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A Bayesian inference technique, able to encompass stochastic nonlinear systems, is de-
scribed. It is applicable to differential equations with delay and enables values of model
parameters, delay, and noise intensity to be inferred from measured time series. The
procedure is demonstrated on a very simple one-dimensional model system, and then
applied to inference of parameters in the Mackey-Glass model of the respiratory control
system based on measurements of ventilation in a healthy subject. It is concluded that
the technique offers a promising tool for investigating cardiovascular interactions.
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1. Introduction

The inference of unobserved parameters in a stochastic dynamical model from mea-

sured time series is a problem of huge practical importance, and one that arises in a

variety of different contexts. In systems with noise, unobserved parameters have to

be estimated rather than evaluated, and the process of inference is therefore based

on an analysis of probabilities. Thus, if some parameter is to be estimated, the

whole distribution has to be computed rather than just a single number.

The well-established framework for model inference from data is based on Bayes’

theorem, which relates the statistical distribution of model parameters after the

measurement is made (posterior) to the statistical distribution of the model param-

eters prior to the measurement (prior) and to the probabilistic model of measure-
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ment itself (likelihood). The problems of how to construct the necessary probabili-

ties, in particular the likelihood, and how to compute the posterior probability can

be highly challenging. There does not yet exist any general theory of how to carry

out inference for nonlinear systems with dynamical noise. Existing approaches that

assume both dynamical and measurement noise rely on heavy numerical techniques,

such as the Markov chain Monte Carlo (MCMC) method, to generate Bayesian con-

ditional probabilities [9, 1]. In the Bayesian method for estimation of noise levels

suggested [4] by Heald and Stark it was assumed, however, that all other param-

eters of the dynamical model are known. In [2] a method for Bayesian statistical

model inference was developed and applied to reconstruction of nonlinear dynamical

noise-driven systems. However it relies on global optimization techniques such as

simulated annealing to achieve the result. Recently a new Bayesian model inference

algorithm was proposed [10, 11] that avoids extensive nonlinear optimization and

requires only quadratic optimization in the space of model parameters to infer their

mean values and variances from the trajectory measurements. A version of this al-

gorithm for a one-dimensional noise driven dynamical system was developed in [12]

in the context of the coupled-oscillator model [13] of cardiovascular dynamics.

In this paper we extend the theory [12] to encompass the problem of model

identification from time-series data derived from noisy nonlinear dynamical systems

with time delay, treating the delay as an unknown parameter. In Sec. 2 we outline

the derivation of the inference algorithm for the particular case of a one-dimensional

stochastic system with time delay, extending the results [12, 10, 11]. In Sec. 3 we

verify this method numerically using a one-dimensional system with time delay. In

Sec. 4 we apply it to fit the Mackey-Glass model to respiratory data, enabling us

to extract important information about the cardiovascular system from measured

time series. Finally, we sum up and draw conclusions in Sec.5.

2. The inference algorithm

We now take a one dimensional version (cf.[12]) of the inference algorithm derived

[10, 11] and extend it to a system with time delay of the form

ẋ = K(x(t), x(t − τ)|c) + ξ(t), (2.1)

〈ξ(t)〉 = 0, 〈ξ(t)ξ(0)〉 = Dδ(t),

where K(x(t), x(t−τ)|c) is a deterministic drift force, ξ(t) is white zero-mean Gaus-

sian noise, D is the noise intensity, and τ is the time delay. We assume that the

unknown deterministic force can be represented in the form

K(x(t), x(t − τ)|c) =

L
∑

l=1

clfl(x(t), x(t − τ)), (2.2)

where fl(x(t), x(t − τ)) are known model base functions, and c = {cl} is a set of

unknown coefficients that have to be inferred from the experimentally measured

time series x(t). We assume that the measurement error is negligible compared to
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the intrinsic dynamical noise ξ(t), and we treat the state variable x(t) as directly

observable.

