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Abstract

Phenomena occurring in a particular class of nonlinear oscillatory systems – zero-
dispersion systems – are reviewed for cases with and without damping while the
system is driven either by random fluctuations (noise), or by a periodic force, or by
both together. Zero-dispersion (ZD) systems are those whose frequency of oscilla-
tion ω possesses an extremum as a function of energy E. Oscillations at energies
close to the extremal energy Em, where the “frequency dispersion” dω/dE is equal
to zero, correlate with each other for very long times, to some extent like in a har-
monic oscillator. But unlike the latter, the correlation time decreases as the energy
shifts away from Em. It is the combination of this local harmonicity, with the fact
that a perturbation can cause transitions between strongly and weakly correlated
behaviour, that gives rise to the rich manifold of interesting ZD phenomena that
are reviewed. A diverse range of physical systems may be expected to exhibit ZD
behaviour under particular circumstances. Examples considered in detail include
SQUIDs (superconducting quantum interference devices), the 2-D electron gas in a
magnetic superlattice, axial molecules, electrical circuits, particle accelerators, im-
purities in lattices, relativistic oscillators, and the Harper oscillator. The ZD effects
to be anticipated in quantum systems are also discussed. Each section ends with a
suggested outlook for future research.
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Foreword

The typical reader’s information overload is so huge at present that large reviews might
seem to be of limited value – because nobody will have enough motivation to read them
in their entirety. Nonetheless, this perception can properly be qualified provided:

(i) that the review presents a really general, novel, but non-trivial view of a wide variety
of problems linked by a common theme; and

(ii) that it is clearly structured so that non-experts can pick up the general viewpoint and
central ideas by reading the introduction and conclusions, while experts can readily
choose those sections that are of particular interest to them, to be read almost inde-
pendently of the rest of the work.

We hope that our review satisfies both conditions. A general overview and guide to content
are presented in Section 1. The paper is aimed primarily at experts on fluctuations in
dynamical systems (including to some extent quantum systems) and nonlinear dynamicists
generally, as well as at those physicists who are interested in the behaviour of the particular
systems listed in Section 2.

1 Introduction

Oscillatory behavior is typical of diverse systems in nature and plays a crucial role in many
phenomena. This is true, not only of strictly periodic motion, but also of situations where
the periodicity is only approximate. Because the latter case is in a sense less fundamental,
in that it may often be considered to arise through a weak perturbation of the former case,
we first consider a purely periodic motion. We take as an example the one-dimensional
Hamiltonian system:

q̇ =
∂H(q, p)

∂p
, ṗ = −∂H(q, p)

∂q
, (1.0.1)

which can be taken to represent a common class of systems displaying periodic motion.
The quantity that is conserved during motion is the energy

E = H(q, p). (1.0.2)

The motion is periodic and the frequency ω of oscillation generally depends on E (Fig. 1(a)).
There is, however, a special case where the frequency is independent of E, i.e. the har-
monic (or linear) oscillator, for which

H(q, p) =
ω2

0q
2

2
+
p2

2
. (1.0.3)
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In this case, ω(E) ≡ ω0 [1] (Fig. 1(b)) and

q(t) =

√
2E

ω0

cos(ω0t+ φ0), (1.0.4)

where φ0 is an initial angle.

That fact that eigenoscillations at different energies are resonant with each other has
many remarkable consequences: if a perturbation is applied that gives rise to a variation
of energy, it has almost no effect on the resonant behavior of the angle. Thus, if a periodic
force of frequency close to ω0 is applied, the response is very strong: much stronger than in
the general case of an energy-dependent frequency (Fig. 1(a)). Similarly, if noise is applied
then, for a harmonic oscillator, the spectrum of fluctuations exhibits a narrow peak around
ω0 whereas, for a nonlinear oscillator, the fluctuation spectrum is typically much broader
[2–4] because noise activates a range of energies thus involving a correspondingly wide
spectrum of frequencies.

When a harmonic oscillator is subject to a weak perturbation, the energies involved are
small (unless the perturbation is exactly periodic at frequency ω0). For a nonlinear oscil-
lator, on the other hand, a relatively high (resonant) energy may be relevant. The latter
condition leads e.g. to the phenomenon of nonlinear resonance [5]. There exists a distinct
class of oscillators which, in a sense, combine the highly resonant behaviour characteristic
of a harmonic oscillator, with the possibility of resonance at high energies that is char-
acteristic of nonlinear oscillators. These are the oscillators for which ω(E) possesses an
extremum (Fig. 1(c)): the dispersion at the extremum is equal to zero, i.e.

dω(E)

dE

∣∣∣∣∣
Em

= 0, (1.0.5)

so that, in the close vicinity of Em, ω(E) is practically constant. Thus, small variations
of energy near Em distort the resonance to a much smaller extent than in other energy
ranges or in a conventional nonlinear oscillator where dω(E)/dE 6= 0. Such systems were
identified as a distinct class by Soskin 1 [6,7]. The title zero-dispersion (ZD) was given to
them first by Dykman et al [11], since when it has become conventional in the physics
literature. The nomenclature originates from solid state physics terminology (see e.g. the
book by Ashcroft and Mermin [12]) where the term “dispersion” means dω(k)/dk where
ω and k are respectively the frequency and wave number of a phonon 2 .

We emphasize that ZD behaviour is not restricted to Hamiltonian systems i.e. to systems
where the conserved quantity is energy. Similar behavior will be valid for a system which

1 There were also several works by mathematicians on a structure of local chaos in so called
nonmonotonic twist maps (e.g. [8,9]) or, equivalently, area-preserving nontwist maps (e.g. [10])
which are closely related to periodically driven Hamiltonian systems possessing the property
(1.0.5). These works will be briefly discussed in Sec. 4 below in relation to periodically-driven
non-dissipative ZD systems.
2 In a sense, zero-dispersion peaks in fluctuation spectra [6,7] are analogous to Van Hove sin-
gularities [12] in solid state physics.
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possesses any other integral of motion J and for which the eigenfrequency possesses an
extremum as a function of J . Nonetheless, those ZD systems studied to date have all
been Hamiltonian ones (several examples are considered in Section 2). This review will
consequently be restricted to phenomena associated with perturbations of Hamiltonian
ZD systems.

Common types of perturbation consist of (i) noise (together with an associated dissipation
[12,13]), or (ii) a periodic force (with or without dissipation), or (iii) a combination of (i)
and (ii). Distinctive phenomena occurring in ZD systems under their action are described
in Sections 3, 4 and 5 respectively. Such phenomena include: extremely narrow high peaks
(ZD peaks) in fluctuation spectra, in the presence of noise; a peculiar kind of nonlinear
resonance, zero-dispersion nonlinear resonance (ZDNR); the onset of deterministic chaos
at unusually low periodic driving force amplitudes; a characteristic sharp growth of signal-
to-noise ratio with noise intensity, called the zero-dispersion stochastic resonance (ZDSR),
and a strong enhancement by noise of subharmonic absorption, when the periodic driving
force is weak compared to the added noise; and a strong enhancement of escape from a
potential well and characteristic features of noise-induced inter-attractor transitions and
a characteristic evolution of fluctuation spectra in the opposite limit, where the noise is
much weaker than the periodic drive. We present in these sections both the theory and
results of analogue electronic experiments as well as discussing possible applications.

These phenomena all arise in classical systems. The distinct differences in the way one
would expect them to manifest themselves in quantum ZD systems are discussed in Section
6.

Some concluding remarks are presented in Section 7.

Finally, the Appendix describes the transformation between coordinate-momentum vari-
ables and energy-angle (or, equivalently, action-angle) variables. The latter are especially
convenient in the theoretical consideration of all ZD phenomena because the energy (or,
equivalently, action) varies only slowly with time, whereas the angle changes fast, and
their separation significantly facilitates the theoretical consideration of the majority of
ZD phenomena.

2 Examples of models and physical systems displaying zero-dispersion be-
haviour

2.1 Superconducting quantum interference devices (SQUIDs)

A radio-frequency SQUID, in common with other more complicated SQUID devices, in-
cludes [14,15] as a basic element a superconductive loop containing a Josephson junction
(Fig. 2). The dynamics of the loop may be described in many cases by a resistively-shunted
model, in terms of which the time evolution of the phase of the order parameter, or of the
magnetic flux Φ threading the loop, can [14,15] be described by the equation
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LC
d2q

dτ 2
+

L

RN

dq

dτ
+ q + β sin(q) = qe,

q = 2π
Φ

Φ0

, qe = 2π
Φe

Φ0

, β =
2πLJc

Φ0

. (2.1.1)

Here τ is a real time variable; Φ ≡ Φ(τ) is the full magnetic flux through the loop; Φe is
the flux of the external magnetic field; Φ0 = h/2e is the flux quantum; L is the inductance
of the loop; and C,RN and Jc are respectively the capacitance, normal resistivity 3 and
critical supercurrent of the junction.

In addition to a constant component Φdc, the external flux often includes a small periodic
signal Φs cos(ωsτ) and a noisy component ΦN(τ) to which thermal fluctuations within the
loop itself and noise in the Josephson junction can formally be added (the overall noise
term, where present, will for the sake of simplicity be assumed white and of intensity D):

Φe = Φdc + Φs cos(ωsτ) + ΦN(τ), (2.1.2)

〈ΦN(τ)〉 = 0, 〈ΦN(τ)ΦN(τ ′)〉 = 2Dδ(τ − τ ′).

Taking account of (2.1.2) and introducing the normalised quantities

t = ωpτ, Γ =
1

ωpRNC
, Ω =

ωs
ωp
,

A =
Φs

LJc
, T =

2πDRN

Φ0L2Jc
, ωp =

(
2πJc
CΦ0

)1/2

, (2.1.3)

Eq. (2.1.1) takes the form

q̈ + Γq̇ +
dU

dq
= f(t) + A cos(Ωt) (2.1.4)

〈f(t)〉 = 0, 〈f(t)f(t′)〉 = 2ΓTδ(t− t′),

where

U(q) =
B

2
(q − qe)2 − cos(q), B ≡ 1

β
. (2.1.5)

If the friction, noise and periodic driving amplitude are small they can be neglected in
the zeroth-order approximation, and one then derives the unperturbed equation:

q̈ +
dU

dq
= 0. (2.1.6)

3 The resistivity may strongly depend on dq/dτ , and it may formally include an external shunt.
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It corresponds to the Hamiltonian

H(q, p) = U(q) +
p2

2
(2.1.7)

with the potential U(q) (2.1.5), which may be either single-well (for B
>∼ 1: see Fig. 3(a))

or multi-well (for B
<∼ 1: see Fig. 3(b)).

The frequency of oscillation in the system (2.1.6) can be calculated from the formula

ω ≡ ω(E) = π

 qr∫
ql

dq√
2(E − U(q))

−1

, (2.1.8)

where ql and qr are the left and right turning points at a given E (and in a given potential
well if the energy level E exists in more than one well), i.e. the relevant roots of the
equation

E = U(q). (2.1.9)

The function ω(E) possesses extrema, which are most pronounced if B ∼ 1: see Fig. 4.
Consequently, the system (2.1.5)-(2.1.6) is a ZD system.

2.2 2D electron gas in a magnetic superlattice, axial molecules

Our example from the previous sub-section, the multi-well SQUID, belongs to a more
general class of systems possessing the ZD property. These are the systems that possess
two or more separatrices: the time of motion along any separatrix is infinite, so that
the frequency of eigenoscillation for each of the energies (or any other relevant integral
of motion) corresponding to the separatrices is zero. The frequency must therefore pass
through a maximum somewhere in between these energies. In particular, it may be a multi-
barrier potential system in which the tops of at least two of the barriers have different
potential energies. Apart from SQUIDs, such a situation is typical of periodic potentials
that have two or more barriers within the period.

We now consider briefly two examples of such physical systems. The first is a 2D elec-
tron gas in a magnetic superlattice (see e.g. [16,17]). In some cases, e.g. in a thin layer
of semiconductor where the electrons are of high mobility, the motion of electrons along
the layer can be considered as a two-dimensional motion of non-interacting classical par-

ticles [18–21]. If a magnetic field
→
H perpendicular to the layer is added, and periodicaly

modulated in some direction along the layer,

→
H≡ (Hx,Hy,Hz), Hx = Hy = 0, Hz = H0 cos(kx), (2.2.1)
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then the motion of an electron is described by the Hamiltonian [22]

Hmagnetic ≡ Hmagnetic(x, y, px, py) =
(
→
p − e

c

→
A)2

2m∗
, (2.2.2)

where
→
A is the vector-potential (

→
H≡ curl

→
A),

→
p≡ (px, py), e and m∗ are respectively the

charge and the effective mass of the electron, and c is the velocity of light. For the field

(2.2.1),
→
A may be chosen in such a way that [20,21]

Hmagnetic =
p2
x

2m∗
+

(py − e
c
H0k

−1 sin(kx))2

2m∗
. (2.2.3)

The Hamiltonian (2.2.3) does not depend on y: hence, py = const, and the motion in
the x-direction is separated as one-dimensional Hamiltonian motion (1.0.1) with q, p, t
representing normalized (dimensionless) coordinate, momentum and time respectively,

q ≡ kx, p ≡ px
k

m∗ωc
, t ≡ ωcτ, ωc =

eH0

m∗c
, (2.2.4)

and the Hamiltonian is of the potential type:

H(q, p) = U(q) +
p2

2
, (2.2.5)

with potential

U(q) =
1

2
(Φ− sin(q))2, Φ ≡ pykc

eH0

. (2.2.6)

The potential (2.2.6) is periodic. If Φ < 1, it possesses two barriers within the period,
of different heights (Fig. 5(a)). Correspondingly, the frequency of oscillation ω possesses
a local maximum as a function of energy E (Fig. 5(c)). If Φ > 1, then there is only
one barrier within the period (Fig. 5(b)), but ω(E) can still be shown to possess a local
maximum provided Φ < 4 (Fig. 5(d)). Thus, if Φ < 4, the system (2.2.5)-(2.2.6) possesses
the zero-dispersion property (1.0.5). One may induce a perturbation by e.g. perturbing
the magnetic field or applying an electric field along the layer [20,21].

Another example which may be described by a periodic potential with more than one
barrier within the period relates to torsional motion within a complex axial molecule
(Fig. 6). If such a complex molecule has a rigid axis then an atom (or a group of atoms)
beyond the axis may have a few equilibrium positions lying in the plane perpendicular
to the axis. The motion of such an atom (group of atoms), often called an isomerisation
process [23], may sometimes be considered as an underdamped rotation in the plane (cf.
[23,24]), which, neglecting damping and other weak interactions with the surroundings,
may be described as Hamiltonian motion in a periodic potential with a few non-equal
barriers, thus again providing for the zero-dispersion property.

9



2.3 Electrical circuits, particle accelerators, impurities in solids: tilted Duffing oscillator

One of the simplest and at the same time non-trivial ZD models is the tilted Duffing
oscillator (TDO) [11] which may be considered as a conventional Duffing oscillator [1]
that is subject to a constant force (which is what leads to the tilt of the Duffing potential):

q̈ +
dU

dq
= 0, U(q) =

ω2
0q

2

2
+
γq4

4
+ Aq, γ > 0. (2.3.1)

The potential U(q) (2.3.1) is an asymmetric single well (Fig.7(a)). If |A| exceeds Acr =
8ω2

0/(7
√

7γ), then ω(E) possesses a minimum [11] (Fig. 7(b)).

The TDO model may be related to e.g. an oscillatory electrical circuit with a battery [25]
(Fig. 8). The charge q on the capacitance obeys the equation

q

C
= ε− Ld

2q

dt2
, (2.3.2)

where C is the capacitance, L is the inductance and ε is the battery emf; ε and L are
typically constants. Real capacitors are non-ideal, and the stored charge q is not quite
proportional to the potential difference. In many cases, the growth of q with voltage is
weaker than linear, and is independent of the sign of the voltage, which means that C
is a decreasing function of q2. At small enough q, it may typically be approximated as
C = C0/(1 + αq2) where C0 and α are constants; thus Eq. (2.3.2) reduces to Eq. (2.3.1).
A possible small resistance in the circuit, weak Nyquist noise, periodic signals, etc. may
be considered as perturbations.

The TDO model may also be relevant to rf acceleration in particle accelerators [26] and to
local and resonant vibrations in certain doped crystals [27] when a constant homogeneous
electric field or external pressure are applied to the crystal.

It should be noted that the linear term in the TDO potential U(q) (2.3.1) can be converted
to a cubic term by a change of origin to the equilibrium position determined by dU/dq = 0
i.e. by a root of the equation

γq3
eq + ω2

0qeq + A = 0. (2.3.3)

Indeed,

U(q) ≡ U(qeq) +
ω2

0 + 3γq2
eq

2
(q − qeq)2 + γqeq(q − qeq)3 +

γ(q − qeq)4

4
. (2.3.4)

Such a presentation of the potential is usually more convenient for the analysis. In partic-
ular, by using it, one can easily show that the ratio of the maximal decrease of eigenfre-
quency (as energy varies from the bottom to the energy corresponding to the minimum
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in ω(E)) to the eigenfrequency in the bottom is rather small for a potential of the type
(2.3.1) (cf. Fig. 7(b)), even at large A.

At the same time, the potential with a cubic nonlinearity,

U(q) =
ω2

0q
2

2
+
βq3

3
+
γq4

4
, (2.3.5)

9

10
<

β2

γω2
0

< 4,

permits any depth of minimum in ω(E) (cf. Fig. 9). An oscillator with the potential (2.3.5)
is therefore also referred to as a tilted Duffing oscillator and it will be used extensively in
this review as a simple characteristic model 4 .

Finally, we present in this sub-section an explicit expression for ω(E) [11]:

ω(E) =
π

2K(k)

(
1

2
z(1)z(2)

) 1
2

, (2.3.6)

k2 =
1

4

(q(1) − q(2))2 − (z(1) − z(2))2

z(1)z(2)
,

z(j) = [(q(3) − q(j))(q(4) − q(j))]
1
2 , j = 1, 2,

where K(k) is a full elliptic integral of the first kind and k is its modulus; q(1), q(2) are
real roots and q(3), q(4) ≡ q(3)∗ are complex conjugate roots of the equation

U(q(n) + qeq)− U(qeq)− E = 0; (2.3.7)

n = 1, ..., 4; q(1) > q(2),

where U(q) is given either by (2.3.1) or by (2.3.5) while qeq is given by (2.3.3) or equal to
zero respectively.

2.4 Relativistic oscillators

A one-dimensional relativistic oscillator can be described as a Hamiltonian system with
the following Hamiltonian [28]

H(q, p) =
√
p2c2 +m2c4 + U(q), (2.4.1)

4 It should be noted that, apart from being a convenient model for theoretical studies, the
potential (2.3.5) may also serve as an approximation for a variety of real systems.
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where c is the velocity of light and m is a mass.

At a given energy E, the system oscillates between the turning points ql and qr which are
the relevant roots of the equation

E = mc2 + U(q). (2.4.2)

The frequency of oscillation is described by the formula [28]

ω(E) = πc

 qr∫
ql

E − U(q)√
(E − U(q))2 −m2c4

dq

−1

. (2.4.3)

If E −mc2 � mc2, then |p|/m� c, so that the Hamiltonian reduces to

Hnonrel(q, p) = mc2 +
p2

2m
+ U(q), (2.4.4)

E −mc2 � mc2,

and the dynamics reduces to non-relativistic potential motion (cf. (2.1.6), (2.1.7)). In
particular, ω(E) is described by a non-relativistic formula similar to (2.1.8) (in which E
should be replaced by E −mc2 while the right-hand side should be divided by

√
m).

In the opposite (strongly relativistic) limit, E −mc2 � mc2, the Hamiltonian reduces to

Hrel(q, p) = |p|c+ U(q), (2.4.5)

E −mc2 � mc2,

which corresponds to a constant modulus of velocity during the motion 5 , q̇ = ±c, so that
the period of oscillation is equal just to 2(qr − ql)/c and, given that the distance between
turning points grows with E if E is large enough (unless the potential has infinite vertical
walls), ω(E) is a decreasing function at large enough E:

ω(E) ≈ πc

qr − ql
E→∞−→ 0. (2.4.6)

Thus, if the potential U(q) provides in the non-relativistic regime an increase of ω(E) in
some range of energies E−mc2 � mc2 (for example, a Duffing oscillator, both single-well
and double-well, provides an increasing ω(E) at E exceeding certain values [2,29,28]),

5 Obviously, Eq. (2.4.5) is not valid in the close vicinity of turning points, but this has little
effect on the period of the motion, which is the main quantity of interest for us in the present
context.
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then ω(E) (2.4.3) necessarily possesses a local maximum at some energy in the transition
range between the non-relativistic and relativistic limits (cf. Fig. 10). The system therefore
manifests zero-dispersion properties [30,31].

It should be noted also that zero-dispersion phenomena may be expected to occur, not
only in the simple model relativistic systems considered above, but also in certain more
complicated relativistic systems such as driven electron plasma waves [32] and periodically
focused intense beams of charged particles [33].

2.5 The Harper oscillator

The kicked Harper model [34] is defined by the time-dependent Hamiltonian

H(I, ψ, t) = −V0 cos(2πI)− V1 cos(2πψ)K(t), (2.5.1)

K(t) = τ
∞∑

n=−∞
δ(t− nτ),

where I and ψ may be considered e.g. as action and angle respectively [1] and t is time.

This model may in some cases be related to real physical systems, e.g., at V0 = V1, it serves
as an approximation for a kicked charge in a magnetic field [35]. More often, however, it
is used in theoretical and numerical studies of chaos, being a simple system manifesting
very rich chaotic behaviour, both in the classical and quantum cases (see e.g. [36,37] and
references therein). We shall explore the non-symmetric case

V1 � V0. (2.5.2)

In the zeroth-order approximation, the term ∝ V1 may then be omitted and we derive the
Hamiltonian

H0 ≡ H0(I) = −V0 cos(2πI), (2.5.3)

which does not depend on angle ψ. Therefore, the system (2.5.3) is integrable: the action
I is a constant of motion while the angle ψ oscillates with the frequency [1,35]

ω =
dH0

dI
= 2πV0 sin(2πI). (2.5.4)

As a function of action, ω (2.5.4) possesses extrema at

I = In ≡ n+
1

2
,

n= 0,±1,±2, ...,

13



where the derivative is equal to zero, dω(In)/dIn = 0. Obviously, the derivative with re-
spect to energy E ≡ H0(I) also equals zero at En ≡ H0(In): dω/dE|En = (ω|En)−1dω/dI|In =
0.

Thus, the zeroth-order approximation (2.5.3) of the Harper model possesses the zero-
dispersion property. The kicking (the periodic perturbation term ∝ V1 in (2.5.1)) leads to
nonlinear resonances, and to associated chaos, which may be especially pronounced under
certain conditions related to the zero-dispersion property (see Sec. 4).

3 Zero-dispersion systems subject to noise: zero-dispersion peaks in fluctua-
tion spectra

3.1 Basic equations

For the sake of clarity, we shall consider in this section, as an example of a noise-driven
ZD system, a one-dimensional ZD system of the potential type subject to a linear friction
and white noise:

q̇ = p, ṗ = −Γq̇ − dU/dq + f(t),

(3.1.1)

〈f(t)〉 = 0, 〈f(t)f(t′)〉 = 2ΓTδ(t− t′).

Instead of the Langevin description (3.1.1), one may use a description in terms of the
time evolution of the probability density in a phase space, W (p, q, t|p0, q0), i.e. the density
of probability of the coordinate and momentum being equal to q and p respectively, at a
given instant t, if at the initial time they were equal to q0 and p0. In the case of white
noise, W obeys the Fokker-Plank equation (FPE) [38]

∂W

∂t
= −p∂W

∂q
+
dU

dq

∂W

∂p
+ Γ

∂

∂p

(
p+ T

∂

∂p

)
W (3.1.2)

with the initial condition

W (p, q, 0|p0, q0) = δ(p− p0)δ(q − q0). (3.1.3)

The stationary solution of the FPE (3.1.2) is the Gibbsian distribution [13,38]

Wst(p, q) = Z−1 exp(−E/T ), (3.1.4)

Z =

∞∫
−∞

dp

∞∫
−∞

dq exp(−E/T ), E = U(q) + p2/2.
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Thus, T plays the role of temperature (even if the noise is of a non-thermal nature), and
it will be referred to as such in what follows.

In many problems, the quantity of interest is the spectrum of fluctuations of a given
(real-valued) function of dynamical variables, ϕ(q, p) [13,38]

Qϕ(Ω) =
1

2π

∞∫
−∞

dt exp(−iΩt)Rϕ(t) ≡ 1

π
Re

 ∞∫
−∞

dt exp(−iΩt)Rϕ(t)

 , (3.1.5)

Rϕ(t) ≡ 〈(ϕ(t)− 〈ϕ〉)(ϕ(0)− 〈ϕ〉)〉, ϕ(t) ≡ ϕ(q(t), p(t)),

where the brackets 〈...〉 denote averaging both over the equilibrium ensemble (3.1.4) and
over realizations of the random force f(t), i.e. respectively over the initial and final states,
in the phase space.

The fluctuation spectrum is an important physical quantity which can be determined
directly in an experiment. For example, if q is the coordinate of an electrically charged
particle, then the spectrum of the classical radiation is proportional to Ω4Qq(Ω) [22].
The spectral dependence of the mobility of charged particles is determined by Ω2Qq(Ω)
[38]. The polarizability of a rotating dipole is proportional to the spectrum of the time-
derivative of the correlation function of the corresponding superposition of the sine and
cosine of the angle [39]. In some cases, Qϕ(Ω) may characterize the combination scat-
tering spectrum (in this case, ϕ is a complicated function of coordinate and momentum
[40]). There are also many other physical quantities which may be described in terms of
fluctuation spectra [38].

It will be convenient to transform from (q, p) to the energy–angle representation (E,ψ)
[1]

E = U(q) +
p2

2
, ψ =

∫
dq

ω(E)√
2(E − U(q))

, (3.1.6)

since, at small friction (relevant to ZD phenomena), energy is a slow variable whereas the
angle is a fast one, so that their dynamics are well separated.

Allowing for the periodicity of ϕ in ψ,

ϕ(q, p) ≡ ϕ̃(E,ψ) =
∞∑

n=−∞
ϕn(E)e−inψ, ϕ−n = ϕ∗n, (3.1.7)

one may present the correlation function Rϕ(t) (3.1.5) as

Rϕ(t) =

∞∫
Umin

dE0

2π∫
0

dψ0 W̃st(E0, ψ0)(〈ϕ̃(t)〉E0,ψ0 − 〈ϕ̃〉)(〈ϕ̃(E0, ψ0)〉 − 〈ϕ̃〉), (3.1.8)
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Umin ≡ min{U(q)},

where

W̃st(E0, ψ0) =
Wst(p0, q0)

ω(E0)
=

exp(−E0/T )

ω(E0)Z
(3.1.9)

is a stationary distribution in the energy-angle space, while

〈ϕ̃(t)〉E0,ψ0 ≡
∞∫

Umin

dE

2π∫
0

dψ ϕ̃(E,ψ)W̃ (E,ψ, t|E0, ψ0), (3.1.10)

where W̃ = W/ω(E) is the conditional probability density in the E−ψ space normalized
to a 2π-band of ψ.

3.2 Zero-frequency-limit

In the zero-friction approximation, energy is conserved whereas the angle changes with a
constant speed ω(E), so that

W̃ (E,ψ, t|E0, ψ0) = δ(E − E0)
∞∑

n=−∞
δ(ψ − ψ0 − ω(E0)t+ 2πn). (3.2.1)

Substituting (3.2.1) into (3.1.10), putting the resulting expression and (3.1.9) into (3.1.8),
one obtains for the spectrum (3.1.5) at a non-zero frequency

Qϕ(Ω) ≈ Q(0)
ϕ (Ω) ≡ 2π

Z

∞∑
n=1

∑
j

1

n

[
exp(−E/T )

ω(E)
|ϕn(E)|2 1

|dω(E)/dE|

]
E=Ej(Ω/n)

,

Ω 6= 0, (3.2.2)

where the Ej(Ω/n) are determined from the equation

ω(Ej(Ω/n)) = Ω/n, (3.2.3)

and the summation over j in (3.2.2) denotes a summation over all the roots of Eq. (3.2.3).

Near the extremum, ω(E) takes the form

ω(E) = Ωm +
1

2
ω′′(E − Em)2, ω′′ ≡ d2ω(Em)

dE2
m

. (3.2.4)
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Thus, the solutions of Eq. (3.2.3) can be written

E1,2(
Ω

n
) ≈ Em ±

√
2(

Ω

n
− Ωm)/ω′′, ω′′(

Ω

n
− Ωm) > 0. (3.2.5)

Correspondingly, the zero-friction approximation of the spectrum near nΩm is

Q(0)
ϕ (Ω) ≈


4π|ϕn(Em)|2 exp(−Em/T )

ZΩm
√

2nω′′(Ω−nΩm)
at ω′′(Ω−nΩm)>0,

0 at ω′′(Ω−nΩm)<0, (3.2.6)

n = 1, 2, 3, ...,
√

(Ω/n− Ωm)/ω′′ � T.

Thus, Q(0)
ϕ (Ω) possesses singularities at Ωm and its harmonics, indicating the existence

of peaks in the exact spectrum Qϕ(Ω) too: they are called zero-dispersion peaks (ZDPs).
Q(0)
ϕ (Ω) provides a good approximation for the wing of the ZDP but the description of

the peak itself requires more sophisticated approaches, which will be presented in the
following sub-sections.

3.3 Asymptotic low-friction theory of ZDP

This sub-section largely follows the treatment given in [7] 6 . Before embarking on a rig-
orous analysis, we present some simple qualitative estimates relevant to the ZDP at the
fundamental frequency, which will facilitate understanding of the rigorous results.

3.3.1 Qualitative estimates

Let us estimate the correlation time tc for an oscillator whose initial energy E0 is close
to Em. It may be found approximately from the condition that the diffusion of angle has
attained ∼ π:

∆ψ(tc) ∼ π. (3.3.1)

Angular diffusion is due to the diffusion of energy, ∆E, which leads to a diffusion of ω(E),
leading in turn to the diffusion of ψ̇ ≈ ω(E):

∆ψ̇ ∼ |ω(E0 ±∆E(t))− ω(E0)| ∼ |ω′′∆E(t)(2(E0 − Em)±∆E(t))|. (3.3.2)

The diffusion of energy ∆E(t) ≈ (Tp2Γt)1/2 where the overbar denotes an averaging
over one period of eigenoscillation 2π/ω(E0) (cf. [38]). Consider first an E0 such that

6 Note that there were some misprints in [7]. In particular, in Eq. (2.35) (which is the major
result of [7]: it describes the asymptotic shape of ZDP), the factor

√
2 was missed in the scaling

factor A.
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|E0 − Em|
<∼ ∆E(tc). Then, ∆ψ̇(tc) ∼ |ω′′|(∆E(tc))

2, while

∆ψ(tc) ∼ ∆ψ̇(tc)tc ∼ |ω′′|Tp2t2c . (3.3.3)

Comparing (3.3.3) with (3.3.1), we conclude that, if |E0 − Em|
<∼ (Tp2Γ/|ω′′|)1/4, then

tc ∼ (|ω′′|Tp2Γ)−1/2.

If, on the other hand, |E0 − Em| � (Tp2Γ/|ω′′|)1/4, then ∆E(tc) � |E0 − Em|, so that
(3.3.2) reduces to ∆ψ̇(tc) ∼ |ω′′|∆E(tc)|E0 −Em|. Comparing ∆ψ(tc) ∼ ∆ψ̇(tc)tc with π,
we conclude that tc � (|ω′′|Tp2Γ)−1/2 for such E0 and, therefore, that the contribution of
such energies to the formation of the spectrum at Ω ≈ Ωm may be neglected.

Thus, we have found the characteristic scales of time and energy relevant to the ZDP:

tzdp = (|ω′′|Tp2
mΓ)−1/2 ∝ Γ−1/2, (3.3.4)

p2
m ≡ p2(Em),

∆Ezdp ≡ ∆E(tzdp) = (Tp2
mΓ/|ω′′|)1/4 ∝ Γ1/4. (3.3.5)

The time scale tzdp characterizes the decay time for oscillations of frequency ≈ Ωm. Thus,
the width of the ZDP should be

∆Ωzdp ∼ t−1
zdp =

√
|ω′′|Tp2

mΓ ∝
√

Γ. (3.3.6)

The energy scale ∆Ezdp characterizes the width of the energy band contributing to the
formation of the ZDP. It follows from (3.1.5) and (3.1.8) that the magnitude of the ZDP

Qϕ(Ωm) ∼ 1

Zωm
exp(−Em

T
)|ϕ1(Em)|2∆Ezdptzdp ∝

1

Γ1/4
. (3.3.7)

The qualitative estimates (3.3.6),(3.3.7) are confirmed by the rigorous analysis presented
below.

3.3.2 Rigorous asymptotic theory

As already mentioned, it is convenient to transform from (p, q) to (E,ψ) variables. The
corresponding dynamical equations are given in the Appendix: see Eq. (A.15). The FPE
[38] for W̃ (E,ψ, t|E0, ψ0) can be written as

∂W̃

∂t
=−ω(E)

∂W̃

∂ψ
+ Γˆ̃LW̃ , (3.3.8)

ˆ̃L=− ∂

∂E

[
−p2 + T (ppE − ω(E)qEpψ)

]
− ∂

∂ψ
T

[
ω2(E)qEqEψ − p

∂

∂E
(ω(E)qE)

]
+
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∂2

∂E2
Tp2 − 2

∂2

∂E∂ψ
Tω(E)qEp+

∂2

∂ψ2
Tω2(E)q2

E,

where the subscripts E,ψ denote the corresponding partial derivatives.

The initial condition for W̃ is

W̃ (E,ψ, 0|E0, ψ0) = δ(E − E0)
∞∑

n=−∞
δ(ψ − ψ0 + 2πn). (3.3.9)

In view of its periodicity in ψ, W̃ can be expanded in a Fourier series. It is convenient to
write explicitly the “dissipationless” factor exp{in[ψ0 + ω(E0)t]} in Fourier coefficients,

W̃ =
∑
n

Wn exp{−in[ψ − ψ0 − ω(E0)t]}. (3.3.10)

In the zero-friction limit (Γ = 0), the coefficients Wn do not depend on time: Wn(Γ = 0) =
δ(E −E0)/(2π). At a small (but non-zero) Γ, Wn varies with time slowly as compared to
[nω(E)]−1 at n 6= 0 or to ω−1(E) at n = 0 (which is, of course, confirmed by the result).
Therefore, substituting (3.3.10) into the FPE (3.3.8), one may drop fast-oscillating terms,
in accordance with the averaging method [41], so that

∂Wn

∂t
= in[ω(E)− ω(E0)]Wn (3.3.11)

+Γ

{
∂

∂E
p2

[(
1 + T

dω(E)/dE

ω(E)

)
Wn + T

∂Wn

∂E

]
− n2Tω2(E)q2

EWn

}
.

For n = 0, Eq. (3.3.11) coincides with the well-known Kramers equation [42] . For n = 1,
in the case of the Duffing oscillator, Eq. (3.3.11) may be reduced to the FPE obtained in
[43].

Transforming to the dimensionless variables

t̃ =
t

tzdp

,

(3.3.12)

Ẽ =
E − Em
∆Ezdp

,

introducing the parameter

Ẽ0 =
E0 − Em
∆Ezdp

, (3.3.13)
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and omitting all terms which, at the relevant unit “times” t̃ and “energies” Ẽ, Ẽ0, tend
to zero as 7 Γ→ 0, we obtain an asymptotic equation for Wn:

∂Wn

∂t̃
=

1

2
in sgn(ω′′)(Ẽ2 − Ẽ2

0)Wn +
∂2Wn

∂Ẽ2
. (3.3.14)

The initial condition is:

Wn
t̃→0−→ δ(Ẽ − Ẽ0)

2π∆Ezdp

. (3.3.15)

An equation similar to (3.3.14) (but without the imaginary i) was obtained in quantum
statistical mechanics in relation to the density matrix of the harmonic oscillator [44].

Using the substitution

Wn = exp[a(t̃)Ẽ2 + b(t̃)Ẽ + c(t̃)], (3.3.16)

we obtain for a, b, c the set of ordinary differential equations,

da

dt̃
=

1

2
in sgn(ω′′) + 4a2,

db

dt̃
= 4ab, (3.3.17)

dc

dt̃
= −1

2
inx2

0 sgn(ω′′) + b2 + 2a,

which can be solved explicitly, so that Wn satisfying the initial condition (3.3.15) reads

Wn =
1

∆E

exp
[
−λn(Ẽ−Ẽ0sech(λn t̃))2

4th(λn t̃)
− Ẽ2

0λnth(λn t̃)

4
− inẼ2

0sgn(ω′′)t̃

2

]
4π
√
π sh(λnt̃)/λn

,

λn =
√
n sgn(ω′′)(1− i), n 6= 0. (3.3.18)

The solution vanishes exponentially sharply as t̃ or |Ẽ − Ẽ0| grow � 1; if |Ẽ0| � 1, then
Wn oscillates rapidly with t̃ even at |t̃|, |Ẽ − Ẽ0| ∼ 1. This confirms our original inference
that, in the asymptotic limit Γ → 0, the ZDP is dominated by an infinitesimal band of
energies around Em.

7 The upper limit on Γ for which the asymptotic results obtained in this sub-section are valid
depends on temperature and on other parameters. This dependence will be derived explicitly in
the next sub-section.
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Substituting Wn (3.3.18) into W̃ (3.3.10), putting W̃ into 〈ϕ̃(t)〉E0,ψ0 (3.1.10), substitut-
ing the latter into the correlation function (3.1.8), calculating its Fourier transform and
omitting all terms which vanish as Γ→ 0, we obtain for the asymptotic shape of the ZDP
(see [7] for details; note however footnote 6 above)

Qϕ(Ω) = CscaleS(∆Ω̃n), (3.3.19)

Cscale =
4
√
π | ϕn(Em) |2 exp(−Em/T )

ωm(| ω′′ |)3/4Z(ΓTp2
m)1/4

,

∆Ω̃n = sgn(ω′′)(Ω− nΩm)tzdp/
√
n, |Ω− nΩm| � Ωm, n = 1, 2, 3, ...,

S(x) = |Re[Sc(x)]| ,

Sc(x) =

∞∫
0

dτ
exp(−ixτ)√

(1− i) sh[(1− i)τ ]
.

The universal function S(x) is easily calculated numerically 8 (see Fig. 11). It has the
shape of an asymmetric peak with a maximum at xm ≈ 0.61 (S(xm) ≈ 2.5) and a width
∼ 1. The shift of the maximum to the right relative to the x = 0 value (corresponding to
frequency nΩm) for the value ∼ 1 is due to the fact that Ωm is the boundary frequency
of the spectrum of eigenfrequencies while, over the major part of the time relevant to
formation of the peak, the system has such energy that ω(E) is shifted from Ωm for
∼ sgn(ω′′)(

√
ntzdp)−1.

At |x| � 1, only small τ contribute to the integral, so that

S(x) ≈
∞∫
0

dτ
cos(xτ) + sin(xτ)

2
√
τ

=

√
π
2x

at x>0,

0 at x<0, (3.3.20)

|x| � 1.

Thus, Qϕ(Ω) (3.3.19) reduces at |∆Ω̃n| � 1 to the zero-friction expression (3.2.6).

The expression (3.3.19) also confirms the qualitative estimates (3.3.6) and (3.3.7), for the
ZDP’s width and magnitude respectively.

3.4 Asymptotic theory of the ZDP evolution with temperature

The formula (3.3.19) describes the spectrum near nΩm in the asymptotic limit Γ→ 0; but
what would happen if, at a small but fixed Γ, the temperature became smaller than ∆Ezdp?
It is intuitively obvious that the spectrum must change, both because the statistical
distribution within the relevant band of energies becomes strongly inhomogeneous and

8 In doing so, one should bear in mind that the argument of the complex expression under the
radical in the integrand should vary continuously (from −π/2 to −∞) as τ increases.
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because the influence of the drift of energy on the correlation function during the relevant
interval tzdp becomes comparable with the influence of the diffusion. And, indeed, the
experimental results obtained in [11] show that, when the spectrum near Ωm is starting
to grow exponentially with temperature, it takes (for the given parameters) the form of
a step rather than of a peak, and only gradually transforms into a peak with further
increase of temperature. In other works (see e.g. [45–47]), which explored different sets
of parameters or different models, the evolution varied: in some cases, the exponentially
growing spectrum near nΩm had a distinct peak-like shape from its very first manifestation
on the background of a low plateau (cf. the right inset in Fig. 17(a)) while, in other cases,
the initial shape was either a step followed by a monotonic growth (cf. Fig. 15(c)) or
a step leading to a slight decrease followed by significant growth (cf. Fig. 16(a)). The
whole diverse range of evolutions is nicely described by numerical calculations based on
the algorithm suggested in [11] and generalized in [47]. However, it is also important to
obtain explicit results to reveal the mechanisms responsible for different types of evolution.
This problem was solved in [48]. Moreover, the universal nature of the relevant part of the
spectral evolution has been demonstrated in analogue experiments [46]: the evolution is
described by universal function, and the variety of different evolutions mentioned above
results merely from different arguments of this universal function as well as from different
scaling factors. We review below the major results of [48].

We now introduce two new parameters:

Ẽm ≡
Em − Umin

∆Ezdp

∝ 1

(ΓT )1/4
, (3.4.1)

γ ≡ ∆Ezdp

T
∝ 1

T 3/4
. (3.4.2)

Note that the ratio of the drift of energy near Em, ∆Edrift(t) ≈ Γp2
mt, to the diffusion of

energy, ∆Edif(t) ≈ (Γp2
mTt)

1/2, grows with time,

∆Edrift

∆Edif

= γ

√
t

tzdp

, (3.4.3)

and reaches the value γ precisely at t = tzdp.

The product γẼm ≡ (Em − Umin)/T determines the statistical weight of the energy Em,
Wst(E0 = Em) ∝ exp(−γẼm). It is obvious that, if γẼm is large enough, the contribution
of energies E ≈ Em is negligible in comparison with the contribution from E ≈ Umin. At
the same time, the characteristic (step-like or similar) shape of the spectrum near Ωm is
possible only if γ ∼ 1, as follows from (3.4.3). On the other hand, it is obvious that the
ZDP may be resolved in the spectrum only if

Ẽm � 1. (3.4.4)

Thus, an important feature of the problem is that we should work down to temperatures
that are small enough for γ to be ∼ 1 (so that the effect of drift is comparable with that
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of diffusion) but large enough for Wst(E0 = Em) ∝ exp(−γẼm) not to be negligible. The
experimental existence of a step-like (or similar) shape of spectrum constitutes evidence
that such a range of temperatures does exist, and the theoretical considerations below
confirm this inference.

Thus, we shall consider the case of γ
∼
< 1 (which corresponds to T

∼
> (Γp2/ω′′)1/3).

Transforming the reduced FPE (3.3.11) to a dimensionless equation, we shall keep the
drift term (∝ γ) while omitting all terms ∝ Ẽ−km with k ≥ 1:

∂Wn

∂t̃
=

1

2
in sgn(ω′′)(Ẽ2 − Ẽ2

0)Wn + γ
∂Wn

∂Ẽ
+
∂2Wn

∂Ẽ2
. (3.4.5)

The explicit solution for Wn (with the same initial condition as before: see Eq. (3.3.15))
can be obtained in a similar manner to the case for γ = 0 described in the previous
sub-section (though it is more cumbersome). But the evaluation of the spectrum is more
complicated.

