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Let (T, .A) be a toral arrangement over C, where 7" is a complex torus and A is a
finite set of kernels of rational characters of 7. The complement of the arrangement,
M, is formed by taking the union of the kernels of the characters in A and deleting this
from T'. Let x1 — p1,.-..,Xs — jts be the distinct irreducible factors of the characters
minus 1 in A, where y; is a character of T with connected kernel and p; is a n'*
root of unity for some n. Let M; = C'\ U\_, ker(z) U UL, ker(x; — p;). Using

de Rham cohomology with complex coefficients, we show that if, for all 1 < r < s,

Hjr(M,_1 N Z,) is generated as a C-algebra by the set
de1l (M, _1nz.) dezi| (v, _ynzyr) dextl (v, nzr) dexr—il(a,_y nzr)
2l _inzey |77 | Bl inzey |0 | sl qnzey | 77T | (et (M ynze) |

then the cohomology Hj,,(M) is generated as a C-algebra by the set

(], ... [ [dox ] [ doxe )
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CHAPTER 1
INTRODUCTION

Let k be a field, V be a [-dimensional vector space over k, and A = {ker(ay), ..., ker(ay)}
be a a finite set of hyperplanes formed from the linear functionals «; : V. — &,
i = 1,...,s. Then recall that the pair (A, V) is called a hyperplane arrangement
[OT]. The complement of the arrangement is
M=V\ O ker(a;).
i=1

In 1971, E. Brieskorn proved that the cohomology ring of M with coefficients in Z is
generated by s anticommuting elements, one for each hyperplane [Br, Lemma 3].

Let A be a connected, graded, skew-commutative k-algebra with identity, and
let V' be a r-dimensional k-vector space with basis {vy,...,v,}. We say that A is
generated by the set {ay,...,a,} if there exists a surjective k-algebra homomorphism
[+ A"V — Asuch that f(v;) = a; for 1 <i <r. In particular, A7 = f(A?V) and A7
is spanned by the set {a;, ...a;, |1 <ip <--- <, <r}.

In 1991, R. Jozsa and J. Rice [JR, Theorem 1] presented the following version of

Brieskorn’s result.

Theorem 1.1 The cohomology of the complement of A, H*(M), is generated by the

cohomology classes of the differential forms %O;"%M forj=1,...,s.

In their proof Jozsa and Rice use de Rham cohomology with complex coefficients.

However, their arguments are independent of this interpretation and apply in any



cohomology theory once you replace % with (a;|a)* (o) for a non-zero element o
of H*(C*) where C* represents the set of non-zero complex numbers.

Let T = (C*)! be a complex torus and let A" = {ker(x}),...,ker(x.)} be a finite
set of kernels of rational characters of T'. Recall that the pair (7,.4’) is called a toral

arrangement over C [Dou|. We define the complement of the arrangement to be

M =T\ O ker(x}).

i=1
The objective of this work is to prove the analog of Theorem 1.1 for toral arrange-
ments. First we prove an extension of Jozsa and Rice’s result that holds in any
cohomology with field coefficients, and then we prove an analogous theorem for toral
arrangements.

In Chapter 2 we emulate the method of Jozsa and Rice to extend Theorem 1.1
as follows. Consider a cohomology theory with coefficients in &k that satisfies the
Kiinneth Formula and has a ring structure that makes the cohomology groups into a
skew-commutative graded k-algebra. For ¢ = 0, 1, we know that H?(C") is isomorphic
to C as a k-vector space [Spa, Theorem 4.6.6]. We denote a non-zero element of
HY(C*) by ¢; and a non-zero element of H'(C*) by o. If X is a smooth real manifold,
fi,..., [ are smooth maps from X to C, and Z; = f;'(0), we analyze the cohomology
of the complements M; = X \ ( 2:1 Z;) for 1 < j < r. The goal of Chapter 2 is a

proof of the following theorem.

Theorem 1.2 Assume that
r—1
i=1

(2) 0 is a regular value of fr|m,_,,



(3) as a k-algebra H*(M,_, N Z,) is generated by the set
{(frloat,inz) (@), s (fraal o _inz) " (0)
(4) as a k-algebra H*(M,_1) is generated by the set
{(f1lag,2)" (o), o (fraalag_y) " (0) -

Then as a k-algebra H*(M,) is generated by the set {(fi|m,) (o), ..., (frla, ) (0)}.

In Chapter 3 we consider real and complex tangent spaces, their properties, and
how they are related. We see that complex tangent space is simply the complexifi-
cation of real tangent space, and then we use this relationship to define the complex
differential dc. This leads to the definitions of real and complex g-forms and de Rham
cohomology with real and complex coefficients. The conclusion of this chapter is the
proof that de Rham cohomology with complex coefficients satisfies the Eilenberg-
Steenrod Axioms of cohomology and the particular properties of a cohomology theory
that we use to prove Theorem 1.2.

In order to apply Theorem 1.2 to toral arrangements, we need to know that 0 is
a regular value of holomorphic functions defined on C'. We address this problem in
Chapter 4. Showing that 0 is a regular value requires that the real differential of a
holomorphic function be surjective which, in turn, involves taking partial derivatives
with respect to the real coordinate functions. Since the function is defined on C!
it is much easier to take partial derivatives with respect to the complex coordinate
functions. We define holomorphic tangent space and the holomorphic differential
and then use them to show that for a holomorphic function the real differential is

surjective if and only if the complex differential is surjective.



In Chapter 5 we finally address the application of finding the generators of the
cohomology of the complement of a toral arrangement, where the cohomology is de
Rham cohomology with complex coefficients. For 1 < k < s consider the irreducible
factors of xj, — 1. From all the irreducible factors, for all &, let x1 — pi1,..., xs — s
be the distinct irreducible factors, where y; is a character of T" with connected kernel
and p; is a n'* root of unity for some n. We show that the de Rham cohomology of
the complement of A’, denoted by Hj,,(M’), is generated as a C-algebra by the set
{[dg—fl ,...,[dg—fl],[%],...,[ﬁ]} if, forall [ +1 <r <Il+s, Hyp(M,_1NZ,) is

generated as a C-algebra by the set
de1l (v, _1nz.) dezi| (v, _ynzyr) dextl (v, nzr) dexr—il(a,_y nzr)
zil,_inzey |77 | Bl inzey || i)l qnzey | 77T | (et Mgz | [

Unless otherwise noted the canonical references for this paper are [BT], [Spal,

[Wal. In Chapter 2 we will continue to use k to represent any field. We also use the
real numbers, denoted by R, and the complex numbers, denoted by C. When either

R or C is acceptable we will use the notation F.



CHAPTER 2

EXTENSION OF BRIESKORN’S LEMMA

Before we state and prove the extension of Theorem 1.1 we first review the axioms of

a cohomology theory and recall the definition of a tangent space of a manifold.

2.1 Axiomatic Cohomology Theory

Recall that a pair of topological spaces (X, A) is a topological space X and a subspace
Aof X. If A =, then (X, ) is usually abbreviated by X. A cohomology theory with
coefficients in k£ on a category of topological pairs is a collection of three functions
as follows. For each pair (X, A) of topological spaces, H*(X,A) = {HY(X,A)} is
a graded k-vector space. The function f* is defined for each map f : (X, A) —
(Y, B) of topological spaces, and its value is a homomorphism of graded vector spaces
f*: H*(Y,B) — H*(X, A). The third function is the coboundary operator, a linear
transformation §* : HY(A) — H9"'(X, A). These three functions satisfy the following

properties known as the Eilenberg-Steenrod axioms [ES, Section I.3c].
(1) If f is the identity, then f* is the identity.
(2) (gof) = frog"

(3) Naturality Axiom: If f : (X, A) — (Y, B) is a map of topological spaces and



fla: A — B, then the following diagram commutes

HeY(Y,B) L5 HeY(X, A)

Exactness Axiom: For any pair (X, A) with inclusion maps i : A — X and

f:X — (X,A), there is an exact sequence

s HI(X,A) D Hx) S HYA) S HIT(X A) > - (21)

Homotopy Axiom: If (X, A) and (Y, B) are pairs of topological spaces and

fo, f1 1 (X, A) — (Y, B) are homotopic, then f5 = f;: H*(Y,B) — H*(X, A).

Excision Axiom: For any pair (X, A), if W is an open subset of X such
that the closure of W is contained in the interior of A, then the inclusion map

J(X\W,A\ W) — (X, A) induces an isomorphism

JHH (X, A) = HY(X \ W, A\ W). (2.2)

Dimension Axiom: If X is a one point space, then H?(X) = 0 for ¢ # 0 and

HO(X) 2 k.

When i : A — X is an inclusion, we will use the notation H*(i) = H*(X, A).

A consequence of these axioms is an understanding of the cohomology of C and

C*. Cohomology is homotopy invariant by the Homotopy Axiom and C is homotopic

to a point; thus, by the Dimension Axiom the cohomology of C is k£ in dimension 0

and 0 in all other dimensions. A fixed generator of H°(C) is labeled ¢;. The axioms



also imply an exact Mayer-Vietoris cohomology sequence [ES, Theorem 15.3¢|. Using
this together with the cohomology of C by Theorem 4.6.6 in [Spa] we have that the

cohomology of C* is

k ifq=0,1

112

H(C")
0 ifg>1.

We label a generator of H9(C*) by ¢; in degree 0 and by o in degree 1.
For the proofs of this section we need the cohomology to have two additional

attributes. First, it must satisfy the Kiinneth Formula as follows.

Formula 2.1 Kiinneth Formula Suppose X and Y are topological spaces. Let
pr: X XY = X andpy : X XY — Y be projections. There exists a unique map
K :H*(X)® H(Y) —» H*(X x Y) satisfying K(w ® ¢) = pj(w) Ups(¢). The map
K is a graded k-algebra isomorphism. In particular, for all n
K @ HP(X)®@ HI(Y) - H"(X xY),
p+g=n

18 an isomorphism.

Secondly, we require that the cohomology has a ring structure that makes the co-
homology groups into a skew-commutative graded k-algebra. When multiplying two
elements of the cohomology we either use the notation a U b or we leave the symbol
out and denote it by ab if the meaning is clear. From now on we assume that we are
working with cohomology that has coefficients in k£ and satisfies these two conditions.

There are many examples of cohomology theories that satisfy the FEilenberg-
Steenrod axioms as well as the two additional properties given above. One example is

singular cohomology theory on the category of topological pairs [Spal. In Chapter 3



we will show that de Rham cohomology on the category of pairs consisting of smooth

manifolds and submanifolds is another example.

2.2 Tangent Spaces

Let X be a real smooth manifold. For an open subset U of X, let C;°(U) denote
the ring of smooth functions from U to F. Consider m an element of X. Let U and
V' be open subsets of X containing m. If f and g are smooth function on U and
V respectively, we say that (U, f) is related to (V, g) if f and g agree on some open
neighborhood of m. This is clearly an equivalence relation. Let [U, f] denote the
equivalence class of (U, f). Then [U, f] is called a germ of a smooth function on X
near m. We can add germs by [U, f] + [V,g] = [U NV, f + ¢], multiply germs by
U, f1-1V,g] = [UNYV, fg], and multiply by an element « in F by «[U, f] = [U, af]. It
is straightforward to see that these operations are well-defined. It is also easy to see
that the set of germs of smooth functions on X near m forms a F-algebra. We call it

the ring of germs of Cg° at m and denote it by Cg7,,; that is
Ce5, ={[U, f]|m e U C X,U open, f € Cz°(U)}.