The conditional probability density function (PDF) L(x|c) for the system to

have the trajectory x(t) for a given choice of model parameters c can [9, 3, 8] be

written as

L(x|c) = ρst(x(t0)|c)ρc [x(t)] .

Here ρst(x|c) is a stationary PDF of the system (2.1) and ρc[x(t)] is a probability

density functional of the observed stochastic trajectory x(t). It can be expressed

through the white noise path integral using the direct interrelation between the

noise variable ξ(t) and x(t) given by (2.1).

Consider a time lattice ti = t0 + i h (i = 0, 1, . . . , N), with the step h = (tf −
t0)/N , and number of data points N . The time delay measured in h and can be

written as τ = m · h, where m ≥ 1. Then the probability density functional for

white noise defined on a time lattice {ti} can be written as

ρ[ξi] =

N−1
∏

i=m

1√
2πDh

e−ξ2

i
/2Dh =

1

(2πDh)N/2
exp

(

−
N−1
∑

i=m

ξ2
i

2Dh

)

.

Note that the first instant of time in the equations above is shifted to m to allow for

the time delay. Denoting x(ti) ≡ xi and x(ti − τ) ≡ xi−m we use a discrete version

of the model equation (2.1)

xi+1 − xi = hK

(

xi+1 + xi

2
, xi−m|c

)

+ ξi

to obtain the probability density functional for the stochastic variable x

ρc[xi] =
1

(2πDh)
N/2

J(x) exp

(

−
N−1
∑

i=m

[∆xi − hKi,m]2

2Dh

)

.

Here we denote ∆xi ≡ xi+1 − xi, Ki,m ≡ K (xi, xi−m|c), and

J(x) = exp

(

−h

2

N−1
∑

i=m

∂Ki,m

∂x

)

, (2.3)

is the Jacobian of transformation from ξ to the x variable, which implies the pre-

point discretization scheme. The choice of the factor 1/2 in the exponent is some-

what ambiguous due to the singular nature of white noise, and our choice corre-

sponds to the Stratonovich prescription [7, 3]. It is crucial to use the correct form

of the Jacobian (2.3) in order to obtain a correct inference result.

The contribution to the likelihood due to the stationary probability density

ρst(x(t0)|c) can be neglected if N is large. Then finally the likelihood for the stochas-

tic trajectory of the dynamical variable x, defined on the time lattice ti (t0 ≤ ti ≤ tf )

for a certain choice of parameters c may be written

L(x|c) =
1

(2πDh)N/2
exp

(

−1

2

N−1
∑

i=m

[

h
∂Ki,m

∂x
+

[∆xi − hKi,m]2

Dh

]

)

. (2.4)
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In this derivation we assumed that the time step h is sufficiently small (h �
|∂K(x(t), x(t − τ)|c)/∂x|−1) and therefore x(t − τ) was considered as a constant

parameter during integration over small time step h. The same rule was applied to

differentiation in ∂K(x(t), x(t− τ)|c)/∂x|−1, where x(t− τ) considered as a param-

eter. We note that x(t) and x(t − τ) are always correlated and their independence

is not required for the derivation of (2.4): the only requirement is that τ > h.

Prior information about the model parameters is contained in the prior distri-

bution ρ(c). Given a set of observations, one can improve the estimate of the model

parameters by computing a posterior distribution ρ(c|x) taking advantage of Bayes’

theorem

ρ(c|x) =
L(x|c)ρ(c)

∫

L(x|c)ρ(c)dc
. (2.5)

The integral in the denominator in (2.5) ensures that the posterior probability is

normalized. Clearly, equation (2.5) can be applied iteratively each time a new record

of measurements is used. The prior distribution in the next iteration is just the

posterior distribution from the previous iteration. For a sufficiently large number N

of observations in x, the posterior distribution ρ(c|x) becomes sharply peaked about

certain parameter values c corresponding to the most probable model of the system

for a given measurement set. We choose the prior distribution ρ(c) as a Gaussian

form with respect to the unknown parameters c

ρ(c) =

√

det A0

(2π)L
exp

[

−1

2
(c − c0)A0(c − c0)

T

]

.