Let us present the spectrum in the following form:

Qϕ(Ω) ≡
∞∫

Umin

dE0 Q
(partial)
ϕ (E0,Ω) ≡

∞∫
−Ẽm

dẼ0 Q̃
(partial)
ϕ (Ẽ0,Ω), (3.4.6)

where

Q(partial)
ϕ (E0,Ω) =

1

π
Re

( ∞∫
0

dt e−iΩt
2π∫
0

dψ0 Wst(E0, ψ0)[〈ϕ̃(t)〉E0,ψ0

−〈ϕ̃〉][〈ϕ̃(E0, ψ0)〉 − 〈ϕ̃〉]
)
,

Q̃(partial)
ϕ (Ẽ0,Ω) = ∆EzdpQ

(partial)
ϕ (E0,Ω). (3.4.7)

The partial spectrum Q(partial)
ϕ (E0,Ω) characterizes the Fourier spectrum of oscillations

with initial energy E0. Correspondingly, it has the form of a peak whose absolute maximum
is near ω(E0) ≈ Ωm +ω′′(E0−Em)2/2 and whose width is ∼ t−1

zdp, while (see Appendix of

[48]) the ratio of its absolute value near Ωm to |Q(partial)
ϕ (Em,Ωm)| is

|
Q̃(partial)
ϕ (Ẽ0,Ωm)

Q̃
(partial)
ϕ (0,Ωm)

|∼
{

1 at |Ẽ0|
∼
<1,

exp(−γẼ0)max(1,γ|Ẽ0|)/Ẽ6
0 at |Ẽ0|�1,

(3.4.8)

i.e., if γẼm ≡ (Em−Umin)/T is not too large, then the main contribution to the ZDP (i.e.

to the integral in (3.4.6) at Ω ≈ Ωm) is made by energies near the extremal one (|Ẽ0|
∼
< 1).

On the contrary, if (Em−Umin)/T is large enough, then the main contribution is made by
the lowest energies (E0 ≈ Umin). At the same time, for E0 ≈ Umin, the conditions under
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which Eq. (3.4.5) was obtained are not satisfied, so that the contribution of energies close
to E0 must be described in a different way. We resolve these two different cases below, in
sub-sections 3.4.1 and 3.4.2

3.4.1 ZDP at high and moderately small temperatures

There is a paradox in the calculation of the spectrum for γ 6= 0, as follows. On the
one hand, Qϕ(Ω ≈ Ωm) is dominated by the contributions from energies E ≈ Em and,
therefore, should not depend on the actual value of Ẽm within the relevant wide range
(see below) but, on the other hand, replacement of the Ẽm in (3.4.6) with a minus infinity
would be invalid, unlike in the case of γ = 0, because the result would then diverge 9 .
Thus, we should keep the finite −Ẽm for the lower limit in (3.4.6). At the same time, in
the calculation of 〈ϕ̃(t)〉E0,ψ0 (3.1.10), we may still change the lower energy boundary to
−∞, as in the case when γ = 0.

With account taken of the above remarks and using the explicit solution of the reduced
FPE (3.4.5), one can obtain for the spectrum [48]:

Qϕ(Ω) = CscaleS̃(∆Ω̃n,
γ

2n1/4
,
Ẽmn

1/4

2
), (3.4.9)

S̃(x, y, z) =
∣∣∣Re

[
S̃c(x, y, z)

]∣∣∣ ,
S̃c(x, y, z) =

∞∫
0

dτ
exp

[
−ixτ + y2

(
2/(1−i)

th[(1−i)τ/2]
− τ

)]
2
√

(1− i) sh[(1− i)τ ]

×erfc

−z√(1− i) th[(1− i)τ ] + y
1 + sech[(1− i)τ ]√
(1− i) th[(1− i)τ ]

 ,
γẼm < 5 ln(Ẽmn

1/4/2),

where Cscale and ∆Ω̃n are defined in (3.3.19), erfc(z) ≡
√

2/π
∫∞
z dy exp(−y2) is the

complement of the error function with respect to 1 in the complex plane [49], and the
origin of the last inequality in (3.4.9) will be clear from Eq. (3.4.10) below.

If γ = 0 and Ẽm � 1, then Qϕ(Ω) (3.4.9) reduces to Eq. (3.3.19) and, in particular, the
shape S̃(x, y, z) reduces at |x| ∼ 1 to S(x) (see also Fig. 12(a)).

Analysis of the partial spectrum near Ωm shows [48] that the structure of S̃(x, y, z) at
z � 1 is as follows:

9 Allowing for γ � 1 in the present case (T
∼
> Em), one could alternatively try to use pertur-

bation theory, i.e. to expand the term exp(γẼ0...) in the partial correlation function in a Taylor
series over γ so that its integration down to −∞ would give a convergent result for Rϕ(t̃). How-
ever, the resultant correction to Rϕ(t̃) is ∝ t̃−3/2 at small t̃, resulting in the divergence of its
Fourier transform. This divergence indicates that Qϕ(Ω) depends on γ non-analytically.
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S̃(x, y, z) = S̃zdp(x, y) +
ε

8
√
π

exp(4yz)

z5
, (3.4.10)

ε =
{
∼1 at yz

∼
<1,

1 at yz�1,

S̃zdp(x, y) ∼ 1, z � 1, |x|
∼
< 1, y

∼
< 1.

As can be seen from (3.4.10), at 4yz ≡ Em/T < 5 ln(z) the second term on the right-
hand side of (3.4.10) (which is determined by the low energies) is exponentially small in
comparison with the first term (which is determined by energies near Em). This confirms
the independence of Qϕ(Ω) on Ẽm in the range defined in (3.4.9). The independence of
S̃(x, y, z) on z in the corresponding range is also confirmed by numerical calculations (Fig.
12(b)).

Properly speaking, just the function S̃zdp(x, y) describes the shape of the ZDP itself. Both
the qualitative analysis and numerical calculations (see Fig. 12(a)) show that, at y � 1,
S̃zdp(x, y) has the shape of a peak reducing to S(x) as y → 0; as y grows to ∼ 1, the
right wing of the peak lifts (creating a minimum after which the function grow sharply
as x increases); at some y ∼ 1, the peak transforms into a step followed by rapid growth
as x increases. Finally, at y � 1, S̃zdp(x, y) is a monotonically (and sharply) increasing
function of x but S̃ on the whole becomes exponentially large while the concept of the
ZDP loses its physical meaning.

3.4.2 ZDPs at low temperatures

Strictly speaking, the contribution from the lowest energies (E ≈ Umin, i.e. Ẽ ≈ −Ẽm)
has not been correctly taken into account in the previous section. But, given that this

contribution is negligible at T
∼
> Em−Umin, Eq. (3.4.9) nonetheless describes the spectrum

correctly at such temperatures. On the contrary, however, for T � Em − Umin, which is
the most relevant range of temperatures for γ ∼ 1, the contribution of low energies may
become dominant and it should be evaluated differently from Sec. 3.4.1.

Let us first divide the whole integration range in (3.4.6) into three sub-ranges:

Qϕ(Ω) =

Umin+αT∫
Umin

dE0...+

Em−β(Em−Umin)∫
Umin+αT

dE0...+

∞∫
Em−β(Em−Umin)

dE0... (3.4.11)

≡ Q(low)
ϕ (Ω) +Q(int)

ϕ (Ω) +Q(zdp)
ϕ (Ω),

Ẽ−1
m � β < 1, 1� α < (Em − β(Em − Umin))/T, T/(Em − Umin)� 1.

The contribution of the intermediate range, Q(int)
ϕ (Ω), can easily be shown [48] to be

negligible in comparison with the either first or third term in (3.4.11).

The third term, Q(zdp)
ϕ (Ω), is described similarly to the case for T

∼
> Em, the only difference

being that Ẽm in Eq. (3.4.9) should be exchanged for βẼm.
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The first term, Q(low)
ϕ (Ω), is determined by weakly nonlinear oscillations in the minimum

of the potential and has a narrow peak near Ω0 ≡ ω(E = Umin) while Ωm is located on
its far wing. It may easily be shown 10 that the far wings of Q(low)

ϕ (Ω) coincide with the

spectrum calculated in the harmonic approximation, Q(harmonic)
ϕ (Ω,Ω0); e.g. for ϕ = q, the

relevant spectrum is

Q(harmonic)
ϕ (Ω,Ω0) =

ΓT (Ω2 + Ω2
0)

2πΩ2
0(Ω2 − Ω2

0)
. (3.4.12)

Thus, ultimately, we obtain for the spectrum in the vicinity of Ωm:

Qϕ(Ω ≈ Ωm) = CscaleS̃(∆Ω̃n,
γ

2n1/4
,
βẼmn

1/4

2
) +Q(harmonic)

ϕ (Ω,Ω0), (3.4.13)

β � Ẽ−1
m , 1− β � T/(Em − Umin), |Ω− nΩm| � Ωm, |Ω0 − nΩm|,

n = 1, 2, 3...

The first (ZDP) term in (3.4.13) depends on T exponentially strongly, whereas the sec-
ond term (the low-energy tail) depends on T relatively weakly (in a power-like way: cf.
(3.4.12)). Thus, there is some critical temperature T (n)

c below which the ZDP is not man-
ifested while, above T (n)

c , the ZDP dominates. Furthermore, in order to be definite, we
shall consider the spectrum of fluctuations of the coordinate; but the main results will be
valid for arbitrary ϕ.

In order to find T (n)
c to logarithmic accuracy, one should equate the orders of magnitude

of Cscale (3.3.19) and Q(harmonic)
q (nΩm,Ω0) (3.4.12), so that

T (n)
c ≈ Em

5 ln(Ẽm + 2 ln(|qn/q1|))
, T (n)

c � Em. (3.4.14)

It is seen from (3.4.14) that the number of ZDPs is finite because, at large enough n, qn
decreases exponentially as n grows. Thus T (n)

c reaches infinity at the critical value n = nc
which can be determined approximately from the equation:

| qn
q1

|∼ (
Γ

Ωm

)5/8. (3.4.15)

It is seen also from (3.4.14) that the minimal critical temperature Tc ≈ Em/(5 ln(Ẽm)
corresponds to n = 1. In the asymptotic limit Γ→ 0,

Tc =
Em

5
4

ln(Ωm
Γ

)
. (3.4.16)

10 To the lowest order in ∆Ω0/|Ω − Ω0|, where ∆Ω0 is the width of the peak Q
(low)
ϕ (Ω), the

spectrum on the wings is entirely determined by the dRϕ(t = 0)/dt which, in turn, coincides
with the expression calculated in the harmonic approximation.
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The coefficient γ(T = Tc) ≡ γc is

γc =

[
5 ln(Ẽm)

Ẽm

]
Tc

. (3.4.17)

In the asymptotic limit Γ→ 0, γc goes to zero too. Hence, at small enough Γ, the shape of
the ZDP is close to the universal shape (3.3.19) from the very manifestation of the ZDP,
at T ≈ Tc.

At the same time, if Γ is not small enough, so that the inequality (3.4.4) is not too
strong, then the shape of the ZDP at T ≈ Tc is step-like and only gradually evolves to
the universal peak shape as T grows. Just this type of the evolution was observed in [11]
(see Fig. 14) where Ẽm ≈ 3 at T ≈ Tc.

In order to demonstrate the two different types of ZDP evolution with temperature, we
calculate Qq(Ω) from Eqs. (3.4.13), (3.4.12) for the same system as in [11] (the tilted
Duffing oscillator 11 : see also sub-section 2.3 above), at two different values of Γ. The
results are shown in Fig. 13.

3.5 General theory

The explicit description of ZDPs given in the previous sub-sections is important for an
understanding of the relevant physical mechanisms and of the characteristic features of
ZDPs. At the same time, quantitative agreement with real spectra is restricted to the very
low friction and very narrow frequency ranges.

In order to provide an accurate theoretical description of spectra in a broad frequency
range and in the whole range of small (rather than just ultra-small) friction, a special
method [11] was developed and later generalized for multi-well potentials [47]. Note that
the method is not restricted to ZD systems: it facilitates the calculation of fluctuation spec-
tra for any underdamped system. We illustrate below the major features of this method
using as an example the fluctuation spectrum of a generalized coordinate (magnetic flux)
in a multi-well SQUID potential (Fig. 3(b)).

Let us present the correlation function Rq(t) (3.1.5) in the following form:

Rq(t) =

∞∫
−∞

dp

∞∫
−∞

dq (q − 〈q〉) ˜̃W (p, q, t), (3.5.1)

11 In fact, the TDO is far from being the best model for illustrating the ZDP evolution with
temperature: it typically requires a very small value of Γ. Historically, however, the TDO was
the first system in which ZDPs and their evolution were observed, which is why we consider it
here. In sub-section 3.6, describing analogue experiments, we shall illustrate ZDP evolution for
the SQUID model as well.
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˜̃W (p, q, t) =

∞∫
−∞

dp0

∞∫
−∞

dq0 (q0 − 〈q〉)W (p, q, t|p0, q0)Wst(p0, q0).

The function ˜̃W satisfies the same FPE as W (see (3.1.2)) but with a different initial
condition:

˜̃W (p, q, 0) = (q − 〈q〉)Wst(p, q). (3.5.2)

For further analysis, it is convenient to rewrite the FPE (3.1.2) in the energy-angle rep-
resentation 12 and to make a half-Fourier-transform with respect to time. For the sake of
generality, we assume a multi-well potential (a single-well potential may be considered as
a particular case), so that the energy-angle representation must be differently defined in
different regions of the phase space, divided by separatrices corresponding to the barrier
energy levels (cf. Fig. 3(b)).

Tagging each such region with an index j, we can write the equation for the half-Fourier
transform WF in the j-th phase space region as

−iΩWF + ω
∂WF

∂ψ
= ΓL̂WF + (q − 〈q〉)Wst(q, p), (3.5.3)

L̂ ≡ L̂(j)(E,ψ) =[
p
∂

∂E
− ωqE

∂

∂ψ

] [
p

(
1 + T

∂

∂E

)
− TωqE

∂

∂ψ

]
,

ω ≡ ω(j)(E), q ≡ q(j)(E,ψ), p ≡ p(j)(E,ψ),

WF ≡ W
(j)
F (E,ψ,Ω) =

∞∫
0

dt exp(iΩt) ˜̃W (p, q, t).

Allowing for the periodicity of WF in ψ, we may expand it in a Fourier series,

W
(j)
F (E,ψ; Ω) =

∞∑
n=−∞

W (j)
n (E,Ω) exp(inψ). (3.5.4)

Substituting (3.5.4) into (3.5.3), we obtain

−(Ω− nω(j))W (j)
n = Γ

∑
m

L̂(j)
nmW

(j)
m + (q(j)

n − 〈q〉δn0)Wst, (3.5.5)

L̂(j)
nm =

1

2π

2π∫
0

dψ exp(−inψ)L̂(j) exp(imψ),

12 Note that the result differs slightly from the FPE (3.3.8) for W̃ (E,ψ, t) since these equations
relate to differently normalized functions: W̃/W = ∂(p, q)/∂(E,ψ) = ω−1(E) [1].
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q(j)
n =

1

2π

2π∫
0

dψ exp(−inψ)q(j)(E,ψ),

where δn0 is a Kronecker delta (δn0 = 1 for n = 0, whereas δn0 = 0 for n 6= 0). Our aim is
to find the W (j)

n , since the fluctuation spectrum can be written in terms of them as

Qq(Ω) =
∑
j

2 Re
[ E(j)

max∫
E

(j)
min

dE

ω(j)(E)

×
∞∑
n=0

(
(q(j)
n (E))∗ − δn0〈q〉

)
W (j)
n (E,Ω)

]
, (3.5.6)

where E
(j)
min and E(j)

max are respectively the minimum and maximum energies of the j-th
region and the star ∗ denotes the operation of complex conjugation.

Assuming that the friction is small and that we are interested in peaks of the spectrum
rather than in low fluctuational plateaus, we retain in Eq. (3.5.5) only diagonal terms
since the influence of different resonances on each other is negligible 13 [11]. Thus, we
obtain for each W (j)

n a closed equation:

−i(Ω− nω)W (j)
n = Γ

(
1 + p2

d

dE

)(
1 + T

d

dE

)
W (j)
n

−ΓTn2ω2q2
EW

(j)
n + (qn − δn0〈q〉)Wst , (3.5.7)

where the bar, as before, implies averaging over the angle ( 1
2π

∫ 2π
0 dψ . . .).

In order to solve Eq. (3.5.7), we also need to know the boundary conditions at E
(j)
min and

E(j)
max for each region. We now show that if n 6= 0 14 , then W (j)

n vanishes at the boundaries:

W (j)
n (E

(j)
min,Ω) = W (j)

n (E(j)
max,Ω) = 0. (3.5.8)

The condition at E(j)
max ≡ ∞ immediately follows from the vanishing of the probability

density as E →∞. The derivation for other boundaries is less trivial.

Consider first those E
(j)
min which correspond to local minima of the potential U

(j)
min. Near

13 This procedure is equivalent to neglecting the nonresonant terms in the original FPE in the
energy-angle representation (3.3.8), in accordance with the averaging method: cf. (3.3.11).
14 The boundary conditions for the case n = 0 require separate analysis [50,51] but, given that
ZDPs are located at distinctly non-zero frequencies, the case n = 0 is not relevant in the present
context.
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these local minima, the self-oscillations are approximately harmonic, so that

p2 ≈ E − U (j)
min, q2

E ≈
1

4ω2
0(E − U (j)

min)
, q1 ≈

√
2ω0√

E − U (j)
min

. (3.5.9)

The solutions of (3.5.7), (3.5.9) can be seen to be either∝ (E−U (j)
min)1/2 or∝ (E−U (j)

min)−1/2.
Allowing for the finiteness of the probability density (and therefore also of W (j)

n ), one

chooses the convergent solution and thus arrives at the condition W (j)
n (E

(j)
min,Ω) = 0.

Similarly, for boundaries corresponding to the levels of potential barriers, E
(j)
b ,

q2
E ∝

1

(| E − E(j)
b |)2

, (3.5.10)

so that the solution of (3.5.7), (3.5.10) may be either convergent (∝| E − E
(j)
b |) or

divergent (∝ (| E − E
(j)
b |)−1). Choosing the convergent solution, one arrives at the

condition W (j)
n (E

(j)
b ,Ω) = 0.

Eq. (3.5.7), together with the boundary conditions (3.5.8) is easily solved numerically
by a standard method (the coefficients in the equation are easily calculated from their
definition: see [11,46]). Results for several examples will be presented in the next sub-
section (see Figs. 14-17).

3.6 Analogue electronic experiments

A valuable method for studying fluctuational phenomena in dynamical systems is to model
the dynamics and the noise by means of analogue electrical circuits, electronic chips and
noise generators (for reviews see [52–54]). ZDPs were observed in several such exper-
iments and studied in various aspects [11,45–47,55–57]. We present below some typical
experimental results together with their comparison with calculations based on the theory
described in the previous sub-sections.

The first experimental results [55] were obtained, in fact, as a wholly unexpected by-
product of the search for the zero-frequency peak in the TDO model [50]. Later [11],
they were developed and compared with the theory. Fig. 14 presents the evolution with
increasing T of the spectrum in the TDO model, with U(q) as given in (2.3.1) and drawn in
Fig. 7. First of all, we see that the theoretical calculations nicely match the experimental
results. Secondly, it is seen that, at low temperatures (curve (a)), the spectrum is centred
close to the bottom eigenfrequency Ω0 = 2 (cf. Fig.7) while, at the high temperature
(curve (c)), the spectrum is centred close to the minimal eigenfrequency Ωm ≈ 1.76. For
the given intermediate temperature (curve (b)), the spectrum has the shape of a wide
nearly rectangular peak with a flat top, from ≈ Ωm to ≈ Ω0. Thus, as the temperature
increases from (b) to (c), the spectral peak becomes significantly narrower, quite unlike
the conventional case with a monotonic ω(E) when the increase of noise necessarily results
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in a broadening of the spectrum. The narrowing is related to the onset of the ZDP, which
is narrow and becomes dominant at high enough temperature. At the same time, the
spectrum retains a single-peaked structure at all temperatures just because the friction
is not small enough for two peaks to be resolved: the parameter γ at T = Tc (i.e. at the
onset of the ZDP) is ∼ 1 and the ZDP is step-shaped while merging, at the same time,
with the peak determined by the low energy range. In the case of the TDO, the friction
parameter should be at least a few times smaller in order for the ZDP to be resolved
from the low-energy peak. In [45], an approximately 11 times smaller value of the friction
parameter was achieved 15 (Γ ≈ 1.7× 10−3): see Fig. 15. Agreement with the theoretical
calculations using the algorithm described in sub-section 3.5 is excellent [45].

In [46], the spectra were studied experimentally for two different models, the TDO and
SQUID, and compared with the explicit expressions [48] described in sub-section 3.4
above with the aim of demonstrating the universality of the ZDP shape and its evolution
with temperature. The agreement obtained was reasonably satisfactory: see Figs. 16,17.
The observed deviations of about 30% in Fig. 16(a,b) are partly due to the exponential
sensitivity to parameters, and partly because the small parameter in the theory (x−1

m )
is in reality not very small in these cases. The absence of the plateau in the theoretical
curves in the right-hand insets in Fig. 17(a,b) is because the theoretical curves account
only for the ZDP contribution while the low-energy contribution is not included 16 (cf.
Eq. (3.4.13), which includes both contributions).

Figs. 16,17 provide a clear experimental verification of the universality of the ZDP evo-
lution, showing both types of ZDP onset: step-wise (Figs. 16(a,b)) and peak-wise (Figs.
17(a,b)). In addition, they demonstrate that the SQUID model provides a much more pro-
nounced manifestation of ZDPs than the TDO, because of the better resolution between
the frequency and energy ranges responsible for the ZDP and for the low-energy peak.
This has allowed observation of a pronounced manifestation of zero-dispesion stochastic
resonance (ZDSR) [47,56,57] in the SQUID model but not in the TDO (cf. [58], where
noise-induced growth of the signal/noise ratio was not achieved because it would have re-
quired unrealistically small values of Γ). Fig. 18 presents the results from [47], where the
spectra of the SQUID model were studied most thoroughly. The spectral evolution with
temperature demonstrates very nicely the sequential “firing” of ZDPs corresponding to
the different extrema of ω(E) (see Fig. 4). Fig. 18 also demonstrates excellent agreement
between the measured spectra and spectra calculated by the algorithm described above
in sub-section 3.5, over the whole relevant range of frequencies 17 .

15 In order to provide the required extremely small value of Γ, the corresponding feedback resistor
on the first integrator was necessarily made rather larger (∼ 100MΩ) than would normally [52–
54] be used in circuit-modelling experiments, thereby exacerbating the effect of leakage currents,
stray capacitance and other non-idealities of the components.
16 The low-energy contribution is not included since it is not universal. The major aim of [46]
was to demonstrate the universality of the evolution of the ZDP shape as T varies.
17 The theoretical calculations did not include the zero-frequency peak since it was not relevant
to ZDSR and would have required special consideration [50,51].
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3.7 Unsolved problems

Although most of the fundamental issues related to ZDPs seem already to have been
solved, there still remain some interesting open questions.

One of the hitherto unstudied problems relates to the hierarchy of ZDPs related to the
order of an extremum ω(E). The explicit expressions for the asymptotic ZDP shape and
its evolution with temperature, derived above in sub-sections 3.3 and 3.4 (Eqs. (3.3.19)
and (3.4.9) respectively), assume that d2ω(Em)/dE2

m 6= 0, which is the most frequently
occurring case in real systems. At the same time, it is possible in principle that the order
of the lowest nonzero derivative at the extremum is higher than 2 (as for an inflection
point, for instance). In this case, the shape of the ZDP will differ from (3.3.19), while still
being universal, i.e. described by a function that is independent of any parameter. Thus
the hierarchy of universal shapes of the ZDP depends on the order of the extremum of
the functions ω(E). The quantitative analysis of this hierarchy, based on the reduction
of the full Fokker-Planck equation to the asymptotic dimensionless one, and its further
solution has yet to be tackled. Following [46], we now present some qualitative estimates.

We shall suppose in this sub-section that the dependence ω(E) is power-law-like near the
extremum:

ω(E) = Ωm +
1

(1 + k)!
ω(1+k)(E − Em)1+k, k = 1, 2, 3, ... (3.7.1)

The characteristic time t
(k)
zdp for the decay of the angle correlation is determined by the

fluctuations of energy, giving rise in turn to fluctuations of the angle derivative with respect
to time dψ/dt ≈ ω(E) and, correspondingly, to a loss of the angle correlation. As in sub-

section 3.3, in order to estimate t
(k)
zdp, we need to take into account the diffusion-like growth

with time of the energy distribution (for an initially definite value of energy) [38]: ∆E(t) ∼√
ΓTp2t. Correspondingly, within the relevant range of energies, the characteristic width

of the fluctuational distribution of angles is of the order of ∆ψ(t) ∼ |ω(Em ± ∆E(t)) −
ω(Em)|t. Allowing for ∆ψ(t

(k)
zdp) ∼ π, we arrive at

t
(k)
zdp ∼

1

|ω(1+k)/(1 + k)!|
2

3+k (ΓTp2)
1+k
3+k

∝ 1

Γ
1+k
3+k

. (3.7.2)

Thus, the width of the ZDP is

∆Ω(k) ∼ 1

t
(k)
zdp

∝ Γ
1+k
3+k . (3.7.3)

The characteristic width ∆E
(k)
zdp of the band of energies near Em that are responsible for

32



the ZDP is ∼ ∆E(t
(k)
zdp), i.e.

∆E
(k)
zdp ∼

(
ΓTp2

|ω(1+k)|/(1 + k)!

) 1
3+k

∝ Γ
1

3+k . (3.7.4)

The scaling factor for the magnitude of the fundamental (i.e. at Ω = Ωm) ZDP is:

C
(k)
scale ∼

1

ZΩm

e−
Em
T |ϕ1|2∆E

(k)
zdpt

(k)
zdp ∝ Γ−

k
3+k . (3.7.5)

For the particular case k = 1, the above expressions reduce to the corresponding equations
in sub-section 3.3.

Another so far unstudied problem is the shape of the ZDP in case of coloured noise of long
correlation time tN

18 . The ZDP should typically persist but its shape may be expected
to change. But the linearity of the friction is not crucial. It is important only that the
net loss of energy within one period of oscillation should be much smaller than Em, while
details of the dependence of friction on velocity and coordinate are not very important.

Similarly, the case of multiplicative noise in ZD systems has not yet been studied.

We anticipate that the major emphasis of further investigations related to ZDPs will be
on applications to real systems, and on using ZDPs as a non-destructive method for the
determination of parameters. Given the strong sensitivity of the ZDP magnitude to Em
and T (∝ exp(−Em/T )), as well as their narrowness (∝

√
Γ) and height (∝ Γ−1/4), ZDPs

are likely to provide a convenient tool for the determination of T and/or other parameters
affecting Em or Ωm.

3.8 Conclusions

To summarize, if a ZD system is subject to noise and weak friction, then the spectrum of
its fluctuations may possess a high narrow peak (ZDP) near the extremal eigenfrequency
Ωm = ω(Em), as well as peaks at its harmonics. The origin of the ZDPs lies in a long
correlation in the angle dynamics during the motion within the narrow band of energies
near Em: diffusion of energy in this band nearly does not affect the angle (ψ ≈

∫
dt ω(E)

while dω(Em)/dEm = 0).

In the asymptotic limit of small friction Γ, the peaks become infinitely high and infinites-

18 Note that conventionally understood coloured noise, i.e. the noise with a correlation time
comparable with a characteristic period of eigenoscillation (Ω−1

m , in our case), may still be
considered as a white noise in the context of the ZDP. In order for the colour to affect the ZDP
shape, it is necessary that tN

∼
> tzdp where tzdp is given by Eq. (3.3.4) in which the product ΓT

means, in general, the noise intensity.
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imally narrow:

Qzdp ∝
1

Γ1/4
, (3.8.1)

∆Ωzdp ∝ Γ1/2, (3.8.2)

while the scaled shape reduces to the universal form S(x) (3.3.19).

The influence of temperature on ZDPs is mainly due to the activation-like dependence of
the statistical weight of the relevant energies about Em:

Qzdp ∝ e−
Em
T , (3.8.3)

Thus, at too small temperatures, ZDPs are not manifested at all on the background of
the smooth fluctuational plateau (∝ ΓT ) which is formed by low-energy oscillations with
the frequency Ω0, and the onset of the fundamental (at Ω ≈ Ωm) ZDP occurs at

T = Tc ≈
Em

5
4

ln( |Ω0−Ωm|
Γ

)
, (3.8.4)

ln(
|Ω0 − Ωm|

Γ
� 1 .

As the temperature grows, the ZDP becomes dominant over the low-energy tail in the
relevant range of Ω ≈ Ωm.

ZDPs are also manifested at a finite number of higher harmonics, such that |qn/q1| �
(Γ/Ωm)5/8. As the temperature grows from Tc to T

∼
> Em, the shape of the ZDP evolves

towards the universal form S(x). This evolution is governed by only one parameter γ
(3.4.2), which is a monotonically decreasing function of temperature: γ ∼ [(Γ/|Ωm −
Ω0|)(Em/T )3]1/4 ∝ T−3/4. If γ � 1, then the shape is close to the universal one while, if γ
increases to ∼ 1, the shape becomes step-like; with further growth of γ, the ZDP concept
loses physical sense because the low-energy contribution becomes dominant.

In the asymptotic limit Γ → 0, γc ≡ γ(Tc) → 0 so that the ZDP possesses the universal
shape S from its very onset.

The explicit expressions (3.3.19), (3.4.9) and (3.4.13) provide a qualitative understanding
of the ZDPs’ formation as well as a quantitative description in the relevant (narrow) range
of frequencies near Ωm, provided the friction parameter is very small. For an accurate
description of spectra over a broad range of frequencies, and for the full range of small
frictions (Γ/Ωm � 1), one may use a simple numerical method based on an averaging
technique (see sub-section 3.5).

The theory provides a satisfactory description of the results of experiments on analogue
electronic circuits.
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The phenomenon of ZDPs may be used for the non-destructive determination of pa-
rameters as well as providing the underlying physical basis for the phenomenon of the
zero-dispersion stochastic resonance (see sub-section 5.1. below).
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4 Periodically-driven zero-dispersion systems

Periodically driven dynamical systems are of long-standing interest both to mathemati-
cians and to other scientists, forming a subject that is fundamental and also of importance
in numerous applications.

The concept of nonlinear resonance in periodically-driven Hamiltonian systems was intro-
duced by Chirikov while studying magnetic traps [59]. It has become of seminal importance
in studies of Hamiltonian systems, especially in the context of chaos [5,35,60]. One of its
most important features is that the behaviour of a periodically driven Hamiltonian system
is to a large extent universal and described approximately by the so-called standard map
[5,35,60].

At the same time, conventional nonlinear resonance (NR) as above, and the standard
map, are valid only if they relate to the energy range where dω(E)/dE 6= 0. The dynamics
become drastically different if the resonance occurs close to an extremal energy Em where
dω(E)/dE = 0. Probably the first study of such a situation was that in [26], where
the problem of rf acceleration in particle accelerators was studied numerically and the
occurrence of a characteristic separatrix reconnection in the phase space with variation
of the parameters of the corresponding map was observed. Separatrix reconnection was
also found in relation to some other physical problems, e.g. motion of magnetic field lines
[61], wave-particle interactions [62] and laser-plasma coupling [63]. The identification of
such maps as a general class, and some analytic studies of their separatrix reconnection,
were first reported in [8]. Later, two alternative titles were established for such maps:
nonmonotonic twist maps [9] and area preserving nontwist maps [10]. They were used
in a number of papers in the context of a variety of physical problems, e.g. transport
and mixing in fluids [64,65] and dynamics of rays in optical waveguides [66]. A detailed
classification 19 of this class of maps was presented in [9,10] together with some analytic
and numerical studies of their properties, especially in the context of the breakage of
KAM trajectories and onset of global chaos.

Independently of the studies of maps, the concept of zero-dispersion nonlinear resonance
(ZDNR) was introduced in [67] via an averaging method [41]. The evolution of the phase
space (via separatrix reconnection) as the frequency of the driving force varied was then
studied analytically and numerically [68]. The authors of [67,68] were unaware of the
studies of the maps described above, so that there was a significant overlap between the
results. At the same time, even in these initial papers on ZDNR, features were found that
were not present in the earlier papers on maps. In particular, it was shown [67] that ZDNR
occured, not only within the spectrum of eigenfrequencies, but also within a restricted
band of frequencies beyond the extremal eigenfrequency 20 .

The subsequent studies of ZDNR evolved mainly in four directions that were distinctly
different from those on area preserving nontwist maps. One of these was a generalization

19 The classification relates to different types of extremum in ω(E). The analogous classification
in relation to ZDPs was done earlier in [46] (cf. also Sec. 3.7 above).
20 Nearly simultaneously, a similar feature was found [66] for maps.
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of the concept of ZDNR to the weakly dissipative case [69]. This has provided a powerful
tool for the analysis of both non-chaotic and chaotic dynamics in such systems, including
in particular a thorough local and global bifurcation analysis [70] and the generalization
of the Chirikov resonance-overlap criterion for the onset of chaos to the dissipative case
[71–73] 21 . The second direction is the study of the chaos associated with ZDNR in non-
dissipative systems: this includes both the derivation of the corresponding separatrix map
[75,71] (which is distinctly different from the conventional separatrix map [60]) and the
dramatic facilitation of the onset of global chaos in systems with more than one separa-
trix [21,76]. The third direction involves the inclusion of fluctuations [77,71,78]. Finally,
applications to various particular models which had not been studied previously in this
context were considered, such as the TDO [67–75], relativistic oscillators [30,31], SQUIDs
[79] and the 2D electron gas in a one-dimensional magnetic superlattice [20,21,76].

The material that follows in this section is based mainly on the studies of ZDNR reported
in [67–77,79,30,31,20,21].

4.1 Slow-oscillating dynamics and zero-dispersion nonlinear resonance

Consider the general case of a one-dimensional periodically driven oscillator:

ṗ = −∂H
∂q
− Γfp(q, p),

q̇ =
∂H

∂p
− Γfq(q, p),

H = H0(p, q) + hV (p, q, t), V (p, q, t) =
∞∑
l=1

Vl(p, q)cos(lωf t+ αl), (4.1.1)

where, if Γ = 0, the system is Hamiltonian whereas, if Γ > 0, then the terms proportional
to fq and fp provide the dissipation condition, i.e. a volume contraction of the phase space
with time on average.

It is convenient to transform to the canonically conjugate variables action I and angle ψ
[1,35,60] (see also eqs.(A.2)-(A.4) in Appendix):

I ≡ I(E) =

 E∫
Emin

dẼ

ω(Ẽ)


E=H0(p,q)

, ψ =

ω(E)

q∫
qmin(E)

dq̃

p(q̃, E)


E=H0(p,q)

, (4.1.2)

where

E = H0(p, q) (4.1.3)

21 The latter is still under active study [74].
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is the energy in conservative motion (Γ = 0, h = 0),

ω ≡ ω(E) = dH0/dI (4.1.4)

is the frequency of conservative motion at a given energy E; Emin is the minimal (over
all q, p) energy E ≡ H0(p, q) and qmin ≡ qmin(E) is the minimal (for given E) coordinate
q ≡ q(E, p), and q(E, p) and p(E, q) are determined from (4.1.3).

By definition, the unperturbed part of the Hamiltonian does not depend on angle, and
the periodic perturbation can be expanded into a Fourier series over ψ,

H ≡ H̃0(I) + hṼ (I, ψ, t), (4.1.5)

Ṽ (I, ψ, t) =
∞∑
l=1

∞∑
n=0

V
(n)
l (I)cos(nψ + βn)cos(lωf t+ αl).

Note that V
(n)
l is twice larger than a conventionally defined Fourier harmonic (cf. (A.5)

in Appendix); this non-conventional definition was used in [70], and we retain it here to
avoid confusion.

The dynamics (4.1.1) are expressed in I−ψ variables in the following way (cf. Appendix):

İ = −∂H
∂ψ
− Γ

ω
(
∂H0

∂p
fp +

∂H0

∂q
fq),

(4.1.6)

ψ̇ =
∂H

∂I
+ Γω(−pEfq + qEfp).

It is assumed in what follows that both the dissipation and the periodic perturbation are
small. If this were not the case, nonlinear resonance would not occur: the undriven motion
would be non-oscillatory for strong damping; and it could change its period or become
chaotic if the periodic perturbation was large.

Let us consider the range of actions (or energies, equivalently) where the resonance con-
dition holds approximately for some integers n and l,

nω(I) ≈ lωf . (4.1.7)

Introducing the slow angle

ψ̃ = nψ − lωf t+ βn − αl, (4.1.8)

using a standard averaging method [41] and some formal transformations, one can obtain
a closed set of dynamical equations for I, ψ̃ (cf. the non-dissipative case [5,35,59,60,67,68]
and some partial dissipative cases [69–73]),
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İ = −∂H
∂ψ̃
− ΓfI ,

(4.1.9)

˙̃ψ =
∂H

∂I
− Γfψ̃,

H ≡ H(I, ψ̃) =

I∫
0

dĨ (nω(Ĩ)− lωf ) +
h

2
nV

(n)
l (I)cos(ψ̃),

fI ≡ fI(I) =
1

2π

2π∫
0

dψ

(
fp
∂q

∂ψ
− fq

∂p

∂ψ

)
,

fψ̃ ≡ fψ̃(I) =
1

2π

2π∫
0

dψ n

(
−fp

∂q

∂I
+ fq

∂p

∂I

)
.

The system (4.1.9) is necessarily non-chaotic and describes slow dynamics in the vicinity
of nonlinear resonance. Note also that if the original system (4.1.1) is dissipative (Γ > 0),
then the averaged system (4.1.9) obviously displays dissipative behaviour too.

In that case, if Γ = 0 and dω/dI is distinctly non-zero in the relevant range of ac-
tions/energies near the resonant one (see the criterion below or, e.g., in [35]), the inte-
grand in the auxiliary Hamiltonian H (4.1.9) may be linearized so that the slow dynamics
reduce to pendulum motion in the space of the slow variables Ĩ − ψ̃:

H ≈ 1

2

dω(Ir)

dIr
Ĩ2 +

h

2
nV

(n)
l (Ir)cos(ψ̃), (4.1.10)

Ĩ ≡ I − Ir, nω(Ir) ≈ lωf ,

dω(Ir)/dIr 6= 0,

which describes the slow dynamics of conventional nonlinear resonance (NR) [5,35,59,60].
There are regions of the phase space where the slow angle is trapped (Fig. 19(a)), which
means that the angle of the oscillator approximately follows the angle of the external
periodic perturbation, slowly and weakly oscillating around it, while the action/energy
slowly and weakly oscillates around the resonant action/energy. The regions of trapped
ψ̃ are separated from regions of running ψ̃ by the separatrix of the heteroclinic topology.
The maximal variation of the slow angle within the trapped region is equal to 2π while
the variation of action/energy is ∝

√
h.

On the other hand, if the system is of the ZD type and the driving frequency is close to
the extremal eigenfrequency ωm ≡ ω(I = Im), then the integrand in H (4.1.9) cannot
be linearized and the slow dynamics are far different from those in the pendulum-like
auxiliary system (4.1.10). The asymptotic form of the auxiliary Hamiltonian H is then as
follows [68] (assuming the asymptotic limits ωf → ωm, I → Im and h→ 0):
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H ≈ (ωm − ωf )(I − Im) +
1

6
ω′′m(I − Im)3 +

h

2
nV

(n)
l (Im)cos(ψ̃), (4.1.11)

dω(Im)/dIm = 0, ω′′m ≡ d2ω(Im)/dI2
m.

The separatrix separating the regions of the trapped and running angle possesses the
homoclinic topology (Fig. 19(b)). The maximal variation of the slow angle within the
trapped region is typically� 2π while the variation of action is typically∝ h1/3, and hence
is larger than in the conventional case (4.1.10). In order to distinguish this behaviour from
the conventional type, it was called [67] zero-dispersion nonlinear resonance (ZDNR). The
physical reason for its being so different from NR behaviour is as follows: the variation
of action/energy in the vicinity of the extremum does not break the resonance with the
external periodic driving, because dω/dI ≈ 0 in the relevant range of actions/energies.
Consequently, the oscillation of action/energy is typically significantly larger than in the
conventional case dω/dI 6= 0 while the oscillation of angle, on the contrary, is significantly
smaller.

As parameters (e.g. the frequency or amplitude of the external periodic driving) vary,
the transition between ZDNR and NR occurs [68] via the global bifurcation known as
separatrix reconnection [26,8] (Fig. 20).

A further important step was the generalization of the concept of nonlinear resonance to
the (weakly) dissipative case. Though the constrained vibrations of dissipative systems
had been widely studied over many years (see e.g. [1,25]), their investigation by means
of the nonlinear resonance technique, including in particular the topological analysis of
basins of attraction, was introduced more recently in [77,69]. Such an analysis has proved
to be highly informative and important for a variety of applications [69–74,77–79].

In the dissipative case, a 2D dynamical system possesses attractors so that the phase space
is divided into different basins of attraction, unlike the non-dissipative case (in which ellip-
tic points and separatrices are relevant). At the same time, similarly to the non-dissipative
case, the difference in angle between the corresponding stable and unstable points (at-
tractor and saddle respectively) is ≈ 0 and ≈ π, for ZDNR and NR respectively (cf. Figs.
21(a,b) and Figs. 21(c-e) respectively). The dissipative analogue of the ZDNR/NR tran-
sition occurs [77,69] via the global bifurcation known as saddle connection [80], which is
illustrated in Figs. 21(b,c).

Typically, there are also other global bifurcations in the system. A detailed bifurcation
analysis for one characteristic example is presented in the next sub-section (mainly fol-
lowing [70]). It should be noted that the global bifurcations may become particularly
important if external noise is added, as indicated in [77,69,71] (see also sub-section 5.5
below). The ZDNR/NR transition also seems to play an important role in the onset of
certain chaotic attractors [73,74] (see also sub-section 4.4. below).
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4.2 Bifurcation analysis

Our goal will be to find and classify all the local and global bifurcations of (4.1.9) in
the space of the driving force parameters (h and ωf ), keeping all other parameters fixed,
including Γ. We shall illustrate our general qualitative analysis by making numerical
calculations for a concrete example of a ZD system with particular types of periodic per-
turbation and dissipative terms. Strictly, the analysis is applicable only for small h where
the averaging method is valid and (4.1.9) therefore provides an adequate approximation
for (4.1.1). In order that the most interesting bifurcations of (4.1.9) should occur in this
range, we must choose an example ZD system for which the variation of eigenfrequency in
the range of energies between Emin and the extremal energy (or, equivalently, for actions
between zero and the extremal action) is much less than the frequency itself. We empha-
size, however, that the qualitative features of our analysis – and some of the quantitative
ones too in the range of small h – remain valid even if the latter condition is not satisfied.