If [U, f] is in CF5,, we will say that f is in Cg,.

We can make F into a Cg;,-module, denoted by F,,, where the multiplication is
defined by [V g]-a = g(m)a, for @ in F and [V, g] in C,,. This is well-defined because
if [U, f] is equivalent to [V, g], then f and g agree on an open set containing m, so

f(m) = g(m). Define the F-tangent space at m of X, Tr X, to be the set of F-linear



derivations from Cg,, to Fy,. Thus

T]F’mX = Deﬁp (C]I:z?ma Fm)

= {0:Cg, = Fu [ 0(f9) = F(m)0(g) + g(m)O(F)Vf, g € C&5n}-

When the field F is the reals we denote the tangent space simply by 7;,X. Define
(014 02)(f) = 0.(f) +02(f) and (ab)(f) = a(6(f)) for 0,60, in Ty, X and « in F. It
is easy to see that these definitions do not depend on the choice of equivalence class
of the representative f. Then by following through the definitions we see that 6; + -
and af are again tangent vectors at m. In this way T, X is a F-vector space.
When F = R, recall that the differential of a smooth map at m in X is a map on
real tangent spaces. Suppose Y is a smooth real manifold and ¢ : X — Y is a smooth

mapping. Then the differential of ¢ at m is the map (do)m, : Ty X — Tym)Y defined

by ((dp)m(0)) (9) = 0(g o ¢) for 0 in T, X and g in CR% -

2.3 Tubular Neighborhoods

Let X and Y be real manifolds and f : X — Y be a smooth map. The next Theorem,

a version of the implicit function theorem, is proven in [Wa, Theorem 1.38].

Theorem 2.2 If p is a point of Y such that f~'(p) is non-empty and the map of
tangent spaces (df )y : Ty X — Tru)Y is surjective for all x in f~'(p), then f~1(p) is

a submanifold of X. Moreover, the real dimension of f~'(p) is dim X — dimY".

Given p an element of Y, we say that p is a reqular value of f if the map of tangent

spaces (df )y @ ToX — Ty»)Y is surjective for all # in f~*(p). Theorem 2.2 implies
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that when p is a regular value of f, f~1(p) is a submanifold of X of real dimension
dim X —dimY. A fact about regular values that we will find useful is given in the

next lemma.

Lemma 2.3 Ifp in'Y s a reqular value of f and V is an open subset of X, then p

is a regqular value of fly .

Proof. The fact that V' is open in X yields that for all = in V', the tangent spaces
at = are equal; i.e. T,V = T, X. By assumption we have that (df), : T,X — Tyu)Y

is surjective for all z in f~'(p). So (df|v)s : ToV — Ty)Y is surjective for all z in

(flv)~'(p)- u

Let N be a n-dimensional submanifold of X. Recall that a tubular neighborhood of
N is defined to be a subset U of X which has the structure of a (I—n)-dimensional real
vector bundle over N with N as the zero section [Ko]. Now assume that f: X — C
is a smooth map and 0 is a regular value of f. Let Z = f~'(0). It follows from
Theorem 2.2, that Z is a closed submanifold of X. Let n = dim X — dim Z. We will
consider a tubular neighborhood of Z.

Before stating the next result we establish some notation. If ¢ : A — B and
h : A — C then the product map, g x h : A — B x (, is the map that sends an

element @ in A to the element (g(a), h(a)) in B x C.

Proposition 2.4 There is a tubular neighborhood U of Z and a smooth projection

map, m: U — Z, such that (7 x fl|y)*: HY(Z x C) — HY(U) is an isomorphism.

Proof. Since Z is closed submanifold the existence of a tubular neighborhood

is guaranteed [Ko, Corollary 2.3]. Let U be a tubular neighborhood of Z. Then
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U has the structure of a real vector bundle over Z and so there exists a smooth
projection map w : U — Z. This implies that Z is a deformation retract of U with
retraction m, and so 7 is a homotopy equivalence with inverse ¢ where 7 : 7 — U is
the inclusion map. Now we have the composition (7 x f|y)oi: Z — Z x C with
image Z x {0}. If we compose this map with the restriction map p: Z xC — Z x {0}
defined by p(z, ) = (2,0) for @ in C, we have a diffeomorphism, and thus a homotopy
equivalence, from Z to Z x {0}. Since C is homotopic to {0} and Z is homotopic
to itself, we also have that the product map j : Z x {0} — Z x C is a homotopy

equivalence. Combining this with the previous composition we have
(X fly)oi=jopo(n X flyg)oi:Z —ZxC

is a homotopy equivalence. By the Homotopy Axiom, it follows that the map on
cohomology ((7 X f|) 04)* is an isomorphism. The Homotopy Axiom also gives that

7% is an isomorphism with inverse ¢*. Thus composing these two isomorphisms we

have
T o ((mx fly)od)* =7 0" o(m x flv)" = (7 x flv)",

which is also an isomorphism. |

From Theorem 2.2 and the definition of a tubular neighborhood, we see that U
has the structure of a 2-dimensional real vector bundle over Z. Thus as real vector

spaces the fibers over Z are isomorphic to C. We use this result in the next corollary.

Corollary 2.5 When we restrict the product map ™ X f|y to U\ Z, the map

(mlinz % flong)" : HI(CY) = HY(U \ Z) is an isomorphism.
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Proof. Let T = 7|y\z and f= flonz. Then @ : U\ Z — Z is a fiber bundle, and
the fibers are C* because by definition of tubular neighborhood Z is the zero section
of the vector bundle. Additionally we have the natural projection p : Z7 x C* — Z
which is also a bundle with fiber C*. We have the commutative diagram connecting

these two bundles:
axf

v\z = zxc

7 Ip

z M
Corollary 2.7.14 of [Spa] states that a fiber bundle is a fibration. By the results of
Section 7.2 in [Spa] we see that a fibration is a weak fibration and that weak fibrations
have long exact homotopy sequences where the § map is a natural transformation.
Thus the vertical maps in the diagram each give rise to long exact homotopy se-

quences. Let z be in Z and let « be an element of the fiber C*. We have the following

commutative diagram of long exact homotopy sequences

-7 ~

oo m(Cha) B UNZa) X rZ2) D m(Cha) -

- ! -k

i//

coo o m(CHa) B o (Z x Ca) e m(Z, 2) i Tno1(C a) — -
where 7 : (C*,a) — (U \ Z,«a) and i" : (C*,a) — (Z x C*, ) are inclusions. By
the Five Lemma U \ Z and Z x C* have isomorphic homotopy groups. The map
Fxf:U \ Z — Z x C* is a weak homotopy equivalence [Spa, Section 7.6].

An application of Morse Theory, Theorem 6.6 in [Mi], shows that a smooth man-
ifold is homotopy equivalent to a CW complex. The sets U \ Z and Z x C* are

manifolds and therefore homotopy equivalent to CW complexes. Moreover, a weak
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homotopy equivalence between CW complexes is in fact a homotopy equivalence [Spa,
Corollary 7.6.24]. Therefore, 7 x f is a homotopy equivalence and by the Homotopy

Axiom the corresponding map in cohomology is an isomorphism. |

2.4 Extension of Theorem 1.1

Let X be a real smooth [-dimensional manifold, let fi,..., f, be smooth maps from
X to C, and let Z; = f; 1(0). Let M = X \ (Z1U...UZ, 1) and suppose that 0 is a
regular value of f,|y;. Then (f.]pr)"'(0) = M NZ,. Proposition 2.4 and Corollary 2.5
yield the fact that M N Z, has a tubular neighborhood U in M such that (7 x f)* and
(r x f)* = (mlonz. % frlonz,)* are isomorphisms, where 7 is the natural projection
map from U into M N Z, and f = f,|y.

Consider the inclusions maps
iv:U\NZ, »Uandi=idxi;: (MNZ)xC" — (MnZ)xC,

where id : M N Z,. — M N Z, is the identity map and i; : C* — C is the inclusion
map. Notice that for iy and ¢ we have the commutative diagram:

X f

Uu — (MnZ)xC

T I

[

U\Z, — (MnZ,)xC.
Furthermore, by the Exactness Axiom of cohomology, each of the horizontal inclusion
maps induces a long exact sequence in cohomology. Using the fact that (7 x f)* and
(71'/)\(/ f)* are isomorphisms, together with the Five Lemma, we conclude that these

sequences are isomorphic. Accordingly, by functorality and the Naturality Axiom we
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have the following commutative diagram of long exact sequences:
Mgy 5 HI(U) % omw\z) %

|= [(x x )" T f)°

% Hit) L H(MNZ)xC) 5 HI((MNZ)xC) 5 ...
(2.3)

Our goal is to show that these long exact sequences split into short exact sequences.
First we consider the bottom row of the diagram. We have two natural projection
maps from (M N Z.) x C. The projection onto M N Z, is denoted by p; and the
projection onto C is denoted by ps. Associated with these maps are the maps on

cohomology,
pi:H'(MNZ,)— H(MnZ)xC) and pi: H(C) —» H*(Mn Z,) x C).
Lemma 2.6 The map p}: HY(M N Z,) - H'(M N Z,) x C) is an isomorphism.

Proof. We know that H4(C) =0 for ¢ > 1. Thus @ H™"(MnZ,)® H"(C)

m-+n=q

reduces to HY(M N Z,) ® H°(C). The Kiinneth Formula 2.1 gives the isomorphism

K:HY(MnZ,)® H°(C) - HI(M N Z, x C). The following diagram relates K and

pi:
HY(M N Z,)® H(C) = HYMnNZ xC)
v| i
HY(M N Z,),
where v is the natural isomorphism between H?(M N Z,) ® H°(C) and HY(M N Z,.).
Since pj is a k-algebra homomorphism, p3(c;) is the identity in H4(M N Z, x C). So

K(w® ¢1) = pi(w) Upi(c1) = pi(w). Therefore, the diagram commutes and so pj is

an isomorphism. [ |
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Using the result that pj is an isomorphism yields the fact the cohomology map
7 HI(MNZ,) — H(U) is also an isomorphism. We will interrupt the proof that

the bottom row of Diagram 2.3 is exact to prove this fact about 7*.
Lemma 2.7 The map n* = (7 X f)*op} : H(MNZ.) — HI(U) is an isomorphism.

Proof. Notice that the following diagram commutes

v (Mnz)xC

Wl a2
MnNZ,.

Thus the corresponding diagram with the induced cohomology maps also commutes.

We have the following commutative diagram

mw) P g (mnz)xc)

H*(MN Z,).
By Proposition 2.4 and Lemma 2.6 we know that (7 x f)* and p} are isomorphisms,

we conclude that 7* = (7 x f)* o p} is an isomorphism. [

Now consider H?((M N Z,) x C*). We know that HY(C*) = 0 for ¢ > 2. Thus
P H™MnNZ)® H"(C") reduces to
m-+n=q
(HY(Mn Z,) @ H(CY)) @ (H'(Mn Z) e H'(C)).

