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ABSTRACT

We study fluctuational transitions between two co-existing chaotic attractors separated by a fractal basin bound-
ary in a discrete dynamical system. It is shown that the mechanism of fluctuational transition through a fractal
boundary is generic, and determined by a hierarchy of homoclinic original saddles. The most probable escape
path from a chaotic attractor to the fractal boundary is found using both statistical analyses of fluctuational
trajectories and the Hamiltonian theory of fluctuations.

Keywords: Fractal basin boundaries, noise-induced escape, homoclinic points

1. INTRODUCTION

The stability of nonlinear multistable chaotic systems in the presence of noise is of great importance in relation
to a number of practical applications, and of obvious interdisciplinary interest. So also are methods for steering
transitions between the co-existing chaotic attractors (CAs) in such systems. Quite generally, there are two
distinct reasons why unpredictable and complex behavior may occur in a dynamical system. The first of these is
the presence of limit sets with complex geometrical structure in phase space, and the second is complex structure
of the basins of attraction, which may be fractal.5, 6 Understanding the mechanism of fluctuational escape from
a chaotic attractor through a fractal basin boundary (FBB) represents one of the most challenging unsolved
problems in fluctuation theory .1–4 Its complexity underlies the fact that we have hitherto lacked an answer to
the central question: Does there exist a generic mechanism of fluctuational transition through an FBB? More
specifically, it has been unclear: (i) whether boundary conditions could be found both on the CA and on the FBB;
(ii) whether there is a unique escape path from the CA to the FBB; (iii) whether this path can be determined
using the Hamiltonian theory of fluctuations; (iv) whether the transition through the FBB itself involves any
deterministic structure; and (v) what is the effect of the noise intensity? If general features of the transition
through the FBB do exist, a knowledge of them could considerably simplify analysis of both the stability and
control of chaotic dynamical systems.

A promising approach to the solution of this problem is based on the analysis of fluctuations for very small
noise intensity. In this limit, a stochastic dynamical system fluctuates to remote states along certain most
probable deterministic paths,7–11 corresponding to rays in the WKB-like asymptotic solution of the Fokker-
Planck equation.12 The possibility of extending such an approach to chaotic continuous and discrete systems
was established earlier.1–4 It was shown also, that the presence of homoclinic tangencies, which are the reason
for fractalization of the basins, causes a decrease in the activation energy.13

In this paper we show that a generic mechanism of fluctuational transitions between co-existing CAs separated
by the FBB does exist, and that it is determined by a hierarchy of homoclinic original saddles forming the
homoclinic structure of the FBB. In Sec. 2, we introduce a generic discrete model and describe its dynamics
briefly. Section 3 deals with the determination of the boundary conditions on both the FBB and the CA. It is
shown in Sec. 4 that there is a unique most probable escape path (MPEP) from the CA that approaches an
accessible orbit on the fractal boundary. The MPEP is found using both a statistical analysis of fluctuational
trajectories and the Hamiltonian theory of fluctuations. The effect of noise on the structure of escape paths
inside the fractal basin is briefly analyzed. Our conclusions are presented in Sec. 5.
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Figure 1. The co-existing chaotic attractors (full black curves); their basins of attraction are portrayed in grey and white
respectively. The accessible boundary saddle points of period 3 are shown by as filled black circles and labelled S3. Their
stable manifolds are indicated by solid black lines. The saddle pints of period 1 are shown by crosses and labelled S1.
The saddle point at the origin is labelled O.

2. THE MODEL UNDER STUDY

To demonstrate the existence of this escape mechanism, we take as an example the two-dimensional map in-
troduced by Holmes.14 The properties of this map, including the structures both of its CA and of its locally
disconnected FBB, are generic for a wide class of maps and flow systems.20, 21 This fact, and the results of our
investigations of escape in other systems, allow us to believe that the mechanism of escape we will reveal is in
fact a typical one. The Holmes map is

xn+1 = yn (1)
yn+1 = −b xn + d yn − y3

n + ξn,

where ξn is zero-mean white Gaussian noise of variance D. Due to symmetry, the noise-free system (1) possesses
pairs of co-existing attractors for b = 0.2 and 2.0 ≤ d ≤ 2.745 the basins of which are separated by a boundary
that may be either smooth or fractal depending on the choice of parameter values. We chose for our studies
b = 0.2 and d = 2.7, which corresponds to there being two co-existing CAs whose basins are separated by a
locally disconnected FBB (see Fig. 1). The fractal dimension of the boundary has been determined numerically
(dim. = 1.84472) by using the uncertainty exponent technique introduced in.22 For our chosen parameters,
the chaotic attractors in (1) appear as the result of a period-doubling cascade, and each of them consists of two
disconnected parts.