We choose to consider the archetypal example of a ZD system provided by the tilted
Duffing oscillator (see sub-section 2.3),

H0(p, q) =
p2

2
+ U(q), (4.2.1)

U(q) =
1

2
ω2

0q
2 +

1

3
βq3 +

1

4
γq4,

9

10
<

β2

γω2
0

< 4,

with ω0 = 1, β = 5/3, γ = 1 (cf. a similar U(q) in Fig. 9(a)). The dependence of ω on
I is shown in Fig. 22: it exhibits a minimum of ωm = 0.805 at Im = 0.187. As required,

the variation of eigenfrequency in the range I
∼
< Im is much less than the eigenfrequency

itself in this range. The perturbation and the dissipative 22 terms, that we will consider
are respectively

V = −q cos(ωf t),

(4.2.2)

fq = 0, fp = p.

Thus, the original system becomes a nonlinear oscillator with cubic and quartic nonlin-
earities subject to a cosine driving force and a linear friction,

q̈ + Γq̇ + ω2
0q + βq2 + γq4 = h cos(ωf t). (4.2.3)

22 A linear friction reflects the most general properties of dissipation. We comment, however,
that more complicated behaviour is possible for dissipative terms of greater complexity, e.g. the
coexistence of attractors, repellers and regions of conservative motion [81]. We do not consider
such cases here, because they lack generality, but it would be interesting to investigate them in
the future.
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We shall consider wf close to ωm and the range of actions I ∼ Im so that n = 1 in (4.1.7)
is relevant (l = 1 from the definition of the perturbation V in (4.2.2)) i.e. we shall consider
the nonlinear resonance of the 1st order. The equations (4.1.9) for the averaged system
may then be reduced for the system (4.2.3) to the following form:

İ = −∂H
∂ψ̃
− ΓI, ˙̃ψ =

∂H

∂I
, (4.2.4)

H =

I∫
0

dĨ (ω(Ĩ)− ωf )− hq1(I) cos(ψ̃),

where q1 is a modulus of the first Fourier component in the expansion (A.5) of q as a
function of action and angle (note that the normalization of components in the expansion
(A.5) differs by a factor of 2 from that in the expansion (4.1.5)).

4.2.1 Local bifurcation analysis

Allowing for the fact that

q1(0) = 0, (4.2.5)

the stationary points of (4.2.4) can be of the four types

I
(1,2)
st = 0, ψ̃st

(1)
=
π

2
, ψ̃st

(2)
= −π

2
,

(4.2.6)

ψ̃st
(3)

= − arcsin

 ΓI
(3)
st

hq1(I
(3)
st )

 , ψ̃st
(4)

= arcsin

 ΓI
(4)
st

hq1(I
(4)
st )

− π,

where I
(3,4)
st are determined by the equations

ω(I
(3,4)
st )− ωf = ±hdq1(I

(3,4)
st )

dI
(3,4)
st

√√√√√1−

 ΓI
(3,4)
st

hq1(I
(3,4)
st )

2

, (4.2.7)

and the + and − correspond to I
(3)
st and I

(4)
st respectively.

The 1st and 2nd types of stationary point are unstable; the stability of the 3rd and 4th
ones is determined by the condition (cf. [68])

±

 d
dI

ω − ωf ∓ hdq1

dI

√√√√1−
(

ΓI

hq1

)2


Ist

> 0, (4.2.8)
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where the + and – again correspond to I
(3)
st and I

(4)
st respectively (see Fig. 23).

Typically, the maximum (for any choice of driving force parameters) number of solutions
for equations (4.2.7) is five 23 , three of which are stable and two unstable.

Figs. 24(a) and 24(b) plot the bifurcation diagrams for the non-dissipative (Γ=0) and
dissipative (Γ 6= 0) cases respectively. The black lines indicate the onset/disappearance of
stable points. They have been obtained from the condition that the curves corresponding
to the left-hand and right-hand sides of (4.2.7) touch, rather than cross, each other (cf.
Fig. 23). After some manipulation, they can be written in parametric form as

ωf = ω − 1

2

(dq1/dI)(dω/dI)

d2q1/dI2

1±

√√√√1 +
2(dq1/dI)(d2q1/dI2)Γ2[d(I/q1)2/dI]

(dω/dI)2

 ,
h =

√√√√(ω − ωf
dq1/dI

)2

+

(
ΓI

q1

)2

, (4.2.9)

dq1

dI

d2ω

dI2
(ω − ωf )

>
< 0.

Here, I plays the role of the parameter and > and < correspond to the full and dashed
lines respectively. The analysis demonstrates (cf. Fig. 24(b)) that, for Γ 6= 0, the full line
has two cusps, whereas the dashed line has only one cusp. One can derive asymptotic
formulae for the positions of the cusps. Those for the full line are

ω
(1)
f ≈ ω0 −

√
3

2
Γ, h(1) ≈ 2Γ3/2√

3
√

3 |[dω/dI]I=0|
,

(4.2.10)

ω
(2)
f ≈

[
ω − (dq1/dI)(dω/dI

d2q1/dI2

]
Ie

, h(2) ≈
[
dω/dI

d2q1/dI2

]
Ie

where Ie is a solution of the equation

dω

dI
=

(
dq1/dI

d2q1/dI2

)
d2ω

dI2
. (4.2.11)

For the dashed line, the cusp occurs at

23 We do not consider here the particular (in practice, rare) case where there are oscillations near
the extremum or other complicated behaviour of ω(I), when the number of solutions of (4.2.7)
can be larger. Such a sophisticated ω(I) is not valid for the relevant example (4.2.1) anyway.
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ω
(3)
f ≈ ωm +

1

25/3

(dq1/dI)
√
|d(I/q1)2/dI|

(|d2ω/dI2|)1/4


Im

Γ

4/3

,

(4.2.12)

h(3) ≈

ΓI

q1

1 +
1

2

ω(3)
f − ωm
dq1/dI

q1

ΓI

2


Im

.

There is a separation ∆ω,∆h between the full line and the cusp of the dashed line, as
shown by the inset of Fig. 24 (b),

∆ω ∼ ω
(3)
f − ωm ∝ Γ4/3,

(4.2.13)

∆h ∼ (∆ω)2

Γ

[
q1

I(dq1/dI)2

]
Im

∝ Γ5/3.

This separation tends to zero as Γ→ 0 (cf. Fig. 24(a)).

Within the region bounded by the full line (except very close to its right and left cusps),
point S1 in Fig. 2 is well separated in action from S2 and S3. The responses corresponding
to S2 and S3 are always strongly nonlinear. The response corresponding to S1 is linear in
the region far below the upper part of the full line, although it becomes nonlinear as the
line is approached. However, it remains significantly smaller than S2/S3 and, in order to
distinguish S1 from S2/S3, we shall refer to it as “linear” within the whole area within
the full line.

The full line of Fig. 24 bounds the region within which both the linear, and one or both of
the nonlinear, responses can exist: the upper part marks the boundary of linear response;
and the lower part that of the nonlinear ones. The area between the upper and lower
parts of the dashed line is the region where both nonlinear responses coexist. Note that,
for Γ=0, the lower part of the dashed line merges into the part of the abscissa axis lying
to the right of ωm, while part of the full line merges into the segment of abscissa axis lying
between ωm and ω0.

We now carry out a global bifurcation analysis, treating the non-dissipative and dissipative
cases separately in Secs. 4.2.2 and 4.2.3 respectively.

4.2.2 Global bifurcation analysis for the non-dissipative case

In the non-dissipative case, equations (4.2.4) are purely Hamiltonian, so that the quasi-
energy H is conserved. Consequently, trajectories in the vicinity of stable points are closed
(elliptic) orbits. Such regions are separated from each other, or from regions with open
trajectories, by separatrices that include unstable fixed points.
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Figure 25 shows an example of how the phase space evolves with increase of the driving
force frequency. One can see the consequences of two global bifurcations: the topology
of the separatrices changes between (a) and (b), and again between (b) and (c). These
bifurcations are of the separatrix reconnection type [8]. The first one, which results from
a reconnection of the separatrices passing through the unstable fixed points marked 24 as
g and o, respectively, is the ZDNR/NR transition [68]: Fig. 25(a) represents the ZDNR
stage, and Fig. 25(b) the NR one. This transition is indicated by the full green line on the
bifurcation diagram, Fig. 24(a). The second bifurcation, between Figs. 25(b) and 25(c),
results from a reconnection of the separatrices passing through the points marked as g
and o respectively. It is indicated by the yellow line in Fig. 24(a). Yet another possible
reconnection may occur between the separatrices passing through the points marked as g
and y respectively. It is indicated by the brown line in Fig. 24(a).

These three types of separatrix reconnection exhaust all possible types in the present case:
the maximum number of reconnections is equal to 25

n(nondis)
max = C2

3 ≡ 3, (4.2.14)

using[82] the binomial coefficient Ci
j = j!

i!(j−i)! .

4.2.3 Global bifurcation analysis for the dissipative case

In the dissipative case, the stable points are true attractors. Consequently, we have bound-
aries of basins of attraction (see Fig. 26) in place of the separatrices of the non-dissipative
case. These boundaries include unstable fixed points (either saddles or similar, but non-
hyperbolic, points). Correspondingly, the separatrix reconnection of the non-dissipative
case is exchanged for the more general heteroclinic orbit [80], connecting unstable points.

It follows from the analysis of sub-section 4.2.1 (see eqs.(4.2.6)–(4.2.8) and footnote 23)
that the maximum number of unstable fixed points is equal to 4. Note, however, that
as in the non-dissipative case, the two unstable points with I=0 (see (4.2.6)) are always
connected to each other and, moreover, that the direction of their connection is always the
same. Thus, in the classification of heteroclinic orbits they should be considered a single
unit. Note also that, unlike a separatrix reconnection, a heteroclinic orbit is characterised
both by a pair of connected points and by the direction of the connection. Thus, the
maximum number of different types of heteroclinic orbit in the system is

n(dis)
max = 2× C2

3 ≡ 6. (4.2.15)

24 In the original paper [70], on which the present sub-section is based, the unstable points were
marked in the corresponding figure by different colours. Here, being restricted financially, we
present the figure in black-and-white, using instead of the green, orange and yellow colours the
markers g, o and y respectively.
25 Although there are formally 4 types of unstable fixed point, the lower index of the binomial
coefficient in (4.2.15) is taken as 3 because both types of points marked as y (I = 0, ψ̃ = ±π/2)
are always connected by a separatrix and cannot be reconnected with other unstable points
independently of each other.
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Using the notation o, g respectively for the unstable fixed points corresponding to U1, U2
in Fig. 23 (which are indicated in Fig. 26 by orange and green dots respectively), y for
points with I=0 (yellow dots in Fig. 26), and indicating the direction of a connection with
an arrow, the set of possible heteroclinic orbits can be classified 26 as

(1) o→ g; (2) g → o;

(3) o→ y; (4) y → o; (4.2.16)

(5) g → y; (6) y → g.

We now discuss each of them separately –

(1) o → g corresponds to the ZDNR/NR transition [77,69,71], analogous to the corre-
sponding transition in the non-dissipative case. This bifurcation is indicated by the
full green line in the bifurcation diagram Fig. 24(b).

(2) g → o corresponds to the bifurcation between configurations where the basin of
attraction of one of the nonlinear resonances encompasses the other one, or where it
passes around it [77,69,71]. This type of bifurcation is indicated by the orange lines
in Fig. 24(b) 27 . It has no analogue in the non-dissipative case.

(3) o → y corresponds to the jump by 2π of the end of the trajectory emerging from
the orange saddle, i.e. the jump between adjacent linear response attractors: see e.g.
Figs. 26(a) and (b). This type of bifurcation is indicated by red lines in Fig. 24(b).
It has no analogue in the non-dissipative case.

(4) y → o corresponds to the change between the boundary including the orange saddle
(Fig. 26) encompassing either the nonlinear attractor(s) or linear attractor: see e.g.
the change between Figs. 26(b) and 26(c). This type of bifurcation is indicated by
the yellow line in Fig. 24(b). The analogous bifurcation for the non-dissipative case
is shown by the yellow line in Fig. 24(a).

(5) g → y corresponds to the jump by 2π of the end of the trajectory emerging from the
green saddle. The trajectory can end either in a linear response attractor, if the latter
exists and if the trajectory is not trapped by the nonlinear response attractor (full
blue lines in the bifurcation diagram Fig. 24(b)), or in a nonlinear one when linear
response is encompassed by a red boundary (cf. Fig. 26(c)), or does not exist at all
(dashed blue lines) 28 . This type of bifurcation has no analogue in the non-dissipative
case.

(6) y → g is analogous to y → o. It is indicated in Fig. 24(b) by the brown line which
starts where the ZDNR/NR line crosses the yellow line. Its non-dissipative analogue
is shown by the brown line in Fig. 24(a).

Points where global bifurcation lines intersect or meet each other correspond to more
complicated connections. These and other interesting features of the diagram (e.g. the

26 We should note that the o, g points are saddles while the y points are non-hyperbolic unstable
fixed points.
27 For small enough Γ, there will be additional orange lines in the ZDNR region, i.e. above the
full green line, but below the upper parts of the dashed and full black lines.
28 For small enough Γ, additional blue lines can exist above the green and brown lines, but below
the upper part of the dashed black line.
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yellow staircase) would be interesting to study in the future in more detail.

4.2.4 Discussion

We now discuss the characteristic differences between the bifurcation diagrams of ZD
systems, and those of the conventionally considered kind of system in which there is no
extremum in the variation of eigenfrequency with energy or, equivalently, action. We also
consider the physical consequences that may be expected to result from the bifurcations
of the averaged system discussed above.

It is immediately evident that a system with an extremum in ω(I) is much richer in terms
of bifurcations than a system without one. In fact, the only global bifurcation in the
standard system with monotonic ω(I) is the one corresponding to the yellow lines of Fig.
24 (cf. [83]). Most features of the local bifurcation lines (the cusps, separatrices, etc) are
peculiar to the system with an extremum – the exception being the cusp near ω0 ≡ ω(0),
which also exists for systems with monotonic ω(I).

We now consider the physical significance of the various bifurcations.

Local bifurcations are important because they correspond to the onset/disappearance of
the different regimes of oscillation and, unlike the case of monotonic ω(I), three rather
than two regimes are typically possible. The overlap of resonances of different order leads
to the onset of global chaos in the non-dissipative case [5] (see also sub-section 4.3 below)
and may lead to the onset of chaotic attractors in the dissipative case [72–74] (see also
sub-section 4.4 below).

Global bifurcations in the absence of dissipation have two main effects. On the one hand,
they change certain topological properties of the slow dynamics (an example of such
changes in the Poincaré section is shown in Fig. 27); and, on the other hand, they result
in changes in the structure of the chaotic layers associated with nonlinear resonances (cf.
[75,71] as well as sub-section 4.3.1 below) and facilitate chaotic transport (cf. [76] as well
as subsection 4.3.2 below).

Global bifurcations in the presence of dissipation may play some role in the onset of
chaotic attractors [73,74] (see also sub-section 4.4 below). They also play an important
role in the case when the system is additionally driven by a weak noise 29 . Indeed, if
the noise is weak, then fluctuational transitions occur with overwhelming probability via
unstable fixed points (see e.g. [2–4] as well as sub-section 5.4 below). Thus their connec-
tions should influence profoundly the fluctuational transitions between attractors of the
dynamical system. Those that occur via yellow points (Fig. 26), however, result only in
a change of the angle by 2π which is usually not observable in physical systems 30 . In

29 Given that noise in real systems is always associated with dissipation, only the dissipative
(rather than the non-dissipative) case is relevant to the problem of fluctuations.
30 There are, however, circumstances in which these transitions could be both observable and
important. For example, phase slips of this kind represent highly undesirable events in voltage
standards based on SQUIDs, and in memory cells [15], so that it is important to understand
their probability.
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relation to fluctuational transitions, therefore, the most important global bifurcations are
those that do not involve the yellow points, i.e. the ZDNR/NR transition (o → g) and
the encompassing/passing-around transition (g → o). Of these two, the ZDNR/NR tran-
sition is of particular interest: first because the most pronounced change in fluctuational
transition rates is to be expected; and, secondly, because the associated repopulation of
the nonlinear resonances for small h gives rise to dramatic characteristic changes in the
fluctuation spectra [77,71] (see also sub-section 5.5 below).

Given the importance of the ZDNR/NR transition, we present below the asymptotic

formula for the frequency ω
(tr)
f ≡ ω

(tr)
f (h) at which the transition occurs [69] (valid both

for the dissipative and non-dissipative cases, beyond the close vicinity of the cusp):

ω
(tr)
f = ωm + sgn(ω′′m)(|ω′′m|/2)

1
3

[
3

2
hq1(Im){(1− η2)

1
2 − η(

π

2
− arcsin(η))}

] 2
3

,(4.2.17)

η ≡ ΓIm
hq1(Im)

< 1,

[
Γ

|ω′′m|I2
m

] 2
3

�

ω(tr)
f − ωm
ω′′mI

2
m

 1
2

� 1.

4.3 Chaos in the absence of dissipation

Describing in the previous sub-sections of Sec. 4 the slow dynamics of the periodically
driven system, we neglected fast-oscillating terms in dynamical equations for action I and
for the shift of the angle from the angle of the periodic driving, ψ̃. Provided the periodic
driving (perturbation) is weak, such neglect is justified throughout the major part of
the phase space: the fast-oscillating terms have only a slight effect on the motion [41].
However in the absence of dissipation, there are necessarily regions in the phase space
where the influence of the fast-oscillating terms is inherently important, however weak
the periodic perturbation is: the thin layers around the separatrices of the slow dynamics
are necessarily chaotic [5,35,60]: it is called local chaos [5,35,60]. The width and some
other features of the layer are described by the corresponding separatrix map. However,
the separatrix maps for conventional NR [5,35,60] and ZDNR [75,71] are quite different.
Correspondingly, the widths of the layers and their structure on the whole are different as
well. Some initial analytic and numerical study of local chaos in ZDNR has been reported
[75,71] and is described below in sub-section 4.3.1.

If the amplitude of the perturbation grows the width of the layers grows as well and,
at some stage, different layers merge, which typically marks the onset of global chaos
[5,35,60], characterized by a chaotic motion within a large region of the phase space.
However the onset of global chaos in ZD systems has distinct differences [75,71,76] from
this scenario, which are described below in sub-section 4.3.2.

4.3.1 Local chaos in ZDNR

We shall derive the separatrix maps for ZDNR by following the same scheme as was used
in [35] for the case of the conventional NR. For the sake of brevity and clarity, we shall
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assume some simplification for the periodic perturbation. Namely, we shall consider the
case when Ṽ in (4.1.5) has only the term corresponding to l = n = 1. Moreover, we shall

assume that V
(1)

1 does not depend on I. In fact, these simplifications are often still valid
in a more general case (at least if one considers the 1st-order resonance, i.e. the range
of I where (4.1.7) holds for l = n = 1). As for other cases, the results can readily be
generalized and, at the end of the present sub-section, we shall outline how this may be
done.

So, let us now consider the perturbed Hamiltonian (cf. (4.1.5))

H = H̃0(I) + hV
(1)

1 cos(ψ + β1)cos(ωf t+ α1), (4.3.1)

where H̃0(I) is a Hamiltonian of some ZD system, i.e. the eigenfrequency ω(I) ≡ ∂H̃0/∂I
possesses a maximum or a minimum at some action Im.

The dynamics of the action I and slow angle (4.1.8) (note that l = n = 1 in our case) are
also Hamiltonian:

İ = −∂(H + V )

∂ψ̃
,

(4.3.2)

˙̃ψ =
∂(H + V )

∂I
,

H =

I∫
0

dĨ (ω(Ĩ)− ωf ) +
h

2
V

(1)
1 cos(ψ̃),

V =
1

2
hV

(1)
1 cos(ψ̃ + 2ωf t+ 2α1).

It should be emphasized that, unlike (4.1.9) (where averaging was used), the Hamiltonian
H + V (4.3.2) is strictly equivalent to (4.3.1).

Let us consider the dynamics of the averaged energy E ≡ H,

Ė = [H, (H + V )] = [H, V ] = −∂H
∂I

∂V

∂ψ̃
. (4.3.3)

The brackets [...] imply Poisson brackets [1], and ψ̃, I are respectively the generalized
coordinate and momentum for the system (4.3.2).

Let us consider the motion near one of the separatrices related to the averaged Hamiltonian
H(I, ψ̃) (4.3.2). Typical “unperturbed” (i.e. at V = 0) trajectories are shown in Fig.
19(b). Apart from the separatrix itself, there are three different types of such unperturbed
trajectory: (i) trajectories inside any of the loops of the separatrix; (ii) those outside the
loops, passing the part of the separatrix connecting saddles on the side opposite to the
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loops (in the case shown in Fig. 19(b), such trajectories pass below the loops); and (iii)
those outside the loops, passing the part of the separatrix connecting saddles on the same
side as the loops (in the case shown in Fig. 19(b), such trajectories pass above the loops).
The most important feature of such trajectories in the present context is that the system
remains near the saddles for most of time , where ∂H/∂I = 0 by definition. Characteristic
examples of the dependence of ∂H/∂I on time along a perturbed trajectory are shown in
Fig. 28. Such a dependence consists of a succession of relatively short pulses between
which ∂H/∂I rests nearly at zero. The pulses repeat each other and the corresponding
pulses on the “unperturbed” trajectories nearly identically 31 . The duration of each pulse,
Tp, is of the order of the period of eigenoscillation in the local minimum of the averaged
Hamiltonian H(I, ψ̃),

Tp ∼ ω̃−1
0 , (4.3.4)

ω̃0 ≡
√
hV

(1)
1

√
ω′′m(ωf − ωm)/2.

The intervals between successive pulses are much longer than their duration, and depend
strongly on the “energy” E, which almost does not change during the intervals between
pulses: it follows from (4.3.3) that the major change of E occurs during a pulse of ∂H/∂I.
As E approaches its value on the separatrix, which is equal in the case of H to

Es =

Ir∫
0

dĨ (ω(Ĩ)− ωf )±
h

2
V

(1)
1 cos(ψ̃), ω(Ir) ≡ ωf , (4.3.5)

then the interval between the pulses on the unperturbed trajectory (i.e. at V = 0 in
(4.3.2)) diverges, being described by the asymptotic formula 32

Tint ≡ Tint(|E − Es|) ≈ (πω̃0)−1 ln(
hV

(1)
1

|E − Es|
), (4.3.6)

|E − Es|/(hV (1)
1 )� 1.

Let us now turn namely to the construction of the separatrix map. With this aim, we
shall transform from the description of the system in terms of I − ψ̃ to the equivalent
description in terms of “energy” E and time t. Let us characterize the dynamics by a series
of pairs of these quantities (Ek, tk) chosen just before pulses of ∂H/∂I and enumerated
in increasing time: see Fig. 28. The map relating each pair to the previous one is different
for different regions in the vicinity of the separatrix.

31 In the case of motion similar to type (iii) described above, two different types of the pulse
alternate: cf. Fig. 28(c).
32 In the range of non-small |E − Es|/(hV (1)

1 ), the dependence of Tint on E is different for the
different types of trajectory described above. The dependences reduce to the same asymptote,
however, as E → Es.
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1. For the trajectories inside or below 33 the loop (Figs. 28(a) and 28(b) respectively),

Ek+1 ≈ Ek + ∆E
(1,2)
k ,

(4.3.7)

tk+1 ≈ tk + Tint|E=Ek+1
,

where

∆E
(1,2)

k = −
tk+∆t∫
tk

dt

(
∂H

∂I

)(1,2) (
∂V

∂ψ̃

)(1,2)

, (4.3.8)

and the superscripts (1) and (2) relate to the trajectories respectively inside and below
the loops, while ∆t is chosen so that

Tp ≤ ∆t ≤ Tint|E=Ek+1
. (4.3.9)

∆Ek is almost independent of ∆t within the range (4.3.9). The dependence on Ek is also
very weak, so that it may be calculated approximately along the corresponding piece
of separatrix: along the loop, for the trajectories inside the loop; and along the section
connecting adjacent saddles, for the trajectories below the loops. We now substitute
V (4.3.2) into (4.3.8), allow for the fact that, on the separatrix, ∂H/∂I and ψ̃ are
respectively even and odd functions of t−(tk+Tp/2) 34 (see Figs. 28(a,b)), and introduce
the auxiliary variable

ϕk ≡ 2ωf (tk + Tp/2) + 2α1 (4.3.10)

(which represents twice the angle of the perturbation taken at the instant when the
pulse of ∂H/∂I passes its centre). We thus obtain

∆E
(1,2)

k = ∆E
(1,2)

s sin(ϕk), (4.3.11)

∆E
(1,2)

s =
h

2
V

(1)
1

∞∫
−∞

dt

(
∂H

∂I

)(1,2)

s

cos(ψ̃(1,2)
s (t) + 2ωf t),

where the s subscript means that all dynamical functions are to be evaluated on the
separatrix, while the zero of t is chosen so that it marks the centre of the corresponding
pulse of ∂H/∂I which implies, in particular, that ψ̃s(0) = 0 or ψ̃s(0) = π, for the
superscript (1) or (2) respectively. Given that the characteristic time-scale of the pulse

Tp ∼ ω̃−1
0 � ω−1

f , the quantities ∆E
(1,2)
s are exponentially small, i.e. ∝ exp(−aωf/ω̃0)

where a is some positive number ∼ 1 (cf. the case of the chaotic layer for the pendulum
[5,35,60]). The explicit expressions have not so far been found.

33 Here and in the rest of sub-section 4.3.1, we shall refer for the sake of clarity just to the
separatrix shown in Fig. 19(b), in which the loops are directed “up”; correspondingly, the types
of trajectory referred to above as “(ii)” or “(iii)” will be described for the sake of brevity as
being below or above the loops respectively.
34 The instant t− (tk + Tp/2) relates to the centre of the corresponding pulse ∂H/∂I(t) and, at
the same time, to ψ̃ being equal to either 0 or π, depending on the type of separatrix and on
the relevant bit of the separatrix (cf. Fig. 19(b)).
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Using also the asymptotic expression (4.3.6) for Tint, we derive the final represen-
tation of the ZDNR separatrix map for trajectories either inside or below any of the
separatrix loops, they are distinguished below by means of the superscripts, (1) and (2)
respectively:

E
(1,2)

k+1 = E
(1,2)

k + ∆E
(1,2)

s sin(ϕ
(1,2)
k ),

(4.3.12)

ϕ
(1,2)
k+1 = ϕ

(1,2)
k + A ln

 B∣∣∣∣E(1,2)
k − Es + ∆E

(1,2)
s sin(ϕ

(1,2)
k )

∣∣∣∣
 ,

A =
2ωf
πω̃0

, B = hV
(1)

1 .

The general form of these maps coincides with the conventional separatrix map [5,35,60].

The difference lies only in the coefficients ∆E
(1,2)

s , A, B. It is well known [5,35,60] that,
if |E − Es| is large enough, then all iterations of the map are rather regular. But if E

lies within a layer around Es of width ∼ ∆E
(1,2)
s then the motion becomes chaotic i.e.

(Ek, ϕk) change from one iteration to the next in a seemingly random manner.
2. For the trajectories above the loop, the two different shapes of pulses of ∂H/∂I alternate

(Fig. 28(c)). Correspondingly, it is convenient to consider two series, (E
(1)
k , ϕ

(1)
k ) and

(E
(2)
k , ϕ

(2)
k ), relating to the different types of pulses. In order to obtain a closed map for

each of the series, one should make two iterations, unlike the case of trajectories inside
or below the loops (where just one iteration was enough). As a result, one obtains the

following maps for (E
(1,2)
k , ϕ

(1,2)
k ).

E
(1,2)

k+1 = E
(1,2)

k + ∆E
(1,2)

s sin(ϕ
(1,2)
k ) + (4.3.13)

∆E
(2,1)
s sin

ϕ(1,2)
k + A ln

 B∣∣∣∣E(1,2)
k − Esep + ∆E

(1,2)
s sin(ϕ

(1,2)
k )

∣∣∣∣

 ,

ϕ
(1,2)
k+1 = ϕ

(1,2)
k + A ln

 B2∣∣∣∣E(1,2)

k − Es + ∆E
(1,2)

s sin(ϕk)
∣∣∣∣ ∣∣∣∣E(1,2)

k+1 − Es

∣∣∣∣
 .

Though these maps are more complicated than the maps (4.3.12), their major quali-
tative feature, namely chaos in a thin layer near the separatrix, is similar: the series

(E
(1,2)

k , ϕ
(1,2)
k ) change in a random-like fashion if E deviates from Es for values smaller

than some critical value ∼ max(∆E
(1)
s ,∆E

(2)
s ).

It is obvious that the derivation of the separatrix maps (4.3.12), (4.3.13) for the system
(4.3.1) can be easily generalized for a more general perturbation. Indeed, the perturba-

tion’s independence of I is not fundamental: if V
(1)

1 depends on I, the corrections to the
maps can be shown to be typically exponentially smaller than principal terms. For a per-
turbation that has more than one harmonic, a situation can arise such that the term which
makes the major contribution to the slow dynamics, and the term playing the major role
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in the formation of the chaotic layer, are not the same. To obtain the correct map, one
should keep in the non-resonant perturbation V the term of smallest possible frequency
since other terms result only in exponentially smaller contributions: cf. the estimation

of ∆E
(1,2)

s (ωf ) above. For example, if the original perturbation (i.e. the perturbation in

(4.3.1)) had also a 2nd harmonic, hV
(2)

1 (I)cos(2ψ + β2)cos(ωf t+ α1), then the perturba-
tion in the representation (4.3.2) would have in particular a term ∝ cos(2ψ̃ + ωf t). The

frequency of oscillation of this term is less than half that of the term ∝ V
(1)

1 (cf. (4.3.2)),
and hence its effect on the formation of the chaotic layer would be exponentially larger.

We emphasize at the same time that the general forms of the ZDNR separatrix maps (i.e.
(4.3.13) and two first lines in (4.3.12)) are the same for all types of perturbation; only the

coefficients (i.e. A, B, ∆E
(1,2)

s ) depend on the detailed form of the perturbation.

Thus, we may conclude from this sub-section that, though there is much in common in
the origins of the local chaos in ZDNR and NR, the chaotic layers are very different: the
dependences of their widths on the parameters of perturbation are significantly different
in the cases of NR and ZDNR. Unlike the conventional (NR) case, the layers in ZDNR
are strongly asymmetric, and probably strongly inhomogeneous, because their different
parts are described by different maps. It would be interesting to study them in detail,
both analytically and numerically.

Some very preliminary studies of the chaotic layers associated with ZDNR were reported
in [75,71]. Numerical studies of local chaos in nonmonotonic twist maps are described in
[8–10,64–66].

4.3.2 Global chaos

Global chaos, i.e. chaos throughout a large region of the phase space, is conventionally
taken to occur when at least two nonlinear resonances overlap in energy: this is the essence
of the celebrated empirical Chirikov resonance-overlap criterion [5,35,60]. However, global
chaos may arise differently in ZD systems: if the resonances are of the same order, then
neither their overlap in energy, nor even their overlap in phase space, need necessarily
result in the onset of global chaos; rather, the overlap in phase space results in recon-
nection of the thin chaotic layers associated with the resonances while, as the amplitude
of the periodic perturbation grows further, the layers separate again but with a different
topology: cf. Fig. 29(a).

For global chaos to occur in a ZD system, nonlinear resonances of different order should
overlap (in energy), which typically requires a much stronger perturbation than for the
overlap of resonances of the same order: cf. Fig. 29(a) and Fig. 29(b).

On the other hand, it can happen in a ZD system that the overlap in energy between
different-order resonances, and the overlap in the phase space between resonances of the
same order, are combined resulting in the onset of global chaos, either in a very pronounced
form, or at unusually small amplitudes of perturbation. We demonstrate this in detail for
a system with more than one separatrix, since the effect is at its most pronounced in

53



precisely such systems. Moreover, if the system is periodic, then the effect provides a
drastic increase of the accessible energy range in unbounded chaotic transport.

Our presentation mostly follows the work [76]. So, as an example of a Hamiltonian system
possessing more than one separatrix, consider (2.2.5)-(2.2.6) with Φ < 1 (Fig. 5(a)),
which describes e.g. a 2D electron gas in a one-dimensional periodic magnetic field [20,21]
(see also sub-section 2.2 above). The separatrices in the momentum-coordinate plane are
shown in Fig. 30: they correspond to motion with energies equal to the corresponding
barrier heights. The eigenfrequency possesses a local maximum (ωm ≈ 0.43) as a function
of energy/action: see Fig. 5(c). If, additionally, a periodic electric force is applied in the
same direction as that in which the magnetic field is periodic, then the system is equivalent
to a Hamiltonian one with an additive time-periodic perturbation,

ṗ = −∂(H + V )

∂q
, q̇ =

∂(H + V )

∂p
,

H = p2/2 + (Φ− sin(q))2/2, Φ = 0.2, (4.3.14)

V = −hq cos(ωf t).

Let us first consider the evolution of chaos as h grows while ωf remains fixed at some
arbitrarily chosen value beyond the immediate vicinity of ωm and its harmonics. It is well
illustrated by Fig. 31. At small h, there are two thin chaotic layers, around the inner
and outer separatrices of the undriven system. Note that unbounded chaotic transport
takes place only in the outer chaotic layer i.e. in a narrow energy range. As h grows,
so also do the layers until, at some (typically non-small) critical value hgc ≡ hgc(ωf ),
they merge. This event may be considered as the onset of global chaos: the whole range
of energies between the barriers heights then becomes involved in unbounded chaotic
transport. Note that the states {I(l)} ≡ {p = 0, q = π/2 + 2πl} and {O(l)} ≡ {p =
0, q = −π/2 + 2πl} (where l = 0,±1,±2, ...) in the stroboscopic (for instants n2π/ωf
with n = 0, 1, 2, ...) Poincaré section are associated respectively with the inner and outer
saddles of the undriven system, and necessarily belong to the inner and outer chaotic
layers respectively. Thus, the necessary and sufficient condition for global chaos to arise
in our system may be formulated e.g. as the possibility of the system placed initially in
the state {I(0)} passing beyond the neighbouring “outer” states, {O(0)} and {O(1)}, i.e.
the possibility of q(t� 2π/ωf ) becoming smaller than −π/2 or larger than 3π/2.

A diagram in the h − ωf plane, based on the above criterion, is shown in Fig. 32. The
lower boundary of the shaded area represents the function hgc(ωf ). It has deep cusp-like
minima (spikes) at frequencies ωf = ω(n)

s that are slightly less than the odd multiples of
ωm,

ω(n)
s ≈ ωm(2n− 1), n = 1, 2, ... (4.3.15)

The deepest minimum occurs at ω(1)
s ≈ ωm: hgc(ω

(1)
s ) is approximately 40 times smaller

than in the neighbouring pronounced local maximum of hgc(ωf ) at ωf ≈ 1. As n increases,
the corresponding minimum becomes less deep. The origin of the spikes becomes obvious
from the analysis of the evolution of the Poincaré section as h grows while ωf ≈ ω(1)

s . For
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h = 0.001, one can see in Fig. 33(a) four chaotic trajectories: those associated with the
inner and outer separatrices of the undriven system [5,35,60] are coloured green and blue
respectively, while the trajectories associated with the nonlinear resonances of the 1st
order [5,35,60] (cf. sub-section 4.3.1) are indicated 35 by red and cyan (the corresponding
attractors are indicated respectively by crosses of the same colours). Examples of non-
chaotic (often called KAM [5,35,60]) trajectories separating the chaotic ones are shown
in brown. As h increases to h = 0.003 (Fig. 33(b)), the blue and red chaotic trajectories
merge: the resulting trajectory is shown in blue. As h increases further (see Fig. 33(c),
where h = 0.00475), the latter trajectory merges with the cyan chaotic trajectory (the
resulting trajectory is shown by blue) and, finally, as h increases slightly more (see Fig.
33(d), where h = 0.0055), the latter trajectory merges with the green trajectory 36 , so
that the inner well becomes involved in unbounded chaotic transport, thereby marking
the onset of global chaos in our system, as defined above.

The chaotic character of motion on the trajectory associated with the separatrix of the
undriven system can be considered [60] to be a consequence of the overlap of high-order
resonances (in the case shown in Fig. 33(a), the relevant orders are 3, 5, 7, ...). The
scenario described above for the onset of global chaos therefore corresponds exactly to
the combination of an overlap between resonances of different orders (1, 3, 5, ...) and an
overlap between resonances of the same (1st) order. The latter overlap is also illustrated
by Fig. 34 showing the evolution of the separatrices of the 1st-order resonances calculated
in the resonance approximation (cf. sub-sections 4.1, 4.2).

Near the spikes, the function hgc(ωf ) may be quite well approximated using the resonance
approximation. The explicit asymptotic (for Φ→ 0) formulae for the minima themselves,
in the lowest order of the parameters of smallness, are as follows:

ω(n)
s ≈ (2n− 1)ωm ≈

(2n− 1)π

2 ln( 8
Φ

)
, n = 1, 2, ..., Φ� 1, (4.3.16)

hgc(ω
(n)
s ) ≈ (2n− 1)

24
Φ3 ln(

8

Φ
), n = 1, 2, ..., 2n− 1� ln(

8

Φ
). (4.3.17)

The values of ω(n)
s obtained from simulations at Φ = 0.2 (see Fig. 32) are in a good

agreement with the formula (4.3.16). As concerns the values of hgc(ω
(n)
s ), the value Φ = 0.2

is too large for Eq. (4.3.17) to be valid but, even so, Eq. (4.3.17) provides the correct order
of magnitude for hgc(ω

(1)
s ) and hgc(ω

(2)
s ) (see Fig. 32). More accurate numerical calculations

within the resonance approximation yield the value hgc(ω
(1)
s ) ≈ 0.005, which practically

coincides with the value measured in simulations.

It is worth mentioning two examples of physical applications

35 The chaotic layers associated with nonlinear resonances are extremely narrow at the given
parameters, so that their width is much less than the diameters of dots indicating the trajectories
in the figure.
36 In the figure, we still use two colours for the different parts of this trajectory in order to
demonstrate that their mixing occurs very slowly, which indicates that the given h is just slightly
above the critical value hgc.
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(1) The jump-wise increases of the range of energies involved in the unbounded chaotic
transport of electric charge carriers in a magnetic superlattice result in jump-wise
increases of the dc conductivity [20].

(2) A significant decrease of the activation energy for noise-induced multi-barrier escape
in the presence of periodic driving is associated with the onset of the possibility of
noise-free transport from the lower barrier to beyond the upper barrier (cf. [119] and
sub-sections 5.3.2,5.3.3 above).

There are two immediate generalizations:

(1) The absence of pronounced spikes at the even harmonics (i.e. at 2nωm) in the case
considered above is explained by the fact that q2n = 0 due to the symmetry of the
potential (2.2.6) and, correspondingly, that there are no resonances of even order; for
a non-symmetric potential, even-order resonances do exist so that spikes in hgc(ωf )
at ωf ≈ 2nωm exist also.

(2) If the time-periodic driving is multiplicative rather than additive, then the resonances
become parametric (cf. [1]). Parametric resonance is more complicated and much less
studied than nonlinear resonance. But, still, the major mechanism for the onset of
global chaos remains the same, namely the combination of the reconnection between
resonances of the same order and of their overlap in energy with the chaotic layers
associated with the barriers. At the same time, the frequencies of the major spikes
in hgc(ωf ) are twice as large as those of the corresponding spikes in the case of the
additive driving: this is because the characteristic frequencies of parametric resonance
are typically doubled as compared with the nonlinear resonance (cf. [1]). Thus, if the
parameter Φ in U(q) (2.2.6) is periodically driven (which may correspond e.g. to the
time-periodic electric force being perpendicular to the direction of the periodicity of
the magnetic field [21]) i.e. if the full Hamiltonian is

H = p2/2 + (Φ− sin(q))2/2, Φ = Φ0 + h cos(ωf t), Φ0 = const, (4.3.18)

then one may expect for major spikes in hgc(ωf ) to occur at the frequencies

ω(n)
sp ≈ 2ω(n)

s ≈ 2(2n− 1)ωm, n = 1, 2, ..., (4.3.19)

which agrees well with results of simulations [76].

4.4 Chaos in the presence of dissipation

4.4.1 Introduction

The system (4.2.3) has 1.5 degrees of freedom and, therefore [80,60], it can be chaotic if
the driving amplitude h is large enough . It has indeed been established that there are
many regions in the plane of the driving force parameters where the motion is chaotic i.e.
where positive Lyapunov exponents exist at least within some part of the phase space: see
Fig. 35 [71]. Chaotic attractors corresponding to the chaotic motion are strange [80,60]
attractors and, as in many other (not necessarily ZD) periodically driven systems, they
may look quite different depending on the region of the parameter space and of the
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phase space (see examples e.g. below in Fig. 39(a.8,b.7)). But the remarkable feature of
the ZD system (4.2.3) is that there is a chaotic band at unusually small amplitudes of
the driving force. It was noticed in [71] that this chaotic band lies within the 1st-order
resonance region 37 (see Fig. 35). It was further noticed in [72] that the chaotic band
lies within the intersection between the 1st-order and 2nd-order regions. Furthermore,
the evolution of Poincaré sections in the relevant region of the driving force parameters
was studied thoroughly, leading to the inference that chaos in this parameter range could
be attributed to some rather simple empirical criteria for the onset of chaos in weakly
dissipative systems being met [73]. These criteria may be considered as being, in a sense,
a generalization to weakly dissipative systems of the Chirikov resonance-overlap criterion
in Hamiltonian systems [5,35,60]. The criteria constitute a very remarkable result. They
are applicable to an arbitrary system, not just to ZD systems 38 . However, our very recent
(though incomplete) studies [74] have shown that, as the damping (dissipation) parameter
becomes very small, the criteria fail: the chaotic regions in the parameter plane shrink
notwithstanding that the bifurcations (period-doubling, etc.) which precede the onset to
chaos at moderately small damping are still well described by our criteria. Given the
generality and potential importance of these criteria, it will be necessary to study them
over a wider range of damping and to establish their limits of validity. The fundamental
origins of the criteria may be explicable by mathematicians and we hope, therefore, that
this section will attract their attention.

We now present in sub-section 4.4.2 the major results of [73], for the case of some mod-
erately small damping, while sub-section 4.4.3 is devoted to more recent results [74] for
the case of very small damping and outlines possible future directions of the research.

4.4.2 Empirical criteria for the onset of chaos in weakly dissipative periodically driven
systems. The case of moderately small damping

Let us first consider the resonance approximation (4.2.4) for n = 1, 2 (i.e. the resonances
of the 1st and 2nd orders) for the system (4.2.3) with Γ =0.05, ω0 =0.5924, β =1.026,
γ =1. Fig. 36 shows the relevant bifurcation lines in the relevant area of the h−ωf plane.
Fig. 37 illustrates the ZDNR/NR transition for the 2nd-order resonance (the dashed line
in Fig. 36): the figures (a) and (b) correspond to the NR and ZDNR stages respectively.
Analogously to the 1st-order resonance, the basin of attraction of the larger-action at-
tractor encompasses that of the smaller-action attractor, in the ZDNR stage, while it is
vice versa in the NR stage.

Let us now turn to the full system (4.2.3) to study its chaos (in the lowest chaotic band

37 It was wrongly suggested, though, that the chaos probably related to global bifurcations of
the 1st-order resonance regime.
38 But the range of their validity is probably at its largest precisely in ZD systems. Furthermore,
the criteria work most efficiently in ZD systems, because the amplitudes of the driving force at
which the different-order resonances overlap in energy, either with each other or with a linear
response, are typically much smaller in ZD systems than in other systems. Thus the accuracy
of the resonance and linear response approximations (which are used in the criteria) is larger in
ZD systems than in others.