The Kiinneth Formula 2.1 gives the isomorphism

K:(H(MnZ)®H(C)) e (H ' (MNZ)® H(C)) - H((MNZ) x C).
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As in Lemma 2.6 we also have the natural isomorphism
v:HI(MnNZ)® H(C*) = H(MN Z,).
It follows that the map
vieid 1 H(MNZ)e (H ' (MnZ,)o H(C))
— (HY(Mn Z,)® H(C")) @ (H" (M n Z,) ® H'(C"))

is an isomorphism. Let P = K o (v ! @ id). Thus we have proved that P is an
isomorphism as stated in the next Lemma. In addition we will consider how elements
are mapped under P. We use the notation p; to denote the projection map onto the

first coordinate of (M N Z,) x C* and p, to denote the projection map onto the second

coordinate.
Lemma 2.8 The map
P:H(MNZ)& (H"(MnZ)eH(C)) - H'((MnZ) x C)

is an isomorphism. In particular, HI((M N Z,) x C*) is spanned as a k-vector space
by {p1*(w) |we H(MNZ)} U{pi*(0)Up*(o) | € HT' (M N Z,)}.

Proof. We saw that P is an isomorphism by the proceeding discussion. If w is
in H (M N Z,) and @ is in H" (M N Z,), then

Pw,l®c) = Ko '@id)(w,0®0)=Kw®c,0®0)

= P (w)Up™(c) +pi"(0) Upa™(0) = pi"(w) + ;1" (0) Upe™ (o).

Where the last equality holds since py* is a k-algebra homomorphism and so p2*(c;)

is the identity in H?(M N Z, x C*). Thus we have the desired result. [
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Now that we have described H?((M N Z,) x C) and HY((M N Z,) x C*) we can
explore the map between them. Let i =id x i, : (M NZ,) x C" - (M nZ,) x C,

where id is the identity map on M N Z, and ¢, is the inclusion from C* into C.

Lemma 2.9 The cohomology map i* : H1(M N Z,) x C) — HI(M N Z,) x C*) is
injective.

Proof. Recall the projection map p; : (M N Z,) x C — M N Z,.. Also note that
the composition p; oi is the same map as the projection p; : (M NZ,)xC* — MNZ,.
If wisin HY(MNZ,) then i* opi(w) = (p104)*(w) = p1*(w). Using this together with

the isomorphisms given in Lemmas 2.6 and 2.8, we have that the following diagram

commutes,
H((MNZ)xC) - HY((M N Z,) x C¥)
Jri 17
HY(MNZ) - H(MNZ)® HT(MNZ)o H(CY),
where the map on the bottom row is the injection I(w) = (w,0). This diagram

commutes since i* o p}(w) = p;*(w) and
Pol(w) = P(w,0)=Ko (v '®id)(w,0)
= K(w®c,0) =pi"(w) ®p2"(c1) = pr*(w).
Thus the map ¢* is injective since the two vertical maps are isomorphisms and the

bottom map is an injection. | |

We will use Lemmas 2.6 and 2.8 to show that the bottom row of the long exact
sequence from Diagram 2.3 breaks into short exact sequences. Since the two rows are

isomorphic this results in the top row splitting into short exact sequences.
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Proposition 2.10 The top row of Diagram 2.3 splits into short exact sequences of
the form

0 — HYU) "2 HY(U\ Z,) 225 H (i) — 0.

Proof. By Lemma 2.9, the map i* (from the bottom row of Diagram 2.3) is
injective, whence ker(i*) = 0. Since the sequence is exact we have that im(5*) =
ker(:*) = 0, and so * = 0. It follows that ker(3*) = H?"'(i), and by exactness
we have im(6*) = ker(3*). Thus im(6*) = H9"(i) and ¢* is surjective. This yields
the fact that the bottom row breaks into short exact sequences. Moreover, we saw
in Diagram 2.3 that the two rows are isomorphic, hence the top row also splits into

short exact sequences. [ |

As a consequence of Proposition 2.10 we have that Diagram 2.3 breaks into a
commutative diagram of short exact sequences. We can use this to investigate the

make-up of HY(U) and HY(U \ Z,).

Proposition 2.11 HY(U) = {r*(w) |w € HI(M N Z.)} and HY(U \ Z,) is spanned

by {7*(w) |w € HU(M N Z,)} U{a*(0) U f*(0) |6 € H (M N Z,)}.

Proof. We have the commutative diagram

ix

H9(U) N HYU\ Z,)
[(mx £y [
HI((MNZ)xC) - HY((M N Z,) x C¥)

v [P

HY(MNZ) - HY(MNZ)e HT(MnZ)o H(CY)).
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From Lemma 2.6 we have that
HY(MNZ,)xC)={pj(w) |we H(M N Z,)}.

Now using Lemma 2.7, we obtain that (7 x f)*pi(w) = 7*(w) is the image of p;(w)
under this isomorphism. Hence, H1(U) = {r*(w) |w € HI(M N Z,)}.

From Lemma 2.8 we have that H/((M N Z,) x C*) is spanned by
P (W) |w e H(MNZ) ™ (0) Up*(0) [0 € HTH(M N Z,)}.

Using the facts that p; is projection on the first coordinate, ps is projection on the

second coordinate, and 7T,>\</f =7 X f, we have the following results. First,

Second,

(mx f)* (" (0) Up2(0)) = (pro(mx f))(0)U(p2o(mx [)) (o)

Therefore, HI(U \ Z,) is spanned by

{7*(w) |w e H(M N Z,)} U{a*(0) U f*(0) | 0 € H (M N Z,)}. N

Before we continue, we shall require a deeper understanding of the action of 7*.

We have the commutative diagram

U\Z -4 U
ﬁl N

MnZ,
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Thus,

~ %k

Tt =i om". (2.4)

Now consider the inclusion map iy : M \ Z, — M and the corresponding long

exact sequence,
o H(ing) 25 gar) B g\ Z,) 2 O (i) < -

Let j be the inclusion from U into M and j be the restriction of j to U \ Z,, that is
j:U\Z, — M\ Z.. We have the following commutative diagram:
M\ Z, M M
T 7 T j (2.5)
U\Z ‘% U
We also have the excision isomorphism in Equation 2.2 with X = M, A = M \ Z,,
and W = M \ U yielding an isomorphism between H*(iy) and H*(iyy). Thus we
obtain the following commutative diagram of exact sequences:
Gy oy By gam\ z,) D geri(,)
l * l 7* lg (2.6)
0 — HYU) T HoU\Zz) 25 H(iy) — 0.

In the next theorem we will see that the top row of Diagram 2.6 actually splits
into short exact sequences and we will prove that H°(M) = k and if ¢ > 1 then
H4(M) is spanned as a k-algebra by {f}: (o) fi(0)[1 < iy < -+ <ig <71} We
will use the following notation in the theorem: My, = X and M; = X'\ (U{:1 Z;) for

1 <j <r. So, in the theorem M = M,_; and M \ Z, = M,.

Theorem 2.12 Suppose fi,..., f. are smooth maps from X to C such that



21

W z.¢ Uz,
i=1
(2) 0 is a regular value of f.|n,_, and
(3) the map j*: H*(M, 1) — H*(U) is surjective.
Then as a k-algebra H*(M,) is generated by i, (H*(M,_1)) U{(fr|sm,)*(0)}.

Proof. Let M = M, ;. By assumption 0 is a regular value of f,|5;. Using this
together with the fact that (f.|ar)1(0) = M N Z,, we have that the previous results
in this chapter hold and we will continue to use the preceding notation. In particular
we have Diagram 2.6, a commutative diagram of exact sequences. Since M, = M\ Z,
we will first show that the top row of this diagram breaks into short exact sequences
and then use this to determine k-algebra generators of H*(M,). To show that the top
row of this diagram splits into short exact sequences it is enough to show that 4}, is
surjective, since using the fact that the sequence is exact implies that 4}, is injective.
To show that 3, is surjective it suffices to show that 7* is surjective since the diagram
commutes and d;; is surjective.

From Proposition 2.11, H9(U \ Z,) is spanned by elements of the form 7*(w) and
7™(0) U (fr|onz,)* (o) where w is in HY(M N Z,) and 0 is in H1~'(M N Z,). To show
that 7* is surjective we shall divide the argument.

Showing first that 7*(w) is in the image of 7*. Notice that since j* is surjective
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there exists a & in H*(M) such that j*(£) = 7*(w). Now observe that

T (w) = (i on*)(w) (by Equation 2.4)
= (i 2 J7)(§)

= (Jroiy)(§)  (by Diagram 2.5)

Thus 7*(w) is in the image of j*. Similarly,

T(0) = J (in (£)), (2.7)

where ¢ is in H9™'(M).
Next we will show that (f.[i\z.)*(0) is in the image of j*. We have the commu-

tative diagram

v\z, " ¢
j \l Tfr|M\ZT
M\ Z,.

So 7* o (frlm\z,)* = (frlo\z,)*. Combining this with Equation 2.7 we have

#(0)U (frling) (0) =7 (i2(€) U (frlanz) (0))

which is an element in the image of j*. Therefore, 7* is surjective since a spanning
set of HY(U \ Z,) is in the image of j*.

Therefore, we have the commutative diagram of short exact sequences

0 — HYM) M HIM\Z) 25 H (i) — 0

I B 2

0 — HUU) 5 muw\Z) 25 H(y) —s o
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Using this exact sequence, H(M \ Z,) is spanned by the images under i}, of the set
that spans H?(M) and a set of elements whose image under ¢}, span H?"!(i;,). For
the second set we use the facts that we know the spanning set of HY(U \ Z,) together
with the fact that j* and ¢}, are surjective. We arrive at the fact that H9(iy) is
spanned by d3, of the elements that map to the spanning set of H?(U \ Z,) under j*.

In our proof that j* is surjective, we showed that these elements are of the form

i3(€) and (i3,(€) U (frlanz) (@)

where £ is in HY(M) and ¢ is in H"'(M). Since M \ Z, = M, we have that H?(M,)
is spanned by {i3, () | & € H(M)}U{i3, (&) U (frlar,)*(0) [ & € HTH(M)}, and so

H*(M,) is generated as a k-algebra by {5,(H*(M))U{(fr|r,) (o)} i

We have two corollaries of this Theorem.

Corollary 2.13 Suppose fi,..., f, are smooth maps from X to C such that

W) 22Uz

(2) 0 is a regular value of fr|m,_,,
(3) as a k-algebra H*(M,_1 N Z,) is generated by the set
{(filog,inz) (@), (frmtlat,oinzn) (),

(4) as a k-algebra H*(M,_1) is generated by the set

{(f

Mrfl)*(o-)7 R (fr—l

1) (@)}

Then as a k-algebra H*(M,) is generated by the set {(fi|m,)* (o), ..., (frln, ) (o)}
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Proof. Observe that conditions (3) and (4) imply that H°(M,_; N Z,) and
H°(M,_,) are diffeomorphic to k, and therefore M, ; N Z, and M, ; must be con-
nected.

Again we let M = M,_;. By the third assumption, the generators of i}, (H*(M))

are {(fl MT)*(U)7 trt (frfl

if 7* is surjective.

) (o) }. Therefore, by Theorem 2.12 the results will hold

If r = 1 then by definition My = X, and by assumption H°(X) 2 k and HY(X) =
0 for ¢ > 1. Also MynNZ, = Z; and H*(Z,) = k and HY(Z,) = 0 for ¢ > 1. By
Lemma 2.7 we have that 7* : H1(Z;) — H?(U) is an isomorphism. Since j* is a
k-algebra homomorphism, it maps the identity of H°(X) to the identity in H°(U). It
follows that j* is an isomorphism.