If no initial knowledge about the model parameters is assumed, then c0 can be

chosen as a vector with arbitrary initial parameter values and A0 can be chosen

as a diagonal matrix with arbitrary but very small values of diagonal elements,

creating a noninformative prior distribution.

The normalization integral in the denominator of (2.5) can readily be evaluated

and the posterior probability can be written as

ρ(c|x) =

√

det(B/D + A0)

(2π)L
exp(−S(c|x)), (2.6)

where the log-posterior function S(c|x) is

S(c|x) = G +
(

γ − α

D
− c0A0

)

cT + c

(

B

2D
+

A0

2

)

cT . (2.7)

Here G is a constant, given by

G =
(

γ − α

D
− c0A0

)

(

2B

D
+ 2A0

)

−1
(

γ − α

D
− c0A0

)T

,
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and the superscript T denotes that a vector is transposed. We also define a scalar

R, vectors α, γ, and a matrix B which are evaluated on the data set xi as

αl =

N−1
∑

i=m

1

2
(xi+1 − xi) fl(xi, xi−m), xi = x(ti), l, k = 1, L, (2.8)

Bl k = h

N−1
∑

i=m

1

4
fl(xi, xi−m) fk(xi, xi−m), (2.9)

γl =
h

2

N−1
∑

i=m

∂fl(xi, xi−m)

∂x
, R =

1

2h

N−1
∑

i=0

(xi+1 − xi)
2 . (2.10)

The minimum of the log-posterior function (2.7) corresponds to the maximum of

the posterior distribution. So, minimizing S(c|x) with respect to the vector c we

obtain an estimate of the mean value of the parameters

c1 = (A1)
−1

(

α

D1

+ c0A0 − γ

)T

, A1 =
B

D1

+ A0 (2.11)

where the matrix A1 defines the width of the posterior distribution. For a uniform

prior distribution of the noise intensity D the mean value of D can be estimated as

D1 =
1

N

(

2R − 2αcT
0 + c0BcT

0

)

. (2.12)

In this discussion we do not consider variance of the noise intensity D but note that

the estimation (2.12)improves, as the inferred model parameters c start to converge

towards their correct values.

For a given time delay τ the algorithm (2.8)-(2.12) can be applied iteratively:

the inferred mean values of the noise intensity D1, parameters c1 and the widths of

their distributions are updated with each new block of data. Improved parameters

c1 and the matrix A1 form the prior distribution for the next step of inference.

However, for unknown τ the log-posterior function cannot be minimized ana-

lytically in the general case when no prior information is given. It often happens,

though, that the time delay may be expected to vary within some range of possible

values that are known when the model is built. Thus one can define a discrete grid

of the time delay parameter τ , and then apply the iterative inference algorithm

(2.8)-(2.12) for the set of fixed τ within a certain range. We note that this range

can be arbitrary large. The only condition is τ > h. For each fixed τ we find optimal

coefficients c and D. Then, using the inferred values of c and D we evaluate the

likelihood or the corresponding log-likelihood function

SL(x|c) =
N

2
ln(2πhD) + γcT +

R

D
− αcT

D
+

cBcT

2D
.

on the data set xi, xi−m. Note that, if convergence of the parameters c and D has

been achieved, the log-likelihood function can be simplified and evaluated as

SL(x|c) =
N

2
ln(2πhD) + γcT +

N

2
.
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Fig. 1. Left column: the model signal y(t) (top), and inference of the time delay τ (bottom). Right
column: inference of all the other parameters of the model (3.13). The original (exact) model
parameters were: c1 = −0.05, c2 = 0.02, τ = 15, D = 0.01.