57



in the h− ωf plane) and the routes to its onset. Fig. 38 shows the relevant chaotic band
together with various bifurcation lines, as well as lines found in the resonance approxima-
tions and lines related to the interaction between resonances. There are two different types
of chaotic attractor 39 (cf. Fig. 39). The corresponding regions of parameters practically
do not overlap. For the sake of brevity, we will refer to them as to chaos-1 and chaos-2.

As h increases, the chaotic attractor corresponding to chaos-1 (cf. Fig. 39(a.7)) is born via
a sequence of period-doubling bifurcations from the larger-amplitude period-2 attractor
(which corresponds to the larger-action 2nd-order resonance). With further increase of
h, the chaotic attractor grows and, when h reaches the crisis line, the attractor touches
the boundary of attraction of the 1st-order resonance and vanishes discontinuously (Figs.
39(a.8,9)).

The chaotic attractor corresponding to chaos-2 (cf. Fig. 39(b.6)) is born via a sequence of
period-doubling bifurcations from the smaller-amplitude period-2 attractor (the smaller-
action 2nd-order resonance). With further increase of h, destruction of the chaotic attrac-
tor and a reverse sequence of period-doubling bifurcations occur (Figs. 39(b.8,9)).

It is seen that the chaos-1 and chaos-2 regions can be roughly delineated using simple cri-
teria related to interactions between oscillatory regimes of different frequencies calculated
either in the resonance or in the linear response approximations.

Chaos-1 is bounded by the lines 1-2-3-1. It is based on the inference that the origin of
chaos-1 lies in a strong interaction between the larger-amplitude period-1 and period-2
regimes of oscillation (larger-action nonlinear resonances of the 1st and 2nd order re-
spectively), which seems to correlate with the evolution of the Poincaré section. The line
1-2 corresponds to a Chirikov-like overlap in energy between the larger-action 2nd-order
resonance and the 1st-order nonlinear resonance. The line 1-3 corresponds to the lowest
action on the boundary of the 1st-order nonlinear resonance becoming equal to the action
of the larger-action attractor of the 2nd-order resonance: this line approximately bounds
the crisis of the chaotic attractor. The line 2-3 (ZDNR/NR) bounds the chaos-1 region
from the right. The seeming relevance of this line is based on the following argument.
In the nearby parameter region, an overlap between the larger-action 2nd-order and 1st-
order resonances is possible only in the ZDNR stage: in the NR stage, the basin of the
larger-action 2nd-order resonance is encompassed by the basin of the smaller-action 2nd-
order resonance (see Fig. 37(a) and Fig. 39(a.3)) which prevents an overlap of the former
basin with that of the 1st-order resonance. We note that, as the parameter β decreases so
that the minimum of ω(E) becomes shallower, disappearing at β ≈ 0.562, the area of the
delineated region quickly decreases (cf. Fig. 40) until it vanishes, which nicely correlates
with shrinkage of the chaos-1 region and with its ultimate disappearance at β ≈ 0.8.

Chaos-2 is bounded very roughly by the lines 4-5-6-7-4. Though the delineation is much
less accurate than for chaos-1, it still seems to provide a good guess as to approximately
where chaos-2 may be expected and, moreover, the shrinking of the delineated region

39 It should be mentioned that one of these was observed in experiments on electrical circuits
and also obtained by numerical integration of the equation of motion [85]. However, no attempt
was made in [85] to relate the attractor to the overlap of nonlinear resonances.
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as β decreases correlates quite well with the shrinkage of the chaos-2 area and its final
disappearance at β ≈ 0.9. The line is based on the inference (which seems to correlate
also with the evolution of the Poincaré section) that the origin of chaos-2 lies in a strong
interaction between the smaller-amplitude period-2 oscillation (the smaller-action 2nd-
order resonance) and the smaller-amplitude period-1 oscillation, which may be roughly
described as a linear response:

qLR ≈
h

ω2
0 − ω2

f

cos(ωf t), ωf − ω0 � Γ, ω(I =
h2ω0

(ω2
0 − ω2

f )
2
)− ω0. (4.4.1)

The line 4-7, bounding chaos-2 from the left, is just the ZDNR/NR line: in the region
to the right of it, the larger-action 2nd-order resonance does not prevent an interaction
between the smaller-action 2nd-order resonance and linear response. The lines 6-7 and 4-5
bound (from below, and from above, respectively) the region where both linear response
and the smaller-action 2nd-order resonance are to occur in approximately one and the
same energy range: 6-7 and 4-5 correspond to equality of the energy of the attractor of
the 2nd-order resonance with the largest and smallest energies respectively of the linear
response. The line 5-6, roughly bounding chaos-2 from the right, is just the line ωf = 2ω0:
nearly everywhere to the right of it, the smaller-action 2nd-order resonance is suppressed
by linear response so that, if our inference about the origin of chaos-2 is true, chaos should
not arise in this region.

It should be noted that we have also studied [74] the case when the damping is larger,
Γ = 0.08, and the chaotic areas still match very well the areas delineated by lines derived
as described above.

4.4.3 The case of very small damping

The results of [73,74] described in the previous sub-section allowed us to infer that we
had found a powerful empirical criterion valid in the asymptotic limit Γ → 0. To test
this, we have been considering [74] the same system as in [73], but with an even smaller
damping parameter: Γ = 0.01. The results have turned out to be rather disappointing.
Fig. 41 shows a diagram similar to Fig. 38 but for Γ = 0.01. The lines calculated by
our empirical criterion are almost unshifted, naturally. But the real chaotic areas have
significantly shrunk: the upper boundary has shifted almost to the lower boundary, both
for chaos-1 and chaos-2. Moreover, for chaos-2, the upper boundary becomes of the crisis
type rather than a reverse period-doubling sequence as it was in the case of Γ = 0.05.

Thus, we may draw two major conclusions from the results [73,74]. On one hand, the
fact that the lower, left and right boundaries of chaos-1 and chaos-2 correlate well with
the empirical criteria, both for Γ = 0.05, 0.08 and Γ = 0.01, confirms the validity of the
inference about the origins of chaos in the relevant regions of the h − ωf plane. On the
other hand, an understanding of why and how chaotic attractors evolve as h grows, and
of how they could be delineated by means of a simple criterion (if any) is absent so far.
It will be necessary to study in more detail the evolution of chaotic attractors as Γ, h
and ωf vary (in the underdamped range and in the relevant range of the h − ωf plane,
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respectively) and to try to understand the underlying reasons for the observed behaviour.

4.5 Unsolved problems

Item 1-3 below summarize three major unsolved problems related to periodically driven
ZD systems considered in detail above; items 4-6 introduce issues not so far discussed.

1. Although the major features of the slow dynamics in the case of an additive periodic
force – at least in systems like the TDO, i.e. in monostable systems whose ω(E) possesses
a local minimum – have already been understood and described, there are still some
interesting problems: (i) to study some of the global bifurcations in more detail (e.g.
the yellow line in Fig. 24(b)); (ii) to study in more detail the higher-order resonances,
following the initial study carried out in [72,73] which demonstrated the existence of
certain differences from the case of the 1st-order resonance; (iii) to study characteristic
features of the bifurcation diagram for the slow dynamics in periodically-driven ZD
systems with local maxima in ω(E) and, especially, in those ZD systems which possess
separatrices e.g. SQUIDs; (iv) to consider more complicated types of friction and its
influence on the slow dynamics.

2. As for chaos in the non-dissipative case, it would be interesting to study, both numeri-
cally and analytically (if possible), the chaotic layer associated with ZDNR, including
the structure of the layer, chaotic transport within it, statistics of the Poincaré returns,
long flights, traps, etc. (cf. [90]; for a numerical study of the statistics of Poincaré re-
turns in the chaotic layer of conventional NR and its qualitative analysis see [91] as well
as [92] and references therein).

It would also be desirable to develop a more accurate numerical description of the
spikes in the dependence hgc(ωf ) using resonance approximations of different order. A
development of an explicit resonant approximation theory for analogous spikes in the
case of parametric perturbation is another important and challenging problem (see also
item 6 below).

3. Studies of chaos in weakly dissipative ZD systems are actively developing. The nearest
empirical task is to find for the same potential as in [73] the value of Γ at which
the chaotic areas in the h − ωf plane start to shrink significantly, while the major
fundamental problem is to understand the underlying reasons for the evolution of the
relevant chaotic attractors as the damping parameter decreases. This would hopefully
allow us to derive, more efficiently than at present, simple criteria for delineation of
the corresponding chaotic regions in the parameter space. A further stage would be to
test the criteria over a wide range of weakly dissipative systems, also including non-ZD
systems.

4. It would be interesting to study the problem of synchronization in arrays of ZD systems,
e.g. underdamped SQUIDs. A similar problem in overdamped SQUIDs was studied
intensively a few years ago (e.g. [86–89]) but synchronization between underdamped
SQUIDs in the ZD regime may be much more pronounced.

5. Resonance at subharmonics and/or subharmonic absorption may occur because the
non-resonant response at the driving frequency (subharmonic) possesses harmonics at
multiple frequencies, due to the nonlinearity. These, in turn, may resonate with one
or more of the eigenfrequencies (cf. [1]). Such a mechanism in ZD systems is likely to
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be much more pronounced than in the conventional case, provided that the driving
frequency is close to a subharmonic of the extremal eigenfrequency.

6. Parametric resonance, where the periodic driving affects one or more of the parameters
of the non-driven system (i.e. as a multiplicative rather than additive perturbation),
has not yet been investigated in any detail for ZD systems, although there have been
some numerical studies in the context of chaos in certain non-dissipative ZD systems
[20,21,76]. The significant difference between conventional parametric and nonlinear
(i.e. additive) resonances suggests that much the same distinction will relate to the ZD
case too.

4.6 Conclusions

ZD systems under periodic driving may manifest very characteristic properties both in
their non-chaotic and chaotic dynamics.

Thus, if the driving is weak enough, the motion is non-chaotic. The slow dynamics in
the nonlinear resonances arising in ZD systems may be distinctly different from those in
conventional systems. The topology of the corresponding nonlinear resonance, referred to
as ZDNR, is different from that for conventional nonlinear resonance (NR). The variation
of energy is typically larger than in the conventional NR whereas the variation of angle, on
the contrary, is smaller. As the driving amplitude and frequency vary, the slow dynamics
in periodically driven ZD systems undergo a variety of local and global bifurcations most
of which do not have analogues in conventional systems. The most important global
bifurcation is the so-called ZDNR/NR transition, which may be also interpreted as an
overlap between nonlinear resonances of the same order. The most important unsolved
problem concerning the slow dynamics in periodically driven ZD systems is the analysis
of the corresponding bifurcation diagramme for the case when the non-driven ZD system
possesses separatrices.

Chaotic layers associated with ZDNRs in the non-dissipative case also exhibit many dif-
ferences from the layers associated with NRs. They are strongly inhomogeneous, different
parts being described by different maps. Their dependences on driving amplitude and fre-
quency also differ from those in the conventional case. A detailed study of chaotic layers
in ZDNR has yet to be undertaken.

In case of the non-dissipative systems with more than one separatrix, the amplitude of
periodic driving sufficient for the chaotic transport to connect the separatrices becomes
very small if the drving frequency lies close to the extremal eigenfrequency or/and its
harmonics.

In the presence of weak dissipation, chaos may arise in periodically driven ZD systems
at unusually small driving amplitudes, because the overlap of different-order resonances
requires smaller amplitudes than conventionally. An attempt was made to construct a set
of rather simple empirical criteria, based on the resonance and linear response approxima-
tions, aiming to delineate the chaotic regions in the plane of the driving force parameters.
These criteria require further study and clarification.
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5 Zero-dispersion systems subject to periodic driving and noise

The interplay between noise and periodic driving in dynamical systems is a very broad
subject that has been studied in numerous papers and books (see e.g. [2–4,38,?,84,93–95]
and references therein). There may be three distinctly different cases –

(a) Strong or moderate periodic driving, so that chaotic or quasi-chaotic attractors may
arise [60], i.e. the phase space of the noise-free system differs markedly from that in the
absence of the driving. In this case, the motion occurs over a broad range of energies
so that the peculiarity of the extremal (“zero-dispersion”) energy is largely lost, which
is why we do not consider this case here 40 .

(b) Weak periodic driving with relatively large noise intensity, so that the statistical distri-
bution differs only slightly from that found in equilibrium without driving. Phenomena
peculiar to ZD systems under these conditions are discussed in sub-sections 5.1-5.2.

(c) Moderately weak driving with relatively weak noise. In this case, the distribution in the
regions of resonant energies differs strongly from equilibrium. Given that the widths of
these resonant regions are typically much larger in ZD systems than in conventional
ones, noisy phenomena in periodically driven ZD systems become especially pronounced
and phenomena peculiar to ZD systems may then arise. Phenomena corresponding to
this type of interplay between noise and periodic driving are described in sub-sections
5.3-5.5.

5.1 Weak periodic driving: zero-dispersion stochastic resonance

Stochastic resonance (SR) has been the subject of intensive investigation over the last
decade: for recent reviews see [93,94]. The idea of SR was originally introduced [98] in
relation to a noise-induced enhancement of the amplitude of a low frequency periodic
signal in a bistable system. It was subsequently realised [99,100], however, that a stronger
definition of SR in the same system was also possible: it was shown that, for small enough
signals, not only the signal amplitude but also the signal-to-noise ratio (SNR) could in-
crease with noise intensity (temperature) within a certain range. It is this latter definition
of SR that is probably now the more widely used and accepted, and which we will apply
below.

A general theory of SR, not confined to the conventional bistable case [100] was introduced
in [101,102]. It was predicted [103,58] on this basis that SR could also occur in monostable
systems. In this perception of the phenomenon, SR is to be anticipated in any system
whose fluctuation spectrum in the absence of a periodic signal displays at least one narrow
peak that grows quickly enough with increasing noise intensity. In the particular case
considered in [103,58], the SR was associated with zero-dispersion peaks (see Sec. 3):

40 The only ZD consequence is an indirect one: the onset of chaos may in some cases occur at
driving force amplitudes much smaller than those typical of conventional systems (see section 4
above). Noise-induced escape from the chaotic attractor in one such system (TDO) was recently
studied by means of simulations [96,97].
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to distinguish it from conventional bistable SR, it was named zero-dispersion stochastic
resonance (ZDSR).

The original works [103,58] that identified ZDSR theoretically did so on the basis of
the TDO model; but it has turned out that this is not actually the best system for
observation of ZDSR. This is because adequate resolution between the ZDP and the
peak coming from low energies requires extremely small values of the damping parameter
(cf. sub-section 3.6 and Figs. 14-16). Hence only signal growth with noise was observed
in the analogue experiments [58]. The observation of noise-induced growth of the SNR,
which came later [56], was based on a SQUID model in which the resolution between the
ZDP and the low-energy peak is excellent (Fig. 17). A detailed theoretical description
of ZDSR, including both its asymptotic theory and the necessary numerical algorithm,
together with detailed analogue experiments for the SQUID model, were presented in
[47]. It has become apparent since the latter work that ZDSR can in principle be used
to enhance the output SNR of a SQUID at moderate and high frequencies, in very much
the same way as conventional SR has already been used to enhance the output SNR of
multistable SQUIDs [104] in the low frequency range.

We present the general theory of ZDSR in sub-section 5.1.1. The corresponding analogue
experiments are discussed in sub-section 5.1.2.

5.1.1 General theory

Let us consider a one-dimensional oscillator subject to a weak periodic force, and to
friction and noise which, for the sake of convenience, we take to be linear and white
respectively,

q̈ + Γq̇ +
dU

dq
= f(t) + A cos(Ωt)

〈f(t)〉 = 0, 〈f(t)f(t′)〉 = 2ΓTδ(t− t′), (5.1.1)

where U(q) is a potential. The noise intensity T corresponds to temperature in cases
where the noise is of thermal origin. We introduce the SNR [100] in terms of the power
spectrum,

Q(ω) = lim
τ→∞

(4πτ)−1

∣∣∣∣∣∣
τ∫
−τ

dt q(t) exp(iωt)

∣∣∣∣∣∣
2

. (5.1.2)

Q(ω) consists of δ-spikes at the frequency Ω of the periodic force, and its harmonics,
superimposed on a smooth fluctuational background that corresponds to the power spec-
trum Qq(ω) in the absence of the periodic force, defined in Eq. (3.1.5). The SNR is then
defined as the ratio of the intensity (the square) of the δ-spike at Ω to the fluctuational
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background at Ω [100],

SNR =
Iδ(Ω)

Qq(Ω)
. (5.1.3)

As shown in [101,102] (see [93] for further details), the SNR can be written in terms of a
complex susceptibility χ(Ω) which, in turn, can be expressed in terms of Qq(Ω) using the
fluctuation dissipation theorem and the Kramers-Krönig relations [13]

SNR =
1

4
A2 | χ(Ω) |2 /Qq(Ω),

Re [χ(Ω)] =
2

T
P

∞∫
0

dα

(
α2

α2 − Ω2

)
Qq(α), (5.1.4)

Im [χ(Ω)] =
πΩ

T
Qq(Ω),

where P denotes the Cauchy principal part.

It was shown [101,102] within this framework that SR in the conventional bistable system
[99,100] is due to the high, narrow peak in Qq(Ω) centred at Ω = 0 [3,29], which in turn
is attributable to noise-induced inter-well transitions.

This picture, based on (5.1.4), led immediately to a more general perception of SR: intu-
itively, it must be anticipated in any system whose fluctuation spectrum in the absence of
periodic driving exhibits sharp peaks that rise swiftly enough with increasing noise inten-
sity [105]. McClintock therefore suggested in 1991 that SR-like behaviour might be sought
in ZD systems, despite their lack of bistability, provided Ω lay close to the frequency of the
ZDP. It was quickly confirmed in simulations [58] that, at least on the weaker definition
of SR (i.e. occurrence of a noise-induced increase of signal only) SR occurs in the TDO.
It was then realised that SR-like phenomena might occur in an even broader range of sys-
tems, in particular in any underdamped nonlinear oscillator: as T increases, the average
frequency of oscillations changes and, if it moves closer to the driving frequency Ω, then
the amplitude of the response obviously grows. In ZD systems, this growth is especially
pronounced provided the driving frequency is close enough to the extremal eigenfrequency
[58]. But an increase of the signal-to-noise ratio was not observed in [58]. This was ex-
plained in [103], which derived theoretically the conditions for which an SNR increase
would be observed in the ZD system (the TDO) used in [58]. In addition, [103] analysed
rigorously the earlier intuitive inference [58,105] about the range of occurrence of SR 41 .
We follow [103] in the few next paragraphs.

Let us suppose that Qq(ω) has a high, narrow peak at ω ≈ ωm, i.e. that we can present
the spectrum as a sum of the two following terms:

Qq(ω) = Qpeak(ω) +Qfar(ω), (5.1.5)

41 Note that, chronologically, [103] was published before either [58] or [105]. In fact, however,
the central ideas of [58] had been reported earlier at the 1992 SR conference in San-Diego [105].
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where Qpeak(ω) has a maximum of magnitude Qm at ω ≈ ωm and width ∆ω � ωm, while
Qfar(ω) is negligible at ω ≈ ωm though it may still be substantial at frequencies far from
ωm in comparison to ∆ω. If the signal frequency Ω ≈ ωm, then absolute values of the
contributions to Re [χ(Ω)], i.e. to the integral in (5.1.4), from frequencies close to ωm (i.e.

for |α− ωm|
∼
< ∆ω) and from those far from it are respectively

Fclose ∼
1

T
ωm |

dQq(ω ≈ ωm)

dω
| ∆ω ∼ ωmQm

T
, (5.1.6)

Ffar ∼
1

T

ω2
f

|ω2
f − ω2

m|
Sf , (5.1.7)

where Sf =
∫
dωQfar(ω) is the area under Qfar(ω), and ωf lies within the range of the

maximum of Qfar(ω). If Qfar(ω) possesses more than one distinct maximum, then Ffar

should be a sum of analogous terms for each maximum.

It can be seen from (5.1.6) that the order of magnitude of the contribution to the real part
of the susceptibility from frequencies close to ωm does not depend on the width ∆ω of the
peak Qpeak while, if the maximum Qm of this peak is high enough, then this contribution
dominates over Ffar (5.1.7). Correspondingly, given the last equality in (5.1.4), i.e. that
Im [χ(Ω ≈ ωm)] ∼ Qmωm/T , the absolute magnitude of the susceptibility at Ω ≈ ωm is
given by

|χ(Ω ≈ ωm)| =
√

(Re [χ(Ω ≈ ωm)])2 + (Im [χ(Ω ≈ ωm)])2 ∼ Qmωm
T

. (5.1.8)

Thus, if Qm increases faster than T , then the response of the system to a weak periodic
force of frequency close to ωm will also increase with T . Moreover, if this increase of Qm

is faster than T 2, then the SNR increases too, as must follow from Eqs. (5.1.4),(5.1.8).

Zero-dispersion peaks ideally fit the framework described above, and the correspond-
ing SR-like phenomenon (which was historically the first among high-frequency SR-
phenomena: cf. e.g. [106]) was called zero-dispersion stochastic resonance (ZDSR) [103].

Obviously, the smaller the damping parameter Γ is, the higher and narrower the ZDP
is and, therefore, the more pronounced the ZDSR becomes. Moreover, the SNR can be
described in the asymptotic limit Γ→ 0 by a universal function, which is not difficult to
derive by substitution of Qq(Ω) (3.3.19) into (5.1.4) (cf. [47]):

SNR = SNR(zd) ≡ 1

4
A2π

2n2Ω2
m

T 2
Cscale R

(
Ω− nΩm

∆Ω̃n

)
,

R(x) =
| Sc(x) |2

S(x)
. (5.1.9)

The conditions for validity of (5.1.9) are (cf. [47]):
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∣∣∣∣∣ ∆Ω̃n

min(nΩm, |nΩm − ωi|)

∣∣∣∣∣ ,
∣∣∣∣∣∆Ω̃n

ω′′T 2

∣∣∣∣∣
1/2

� 1,

−
∣∣∣∆Ω̃n

∣∣∣ <∼ sgn(ω′′)(Ω− nΩm)� |ω′′|T 2,

T >
0.4Em

ln
∣∣∣ω′′E2

m/∆Ω̃n

∣∣∣ , (5.1.10)

where ωi denotes the frequency of any other characteristic peak of the spectrum. These
conditions are always satisfied in the asympototic limit of small Γ when Ω is close enough
to nΩm.

The function R(x), plotted in Fig. 42 characterises the frequency dependence of the SNR.
It decreases monotonically with x (cf. the harmonic oscillator for which SNR ∝ Ω−2), but
the form of the decrease changes with x: it can be shown that the SNR ∝ (−x)3/2 for
large negative x, and that the SNR ∝ x−1/2 for large positive x.

Of greater interest in the present context is that the SNR is proportional to Cscale, which
increases sharply with T for T � Em. Consequently, the SNR must increase with T within
some range 42 , just as in the case of SR in conventional bistable systems [93,94,99–102].
The activation-law type dependence of the SNR on T arises because both the susceptibility
and fluctuation spectrum are determined by those oscillator vibrations whose energies lie
within a narrow band around the extremal frequency, whose population increases rapidly
with T .

The frequency dependence of the SNR is well-described by the universal function R, but
only for very small values of Γ and in the close vicinity of nΩm; the same restrictions apply
also to the shape of the ZDP itself (see Sec. 3). In order to calculate the SNR over a wider
range of parameters, it is necessary to compute the fluctuation spectrum numerically. The
algorithm [11,47] has been described by us in sub-section 3.5 above and the results for
the SNR based on it are discussed below in sub-section 5.1.2.

5.1.2 Applications to the TDO and SQUID models and analogue electronic experiments

In [103], the numerical algorithm [11] (see also sub-section 3.5) was applied to the calcu-
lation of the spectrum Qq(Ω), which could then be substituted into Eq. (5.1.4) to find the
SNR. As expected, there was a range within which the SNR increased with T provided
that Γ was small enough and Ω was close enough to Ωm. At the same time, because the
minimal eigenfrequency, Ωm, and the eigenfrequency in the bottom of the well, Ω0, are
typically very close to each other in the TDO model, separation of the ZDP from the
low-energy peak requires very small values of Γ: for the parameters of the model [58],

it needed to be
∼
< 10−3 [103]. That is why, the noise-induced growth of SNR was not

achieved in [58], in which the analogue circuit had Γ ∼ 10−2.

42 Strictly, R([Ω − nΩm]/∆Ω̃n) also depends on T because ∆Ω̃n ∝ T 1/2. This dependence is
much weaker, however, than the activation-law type dependence of Cscale on T , and therefore
has only a minor influence.
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At the same time, the response (∝ |χ|) did grow dramatically with T [58]. Of course,
this phenomenon is not restricted to ZD systems (though it is more pronounced in ZD
systems than in conventional ones: cf. [58]). The mechanism of such growth is related to
the tuning (by means of noise) of the statistically averaged eigenfrequency ω(〈E〉) to the
frequency of the driving force (provided Ω lies within the spectrum of eigenfrequencies).
Recently, this idea was also applied to the conventional bistable oscillator [107].

A much more pronounced manifestation of ZDSR occurs in the SQUID model [56,57,47]
(Fig. 43). The frequency dependence of the SNR in ZD oscillators quite generally displays
a resonant-like behaviour (Fig. 44), in contrast to the behaviour of the SNR in conven-
tional systems (cf. [99–102]). At the same time, the width of each resonance is generally
much larger than the band of frequencies within which conventional SR is manifested in
overdamped SQUIDs. This is especially clear from Fig. 45, in which one can see that the
noise-induced growth of SNR may occur in a rather broad range of frequencies. Moreover,
there is typically more than one maximum in the frequency dependence: this is due to
the multiple extrema in ω(E) (see Fig. 4). In the case of many wells in the SQUID po-
tential (2.1.5) (B � 1), the extremal eigenfrequencies are very close to each other and,
in addition, the energy ranges responsible for the “adjacent” ZDPs become very narrow
and close to each other. Consequently, the noise-induced growth of SNR smears or even
disappears altogether. In the opposite limit, B � 1, the extrema of ω(E) are very shallow:
the system reduces to the harmonic oscillator, where growth of the SNR with temperature
is absent [93]. Thus, the optimal range for ZDSR in SQUIDs is B ∼ 1 43 . Thus, together
with the condition of being underdamped Γ� Ωm ∼

√
B, the optimal conditions for the

manifestation of ZDSR in SQUIDs are

Γ� B1/2 ∼ 1, (5.1.11)

or, in terms of SQUID parameters (see sub-section 2.1),

RN� (L/C)1/2,

(5.1.12)

β ∼ 1.

For a more detailed discussion of ZDSR in SQUIDs, see [47].

5.1.3 Unsolved problems

(1) The theory of ZDSR for a single oscillator has been quite well elaborated and tested in
analogue and computer experiments in many details, especially for the SQUID model.
Thus, the most important problem for the future is, in our opinion, a realization of
ZDSR in real systems and its uses in various applications.

43 It does not matter whether B is above or below the critical value Bc ∼ 1 dividing the boundary
between multi-stability (B < Bc) and monostability (B > Bc) of the SQUID.
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The most probable candidate for such a realization is a SQUID loop. The major
difficulty which may occur at this is that, typically [47], the relevant extremal eigen-
frequency ωm is of the order of a plasma frequency of the Josephson junction, which
is very high (of the order of 1-10 GHz [15]). This difficulty could be removed in two
ways. One of them is to make the extremal eigenfrequency significantly smaller by
means of a proper choice of the loop and junction parameters (note however that the
ZDSR becomes less pronounced if one uses the extremum of ω(E) with too small
extremal eigenfrequency [108]; a maximal decrease at which the ZDSR is still pro-
nounced is of the order of 10 typically [108]). Another way is [109] to increase the
frequency of the relevant (low-frequency) signal to the range of a (high) plasma fre-
quency, to enhance it by means of the ZDSR and then to decrease the frequency back
to the low-frequency range, in analogy with conventional radio technique [110].

(2) Another interesting problem for the future is to study ZDSR in arrays of ZD oscilla-
tors. Conventional SR in an array of overdamped bistable systems was shown [111]
to be enhanced in comparison with the single system. It was recently shown [112,113]
that, in an array of conventional (non-ZD) monostable underdamped oscillators, the
signal may be enhanced by the application of noise, similarly to the case of the single
oscillator [58] but in a more pronounced way. In addition, the dependence of such an
enhancement on noise intensity exhibits more than one peak, unlike the case of the
single oscillator [58]. This is because the degeneracy of the eigenfrequency in a sys-
tem of identical non-interacting oscillators is lifted if a coupling is introduced. These
considerations have allowed us to suggest [47,114] studies of arrays of ZD oscillators.
Unlike the case of conventional oscillators, they should exhibit a very pronounced
increase of SNR, rather than just of the signal, and the signal enhancement should
be much stronger than for the case of conventional oscillators. On the other hand,
compared to single ZD oscillators, arrays promise to provide much stronger mani-
festations of ZDSR, and the dependence of the SNR on noise intensity promises to
possess several peaks, unlike the single one in the case of a single oscillator.

5.2 Weak periodic driving: subharmonic absorption

The resonant response of a nonlinear oscillator to periodic driving at a subharmonic
frequency, and the related resonant subharmonic absorption, are well known phenomena
[1] that are relevant to many areas of physics, for example mechanics [1] and nonlinear
optics [115]. The theory of these phenomena in a weakly nonlinear noise-free oscillator is
quite well established 44 . Their mechanism is as follows: the sub-harmonic driving (e.g.
at 1/2 of the frequency ω0 of a small-amplitude eigenoscillation of the oscillator) causes
a non-resonant, approximately linear, response. Due to the nonlinearity, this response
also possesses higher harmonics; one of these harmonics – the 2nd one, in the case of the
driving at the frequency ω0/2 – turns out to be resonant to the eigenoscillation, so that
this harmonic provides for resonant absorption if there is friction in the system. Such
resonant nonlinear absorption may turn out to be stronger than the linear non-resonant
absorption, provided that the driving amplitude is not too small.

44 We note however that, as mentioned in sub-section 4.5, the case of ZD systems was not studied
and it would be interesting to study it.
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However the frequency ranges where such phenomena may occur are typically limited to
the close vicinity of the subharmonics of ω0. The situation changes drastically if noise
is added [116]: it populates a relatively broad range of energies, thereby significantly
widening the range of eigenfrequencies that are relevant (typically, δω ∼ |ω(0) − ω(T )|,
where ω(0) ≡ ω0 and T is temperature). If the noise is too large, on the other hand,
so that the relevant range of eigenfrequencies becomes too broad, then the resonance is
smeared out. Thus, for a given driving frequency that is distinctly inside the spectrum of
eigenfrequencies, there is typically a distinct peak in the resonant nonlinear absorption
and higher-harmonic generation as functions of temperature. In a sense, this may be
considered as a kind of stochastic resonance (cf. sub-section 5.1), but for a nonlinear
rather than linear response, and at the subharmonic rather than at the main/multiple
frequency.

In a conventional (non-ZD) system, such peaks in the dependences on temperature of the
absorption and of the 2nd-harmonic intensity do not depend on the damping parameter Γ,
provided that Γ is small (i.e. Γ� ω0, δω) [116]. In contrast, in ZD systems, if the driving
frequency is close to a subharmonic of the extreme eigenfrequency ωm, the magnitudes
of the peaks should become extremely high as Γ → 0 (infinitely high if the frequency is
exactly equal to the subharmonic of ωm), closely analogous to zero-dispersion peaks in
the linear response at the main/multiple frequency (see Sec. 3).

To the best of our knowledge, the only paper on resonant nonlinear absorption in the
presence of noise is [116]. It concentrates mostly on the conventional case i.e. where the
ZD property is not relevant. At the same time, the authors of [116] did notice some inter-
esting features that may arise in the case of a ZD system: they presented some illustrative
examples, though for a particular model (the TDO) which, as already mentioned, is far
from being the best choice for demonstration of the relevant ZD phenomena. Thus, it
would be both interesting and important to study resonant nonlinear absorption experi-
mentally in other ZD models, e.g. in the SQUID model, and to develop the corresponding
general theory – which is, however, far from being a trivial problem.

Below, following [116], we present in sub-section 5.2.1 the theory of 2nd harmonic gen-
eration and of subharmonic absorption for the TDO model where the extreme frequency
ωm ≡ ω(Em) is close to ω0, so that the nonlinearity of the eigenoscillation in the relevant

range of energies E
∼
< Em is weak. Subsection 5.2.2 presents some experimental results. In

sub-section 5.2.3, we present a brief discussion of the results and identify some remaining
unsolved problems.

5.2.1 Theory

The non-driven oscillator that we consider is the TDO (4.2.1) (see also Sec. 2.3) with
ω0 = γ = 1, β = 5/3; the eigenfrequency ω as a function of action is shown in Fig. 22. As
can be seen from the figure, the minimal eigenfrequency ωm ≈ 0.805 i.e. only slightly less
than ω0. The corresponding energy Em ≈ 0.1635 is also rather small so that, in the range

of relevant energies E
∼
< Em, the anharmonic corrections in the potential U(q) (i.e. βq3/3
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and γq4/4) are small in comparison with the parabolic term ω2
0q

2/2:

Em �
ω4

0

γ
,
ω6

0

β2
. (5.2.1)

This allows us to use in the theory below the harmonic approximation as the lowest-order
approximation.

The equation of motion which we study is formally similar to that considered earlier in
the context of stochastic resonance (cf. (5.1.1)),

q̈ + Γq̇ + ω2
0q + βq2 + γq3 = f(t) + A cos(Ωt), (5.2.2)

〈f(t)〉 = 0, 〈f(t)f(t′)〉 = 2ΓTδ(t− t′),
Γ� ω(E),Ω,

but the relevant range of frequencies Ω is different: we assume that the doubled frequency
of the driving force, 2Ω, is close to the band of thermally excited vibrations of the oscillator,

|2Ω− ω(E)| � ω(E) for E
∼
< T, (5.2.3)

while

T
∼
< Em �

ω4
0

γ
,
ω6

0

β2
. (5.2.4)

The quantity of major interest in the present context also differs from that in stochastic
resonance problems, namely it is the absorption coefficient:

κ = A−2〈q̇(t)A cos(Ωt)〉 (5.2.5)

where the overbar denotes averaging over the period 2π/Ω.

For small amplitudes of the driving force and for moderately weak noise intensities (5.2.4),
the analysis of the resonant nonlinear response of the oscillator may be done in two steps
familiar from [1]: (i) one first ignores the oscillator nonlinearity, so that a sinusoidal ex-
ternal force results in nonresonant vibrations at the force frequency Ω (the perturbation
parameter is the force amplitude A weighted by nonlinearity constants); and (ii) in the
next iteration one substitutes the corresponding oscillating term in the oscillator coordi-
nate into the nonlinear terms in the restoring force on the oscillator. These terms then
oscillate at the overtones of Ω, and act as an effective force that drives the oscillator. The
resonant linear response to this force may then be analysed.
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Thus, to lowest order in A, nonresonant forced vibrations may be described in the har-
monic approximation,

q(1)(t) ≈ A

ω2
0 − Ω2

cos(Ωt+ φ(1)), φ(1) ≈ − ΓΩ

ω2
0 − Ω2

. (5.2.6)

The angular shift φ(1) allows for a weak linear absorption by the oscillator. The corre-
sponding linear nonresonant absorption coefficient is

κ(1) =
ΓΩ2

2(ω2
0 − Ω2)2

. (5.2.7)

The equation of motion for the vibrations at frequency 2Ω in the range of moderately
small noise intensities (5.2.4) can be obtained by seeking the solution of Eq. (5.2.2) in the
form q(t) ≈ q(1)(t) + q(2)(t). The equation of motion for q(2)(t) may be written as

q̈(2) + Γq̇(2) +ω2
0q

(2) + β[q(2)]2 + γ[q(2)]3

≈ f(t)− A2

2(ω2
0 − Ω2)2

β[cos(2Ωt+ 2φ(1)) + 1]. (5.2.8)

We have neglected terms of higher order in A as well as the terms βAq(2), γA[q(2)]2, γA2q(2).
In the range (5.2.4), they contain, in addition to A, a small factor proportional to the
amplitude of fluctuational vibrations. The nonresonant time-independent term on the
right-hand side of (5.2.8) is retained for the sake of clarity; it gives rise to a shift of the
equilibrium position of the nonlinear oscillator due to the periodic driving.

Equation (5.2.8) is the equation of motion for a nearly resonantly driven weakly nonlinear
oscillator. For small A the response of the oscillator to the force ∝ βA2 can be described
by linear response theory [13]:

〈q(2)〉≈− βA2

2ω2
0(ω2

0 − Ω2)2
−

βA2

4(ω2
0 − Ω2)2

[χ(2Ω)e−i(2Ωt+2φ(1)) + χ∗(2Ω)ei(2Ωt+2φ(1))], (5.2.9)

where χ(2Ω) is the susceptibility of the system at 2Ω.

In terms of nonlinear optics, the onset of vibrations at twice the frequency of the driving
force corresponds to second-harmonic generation (SHG). Equation (5.2.9) fully describes
resonant SHG in an underdamped fluctuating nonlinear oscillator.

In the frequency range (5.2.3) the susceptibility χ(2Ω) is resonantly large. In the absence
of noise, χ(2Ω) ≈ (4Ω2−ω2

0−i2ΓΩ)−1. In the presence of noise, χ is related to the spectrum
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of fluctuations Qq (3.1.5) by means of fluctuation-dissipation theorem and the Kramers-
Krönig relation: see (5.1.4). At T � Em, the spectrum can be evaluated analytically [2,43]
while, in general, it can be readily calculated by means of the numerical algorithm [11]
descibed in sub-section 3.5 above. The latter was used in Figs. 46-48.

Figs. 46 and 47 show the dependence of |χ(ω)|2 as a function of T for five values of ω = 2Ω,
and as a function of ω for three values of T , respectively. Fig. 48 shows the dependence
on T of the real and imaginary parts of χ(ω). It is clear from Figs. 46 and 48 that, for
ω ≈ ω0, the functions χ′(ω), χ′′(ω), and |χ(ω)|2 display nonmonotonic dependences on
T . The peaks in |χ′′(ω)| and |χ(ω)|2 vs T are due to the fact that the noise “tunes” an
underdamped oscillator to a given frequency. As ω decreases the peaks become lower and
broader (see the curves (a)-(d) in Fig. 46): this is due to the fact that, if the frequency
lies in the the range of a monotonic decrease of ω(E), then the smaller the frequency the
larger is the T that is required to tune the oscillator to this frequency, while the larger T
is the larger the fluctuational smearing δω of the oscillator frequency so that the oscillator
displays a less resonant response. However, as ω reaches the close vicinity of ωm, the peaks
again rise (to infinity if Γ→ 0): see the curve (e) in Fig. 46. The latter effect is due to the
ZD property, which provides an enhancement of the resonant properties of the oscillations
as T becomes comparable with Em.

Equation (5.2.9) also makes it possible to analyze resonant absorption at frequency 2Ω,
i.e. two-photon absorption (TPA), in the language of nonlinear optics. To do this one
has to iterate Eq. (5.2.2) once more and to find the term q(3)(t) (i.e. the term ∝ A3):
this term contains components oscillating with frequency Ω and thereby contributes to
the absorption coefficient κ (5.2.5). The resultant overall expression for κ allows both for
the nonresonant linear (in A) absorption due to oscillator damping, and for a resonant
nonlinear (in A) absorption. It takes the form

κ ≈ κ1 + κ2,

κ2 =
Ω

4(ω2
0 − Ω2)2

(
βA

ω2
0 − Ω2

)2

χ′′(2Ω), (5.2.10)

where κ1 and κ2 are respectively the coefficients of linear and nonlinear absorption. The
coefficient κ1 for small noise intensities is given by (5.2.7).

It follows from (5.2.10) that, in the range (5.2.4), TPA as a function of frequency and
temperature should display behaviour similar to that displayed by linear resonant absorp-
tion of a nonlinear oscillator at the frequency 2Ω, which is described by the imaginary
part 45 of the susceptibility, χ′′(2Ω). Thus, like χ′′(2Ω), the TPA has a distinct peak as a
function of T provided 2Ω is close to ω0; the peak decreases and broadens as Ω decreases
until the the close vicinity of ωm/2 is reached, when it again rises due to the ZD property.

45 We note that the proportionality factor between κ2 and χ′′(2Ω) is the squared coefficient of
the cubic nonlinearity β, in agreement with the well-known fact that TPA occurs in noncen-
trosymmetric systems.

72



5.2.2 Experiment

To test these theoretical predictions, the authors of [116] performed analogue electronic
experiments and digital simulations. We describe them briefly below; further details may
be found in [116].

5.2.2.1 Circuit

The analogue model was of a standard design, constructed on the basis of the principles
described in detail elsewhere [52–54], using operational amplifiers, multipliers, and other
standard analog components to perform the required mathematical operations of addition,
substraction, multiplication, division, integration, etc. (cf. also sub-section 3.6). After
proper rescalings, the circuit modeled the parameters of Eq. (5.2.2) in the following way:

ω0 = 1, β = 5/3, γ = 1. (5.2.11)

The nominal value of Γ was 0.0142. However, for such small damping, the actual value
usually differs from the nominal one due to the effects of stray capacitances and resistances
in the circuit. In the present case, the actual value, measured experimentally by two
independent methods (cf. [46]) was found to be Γ = 0.0122.

The intensity of the second harmonic of the signal was measured directly from the
ensemble-averaged signal in the circuit at frequency 2Ω. It follows from (5.2.9) that this in-
tensity divided by β2A4/(16(ω2

0−Ω2)4) gives us |χ(2Ω)|2, provided A is small (A = 0.0176
in the relevant experiment).

The two-photon absorption coefficient was determined from measurements of the angular
shift φ, relative to the driving force, of the ensemble-averaged signal at frequency Ω. In
the range of moderately weak noise intensities (5.2.4) the expression for the angular shift
can be obtained in a way similar to that used to derive Eq. (5.2.10) for the absorption
coefficient. In the limit of weak absorption the angular shift is given by a sum of the
contributions φ(1) and φ(2) that correspond, respectively, to linear absorption and to TPA:

φ ≈ φ(1) + φ(2), φ(2) = −1

2

β2A2

(ω2
0 − Ω2)3

χ′′(2Ω), (5.2.12)

where the angular shift φ(1) is given by Eq. (5.2.6) with higher-order corrections in T
[116].

The digital simulation was based on the algorithm described in [117]. The spectra of
fluctuations in the absence of periodic driving obtained by two alternative algorithms
[117] and [118] coincided with each other.

5.2.2.2 Results

A. Second harmonic generation.
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Measurements of the intensity of the signal at the second harmonic of the forcing frequency
are shown for two frequencies by the data points in Figs. 49(a) and 49(b). In the range of
force amplitudes A investigated, the intensity of the second-harmonic signal (SHS) was
proportional to A4, and the data in Fig. 49 have been appropriately scaled for comparison
with the relevant theoretical susceptibility curves from Fig. 46. Also included in Fig. 49 are
theoretical values of |χ|2 from (5.1.4) derived from fluctuation spectra obtained via digital
simulations of the dynamics. It is evident that all the results agree well within experimental
error. Direct measurements of the linear response to a weak force at the resonant frequency
Ω ≈ ω0 were also found to be in a good agreement with theory. It is clear that the
dependence of the SHS intensity on the noise intensity is strongly nonmonotonic, the
peak of the SHS intensity being particularly tall and narrow for Ω ≈ ω0/2. The noise-
induced enhancement, defined as the ratio of the maximal intensity of the signal at a
given frequency to the intensity for T = 0, was found to exceed a factor of 4.5 under the
experimental conditions.