Assume r > 1. For i =1,...,7—1 the intersection Z,NM = Z;N (X \ (UZ) Zl))
is empty, implying that f;(M) C C*. We will consider f;|y; : M — C*. Now using the
isomorphism 7* from Lemma 2.7 together with the cohomology map corresponding

to fi|m we obtain the following commutative diagram

-k

HI(M) AN HY(U)
[ (il =

(filmnzm)*
L

Ho(C¥) HY (M N Z,).

Now let w be in HY(M N Z,). By the assumption w is a k-linear combination of

elements of the form

(fi1|(MﬁZr))*(O-) s (fiq|(MﬁZ7-))*(0-) for 1 S 7:1 < ... < iq S r—1.
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By Proposition 2.11, every element of H9(U) is of the form 7*(w). Moreover,

T ((filaenz)) (@) -+ (filnz,)* (@) = 37 ((fi [a)"(0) - - (fig [n) " (0)), (2.8)

the latter of which is an element in the image of j*, since we assumed the elements
of H*(M) have the form (f; |a)*(0) -~ (fi,|m)*(0) for 1 < iy < ... <ig <7 — 1.

Therefore, j* is surjective. | |

The next corollary follows from Corollary 2.13.

Corollary 2.14 Suppose fi,...,fs are smooth maps from X to C. Assume that

n > 1 and that for all r such that n < r < s the following conditions hold
r—1
i=1
(2) 0 is a regular value of f.|n,_,,

(3) as a k-algebra H*(M,_1 N Z,) is generated by the set
{(Aloag_inz)) (0), - (frtlasoinz))*(0) )
(4) as a k-algebra H*(M,, 1) is generated by the set
{(filar,)"(0), s (famtlaa, )" (0) -
Then as a k-algebra H*(My) is generated by the set {(fi|u,)* (o), ..., (fslm,)*(0)}.

Proof. By conditions (1)-(3) and Corollary 2.13 we have that H*(M,) is gener-
ated by the set {(f1|am,)*(0), ..., (fulrm,)*(0)}. Now apply Corollary 2.13 and we get

the results for H*(M,,1). By recursion we get the desired result. |



CHAPTER 3

DE RHAM COHOMOLOGY

3.1 Properties of Real and Complex Tangent Space

Let X be a real [-dimensional smooth manifold with m an element of X. Let U
be open in X. If f is in CP(U), then f = u + v where u,v are in C°(U). Define

Y :CXWU) = CR(U)@r Chby Y(u+iv) =u®l+v®i.
Proposition 3.1 The map ¢ gives an isomorphism of C-algebras
CE(U) = Cxr(U) g C.

Proof. It follows from the definitions that 1) is a C-linear map. In the other
direction, there is the C-linear map ¢ ® a +— ayg for ¢ in Cg°(U) and « in C. These
two maps are inverses since their composition is the identity. The group CZ(U) is
a C-algebra under pointwise multiplication, and C*(U) ®g C is a C-algebra using
the tensor and multiplying component-wise. Therefore, we have an isomorphism of

C-algebras. | |

Recall the definition of the tangent space from Chapter 2. In the next proposition
we show that the complexification of real tangent space is the complex tangent space.
First we define maps between T¢ ,,, X and 7,, X ®r C. If 0 is in T, X and f is in
Cens then O(f) is in C, and so it is straightforward to check that there exists R-

linear derivations 60,6, : C& — R where 0(f) = 6,(f) + i02(f). It follows that the

26
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restrictions of #; and 6y to Cﬂ‘g”m are in 7;,X; denote these restrictions by #; and 6,

respectively. Define
U:TemX 5T X®C by V() =0,01+0,®i.
For the map in the other direction we define af for 6 in T, X and o = a +ib in C as
follows:
af(f) = a[0(Ref) + if(Imf)] = [ab(Ref) — b(Im )] + i[b0(Ref) + ab(Im f)].

It follows from the definitions that § is a C-linear derivation and that af = af. Thus
it is readily seen that af is in Te,mX. The mapping (0, o) — af is bilinear, so there

exists a unique
®: T, X ®C— Te,nX with ®0® a)=ab.
The next proposition will show that ¥ and & are inverse functions.

Proposition 3.2 The map VU : T ,, X — T, X ®r C is an isomorphism of C-vector

spaces with inverse ®.

Proof. By following the definition of ¥ and using the fact that restriction is
R-linear, it is easy to see that ¥ is a C-linear mapping. It is straightforward to check
that the mapping @ is also C-linear. To prove that these maps are isomorphisms we
will show that their composition is the identity. First observe that for 6 in Tt ,, X

and f in C°,,,
6(f) = O(Ref +ilmf)
= 0O(Ref)+i0(Imf)

= [0i(Ref) — O>(Imf)] + i[f>(Ref) + 01 (Im [)].
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It follows that

DoU(B)(f) = 20 ®1+0,®10)(f)

= 0.(f) +ib(f)
= 0i(Ref) + i, (Imf) — B5(Im[) + i (Ref)

= 0(f)
Secondly, for # in 7,,X and a = a + ib in C, we have

Vod(®a) = U(ah)
= (aoRe—00olm)® 1+ (b oRe+abolm) @i
= HoRe® (a+ib) +0oIm® (—b+ia)
= IR a,
since this is applied to a real valued function f, so Ref = f and Imf = 0. Therefore,
® and ¥ are isomorphisms. [ |

Since X is a real manifold, there exists a neighborhood of m and a set of coordinate

functions {z1,...,x;} that form a coordinate system for X near m.
Theorem 3.3 The set {52-|,, | 1 < j <1} is a basis of T, X.
J

Proof. This is Remark 1.20(a) in [Wa). i

We have similar results for complex tangent space. By Theorem 3.2 we know
that ® : T, X ®r C — T¢,,»,X is an isomorphism of complex vector spaces, with

d)(a%j|m ®1) = %|m. Thus {%|m | 1 <j <} isacomplex basis of Tt ,,X.
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When f is in Cg°,, the differential of f is a mapping from 7, X into Ty, R. We

can identify T(,,)R with R via the mapping a - > a for @ in R. Thus we can view

di |f
(df )m as a mapping from 7,,,X into R, and [Wa, 1.22(5)] shows that (df).(0) = 6(f)
for #in T,,X. In this way we can consider the differential of a smooth real-valued map
as an element in the dual space of T,,X. We call the dual space of T,, X the cotangent
space of X at m, and denote it by T» X. Using the evaluation of a differential of a

real-valued map together with Theorem 3.3 we see that
{oolm |1 <5 <1} and {(dz;)m |1 <5 <1} (3.1)

are dual bases of T,, X and T} X, respectively.

Next we will define a map on complex tangent spaces, the complex differential of
a smooth map at m in X. Suppose Y is a smooth real n-manifold and ¢ : X — Y is
a smooth map. The complex differential of ¢ at m is the map ¢, : Tc;, X — Tc gm)Y
defined to be the composition

TomX 5 T, X @ C 228" 70V @ € -2 T, Y- (3.2)

If fisin Cg, then the complex differential is f. : Tc,;»n X — Tt f(m)C. In analogy
with the real case we want a linear functional associated with f that maps T¢ ,, X to
C. When our manifold is C we denote the two coordinate functions by z and y, and

so a complex basis of Tt () C is {az | £(m) y}- We can map Tt ¢ C into C via

)’ By |f
the mapping
T(a L] jom) + B | m) = @ +i8
oz 1.f(m) Ay f(m)

for a, fin C. For [ in C&,, we define

(d(Cf)m =To f* : T(C,mX — C.
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The next Proposition simplifies the computation of (dc f ).

Proposition 3.4 If f is an element of Cg,, and 0 is an element of TcmX, then

(def)m(0) = 0(f).

Proof. Let 6 be in T¢,, X, so 0 is a derivation from C&,, to C,,. There exists
61,0 : C& — R with § = 0, + 165. For each j = 1,2 the derivation (df),,(6;) is in
Tt(m)C, so we may express it in terms of the basis {Z] (), 3%|f(m)}. Let f =u+w

where u, v are in C3° . Since x o f = u and yo f = v, we have

([d)m(05) = (df)m(0) (@) 35| pm) + (dF)m (87) (0) 25 | om)
= 0;(w) gl pomy + 0;(0) 55| pmy»

for j = 1,2. Using this formula together with the definition of f, and 0, if ¢ is in

C&r(my We can evaluate f.(0)(g) as follows:

F(0)(g9) = @o((df)m@1)0W(f +ib)(g)

= (df)m(01)(9) + i(df )m(02)(9)

= (df)m(61)(Reg) + i(df ) (01) (Imyg)
+ i ((df)m(8>) (Reg) + i(df ) m(B2) (Img))

= 01(w) 2| jm) (Reg) + 01 (v) & r(m) (Reg)
+ 01 (u) 2| pmy (Tmg) + 01 (0) 2| omy (Tmg)
+ 0 (1) 5z | m) (Reg) + i02(v) 55| rm) (Reg)
— 02(u) gz | sy (Img) — 02(v) 55| oy (Img)

= 0(u) 5] somy (Reg) + 0(v) 5| smy (Reg)
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+10(u) 57| m) (Img) + 0 (v) 37| r(m) (Img)

= 0(u) gl rom (9) +0(v) 5] rom) (9).

Thus f,(6) = 0(u)Z|m) —i—@(v)a%“(m). Now compose with the mapping T of Tt ¢(m)C

into C, and we have (dcf),(0) = 0(u) +i0(v) = 0(f). [

Notice that for f in Cg,, the notion of (dcf)m : Tc,f(m)C — C allows us to view
(dcf)m as an element of the dual space of T¢,, X. We shall refer to the dual space of
TcmX as the compler cotangent space of X at m and shall denote it by T¢ , X. The
next Proposition shows that the complexification of real cotangent space is complex
cotangent space. We define a mapping from 7¢,, X to T, X ®g C as follows. From
Proposition 3.2 we have an isomorphism ® : 7, X ®r C — T¢,,, X. There exists a
natural isomorphism , : C > R®g C by , (a +ib) = a® 1+ b ® i. We also have
the natural isomorphism from Homgg,c (7, X ®x C,R®g C) to Homg(7,,X,R) @ C.

Combining these maps we have:

TE,mX = HOIII(Q (T@me, (C)

12

Home (T, X ®x C,C)

5

HOHIR@)R(C (TmX KRR (C, R Rr (C)

l\ R

Homg(7,,X,R) ®x C

T;X ®r C.
Label the composition of these maps by ©.

Proposition 3.5 O : T¢, X — T X ®g C is an isomorphism, with O((dcf)m) =

(du)m @1+ (dv)y, ® i where f = u +iv is in CZ,, and u,v are in Cg5,,.
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Proof. Since each of the maps is an isomorphism we have the desired result. Let

0 be an element of 7,,X and o« = a + ¢b be in C. Then

Lo (def)mo®(B®a) =, (aff)
= (aB(u) — bO(v) + i(bO(u) + ab(v)))
= af(u)®1—-b0(v) @1+ b0(u) ®i+ab(v) @i
= (du)p(0) ® a — (dv),(0) @b

+ (du)m(0) ® ib + (dv),(0) @ ia
and

(du)m @1+ (dv)p, @)@ a) = (du)m(0) ® (a+ib) + (dv),(0) ® i(a + ib)
= (du)m(0) ® a — (dv),(0) @b

+ (du)m (0) ® ib + (dv),(0) ® ta.

