mr�1\Zr)

(�1��1)j(Mr�1\Zr)

�
; : : : ;

�
dC�r�lj(Mr�1\Zr)

(�r�l��r�l)j(Mr�1\Zr)

��
;

then H�
DR(M ; C ) is generated as a C -algebra by the set

nh
dCz1jM
z1jM

i
; : : : ;

h
dCzljM
zljM

i
;
h

dC�1jM
(�1��1)jM

i
; : : : ;

h
dC�sjM

(�s��s)jM

io
:

5.2 Examples

In the �rst example we will show a case where Theorem 5.2 applies, and in the second

example we will show a case where it does not apply. The crucial observation is that

in the �rst example the Mr�1 \Zr is isomorphic to a complement of r� 1 irreducible

hypersurfaces in a smaller rank torus and so by induction on the rank of the torus we

get the desired result. In the second example this does not occur.

Example 1: Let T = (C �)2 and A = fker(z21); ker(z
2
2); ker(z1z2)g. Translating to

zero sets we have that ker(z21) = Z(z21 � 1) and z21 � 1 = (z1� 1)(z1+1) and similarly

for z22 , but z1z2 � 1 is already irreducible. So the complement is

M = C
2
n (Z(z1) [ Z(z2) [ Z(z1 � 1) [ Z(z1 + 1)

[Z(z2 � 1) [ Z(z2 + 1) [ Z(z1z2))
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Let f1 = z1, f2 = z2, f3 = z1� 1, f4 = z1 + 1, f5 = z2 � 1, f6 = z2 +1, and f7 = z1z2.

We will use Corollary 2.13 to �nd the generators of H�(M7). By Lemma 5.1 we

already know that 0 is a regular value for frjMr�1
for each r. So at each stage it is

enough to know the generators of H�(Mr�1) and the generators of H�(Mr�1 \ Zr).

By Theorem 1.1 H�(M2) is generated by the set fz1j
�
M2
(�); z2j

�
M2
(�)g where M2 =

f(�; �) j �; � 6= 0g. Now consider M3. The set M2 \ Z3 = f(1; �) j � 6= 0g which is

isomorphic to C � under the projection map z2jM2\Z3
. So H�(M2\Z3) is generated by

fz2j
�
M2\Z3

(�)g. Thus H�(M3) is generated by fz1j
�
M3
(�); z2j

�
M3
(�); (z1jM3

� 1)�(�)g.

Next we consider M4. The set M3\Z4 = f(�1; �) j � 6= 0g which is isomorphic to

C
� under the projection map z2jM3\Z4

. So H�(M3\Z4) is generated by fz2j
�
M3\Z4

(�)g.

Thus H�(M4) is generated by ffz1j
�
M4
(�); z2j

�
M4
(�); (z1jM4

� 1)�(�); (z1jM4
+ 1)�(�)g.

For M5 we have the set M4 \ Z5 = f(�; 1) j � 6= �1; 0; 1; g which is isomorphic

to C n (Z(z)
S
Z(z � 1)

S
Z(z + 1)) by the projection map z1jM4\Z5

. Now let f 0
1 = z,

f 0
2 = z � 1, and f 0

3 = z + 1, let Z 0
j = Z(f 0

j), and let M 0
j = C n

Sj
i=1 Z

0
i. Again

by Theorem 1.1 H�(M 0
1) is generated by fzj�M 0

1
(�)g. The set M 0

1 \ Z 0
2 = f1g and so

H�(M 0
1\Z

0
2)
�= C and then by Corollary 2.13 H�(M 0

2) is generated by fzj
�
M 0

2
(�)(zjM 0

2
�

1)�(�)g. The setM 0
2\Z

0
3 = f�1g and so H�(M 0

2\Z
0
3)
�= C and then by Corollary 2.13

H�(M 0
3) is generated by fzj�M 0

3
(�)(zjM 0

3
� 1)�(�); (zjM 0

3
+ 1)�(�)g. The set M 0

3 = C n

(Z(z)
S
Z(z � 1)

S
Z(z + 1)) and so by the pullback (z1jM4\Z5

)� the set H�(M4 \Z5)

is generated by

ffz1j
�
M4\Z5

(�); (z1jM4\Z5
� 1)�(�); (z1jM4\Z5

+ 1)�(�)g:
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Thus H�(M5) is generated by

ffz1j
�
M5
(�); z2j

�
M5
(�); (z1jM5

� 1)�(�); (z1jM5
+ 1)�(�); (z2jM5

� 1)�(�)g:

For M6 we have the set M5 \Z6 = f(�;�1) j � 6= �1; 0; 1; g. So as in M4 \Z5 we

have that H�(M5 \ Z6) is generated by

ffz1j
�
M5\Z6

(�); (z1jM5\Z6
� 1)�(�); (z1jM5\Z6

+ 1)�(�)g:

Thus H�(M6) is generated by

ffz1j
�
M6
(�); z2j

�
M6
(�); (z1jM6

� 1)�(�); (z1jM6
+1)�(�); (z2jM6

� 1)�(�); (z2jM6
+1)�(�)g:

Lastly for M7 we have the set M6\Z7 = f(�; 1
�
) j � 6= �1; 0; 1; g. So as inM4\Z5

we have that H�(M6 \ Z7) is generated by

ffz1j
�
M6\Z7

(�); (z1jM6\Z7
� 1)�(�); (z1jM6\Z7

+ 1)�(�)g:

Thus H�(M7) is generated by

ffz1j
�
M7
(�); z2j

�
M7
(�); (z1jM7

� 1)�(�); (z1jM7
+ 1)�(�); (z2jM7

� 1)�(�);

(z2jM7
+ 1)�(�); (z1z2)j

�
M7
(�)g:

Example 2: Let T = (C�)2 and A = fker(z1); ker(z
2
1z

3
2)g. Notice that z

2
1z

3
2 � 1

is irreducible, so the complement is

M = C
2
n

�
Z(z1) [ Z(z2) [ Z(z1 � 1) [ Z(z21z

3
2 � 1)

�
:

We will try to use Corollary 2.13 to �nd the generators of H�(M4). By Lemma 5.1

we already know that 0 is a regular value for frjMr�1
for each r. So at each stage it
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is enough to know the generators of H�(Mr�1) and the generators of H�(Mr�1 \Zr).

We will try the problem both ways, with z21z
3
2 � 1 �rst after the hyperplanes z1 and

z2 and with it second. We will see that regardless of the order the hypotheses of

Theorem 5.2 do not apply.

First let f1 = z1, f2 = z2, f3 = z21z
3
2 � 1, f4 = z1 � 1. Here it is easier to �nd M3

directly than to use Corollary 2.13. Since ker z21z
3
2 is connected and one dimensional it

is isomorphic to C �, thus with out loss of generality we can change the coordinates so

that z01 = z21z
3
2 . Then M3 = f(�; �) j �; � 6= 0; � 6= 1g �= (C n f0; 1g)� C

�. So by the

K�unneth Formula 2.1 H�(M3) = H�(C n f0; 1g)
 H�(C �). Thus H1(M3) = H0(C n

f0; 1g)
H1(C �) +H1(C n f0; 1g)
H0(C �) �= C 
 C + C
2

 C �= C

3, and so H�(M3)

has 3 generators. Notice that in the original coordinates, M3 = f(�; �) j �; � 6=

0; �2�3 6= 1g and Z4 = f(1; �)g. Thus the intersection M3 \ Z4 = f(1; �) j � 6=

0; �3 6= 1g, which is isomorphic to C minus 4 points (0, 1, !, and !2 where ! and

!2 are primitive 3rd roots of unity). As in Example 1, H�(M3 \ Z4) is generated

by fz2j
�
M3\Z4

(�); (z2jM3\Z4
�1)�(�); (z2jM3\Z4

�!)�(�); (z2jM3\Z4
�!2)�(�)g. However

in order for j� from Theorem 2.12 to be surjective there should be at most three

generators (since dimH1(M3) = 3). Therefore, the hypotheses of Theorem 5.2 do not

apply.

Second, let f1 = z1, f2 = z2, f3 = z1� 1, f4 = z21z
3
2 � 1. To make M3 \Z4 and M4

easier to �nd we will change coordinates. Let z01 = z21z
3
2 then z02 = z1z2. We solve this

to see that in these new coordinates z1 = (z01)
�1(z02)

3 and z2 = z01(z
0
2)

�2. In the original

coordinates M3 = f(�; �) j �; � 6= 0; � 6= 1g �= (C n f0; 1g)� C
�, and we saw above

that it has 3 generators. In the new coordinates M3 = f(�0; � 0) j �0; � 0 6= 0; �
03

�0
6= 1g
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and Z4 = f(1; � 0)g. So M3 \ Z4 = f(1; � 0) j � 0 6= 0; �
03 6= 0g which is isomorphic to C

minus 4 points. As before H�(M3 \Z4) has 4 generators. So once again j� cannot be

surjective. Therefore, the hypotheses of Theorem 5.2 do not apply to this case.
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