It can be seen from Fig. 49(b) that, for Ω ≈ ωm/2, there is a distinct peak too. For the
given model and given parameters, it is a bit smaller and broader than the peak in the
case Ω ≈ ω0/2 but, if one further decreased Γ while shifting Ω yet closer to ωm/2, then the
magnitude of the peak would grow (to infinity, in the limits Γ→ 0 and Ω→ ωm/2). Note
also that the noise-induced enhancement in the case Ω ≈ ωm/2 is incomparably larger
than in the case Ω ≈ ω0/2 (cf. Fig. 49).

B. Nonlinear absorption.

As explained above in sub-section 5.2.2.1, a convenient way to investigate the absorption
of a periodic driving force A cos(Ωt) in an analog experiment is to determine the angular
shift between the ensemble-averaged signal at frequency Ω and the force itself. It follows
from the theory (see Eqs. (5.2.10) and (5.2.12)) that the absorption coefficient and the
angular shift are each made up of a sum of two components, representing linear and
nonlinear contributions. In Figs. 50(a) and 51(a) we compare the measured and calculated
dependences of the total angular shift φ on the noise intensity. The theoretical curves (solid
lines) were calculated using Eq. (5.2.12) with φ(1) given by (5.2.6) with the T -dependent
corrections [116] and φ(2) given by (5.2.12) with χ(2Ω) from (5.1.4). To evaluate the
spectrum of fluctuations, the algorithm [11] was used.

An additional numerical experiment was performed in which the angular lag at the fre-
quency of the weak periodic force was found directly (see [116] for details) and the
spectrum of fluctuations in the absence of periodic driving, Qq(ω), was obtained by
Monte Carlo simulation of the dynamics. The resultant values of Qq(ω) were used to
evaluate the angular shift according to Eqs. (5.1.4) and (5.2.12), with φ(1) given by
− arctan[χ′′(Ω)/χ′(Ω)]. In Figs. 50 and 51 these results are compared with those derived
from theory and from analog experiment. All the results - including those from theory,
direct analog simulations, and numerical simulations, both direct and in the absence of
force - are in good agreement with each other.

The contribution of the linear nonresonant angular shift to the total angular shift is
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important when the nonlinear resonant effect is relatively small. It is especially true for
the relatively broad peak at Ω ≈ ωm/2. For this reason, the angular shift was measured for
very small force amplitudes when φ ≈ φ(1). The temperature dependences of the measured
angular shift φ and the calculated linear angular shift φ(1) are shown, for two different
frequencies, in Figs. 50(b) and 51(b). It can be seen that φ(1), as given by (5.2.6) with
the T -dependent corrections, is in reasonable agreement with both the measured φ ≈ φ(1)

and with the values of φ(1) = − arctan[χ′′(Ω)/χ′(Ω)] obtained by computer simulation of
Qq(ω). The results were clearly very different from those of Figs. 50(a) and 51(a).

5.2.3 Discussion and unsolved problems

Thus, the addition of noise may strongly enhance the generation of harmonics of order
higher than 1, as well as the nonlinear absorption at subharmonics of eigenfrequencies
(the classical analogue of many-photon absorption). It has been demonstrated both the-
oretically and experimentally that the intensity of the second harmonic and two-photon
absorption coefficients as functions of temperature (which characterises noise intensity:
see (5.2.2)) are strongly peaked, provided that the frequency of the driving force Ω is
close either to the eigenfrequency of small-amplitude oscillations or to the extremal eigen-
frequency (where the dispesion is equal to zero: dω/dE = 0). These phenomena may be
considered as a generalization of stochastic resonance (cf. e.g. sub-section 5.1) for the non-
linear response. It should be emphasized in connection with this that, if one assumes the
strong definition of SR i.e. a noise-induced increase of the signal-to-noise ratio rather than
signal only, then such an increase in relation to the nonlinear response to the subharmonic
driving may occur only in a ZD system provided also that Ω is close to a subharmonic
of the extreme eigenfrequency (cf. sub-section 5.1 related to the linear response to the
driving on the main/multiple frequency).

The quantitative theory presented above is valid only in the range of small T (5.2.4), when
the anharmonicity of the vibrations involved is weak. At the same time, it is intuitively
obvious that the effect of SHG and TPA should still exist for frequencies 2Ω significantly
different from ω0 (while still lying within the spectrum of eigenfrequencies) provided T
is large enough to tune the oscillator to such a frequency. Obviously, the theory would
then require generalization to allow for the strong nonlinearity of the oscillations. Such
a generalization for the conventional case of a monotonic ω(E) was developed in [116]:
it is based on the iterative perturbation scheme applied to the Fokker-Plank equation
i.e. to the equation of motion of the probability density rather than the coordinate itself.
However this theory is not valid in the ZD case where it gives rise to singularities.

As already mentioned, the ZDP and the spectral peak at the main frequency are much
more widely separated in a strongly nonlinear oscillator than in the moderately nonlinear
TDO. The noise-induced increase of SHG, and especially of the corresponding signal-to-
noise ratio, and the TPA at subharmonics of the extremal eigenfrequency in the strongly
nonlinear oscillator (cf. SQUIDs: see sub-section 2.1) may be expected to be much more
pronounced than in the TDO with ω0 − ωm � ω0, in analogy with the linear response at
the main frequency (see sub-section 5.1). It will thus be important to test this inference
experimentally and to develop the corresponding theory.
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5.3 Weak noise: escape rates and directed diffusion

In the previous subsections (5.1 and 5.2), we discussed the interplay between noise and
periodic driving mainly in the context of spectral densities, signal-to-noise ratio, and noise-
induced absorption. In doing so, we assumed the periodic driving to be much weaker than
the noise, in the sense that the distortion of thermal equilibrium by the periodic driving
was taken as negligible.

In contrast, in the three sub-sections that follow, the noise is assumed to be weaker than
the periodic driving, in the sense that the equilibrium/quasiequilibrium is significantly
distorted by the driving force, at least within the relevant ranges of phase space.

Furthermore, the present sub-section relates to quantities that differ from those discussed
in sub-sections 5.1, 5.2: the major quantities of interest here are the escape rate from a
potential well, and the noise-induced net flux in periodically-driven periodic potentials
(ratchets).

In sub-section 5.3.1 below, we describe briefly the results of [95] on the influence of non-
adiabatic periodic driving on the noise-induced escape rate, and we consider the asso-
ciated ratchet effect in periodic potentials. In sub-section 5.3.2, the underdamped limit
is considered, based on the results of [84,119]. In sub-section 5.3.3, we discuss particular
features of the effects in zero-dispersion systems [119]. Finally, in sub-section 5.3.4, we
draw conclusions and identify major unsolved problems.

5.3.1 Escape rates and resonant directed diffusion in nonadiabatically driven systems at
moderately weak damping

The influence of a weak nonadiabatic periodic driving force on noise-induced escape is a
fundamental problem whose solution is far from complete, despite numerous studies (see
e.g. [120–125,95,126,84,119] and references therein). It is also relevant to many applica-
tions, e.g. to the destruction of metastable states in devices based on Josephson junctions
[120,125] or in mechanical electrometers [127], and to directed diffusion [95,126].

Unlike most of the work on stochastic resonance (see e.g. [99–102]) and early works on
directed diffusion (e.g. [128]), which relate to adiabatic driving where the escape rates
are determined by the instantaneous value of the driving force, the escape rate for nona-
diabatic driving does not manage to follow changes of the driving force. If the driving
force is very small, its main effect on the escape was shown [122–124] to be an enhance-
ment of the diffusion over energy, which increases only the prefactor in the escape rate
and does so relatively weakly: the correction is quadratic in the driving amplitude. But
if the amplitude of non-adiabatic driving exceeds the properly weighted temperature, its
effect was recently shown [95] to be much stronger: the corresponding mechanism relies
on positive work by the force in pushing the system resonantly with the eigenoscillation
at the resonant energy, thus freeing the noise from some of this work within the range
of energies close to the resonant one, and thereby reducing the activation energy. More-
over, in a periodic potential, the driving-induced correction to the activation energy for
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escape over the left barrier may differ from that over the right barrier, provided that a
certain space-time symmetry [95,131] is broken, e.g. the potential is asymmetric within
one period. This difference of activation energies leads to a net flux that strongly (in an
activation-like way) depends on temperature. Here we consider briefly the driving-induced
reduction of the activation energy and the associated noise-induced directed diffusion in
periodic potentials (“ratchets”), following majorly [95].

A. Escape rate

Consider first the escape rate from a potential well. As a simple example of a system
possessing a barrier, we shall use the double-well Duffing oscillator (Fig. 52). The external
periodic force is assumed sinusoidal, for the sake of simplicity. Thus, the equation of motion
is 46

Π(q̈, q̇, q, t) = ξ(t), Π = q̈ + 2Γq̇ + U ′(q)− A cos(Ωt), (5.3.1)

〈ξ(t)ξ(t′)〉 = 4ΓTδ(t− t′), U(q) = −q2/2 + q4/4, T � ∆U ≡ 1/4.

Using the concept of optimal fluctuation (for complementary reviews of its various modi-
fications, see [132,54]; see also some details in the sub-section 5.4.1 below), one can show

that the transition rate W between steady regimes q
(1,2)
st (t) of forced vibration around the

minima of the potential U(q) can be described by an activation law, W ∝ exp(−Sa/T ),

where the activation energy Sa is some functional minimized over the end state
→
s e, over

the end time te and over the path [q(t)] ≡ [q
(1)
st

te→→s e]:

Sa = min
[q(t)],

→
s e,te

S, S =
1

8Γ

te∫
−∞

dt Π2(q̈, q̇, q, t), (5.3.2)

q(t→ −∞)→ q
(1)
st (t), {q(te), q̇(te)} =

→
s e

nf→ q
(1,2)
st (t),

q
(1,2)
st (t) ≈ q

(1,2)
0 +

A

2− Ω2
cos(Ωt), Γ� |Ω−

√
2|.

Here, the end state
→
s e is any state in the phase space from which the noise-free system

can relax either into q
(2)
st (t) or into q

(1)
st (t).

If A = 0, then all states {q, q̇} corresponding to q
(1,2)
st (t) reduce to the stationary stable

states
→
s 1,2 of the undriven system, whereas the exit state

→
s ex, i.e.

→
s e minimizing S,

reduces to the unstable stationary state
→
u at the top of the barrier; the exit time tex, i.e.

te minimizing S, becomes infinite. The path [q(t)] yielding Sa for the transition
→
s 1→

→
u,

called the most probable escape path (MPEP), is the time-reversed noise-free relaxational

trajectory [
→
u
nf→→s 1] (see e.g. [133,3]):

46 It is similar to Eqs. (5.1.1) and (5.2.2) but we have to use a different normalization of the
damping parameter corresponding to that in [84,95] since we reproduce below the figure from
[95] in which the relevant value of Γ is indicated directly in the figure.
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MPEP(A = 0) ≡ [Q(t)], Q̈− 2ΓQ̇+ U ′(Q) = 0, (5.3.3)

Q(−∞) = q
(1)
0 , Q̇(−∞) = 0, Q(∞) = qb, Q̇(∞) = 0.

The path [Q(t)] provides Sa = ∆U ≡ Ub − U0, which obviously agrees with the classical
result for the escape rate [42].

In the asymptotic limit A→ 0, the leading-order correction to the MPEP(A = 0) ≡ [Q(t)]

is linear in A [95]; in particular, this concerns q
(1)
st and

→
s ex. It follows from the definition

of the MPEP [132,54] that its variation [134] is equal to zero in the linear approximation,
so that corrections to Sa(A = 0) ≡ ∆U from a linear correction of the MPEP are weaker
than linear. Hence [95], to calculate the leading-order (linear) term in δSa ≡ Sa − ∆U ,
one may use [Q(t)]:

δSa ≈ −|χ̃|A, χ̃ ≡ χ̃(Ω) = −
∞∫
−∞

dteiΩtQ̇(t), (5.3.4)

where χ̃(Ω) may be called the spectral density of the logarithmic susceptibility [95].

In the static limit Ω→ 0, the modulus of the spectral density |χ̃(Ω)| approaches qb − q(1)
0

so that Sa approaches the minimum value taken by the instantaneous potential barrier
during one period of the driving force, as one would expect. In general, the shape of |χ̃(Ω)|
depends on the interrelation between the damping parameter Γ and the characteristic
eigenfrequencies. For small damping, the function |χ̃(Ω)| displays sharp peaks; and for
some potentials U(q) it may in fact have a distinctly multi-peaked structure (cf. Fig. 54
corresponding to the U(q) shown in Fig. 53). This structure can be understood if one
expands the velocity along the MPEP into a Fourier series in angle (cf. (3.1.7))

Q̇(t) ≡
∞∑
n=1

(Q̇n{E(t)}e−inψ(t) + c.c.), (5.3.5)

where E and ψ are respectively the energy and angle: see (3.1.6). Now, for small damping,
energy and angle are respectively slow and fast variables: see (A.15) in the Appendix,
with f(t) = 0 and allow for the additional factor of 2 in the normalization of the damping
parameter in (5.3.1). Hence

Ė ≈ 2Γω(E)I(E), ψ̇ ≈ ω(E), (5.3.6)

where ω(E) is the eigenfrequency as a function of energy (cf. (2.1.8)), I(E) is the action
as a function of energy (see (A.4)), and we dropped the terms ∝ Γ in the equation of
motion (A.15) for angle, and the fast-oscillating terms in that for energy.

It follows from (5.3.4)-(5.3.6) that the major contributions to χ̃(Ω) are provided by those
sections of [Q(t)] that correspond to energies E(t) ≡ (Q̇(t))2/2 + U(Q(t)) close to the
resonant energies En(Ω), implicitly defined as nω(En) = Ω where n is an integer. Labelling
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with N the resonance which provides the largest contribution to δSa, and allowing for
that ω(E) is approximated near EN as

ω(E) ≈ ω(EN) +
dω(EN)

dEN
(E − EN),

one then obtains

|χ̃| ≈ |χ̃N | ≡ |Q̇N(EN)|

√√√√√
 ∞∫
−∞

dt cos(at2)

2

+

 ∞∫
−∞

dt sin(at2)

2

(5.3.7)

= |Q̇N(EN)|
√
π

a
,

a = ΓΩ|dω(EN)/dEN |I(EN).

In deriving the final expression for |χ̃N |, we have used the fact that each of the integrals

in the upper line of (5.3.7) is equal to
√
π/(2a) [135].

There are three important conclusions to be drawn from (5.3.7).

(1) If Ω is only slightly less than the eigenfrequency in the bottom ω0 ≡ ω(Em) (note
that unlike in other sections, Em here denotes the minimal energy 47 ), then the main
contribution comes from the 1st-order resonance i.e. for N = 1, and |χ̃1(Ω)| has a
sharp tooth-like shape near ω0 [95] (cf. Fig. 54):

|χ̃1(Ω)| = A(1−Bx)θ(x), x = ω0 − Ω, 0 < 1−Bx
∼
< 1, (5.3.8)

A = [π/(2Γ|ω′|)]1/2, B = −(2ω′)−1[(|Q̇2/Q̇1|2)′ + ω′′/ω′].

The derivatives over E are to be evaluated at E = Em. Similar, but much broader
and lower, peaks arise at harmonics of ω0.

(2) The divergence which would arise in (5.3.7) if we considered a ZD system, and Ω
went to the extremal eigenfrequency Ωm, indicates that for a ZD system |χ̃| possesses
peaks at Ωm and at its harmonics provided that Γ is small enough. The shape of the
peaks has to be evaluated a bit differently from (5.3.7), as shown below in sub-section
5.3.3.1.

(3) The divergence in (5.3.7) as Γ→ 0 indicates that, on one hand, the reduction in the
activation energy by the above resonant mechanism may grow as Γ decreases but
that, on the other hand, the range of very small Γ should be treated differently. It
is this latter range that is the most interesting in the present context, and it will be
considered below in sub-section 5.3.2.

B. Directed diffusion

47 We are obliged to use this notation here because it was used in the figure taken from [95]
which we reproduce as Fig. 54.
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Let us now discuss briefly how the resonant mechanism for reduction of the activation
energies provides for directed diffusion within a periodic potential [95]. As an example of a
periodic potential possessing an asymmetry within a period, let us consider the potential
shown in Fig. 53

U(q) = sin(q) + 0.3 sin(2q + 0.4). (5.3.9)

Without driving, the system is in thermal equilibrium so that, for low temperatures (T �
∆U), the system stays with overwhelming probability near the bottom of one of the wells,
equally distributed between all wells. Moreover, because detailed balance holds [38], the
probabilities of escape from the bottom over the adjacent barriers to the left and to the
right are equal each other. Consequently, there is no net flux.

The situation may become radically different if a periodic driving force is applied [95].
Detailed balance need no longer be satisfied. The driving-induced corrections to the acti-
vation energy may differ, depending on whether the escape occurs over the left barrier or
over the right one. This effect is most pronounced in the range where the contributions
from several overtones are substantial so that their mutual interference comes into play
(cf. (5.3.4), (5.3.5)). This is well demonstrated by Fig. 54, where the spectral densities
for escapes to the left and to the right differ markedly except at a few values of Ω. A
detailed study of the spectroscopy of |χ̃±| has not been carried out and it would be very
interesting to study it, especially in the ZD case: cf. sub-section 5.3.3 below. But even
Fig. 54 demonstrates that, by changing the frequency, one can control the direction of the
diffusion:

J = l(W (+) −W (−)) (5.3.10)

∝ sgn(|χ̃+(Ω)| − |χ̃−(Ω)|) exp

(
−∆U − Amax{|χ̃+(Ω)|, |χ̃−(Ω)|}

T

)
.

Here l is a period of the potential, which is equal to 4π in case of U(q) (5.3.9).

It should be noted also that a net flux may arise even in a symmetric potential in cases
when the periodic driving force contains more than one harmonic [95]: the direction of
the diffusion is then controlled by the relative initial angles of relevant harmonics.

For high and moderate damping, the influence of non-adiabatic periodic driving on escape
rates, and the net flux in non-adiabatically driven periodic potentials, were observed in
analogue experiments [126] and found to be in satisfactory agreement with theory [95].

5.3.2 Underdamped limit

As can be seen from Eq. (5.3.7), the theory [95] implies an increasing escape rate that
diverges as Γ → 0. Theories [122–124] based on the mechanism of diffusion over energy
also diverge as Γ→ 0. These divergences suggest that the system should be underdamped
in order for the escape rate to reach the maximum value possible. On the other hand, the
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theories in question can predict neither (i) the maximum increase, nor (ii) the conditions
under which it occurs, and nor (iii) can they illuminate the underlying mechanism. Thus,
it is extremely important to study the problem in the underdamped limit. This is the
major purpose of the present sub-section, which to a large extent follows [84] completed
by the most recent results from [119].

Let us again consider Eq. (5.3.1) but, unlike the previous sub-section, we shall not assume
that A is necessarily the smallest parameter in the problem after the temperature. At the
same time, A is still assumed to be small. Contributions to the decrease in activation
energy that are ∝ An with n > 1 will therefore be neglected.

The presence of the periodic driving affects Sa in three different ways: (1) by shifting the

starting energy Est, i.e. the energy of the starting state
→
s st (belonging to q

(1)
st ), away from

E(
→
s 1) = U0; (2) by shifting the exit energy Eex ≡ E(

→
s ex) ≡ q̇2

ex/2 + U(qex) away from

E(
→
u) = Ub; and (3) by causing a breakdown of the relation Sa = Eex − Est. Correspond-

ingly, we divide δSa ≡ Sa −∆U formally into three parts:

δSa ≡ δS(st)
a + δS(ex)

a + δS(r)
a , (5.3.11)

δS(st)
a ≡ U0 − Est, δS(ex)

a ≡ Eex − Ub, δS(r)
a ≡ Sa − (Eex − Est).

The maximum deviation of energy on the attractor q
(1)
st (t) from U0 is

≈ {Amax(Ω,
√

2)/(2− Ω2)}2/2. Thus,

−δS(st)
a ≡ Est − U0 <

1

2

(
max(Ω,

√
2)

2− Ω2

)2

A2, (5.3.12)

and may be neglected in comparison with the other two terms in (5.3.11) (see below)
unless Ω is very close to

√
2; the latter narrow range will be considered neither here nor

in what follows.

While evaluating two other terms in (5.3.11), it is convenient to resolve the cases of
vanishingly and moderately small A.

5.3.2.1 Asymptotic limit A→ 0.

Obviously, the limit of a vanishingly small driving amplitude is not of practical interest,
because the decrease of Sa is then negligible; at the same time, its consideration allows
us to resolve best of all different physical mechanisms by which the driving affects Sa. In
turn, this provides a better understanding of the case of moderately small A, which is
potentially important in situations of practical importance. We shall evaluate the terms
δS(ex)

a and δS(r)
a separately, respectively in stages (1) and (2) below.

(1) To evaluate δS(ex)
a we note first that δS(r)

a is dominated by contributions from the

narrow range of resonant energies, and therefore its dependence on
→
s e from the

relevant range of energies ≈ Ub is weak (cf. (5.3.4), (5.3.7) as well as stage (2)
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below). We shall assume that the latter dependence is weak enough for one to be

able to derive δS(ex)
a merely from the minimization of E(

→
s e) over

→
s e, independently

of δS(r)
a . So, when this assumption is true 48 , then, to leading order in A,

→
s ex is the

state which, among all possible
→
s e, has the minimal energy, Emin:

δS(ex)
a ≈ Emin − Ub. (5.3.13)

For A/Γ→ 0,
→
s ex belongs to the unstable periodic orbit near the top of the barrier

[95]. So, Ub − Emin ≈ A2/(2(1 + Ω2)2), and −δS(ex)
a can be neglected in comparison

with −δS(r)
a ≈ −|χ̃|A (see Eq. (5.3.4)).

On the other hand, if

A > Ac ≈ µlΓ, µl =
4
√

2cosh(πΩ/2)

3πΩ
, (5.3.14)

(µl ∼ 1 at Ω ∼ 1, so that Ac ∼ Γ), then a homoclinic tangle arises in the noise-
free system [60] leading, in Poincaré section, to a complex mixing of the basins of

attraction of q
(1,2)
st in a layer around the boundary separating the attracting basins

of the stable states of the undriven system (Fig. 55). To first order in A, Emin may
be approximated by the minimum energy in that part of the basin of attraction of
q

(2)
st where q < qb = 0, additionally minimized over the angle of the Poincaré section.

It can be shown (in the same way as (5.3.14) is derived in [60]) that, to first order in
A, Emin < Ub if and only if the condition (5.3.14) holds. If (5.3.14) holds and Ω ∼ 1,
then (Ub − Emin)/A ∼ 1.

One can readily find Emin numerically, just by integrating the dissipative equation
(5.3.1) in the absence of noise (T = 0). This should be done for a variety of initial
driving force angles in the interval [0, 2π] and on a grid of initial states with q < 0,
choosing from them that state which has the minimum energy among those states
from which the system relaxes to the attractor q

(2)
st : this energy approximates Emin,

to first order in A.
For A � Ac ∼ Γ, the numerical search for Emin can significantly be simplified:

the lower-energy boundary of the layer then coincides approximately with the lower-
energy boundary of the corresponding chaotic layer of the non-dissipative system,
namely, of the chaotic layer which includes the state {q = qb, q̇ = 0}. At the same
time it can be shown that the minimal energy in a Poincaré section of the chaotic
layer, E(nd)

m , is independent of the angle at which the section is taken; so, Emin ≈
E(nd)
m . The explicit formula for E(nd)

m is unknown [136] but, in the light of the above
remarks, the chaotic layer is readily generated by computer, using {q = qb, q̇ = 0}
as the initial state of the system while an initial angle for the driving force may
be chosen arbitrarily. Thus, E(nd)

m can very easily be found numerically. Its detailed
analysis will be presented elsewhere; here, we present characteristic examples of the
dependence of Ub − E(nd)

m on the amplitude and frequency of the driving force. The

48 We shall indicate in the last paragraph of the item (2) below the ranges of A where this

assumption fails. But even in those ranges, eq.(5.3.13) provides for −δS(ex)
a the estimation from

above, which will turn out quite enough for it to be neglected in the asymptotic limit A→ 0. At

the same time, δS
(ex)
a (5.3.13) will provide the major contribution in the range of moderately

small A, as shown in Sec. 5.3.2.2 below.
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amplitude dependence is ladder-like (Fig. 56(a)); the frequency dependence exhibits
sharp peaks (Fig. 56(b)). The jumps in the first case and the peaks in the latter
correspond to the occurrence of overlap/separation between nonlinear resonances.
Let us first demonstrate it for the frequency dependence.

For very small Ω, the relevant chaotic layer relates only to the separatrix of the
undriven system and Ub − E(nd)

m ∝ ΩA [35]. As Ω grows, the resonant energy E1(Ω)
sharply decreases and, starting from Ω = Ω1 ≈ 2π/ ln(1/A), the lower part of the
chaotic layer relates to the lower part of the nonlinear resonance [5,35,60,136] while
the upper part of the layer still relates to the separatrix of the undriven system. Both
parts are clearly resolved in Poincaré section: Fig. 57(a); cf. also sub-section 4.3.2.
Thus, Ub − E(nd)

m grows rapidly and reaches the first maximum for Ω slightly larger
than Ω1. As Ω grows further, the layer related to the nonlinear resonance separates
from the layer around the original separatrix. It can then no longer provide inter-well
chaotic transport (Fig. 57(b)). Consequently, Ub − E(nd)

m drops abruptly. The peaks
at multiple frequencies correspond to higher-order resonances.

Similarly, as A grows, Ub − E(nd)
m undergoes large jumps at An ∼ exp(−2πn/Ω),

related to successive overlaps between the layer associated with the original separatrix
and the layers associated with nonlinear resonances. Note however that the largest
An, namely A[Ω/

√
2]+1, is typically still quite small – unless Ω is only slightly less

than the eigenfrequency at the bottom,
√

2. Further growth of Ub − E(nd)
m with A

is approximately linear, provided A � 1. Thus, for most of the range A � 1, the
quantity (Ub − E(nd)

m )/A plays a role similar to that of |χ̃| in (5.3.4).
The question of the relevance/non-relevance of the above peaks and jumps to the

frequency and amplitude dependences of δSa respectively will be discussed at the
end of the (2) below.

(2) We next wish to evaluate, or at least to estimate, the last term in δSa (5.3.11) i.e.
δS(r)

a .
Let us first try to generalize the evaluation of this part [95] corresponding to the

case when the homoclinic tangle and related reduction in the exit energy are absent
(described in part A of Sec. 5.3.1 above) for the more general case in which the tangle
and reduction may be present. Using arguments similar to those of [95], δS(r)

a may
be described by the formula

δS(r)
a ≈ −|˜̃χ|A, ˜̃χ = −

tex∫
−∞

dteiΩt ˙̃Q(t), (5.3.15)

where Q̃(t) is the time-reversal of the noise-free relaxation from
→
s ex. As when the

homoclinic tangle is absent, the main mechanism contributing to ˜̃χ at small Γ is the
resonant one, so that |˜̃χ| ≈ |χ̃N | as in (5.3.7).

We now consider how to estimate the value of Γ at which the resonant mechanism
saturates and where (5.3.15) is no longer valid. It is a difficult problem: it requires
us to find the next term in δS(r)

a , after the term ∝ A, while the latter requires us to
find the correction ∝ A in the MPEP and then to find the corresponding correction
to the activation energy; moreover, as is obvious from (5.3.1) and (5.3.2), the part of
the second-order (i.e. ∝ A2) correction to the activation energy that comes from the
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second-order correction in the integrand Π2 of (5.3.2) diverges 49 . Altogether, there
are enormous technical difficulties and we have failed to overcome them. Instead, we
suggest below a way of estimating a quantity Γr such that Eq. (5.3.15) is definitely
invalid for all Γ < Γr. The most straightforward way would be to use the fact that
−δS(r)

a cannot exceed Eex−Est. This would give rise to an estimate Γr ∝ A2. However,
it is possible to find much higher Γr. Indeed, the main contribution to the integrals
in (5.3.7) comes from the range of t within which the absolute value of the argument

of the trigonometric functions is
∼
< π/2, i.e. |t|

∼
< tr ≡

√
π/(2a) ∝ Γ−1/2. In this

range, the energy along the MPEP, E ≈ ˙̃Q
2

/2 + U(Q̃), increases from EN −∆Er/2
to EN + ∆Er/2 where

∆Er ≈ 2Γω(EN)I(EN)2tr ∝
√

Γ. (5.3.16)

The unperturbed part of the activation energy associated with a noise-induced in-
crease of energy for ∆Er is equal to ∆Er. Thus, the perturbative formula (5.3.15)
(as well as its partial case (5.3.4)) is valid as long as the absolute value of the
negative correction due to the resonant mechanism in the range [−tr, tr], which is
∼ |Q̇N(EN)|trA, is less than ∆Er. Hence,

Γr ∼ A/µr, µr = [ωI/|Q̇N |]E=EN . (5.3.17)

Typically, µr ∼| Q̇2
1/Q̇N |. Thus, typically, µr ∼ 1 if the relevant resonance number

N is 1 while µr � 1 otherwise.
Of course, it cannot be guaranteed that the resonant mechanism (and the corre-

sponding Eq. (3.5.15)) is valid for all Γ� Γr but this is quite likely and, if it is valid
indeed, then the saturation of the growth of −δS(r)

a as Γ decreases occurs at Γ ∼ Γr,
typically at the level

−δS(r)
a ∼

√√√√ |Q̇N |A
|dω(EN)/dEN |

∝
√
A, (5.3.18)

i.e. it greatly exceeds −δS(ex)
a ∝ A, given that A→ 0.

The next question is: what is δS(r)
a for Γ � Γr? A rigorous treatment of this diffi-

cult problem has not yet been achieved. The authors of [84] suggested an intuitive
argument in favour of a vanishing δS(r)

a as Γ → 0: the resonant mechanism affects
mainly the “resonant” energies i.e. those in the band [EN − ∆Er/2, EN + ∆Er/2];
hence, −δS(r)

a is not likely to exceed the width of this band significantly,

−δS(r)
a

∼
< ∆Er ∝

√
Γ

Γ→0−→ 0, Γ
∼
< A. (5.3.19)

The results of computer simulations 50 [84] seemed to support this hypothesis: as
seen from Fig. 58, δSa reduces to δS(ex)

a as Γ/A→ 0. However recent simulations in

49 In fact, this divergence indicates that the next-order (after the first-order) correction in δS
(r)
a

is probably non-analytic, i.e. that its second derivative is likely to diverge at A = 0.
50 Eq. (5.3.1) was simulated numerically, and the transition flux from q

(1)
st (t) to q

(2)
st (t), J ≡

J(A, T ) ≡ P (A, T ) exp(−Sa(A)/T ), was measured at two slightly different low temperatures,
both for a given A and for A = 0. The activation energy was then calculated as Sa ≈ [T1T2/(T1−
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some other system [119] (see the Sec. 5.3.3 below, in particular Fig. 64) and more
careful qualitative theoretical analysis [119] have shown that the hypothesis about
the vanishing of δS(r)

a in the underdamped limit is not valid in general, while the
argument [84] about the vanishing of ∆Er (5.3.16) as Γ→ 0 is irrelevant because the

perturbation theory on which Eq. (5.3.16) is based becomes inapplicable at Γ
<∼ Γr.

It is still not clear how to solve the problem quantitatively but some qualitative
understanding may be gained from [129] (see also the review [2]). This paper considers
fluctuational transitions in a weakly nonlinear single-well oscillator driven by a nearly
resonant periodic force. In the absence of noise, such a system possesses two stable
states which, in the asymptotic limit of vanishing damping, correspond to a linear
response and nonlinear resonance respectively (cf. Sec. 4 above). To solve the problem
of fluctuational transitions between these two states, the authors of [129] transform
to slow variables (cf. the transformation to slow action and slow angle in Sec. 4),
and then consider by the method of optimal fluctuation transitions from each of the
two states to the saddle on the boundary between their basins of attraction in the
plane of the slow variables. In the asymptotic limit of a small driving amplitude
A (but with the damping parameter still assumed to be much smaller), the linear
response attractor corresponds to energies close to the very bottom of the potential
well (i.e. U0) while both the saddle and the attractor of the nonlinear resonance
correspond approximately to the resonance energy Er i.e. to such an energy for which
the eigenoscillation and driving frequencies are equal: ω(Er) = Ω. In the asymptotic
limit A → 0, the activation energy Slrs for the transition from the linear response
attractor to the saddle can be found explicitly [129]

Slrs = (Er − U0)− ξ√
2

∆Enr, (5.3.20)

∆Enr = 2

√√√√√A
√
Er/2

dω/dE
∝
√
A, ξ ≈ 0.98.

Thus, the deviation of Slrs from just the difference in energy between the starting
and ending states, Er − U0, which is similar to δS(r)

a in our problem, is of the order
of ∆Enr in absolute value. As in the case of Γ � A [95], this deviation is yielded
mainly in the narrow (∼ ∆Enr) band of energies near Er, though the mechanism is
different.

Of course, the method of [129] is not immediately applicable to our case where
the eigenfrequency varies over a broad range (from 0 to ω0) and it is impossible
to introduce slow variables which would be valid in the whole relevant range of
energies. The same is true of the method used in [130], which in particular considers
the same problem as in [129] and also uses a transformation to slow variables but the
consideration is done in terms of the Fokker-Plank equation rather than by means of
the method of optimal fluctuation. On the other hand, the results of [129] indicate
that −δS(r)

a does not vanish as Γ → 0; rather it is of the order of the width of the

T2)] ln[J̃(A, T1)/J̃(A, T2)], where J̃(A, T ) ≡ J(A, T )/J(A = 0, T ) (comparison with the case
A = 0 was made in order to reduce as much as possible the influence of the prefactor P in the
determination of Sa; note that T1 and T2 were chosen such that T1 � ∆U while |T1 − T2| ∼
T 2

1 /∆U).
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broadest nonlinear resonance. Note that it is of the same order as the value −δS(r)
a

(5.3.18) (the latter corresponds to the saturation of the resonant mechanism [95]
at Γ ∼ A/µr; besides, we obviously assume that N = 1 in (5.3.18), otherwise the
comparison with (5.3.20) would not make sense).

It is also obvious from the above discussion that the jumps and peaks in the ampli-
tude and frequency dependences of Ub−E(nd)

m are not manifested in the corresponding
dependences of −δSa: apart from the fact that −δS(ex)

a is on the whole much smaller
than the major nonlinear resonance contribution ∝

√
A, there are no jumps/peaks

even in −δS(ex)
a itself. Indeed, the jumps/peaks in Ub−E(nd)

m are related to the recon-
nection of the chaotic layer around the original separatrix with the thin chaotic layers
around the separatrices of nonlinear resonances of a high order while – as is obvious
from results [129] and from the discussion above – the end state in the problem of a
fluctuational transition from a state of low energy towards the separatrix of a non-
linear resonance is the saddle, rather than the lowest energy state of the separatrix.
Furthermore, the corresponding activation energy is not just the difference in energy
between the final and initial states. Note that the resonance width constitutes a jump
in Ub−E(nd)

m at a relevant value of A. Thus, it may be expected that the contribution
to −δSa from the range of energies close to the barrier can be described by Ub−E(nd)

m

smoothed over the jumps, i.e. this contribution coincides with Ub − E(nd)
m only if A

lies beyond the vicinity of jumps in the corresponding amplitude dependence in Fig.
56(a) (cf. also Fig. 58 and the discussion in Sec. 5.3.2.2 below). In any case, in the
limit A → 0 considered, this contribution may be neglected in comparison with the
contribution from the major nonlinear resonance.

Thus, it seems that, in the asymptotic limit A→ 0, the evolution of −δSa as Γ decreases
should occur in the following manner: for Γ� A/µr, it grows due to the resonant mecha-
nism [95], i.e. ∝ Γ−1/2 according to Eqs. (5.3.4) and (5.3.7); this growth starts to saturate
at Γ ∼ A/µr while a relatively small addition ∼ A arises at Γ ∼ A/µl (these ranges often
coincide) due to the reduction in the exit energy caused by the homoclinic tangle [84] as
described by Eq. (5.3.13); with further decrease of Γ, when it becomes � A/max(µr, µl),
the reduction in exit energy saturates at the level ∼ A [84], while the contribution from
the range of resonant energies remains dominant and of the same order (i.e. ∝

√
A) as

at Γ ∼ A/µr, though by a different mechanism. The latter involves a large fluctuation
through the range of the broadest nonlinear resonance in the plane of the slow variables
[129,119], i.e. it is associated with a characteristic change of the MPEP in the vicinity of
the major nonlinear resonance.

We may conclude that, in the asymptotic limit A→ 0, the largest decrease in activation
energy occurs at Γ

<∼ A/µr, the major contribution to it comes from the range of the
broadest nonlinear resonance, the decrease being of the order of the resonance width in
energy.

5.3.2.2 The range of moderately small A.

An obvious question which may arise in relation to Sec. 5.3.2.1 is: how does its conclusion
about the dominance of the nonlinear resonance contribution (rather than of the reduction
in exit energy) in the decrease of Sa in the underdamped limit agree with the results of the
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simulations [84] presented in Fig. 58? Indeed, one can clearly see in both Fig. 58(a) and Fig.
58(b) that, in those ranges of A and Γ where Γ/A� 1 (i.e. in the distinctly underdapmed
regime), the decrease of the activation energy in simulations is nearly exactly equal to
Ub−Em i.e. to the lowering of the minimal energy in the layer of transient chaos (i.e. layer
of mixed basins), which appears at first sight to contradict the conclusion of Sec. 5.3.2.1.

To resolve the paradox we note that the conclusion of Sec. 5.3.2.1 relates to the asymptotic
limit A → 0, when the layer of transient chaos is distinctly separated from the lowest
nonlinear resonance. But, if the latter is much closer to the barrier level Ub than to the
bottom U0, then there exists a range of moderately weak driving amplitudes which are
weak enough for a linear response to exist but, at the same time, large enough to provide
a complete absorption of the energy range of the lowest nonlinear resonance by the layer of
transient chaos. When such an absorption takes place, then obviously only one mechanism
of the decrease of Sa remains relevant – the lowering of the exit energy due to the layer
of transient chaos.

Note that, in the case of a conventional potential well like that of the Duffing or multi-well
SQUID potentials, ω(E) decreases monotonically from ω0 to 0, with the major decrease
occurring in a narrow vicinity of the barrier level: cf. e.g. those branches of ω(E) in Fig.
4(b) which correspond to wells of the multi-well SQUID potential shown in Fig. 3(b). For
ω0 of such type, the absorption described in the previous paragraph is valid in the major

part of the relevant 51 driving frequency range Ω
∼
< ω0, namely in the whole range Ω

∼
< ω0

except the close vicinity of the bottom eigenfrequency ω0 or of any of its harmonics of
moderate order, i.e.

([
Ω

ω0

]
+ 1

)
ω0 − Ω ∼ ω0, (5.3.21)

Ω
∼
< ω0,

where the square brackets imply taking the integer part. Indeed, the order of the lowest
nonlinear resonance, which in the case (5.3.21) is also the broadest one, is N = [Ω/ω0]+1.
Allowing for (5.3.21), the deviation of the relevant resonant energy EN from Ub is much
less than the barrier height ∆U : e.g. for the Duffing oscillator used in [84] (see (5.3.1)
above), it may be described by the following asymptotic formula [29]

Ub − EN ≈ 64∆U exp

(
−
√

2π

Ω/N

)
� 1. (5.3.22)

Correspondingly, if the driving is moderately weak, namely

∆U � A� Ub − EN , (5.3.23)

51 When Ω � ω0, the layer of transient chaos is exponentially narrow [35,60,136] while the
relevant nonlinear resonances are of a high order and therefore are very narrow too. The effect
of driving on the activation energy is therefore negligible.

87



then the nonlinear resonance mechanism for the decrease of Sa is irrelevant, so that

Sa ≈ δS(ex)
a ≈ Ub − Em. (5.3.24)

Just such a situation relates to Fig. 58: Ω = 1.7 while ω0 =
√

2, so that the lowest
nonlinear resonance has the order N = 2 and the deviation of the corresponding resonant
energy from the barrier level Ub − E2 ≈ 0.01 is much less than both ∆U = 0.25 and
relevant values of A. Thus, (5.3.23) is satisfied and, hence, Eq. (5.3.24) holds.

Let us now briefly discuss the narrow frequency range that remains, namely that just
below ω0,

0 < ω0 − Ω� ω0, (5.3.25)

and its harmonics of a moderate order,

([
Ω

ω0

]
+ 1

)
ω0 − Ω� ω0, (5.3.26)

1 ≤ [Ω/ω0], Ω ∼ ω0.

In the frequency range (5.3.25), the regime of moderately weak driving is usually im-
possible: the lowest nonlinear resonance occurs close to the bottom providing that the
driving is really weak; while, as the driving amplitude increases, linear response typically
disappears before the layer of transient chaos reaches the energy range of the resonance.

In the frequency range (5.3.26), the lowest possible nonlinear resonance has the order
N = [Ω/ω0] + 1 > 1 and corresponds to energies close to the bottom of the well. The
corresponding harmonic qN(EN) is very small (EN lies in the range of nearly harmonic
eigenoscillation) so that the corresponding resonance is either very narrow or even non-
existent, being suppressed by the linear response. Thus, the broadest nonlinear resonance
in this case, that of order N + 1: Ω/(N + 1), is distinctly lower than ω0 and the relevant
harmonic qN+1(EN+1) is much larger than qN(EN) since EN is close to U0 while EN+1 is
not (cf. [29]). Thus, there exists a range of driving which plays a role similar to that of
moderately weak driving in the range (5.3.21), i.e. the layer of transient chaos absorbs the
broadest nonlinear resonance and thus remains the only mechanism that decreases the
activation energy.

5.3.2.3 Discussion in the contexts of directed diffusion and of the interplay between chaos
and noise.

Let us discuss briefly the application of the results [84,119] reviewed above to the problem
of directed diffusion in periodic potentials with weak damping [95] (cf. item B in sub-
section 5.3.1). The theory [95] predicts that the activation energies for escape to adjacent
wells to the left and right typically differ: thus the fluxes to the left and to the right may
differ exponentially strongly. Moreover, this difference grows as Γ → 0. It follows from
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the results of [84], however, that this growth saturates at least at Γ ∼ A/µr, i.e. well
before the correction [95] to the activation energy becomes comparable with the potential
barrier, which occurs at Γ ∼ A2. Furthermore, if Γ/A becomes smaller than µ−1

l ∼ 1 (see
Eq. (5.3.13)), then the difference between the activation energies disappears: a layer with
mixed basins (transient chaos) is formed. As soon as the system reaches any point within
this layer, it may be transported either towards the well on the left, or towards that on the
right, with probabilities of the same order. But if certain space-time symmetries [131] are
broken, noise-free transport within the layer may be asymmetric, at least on finite time
scales, so that the pre-exponential factors may differ and a net flux may still be present
despite the onset of the layer.