Since these are the same we have the desired result. [ |

3.2 De Rham Cohomology
Consider the ¢'" exterior power of the cotangent bundle

ATEX = | AT, X,

meX
with projection map 7 : AYTEX — X. Note that AT X = X x F and A'T3X is
simply the cotangent bundle. The space A?T; X has a natural manifold structure

such that 7 is smooth. Recall from Section 2.15 of [Wa] that a ¢g-form on X is a
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smooth map s : X — AT} X such that mos =idy. Let AL(X) be the set of g-forms
on X.

Observe that AJ(X) forms an F-vector space under pointwise operations. There
is also a product (the wedge product) on forms. For w; in AL(X) and wy in AL(X),
w1 A we satisfies (wy A wy)(m) = wi(m) Awy(m). For f in C°(X) and w in AL(X),
observe that f Aw = fw. It follows that Aj(X) has the structure of both a Cz°(X)-
module and of a graded algebra over ' with wedge multiplication.

Next we consider maps on g-forms. Theorem 2.20 in [Wa] states that there exists

a unique R-linear anti-derivation d : A7(X) — AT (X) such that
(1) d*=0
(2) df(m) = (df) for f in C(X).

This anti-derivation is called the ezterior derivative. The definition of an anti-
derivation is that d(w A7) = dw An+ (—=1)"w A dn for w in A"(X) and 7 in AY(X).

Now we will define a C-linear anti-derivation d¢ : AL(X) — AL (X) that satisfies
the property that d2 = 0. To define this anti-derivation we need the next Proposition
which shows that the set of complex g-forms on X is isomorphic to the set of real
g-forms on X with scalars extended to C. For ¢ = 0, this follows from Proposition 3.1,
so we assume that ¢ > 0. If w is in AL(X), there exists wy, ws in A7(X) such that for
each m in X, w(m) = wi(m) ® 1 + wa(m) @ i. Define V' : AL(X) — AY(X) ®r C by
the rule

\III(CU):W1®1+W2®Z

For the map in the other direction, define aw in A (X) by aw(m) = w(m) ® « for w
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in AY(X), ain C, and m in X. The mapping (w, o) — aw is bilinear, so there exists
a unique

d' : A1(X) @5 C — AL(X) with & (w® a) = aw.

Proposition 3.6 Ifq > 0 the mapping V' : AL(X) — AY(X)®rC is an isomorphism

of C¥(X)-modules with inverse ®'.

Proof. To see that ¥’ is C-linear, let &« = a + bi be in C. Then aw = aw; —
bwy + i(bwy + aws), and so V'(aw) = w; ® @ + wy @ iav = a¥'(w). It also follows
from the definitions that ¥'(w + w') = ¥'(w) + ¥'(v') for w,w’ in AL(X). It is also
straightforward to check that the mapping @' is C-linear.

Next we show that the composition of these two maps is the identity. For w in
AL(X), we have &' o ¥'(w) = ®'(w; @ 1 + wy ® i) = Wy + wy. For m in X notice
(W1 + w2)(m) = wi(m) ® 1 + we(m) @ i = w(m), so this composition is the identity.
Now for the reverse composition, let w be in A?(X) and o = a + ib be in C. Then
Vod(wea)=V(w =w®l+w®i=w®a+w®ib=w®a. Thus both
compositions are the identity, and therefore the mappings are isomorphisms.

Observe that this is a C2°(X)-module isomorphism. Indeed, if f is in CZ°(X), w
is in AL(X), and m is in X then (fw)(m) = f(m)wi(m) @ 1+ f(m)wz(m) ® i and so

UV (fw)=fur @1+ fua®i= f¥'(w). [
Now we define d¢ : C°(X) — AL(X) so that the following diagram commutes:

CP(X)®r C % AYX)®pC

v o

dc

ceX) —  Ar(X),
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where the left and right isomorphisms are given in Propositions 3.1 and 3.6, respec-
tively. If we follow through these maps for f in C(X) and m in X, we see that
de(F)(m) = (def)m.

For ¢ > 0 define d¢ : AL(X) — AZ™(X) to be the unique function for which the

diagram commutes:
AX)@r C 2% A4+ (X) @R C
[ | @’ (3.3)

dc

AL(X) 5 ATTY(X).

In other words, d¢ is the composition
ALX) L5 A9(X) @ C 225 A7 (X) @5 C 25 ALT(X).

Since d* = 0 it follows that d2 = 0. Moreover, as d is an anti-derivation so is dg.
Now we use the set of g-forms together with the exterior derivative to form a

complex. We will then use this complex to define the de Rham cohomology of X.

Temporarily let d¢ denote the exterior derivative from A?(X) to A9 (X). Consider

the complex
0 A°X) B AN X) S A X)) S A9X) DAY X) 0. (3.4)

A g¢-form w in A7(X) is called closed if d'%w = 0 and it is called ezact if there exists
a (¢ — 1)-form 5 such that w = d?* 'n. Let Z? = ker(d?) denote the set of closed
g-forms, and let BY = d77'(A7"'(X)) denote the set of exact g-forms. These sets are
real vector spaces under pointwise operations. Moreover, as d> = 0 we have B? C Z4.
The gth de Rham cohomology group of X with real coefficients is defined to be the
quotient space

HY(X;R) = HI(A*(X),d) = 29/B°.
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Tensoring with C is exact, so applying - g C to Complex 3.4 gives a new com-

plex. Combining this sequence with Diagram 3.3, we get the following commutative

diagram:
0 — AX)®xC &% AYX)®pC £ ... LY A(X)@pgC — 0
0 —  AAX) I oaAlx) & L L ax) — o

The gth de Rham cohomology group of X with complex coefficients is
Hpp(X;C) = HI(AL(X), de) = ker(dc) /de (AL (X)),
Let the gth cohomology group of the complex A*(X) ® C be represented by
HI (A (X)®C,d®1) =ker(d®1)/(d®1)(A7 (X)) ® C).

Since the two complexes in the diagram are isomorphic, their cohomologies are iso-
morphic, thus HY(A:(X),dc) = HY(A*(X) ® C,d ® 1). Moreover, the fact that
tensoring with C is exact implies that H/(A*(X),d) ® C = HY(A*(X) ® C,d ® 1).
This leads to the fact that H{j, (X;C) = H] (X; R)®C, and so de Rham cohomology
with complex coefficients is simply de Rham cohomology with real coefficients with
scalars extended to the complexes.

An element of Hjj, (X;TF) is a coset, so for w € ker(dy) C Af(X) we will represent
the cohomology class w + im(dy) by [w]. Define the wedge product of two elements
in H}jz (X;F) with coefficients in F as follows: if [wq] is in H{z (X;F) and [wy] is in

HEs (X;T) then define [wi] A [ws] in HER (X;TF) to be [w A wy).

Proposition 3.7 The wedge product on Hjyg (X ; F) is well-defined and Hijg (X;F) is

a graded, skew-commutative, F-algebra.
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Proof. The definition of the wedge product makes sense as follows. If [w;] is in
Hix(X;TF) and [ws] is in Hfyx (X;F) then dp(wi) = dp(ws) = 0. So dp(w; A ws) =0
which implies that [w; A wy] is in HEE (X;F). Suppose [wi] = [ws] and [wy] = [w4].

Then

[wi Aws] = [wi] A [we]
= (w1 +im(dr)) A (w2 + im(dr))
= (w3 +im(dy)) A (ws +im(dy))

= [ws Awyl,

thus the wedge product is well-defined. Since the wedge product on A*T; /X is skew-
commutative, the wedge product on the quotient space is skew-commutative. That
is, for [wi] in HER(X;F) and [wo] in Hig(X;F) we have [w; A wy] = (—1)%ws A wy].

Lastly, as Af(X) is an F-algebra, so is Hjg (X; F). [

Recall in Chapter 2 that [o] denoted the fixed generator of H'(C*). Next we
will see that [0] corresponds to %2 in H},(C*;C). First use the fact that dc is a

derivation to see that

d(c (M) = d(c (% VAN d@z) = d(c (%) VAN d@z + % A d@(d@z) = ;—;d@z A d(cZ +0=0.

z

Thus [%2] is in Hje(C*;C). It follows that for all @ € C, we have [%%%] is in
H}z(C* C). Thus in de Rham cohomology with complex coefficients the generator
of Hi,(C*C) is [42].

Now if X and Y are smooth real manifolds we want to define maps between

H{g (X;F) and Hi, (Y;F). To do this we use a map on ¢-forms that commutes with
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dr. Again suppose that ¢ : X — Y is a smooth mapping, then [Wa, Section 2.22]
shows that ¢ determines a function, ¢* : AY(Y) — A9(X). This function satisfies the

following properties:

Proposition 3.8 Ifw is in A*(Y) and g is in C(Y), then

2. ¢"(gw) = ¢*(9) - ¢"(w) =g o ¢- 9" (w),
3. the map ¢* commutes with the exterior derivative, that is d¢* = ¢*d.

Proof. This is Proposition 2.23 of [Wa). i

From this map on real ¢-forms we define ¢f. : AL(Y) — AL(X) to be the unique

function for which the following diagram commutes:

AYV)@r C ©8 AYX)®% C

(& | @’

AY)  — ALX),

where the vertical isomorphism were given in Proposition 3.6.
Proposition 3.9 If w is in AL(Y) and g is in CZ(Y'), then
1. ¢t(g) =go ¢,
2. 9t(gw) = ¢t(9) - dt(w) = go ¢+ Pt (w),

3. dcot = drde.
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Proof. The proof of these facts follow immediately from Proposition 3.8 together

with the definition of ¢g.. |

Since ¢ and d¢ commute, ¢¢ induces a map on cohomology,

¢« Hpp(Y;C) = Hpp(X;C) by oc(w]) = [¢c(w)]-

We can use this to see how non-zero functions in CZ° act on the special element [dg—z]

of Hj(C*;C).
Proposition 3.10 If g is in C with g(x) # 0 for all x in X, then

9"+ Hh(C*;C) — Hpp(X;C) and g"([%=]) = [%2].

Proof. Using parts (1) and (2) of Proposition 3.9,
g (%) =g (%) 9" (dez) = o;deg*(2) = ;dc(9),

since z : C — C is the identity and so z o ¢ = ¢g. The result now follows. |

3.3 Properties of de Rham Cohomology

In Chapter I, Bott and Tu [BT] show that real de Rham cohomology satisfies the
Eilenberg-Steenrod Axioms except for the Excision Axiom (Example 1.6, Section 2,
Proposition 2.1, Example 2.6, and Proposition 6.49). They also show that it satisfies
the Kiinneth Formula (Equation 5.9). A special case of the Universal Coefficient
Theorem [Dol, VI.7.1] states that the formal properties of cohomology carry over to
arbitrary coefficients. So these properties that are true for real coefficients are also

true for complex coefficients. In Proposition 3.7 we showed that de Rham cohomology
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with complex coefficients has a ring structure that makes it into a graded C-algebra.
Thus, in order to see that the results of Chapter 2 hold for de Rham cohomology with
complex coefficients, we need only check that it satisfies the Excision Axiom. From
now on we will assume that de Rham cohomology has complex coefficients, denoted
simply Hjjp (X).