We evaluate this function for each τ in a chosen range. Note that SL(x|c) depends

on τ via dependance on other inferred coefficients and first of all via dependance

on noise intensity D. The global minimum of the log-likelihood function reveals the

optimal value of the time delay τ . The corresponding to the optimal τ parameters

c and D can be picked up as a solution to the inference problem. Thus the outlined

algorithm allows for a straightforward extension to encompass inference of stochastic

models with unknown time delay.

We note that one of the advantages of the suggested algorithm is its high ef-

ficiency. This makes it possible to achieve good convergence on very short time

intervals (see for example parameter estimation of the Lorenz attractor in [10, 11].

Correspondingly, we can apply the algorithm to treat slowly varying parameters,

as will be explained in more detail elsewhere. Nonetheless, the general problem of

analysing non-stationary data with arbitrarily strong non-stationarity in all param-

eters still remains an open challenge in nonlinear time-series analysis.

3. Inference of models with a time delay

In this section we verify numerically the algorithm outlined above. As an example

we consider a simple model with a time delay

ẏ = c1z + c2yz + ξ(t), (3.13)

z = yτ = y(t − τ),

where we choose c1 = −0.05, c2 = 0.02, the noise intensity D = 0.01, and the time

delay τ = 15. A signal generated by the model for given parameters is shown in

Fig. 1(top left). The dependance of the log-likelihood function SL(y, z|c) on τ for

the model system is shown in Fig. 1(bottom left). One can see that the inferred

value of τ is correct. The inference process of all the parameters of the model for
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Fig. 2. The ventilation signal V (t) (left) and its power spectral density (right).

τ = 15 is shown in Fig. 1(right). Again, one can see that the parameters converge

to their correct values.

4. Inference of the Mackey-Glass model of the respiratory control

system

Mackey and Glass proposed [6] a simple dynamical model of breathing control in

which the human respiratory control was considered as a closed loop system with

time delay. The model was subsequently extended [5] by Landa and Rosenblum to

include the function of the brainstem respiratory center.

There are two state variables in the original Mackey-Glass model: V – ventila-

tion, which is the volume of air that passes through the lungs during a single breath

multiplied by the frequency of respiration; and x – the partial pressure of CO2 in

the blood. The model was formulated as

ẋ = λ − αxV, (4.14)

V = Vm
xn

τ

Θn − xn
τ

, (4.15)

where xτ = x(t − τ), and τ is the time delay.

This simple model is able to reproduce both normal and pathological Cheyne-

Stokes breathing. The pathological or periodic breathing consists of short periods

of deep and frequent breathing alternating with its complete cessation. One of the

reasons for such behavior is abnormal blood circulation giving an increase in the

time between oxygenation of blood in the lungs and stimulation of chemoreceptors

in the brainstem. This corresponds to an increase of the time delay τ in the model

(4.14)–(4.15).

In this section we show an example of inference of the slow dynamics of the

respiratory control system. We slightly modify the existing model (4.14)-(4.15) and

we infer its parameters from an available recording of a respiration signal. In the

original and the later extended models [6, 5], stochastic dynamics was not consid-

ered. However noise is an inherent feature of the respiratory control system, and

to take it into account we introduce a stochastic term in the equation (4.14) for

CO2 concentration x. Further, in order to formulate a simple model for inference
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Fig. 3. Left: inference of the time delay τ for the modified Mackey-Glass model (4.18) from the
constructed ventilation signal V (t). Right column: inference of the other model parameters from
the constructed ventilation signal V (t) for the inferred time delay of τ = 2.1 s.

we approximate the CO2 response curve given in (4.15) as a linear function of xτ

V (xτ ) = a + bxτ . (4.16)