Finally, we set the results [84,119] in the context of studies of the interplay between
chaos and noise (cf. [60]). Most of such works have studied the effect of noise on transport
properties within a chaotic attractor/layer/web. In [137], the dependence on noise intensity
for noise-induced inter-attractor hoppings in a multi-attractor map with transient chaos
was studied in simulations. But neither of these works studied how transient chaos affects
noise-induced escape.

5.3.3 Particular features of escape and directed diffusion in ZD systems

If, instead of the Duffing potential, we consider in Eq. (5.3.1) a potential U(q) which
possesses the zero-dispersion property, i.e. such that the corresponding ω(E) possesses an
extremum at some energy Ee

52 , then the major resonance near the extreme eigenfre-
quency ω(Ee) is very broad in energy and, therefore, the effect of driving of the frequency
Ω ≈ ω(Ee) on the escape rate and the related directed diffusion may be expected to be
especially pronounced. This expectation has been confirmed by both a theoretical analysis
and simulations carried out in [119], whose results are reviewed in this sub-section.

5.3.3.1 Peaks in the spectral density of the logarithmic susceptibility.

The asymptotic formula (5.3.7), valid for A� Γ� ω(EN), diverges as dω(EN)/dEN → 0.
To obtain the correct asymptote for this case, one needs to take account of the first non-
zero term in the Taylor expansion of ω(E) in powers of (E−Ee). Typically, an extremum
is a maximum or a minimum, with a non-zero 2nd derivative associated with it. Near the
extremum, one may use the parabolic approximation:

ω(E) ≈ Ωm +
1

2

d2ω(Ee)

dE2
e

(E − Ee)2. (5.3.27)

So, if the driving frequency Ω is close to NΩm, one obtains from (5.3.4)-(5.3.6),(5.3.27)

52 In other sections, such an energy was denoted Em (see e.g. Eq. (1.0.5)), but we cannot use
the latter in sub-section 5.3 since we had to use this notation in 5.3.1 in a different context (see
footnote 47 above and the text preceding its citation) following [95] whose figure, using this
notation, is reproduced here as Fig. 54.
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|χ̃(Ω)| ≈ |χ̃(ZD)(Ω)| (5.3.28)

≡ |Q̇N(Ee)

∞∫
−∞

dt cos

(
(Ω−NΩm)t− 2d2ω(Ee)/dE

2
e [ΓΩmI(Ee)]

2

3N
t3
)
|

= C
(ls)
scale|Ai(−∆Ω

(ls)
N )|,

C
(ls)
scale =

2π|Q̇N(Ee)|
∆Ω

(ZD)
N

,

∆Ω
(ls)
N = sgn(d2ω(Ee)/dE

2
e )

Ω−NΩm

∆Ω
(ZD)
N

,

∆Ω
(ZD)
N =

(
2|d2ω(Ee)/dE

2
e |[ΓΩmI(Ee)]

2

N

)1/3

,

where Ai(x) is the Airy function [49]; we have used an explicit expression [135] for the
integral in the 2nd line of (5.3.28).

Eq. (5.3.28) provides a universal description of zero-dispersion peaks in the spectra of the
logarithmic susceptibility; cf. Eq. (3.3.19) which provides a universal description of ZDPs
in spectra of the conventional susceptibility [7,46].

The shape of the peak, given by the modulus of the Airy function, is shown in Fig.
59. It is strongly asymmetric: one of its wings decays rather fast while the other wing
oscillates between some slowly decaying upper limit and zero, which is a consequence of
an interference between relevant contributions from different parts along the MPEP.

The magnitude of the peak, C
(ls)
scale, is proportional to Γ−2/3. It therefore grows with decrease

of Γ slightly faster than the conventional peak related to oscillations in the bottom of the
potential well [95] (which ∝ Γ−1/2: see Eq. (5.3.8)). The widths of each sub-peak, as well
as of the peak as a whole, are ∝ Γ2/3, and thus tend to zero as Γ → 0, unlike the width
of the “bottom” peak (which remains finite in the underdamped limit: cf. Figs. 54, 60).

Obviously, Eq. (5.3.28) assumes: (i) that the width of the peak is much less than the
frequency of the maximum; and (ii) that the peak is well separated from other peaks in
the spectrum. Both of these requirements are satisfied in the asymptotic limit Γ → 0,
which is well demonstrated by the insets in Fig. 60, presenting |χ̃(Ω)| for the escapes to
the left and to the right (denoted χ̃(−) and χ̃(+) respectively) in the periodic potential
shown in Fig. 61(a). The relevant peak relates to N = 1 and to the local maximum 53

Ωm in ω(E) shown in Fig. 61(b). At Γ = 10−3 (Fig. 60(c)), the asymptotic formula nicely
describes the first two sub-peaks. Sub-peaks with higher ordinal number are lower than
the corresponding sub-peaks according to the asymptotic formula since the shape of the
latter assumes a purely parabolic shape of ω(E) within a broader range of energies than
occurs in reality. At Γ = 10−2 (Fig. 60(b)), the width of each sub-peak becomes about 5

53 The local minimum at Ω
(1)
m is so sharp that the relevant range of energies is very narrow and,

given that Ω
(1)
m is rather close to Ωm, the contribution from this range of energies at the values

of Γ explored in Fig. 60 is negligible in comparison with that from the range related to the local
maximum.
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times larger and only the first few of them can be manifested in the spectrum since those
of higher ordinal number would involve energy ranges which, in reality, are much beyond
the range relevant to the local maximum in ω(E). Nonetheless, the description of the first
(i.e. highest) sub-peak by the asymptotic formula is satisfactory. The value related to Fig.
60(a), Γ = 10−1, definitely exceeds the upper limit for the validity of Eq. (5.3.28) but,
even at this Γ, the peak in |χ̃(−)(Ω)| still exists and, moreover, is qualitatively described
by Eq. (5.3.28).

One can also see some manifestation of ZDPs on the 2nd and 3rd harmonics, especially
in Fig. 60(c). However, at the given range of Γ they interfere strongly with contributions
from other energy ranges, as we now discuss.

5.3.3.2 Directed diffusion in the asymptotic limit A→ 0.

As was briefly demonstrated in sub-section 5.3.1, the interference between different har-
monics of |χ̃| (5.3.4)-(5.3.6) for asymmetric 54 periodic potentials may give rise to inequal-
ity of the spectral densities related to escape to the left or to the right, leading in turn to
the onset of directed diffusion.

We demonstrate below both qualitatively and by means of numerical calculations that,
similarly to the non-ZD case, the difference between |χ̃(−)| and |χ̃(+)| under ZD conditions
also oscillates as Γ→ 0, but the amplitude of the oscillations is typically larger. Indeed, as
shown in section A above, the ZD contribution χ̃(ZD) into χ̃(Ω = NΩm) (5.3.4)-(5.3.6) (i.e.
the contribution made to the integral (5.3.4) by the Nth harmonic in the range of t close

to te where te corresponds in (5.3.5) to E(te) = Ee) is ∝ Γ−2/3 Γ→0→ ∞. Contributions from
other energy ranges, including in particular those related to other harmonics, are typically
∝ Γ−1/2 (see Eq. (5.3.7)), i.e. they grow slower as Γ→ 0. Therefore, the ZD contribution
dominates as Γ→ 0. Let the second largest (absolute) contribution to χ̃(NΩm) correspond
to some harmonic n = ns while the range of t is close to tns , where tns corresponds to
such E(tns) in (5.3.5) that nsω(E(tns)) = NΩm. As Γ→ 0, the relevant angle differences
projected onto the 2π range, namely

∆ψ(±)≡Nψ(±)(te)− nsψ(±)(tns) +NΩm(tns − te)

−2π

[
Nψ(±)(te)− nsψ(±)(tns) +NΩm(tns − te)

2π

]
,

oscillate between 0 and 2π, and the smaller Γ is, the faster these oscillations in Γ become,
with a period ∝ Γ2. Moreover, if the potential is asymmetric, then the difference between
∆ψ(+) and ∆ψ(−) also oscillates; and the smaller Γ, the faster the oscillations become.

Thus, as Γ decreases, the situation when the (relatively small) non-ZD contribution is
extracted from the (much larger) ZD one alternates with the situation when the contri-
butions are added to each other. Moreover, in the asymmetric potential this alternation

54 The asymmetry is essential only for the case of a monochromatic periodic force while, in case
of a multi-harmonic periodic force, directed diffusion may also arise in symmetric potentials [95].
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occurs differently for escape to the left and to the right. So, the direction of the diffusion
alternates as well provided that A is still � Γ. In fact, this conclusion is not restricted to
the ZD case but is valid generally: some evidence in support of it was contained earlier
in [95] (see Fig. 54 above, reproducing Fig. 1 from [95]). But, in the ZD case, the ampli-
tude of the oscillations of |χ̃(+)| − |χ̃(−)| may be larger. Indeed, this amplitude is equal to
the doubled contribution from the time range near tns in the ns harmonic, 2|χ̃ns|, while
a similar contribution in the non-ZD case dominates in χ̃. Thus the difference between
|χ̃(+)| and |χ̃(−)|, which arises because of the different results of interference with the next
(by absolute value) contribution, is obviously smaller than 2|χ̃ns |.

The strong interference between the 2nd ZDP harmonic and the fundamental, and between
the 3rd ZDP harmonic and the fundamental, are well seen 55 in Fig. 60. The alternation
of the sign of |χ̃(+)| − |χ̃(−)| (as Ω or Γ vary) is also obvious from Fig. 60.

5.3.3.3 Underdamped limit.

Consider first the asymptotic limit A→ 0. Similarly to the conventional case, the decrease
of activation energy caused by the resonant mechanism as A increases, or Γ decreases, may
be expected to saturate at A ∼ Γ: Eq. (5.3.17) is valid in the ZD case too if we exchange
EN for Ee. However the characteristic width ∆Er of the energy band which makes the
major contribution to the resonant mechanism is larger than in the conventional case: as
in all zero-dispersion phenomena, the resonance covers a broader band of energies than
in the conventional case. More concretely, ∆Er is larger due to the time tr during which
Q̇(t) stays in resonance with the relevant harmonic of the periodic driving force, i.e. the
time during which the argument of the cosine in the integral in (5.3.28) has an absolute

value
∼
< π, is larger: tr ∼ (∆Ω

(ZD)
N )−1 ∝ Γ−2/3. Correspondingly,

∆Er ∼ ΓΩmI(Ee)tr ∝ Γ1/3. (5.3.29)

The width of the nonlinear resonance ∆Enr which comes into play as Γ/A→ 0, is of the
same order of magnitude as ∆Er (5.3.29) at the onset of saturation (i.e. at Γ ∼ A): cf.
[67,68], or Sec. 4.1 above. Thus, in the asymptotic limit A→ 0, the maximal decrease in
activation energy as Γ varies is larger than in the conventional case: (−δSa)max ∼ ∆Enr ∼
∆Er(Γ ∼ A) ∝ A1/3 (cf. the conventional case, where it is ∝ A1/2).

The most important difference between the ZD and conventional cases is manifested in
the range of moderately weak damping. Unlike the conventional case, the variation of
eigenfrequency over a broad band of energies far from the bottom may be very small: cf.
Fig. 61. Correspondingly, the energy width of a nonlinear resonance may be very large
(it may be comparable with the barrier height) while the linear response still exists.
Moreover, if the driving frequency is close to the relevant extremal eigenfrequency Ωm,
then the relevant layer of transient chaos goes down very deep into the well while the

55 The interference between the 1st ZDP harmonic and the fundamental are seen only in Fig.
60(a) while, at smaller values of Γ which relate to the figures (b) and (c), the range of energies
close to Ee is the only range which contributes to the frequency range close to Ωm so that the
ZDP contribution has nothing to interfere with.

92



driving amplitude is still quite small. This is attributable to the reconnection between
the chaotic layer around the original separatrix and the layers around separatrices of the
nonlinear resonances (cf. Sec. 4.3.2 above). Altogether, the mixed mechanisms of nonlinear
resonance and the chaotic layer give rise to a very significant reduction of the activation
energy even for rather weak driving. Let us now examine this in more detail.

Consider first the evolution of the layer of transient chaos as A increases. Generalizing
the derivation of the asymptotic expression for µl (5.3.14) related to the Duffing oscillator
[60], one can derive the following formula for the critical value A/Γ at which a homoclinic
tangle arises in an arbitrary potential system perturbed by a linear friction and sinusoidal
force,

µl ≡
(
A

Γ

)
c

=
2
∫∞
−∞ dt q̇

2
s(t)√(∫∞

−∞ dt q̇s(t) cos(Ωt)
)2

+
(∫∞
−∞ dt q̇s(t) sin(Ωt)

)2
, (5.3.30)

where q̇s(t) is the velocity on the separatrix for unperturbed motion in the potential, i.e.
without friction or periodic driving; the origin of time axis t may be chosen arbitrarily.
For the periodic potential drawn in Fig. 61(a), the dependence µl(Ω) (5.3.30) is shown
in Fig. 62. Though it possesses distinct differences from the case of the Duffing oscillator
(unlike the latter case, µl(Ω) for a periodic potential does not diverge as Ω → 0), its
major property in the present context remains the same: µl(Ω) ∼ 1 in the relevant range
Ω ∼ Ωm ∼ ω0.

Though the onset of the homoclinic tangle is not related to the ZD property, its further
evolution, as the driving amplitude increases, possesses in a ZD system a remarkable
feature that is not typical of a conventional system: the reconnection between the chaotic
layer around the barrier level with the layers around the separatrices of the ZDNRs
starts at a very small driving amplitude provided that Ω ≈ Ωm (cf. Sec. 4.3.2 above).
It causes a drastic lowering of the minimal energy in the layer of transient chaos which
provides transport beyond the barriers. Fig. 63 clearly demonstrates this feature for the ZD
system shown in Fig. 61: if the driving frequency is far from the extremal eigenfrequency
Ωm ≈ 0.658 and its harmonics, then a significant decrease in activation energy (for a
value ∼ ∆U) requires a relatively large driving amplitude, A ∼ 0.1; whereas, if Ω is only
slightly smaller than Ωm, then such a decrease occurs in a jump-wise manner at a much
smaller amplitude, A = 0.005.

But, as discussed in the last paragraph of item (2) of Sec. 5.3.2.1 above, the jumps in Em
do not result in jumps of either δSa or even of Eex. On the other hand, the value of A
at which the jump in Ub − E(nd)

m (or in Ub − Em if Γ is not small enough) occurs due to
the reconnection with the major ZDNRs indicates the range of A in which the growth of
−δSa(A) saturates or significantly slows. The value of Ub−E(nd)

m after the jump indicates
the order of magnitude of −δSa(A) in the range of A where its growth is saturated. These
qualitative conclusions are in a good agreement with the results of simulations, presented
in Fig. 64. We stress also that, despite the equality (in the relevant range of A) of the
activation energies for escape to the left and to the right, the prefactors are still different
due to the asymmetry of noise-free transport in the chaotic layer (cf. [131]), so that the
directed diffusion is still present and, obviously, the significant decrease of the activation
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energy results in a drastic increase of the net flux.

5.3.4 Conclusions and unsolved problems

Thus, the initial work [119] has shown immediately that the decrease in activation energy
caused by periodic driving is strongest in ZD systems. The effect is especially pronounced
if the driving frequency is close to the relevant extreme eigenfrequency while the driv-
ing is moderately weak: the major nonlinear resonances (ZDNRs) are then very wide in
energy and, in addition, chaotic layers associated with their separatrices reconnect the
chaotic layer associated with the barrier level. Consequently, the activation energy may
be substantially reduced, even by periodic driving that is relatively weak.

But there obviously remain many interesting unsolved problems and barely studied issues.
We mention, in particular that –

(1) Given that the largest decrease of the activation energy under the action of periodic
driving occurs in strongly underdamped ZD systems, the most important task is to
create a theoretical method to describe δSa quantitatively for the ZD case in the
underdamped limit. Given that the major contribution comes from the energy range
of the major ZDNRs, where the variation of eigenfrequency is small, we hope it may
be possible to introduce a proper pair of slow variables (e.g. slow action–slow angle)
and to use the method of optimal fluctuations in the plane of these variables.

(2) It is a challenging problem to create a quantitative theory for the range Γ ∼ A,
where neither of the approximations described above can be used for a quantitative
description. At present, we cannot even suggest an approach to the solution of this
problem.

(3) Explicit formulae that would estimate quantitatively the overlap of the ZDNRs with
the chaotic layer associated with the barrier level are desirable. They would allow
one to estimate even more easily the value of A at which the growth of −δSa with A
saturates, as well as the order of magnitude of the, in a sense, optimal driving ampli-
tude. They would also allow one to calculate more accurately the optimal difference
between the driving frequency and the extremal eigenfrequency, and to estimate the
corresponding decrease in activation energy.

(4) A theoretical evaluation of the prefactor in the escape rate is obviously important,
but this problem appears to be a very difficult one.

(5) It is certainly necessary to undertake more detailed experimental studies, in a wide
range of systems and driving force parameters, both for the escape rate and for
directed diffusion. This seems to be especially important, given that a quantitative
theoretical description exists so far only for some of the regimes.

(6) It would be interesting to study characteristic features of escape and directed diffusion
under periodic driving in periodic potentials that have more than one barrier within
the period (cf. various related aspects in [138] and in subsubsection 4.3.2). These
nearly always possess the ZD property: cf. subsections 2.1 and 2.2.
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5.4 Weak noise: noise-induced escapes from nonlinear resonances

We now consider noise-induced escape from nonlinear resonances, i.e. from metastable
states generated by the periodic driving itself; note the distinction from the previous sub-
section 5.3, where we considered the influence of periodic driving on noise-induced escape
from a metastable potential well that exists independently of the driving. Provided the
driving force is weak, slow motion within the nonlinear resonance reduces to the motion
of the auxiliary autonomous Hamiltonian system (see Sec. 4). Similarly, the original es-
cape problem in the non-autonomous system also reduces to the escape problem in the
autonomous one. The most interesting case arises when more than one nonlinear reso-
nance is involved, which is precisely the situation for ZDNR. In contrast to motion in a
multi-well potential, subject to linear friction and white noise, where the escape problem
has been well understood and a unique solution can be rigorously found [133,138], the
possibilities for finding a rigorous solution in the search for the most probable escape path
from a non-potential multi-basin state are much more limited. The work [139] presents
a profound study of caustics, cusps and other singularities encountered by the flow of
optimal paths. However, the conclusions of [139] are not directly applicable to the present
problem of an escape to beyond the boundary of a multi-basin state. So, we hope that,
apart from applications to the particular model investigated by us, our initial numerical
results [78] may stimulate an extension of the general analysis carried out in [139].

The sub-section is arranged in the following way. Sec. 5.4.1 presents the reduction of the
original non-autonomous stochastic equations to the corresponding autonomous ones for
slow variables, and it describes the method of optimal fluctuation in application to this
problem. Sec. 5.4.2 provides numerical results for the most probable escape path in the
case of the TDO, taken as a typical example of a ZD system, and compares them with
the results of simulations. Concluding remarks and a discussion of unsolved problems are
given in Sec. 5.4.3.

5.4.1 Fluctuational transitions in a ZD oscillator driven by a quasi-periodic force with
fluctuating angle

As described above in Sec. 4, a nonlinear oscillator subject to a periodic force generally
possesses nonlinear resonances, i.e. stable states generated by the periodic force itself; in
the case of a ZD oscillator, slow motion within these resonances is essentially different
from that of a conventional oscillator. If, in addition, the system is perturbed by weak
noise, the states generated by the periodic force become metastable: escape may then
occur under the influence of the noise. The most general features of such an escape are
qualitatively similar for any type of noise. However, it is easiest to study them for the case
when noise is applied to the angle of the driving force 56 rather than being additive as in
the previous sub-sections 5.1–5.3. Apart from being convenient for theoretical studies in
the present context, a fluctuating angle is typical of the fields generated by a variety of
real sources including e.g. lasers and electromagnetic generators [141].

56 The escape problem in the presence of such noise was studied in [140] for the case of a
conventional (i.e. non-ZD) weakly nonlinear oscillator.
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Thus, we shall consider the following model:

q̈ + Γq̇ + dU/dq = h cos(ωf t+ ϕ(t)), (5.4.1)

ϕ̇ = −f(t),

〈f(t)〉 = 0, 〈f(t)f(0)〉 = 2Dδ(t),

where U ≡ U(q) is the potential of a ZD oscillator, i.e. the eigenfrequency ω possesses one
or more extrema as a function of energy (or, correspondingly, as a function of action).

This model differs from those considered in Sec. 4 (cf. for example Eq. (4.2.3)) through
the presence of the noise term in the equation for the angle, namely the instantaneous
frequency of the sinusoidal driving force is subject to white noise. Similarly to the noise-
free case, we may separate the slow and fast variables, so that the dynamics of the slow
variables of the oscillator, the action I and the slow angle ψ̃ ≡ ψ−ωf t−ϕ(t), are described
by the following equations

İ = −∂H
∂ψ̃
− ΓI, ˙̃ψ =

∂H

∂I
+ f(t), (5.4.2)

H ≡ H(I, ψ̃) =

I∫
0

dĨ (ω(Ĩ)− ωf )− hq1(I) cos(ψ̃),

which differ from (4.2.4) only through the noise term in the equation for ˙̃ψ. It causes the
stable states of the noise-free system (the most relevant of which correspond to nonlinear
resonances of the original system) to become metastable.

As in the problem of field-enhanced escape from a potential well, considered above in sub-
section 5.3, we shall consider here only the exponential factors in the escape probabilities.
We shall again use the method of optimal fluctuation (for complementary reviews of its
various modifications, see [132,54]) but in a variant that differs slightly from the one used
in sub-section 5.3.

The method of optimal fluctuation makes use of the fact that the probability density
functional P[f ], characterizing the probabilities of different realizations of the random
force f(t), depends on noise intensity D in an activation-like manner:

P[f ] = exp

(
−S[f ]

D

)
, (5.4.3)

where the functional S does not depend on D. In the particular case of white noise, the
functional S[f ] is of the following form [142]

S[f ] =
1

4

∞∫
0

dtf 2(t). (5.4.4)

96



The escape probability is the path integral [142] over all trajectories starting in the at-
tractor and ending on the relevant boundary (e.g. the boundary of its basin of attraction),
taken with the statistical weight (5.4.3)-(5.4.4):

W =
∫
D̃f(t)e−

S[f ]
D . (5.4.5)

Because of the smallness of D, the functional P[f ] is very sharp, so that

W = Fpre(D)e−
Smin
D , (5.4.6)

where the so called prefactor Fpre depends on D relatively weakly (typically as a power
law), while the major dependence is determined by the exponential (activation) factor. The
so called activation energy Smin is the minimum of S[f ] over all relevant trajectories and
over the time t. Given that the dynamical variables are related to f(t) via the equations
of motion (Eqs. (5.4.2) in our case), the minimization of S[f ] may be formulated as
a variational problem [134]: cf. for example sub-section 5.3 above. However, unlike the
potential case – where f(t) may easily be expressed from the equations of motion via the
generalized coordinate and its first and second time derivatives, so that one may seek
the absolute minimum of the corresponding functional (cf. Eq. (5.3.2)) – the dynamical
variable ψ̃ in the present case is expressed in terms of the conjugated variable I, and its
derivative İ, in a rather complicated manner. Correspondingly, the Euler equation turns
out very complicated and inconvenient for numerical analysis. An alternative approach is
to formulate the minimization problem as a conditional one [134]. Namely, it follows from
(5.4.2), (5.4.4)-(5.4.6) that

Smin = min[I(τ),ψ̃(τ)],tS, S =

t∫
0

dτ L(I, ψ̃, ˙̃ψ), (5.4.7)

L =
1

4
( ˙̃ψ − ∂H

∂I
)2 =

1

4
( ˙̃ψ + ωf − ω(I) + h

dq1

dI
cos(ψ̃))2,

with the additional condition, following from the first equation in (5.4.2),

İ +
∂H(I, ψ̃)

∂ψ̃
+ ΓI = 0. (5.4.8)

The most probable escape path (MPEP) [I(τ), ψ̃(τ)] should satisfy the following initial
conditions 57 ,

I(0) ≈ If , ψ̃(0) ≈ ψ̃f , (5.4.9)

57 We use in (5.4.9) the notation “≈” instead of the exact equality because, in reality, the MPEP
may emerge from the focus itself infinitely slowly. Thus, in real calculations, one should slightly
shift the starting point of the MPEP.
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where the subscript f denotes the relevant focus of the system (5.4.2) in the absence of
noise (f(t) = 0).

The condition for an ending point of the MPEP may vary. Typically, one solves the
problem of escape to beyond some boundary 58 , so that S should be minimized over the
position of the ending point on the boundary. Such a minimization can often be done
explicitly: see Sec. 5.4.2 below.

The necessary condition for the minimum over time is:

∂S

∂t
= 0. (5.4.10)

The minimization over a path (with a given t) with an additional condition may be
formulated as the variational problem for an absolute minimum, by the introduction of
an additional auxiliary function λ(t) (sometimes called an “indefinite multiplier”) [134].
One therefore has to seek the absolute minimum for the auxiliary functional

S̃ =

t∫
0

dτ L̃(I, ψ̃, ˙̃ψ), (5.4.11)

L̃ = L+ λ(τ)(İ +
∂H

∂ψ̃
+ ΓI),

where the auxiliary Lagrangian function L̃ differs from the original function L (5.4.7)
through the product of an unknown auxiliary function λ(τ) and the left-hand side of
the Eq. (5.4.8). The MPEP [I(τ), ψ̃(τ)] and the auxiliary function λ(τ) may be found
from the corresponding Euler equations together with the condition (5.4.8). We use an
alternative Hamiltonian method, however, in close analogy with [140]. As is well known
from mechanics [1], an alternative way to describe the dynamics of a system governed
by the minimum principle is to use Hamiltonian equations: for more than one degree of
freedom, the Hamiltonian method is often more convenient than the Lagrangian (Euler)
one. With this aim, one has to introduce the Hamiltonian function H̃(pi, xi), which is
written in terms of generalized coordinates xi and momenta pi [1]:

pi =
∂L̃

∂ẋi
, (5.4.12)

H̃ =
∑
i

ẋi
∂L̃

∂ẋi
− L̃,

where the velocities ẋi in the second equation in (5.4.12) are assumed to be expressed via
the sets of coordinates {xj} and momenta {pj} from the first equation in (5.4.12).

58 In mathematical literature, it is often called the first-passge problem.
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In the case of the Lagrangian L̃ (5.4.11), the generalized coordinates are I and ψ̃. After
substituting L̃ (5.4.11) into (5.4.12), we end up with a Hamiltonian which does not depend
explicitly on λ:

H̃ ≡ H̃(I, ψ̃, pI , pψ̃) = p2
ψ̃

+ pψ̃
∂H

∂I
− pI(

∂H

∂ψ̃
+ ΓI), (5.4.13)

where H ≡ H(I, ψ̃) is given in (5.4.2).

The condition (5.4.10) can be shown (cf. e.g. [138,140]) to be equivalent to

H̃(I, ψ̃, pI , pψ̃) = 0. (5.4.14)

Thus, the problem of the MPEP reduces to the solution of the Hamiltonian equations

ṗI = −∂H̃/∂I, ṗψ̃ = −∂H̃/∂ψ̃, İ = ∂H̃/∂pI ,
˙̃ψ = ∂H̃/∂pψ̃, (5.4.15)

on the zero-H̃ surface (5.4.14) while I and ψ̃ at the beginning and end of the MPEP lie
respectively at the focus and at the proper state on the relevant boundary.

Generally, such an MPEP and the action S (5.4.7) along it, which constitutes the ac-
tivation energy Smin, should be found numerically by a shooting method 59 . A major
difficulty which may arise in a numerical search for Smin is that there are typically many,
often infinitely many, extremals i.e. solutions of the Hamiltonian equations lying on the
zero-H̃ surface and providing for the connection between given states in the I − ψ̃ plane.
Correspondingly, there are many values of the shooting parameter which provide for an
extremal. So far, unfortunately, there are no rigorous rules in the non-potential case 60

that would allow one to single out the range of the shooting parameter in which lies only
one value corresponding to an extremal, namely to that extremal whose projection onto
the I − ψ̃ plane provides the absolute minimum of action. At the same time, there are
some rigorous rules which significantly reduce the number of extremals whose projections
may pretend to be the MPEP, or may even provide for the unique choice. Examples will
be presented in Sec. 5.4.2 below.

59 Two of the initial conditions required for the four differential equations (5.4.15) are fixed by
the conditions (5.4.9) (note however footnote 57). If one of the other initial conditions can be
determined, then the remaining initial condition will also be fixed due to the condition (5.4.14).
Integrating equations (5.4.15), one should check whether the projection of the trajectory onto
the I − ψ̃ plane passes (at any time) close to the given final state. Typically one does not fix
a time of integration. Rather the equations are integrated until the projection of the trajectory
either reaches a close vicinity of the given final state or, on the contrary, goes far away from the
relevant region. Thus there is only one parameter (any combination of the initial conditions)
that needs to be matched. Usually, it is possible to choose this parameter as some angle whose
full range of variation is 2π. So, one needs to try a large number of values from this range. Their
choice is, in a sense, arbitrary: they are effectively “shot”, whence the terminology of shooting
method and shooting parameter respectively.
60 For the potential case, such rules have been derived in [138].
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If the damping parameter Γ is sufficiently small that, not only is the original motion (5.4.1)
underdamped, but even the motion of the averaged system (5.4.2) is underdamped, then
the activation energy may be found explicitly by a different method, using the averaged
Fokker-Plank equation. So also can the prefactor (cf. the case of a non-ZD weakly nonlinear
oscillator [140]). However, an explicit calculation of this kind for the present (ZD) case
has not yet been achieved. In the next sub-section we concentrate instead on the case
of a basin of attraction with two saddles, inner and outer, a situation that is of greatest
interest when the slow motion is not underdamped.

5.4.2 Numerical calculations and simulations for the case of the tilted Duffing oscillator

As an example of a periodically driven weakly dissipative ZD system, we shall again use
the tilted Duffing oscillator (TDO) driven by a sinusoidal force and subject to linear
friction, with parameters as in Fig. 21(b). As can be seen from this figure, the basin of
attraction of one of the nonlinear resonances is encompassed by the basin of the other
resonance. We shall be interested in two kinds of escape, which we consider in turn –

(a) Escape from a single basin of attraction and transition to a neighbouring attractor.
The activation energy related to the transition from an attractor to its neighbouring

attractor is equal to that related to the escape beyond the boundary dividing their
basins of attraction. Indeed, as soon as the system reaches the boundary, the further
transition to the neighbouring attractor can follow a noise-free trajectory towards it, so
that S (5.4.4) is not being increased any more. We shall consider further only MPEPs
beyond boundaries of basins of attraction, while bearing in mind that they constitute
the activation energies both for the escapes and for the transitions between the corre-
sponding attractors.

It can be shown [129] that the action S, as a function of the ending state on the
boundary of the basin of attraction, decreases as the ending state moves towards the
saddle, reaching its minimum on the saddle itself. In the case of a single basin, the
saddle is for certain reachable for the flow of optimal paths since the caustic emanates
just from the saddle [139]. Thus the MPEP from a single basin of attraction ends on
the saddle of the basin (in real calculations, one should slightly shift it from the very
saddle since the latter is approached by the MPEP infinitely slowly [139]):

I(t) ≈ Is, ψ̃(t) ≈ ψ̃s. (5.4.16)

Fig. 65 shows the corresponding MPEPs [f1 → s1], [f2 → s1],[f2 → s2], calculated
by means of Eqs. (5.4.13)-(5.4.15) with the corresponding initial and final conditions
(5.4.9), (5.4.16). The activation energy Smin (5.4.7) along the MPEPs is equal respec-
tively

S
(12)
min ≈ 0.00293, S

(21)
min ≈ 0.0118, S

(23)
min ≈ 0.01. (5.4.17)

It is worth pointing out that the activation energies differ from the difference between
the values of the resonance’s Hamiltonian H at the corresponding saddle and focus:
for example, H(Is1 , ψ̃s1)−H(If1 , ψ̃f1) ≈ 0.0021, which clearly differs from S

(12)
min . This is
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in contrast to the case of a Hamiltonian of the potential type 61 , where the activation
energy is simply equal to the height of the potential barrier (i.e. to the difference between
the corresponding values of the Hamiltonian).

(b) Escape from the nonlinear resonance area as a whole and direct transition from the
inner nonlinear resonance to the linear response attractor.

Mathematical aspects of the problem of noise-induced escapes/transitions in multi-
attractor systems have been considered in the monograph [132]. The most important
result in the present context is that, if the noise is sufficiently weak, then the dynamics
of inter-attractor transitions may be described on exponentially long time-scales by
simple kinetic equations with constant inter-attractor rates αij ∝ exp(−S(ij)

min/D). If
one restricts oneself to the evaluation of exponential factors only, one may equivalently
consider the problem with an absorbing boundary around the basin of attraction of
the final attractor. A detailed analysis of the flux dynamics in a 3-state system with an
absorbing 3rd state is presented in [138]. Let us denote the basins of attraction of f1 and
f2 in our system as states 1 and 2 respectively, and let the former basin be encompassed
by the latter. The remaining phase space may be denoted as 3. The activation energies
S

(13)
min and S

(23)
min in such a formal problem with an absorbing state 3 (“first-passage”

problem) are equal to those for the inter-attractor transitions respectively from the
the nonlinear resonances f1 and f2 towards the linear response, because the noise-
free trajectory that exits through the boundary of the (1 + 2)-area reaches just the
linear response attractor. We shall consider further only the first-passage problem, while
bearing in mind its direct relation to the problem of inter-attractor transitions.

Consider, for example, the case when the system stays initially in 1. Typically, and
in particular for the parameters considered here, the time ts for the formation of quasi-
equilibrium within the nonlinear resonance area as the whole (1 + 2) is much shorter
than the average time tqs over which the area 1 + 2 is depleted; the latter may be
considered as the lifetime within the nonlinear resonance area 1+2. Then, after a short
initial interval tin of the order of the relaxation time during which quasi-equilibrium is
established in the initial state, the dynamics of the flux into 3 is described [138] (cf. also
[143] where the theory is illustrated by simulations in an example potential system) by

J(t) ≡ J13(t) ≈ α13e
− t
ts +

1

tqs
(e
− t
tqs − e−

t
ts ), (5.4.18)

ts � tqs, t� tin,

The time-scales ts and tqs can be expressed via the αij, and both are exponentially
longer than tin provided that the noise intensity is small: for example, for the system
shown in Fig. 65, the relations α13 � α12 and α21 � α23 � α12 are satisfied, so that
[138] ts ≈ α−1

12 and tqs ≈ α−1
23 . The first term in the expression (5.4.18) for the flux is

determined by the direct transitions 1 → 3, while the second term is due to indirect
transitions i.e. those that involve attractor 2 as an intermediate state. It follows from
(5.4.18) that, at relatively small times t < ts ln(tqs/ts), the flux is entirely due to
direct transitions, J(t) ≈ α13 exp(−t/ts); in particular, J ≈ α13 if t � ts. For times
t > ts ln(tqs/ts), indirect transitions prevail and the flux becomes quasi-stationary,
J(t) ≈ t−1

qs exp(−t/tqs); in particular, J ≈ t−1
qs if ts ln(tqs/ts) < t� tqs.

61 Where the friction and noise are assumed to be linear and white respectively, both entering
only the equation for the generalized momentum.
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We emphasize that, as the noise intensity decreases, the time-scale ts becomes ex-
ponentially long, so that the quasi-stationary stage becomes unattainable in practice
while J ≈ α13 over the major part of the attainable time-scale. Thus, it is important to
know the rates αij, of which α13 for the direct transition 1→ 3 is especially important.

The technique described in the previous sub-section, 5.4.1, facilitates calculation of
the activation energies S

(ij)
min related to αij. It allows us: (i) to determine strong in-

equalities between the αij ∝ exp(−S(ij)
min/D), which in turn determine many important

properties of the flux dynamics [138]; and (ii) to determine the major dependence of
the flux on noise intensity, which is often quite sufficient for practical purposes.

For the set of parameters corresponding to Fig. 65, the activation energies related to
α12, α21 and α23 are given in Eq. (5.4.17) above. The rest of this sub-section will be
devoted to the direct transition 1 → 3, i.e. to the search of the corresponding MPEP
and S

(13)
min .

It can be shown by a standard method [134] that the MPEP should either be a
projection onto the plane I − ψ̃ of a smooth solution of Eqs. (5.4.13)-(5.4.15), or a
combination of the projections of two smooth solutions for which a saddle (a singularity
point for projections of the smooth solutions) provides the end point of one solution
and the starting point of the other one. It should be emphasized that, for the escape
1 → 3, the former option may be realized in contrast to the potential case, where
the MPEP from the inner attractor to a state lying beyond its basin of attraction
necessarily follows the saddle of an inner basin of attraction [133,138,143]. Even without
the concrete calculations [138], this latter property of the MPEP in multi-well potential
systems can easily be proved using the property of detailed balance, which holds in the
potential systems [38]. Indeed, let us prove this by reductio ad absurdam. Suppose that
the MPEP [f1 → b], where b is a state beyond the basin of attraction of f1, does not
pass through the saddle s1. Then, on account of detailed balance, the MPEP [b → f1]
is the time-reversal of the MPEP [f1 → b] and therefore it should not pass through s1

either, i.e. it should cross the boundary of the basin of attraction of f1 at some point
p1 which differs from s1. On the other hand, as soon as the system reaches the basin
of attraction of f1, it then most probably relaxes to f1, independent of noise. But the
noise-free trajectory from p1, which belongs to the boundary of the basin of attraction,
first relaxes to s1 and only from there to f1. This contradicts the initial assumption,
thereby proving that the saddle s1 is necessarily followed by the MPEP [f1 → b].

In non-potential systems, detailed balance generally does not hold – so proofs like
that in the previous paragraph are invalid. On the other hand, we have not met in the
literature any example of such avoidance of an inner saddle by an MPEP 62 , and one
of the incentives for the work [78] was the hope of finding evidence of such saddle point
avoidance. However, none has yet been found: though the projections of the smooth
solutions do typically avoid the inner saddle s1 (see the lower inset in Fig. 65), the
MPEP is realized by means of the alternative option (i.e. it follows s1), at least for
the present set of parameters (Fig. 65). Given that the search for the MPEP in a non-

62 This should be resolved from a series of works (see [144] and references therein) on the exit
location distribution from a single-basin. In the latter case, deviations of the exit point from the
saddle are small in the sense that they go to zero as the noise intensity goes to zero. In contrast,
in the present case, the deviation of the exit point on the boundary of the inner basin from the
inner saddle is assumed to be non-zero, however small the noise intensity.
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potential system is far from trivial, we present below a more detailed description and
discussion of our numerical results.

Consider first the projection of the flow of such smooth solutions of (5.4.13)-(5.4.15)
whose projections emanate from f1 while ending on the outer boundary (OB) of the
basin of attraction of f2. It turns out that a projection of any solution of such a kind
hits the OB at some finite distance from s2 (i.e. the projection of the flow of the smooth
solutions encounters caustics which leaves the saddle s2 beyond them). It can be shown
(cf. [129]) that, the closer the end point on a basin boundary is to its saddle, the smaller
the action along the projection of the smooth solution. Hence, we may keep as pretenders
to being the MPEP only the two “edge” paths (i.e. those whose end points are as close
to s2 as possible, from the left and from the right respectively). These paths are shown in
the lower inset in Fig. 65. However, even without an explicit calculation of actions, it is
obvious from the figure itself that neither of these paths can be the MPEP, e.g. because
both of them intersect the noise-free path [s1 → f2] while any path intersecting the
noise-free path cannot provide a minimal action for a transition 1→ 3 . Indeed, if such
an intersection occurs in some state i, then one may construct a path that necessarily
possesses an action smaller than that along the path [f1 → OB]: the auxiliary path with
a smaller action may be put together from (i) [f1 → s1], (ii) the noise-free path from s1

till the intersection i with the path [f1 → OB] and, (iii) the remaining part of the latter
path i.e. [i→ OB]. Given that [f1 → s1] provides minimal action for the transition from
the inner attractor (i.e. f1) to the boundary of its attraction, part (i) of the auxiliary
path provides a smaller action than that along the segment [f1 → OB] between f1

and its intersection with the inner boundary; part (ii) contributes zero action, which
must obviously be smaller than the action along the segment [f1 → OB] between the
intersection with the inner boundary and the state i; finally, part (iii) merely coincides
with the remaining part of the path [f1 → OB]. Similarly, it can be shown that a path
[f1 → OB] intersecting the outer MPEP [f2 → s2] cannot provide the minimal action
either. Similar considerations apply to selfintersecting paths.

Thus, the MPEP for the transition 1 → 3 should be constructed from the inner
MPEP [f1 → s1] and the projection of a smooth solution of Eqs. (5.4.13)-(5.4.15)
such that its projection starts on s1 and ends on the OB as close to the saddle s2

as possible, while avoiding selfintersections and intersections with the noise-free path
[s1 → f2] or with the outer MPEP [f2 → s2]. We have found only one path satisfying
all these requirements 63 (see Fig. 65): it joins smoothly onto [s1 → f2] and [f2 → s2],
analogously to the potential case [138,143]. This path must be the MPEP. The action
along it, i.e. the activation energy related to α13,

S
(13)
min ≈ 0.007, (5.4.19)

is smaller than action along either of the smooth edge paths (0.173 and 0.0376 for the
left and right path respectively).

The upper inset in Fig. 65 presents a few paths [f1 → OB] simulated sequentially
(rather than artificially selected from a larger group of simulated paths [f1 → OB]) by
computer for the noise intensity D=0.0007. They nicely concentrate near the MPEP
found theoretically above. Some small regular deviations from the inner and outer

63 Note that there are many (probably, infinitely many) solutions of Eqs. (5.4.13)-(5.4.15) whose
projections connect s1 to s2.
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saddles are due to the diffusion [144] and they vanish as D → 0.

5.4.3 Concluding remarks and unsolved problems

We have reviewed the initial studies [78] of noise-induced escape from ZDNRs. Similarly
to the noise-free case, the non-autonomous system has been reduced to an autonomous
auxiliary one. The method of optimal fluctuation has been applied to the escape problem
in the latter system, and the activation energies and the most probable escape paths
(MPEPs) have been studied, theoretically and by simulations, for two characteristic types
of escape: from a single nonlinear resonance and from the ZDNR area as a whole in the
situation when the initial nonlinear resonance is encompassed by the other one. In the
latter case, the most interesting result is that, although we had reason to anticipate
avoidance of the inner saddle by the MPEP from the inner focus to the outer boundary
of the outer basin, the MPEP does in fact pass through that saddle, after which it goes
to the outer saddle, smoothly turning round both the noise-free trajectory from the inner
saddle to the outer focus and the MPEP from the outer focus to the outer saddle.

Problems that it would be interesting to consider in the future include the following –

(1) To study escape for other sets of parameters, seeking a situation when the MPEP
from the inner basin beyond the outer boundary of the outer basin is realized along a
smooth path, avoiding the inner saddle rather than along two smooth paths connected
at the inner saddle.

(2) To try to prove rigorously that there exists a unique extreme path connecting saddles
of the multi-basin state, while avoiding selfintersections and intersections with the
noise-free path emanating from the inner saddle to the outer focus, and with the
MPEP from the outer focus to the outer boundary (cf. the potential case [138,143]):
this would make a search of the relevant MPEP much more reliable and simple.