Suppose that A is a closed submanifold of X with inclusion i : A — X. Recall
from Section 1.6 of [BT] that AL(i) = AL(X) @ AE'(A) and the exterior derivative
de : AL(i) — AETY(i) is defined by d¢(w, ) = (dew,i*w — dcf) for w € AE(X) and
0 € ALY (A). Tt is a straightforward result of the definition to see that d2 = 0.
Suppose that U is an open subset of X such that A C U C X. We have the natural
inclusion maps ix : X\ A = X, ig :U\A— U, j; : U = X,and j, : U\ A — X\ 4,

giving the commutative diagram:

U\4A % U
|2 |1
X\4 = X

Each inclusion yields a complex as above. Combining these with the above diagram
we get the commutative diagram

0 — A%X) & ALX)@ ALUX\A) L AZ(X)@® ALY\ A) —

|3t Lt + s Lt + 4
0 — AUU) L ALU) @ ALU\A) L& A2(U) @ AL(U\A) —
Lemma 3.11 The relative cohomologies of the inclusion maps ix : X \ A - X and

iy : U\ A — U are isomorphic. That is HE (ix) = HEg (iy) for all k.
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Proof. Let [w, 0] bein HEg (ix) so that (w, #) is an element of A%(X)®AL(X\A)
and dc(w,f) = 0. The image of [w, 0] under (j; + j3) is [wo ji, 00 jp] in HER (iy). We
want to see that this is an isomorphism. To do so we will first show it is surjective
and then that it is injective. For both arguments we shall require a partition of unity.

Since X is a manifold it is regular and paracompact. By regularity we can choose
an open subset W such that A C W C W C U, where W is the closure of W. Then
the complement of W, W°, and U form an open cover of X. By paracompactness
there is a partition of unity for X subordinate to the open cover {WC, U}. So there
exists smooth functions ¢, ¢2 : X — R such that the support of ¢; is contained in U,
the support of ¢, is contained in W, and (¢1 + ¢2)(x) = 1 for all € X. Combining
these we see that ¢; =1 on W.

Now let [wi, 0] € HEg(iv) so (wi,0,) € AL(U) @ AE (U \ A) and dc(wy,0)) =
(dewr, wi|ina — deby) = 0. This implies that dew; = 0 and wy|\ a4 = dcby. We want

to show that this is in the image of the map (j; + j3). Define [w,0] € HE;(ix) as

follows:
0 on X \U
0 on X \U
w=19 dc(¢0) onU\ A and 0 =
¢191 on U\A
| Wi on W

To see that this is well-defined we need to show that w and 6 are smooth, and that
dc(w,0) = 0. To see that w is smooth we notice that it agrees on the intersection of
these sets in the definition. Observe first that dc(¢161) = ¢rwi + dedy A b1, and so
the support of d¢(¢16;) is contained in the support of ¢, a subset of U. Outside the

support of ¢ the form dc(¢16,) is 0. Also dc(¢101)|w\ 4 equals wy, since ¢; = 1 on W.
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So the definitions agree on (U\ A)NW = W\ A. The form # is smooth since if z ¢ U
then ¢; = 0 on some neighborhood of x, and so # agrees on the intersection of the
sets. Next, consider dc(w,f) = (dew,w|x\a — dcf). The first term is 0 since dew = 0
for all z. The second term is 0 on all of X since w = d¢f as follows. If x € X \ U
then w = dcf = 0 on a neighborhood of z, and if x € U \ A then w = dc = dc(p161)
on a neighborhood of x. Thus d¢(w, §) = 0.

Finally, we show that (ji + j3)[w, 0] = [w|v, 0|\ 4] = [w1,6:]. To do this we will
show that (w|v, 8]\ a) — (w1, 01) = (W]o — w1, Olna —01) = (Wr — w1, 161 — 1) isin

the image of dc. Define a new form, n € AL 1(U), by

((151 — 1)91 on U \ A
’]’] =
0 on W.

Note that 7 is smooth since ¢; = 1 on W. We need to explore the definition of n and

dcn in terms of our original forms wy, w, and ;. On U \ A, observe that
n=¢10y — 01 =01[;na—061  and

den = de(p101—01) = ¢p1dct +depi N0 1wy —dcbty = drwi+ded) AN yw —wy = w|p—w.

On W, dcnp = 0 = w|p — wi. So we see that on all of U, decnp = w|y — wy. Using
these equalities, we see that dc(n,0) = (den,n|va) = Wlr — w1, 0lopa — 61) =
(W, 0l a) = (wi,61). Thus (W], 0o\ a) and (wy,6;) are in the same coset, and so
(7% + 73) maps [w, 0] to [wy,6:]. Thus (5 + j3) is surjective.

Now we show that (j; + j3) is an injection. Suppose that (55 + j5)w,0] =
[w|rr, 0]t a] = 0. Then de(w,0) = 0 and there exists (wy,0;) € AL(U) & AL (U \ A)

such that (w1|U,91|U\A) = d@(wl,ﬁl) = (d@wl,w1|U\A — d(Cgl)- This implies that
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dewy = wly and wi|pna = b1|na + deby. Our goal is to show that [w,f] = 0, or
equivalently, to show that (w,0) = dc(w', #') where (W', 0") € AE™H(X) @ AET2(X\ A).
We will now define o', @, and n € A% 2(U), a form needed in the definition of «’,

. 0 on X \U —¢ofhy on U\ A 1o 0 +dchd on X\ A
— ’]’]: and w —

$b, on U\ A, 0 on W, wi +den on U.

Since each of their parts are smooth, to see that these forms are all well-defined and
smooth we only need to show that they agree on the intersection of the spaces in
their definitions. If ¢ U then ¢16; = 0 on a neighborhood of z as ¢; = 0 since the
support of ¢ is contained in U, and so €' is well-defined. If x € W'\ A then ¢»6; =0
on a neighborhood of = as ¢, = 0 since the support of ¢, is contained in X \ . Thus
n is well-defined. Thus «' is well-defined because on U \ A, wy + dcn = 6 + dcb' as

follows:

(Wi +den)|onva = wilona + denloa
= Olona + dcbh — de(p26h)
= Olina + dc(br — da6h)
= Olona +de((1 — ¢2)61)
= Olina + dc(o16)
= Blna +dct'|\a
= (0 +dct)|p\ a-

Using the fact that dc(w, ) = (dcw,w|x\a — dcf) = 0, observe that
dc on X\ A wlx\a on X\ A

dew' = = = w.
dew; on U. wly on U.
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Thus de (W', 8') = (dew', W' | x\a — dcb') = (w, 0+ dct' —dch’) = (w, 6) and so the map

(51 + j3) is injective. Thus the mapping HEy (ix) — HpEg (ir) is an isomorphism. W



CHAPTER 4

COMPLEX MANIFOLDS AND HOLOMORPHIC MAPS

4.1 Complex Tangent and Cotangent Spaces

In this chapter we will suppose that X is a complex [-manifold. This implies that X
is a smooth real 2/-manifold. All the results of Chapter 3 hold with dimension 2I.
Let m be an element of X with U a neighborhood of m. Let {z,...,%} be a
set of local holomorphic coordinates for X at m on U, with z; = z; + i1y; where z;
and y; are real valued maps. Thus {z,yi,..., 2z, y} are local coordinates for the
real manifold structure of X at m. Recall that by Equation 3.1 we have the bases

{50 lms gy lm 11§ < 1} of T X and {(dw)m, (dy;)m | 1 < 5 < 1} of T X
Lemma 4.1 If X is a complex [-manifold and m in X, let

B={3GElm @1 = | ®@i), 2| @1+ 5] @i) [ 1 <j <1} and

B = {((d2)n ® 1+ (dys) ® 1) , (dej) ® 1= (dyy)n @ 1) |1 <15
Then B and 3* are dual bases of the complex vector spaces T, X @x C and T} X @ C,

respectively.

Proof. First we will see that 3* is a complex basis of T,) X ®g C. To see that (*
spans, it is sufficient to notice that we can obtain (dz;)m, ® 1, (dzj)m ® 1, (dy;)m @ 1,
and (dy;), ® ¢ for all 1 < j <[ from linear combinations of the elements in *. To
see that 3* is linearly independent, use the fact that {(dz;)m, (dy;j)m | 1 < j <1} is

a real basis of T)" X.

45
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Now to see that § and 3* are dual bases:

((dzj)m ® L+ (dy)m ® ) (5(5e-|m @ 1 = 50| © 1))
= %(dxj)m(aix,Jm) ®1— %(dxj)m(a;:,Jm) Q1+
%(dyj)m(a%k%) Q1+ %(dyj)m(a%,Jm) ®1
= 0 ®14+30;®1
Similar arguments show that
((dz)m ® 1= (dy;)m ® ) (5 (ga=lm ® 1+ 5.-|m ® 1)) = ji,
((dzj)m ® 1+ (dyj)m @ ) (5 (5o |m © 1+ go-|m ®14)) = 0,
((dzj)m ® 1= (dy;)m ® ) (5 (5o lm @ 1 = 5| ® 7)) = 0.
Therefore, § and (* are dual bases. [ |
We will use the isomorphisms 77 X ®g C = T&mX and T, X ®r C = T, X to
find bases of the complex tangent and cotangent spaces that correspond to [ and
B*. The conjugate of z;, Z; : U — C, is defined by Z; = z; — iy;. It follows from

Proposition 3.5 that under the isomorphism © : T¢:, X — T X ®g C,
O((dezj)m) = ((dzj)m @ 1+ (dy;)m @ 1)

and
O(deF)m) = ((da;)m 1 — (dyy) @ ).
We also have the isomorphism ® : 7, X ®g C — Tt ,,X given in Proposition 3.2.

Define the partial with respect to z; at m, %|m, to be the image under the map ® of
J
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S lm ®1 = 5| @)

0 iy lm)- (4.1)

el 1
£|m - 5(8:1:]- |m

Define the partial with respect to Z; at m, %|m, to be the image under the map ® of
J
3 d .
%(£|m ® 1 + @|m ® Z)a

a%—j|m: %(%|m+zagj|m) (4-2)

Thus 32|, and 5%|,, are C-linear derivations.
J J

We can now restate Lemma 4.1 for complex tangent and cotangent spaces.
Proposition 4.2 If X is a complex [-manifold and m is in X, then the sets
{3%] m» %|m |1<j<I} and {(dﬁczj)ma (dcz_j)m 1< <1}
are dual bases of Tc ;X and T¢ ,, X, respectively.

Proof. The proof follows from the preceding definitions and Lemma 4.1. [ |

Before we continue, observe that we can use the fact that |, is a C-linear
J
derivation to see that on rational functions in zq,...,z, where the functions are

defined, %|m is actually a partial derivative.
J

Proposition 4.3 Let m be in X and n; be in Z for j € {1,...,1}. If 21" --- 2" (m)

15 defined, then
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Proof. Recall that z;, = xp + iy, for 1 < k <1, so

() = 3Gl — i) (i)
= (3l i o) — i (22) + (00

= 30k + ;1)

= O

Now use the fact that £|m is a C-linear derivation to see that
J

2l (214) = mezit ! (m)
and that
!
Aol ) = el ()
=1
= njz?l---z?j_l---zln’(m).
This is the desired result. [ |

4.2 Holomorphic Tangent Space

Recall that U is a neighborhood of m and that {z1, ..., 2} is a set of local holomorphic
coordinates for X at m on U. For f in C2(U), f is said to be holomorphic on U if
a%—ﬂm =0 for all j € {1,...,{} and for all m in U. The fact that aiz—j|m is a C-linear
derivation implies that the sum, difference, product, and quotient (when it is defined)
of holomorphic functions are holomorphic. The following computation shows that the

function z; is holomorphic for all 1 < k < [:

() = & (lnt igln) (21
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= 5 (3l i o) 8 (o) = (00

= %((%k — 5]k) =0.

