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Abstract

We stu dy noise-indu ced escape within a discrete dynamical system that has two co-existing 
chaotic attractors in phase space separated by a locally disconnected fractal basin bou ndary. It 
is shown that escape occu rs via a uniqu e accessible point on the fractal boundary. The structure 
of escape paths is determined by the original saddles forming the homoclinic stru ctu re of the 
system and by their hierarchical interrelations.
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1. Introduction

The problem of escape from a locally stable attractor is ubiquitous in the natural
sciences, and arises most notably in chemical kinetics and in transport within nonlinear
systems such as semiconductors. From the mathematical point of view, the presence of
an attractor implies the existence of a corresponding basin of attraction, de:ned as the
set of initial conditions in phase space from which the system approaches the attractor
as time tends to in:nity. The basin boundary is the set of points representing the limits
of at least two di;erent basins. In general, both an attractor and its basin boundary
may have a complex geometrical structure. One of the most challenging cases to be
considered, therefore, is the problem of escape from a chaotic attractor with fractal
basin boundary.
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A promising approach to this problem is based on its analysis for very small noise
intensities. In this limit, a stochastic dynamical system Buctuates to remote states along
certain most probable deterministic paths [1,2], corresponding to rays in the WKB-like
asymptotic solution of the Fokker–Planck equation [3]. The possibility of extending
such an approach to chaotic systems was established earlier [4–7]. However, there are
still no theoretical predictions about the mechanism of escape. In particular, the prob-
lems of the uniqueness of the escape path, and of the form of the boundary conditions,
remain unsolved. An understanding of the escape mechanism can be expected to shed
light on the complex dependence of the escape rate on the system parameters. Thus,
in recent studies of escape in the presence of homoclinic tangencies, it was shown
that they lead to a qualitative change in the escape mechanism that has the e;ect of
decreasing the activation energy [8]. One can ask, what is the role of the saddle cycles
arising at the tangencies of the stable and unstable manifolds and forming a homoclinic
structure?
It was shown recently [9] that deep physical insight into this problem can be achieved

through an analysis of actual Buctuational escape trajectories (see e.g. Ref. [10]). More-
over, such an analysis can be used to solve the problem of the energy-optimal control
of switching from a chaotic attractor [11] in the absence of noise.
In this paper we apply a statistical analysis of the Buctuational paths to reveal a

generic mechanism by which escape occurs from a chaotic attractor with a locally
disconnected fractal basin boundary. As a model, we treat the two-dimensional map
originally introduced by Holmes [12]:

xi+1 = yi ;

yi+1 =−bxi + ayi − y3i + �i ; (1)

where �i is white Gaussian noise with 〈�i〉 = 0 and 〈�i; �j〉 = 2D
ij. The choice of
(1) is justi:ed by the fact that it demonstrates a generic type of locally disconnected
fractal basin boundary (see Ref. [13]) and reproduces the more important features
of the chaotic dynamics of the periodically driven DuKng oscillator [12]. The use
of a discrete model brings the additional advantage of allowing us to speed up our
numerical calculation for the case of low noise intensity. In Section 2 we present the
results of numerical simulations allowing us to :nd a boundary point on the fractal
basin boundary. Section 3 is devoted to a study of the homoclinic structure in (1) and
its role in the formation of escape paths. Our conclusions are given in Section 4.

2. An accessible point as a boundary condition

We choose values of the control parameters b and a in (1) such that, in the purely
deterministic case (when D = 0), there are two co-existing chaotic attractors in phase
space separated by a locally disconnected fractal basin boundary (see Fig. 1(a)). We
excite our system (1) with weak noise and collect the trajectories that include escape
paths from one chaotic attractor to the other (see Fig. 1(b)). The noise intensity was
chosen in such a way that the mean escape time was essentially large; the characteristic
relaxation time of an invariant measure on the corresponding chaotic set was estimated
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Fig. 1. (a) Two co-existing chaotic attractors (black lines) in (1) at a = 2:7; b = 0:2 and their basins of
attraction illustrated in gray and white respectively. The points of the period-3 homoclinic saddles cycle
are labeled by black dots, and the point O corresponds to the saddle at (0; 0); (b) Some typical escape
trajectories collected with D = 10−5.