(3) To extend the analysis [139] of caustics and other singularities in the flow of extreme
paths to the case when two (rather than one) boundaries of basins of attraction are
relevant.

(4) It was found in [138,143] that the activation energy for escape from the multi-basin
state of a potential system oscillates as the dissipation parameter varies, a phe-
nomenon related to the occurence of saddle connections in the noise-free system
as the parameter varies. Given that the presently used periodically driven weakly
dissipative ZD oscillator also encounters numerous saddle connections as the driving
frequency or other parameters vary (see Sec. 4 above), one may expect the occurrence
of comparable oscillations in the activation energy, in analogy with the potential case.
It would be interesting to study this.

(5) To calculate explicitly both the activation energy and the prefactor for the escape
rate in the underdamped limit, using a method similar to that of [140].

(6) To consider characteristic features of the escape problem under additive noise (rather
than noise applied to angle, as above).

(7) To carry out simulations of the original system, rather than just of the reduced one,
which might reveal interesting new features that are absent in the reduced (slow)
dynamics.
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5.5 Weak noise: fluctuation spectra

For noise-driven systems possessing a stationary distribution, the fluctuation spectrum
is defined above by Eq. (3.1.5). However, periodically driven systems do not possess a
stationary distribution, so that the definition of the fluctuation spectrum of any dynamical
quantity ϕ in such systems needs to be generalized (see e.g. [141,3,106]):

Qϕ(Ω) =
1

π
Re

 ∞∫
−∞

dt exp(−iΩt)Rϕ(t)

 , (5.5.1)

Rϕ(t) ≡ lim
τl→∞

1

2τl

τl∫
−τl

dτ 〈(ϕ(t+ τ)− 〈ϕ(t+ τ)〉)(ϕ(τ)− 〈ϕ(τ)〉)〉,

ϕ(t) ≡ ϕ(q(t), p(t)).

Here, 〈ϕ(t)〉 is the quantity ϕ(t) averaged over the steady distribution in the system 64

while the brackets 〈...〉 in the pair correlator denote averaging both over the steady distri-
bution at the instant τ and over realizations of the random force at the interval [τ, τ + t].

To our knowledge, there have only been two brief studies of the fluctuation spectra of
periodically driven ZD systems, [77,71]. They presented the results of analogue experi-
ments and discussed them qualitatively. We now review these initial studies, providing
rather more detail than in the original papers, and we discuss briefly some as yet unsolved
problems.

We consider the model (5.2.2) (considered in sub-section 5.2 above in a different context).
It can be shown [3,106] that, provided the noise is weak, the fluctuation spectrum in
multi-stable systems driven by noise has the following structure:

Q = Qtr +
∑
j

PjQj, (5.5.2)

where Qtr is an exponentially narrow high peak due to noise-induced transitions between
stable states of the noise-free system, and Qj is a relatively broad spectral contribution
from small fluctuations about the j-th stable state while Pj is its population. A theoretical
description of this kind is supported by analogue experiments: see e.g. Fig. 66 reproducing
a figure from [71].

It is demonstrated in Sec. 4 above that, if the driving frequency lies in the most relevant
range, i.e. in the vicinity of the extremal eigenfrequency or one of its harmonics, then a pe-
riodically driven ZD system typically possesses more than one stable state. The structure
of its spectrum of fluctuations therefore takes the form of (5.5.2). We shall demonstrate
its characteristic features on the periodically driven TDO, as an example. Its noise-free

64 We emphasize that the distribution is not stationary; rather it oscillates with time but the
character of the oscillations is steady.
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dynamics is considered in detail in Sec. 4 above; the actual parameters used are given in
the caption to Fig. 21. If the driving frequency ωf lies in between the minimal eigenfre-
quency ωm and the eigenfrequency ω0 of an oscillation in the bottom of the potential well,
and the driving amplitude h is rather small, then there are three attractors in the system:
see the bifurcation diagram in Fig. 24(b). Each of them is periodic in time with the period
2π/ωf ; they differ in terms of their amplitude of oscillation and by the shift of the angle
from that of the driving force: the attractor with the smallest amplitude corresponds to
linear response, whereas the two other attractors correspond to nonlinear resonances of
the 1st order (cf. Fig. 26). We shall also need to expand ϕ(t) ≡ ϕ(q(t), p(t)) for each of
the attractors into Fourier series:

ϕ(j)(t) =
∑
n

ϕ(j)
n exp(inωf t), (5.5.3)

i ≡
√
−1, ϕ

(j)
−n =

(
ϕ(j)
n

)∗
, j = 1, 2, 3.

Thus, all three states oscillate with the frequency ωf and, therefore, Qtr(Ω) is a narrow
peak centered at Ω = ωf . As for the spectral contributions Qj(Ω) from small fluctuations
about the stable states, it is typical for only one of them to be manifested in the spec-
trum because the populations Pj of two other states are exponentially smaller. Only in
exceptional cases are the populations of all three states comparable with each other, so
that all terms in the sum in (5.5.2) contribute significantly (cf. the middle sub-figure in
Fig. 66).

Typically, the spectral contributions from small fluctuations about the stable states are
well resolved from the transition peak 65 and it is convenient to study them separately,
which is done below in sub-sections 5.5.1 and 5.5.2. In sub-section 5.5.3, we briefly discuss
some unsolved problems.

5.5.1 Transition peak

A theoretical description of the transition peak in a bistable system is presented in [3]
in a rather general context: the only limitation is that noise should be weak. The paper
[106] studies such a peak in more detail, both theoretically and in analogue experiments,
for the nearly resonantly perturbed symmetric single-well Duffing oscillator. Using the
terminology of the present review, the transition peak in [106] may be ascribed to the
transitions between the (conventional) nonlinear resonance and linear response.

65 The only exception may concern the far wings of the transition peak, or even the whole peak
if the noise is weak enough. Indeed, if oscillations about a stable state are asymmetric, which is
typically the case in a multi-stable system, then small fluctuations about the stable state cause
slow fluctuations of a coordinate (or any other relevant quantity) averaged over a non-dissipative
oscillation around the stable state. The latter fluctuations result in the onset of a peak in the
spectrum centred at ωf . It dominates over the transition peak at least at the far wings of the
latter, or even throughout the whole frequency range if the intensity of the transition peak is
small: cf. the zero-frequency peak [145,50,51] in the spectrum for a system possessing a stationary
distribution.

106



In the case of a periodically driven zero-dispersion oscillator, the number of coexisting
stable states may be larger than two: e.g. in the TDO used as an illustration in the
present sub-section, it is often three. However, when the system is subject to weak noise,
the hierarchy of populations of the states is typically exponentially sharp. Hence, the
transition peak is mostly due to transitions between the most populated state and a state
which has the second largest population, while transitions involving the third state may be
neglected since its population is negligible 66 . Thus, the description of the peak is nearly
identical to that in [3] and rather close to the description in [106]. We present it below in
brief.

Let us denote the indices of the two most populated states by k and l. The dynamics of
their populations is described by a simple kinetic equation:

dPk

dt
= −(Wkl +Wlk)Pk +WlkPl, (5.5.4)

Pl = 1− Pk,

where Wkl and Wlk are the transition rates k → l and l → k respectively. The initial
conditions correspond to the initially populated either kth or lth state, respectively

Pk(t = 0) = 1 or Pl(t = 0) = 1. (5.5.5)

The stationary solutions of Eqs. (5.5.4),(5.5.5) are

P
(st)
k =

Wlk

Wkl +Wlk

, P
(st)
l = 1− P

(st)
k . (5.5.6)

Using (5.5.3), (5.5.6) and solutions of (5.5.4) for each of the initial conditions (5.5.5), one
can obtain for the spectrum (5.5.1) (cf. [3]):

Qϕ(Ω) =
1

π

WklWlk

Wkl +Wlk

∑
n

| ϕ(k)
n − ϕ(l)

n |2

(Wkl +Wlk)2 + (Ω− nωf )2
. (5.5.7)

Given that the transition rates Wij are much smaller than Ω, the partial peaks corre-
sponding to different harmonics of ωf practically do not overlap, so that the spectrum in
the close vicinity of any of the harmonics is just a Lorenzian of halfwidth

∆Ω = Wkl +Wlk � Ω. (5.5.8)

The transition rates depend on the noise intensity (or, equivalently, on temperature T ) in
an activation-like manner (see sub-section 5.4),

Wkl,lk ∝ exp(−Skl,lk/T ), (5.5.9)

66 At exceptional sets of parameters, the populations of all three states may be comparable, but
we do not consider such a case here because it is, in practice, rare.
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where Skl and Slk are the corresponding activation energies. If T � Skl, Slk, then the
transition peaks are extremely narrow, which is why they were named [106] supernarrow
spectral peaks.

One of the most important characteristics of the supernarrow peak is its intensity

I(n)
ϕ ≡

nΩ+a∆Ω∫
nΩ−a∆Ω

dΩ̃ Qϕ(Ω̃) (5.5.10)

≈ WklWlk

(Wkl +Wlk)2
| ϕ(k)

n − ϕ(l)
n |2≡ P

(st)
k P

(st)
l | ϕ(k)

n − ϕ(l)
n |2,

1� a� Ω/∆Ω.

The factor a in the definition of I(n)
ϕ may be chosen arbitrarily within the range indicated

in the last line of Eq. (5.5.10).

Allowing for the activation-like dependences (5.5.9) of the transition rates and for the
expressions (5.5.6) for the stationary populations, one obtains

I(n)
ϕ ∝ P

(st)
k P

(st)
l ∝ (2 + x+ x−1)−1, x = exp

(
Slk − Skl

T

)
. (5.5.11)

The exponential x in Eq. (5.5.11) is either very small or very large, except when | Slk −
Skl |

<∼ T . Beyond the latter narrow range, the intensity of the peak may be written as
I(n)
ϕ ∝ exp(− | Slk − Skl | /T ). As any parameter r (e.g. a frequency or amplitude of the

driving force) varies, the activation energies typically change in opposite directions i.e.
the derivatives ∂Skl/∂r and ∂Slk/∂r have opposite signs (cf. [106,140]). At some value of
the parameter which we will denote r0, Skl and Slk become equal to each other. In the
vicinity of, but not too close to, r0

I(n)
ϕ ≡ I(n)

ϕ (r) ∝ exp (−y) , (5.5.12)

y =
| ∂Skl(r0)/∂r0 − ∂Slk(r0)/∂r0 |

T
| r − r0 |, y � 1.

Thus, provided T is small enough, the dependence of intensity on the parameter r is a
sharp nearly cusp-like peak with a maximum at r = r0; it is only “nearly cusp-like” in that
it is smeared at the extreme maximum. This dependence on parameters is a characteristic
feature of a kinetic phase transition in bistable systems [129,3,146,106], a phenomenon
that was predicted theoretically in [129] and observed for the first time in [146].

Unlike the conventional case [106], when the dependence of the intensity of the transition
peak on a parameter (e.g. the driving frequency) possesses just one peak, the analogous
dependence in the ZD case often possesses more than one peak. This is because there may
be three kinetic phase transitions corresponding to repopulation between linear response
and either one of the two nonlinear resonances, as well as between the nonlinear resonances
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themselves. For example, a two-peaked structure in such a dependence was observed in
[77]. A detailed study of kinetic phase transitions in the ZD case and of the corresponding
dependences of the intensities of supernarrow transition peaks on parameters has not yet
been undertaken.

5.5.2 Partial spectra due to small fluctuations about stable states.

A detailed study of the partial spectra due to fluctuations about stable states of the
periodically driven ZD system has not yet been reported. At the same time, the major
characteristric features of such spectra, and of their evolution as parameters vary, seem
to have been understood [77]. We present below the qualitative and semiquantitative
arguments that provide such an understanding.

If the temperature is small enough, then the hierarchy of populations is typically very
sharp so that only the state that possesses the largest activation energy is populated. If it
corresponds to the linear response state, then the corresponding partial spectrum is a peak
about the eigenfrequency in the bottom of the potential well, ω0 ≡ ω(E = Emin). If the
temperature T is extremely small (see below), then the shape of the peak is approximately
Lorenzian with a halfwidth ∼ Γ (cf. [106]), corresponding to eigenoscillation in the bottom

of the well. If T increases so that | dω(E = Emin)/dE | T >∼ Γ, then the peak broadens and
its shape changes, reflecting the broadening of the spectrum of relevant eigenfrequences
ω(E) due to the growth in the energy range involved. The shapes of such broadened peaks
have not yet been analyzed.

If the most populated state is one of the nonlinear resonances, then the partial spectrum
consists typically of two peaks shifted from the driving frequency ωf by some small value
∆ω to the right and to the left respectively, so that by analogy with optics [115] they
may be called Stokes and anti-Stokes peaks (centered on ωf + ∆ω and ωf −∆ω respec-
tively). Their magnitudes usually differ significantly. Furthermore, as parameters vary, so
that repopulation of the nonlinear resonances occurs (associated approximately with the
crossing of the ZDNR/NR line), the relative magnitudes of the Stokes and anti-Stokes
peaks are reversed. In order to understand the origins of these characteristic features, let
us evaluate the dependence q(t) in the non-dissipative approximation.

For the sake of simplicity, we shall assume that the nonlinearity in the relevant resonant
range of energies is small, so that q as a function of action I and angle ψ may be approx-
imated just by the cosine term 67 while higher harmonics in the expansion (A.5) may be
neglected:

q(t) ≈ 2q1(I(t)) cos(ψ(t)). (5.5.13)

In the absence of noise, the action I(t) would relax to one of the stable stationary states,
I(st), and the angle would change with the constant speed ωf while maintaining a certain
shift ψ̃(st) from the angle of the driving force ωf t (see sub-section 4.2):

67 For the sake of convenience, we choose the origin of the angle ψ such that q1 is real and
positive.
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I(t→∞) −→ I(st), ψ(t→∞) −→ ωf t+ ψ̃(st), (5.5.14)

T = 0.

In the presence of noise, there is an approximately stationary distribution of action I in
the vicinity of I(st). For further analysis we assume that the dissipation is very weak, so
that the non-dissipative equations of motion for {I, ψ̃} may be analyzed (i.e. Γ in (4.2.4)
may be put zero), and that the temperature T is small so that only the close vicinity
of the state {I(st), ψ̃(st)} is relevant. The right-hand sides of the equations in (4.2.4) may
then be linearized near this state.

Thus, introducing the deviations of slow variables I and ψ̃ ≡ ψ − ωf t from their relevant
stable stationary values,

∆I ≡ I − I(st), (5.5.15)

∆ψ̃ ≡ ψ − ωf t− ψ̃(st),

and linearizing (4.2.4) near the stable stationary state, one arrives at the following dy-
namical equations:

d(∆I)

dt
= −αψ∆ψ̃, (5.5.16)

d(∆ψ̃)

dt
= αI∆I,

αψ ≡
∂2H

∂ψ̃2

∣∣∣∣∣
I(st),ψ̃(st)

, αI ≡
∂2H

∂I2

∣∣∣∣∣
I(st),ψ̃(st)

, αψαI > 0,

where H ≡ H(I, ψ̃) is given in (4.2.4) (note that ∂2H/∂I∂ψ̃
∣∣∣
I(st),ψ̃(st)

= 0) and the last

inequality is equivalent [68] to the requirement that the state {I(st), ψ̃(st)} be stable.

The solution of (5.5.16) is

∆I = ∆I0 cos(∆ωt+ ϕ0),

∆ψ̃ = sgn(αI)

√
αI
αψ

∆I0 sin(∆ωt+ ϕ0), (5.5.17)

∆ω ≡ √αψαI ,

where ∆I0 and ϕ0 are the auxiliary “amplitude” and “phase” corresponding to given initial
conditions; note that ∆I0 is necessarily small due to the requirement of the smallness of
∆I and ∆ψ̃ which we have imposed, because only small values of ∆I and ∆ψ̃ are relevant
at small T .
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Expanding q1(I) and cos(ψ) in Taylor series over ∆I and ∆ψ̃ respectively, and omitting
from the resultant expression for q(t) (5.5.13) those terms which are proportional to
(∆I0)m with m ≥ 2, one obtains

q(t) ≈ 2q
(st)
1 cos(ωf t+ ∆ψ̃(st)) + (5.5.18)

∆I0

[(
q′1 + sgn(αI)

√
αI
αψ
q

(st)
1

)
cos({ωf + ∆ω}t+ ∆ψ̃(st) + ϕ0)+(

q′1 − sgn(αI)

√
αI
αψ
q

(st)
1

)
cos({ωf −∆ω}t+ ∆ψ̃(st) − ϕ0)

]
,

q
(st)
1 ≡ q1(I(st)), q′1 ≡ dq1(I(st))/dI(st).

The first term in the above expression for q(t) represents the oscillation at the driving
frequency, and it does not contribute to the spectrum of fluctuations since it arises in
q(t) even in the absence of noise; note that 〈q(t)〉 is extracted from q(t) when Qq(Ω) is
calculated: see the definition (5.5.1).

The terms representing the mixed frequencies ωf + ∆ω and ωf −∆ω, i.e. the Stokes and
anti-Stokes components respectively, are proportional to ∆I0 and hence are entirely due
to noise: it is just noise that causes deviations of I from its stationary (approximately
resonant) value I(st); the latter deviations give rise to persistent slow oscillations of I and
ψ̃ which, in turn, modulate the fast oscillation of q at the driving frequency thus bringing
the mixed frequencies into play.

Furthermore, it can be seen from (5.5.18) that the modulations of angle and action inter-
fere with each other differently for the Stokes and anti-Stokes components. This interfer-
ence depends on the sign of αI which, in the ZD case, differs between the nonlinear reso-
nances whose stable point possess the larger and smaller actions [68] (cf. also sub-section
4.2). The repopulation of the nonlinear resonances therefore reverses the relative intensi-
ties of the Stokes and anti-Stokes peaks in the fluctuation spectrum. For the TDO results
shown in Fig. 66 (see also Fig. 21), the Stokes component prevails over the anti-Stokes
one for the larger-action nonlinear resonance, while it is vice versa for the smaller-action
resonance.

In the asymptotic limit of weak driving (h → 0), slow motion in the different nonlin-
ear resonances is nearly identical if the driving force parameters lie on the ZDNR/NR
line; the only difference is in the sign of αI so that, in the different resonances, the cor-
responding trajectories in the I − ψ̃ plane rotate in opposite directions. Therefore, the
activation energies are identical as well. Hence, the repopulation of the resonances occurs
right at the ZDNR/NR transition 68 . If we move higher than the ZDNR/NR line in the
plane of the driving force parameters (h, ωf ), the smaller-action resonance becomes [68]
shallower than the larger-action one and, at high enough h, it disappears altogether (see
sub-sections 4.1, 4.2 and, in particular, the bifurcation diagram of Fig. 24(a)). Hence,

68 Roughly, this statement holds true for the whole range of small (rather than just for vanishingly
small) h.
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the population of the larger-action resonance dominates if the working point {h, ωf} lies
above the ZDNR/NR line (i.e. in the ZDNR region) while the smaller-action resonance
dominates below the ZDNR/NR line (i.e. in the NR region). This means that the intensity
of the Stokes peak in the fluctuation spectrum is larger than the intensity of the anti-
Stokes peak if the parameters of the driving force correspond to ZDNR while it is vice
versa if parameters correspond to the NR. Just such an evolution is seen in Fig. 66: for
the top sub-figure, which corresponds to the ZDNR stage, the Stokes peak is a few times
larger than the anti-Stokes one (note that the large peak on the far right corresponds to
linear response, whose population dominates within this parameter range); in the middle
sub-figure, which corresponds approximately to the ZDNR/NR transition, all states are
approximately equally populated and the peaks under discussion are approximately equal
as well; in the bottom sub-figure, which corresponds to the NR stage, the ratio between
the Stokes and anti-Stokes components is reversed.

Finally, let us estimate the shift of the peaks away from the driving frequency, ∆ω ≡√
αψαI , and the ratio between the intensities of the peaks; we also compare these estimates

with those for the conventional (non-ZD) case.

It follows from Eq. (4.1.11) with n = 1 and V
(1)
l ≡ 2q1, which approximates the Hamil-

tonian H (4.2.4) in the most relevant range of I, that | αI |≈| ω′′m(I(st) − Im) | while

| αψ |≈ hq1(Im), so that ∆ω ≈
√
hq1(Im) | ω′′m || I(st) − Im |. At the ZDNR/NR transi-

tion, which is the most characteristic case, it can easily be shown [68] (cf. also Eqs. (4.1.11)
and (4.2.17) above) that | I(st) − Im |≈ (3hq1(Im)/ | ω′′m |)1/3, so that

∆ω ≈ 31/6(hq1(Im))2/3 | ω′′m |1/3∝ h2/3. (5.5.19)

It is typically less than in the conventional case [5], where the frequency of eigenoscillation

in a nonlinear resonance is ≈
√
hq1(Ir) | dω(Ir)/dIr | ∝ h1/2 (see Eq. (4.1.10)).

The ratio between the intensities of the Stokes and anti-Stokes peaks depends strongly

on the parameter
√
αI/αψ. It follows from the above estimates for αI and αψ that this

parameter is

√
αI/αψ ∝ h−1/3. (5.5.20)

Thus, in the asymptotic limit h → 0, it diverges, which indicates (see Eq. (5.5.18))
that the modulation of angle is far more important for the formation of the Stokes and
anti-Stokes components in the fluctuation spectrum than the modulation of action. As
a consequence, the magnitudes of the Stokes and anti-Stokes peaks should be nearly
equal in the asymptotic limit h → 0. At the same time, the divergence in Eq. (5.5.20)
is rather weak so that, at moderately small h, this factor is not large. The contributions
from the action and angle modulations are therefore comparable, resulting in their strong
interference and hence in a significant difference between the intensities of the Stokes
and anti-Stokes peaks. The latter expectation is well confirmed by the top and bottom
sub-figures of Fig. 66.

112



For the conventional case, the factor
√
αI/αψ is proportional to h−1/2, therefore diverging

in the asymptotic limit h→ 0 even more strongly than for the ZD case. However, provided

h is not too small, the factor
√
αI/αψq

(st)
1 ωf/ | q′1 | is still of the order of unity typically,

so that the absolute values of the contributions to q(t) from modulations of the action
and angle are comparable with each other, as follows from Eq. (5.5.18). The interference
between these contributions is therefore strong, which causes the Stokes and anti-Stokes
peaks in the fluctuation spectrum to differ strongly in intensity: cf. Fig. 12 from [106].

5.5.3 Unsolved problems

As is obvious from the above discussion, the study of fluctuation spectra in periodically
driven ZD systems is far from complete. We formulate below some unsolved problems
that seem to us to be of interest.

1. Supernarrow transition peaks.
(a) It is necessary to study in more detail the lines of kinetic phase transitions (KPTs)

for at least two characteristic examples of ZD systems: (i) the TDO, which represents
a relatively simple example and typically possesses no more than three stable states
under periodic driving; and (ii) the multistable SQUID, which represents an example
of a strongly nonlinear ZD system and which possesses a separatrix even in the absence
of driving.

The most straightforward way to address such problems is to calculate the activa-
tion energies by the method of large fluctuations, as in sub-section 5.4. A drawback
of this method is that it often ends with heavy numerics and it is not easy to single
out general features from such numerical results.

An alternative way might be to reduce the Fokker-Plank equation (FPE) in the
I − ψ̃ plane to a one-dimensional FPE, through a separation of the relatively slow
auxiliary action from the relatively fast auxiliary angle (cf. ∆I0 and ∆ωt+ ϕ0 in Eq.
(5.5.17) above), and then to seek a steady-flux solution of the one-dimensional FPE.
It may sometimes be possible to find the latter in explicit form (cf. [130], which uses
a similar method for the case of a conventional weakly nonlinear oscillator).

After the KPT lines are found theoretically, it will then be necessary to compare
them with experimental measurements of the intensity of the supernarrow transition
peak as a function of driving parameters.

(b) It would be interesting to study the shape of the supernarrow peak in cases where
more than two states are significantly involved. Such a situation occurs in the vicin-
ity of intersections between KPT lines, where populations of more than two (three,
typically) most populated states are comparable with each other.

2. Partial spectra due to small fluctuations.
(a) The results presented above in sub-section 5.5.2 provide only a qualitative understand-

ing of some major features of the partial spectra, while the quantitative theoretical
description still remains to be tackled. A major problem that may arise will be the
explicit evaluation of the stationary distribution within a given state. For small tem-
peratures, when the equations of slow motion may be linearized, such distributions
can be derived relatively easily; a similar calculation was used in [106] for the case of
a weakly nonlinear conventional oscillator. But in general it is a non-trivial problem,
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even for the case of ultra-low friction. Possibly, it may be solved, or at least simpli-
fied, by reduction of the corresponding auxiliary FPE in the I − ψ̃ plane to a one
dimensional FPE through a separation of an auxiliary action for this motion from the
relatively fast auxiliary angle, with a further search for its quasi-stationary solution
(cf. the item 1(a) above and [130]).

(b) In case of a strongly nonlinear ZD system (like a multistable SQUID), or even in the
case of a relatively weakly nonlinear TDO but for higher temperatures, harmonics
with n 6= 1 should come into play (cf. the weak second-harmonic Stokes and anti-
Stokes peaks in Fig. 12 in [106]). The most interesting among them is the harmonic
with n = 0: it gives rise to the onset of a narrow peak (of the width ∼ Γ) centered at
Ω = ωf , which may be confused sometimes with the supernarrow peak. The method
for studying it theoretically could be analogous to that used for the zero-frequency
peak in the case of a stationary system [145,50,51] but, as in the previous item, the
most difficult part of the explicit calculation will probably be related to the explicit
calculation of the stationary distribution within the state.

5.5.4 Conclusions

As in any other multi-stable system, the spectrum of fluctuations in a periodically driven
ZD system may consist of a “supernarrow” peak at the driving frequency ωf , arising
from inter-state fluctuational transitions, together with a relatively broad multi-peaked
structure attributable to relatively small fluctuations about each of the stable states.

At small temperatures, the supernarrow (transition) peak is manifested only in the vicin-
ity of kinetic phase transition (KPT) lines in the parameter space, and its intensity is
exponentially small beyond these regions. Unlike the case of a conventional (i.e. non-ZD)
single-well oscillator, where there is typically only one KPT line, there are at least three
KPT lines in the ZD case. The shape of the supernarrow peak is typically Lorenzian,
except in the vicinity of intersections between KPT lines. Detailed studies of KPT lines
in the ZD case, as well as of the shape of the peak in the vicinity of intersections of KPT
lines, have not yet been reported.

Small fluctuations about a stable state of a periodically driven system cause approximately
periodic small oscillations, of relatively low frequency ∆ω, in the action and angle about
their values in the stable state. These give rise to spectral peaks at the mixed frequencies,
ωf + ∆ω and ωf −∆ω, sometimes called Stokes and anti-Stokes peaks respectively. The
ratio between their intensities is reversed if the direction of rotation of trajectories within
the nonlinear resonance in the plane I − ψ̃ changes: such a reversal is due to the different
interference between action and angle modulations for different directions of the rotation.
Given that the ZDNR/NR transition results in a repopulation between resonances in
which the directions of rotation are opposite, it also results in the reversal of the relative
intensities of the Stokes and anti-Stokes peaks. A quantitative study of partial spectra
due to small fluctuations about stable states of a periodically driven ZD system has yet
to be attempted.
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5.6 Concluding remarks

A combination of noise and periodic driving in ZD systems provides a wide variety of
characteristic phenomena. In Sec. 5, we have described five distinctly different types of
such phenomena known by the present time. We group the conclusions below according
to the same classification.

1. When the periodic driving is weak, so that it does not significantly affect the thermal
equilibrium, and one is interested in the influence of noise intensity (temperature) on
the response to periodic driving (signal) and on the signal-to-noise ratio (SNR), then
the possibility of zero-dispersion stochastic resonance (ZDSR) should be considered
provided the driving frequency is close to the extremal eigenfrequency of a ZD system
or to one of its harmonics. ZDSR is said to occur when the SNR possesses a local
maximum as a function of temperature. It should be emphasized that ZDSR does not
require bistability, unlike conventional stochastic resonance. The signal itself is also
strongly enhanced by noise, and much more strongly than in conventional (non-ZD)
systems.

The phenomenon of ZDSR is closely related to the zero-dispersion peak in the fluc-
tuation spectrum (see Sec. 3 above), and the better the separation of this peak from
other peaks in the spectrum, the more pronounced ZDSR is, i.e. the higher the SNR in
its local maximum as a function of temperature. Such separation is always provided if
the dissipation vanishes: then the local maximum in the SNR goes to infinity provided
the driving frequency is exactly equal to the extremal eigenfrequency or a harmonic.
At a given dissipation, the best separation of the zero-dispersion peak is provided in
systems with more than one separatrix, e.g. such as a SQUID, so that the ZDSR is then
at its most pronounced.

The theory of ZDSR has been well elaborated and tested by analogue experiments
and computer simulations in many details. Thus, the major problem for the future seems
to be a realization of the ZDSR in real SQUIDs and using it in various applications.

It would also be interesting [47,114] and potentially important to seek ZDSR in
arrays of ZD systems since it promises [114] to be even more pronounced than in a
single ZD system as well as possibly providing an enhancement of a signal propagation
(cf. [112,113]).

2. If the frequency of a weak periodic driving is close to a subharmonic of the extreme
eigenfrequency ωm, then the noise-enhancement of the second harmonic generation and
nonlinear absorption become very pronounced, and much more so than in conventional
systems or for frequency ranges beyond the vicinity of subharmonics of ωm. In a sense,
it is an analogue of the ZDSR but for a nonlinear rather than linear response and
at subharmonics rather than at the main or multiple frequencies. Similar to ZDSR,
the above phenomena promise to be most pronounced for strongly nonlinear models,
where the ZDP in the fluctuation spectrum is well separated from other peaks; however
neither has the theory been developed for such strongly nonlinear systems nor has the
corresponding experimental study yet been done. It seems important to carry out such
studies in future.

3. If the periodic driving is weak, but the noise is even weaker in the sense that the ther-
mal equilibrium is strongly disturbed by the periodic driving, then the enhancement of
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noise-induced escape from a potential well due to the periodic driving is typically much
stronger in ZD potentials than in similar conventional ones. The enhancement is espe-
cially pronounced if the driving frequency is close to the extremal eigenfrequency and
the damping parameter is smaller than, or of the same order as, the driving amplitude
while the latter may remain moderately weak: the major nonlinear resonances (ZD-
NRs) are then very wide in energy and, in addition, chaotic layers associated with their
separatrices reconnect the chaotic layer associated with the barrier level. Consequently,
the activation energy may be substantially reduced, even by periodic driving that is
relatively weak. Such a strong reduction may have many important applications, in
particular for the the creation of a pronounced ratchet effect in periodic potentials. The
subject has only recently started to be investigated, so that many important theoretical
and experimental details still need to be elucidated; the most important task appears
to be the development of a quantitative theory describing the decrease of activation
energy for the ZD case in the underdamped limit.

4. The most general features of noise-induced escapes from ZDNRs are similar to those
for a noise-induced escape/transition in any other multi-stable system. The initial work
[78] reduces the non-autonomous problem to the autonomous one, and then studies
the relevant most probable escape paths (MPEPs) and the corresponding activation
energies by means of the optimal fluctuation method. The most interesting result is
that, although there was a reason to anticipate avoidance of the inner saddle by the
MPEP from the inner focus to the outer boundary of the outer basin, the MPEP does
in fact pass through that saddle, after which it goes to the outer saddle, smoothly
turning around both the noise-free trajectory from the inner saddle to the outer focus
and the MPEP from the outer focus to the outer saddle. We have also suggested (and
proved) some simple auxiliary rules which help in identifying the MPEP among the
other extremals prior to a calculation of the action along them. There are still many
interesting unsolved problems in the subject, of which the most important in a general
context seem to us: (i) the search for rigorous rules allowing one to select the range of
the shooting parameter in which there lies only one value corresponding to an extremal,
namely to that extremal whose projection onto the I − ψ̃ plane provides the absolute
minimum of the action, i.e. constitutes the MPEP itself; and (ii) the search for sets of
parameters at which the MPEP from the inner focus beyond the outer encompassing
basin forms a smooth trajectory avoiding the inner saddle, rather than a trajectory
possessing a cusp in the inner saddle.

5. The spectrum of fluctuations in a ZD system subject to weak periodic driving and to a
yet weaker noise consists typically of peaks that are due to small fluctuations about the
most populated stable state of the noise-free system. If this is a linear response, then
there is just one peak, centered at the frequency of eigenoscillation in the non-driven
ZD system. If the most populated state is one of the nonlinear resonances, then the
spectrum consists of: (i) two peaks shifted from the driving frequency ωf respectively up
or down for a frequency ∆ω of small oscillations about the stable state of the noise-free
system; and (ii) possibly a narrow (∼ Γ) peak centered at ωf . The former peaks arise
due to the periodic (with the frequency ∆ω) modulation of the amplitude and angle
of the stable constrained oscillations (at the frequency ωf ), while the latter peak arises
in cases when small oscillations about the stable state are asymmetric, its origin being
analogous to the origin of the zero-frequency peak in stationary systems [145,50,51].
In rare cases, when the populations of the two or more most populated states are
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comparable, all the corresponding peaks are present in the spectrum.
Though the origins of all the major features of the spectral contributions due to

small fluctuations about the stable states have now been understood, a quantitative
description of the spectrum has yet to be achieved.

In case, when the populations of the two most populated states are comparable, an
extremely high and narrow (“supernarrow”) peak arises at the driving frequency: it is
due to very rare noise-induced transitions between the stable states of the noise-free
system. The supernarrow peak in the ZD case is quite similar to that in the conven-
tional case, except when the populations of three or more (rather than two only) most
populated states are comparable: in the latter case, the shape of the peak differs from
the conventional Lorenzian and it has not yet been studied.

6 Quantum zero-dispersion phenomena

To the best of our knowledge, nothing has yet been published on zero-dispersion phe-
nomena in quantum systems. At the same time, such studies would be interesting both
for their intrinsic interest and because many zero-dispersion systems may operate in the
quantum or quasi-classical regimes (cf. for example local vibrations in doped crystals [27]
and underdamped torsional motion in axial molecules [23]).

We briefly review below two unpublished incomplete theoretical studies [147,148] under-
taken in 1995-1996, presenting initial results and discussing possible approaches for further
studies. We hope that these notes will be stimulating for other researchers.

6.1 Quantum zero-dispersion peaks

The present sub-section is based on [147].

6.1.1 Qualitative analysis

In the purely quantum regime, when the extremal energy (i.e. the energy Em at which
ω(E) possesses an extremum) is comparable with the lowest energy level, zero-dispersion
behaviour is unlikely to be manifested to any significant extent. On the other hand, if Em
lies in the range of energy levels with high quantum numbers so that the motion is quasi-
classical, then zero-dispersion peaks may arise in various spectra. Consider a nonlinear
oscillator (Fig. 67). The distance in energy between adjacent quasi-classical levels is equal

to h̄ω(E) [149]. Let the oscillator interact with a thermostat (whose temperature T
∼
> Em).

All levels with energy E
∼
< T are then populated. If the interaction with the thermostat

is very weak, then the absorption spectrum contains separate spikes corresponding to
transitions between different levels. For the sake of simplicity, let us consider transitions
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between adjacent levels only 69 . They are distributed on the frequency axis with a density
that, except in the immediate vicinity of ωm, is given approximately by

D(Ω) =
∑
i

1

[| dω/dE | h̄ω]|
E

(i)
Ω

, (6.1.1)

where E
(i)
Ω is an ith root of the equation

ω(E
(i)
Ω ) = Ω, (6.1.2)

and the summation over i means the summation over all such roots (in the ZD case,
typically two).

Thus, everywhere except the immediate vicinity of ωm, the density of spikes on the fre-
quency axis is related to the classical spectral densities | dω(E

(i)
Ω )/dE

(i)
Ω |−1 (cf. the sub-

section 3.2).

The interaction may be characterized by a parameter that in the classical limit reduces
to the friction parameter Γ (cf. e.g. [2]). If Γ increases, then the spikes become broader
(and lower). On further increase of Γ, the width of a partial spike calculated in the weak-
interaction approximation becomes comparable with the distance between maxima of
adjacent spikes. Interference between the corresponding transitions then comes into play
and the weak-interaction approximation no longer provides a quantitative description of
the spectrum. But it still allows us to draw some qualitative conclusions. Thus, if the
width of the “partial spike” greatly exceeds the distance between the adjacent spikes, this
indicates that a broad continuous spectrum is formed. Its value at each given frequency
Ω is proportional to the number of significantly contributing transitions which, in turn, is
proportional to the concentration of “spikes” calculated in the weak-interaction approxi-
mation i.e. to D(Ω) (6.1.1), which in turn is related to the spectral densities of classical
oscillations. Obviously, the spectrum should reduce in this case to the classical limit. Just
such a transformation of the quantum (with separate spikes) spectrum into the classical
one as the interaction parameter grows was demonstrated in rigorous calculations for the
Duffing oscillator [150,2].

In the ZD case, the evolution from the quantum-like spectrum to the classical-like one
should possess distinctive features.

In the purely quantum stage, the distribution of the spikes on the Ω axis thickens as Ω
approaches ωm from within the spectrum of classical eigenfrequencies, and then abruptly
vanishes as ωm is crossed: see Fig. 68(a).

69 The intensities of the corresponding spectral spikes are proportional to the square of the rele-
vant matrix elements of coordinate, which are proportional, in turn, to the fundamental Fourier
components of the classical oscillations [149]; the spikes resulting from transitions between non-
adjacent levels relate to higher-order harmonics [149], which are typically much smaller in ab-
solute value than the fundamental.
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Let us estimate the width of an individual spike (this estimate is valid in all cases rather
than in the ZD case only). Given that interaction with the thermostat is weak, we may
describe it merely by introduction of a corresponding phenomenological random force in
the Hamiltonian of the system

H = H0 + qf(t), (6.1.3)

H0 = − h̄
2

2

d2

dq2
+ U(q),

〈f(t)〉 = 0, 〈f(t)f(0)〉 = 2ΓTδ(t).

Here, q and U(q) are respectively the coordinate and potential energy of the oscillator
while, for the sake of similarity to the classical description in Sec. 3 (cf. e.g. Eq. (3.1.1)),
its mass is normalized to unity here and in what follows. The random force f(t) is white
noise, where T is the temperature and Γ is an interaction parameter which corresponds
in the classical limit to the friction parameter.

A description of the system in this way is analogous to neglect of the (dissipative) drift
in comparison with the diffusion in the classical case, which may always be done in the
limit Γ→ 0 (cf. Sec. 3).

Let us assume that at an arbitrarily chosen initial instant only the nth level of the oscillator
is populated, i.e. the wave function of the system is

Ψ(0) ≡ Ψ(q, t = 0) = ψn(q), (6.1.4)

H0ψn = Enψn.

As time passes, the wave function changes and other levels also start to become populated
i.e. the initial state decays. Let us expand the time-dependent wave function Ψ(t) over
the full set of eigenfunctions of the oscillator,

Ψ(t) ≡ Ψ(q, t) =
∑
k

ck(t)ψk(q)e
− i
h̄
Ekt, (6.1.5)

ck(0) =
{

1 at k=n,
0 at k 6=n.

Using standard time-dependent perturbation theory [149], averaging the result over the
noise, and omitting terms ∝ tl with l ≥ 2, one can obtain for the initial stage of the decay
of the population of the initial (i.e. nth) level:

〈| cn(t) |2〉 ≈ 1− t
2ΓT

∑
k 6=n | qkn |2

h̄2 , (6.1.6)

qkn ≡
∫
dq ψ∗kqψn.
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If the nonlinearity is small, i.e. the potential is nearly parabolic, U(q) ≈ ω2q2/2, then the
matrix elements for transitions between non-adjacent levels are approximately equal to

zero while | qk(k−1) |=| q(k−1)k |≈
√
kh̄/(2ω) [149], so that

∑
k 6=n
| qkn |2≈| q(n−1)n |2 + | q(n+1)n |2≈

(2n− 1)h̄

2ω
≈ E

ω2
, (6.1.7)

U(q) ≈ ω2q2

2
, n� 1.

In the general case, (6.1.7) is not satisfied quantitatively but it can typically still be used
as the basis for rough qualitative estimations.

Thus, as follows from (6.1.6) and (6.1.7), the initial state decays for a time of the order of

∆t =
h̄2

2ΓT
∑
k 6=n | qkn |2

∼ (h̄ω(En))2

ΓTEn
. (6.1.8)

Because of the uncertainty principle [149], the width of the level ∆E ∼ h̄/∆t, so that the
width of the spectral spike in the absorption spectrum

∆ω ∼ ∆E

h̄
∼ 1

∆t
∼ ΓTEn

(h̄ω(En))2
. (6.1.9)

So, as the interaction with the thermostat grows, the widths of the spikes grow too and,
when ∆ω (6.1.9) becomes comparable with the separation between spikes, the interference
of transitions between corresponding energy levels comes into play (cf. the case of the
harmonic oscillator [151,152], where all energy levels are equidistant) so that the spikes
merge and a united broader peak is formed (cf. Fig. 68(b)). In the ZD system, this process
starts in the immediate vicinity of ωm, where the distance between the spikes is minimal 70

(cf. Fig. 68(a)). As Γ (or T ) grows further, the interference involves more and more spikes
so that the resulting peak (i.e. ZDP) becomes broader and more intense, reducing in the
end to the continuous classical form (cf. Fig. 68(c)). The distance between spikes in the
immediate vicinity of ωm is ∼| d2ω(Em)/dE2

m | (h̄ωm)2. The condition for ∆ω to become

70 There may be doublets of spikes, both in the immediate vicinity of ωm and beyond it, and
the distance between the spikes in the doublets may be vanishing: this occurs if the energy
levels on either side of Em generate two very close sets of ω(En), which takes place either if
Em is very close to one of the levels or if Em is situated very close to mid-way between some
adjacent levels. In this case the overlap of spikes and the interference between the corresponding
transitions may start at much smaller values of Γ than that one in (6.1.10). However, unlike Γ
(6.1.10), the interference is limited in this case to only these two transitions while others are not
involved. Such interference in a doublet does not relate to the formation of the major part of
the ZDP, and we shall not discuss it further.
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comparable with this distance may be written as

a ≡ ΓTEm
| ω′′ | (h̄ωm)4

∼ 1, ω′′ ≡ d2ω(Em)

dE2
m

. (6.1.10)

The above criterion (6.1.10) for the start of the formation of the ZDP as the interaction
with the thermostat increases is the major result of this sub-section. It is worth noting
that it can also be obtained in a different way, using results from the analysis of the
classical ZDP. Indeed, it was shown in sub-section 3.3 that, in the vicinity of Em, the
classical correlation function decays for a time of the order of tzdp (3.3.4); the energy
diffusion during this time is of the order of ∆Ezdp (3.3.5). Obviously, if ∆Ezdp turns out
to be less than or of the order of the distance between adjacent levels in the vicinity of
Em, then neither the classical approximation works nor will a ZDP arise in the spectrum.
Comparing ∆Ezdp with h̄ωm and allowing for p2

m in (3.3.5) is typically ∼ Em, one derives
that same criterion (6.1.10).