Thus polynomial and rational functions on U are holomorphic. The next Proposition

gives another method of determining whether a function is holomorphic.

Proposition 4.4 Let f be in CX(U) with f =u+iv. Then f is holomorphic if and

only if f satisfies the generalized Cauchy-Riemann equations,
3% |m - |m and |m = ——|m,
forall j € {1,...,1} and allm in U.

Proof. First let m be in U and notice that

2|, (v))

Crn |m( ): % (am]|m( )+iam |m( )+iay |m( ) By;

J J

forall1 <j <[ and m in U. Thus
3Z] Ll = % ( | + 71 |m + Z |m - _|m) (4.3)
for all 1 <7 <. Now if f is holomorphic, Equation 4.3 implies that
0:%|m+zﬁ|m+la_u|m ZZ|m

So the real part is 0 and the imaginary part is 0, and this results in the Cauchy-
Riemann equations. For the other direction, assume that the Cauchy-Riemann equa-

tions hold for all 7, then make substitutions into Equation 4.3 to obtain

sz |m:%( |m+2861§} |m_Z |m Bm]|m) = 0.



50

Thus we have the desired result. [ |

The complex differential of a holomorphic function has an especially nice form
in local coordinates since all the partials with respect to Z; are 0. Using this fact

together with Proposition 4.3, we obtain the following result.

Corollary 4.5 Let m be in X and nj be in Z for j € {1,...,1}. If 21" --- 2" (m) is
defined, then

l

(de( -2 )m = 3 %’)(—m)(dczj)m-
j=1

Proof. If f is in C&(U) and f is holomorphic then (dcf), = Eé-:l AL\, (dezj)m
for all m in U. The proof now follows from Proposition 4.3 and the fact that 2{'* - - - 2"

is holomorphic. [ |

2
m gz

In Proposition 4.2 we saw that {8%]_ lm | 1 < j <} is a basis of the complex
tangent space T¢,,,X. This basis and the definition of a holomorphic function lead to
two new notions of a tangent space that are each subspaces of Tt ,,,.X. The subspace
of T¢,» X spanned by {aizj|m | 1 < j <} will be denoted by Ty, X and is called
the holomorphic tangent space at m of X. Similarly the subspace of Tt ,, X spanned
by {B%_j|m | 1 < j <1} will be denoted by T'4,,X and is called the antiholomorphic

tangent space at m of X. Evidently
TemX =TumX @ ThmX.

In the next Proposition we prove that the differential of a holomorphic function maps
holomorphic tangent spaces to holomorphic tangent spaces and antiholomorphic tan-
gent spaces to antiholomorphic tangent spaces. To do this we first need the following

lemma.
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Lemma 4.6 If f is in CZX(U) and f is holomorphic, then 3%]_|m(20 f)= o5 9 |,.(f).

Proof. Using the fact that z = x + iy and Z = x — 1y as well as the definitions
of 52|, and 7Z|, given in Equations 4.1 and 4.2, we can expand both sides of the
J J

equality. We see that

D lu(zof) =

N [#—=
| — |
sl
3
—~
N
O
s
S~—
|
~
Qv|®2
3
—
N
O
s
S~—

E [ n(0 f) = im0 ) = im0 ) = olm(y o )
and
Lln(f) = gelnlzof) =1 [;%]m(zof) +i|m(zo f)
= L[ ln(wo ) +ilnlyo )+ i ln(ro ) = 2lmlyo 1)].

Since f is holomorphic, it satisfies the Cauchy-Riemann Equation 83—‘1;;);|m = ol
J

ox;

by Proposition 4.4. Using this substitution in the middle two terms, we see that these

two equations are equivalent. [ |

Proposition 4.7 If f is in C¥(U) and f is holomorphic, then
f* (TH,mX) C THf (C and f* (TAm ) C TA,f(m)(C
for allm in U.

Proof. Since {8 |, 72 o lm | 1 < j <1} is a basis of Tc,, X and {Z|(m), 2| rom) }
is a basis of T¢ f(m)C, by the definition of holomorphic and antiholomorphic tangent

space it is sufficient to show that
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for some «, 3 in C. Since f,(32|n) is in T¢ f(om)C we can expand it in terms of the
J

basis and use Lemma 4.6 together with the fact that f is holomorphic to obtain

i) 9 o d Z) 2
Fo(ozlm) = o (521n) )l + fo (3lm) B) s
= Zln(z0 NZlsom + 2 m(Z0 1) om
= 3Z]|m( f) Z|f(m)+3iz_j|m(f)%|f(m)

= 55 Im(H) 5zl rm)

Similarly f*(a Im) = 5= 21, (f) Z|f(m) + aiz—j|m(z_jof)%|f(m) = a%—j|m(z_jof)%|f("ﬂ' i

J

If fisin CP(U) and f is holomorphic, Proposition 4.7 implies that we have

another notion of differential,
ﬁ : TH’mX — TH,f(m)(Ca

called the holomorphic differential. We now have several notions of differentials. The
real differential (df),, : T;n X — TumC, the real differential with scalars extended
to the complexes (df)n,, ® 1 : T, X @r C = T(m)C ®r C, the complex differential
Je : Te,mX — Tt ;(m)C, and now the holomorphic differential fo TymX — Th pm)C.
We also have maps that relate the domains and ranges of these maps. We have the
natural inclusion map ¢ : 1,, X — T,,X ®g C that maps 0 to § ® 1, the isomorphism
¢ :T,X ® C — T¢,, X that maps § ® a to af given in Proposition 3.2, and
the projection map p : Tc,, X — Ty, X that sends El —1055 o |, + Zé 1 B 32 lm to

Zg 1 Qi az |m In addition, we have the map T : Tt 7(,)C — C and its restriction to

holomorphic tangent space YT : Ty (,yC — C. Combining all these maps yields the
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following diagram:

T,X -5 T,XorC 2 TepX L TpnX

l(df)m [@)me1 | £ |7
mC - TimC O C -2 TejemC -2 TajmC (4.4)

¥ [T

c 4 c

Lemma 4.8 Diagram 4./ commutes.

Proof. By the definitions, the first and last squares on the top row as well as
the bottom square commute. The middle square commutes by the definition of the

complex differential given in Equation 3.2. | |

By composing the maps across the top of the diagram we get a mapping that we
will label A = po® o : T, X — Ty, X. We will show in the next lemma that A is

a real vector space isomorphism.
Lemma 4.9 The map A : T, X — Ty, X is an isomorphism of real vector spaces.

Proof. By Proposition 3.3 the set {aa lm | 1 < j <1} is a real basis of

|ma dy;

T, X. The image of these basis elements under ® o is 75— |m and 5 |m Notice that
we can use Equations 4.1 and 4.2 to solve for —|m and 5 - |m in terms of 5> |m and

§|m. As a result we see that
J

3$J|m:3—zj|m—|—az |m and |m—28(z Z%m

Consider how A acts on these basis elements:

M) = po@or(iln) =0 (1o 1)
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and
) — 9 — 0
M@k = podor(@ln) =pod (e
— o1 \— ;2 . 0 _ .0
- p(@m) _p(za_zjm_za_z—jm) —Za|m
Now by definition, Ty, X has real basis {32 |n,i5>|m | 1 < j < [}. Thus A maps a
J J

real basis to a real basis and is therefore an isomorphism. |

We can use this fact that the maps across the top and middle rows of Diagram 4.4
are vector space isomorphisms together with the fact that Diagram 4.4 commutes to
establish relationships between the maps in Diagram 4.4. In particular, for the proof

of the extension of Brieskorn’s Lemma we need to show that (df),, is surjective.

Proposition 4.10 If f is a holomorphic function in CX(U) and m is in U then

(df ) is surjective if and only if (dcf)m is surjective.

Proof. Using Lemmas 4.8 and 4.9 we see that (df),, is surjective if and only if
f. is surjective. In Chapter 3 we defined (dcf),, to be the composition of the maps
fe t TemX — T pm)C and T @ TIg ;) C — C, where T was defined on the basis

{%“(m),%“(m)} Of T(C,f(m)(C as fOHOWSZ T(%|f(m)) =1 and T(£|f(m)) = 1. By

0

Proposition 4.2 we now know that {2|s(m), Z|;(m)} is another basis of Tt (m)C.

Using the definition of T and the definition of the partial derivatives we see that
T(LZ|n) =1 and Y(Z],) = 0.

Thus the mapping T restricted to holomorphic tangent space gives a complex vector

space isomorphism onto C. This action of T on the basis of Tt s, together with
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the fact from Proposition 4.7 that the differential of a holomorphic function maps
holomorphic tangent space into holomorphic tangent space implies that f, is surjective

if and only if (dcf), is surjective. This completes the proof. |



CHAPTER 5

GENERATORS OF TORAL ARRANGEMENTS

We will define a toral arrangement and then use Corollary 2.14 to arrive at the
generators of the cohomology of the complement of a toral arrangement in certain
cases. We will conclude by looking at some examples. For this chapter we will
assume that our field is C and that the cohomology is any cohomology that satisfies

the conditions given in Chapter 2 with coefficients in C.

5.1 Theorem 1.1 for Certain Toral Arrangements

Assume that {z,..., 2} are the coordinate functions on C'. Let T = (C*)!, then T is
a complex [-dimensional torus. By [Spr, Chapter 2] we see that 7" is an algebraic group
under multiplication. A rational character of T is an algebraic group homomorphism
X : T — C*. Let A = {ker(x}),...,ker(x})} be a finite set of kernels of characters
of T. The pair (T,.A) is called a toral arrangement over C. The complement of the

arrangement is

M=T\ O ker(x;).

=1

For a character y of T'if we let the zero set of y—1 be the set Z(x—1) = (x—1)7'(0),
then Z(x — 1) = ker x. So

M=T\ 20— 1)

=1

The set of regular functions on 7', C[T, is the localization of Clzy,..., z] at the

26



S7

function z; - - - z; [Spr, Theorem 2.5.2]. Thus
ClT] =Clz1, .-, 2oy = Clzay ooz, 27 oo 27

By Exercise II1.4.6 in [Hu| the localization of a unique factorization domain (UFD)
is a UFD, and so C[T] is a UFD. Thus we can talk about elements of C[T] being
irreducible. By Exercise 2.5.12 in [Spr] a character y of T is of the form y = 27" ... 2"
where n; is an integer (positive, negative, or 0). Therefore, every character of T is
a regular function of T and is consequently in C[T]. We will consider the characters
from our arrangement A. Proposition 3.4 of [Dou] implies that for each k, there is
a factorization of xj, — 1 into a product of irreducible factors xj — p where xj is a

 root of unity for some n. These

character of T" with a connected kernel and p is a n
may not all be distinct, so we let x; — p1,...,xs — us be the distinct functions that

come from the factors of the (xj, —1)’s. We can use this and the definition of zero set

to simplify M. We have

M= T\ Z0 - 1)

k=1

t
= T\ U Z (0, =) - (L, — ik,
k=1
t
= T\ U U Z( Xk: — Hi;)
= T\ U Z Xz z
Thus in considering the complement of the arrangement it is sufficient to use the

complement of the zero sets of the distinct irreducible factors of x| — 1,...,x} — 1.