3. BOUNDARY CONDITIONS

We excited the system (1) with weak noise and collected both the trajectories that include escape paths from one
CA to the other, and the corresponding realisations of noise that induced these transitions. By averaging a few
hundred escape trajectories and noise realisations, we obtained the optimal escape path and the corresponding
optimal force, which are shown in Fig. 2. The results of this statistical analysis allowed us to determine both the
boundary conditions near the CA and the FBB and to demonstrate the uniqueness of the MPEP. It can be seen
in particular that the system (1) leaves the CA, falling into a small neighbourhood of the saddle point of period
1 (S1) located between its two disconnected parts and having the multipliers ρ1 = 0.118975 and ρ2 = 1.681025.
Its stable manifolds separate the parts of the CA, while the unstable ones belong to the CA. Further, the system
makes a few iterations in some small neighbourhood of S1 (initial plateau in Fig. 2(a)) and then moves to the FBB
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Figure 2. (a) The most probable escape path (dashed line) connecting the CA with the period-3 saddle cycle lying on
the fractal boundary, obtained from the numerical simulations with D = 10−5. The optimal path found by the solution
of the boundary-value problem is shown as a solid line. The abscissa of the saddle point S1 shown by the dashed line;
(b) a two-dimensional plot of the paths presented in (a) with consecutively numbered points marked as circles (boundary
value problem) and stars (obtained from the Monte-Carlo simulation).

in three steps, crossing it at a saddle point of period 3 (S3) with multipliers ρ1 = 0.001016 and ρ2 = 7.875512.
Calculations have shown that the S3 for the chosen parameter values lies on the FBB. Moreover, its stable
manifold (full black curve in Fig. 1) detaches the open neighborhood, including the attractor, from the FBB
itself. The latter fact allows to classify it as an accessible boundary point.15 Analysis of the structure of escape
paths inside the FB have shown that the homoclinic saddle points play a key role in its formation. In the system
(1), we observe an infinite sequence of saddle-node bifurcations of period 3, 4, 5, 6, 7..., which occur at parameter
values d3 < d4 < d5 < d6 < d7... and are caused by the sequent tangencies of the stable and unstable manifolds
of the saddle point O at origin. The bifurcation diagramm for the few of them presented in Fig. 3(a). The
homoclinic orbits appearing as the result of these bifurcations were classified earlier as original saddles and was
also shown that their stable and unstable manifolds cross each other in the hierarchical sequence (see Fig. 3(b)).
These saddles have the property that their associated eigenvalues of the linearized map are both positive.15 To
characterize this hierarchical relation between original saddles it is reasonable to introduce a parameter µ equal
to the ratio | ln(ρ1(P )) | / ln(ρ2(P )), where ρ1 and ρ2 are the multipliers of a saddle point P . Calculations
have shown that, for the original saddles with periods 3, 4, 5, 6, 7, 8... in (1), the following hierarchical sequence
of index µ values occurs: µ3 = 3.339, µ4 = 3.08, µ5 = 2.999, µ6 = 2.339, µ7 = 1.958, µ8 = 1.539. Moreover,
the values of index µ corresponding to the other homoclinic saddle cycles are close to zero. Correspondingly the
probability of finding the system in their neighbourhood tends to zero.

These results allows us to formulate generic features of a fluctuational transition through a locally disconnected
FBB, as follows: (i) it always occurs through a unique accessible boundary point; and (ii) the original saddles
forming the homoclinic structure of the system (1) play a key role in the formation of the paths inside the
FBB, and the difference in their local stability defines the hierarchical relationship between them. Thus, we may
claim that the complicated structure of escape trajectories, caused by the thin homoclinic structure and their
randomness, has in many respects a deterministic nature.