by us as 3 × 107 iterations. As can be clearly seen in Fig. 1(b), all escape trajecto-
ries have a part corresponding to the period-3 saddle cycle, apparently implying the
presence of a boundary point located near, or directly on, the fractal boundary. Simple
calculations have shown that period-3 saddle cycle does exist for the chosen parameter
values and that it lies on the boundary. Moreover, its stable manifold (full black line)



lying in the boundary detaches the open neighborhood including the chaotic attractor
from the fractal basin boundary itself. One part of its unstable manifold belongs to
the homoclinic structure forming the fractal boundary, whereas the other part (labeled
by the dashed black line in Fig. 1(a)) approaches the attractor. Thus, we can clas-
sify this period-3 saddle point as an accessible boundary point. Indeed, by de:nition
given in Ref. [14] a boundary point P is accessible from a given region if there is a
curve of :nite length connecting P to an attractor in the interior of the region, such
that no point of the curve lies in the boundary except for P. In our case, the part
of unstable manifold approaching the chaotic attractor plays the role of such a curve.
Thus, in the present case, the period-3 saddle point plays the role of the boundary
condition.

3. Homoclinic saddle cycles and their hierarchy

It is well known that the global behavior of a chaotic dynamical system is in many
respects determined by a homoclinic structure, i.e., by a set consisting of homoclinic
saddle cycles resulting at tangencies of the stable and unstable manifolds of a saddle
point. In our case, we observe an in:nite sequence of saddle-node bifurcations of
period 3; 4; 5; 6; 7 : : : , which occur at parameter values d3¡d4¡d5¡d6¡d7 : : : and
are caused by the sequent tangencies of the stable and unstable manifolds of the saddle
point O at (0; 0). The homoclinic orbits appearing as the result of these bifurcations
were classi:ed earlier as original saddles [14]. It was also shown that their stable
and unstable manifolds cross each other in the hierarchical sequence: the unstable
manifold of the period-3 saddle crosses the stable manifold of the period-4 saddle, the
unstable manifold of the period-4 saddle crosses the stable manifold of the period-5
saddle, etc. (see Fig. 3(a)). Our numerical calculations have shown that these original
saddles play a key role in the escape through a fractal basin boundary and that their
hierarchy de:nes the structure of the escape paths. A typical escape path obtained
in numerical simulations is depicted in Fig. 2. As clearly seen from this :gure, a
phase trajectory leaving the chaotic attractor penetrates into the fractal basin boundary
through a small neighborhood of the period-3 saddle cycle, makes a few turns, and
then approaches another period-4 original saddle point. After that it moves to the basin
of the other chaotic attractor, reaching it in the next two or three iterations. In fact, the
heteroclinic structure formed by numerous sequent crossings of the stable and unstable
manifolds of original homoclinic saddles plays the role of the “staircase” allowing
a trajectory to pass over the fractal basin boundary and de:ning the structure of the
escape paths. Moreover, a hierarchical relation between original saddles can be revealed
if we characterize them by a parameter � equal to the ratio |�s(P)|=�u(P) of the stable
and unstable eigenvalues of the linearized deterministic Bow at a saddle point P [15].
Simple calculations show that, for the original saddles with periods 3; 4; 5; 6; 7; 8 : : : in
(1), the following hierarchical sequence of index � values occurs: �3 = 3:339; �4 =
3:08; �5 = 2:999; �6 = 2:339; �7 = 1:958; �8 = 1:539. To estimate the inBuence of such
a hierarchical relation on the escape paths, the probabilities of :nding the original
saddle of period N in the escape trajectory were computed for di;erent values of noise
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Fig. 2. The escape trajectory in (1) from one chaotic attractor (black lines) to the other passes through the
period-3 (full black lines) and period-4 (dashed black lines) original saddle cycles. The values of the control
parameters and noise intensity are the same as in Fig. 1.

intensity. Initial conditions for the iteration procedure were chosen randomly within
a small neighborhood of the period-3 saddle cycle lying on the basin boundary. As
seen from the results presented in Fig. 3(b), the probabilities of :nding a fragment of
the corresponding original saddle cycles in the escape trajectories are in a very good
agreement with the hierarchical relation obtained above. In fact, the addition of noise
reveals the hierarchy described, correcting slightly the absolute values of probability,
but it does not change the structure of distribution qualitatively.

4. Conclusions

We have studied noise-induced escape from one chaotic attractor to another through
a fractal basin boundary. It was shown that escape occurs through a unique point on
the fractal boundary. The original saddles forming the homoclinic structure of system
(1) play the key role in the formation of the escape paths, and the di;erence in
their local stability de:nes the hierarchical relationship between them. Thus, we may
claim that complicated structure of escape trajectories, caused by the thin homo-
clinic structure and their randomness, has in many respects a deterministic
nature.
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Fig. 3. (a) Heteroclinic crossings of the stable and unstable manifolds of di;erent original saddles;
(b) Probabilities of :nding a fragment corresponding to the di;erent period-T original saddle cycle in
the collected escape trajectories.
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