This simple approximation is justified if the control system is working close to the

linear part of V (xτ ). The assumption is reasonable for normal and healthy breath-

ing patterns, but it would be not correct for pathological Cheyne-Stokes breathing,

when the effect of saturation in the dependence of V (xτ ) on xτ is significant. As-

suming additive white Gaussian noise ξ(t), and substituting xτ from (4.16) into

equation (4.14) we obtain a dynamical model for ventilation

V̇ = λb + αaVτ − αV Vτ + ξ(t), (4.17)

where Vτ = V (t−τ) and τ is the time delay. Finally, changing variables and notation

we rewrite (4.17) as

ẏ = c1 + c2z + c3yz + ξ(t), (4.18)

y = V, z = yτ = y(t − τ), 〈ξ(t)〉 = 0, 〈ξ(t)ξ(0)〉 = Dδ(t).

In order to apply the inference algorithm we require time series of the ventilation

signal V (t). We construct it from noninvasively measured respiratory efforta r(t)

through the following procedure:

(i) We identify maxima and minima of the r(t) signal and construct their slowly

varying envelopes. We suppose that the difference R(t) between these two

envelope functions is proportional to the volume of the air passing through

the lungs during a single breath.

(ii) We construct the continuous respiration frequency function F (t), interpo-

lating the distances between successive points. The procedure is similar to

aRecord TSID=516 from Lancaster Cardio database.
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Fig. 4. Numerically generated ventilation signal y(t) from the model (4.18) based on the inferred
parameters (left), and its power spectral density (right).

that used for construction of the heart rate variability (HRV) signal from

the ECG.

(iii) Finally, the ventilation signal V (t) is computed as the product of R(t) and

F (t). The signal and its power spectral density (PSD) are shown in Fig. 2.

Following the procedure described previously we infer parameters c and D for a set

of τ in a range from 0 s to 35 s. The behavior of the log-likelihood function near

the minimum is shown in Fig. 3(left). The result of inference of the model (4.18) for

the optimal (inferred) value of τ = 2.1 s is shown in Fig. 3(right). The estimated

parameters are: c1 = 0.034; c2 = −0.68; c3 = 3.25; D = 1.4 × 10−6. In order to get

some sense of whether the inference was successful, we numerically generate time

series of the model (4.18) using these inferred parameters.b Time series of the model

state variable y and its PSD are shown in Fig. 4. This result can be compared with

the original ventilation signal in Fig. 2. One can see that the model produces very

similar behavior to the original ventilation signal V (t), in spite of the fact that

the inferred time delay parameter differs from that imposed in the original model

[6, 5]. The question, whether this is due to simplification of the model, or indeed the

inferred parameter corresponds to the physiological delay in the respiratory system,

we leave for future research.

5. Summary and conclusions

We have demonstrated a new Bayesian inference technique and shown that it can

successfully be applied to stochastic nonlinear systems with delay. It enables us to

extract model parameters from measured time series. We have tested the scheme

on a simple one-dimensional model with delay, and applied it to the Mackey–

Glass model of respiratory control. For both systems the scheme converged well

and yielded parameter values that were either correct or, in the latter case, plau-

bNote that, because of the simplification of the model, it has unstable regions in phase space where
its trajectories diverge. The stable region, where the system operates, is not well separated, and
the model system can be pushed away to the unstable region by a large burst of the stochastic force
ξ(t). In order to eliminate this possibility in the numerical analysis we estimated the boundary of
stability (which is yb ≈ 0.13 for the given signal) and imposed a limitation y ≤ yb in the numerical
algorithm.
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sible. It seems, therefore, that it offers a promising way of inferring physiologically

relevant parameters from measured cardiovascular data.

Much remains to be done, however, before the technique can routinely be applied

to the range of physiological systems that we would like to investigate. For example,

the scheme needs to be extended to treat the non-white noise commonly found in

physiology. In the medium/longer term, we hope to be able to infer parameters

and interaction constants in the coupled-oscillator model [13] of the cardiovascular

system, leading in turn to improved early diagnosis and better assessment of the

efficacy treatment, based on simple noninvasive measurements.
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