4. MOST PROBABLE ESCAPE PATH

An understanding of the escape mechanism allows us to find the MPEP. According to the Hamiltonian theory
of fluctuations1–4 the MPEP is the path which minimizes the energy

S =
1
2

N∑
n=1

ξT
n ξn, (2)
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Figure 3. (a) The saddle-node bifurcation lines resulting the appearance of corresponding original saddles; (b) schematic
illustration of the intersection between stable and unstable manifolds of original saddles.

of the possible realizations of noise {ξn} that induce a transition of the system (1) from the CA (with the initial
condition on the S1) to the FBB (with the final condition on the accessible orbit S3). The Lagrangian of the
corresponding variational problem can be found3 (cf. Dykman16) in the form

L =
1
2

N∑
n=1

ξT
n ξn +

N∑
n=1

λT
n (xn+1 − f(xn)− ξn),

where (1) is taken into account by use of the Lagrange multiplier λn. Varying L with respect to ξn, λn, and xn,
the following area-preserving map is obtained:

xn+1 = yn

yn+1 = −b xn + d yn − y3
n + λy

n (3)
λx

n+1 = (d− 3x2
n+1) λx

n/b− λy
n/b

λy
n+1 = λx

n

Equations (3) are supplemented by the following boundary conditions:

lim
n→−∞

λy
n = 0, (x0

n, y0
n) ∈ S1, (x1

n, y1
n) ∈ S3. (4)

The MPEP is the minimum-energy heteroclinic trajectory in the phase space of (3) connecting S1 and S3. The
solution of this boundary value problem is in general complicated because of the presence of multiple local
minima of the energy17 induced by the complex geometrical structure of the unstable manifolds of S3 in the
phase space of (1) (see e.g. Graham and Tel19 for a discussion). A technique for solving the boundary value
problem was introduced recently.18 It involves a parameterization of the structure of the multiple local minima
by making a proper parameterization of the unstable manifold in the vicinity of the initial conditions. The
MPEP found by this method is shown in the Fig. 2. It can be seen from Fig. 2, that the MPEP predicted by the
Hamiltonian theory coincides with that obtained using statistical analysis of the escape trajectories in Monte
Carlo simulations. Note that no action is required to bring the system to another attractor after it arrives on
the accessible orbit on the FBB.

The existence of an almost deterministic mechanism of transition via the FBB itself raises an important
question about the effect of noise on this mechanism. To study the influence of noise on the structure of the
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Figure 4. Probabilities of finding a fragment corresponding to the different period-T original saddle cycle in the collected
escape trajectories.

escape trajectories inside the FBB we used randomly chosen initial conditions in a very small neighborhood of
the accessible point S3 through which the escape occurs (see Fig. 2(b)). By definition of the FBB, any arbitrarily
small neighborhood of S3 contains points that belong to the basin of the other attractor. Therefore the system
may cross the FBB starting from a very small neighborhood of S3 even in the absence of noise. Collecting all
successful escape paths, we calculated the probabilities for the system to pass via small neighborhoods of different
original saddle cycles during its escape both in the presence and in the absence of noise. As can be seen from
Fig. 4, the corresponding probabilities demonstrate the same hierarchical interrelationship in both cases. This
hierarchical interrelationship is determined by the value of index µ defined above. This structure is robust with
respect to the noise-induced perturbations. The addition of noise causes a small broadening of the distribution
in Fig. 4 and a small increase of the probability for the system to escape via original saddles of larger period.

5. CONCLUSIONS

In conclusion, we have described the mechanism by which noise-induced escape occurs through a locally dis-
connected FBB. We have found the (unique) most probable escape path from a chaotic attractor to the fractal
boundary, using both statistical analyses of fluctuational trajectories, and the Hamiltonian theory of fluctua-
tions. We have shown that the original saddles forming the homoclinic structure play a key role in effecting the
transition through the FBB itself. In particular, their local stability defines the hierarchical relationship between
the probabilities for the system to pass via small neighborhoods of different original saddle cycles during its
escape, both in the presence and in the absence of noise. We emphasize that the escape mechanism we have
revealed must be applicable to the broad class of two dimensional maps and flows14, 20, 21 that exhibit the same
type of FBB. For instance, one possible application of our results is to the development of an energy-optimal
control scheme for the CO2 laser, a discrete model of which demonstrates the type of FBB considered above.23
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