We can view T as C'\ U'_, Z(2). So,

=\ (U)oU) 20— m).
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Set fi = z; for 1 <i <[l and fi4r = xx — pr for 1 < k < s. The zero set of f; will be

labeled by Z; for 1 < j <1+ s. Then for 0 < k <[+ s define M}, as follows:

c! ifk=0
Mk: k
C\(UZ) f1<k<li+s.

i=1
Note that M;,; = M the complement of the toral arrangement.
Next we want to apply Corollary 2.14, so we must first show that 0 is a regular

value of f,|p_, for 1 <r <[+ s. By Exercise 2.5.12 in [Spr] a character x of T is of

the form y = 21" ... 2" where n; is an integer (positive, negative, or 0).

Lemma 5.1 If1 <r <[+ s then 0 is a regular value of f,

My -

Proof. Since M,_; is an open subset of C', by Lemma 2.3 it suffices to show that
0 is a regular value of f.. Let m be an element of C' such that f.(m) = 0. We need
to show that (df, ), : T;,nC' — T,C is surjective. According to Proposition 4.10, this
holds if and only if (dcfr)m : T@,m(Cl — C is surjective. We divide the argument into
two cases dependent on r.

If 1 <r <1 then f, = z.. In this case we have that (dcz)m : T@,m(Cl — Cisa
non-zero linear functional, and therefore the mapping is surjective.

On the other hand, suppose [+1 < r < [+s. Then as f, = x, ; — pr_; (a rational
character of 7" minus a root of unity), we can write f, as 27" ... 2" — u,_; where n;
isin Z for j € {1,...,l}. Let zj(m) = m; for 1 < j < [. The fact that f,(m) =0
results in 21" ... 2" (m) = my*...m;" = p,_;, which implies that m; does not equal

0 for all j. Now using Corollary 4.5 we see that

n : niz ez (m n;
(defy)m = (de(4 - 2 = ppg))m = 3 L (dozy) = Ty 28 (dzy) .

zj (m)
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This is not zero since at least one of the n;’s is non-zero. Moreover since (dcf,)m is

C-linear, we have that it is surjective. |
Now we will prove the main theorem.

Theorem 5.2 If, for alll+1 < r <l+s, H*(M,_1NZ,) is generated as a C-algebra

by the set
{(21|(Mrfmzr))*(0)a ) (Zl|(Mr7er))*(U)a
(X1l@at,_1nz) — ) (0)s - s (=il (g, _1020) — 1) (0)

then as a C-algebra H*(M) is generated by the set

{(z1la)* (@), - (alan)"(0), (Xalar = 1) (), -, (Xslar = p1s)* (@)}

Proof. The coordinate functions are {z,...,2}. So

N1

_ _ __nia n1,1 _ Ng,1 s
fl_zla"'afl_zlafl-i-l_zl ] _Mla---afl—l—s_zl ) — Ms;,

where s > 1. By Lemma 5.1 we know that 0 is a regular value of f, |y, _, for all ». The

r—1
fact that x1—p1, ..., xs—ps are distinct and irreducible implies that 7, ¢ U Z; for all
i=1
r. It is well known that H*(M,) is generated by the set {(z1|y)*(0),..., (z/|m)*(0)}
(this is a simple corollary of Theorem 1.1). Therefore, by Corollary 2.14 we know

H*(M) is generated by the set
{Gila) (@), (zlan) (@), (Xa v — )" ()5 - ooy (Xsle — 15)" ()}
This is the desired result. [ |

If we use de Rham cohomology with complex coefficients we can rewrite the results

of Theorem 5.2. Recall that in de Rham cohomology the fixed generator of Hj, (C*)
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is [%], so we can use this in place of o in Theorem 5.2. Moreover by Proposition 3.10
we also know that g*[%€%] = [‘%9]. Therefore, we can rewrite the results of Theorem 5.2
as follows.

Theorem 5.3 If, for alll+1 < r <l+s, Hig(M,_1NZ,) is generated as a C-algebra

by the set
dez1l(m, _nzp) dei|(v, _nzp) dexil,_1nzp) dexr—ilov, _ynze)
zil,_ynzey |77 | alg,_ynzey |0 | a—e)la,_inzey | 07T | Omi—Be =Dl 0z | [

then Hjyg(M;C) is generated as a C-algebra by the set

el B e B ey SR e I

5.2 Examples

In the first example we will show a case where Theorem 5.2 applies, and in the second
example we will show a case where it does not apply. The crucial observation is that
in the first example the M,_; N Z, is isomorphic to a complement of r — 1 irreducible
hypersurfaces in a smaller rank torus and so by induction on the rank of the torus we
get the desired result. In the second example this does not occur.

Example 1: Let T = (C*)? and A = {ker(z}), ker(22), ker(z12)}. Translating to
zero sets we have that ker(2?) = Z(2? — 1) and 22 —1 = (21 — 1)(2; + 1) and similarly

for 22, but 2120 — 1 is already irreducible. So the complement is

M=C* \ (Z(2)UZ(%)UZ(z —1)UZ(z +1)

UZ(z = 1)U Z(22 + 1) U Z(2122))
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Let fi=2z1, o=z, fs=z—-1 fi=zn+1 fs=2-1 fs=2+1 and f; = z122.
We will use Corollary 2.13 to find the generators of H*(M7). By Lemma 5.1 we
already know that 0 is a regular value for f,|5,_, for each r. So at each stage it is
enough to know the generators of H*(M,_;) and the generators of H*(M,_1 N Z,).
By Theorem 1.1 H*(M,) is generated by the set {2 },,(c), 22|31, (0)} where M, =
{(a, B) | o, B # 0}. Now consider M. The set My N Z3 = {(1,5) | B # 0} which is
isomorphic to C* under the projection map za|r,nz,. S0 H*(My N Zs) is generated by
{#2]3,nz,(0)}. Thus H*(Ms) is generated by {21(3,,(0), 22]3r,(0), (21]a, — 1)*(0)}.
Next we consider My. The set M3NZ, = {(—1, ) | § # 0} which is isomorphic to
C* under the projection map zs|anz,. S0 H*(M3NZy) is generated by {z2]3/,n2,(0)}-
Thus H*(My) is generated by {{z1[3,(0), 22[3r, (0), (21]a1, = 1)7(0), (21]as +1)7(0)}-
For Mj; we have the set My N Zs = {(o,1) | o # —1,0,1, } which is isomorphic
to C\ (Z(2) UZ(z — 1)U Z(z + 1)) by the projection map zi|a,nz,- Now let f| = z,
fo=z—1,and fy = z+1, let Z; = Z(f}), and let M} = C\ UL, Z/. Again
by Theorem 1.1 H*(M]) is generated by {Zm{ (0)}. The set M{ N Z, = {1} and so
H*(M{NZ}) = C and then by Corollary 2.13 H*(M3) is generated by {z|’jwé(a)(z|M§ -
1)*(0)}. The set MjNZ; = {—1} and so H*(M;NZ}) = C and then by Corollary 2.13
H*(Mj3) is generated by {z[3; (0)(2[n; — 1)*(0), (2|ag +1)(0)}. The set Mz = C\
(Z(z)UZ(z — 1)U Z(z + 1)) and so by the pullback (z1|anz,)* the set H*(MyN Z5)

is generated by

Ha1lnzs (0)s (z1lmanzs — 1)(0), (21| mynzs + 1) (0) }-
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Thus H*(Ms5) is generated by
{21l34,(9), 22[3s, (9), (211015 = 1)7(0), (21|aas + 1)7(0), (22]as; = 1)7(0)}

For Mg we have the set M;N Zg = {(o, —1) | @« # —1,0,1,}. So as in My N Z5 we

have that H*(Mjs N Zg) is generated by
{{z1105026(9): (21lmsnz — 1)7(0), (21 w526 +1)7(0) }-
Thus H*(Mjs) is generated by
{21134 (0), 220315 (9), (211015 = 1)7(0), (21| mas +1)7(), (22]a15 = 1)"(0), (22| w15 +1)7 ()}

Lastly for M; we have the set MgNZ7 = {(ov, ) | @ # —1,0,1,}. So as in My N Zs

we have that H*(Ms N Z7) is generated by

Ha1lvenz. (0)s (21lmenz — 1)7(0), (21| Moz, + 1) (0) }-

Thus H*(M5) is generated by

{213 (0), 22[3p, (0), - (21lar = 1)7(0), (21l +1)7(0), (22]ar; = 1) (0),

(22lar +1)%(0), (2122) 3, (0) }-

Example 2: Let T = (C*)? and A = {ker(z;), ker(2?23)}. Notice that 27z5 — 1

is irreducible, so the complement is
M =C\ (Z(21)UZ(2)UZ(z — 1) UZ(z4 — 1)).

We will try to use Corollary 2.13 to find the generators of H*(M,). By Lemma 5.1

we already know that 0 is a regular value for f,|5;, , for each r. So at each stage it
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is enough to know the generators of H*(M,_,) and the generators of H*(M,_, N Z,).
We will try the problem both ways, with 2225 — 1 first after the hyperplanes z; and
29 and with it second. We will see that regardless of the order the hypotheses of
Theorem 5.2 do not apply.

First let f; = 21, fo = 22, f3 = 2225 — 1, fy = 21 — 1. Here it is easier to find Mj
directly than to use Corollary 2.13. Since ker 2723 is connected and one dimensional it
is isomorphic to C*, thus with out loss of generality we can change the coordinates so
that 2} = 2723. Then M3 = {(a,3) | , 8 # 0,a # 1} = (C\ {0,1}) x C*. So by the
Kiinneth Formula 2.1 H*(M3) = H*(C\ {0,1}) ® H*(C*). Thus H'(M;) = H°(C\
{0,11))® HY(C*)+ H*(C\ {0,1}) @ H'(C") 2 C®C+C*®C = C*, and so H*(M;)
has 3 generators. Notice that in the original coordinates, My = {(«, ) | o, #
0,0?3% # 1} and Zy = {(1,)}. Thus the intersection Mz N Z, = {(1,3) | B #
0,3 # 1}, which is isomorphic to C minus 4 points (0, 1, w, and w? where w and
w? are primitive 3" roots of unity). As in Example 1, H*(M; N Z;) is generated
by {22lirn2,(0), (22lmenzy — 1)*(0), (22| menzs —w)*(0), (22]asnz, —w?)*(0) }. However
in order for j* from Theorem 2.12 to be surjective there should be at most three
generators (since dimH"'(M3) = 3). Therefore, the hypotheses of Theorem 5.2 do not
apply.

Second, let f; = 21, fo = 20, f3 = 21 — 1, fy = 2223 — 1. To make M3 N Z, and M,
easier to find we will change coordinates. Let 2] = 2725 then 2, = 2,2,. We solve this
to see that in these new coordinates z; = (z]) (24)® and 2z, = 2](25) 2. In the original
coordinates M3 = {(«a, ) | o, 8 # 0,cax # 1} =2 (C\ {0,1}) x C*, and we saw above

that it has 3 generators. In the new coordinates M3 = {(¢/, ') | o/, 5’ # 0, [i—,,g # 1}
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and Zy = {(1,8)}. So Msn Z, = {(1,B") | B' # 0, 3% # 0} which is isomorphic to C
minus 4 points. As before H*(M;N Z4) has 4 generators. So once again j* cannot be

surjective. Therefore, the hypotheses of Theorem 5.2 do not apply to this case.
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