Thus, the qualitative analysis in this sub-section shows that, as the interaction with a
thermostat grows, the onset of the ZDP in the spectrum and the start of the transforma-
tion of the purely quantum (spikes-like) spectrum into the classical (broad continuous)
spectrum occur simultaneously, namely when criterion (6.1.10) is satisfied.

The quantitative description of how a ZDP is formed as the interaction grows turns out
to be a very difficult problem. We briefly describe in the next sub-section two possible
approaches and the corresponding difficulties encountered by the authors of [147].

6.1.2 Approaches for quantitative description

The quantum analogue of the classical correlation function 〈ϕ(t)ϕ(0)〉 may be introduced
as (see e.g. [150,2]):

R(q)
ϕ (t) =

1

2
Tr {ρ (ϕh(t)ϕh(0) + ϕh(0)ϕh(t))} (6.1.11)

≡ 1

2
Tr
{
ρ
(
U+ϕsUϕs + ϕsU

+ϕsU
)}
,

U ≡ e−
i
h̄
Ht, U+ = U−1,

where ρ is the density matrix, ϕh and ϕs are respectively the Heisenberg and Schrödinger
representations of the operator corresponding to a given physical quantity ϕ, and U is
the evolution operator [149]. The Fourier transform of R(q)

ϕ (t) may be called the quantum

spectrum of fluctuations Q(q)
ϕ (Ω). It can be shown that R(q)

ϕ (−t) = R(q)
ϕ (t), so that Q(q)

ϕ (Ω)
may be expressed via the half-Fourier transform:

Q(q)
ϕ (Ω) =

1

π

∞∫
0

dt e−iΩtR(q)
ϕ (t). (6.1.12)
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We shall describe below two different approaches to the calculation of the spectrum
(6.1.12)-(6.1.11). For the sake of simplicity, only the case ϕ = q will be considered.

1. Let us use the phenomenological Hamiltonian (6.1.3), in which the interaction with a
thermostat is described by the phenomenological random force. It is then not difficult
to show that

U = e−
i
h̄
H0tTτ exp

− ih̄
t∫

0

dτ f(τ)
∧
q (τ)

 , (6.1.13)

∧
q (τ) ≡ e

i
h̄
H0tqe−

i
h̄
H0t,

where Tτ is the chronological-ordering operator.
Assuming that the temperature is high enough to exceed significantly the width

of the energy range relevant to the ZDP (cf. Sec.3), ρ in (6.1.11) may be assumed
constant within the relevant range of energies, so that the shape of the spectrum of
the coordinate is entirely determined by the time evolution of 〈Tr {U+qUq + qU+qU}〉
where 〈...〉 denotes averaging over the random force. If R(q)

q (t) is formally expanded

in a Taylor series over ΓT/h̄2, then it is possible in principle to average each term of
the series over the random force in explicit form [147]. However, the main question is
whether or not the series in the corresponding Fourier transform converges. Given that
the classical spectrum (3.3.19) depends on ΓT non-analytically, and therefore that the
Taylor series over ΓT diverges, one may expect that the quantum spectrum will also
depend on ΓT non-analytically, given that it must reduce to the classical spectrum in
the limit h̄ → 0. It is therefore unlikely that the quantum spectrum can be found by
the above approach.

2. Another possible approach is analogous to that used for the calculation of the spectrum
(6.1.12)-(6.1.11) for a particular conventional nonlinear oscillator, namely the Duffing
oscillator (DO), in the range of small energies when the nonlinearity is moderately weak
[150,2]. The technique is quite complicated and its detailed description goes beyond the
scope of the present review. So, we give below only a brief qualitative delineation of
the work [150] (reproduced also in the review [2]) and indicate the main differences and
complications that arise in the ZD case as well as possible ways of overcoming them.

Thus, instead of using a phenomenological Hamiltonian (6.1.3), the authors of [150]
start their consideration from the full system consising of a nonlinear oscillator in-
teracting with a medium (thermostat) consisting of a quasi-continuous spectrum of
harmonic vibrations. The Hamiltonian of the full system, expressed in terms of the

creation and annihilation operators
∧
a

+
and

∧
a for the oscillator and

∧
a

+

k and
∧
ak for the

quasi-continuous-spectrum of vibrations, takes the form:

H = H0 +Hm +Hi, (6.1.14)

H0 = HDO ≡ h̄ω0
∧
n +γh̄2 ∧n

2
,

∧
n=
∧
a

+∧
a,

Hm =
∑
k

h̄ωk
∧
a

+

k

∧
ak, Hi =

∑
k

εk(
∧
a +

∧
a

+
)(
∧
ak +

∧
a

+

k ).

It turns out to be possible to eliminate the vibrations of the continuous spectrum and to
obtain for the operator acting only on the oscillator wave functions (which in a sense is
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analogous to q(t) in the classical case) a differential operator equation that may be con-
sidered as a generalized quantum kinetic equation. This operator equation is equivalent
to a system of differential-difference equations for matrix elements. Introducing a gener-
ating function, the latter system of differential-difference equations can be transformed
into a differential equation in partial derivatives of the first 71 order for the generating
function. This equation is solved explicitly and, using it, the correlation function of
the coordinate is also derived in explicit form. The Fourier transform can then easily
be calculated numerically. As the parameters of nonlinearity and interaction with the
medium vary, the spectrum evolves from having pronounced fine structure (the pre-
dominently quantal regime) to being relatively smooth and broad (the predominently
classical regime).

In order to include the ZD case within this framework, one has to consider instead of
the Duffing oscillator the tilted Duffing oscillator (TDO), whose Hamiltonian contains
in addition the cubic nonlinearity:

H0 = HTDO ≡ h̄ω0
∧
n +γh̄2 ∧n

2
+βh̄3 ∧n

3
. (6.1.15)

It is then easy to see that the dependence of the energy level En on its quantum number
n is

En = h̄ω0n+ h̄2γn2 + h̄3βn3, (6.1.16)

so that, if γβ < 0, then ω(En), which is ≈ dEn/dn, possesses as a function of n ≈
En/h̄ω0 an extremum (local minimum or maximum) at

n = nm ≡
[
− γ

3h̄β

]
. (6.1.17)

The case of the TDO may be treated similarly to that of the DO, described above.
However, unlike the DO case, partial derivatives of up to the second order appear in the
equation for the generating function, because of the presence of the cubic nonlinearity
in HTDO (6.1.15). It may not be possible to derive a solution of this equation in explicit
form. Then, instead of a numerical solution of the second-order equation in partial
derivatives for the generating function (which is in itself far from trivial), it would
probably be easier to go one step backwards, and to solve numerically the system of
the differential-difference equations for the matrix elements, restricting oneself to those
elements corresponding to the energy levels lying in the relevant vicinity of nm: the
number N of the equations should significantly exceed the ratio of the width ∆Ezdp

(3.3.5) of the energy range responsible for the formation of the classical ZDP to the
distance between adjacent levels (≈ h̄ω0),

N � 1

h̄ω0

(
ΓTEnm

|d2ω(Enm)/dEnm|

)1/4

, (6.1.18)

71 That the partial derivatives are not higher than of first order is because the nonlinearity in
the Hamiltonian of the Duffing oscillator HDO (6.1.14) is not higher than quadratic in terms of
∧
n.
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d2ω(Enm)

dE2
nm

≈ 1

h̄3ω2
0

d3Enm
dn3

m

=
6|β|
ω2

0

,

Γ =
π

4
gε(ω0), gε(ω)dω ≡

∑
k→[ω≤ωk≤ω+dω]

ε2k
ω2
k

,

where Γ is an effective parameter of dissipation arising due to the interaction with the
medium [150,2].

6.2 Quantum zero-dispersion nonlinear resonance

The resonant interaction of a periodic perturbation (e.g. light) with a quantum nonlinear
oscillator (e.g. an atom or molecule) may have two limiting regimes. One of these, which
may be described as purely quantum, occurs when the perturbation is resonant with
a transition between only one pair of energy levels, while the frequencies of transitions
between any other energy levels are distinctly different. In this case, only two energy levels
are involved in the quantum dynamics caused by the periodic perturbation.

The other limiting regime, which relates typically to high-quantum-number (i.e. quasi-
classical) energy levels, occurs if the distance between adjacent energy levels varies rel-
atively slowly with quantum number, so that a large number of transitions are approxi-
mately resonant to the perturbation, and therefore a large number of levels are involved in
the dynamics of repopulation caused by the periodic perturbation. It is this latter regime
that is called quantum nonlinear resonance [153,154]. The first rigorous quantum (rather
than quasi-classical [153]) approach was developed in [154] for quantum nonlinear reso-
nance in a conventional nonlinear oscillator. In what follows, we shall denote it as QNR.
It has many similarities to classical NR. In particular, the energy width of the QNR (or,
equivalently, the number of levels involved in the QNR) is proportional to the square root
of the ratio of the amplitude of the perturbation to the absolute value of the dispersion of
the classical eigenfrequency [154]. In addition, there are quantum analogues of: the sep-
aratrix [155]; maps exhibiting chaos [156]; and the fast decay of correlations as different
QNRs overlap [155]. But even for these analogues, there are many distinctions between
the quantum and classical cases, and the quantum case possesses some properties that
are absent in the classical case. A review of QNR properties and a fuller list of relevant
references are given in [83].

It is obvious that, in a ZD system, where the distance between quasi-classical energy levels
changes with quantum number even more slowly than in the conventional case, quantum
nonlinear resonance may be expected to be much more pronounced, as well as possessing
features absent in the conventional case. Initial results on isolated quantum zero-dispersion
nonlinear resonance (QZDNR) are presented in an as yet unpublished work [148]. Sec.
6.2.1 below reviews the studies of the isolated QNR [154,155] and QZDNR [148]. Sec.
6.2.2 lists unsolved problems for the QZDNR.
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6.2.1 Isolated resonance

While considering a single resonance, we shall use an approach similar to that developed
in [154]. So, let a nonlinear oscillator characterized by the Hamiltonian operator H0 be
perturbed by a weak sinusoidal force F cos(Ωt), i.e. the perturbation of the Hamiltonian
is Vint ≡ dF cos(Ωt) where d is a relevant operator of the oscillator 72 . We shall seek the
wave function as an expansion over the full set of eigenfunctions ψn(q) of the unperturbed
oscillator:

ψ(q, t) =
∑
n

cn(t)ψn(q), H0ψn(q) = Enψn(q). (6.2.1)

The numbers of relevant energy levels are assumed to be high so that the corresponding
levels are quasi-classical and as a consequence [149]

En+1 − En ≈ h̄ω(En), (6.2.2)

where ω(E) is a classical eigenfrequency as a function of energy.

6.2.1.1. Conventional case.

Consider first the conventional case [154,155,157] when dω/dE is distinctly non-zero in
the relevant range of energies, for which 73 ω(E) ≈ Ω. Let us denote by nr the quantum
number of the energy level closest to the classical resonant energy Er defined by the
relation ω(Er) = Ω. It then follows from (6.2.2) that dEn/dn|n=nr is very close to h̄Ω. It
will be sufficient for us to keep only three first terms in the Taylor expansion of En as a
function of n:

En ≈ Enr +
dEn
dn

∣∣∣∣∣
n=nr

(n− nr) +
1

2

d2En
dn2

∣∣∣∣∣
n=nr

(n− nr)2. (6.2.3)

It is convenient to separate out the fast-oscillating factor in cn(t). There are slightly
different ways of doing this, but we follow that of [155]:

cn(t) = Am(t) exp

{
− i
h̄

(
Enr +

dEn
dn

∣∣∣∣∣
n=nr

m

)
t

}
, (6.2.4)

m ≡ n− nr.

Substituting (6.2.1), (6.2.4) into the Schrödinger equation

ih̄
∂ψ

∂t
= Hψ, (6.2.5)

72 For example, in the case of a dipole interaction, d ∝ q is the operator of a dipole moment.
73 For the sake of simplicity, we consider only the resonance of 1st order.
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H = H0 + Vint, H0ψn = Enψn, Vint = dF cos(Ωt),

multiplying the resulting equation by ψ∗n(q) with a given n, integrating over q and ne-
glecting fast-oscillating terms, one obtains equations describing the dynamics of the “slow”
amplitudes Am:

i
dAm
dτ

= µm2Am +
1

2
V
(
eiντAm+1 + e−iντAm−1

)
, (6.2.6)

τ ≡ Ωτ, µ ≡ 1

2h̄Ω

d2En
dn2

∣∣∣∣∣
n=nr

, ν ≡
Ω− 1

h̄
dEn
dn

∣∣∣
n=nr

Ω
, V ≡ F

∫
dq ψ∗nr d ψnr+1

h̄Ω
,

m� nr.

Here we have also neglected for simplicity the difference between matrix elements for
transitions from different relevant levels to adjacent ones, which is justifiable on account
of the strong inequality in (6.2.6).

Introducing the auxiliary angle θ and periodic function ϕ(θ, τ),

ϕ(θ, τ) =
∞∑

m=−∞
Am(τ)eimθ, (6.2.7)

Am ≡
2π∫
0

dθ ϕe−imθ,

and using (6.2.6), one obtains the equation

i
∂ϕ

∂τ
= −µ∂

2ϕ

∂θ2
+ V cos(θ − ντ)ϕ. (6.2.8)

Given that ν is necessarily much smaller than the relevant “slow frequency” of the reso-

nance ∼
√
|V µ| (see below), ν may be put to zero in the zeroth-order approximation 74 so

that the resulting equation for ϕ is equivalent to the Schrödinger equation in the auxil-
iary cosine potential. The problem of its eigenfunctions and eigenvalues is the well known
Mathieu equation [49,158]:

(−µ d
2

dθ2
+ V cos(θ))χz = λzχz. (6.2.9)

The spectrum λz has a band structure, but only periodic solutions χz are relevant (see
Eq.(6.2.7)); such solutions correspond [154] to λz which lie on the boundaries of the bands
(see [157,158] for more details).

74 Note however that, for the sake of generality, the computer simulations [155] of eqs.(6.2.6)
shown in Fig. 69 are for nonzero ν.
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Taking account of (6.2.7)-(6.2.9) and of a property following from the orthogonality and
periodicity of the relevant eigenfunctions χz,

∑
k

χ̃∗z(k)χ̃z′(k) = δzz′ , (6.2.10)

χ̃z(k) ≡ 1

2π

2π∫
0

dθ χz(θ)e
−ikθ, χ̃∗z(k) = χ̃z(−k),

one can obtain (cf. [154]) the following expression for Am(τ) via the set of initial ampli-
tudes {Ak(0)} in the zero-order approximation (ν = 0):

Am(τ) =
∑
z

∑
k

Ak(0)χ̃z(m)χ̃z(−k)e−iλzτ . (6.2.11)

Using (6.2.11), and taking into account the relation [149] between the number of zeros
in an eigenfunction of a Schrödinger equation and the quantum number of the energy
level corresponding to this eigenfunction, it can be shown that the levels trapped in
the resonance, i.e. levels with mixed dynamics, are those with quantum numbers m in
the interval [−δn/2, δn/2]. Here δn is of the order of the number of levels in a single
(isolated) well of the auxiliary cosine potential (6.2.9), which is 75 itself of the order of the
ratio of the potential barrier |V | to the eigenfrequency in the bottom of the potential well

Ωb =
√

2|µV |, i.e. δn ∼
√
|V/µ| ∝

√
F/|dω(Er)/dEr|. The latter dependence is similar to

that of the width of classical NR on driving amplitude. A more accurate estimate, based
on the properties of periodic Mathieu functions [158], is suggested in [155]:

δn ≈ 4

√√√√∣∣∣∣∣Vµ
∣∣∣∣∣. (6.2.12)

The paper [155] presents results of computer simulations of the dynamics of populations
based on Eqs. (6.2.6) for a given set of parameters and various initial distributions of the
amplitudes Am. One of the main features of QNR is the formation of a steady regime after
some transient period. If initially populated levels possess quantum numbers m within
the interval [−δn/2, δn/2], then the wave packet is spread over the whole interval during
some time τ ∗. The spreading then stops and the subsequent dynamics is reduced to an
oscillatory redistribution between levels trapped in the QNR, possessing a characteristic
“return” time τr. E.g. for the set of parameters V = 5 × 10−2, µ = 10−3, ν = 10−3 (the
latter corresponds to exact resonance with the transition between the levels m = 0 and
m = 1) and for the single populated level m = 0 (i.e. Am(τ = 0) = δm0), the transient
time τ ∗ ≈ 200 and the number of trapped levels δn = 22. The latter matches quite well the
analytic estimate (6.2.12) which gives δn = 28. The return time in simulations, τr ≈ 360,
also well matches the analytic estimate, i.e. the half-period of the eigenoscillation in the

bottom of the auxiliary potential (6.2.9) π/Ωb = π/
√

2|µV | ≈ 314.

75 Note that (6.2.9) is written in normalized units and, in particular, that Planck’s constant is
normalized to unity.
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Fig. 69 presents results of simulations [155] demonstrating in QNR the analogue of a
separatrix. If the absolute value of the quantum number m of the initially populated level
exceeds the critical value m∗ ≈ δn/2, then only few levels around m(0) become populated
in the steady regime (see Fig. 69(a)) and the formation time of the steady regime is
relatively small. The situation drastically changes if |m(0)| < m∗ (see Figs. 69(c-e)): the
distribution of populated levels is significantly wider, extending approximately over the
interval [−m∗,m∗], while the formation time of the steady regime significantly increases.
The “boundary” case |m(0)| ≈ m∗ is illustrated by Fig. 69(b).

6.2.1.2. Zero-dispersion case.

Let ω(E) possess a local minimum or maximum at some E = Em, i.e. dω(E)/dE|E=Em =
0. Let us denote by nm the number of the energy level closest to Em, so that d2En/dn

2|n=nm ≈
0 as follows from (6.2.2). Unlike the conventional case, it will be necessary for us to keep
four terms in the Taylor expansion of En:

En ≈ Enm +
dEn
dn

∣∣∣∣∣
n=nm

(n− nm) +
1

2

d2En
dn2

∣∣∣∣∣
n=nm

(n− nm)2 +
1

6

d3En
dn3

∣∣∣∣∣
n=nm

(n− nm)3.

(6.2.13)

The driving frequency Ω is assumed to be close to ω(Em) ≈ dEn/dn|n=nm . We shall
separate out the fast-oscillating factor in c(t) (6.2.1) in the following way:

cn(t) = Al(t) exp
{
− i
h̄

(Enm + h̄Ωl) t
}
, (6.2.14)

l ≡ n− nm.

Substituting (6.2.1), (6.2.14) into the Schrödinger equation (6.2.5) and carrying out the
same operations as in the conventional case (6.2.6), we obtain:

i
dAl
dτ

= (−νml + ηml
3)Al +

1

2
Vm (Al+1 + Al−1) , (6.2.15)

τ ≡ Ωτ, νm ≡
Ω− 1

h̄
dEn
dn

∣∣∣
n=nm

Ω
, η ≡ 1

6h̄Ω

d3En
dn3

∣∣∣∣∣
n=nm

, Vm ≡ F

∫
dq ψ∗nm d ψnm+1

h̄Ω
,

l� nm,

where we have also neglected the deviation of d2En/dn
2|n=nm from zero.

Then the equation for the auxiliary function φ(θ, τ) (6.2.7) is as follows:
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i
∂ϕ

∂τ
= H(zd)ϕ, (6.2.16)

H(zd) = iνm
∂

∂θ
+ iηm

∂3

∂θ3
+ Vm cos(θ),

ϕ(θ + 2π) = ϕ(θ).

The operator H(zd) can be shown [148] to be Hermitian (self-conjugated), so that its
eigenvalues are real while the eigenfunctions are orthogonal each other and constitute
a complete set [149]. Thus, like periodic Mathieu functions, the eigenfunctions of H(zd)

possess the property (6.2.10) and the amplitudes Al(τ) may formally be expressed via the
set of initial conditions {Al(0)} by means of Eqs. (6.2.11),(6.2.10) in which the periodic
Mathieu functions χz are exchanged for periodic eigenfunctions of the operator H(zd).

It is worth pointing out that both in the conventional and ZDNR cases the corresponding
operators (6.2.9) and (6.2.16) could be obtained from the classical asymptotic Hamilto-
nians (4.1.10) and (4.1.11) through the exchange of respectively (I − Ir) and (I − Im)
by the operator −i∂/∂θ and of the interaction amplitude by the corresponding matrix
element. This is a consequence of the correspondence principle valid in the quasi-classical
regime for classical action-angle variables and their properly introduced quantum ana-
logues [159,157].

6.2.2 Unsolved problems

1. Though the formal solution of the problem of the QZDNR has been obtained, in terms
of the periodic eigenfunctions of the operator H(zd), explicit expressions for the latter
eigenfunctions have not so far been found. Operators of this kind, i.e. odd functions of
the momentum operator, are not studied in quantum mechanics, so that the solution
of the corresponding eigenvalue problem is a difficult task, even methodologically.

2. Simulations of the dynamics of the amplitudes Al(τ) and populations |Al(τ)|2 have not
yet been carried out. In analogy with the classical cases, one may expect that the energy
width of the QZDNR will be ∝ (|Vm/ηm|)1/3 ∝ F 1/3, therefore exceeding typically that
of conventional QNR which is ∝ F 1/2 (see Eqs.(6.2.12),(6.2.6)).

3. It was found in [155] by means of simulations that the overlap in energy between
different QNRs drastically changes the population dynamics, in analogy with the onset
of global chaos associated with the overlap of classical NRs. But the overlap in energy
between classical ZDNRs of the same order does not result in the onset of global chaos
(see Sec. 4). Even the overlap in phase space (the ZDNR/NR transition) results in a
change of the phase space structure rather than in the onset of global chaos in the
conventional sense. Therefore, it will be very interesting to study, at least by means of
simulations, how the dynamics of the populations changes with decreasing distance in
energy between two resonances of the same order.

4. In order to describe explicitly the dynamics of amplitudes Al(τ), instead of the intro-
duction of the auxiliary function ϕ(θ, τ), one may exchange the discrete energy level
number l for its continuous approximation: Al+1 + Al−1 − 2Al in the discrete descrip-
tion is exchanged for ∂2A/l2 in the continuous one. Given that the number of levels
trapped in the nonlinear resonance is large, such an approach should provide a good
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approximation, at least in the steady regime (i.e. at large time-scales). The equation of
motion for Al(τ) reduces then to the Schrödinger-like equation:

−i∂A
∂τ

=

[
− 1

2ma

∂2

∂l2
+ Ua(l)

]
A, (6.2.17)

ma =
{
V −1 for the QNR,

V −1
m for the QZDNR,

Ua(l) =
{
−V−µl2 for the QNR,
−Vm+νml−ηml3 for the QZDNR.

Such an approach may be especially advantageous for the QZDNR since the problem
(6.2.17) is equivalent to conventional quantum-mechanical motion in the auxiliary po-
tential Ua, while methods for the solution of conventional quantum-mechanical problems
are much better developed than those for solution of the eigenvalue problem for such
non-conventional operators as H(zd) (6.2.16).

5. It would be interesting to extend studies of quantum chaos related to QNR (see [83]
and references therein) to the case of the QZDNR. Given that manifestations of chaos
related to classical ZDNR have many distinctions from classical NR (see Sec. 4), one
may expect that quantum chaos related to the QZDNR will differ significantly from
that related to the QNR.

6.3 Conclusions

If the system operates in the range of quasi-classical energies, i.e. at high quantum numbers
n of energy levels En, then the spacing between adjacent levels in this range changes with
the quantum number very smoothly and is≈ h̄ω(En) where ω(E) is a frequency of classical
eigenoscillation with energy E. Then even a weak perturbation may cause a repopulation
of a large number of levels due to a strong interference between corresponding transitions,
which is analogous in a sense to long-lasting classical correlations. This effect is especially
pronounced in zero-dispersion systems in the range of extreme energy Em, where the
spacing between levels changes with n especially slowly. This results in a number of effects
which are either much less pronounced in, or completely absent from, non-ZD systems.

Thus, if the quantum ZD system is subject to an external noise, e.g. of thermal origin,
a quantum zero-dispersion peak arises in the spectrum of fluctuations if the interaction
parameter is larger than, or of the same order as, some small critical value [147] (see Eq.
(6.1.10) in Sec. 6.1.1 above as well as the schematic Fig. 67). The phenomenon has not yet
been described quantitatively but a reasonable modification of the corresponding approach
used for the conventional case [150,2] was suggested [147] for the case of interaction with
a thermostat of the quasi-continuous spectrum of vibrations (see Sec. 6.1.2).

If the quantum ZD system is periodically driven at a frequency close to ω(Em) or one
of its harmonics, then the phenomenon of quantum zero-dispersion nonlinear resonance
(QZDNR) may occur [148]. It is expected to have many distinctive features compared to
conventional quantum nonlinear resonance (QNR) [154]. In particular, QZDNR promises
to be wider than the QNR, and the dynamics of repopulation of the quantum levels at the
overlap of two QZDNRS of the same order promises to be very different from that at the
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overlap of QNRs, which are necessarily of different orders. A very preliminary quantitative
study [148] of QZDNR was reviewed in Sec. 6.2.1, and it would be interesting to extend
these investigations in the ways discussed in Sec. 6.2.2.

It is also worth noting that the simultaneous action of noise and a periodic force on the
quantum ZD system has not yet been studied at all. It would be interesting to do so, given
that in classical cases such simultaneous action gives rise to many interesting phenomena
(see Sec. 5), in particular to zero-dispersion stochastic resonance (see Sec. 5.1). Note that
an analogue of conventional stochastic resonance in some non-ZD quantum system has
been considered in [160].
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7 Concluding remarks

We hope that we have managed to demonstrate in this review that zero-dispersion systems
are rather widespread in nature and form a distinct class of systems with characteristic
properties. If subject to external action, they may manifest resonant behaviour in a much
more pronounced way than conventional systems and, moreover, some of the phenomena
can occur only in ZD systems.

We have reviewed three characteristic types of action on classical ZD systems: noise (ad-
ditive white, mostly), a sinusoidal force, and their combination (additive, mostly). Some
of the resulting phenomena, such as zero-dispersion peaks in fluctuation spectra, zero-
dispersion nonlinear resonance and zero-dispersion stochastic resonance, have already
been well established, which provides a good base for a realization in a near future of
their practical applications, apart from a good understanding of various relevant physical
phenomena. Others are either barely studied or in the midst of being investigated, and
we have given our view of the major unsolved problems for each of them.

We have also touched the subject of quantum ZD phenomena, which has barely been
studied to date and would certainly be interesting for future investigations.

We hope that, apart from the reviewed phenomena and systems, there exist many other
ZD phenomena and systems whose identification and study be in the future, and that our
review may help to stimulate the further development of this interesting field.
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A Appendix. Transformation to slow-fast variables

We present here the transformation between the momentum-coordinate and energy-angle
or action-angle variables, as well as the dynamical equations for the latter variables in the
case of non-Hamiltonian motion.

Let the (p− q) variables obey the following equations

q̇ =
∂H(q, p)

∂p
+ fq(q, p, t),

ṗ = −∂H(q, p)

∂q
+ fp(q, p, t), (A.1)

where fq and fp are some functions of q, p, t.

One may need to use canonical transformation between (p − q) and I − ψ (or a closely
related pair of variables E − ψ). Let us first express E,ψ, I via p, q.

E = H(q, p), (A.2)

ψ =

[
ω(E)

∫ dq

p(q, E)

]
E=H(q,p)

, (A.3)

where ω(E) is the frequency of eigenoscillation in the Hamiltonian system at the energy
E, while p(q, E) is to be found from (A.2).

The action I is related to energy E by the relation [1]

I ≡ I(E) =

E∫
Emin

dẼ ω−1(Ẽ), (A.4)

where Emin is a relevant local minimum of E in (A.2).

On the other hand, q and p may be expressed via E and ψ:

q =
∞∑

n=−∞
qn(E) exp(−inψ),

p = −iω(E)
∞∑

n=−∞
nqn(E) exp(−inψ). (A.5)

Now, let us derive from (A.1) the dynamical equations for E − ψ. Differentiating (A.2)
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with respect to t and using (A.1), one derives

Ė =
∂H

∂p
fp +

∂H

∂q
fq. (A.6)

To derive the equation for ψ, we use a more sophisticated method since the straightfor-
ward differentiation of (A.3) does not immediately lead to a simple result. We formally
differentiate ψ as a function of q, p and use (A.1):

ψ̇=
∂ψ

∂q
q̇ +

∂ψ

∂p
ṗ =

∂ψ

∂q

∂H

∂p
− ∂ψ

∂p

∂H

∂q
+
∂ψ

∂q
fq +

∂ψ

∂p
fp (A.7)

=ω(E) +
∂ψ

∂q
fq +

∂ψ

∂p
fp.

We used in the derivation of the last equality in (A.7) the fact that the case of fq = fp = 0
corresponds to conservative motion, when dψ/dt = ω(E) [1], whereas the form of the first
two terms in the middle equality in (A.7) is independent of fq, fp.

In order to find ∂ψ/∂q ≡ (∂ψ/∂q)p, the partial derivative of ψ with respect to q at a
constant p, we use the following trick. On the one hand,(

∂p

∂q

)
p

= 0, (A.8)

while, on the other hand,(
∂p

∂q

)
p

=

(
∂p

∂ψ

)
E

(
∂ψ

∂q

)
p

+

(
∂p

∂E

)
ψ

(
∂E

∂q

)
p

. (A.9)

Taking into account that(
∂E

∂q

)
p

≡
(
∂H

∂q

)
p

= −
(
dp

dt

)
E

= −
(
∂p

∂ψ

)
E

(
dψ

dt

)
E

= −
(
∂p

∂ψ

)
E

ω(E), (A.10)

we obtain from (A.9)(
∂ψ

∂q

)
p

= ω(E)pE. (A.11)

Similarly, analysing (∂q/∂p)q, one can obtain(
∂ψ

∂p

)
q

= −ω(E)qE. (A.12)
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Putting (A.11),(A.12) into (A.7), we finally obtain

ψ̇ = ω(E) + ω(E)pEfq − ω(E)qEfp. (A.13)

Thus, Eqs. (A.6),(A.13) are dynamical equations in terms of E−ψ variables. For the case

H =
p2

2
+ U(q), (A.14)

fq = 0,

fp = −Γp+ f(t),

most often used in the review, equations (A.6),(A.13) reduce to

Ė = −Γp2 + pf(t),

ψ̇ = ω(E) + Γω(E)pqE − ω(E)qEf(t). (A.15)
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Fig. 1. Examples of the dependence of the frequency of eigenoscillation on energy for: (a) a con-
ventional nonlinear oscillator; (b) a harmonic (linear) oscillator; (c) a zero-dispersion oscillator.
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Fig. 2. Schematic plot of a Josephson junction closed with a superconducting loop.

146



Fig. 3. The effective potential for a SQUID, Eq. (2.1.5), plotted for: (a) B = 0.3, qe = 0; (b)
B = 0.1, qe = −1.0. Dashed lines in (b) show the barrier levels while the corresponding numbers
identify different regions of phase space corresponding to motion confined within energy ranges
of three different kinds, separated by the dashed lines: between local energy maxima adjacent
in height; between a local maximum and the local minimum adjacent in coordinate; or between
the highest local maximum and infinity. After [?].
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Fig. 4. Dependences of the frequency ω(E) of eigenoscillation on energy E for the potentials
shown in Fig. 3: (a) B = 0.3, qe = 0; (b) B = 0.1, qe = −1.0. Dashed lines indicate the positions
of the first three extrema in each case: (a) ωm1 = 0.372, ωm2 = 0.600, ωm3 = 0.506; (b)
ωm1 = 0.385, ωm2 = 0.380, ωm3 = 0.321. After [?].
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Fig. 5. The potential U(q) (2.2.6) at (a) Φ = 0.2, (b) Φ = 2.0, and the corresponding (for
H given by (2.2.5)-(2.2.6)) dependences of the frequency ω(E) of oscillation on energy: (c) for
Φ = 0.2, (d) for Φ = 2.0. After [?].
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Fig. 6. (a) Schematic plot of an axial molecule in which an atom (or a group of atoms) may rotate
around a rigid axis in the plane perpendicular to the axis. (b) The corresponding dependence
of the effective potential on the angle of the rotation: within a 2π period, there are two equal
barriers and a third barrier of a different height.
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Fig. 7. (a) The tilted Duffing potential (2.3.1) for ω0 = γ = 1, A = 2; (b) the corresponding
dependence of the frequency of eigenoscillation on energy. After [?].
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Fig. 9. (a) The cubic potential (2.3.5) with ω0 = 1, β = 1.9, γ = 1 and (b) the corresponding
dependence of eigenfrequency ω(E) on energy.
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Fig. 10. The dependence of eigenfrequency on energy for a relativistic double-well Duffing oscil-
lator (2.4.1) with U(q) = −q2/4 + q4/8, m = 1 and c = 5.5 (the parameters being chosen to be
the same as in [?]).
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Fig. 11. The universal function describing the shape of a ZDP in the asymptotic limit Γ → 0.
After [?].
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Fig. 12. The evolution of the dependence of S̃ on x:(a) for different y at two different z; (b) for
different z, at y = 0.1. After [?].
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Fig. 13. The evolution with increasing temperature T of the scaled fluctuation spectrum
Qq(Ω) calculated from Eqs. (3.4.12), (3.4.13) for the same TDO model as in Fig. 7
(U(q) = q2/2 + q4/4 + 2q) and: (a) Γ = 10−7; (b) Γ = 10−4. After [?].
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Fig. 14. Evolution of the fluctuation spectrum Qq(Ω) calculated from Eqs. (3.4.12), (3.4.13) for
the same TDO model as in Figs. 7 and 13 but with Γ = 0.0286, as the temperature increases:
(a) T = 0.078; (b) 0.687; (c) 3.04. The histograms show measurements while solid lines show
calculations based on the algorithm described in sub-section 3.5. After [?].
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Fig. 15. The evolution of the measured spectrum for the same TDO model as in Figs. 7, 13 and
14 but with Γ = 0.0017, as the temperature increases: (a) T = 0.100; (b) 0.203; (c) 0.320; (d)
0.409; (e) 0.485; (f) 0.742. The onset of the ZDP and its evolution are seen in (c)-(f). After [?].
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Fig. 16. The spectrum Qq(Ω) measured for the same TDO model as in Figs. 7, 13–15 but with
Γ = 2.4 × 10−3, as temperature grows: (a) T = 0.370; (b) 0.445; (c) 1.5. The insets in each
case show a comparison, on expanded scales, of the experimentally measured fundamental ZDP
(squares) with the theoretical prediction of Eq. (3.4.9) (solid line). After [?].
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Fig. 17. The spectrum Qq(Ω) measured for the SQUID model U(q) = cos(q) + 0.05q2 with
Γ = 2.8× 10−4), as temperature grows: (a) T = 0.394; (b) 0.463; (c) 1.3. The insets in each case
show a comparison, on expanded scales, of the experimentally measured ZDP (squares) with
the theoretical prediction of Eq. (3.4.9) (solid line), for the fundamental (left-hand insets) and
third-harmonic (right-hand insets) peaks. After [?].
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Fig. 18. Evolution of the fluctuation spectra with increasing noise intensity T , measured (jagged
full curves) and calculated using the numerical algorithm described in sub-section 3.5 (dashed
curves) for: (a) the single-well SQUID potential of Fig. 3(a); and (b) the multiwell SQUID
potential of Fig. 3(b). Dash-dotted lines mark the positions of the relevant extrema of ω(E) (see
Fig. 4). After [?].
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Fig. 19. Typical trajectories in the absence of dissipation: (a) for conventional nonlinear reso-
nance; (b) for zero-dispersion nonlinear resonance. The separatrices are shown by thicker lines
and the stable states by dots. After [?].
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Fig. 20. Evolution of separatrices in the phase space as parameters are varied: (a) zero-dispersion
nonlinear resonance; (b) at the transition between zero-dispersion and conventional nonlinear
resonances; (c) conventional nonlinear resonance. After [?].
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Fig. 21. Evolution with driving frequency ωf of the basins of attraction of nonlinear resonances
in a 2π band of the phase space of the slow variables (I ordinate, ψ̃ abscissa) for the system
(4.2.3) averaged over the high-frequency oscillations (Eqs. (4.2.4)) for ω0 = 1, β = 5/3, γ = 1,
Γ = 0.011, h=0.0143 and: (a) ωf=0.8, (b) 0.83, (c) 0.85, (d) 0.88, (e) 0.92. The boundaries of
basins of attraction of the larger (smaller) action nonlinear resonance, and trajectories emerging
from the corresponding saddle point, are drawn by full (dashed) lines. One can obtain the
complete phase space by repeating the above picture with a period 2π in ψ̃. After [?].

164



1.00

0.95

0.90

0.85

0.80

ω(I)

0.40.30.20.10.0

I

Fig. 22. Frequency of eigenoscillation ω(I) of the system (4.2.1) as a function of its action I at
ω0 = 1, β = 5/3, γ = 1 (ωm = 0.805, Im = 0.1870). After [?].

-0.10

-0.05

0.00

0.05

0.10

ω-ωf

0.40.30.20.10.0
I

S1

S2

S3

U1

U2

Fig. 23. Example of the graphical solution of (4.2.7) for Γ = 0.011 and ω(I), q1(I) for the
system (4.2.1), with the same parameter values as in Fig. 22, driven by a periodic force with
arbitrarily chosen h and ωf . The full line represents the dependence of (ω−ωf ) on I. The dotted
line represents ±hq′1[1− (ΓI/(hq1))

2]1/2. The intersections corresponding to stable and unstable
points are labelled S1-3 and U1-2 respectively. After [?].
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Fig. 24. The bifurcation diagrams for (4.2.4), (4.2.1) with ω0 = 1, β = 5/3, γ = 1 and: (a)
Γ = 0; (b) Γ = 0.011. Note in (b) the logarithmic vertical scale and the ordinate scaling factor of
q1m/(ΓIm) = 159. Black lines indicate local bifurcations: the full line bounds the region within
which both the linear (S1) response and one or both of the nonlinear (S2, S3) responses can
exist. The upper part of this line marks the boundary of linear response, and the lower part that
for nonlinear response. Both nonlinear responses coexist in the region to the right of the dashed
black line in (a), or between the upper and lower parts of the dashed black line in (b). The full
green lines mark the ZDNR/NR transition, which corresponds to either the o ↔ g separatrix
reconnection (cf. Figs. 25(a,b)) in the non-dissipative case (a), or to the o→ g heteroclinic orbit
in the dissipative case (b). The yellow line corresponds to the y ↔ o separatrix reconnection (cf.
Figs. 25(b,c)) in the non-dissipative case (a), or to the y → o heteroclinic orbit (cf. Figs. 26(b,c))
in the dissipative one (b). The brown line corresponds to the y ↔ g separatrix reconnection in
the non-dissipative case (a), or to the y → g heteroclinic orbit in the dissipative one (b). Red
and orange lines correspond to o→ y and g → o heteroclinic orbits respectively (the transition
between Figs. 26(a,b) occurs just via the connection o→ y). Blue lines correspond to the g → y
heteroclinic orbit: the full line corresponds to a slip of the end of a trajectory emerging from the
green saddle between adjacent linear responses, while the dashed line corresponds to slip of the
trajectories emerging from green saddles between adjacent nonlinear responses. The inset in (b)
shows an enlargement of the vicinity of the cusp point of the dashed black line. After [?].
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Fig. 25. Typical evolution of the phase space structure for the non-dissipative case, with pa-
rameters as in Fig. 24(a) and h =0.018, as the driving force frequency increases: (a) ωf=0.860;
(b)0.885; (c)0.915. Lines show separatrices. The different types of unstable fixed points are in-
dicated by dots with different labels (g, o and y, which correspond to the unstable fixed points
drawn in the original [?] color figure in green, orange and yellow respectively). Stable points are
shown as black dots without any labels. After [?].
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Fig. 26. Typical evolution of a 2π band of the phase space structure for the dissipative case,
with parameters as in Fig. 24(b) and hq1m/(ΓIm) = 5, as the driving force frequency increases:
(a) ωf = 0.847; (b) 0.857; (c) 0.872. Note that the phase space is periodic in angle, with a
period of 2π. Black dots mark the locations of the attractors. Trajectories coming to/from the
yellow, orange and green unstable fixed points are drawn as full/dotted black, red and blue lines,
respectively. Trajectories coming to unstable fixed points form the boundaries of the basins of
attraction; those leaving these points go to attractors, with the exception of those emanating
from one of the two types of yellow point (with ψ̃ = π/2 + 2nπ), which go to a yellow point of
another type (with ψ̃ = π(1/2± 1) + 2nπ). After [?].
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Fig. 27. Poincaré sections for the relativistic double-well Duffing oscillator (2.4.1) (with U(q) and
parameters as in Fig. 10) with the periodic perturbation qF0 cos(πt/2) added, for: (a) F0 = 0.1,
(b) F0 = 0.3. Exponentially narrow chaotic layers, separating nonlinear resonances from other
regions of the phase space, are indicated by larger dots (the gaps are due to a finite integration
time). There are two nonlinear resonances in each figure: of the NR and ZDNR type, in (a) and
(b) respectively. After [?]. 169
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Fig. 28. Schematic dependence ∂H/∂I(t) along a trajectory in the vicinity of the separatrix
(relevant to H(I, ψ̃)) shown in Fig. 19(b), for three characteristic trajectories (cf. Fig. 19(b)):
(a) inside one of the loops; (b) below the loops; (c) above the loops. Instants preceding successive
pulses of ∂H/∂I(t) are marked by dots with corresponding labels.
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Fig. 29. Stroboscopic Poincaré sections of the periodically driven non-dissipative TDO (see
(4.2.3) at Γ = 0) at ω0 = 1, β = 5/3, γ = 1. (a) For h=0.01, with driving frequencies, from top
to bottom: ωf=0.82; 0.85258; 0.86. Chaotic layers (which are so narrow that cannot be seen
on this scale of the figure, but are clearly evident in enlarged figures) are indicated with bigger
dots (whose discreteness is due to the finite integration time). (b) For ωf=0.84 and, from top
to bottom: h=0.05; 0.07; 0.09. After [?].
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Fig. 30. The separatrices in the p–q plane for the unperturbed Hamiltonian,
H(p, q) = p2/2 + (0.2 − sin(q))2/2 (the corresponding potential U(q) is drawn in Fig.
5(a)). The inner and outer saddles are indicated by dots and labels {I(l)} and {O(l)}
respectively. After [?].
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Fig. 31. The evolution of the stroboscopic (for instants n2π/ωf with n = 0, 1, 2, ...) Poincaré
sections of the system (4.3.14) with ωf = 0.3 while h grows from the top to the bottom: (a) 0.01,
(b) 0.05, (c) 0.1. The number of points in each trajectory is 2000 (i.e. the integration time is
4000π/ωf ). In parts (a) and (b), three characteristic trajectories are shown: the inner trajectory
starts from the state {I(0)} ≡ {p = 0, q = π/2} (which corresponds to the inner saddle of
the unperturbed system), and is chaotic but bounded in the space; the outer trajectory starts
from {O(0)} ≡ {p = 0, q = −π/2} (which corresponds to the outer saddle of the unperturbed
system), and is chaotic and unbounded in coordinate; the third trajectory represents an example
of a regular (KAM) trajectory separating the above chaotic ones. In (c), only one, chaotic and
unbounded, trajectory exists in the relevant region of the Poincaré section. After [?].
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Fig. 32. The bifurcation diagram indicating (by shading) the parameter ranges for which there is
global chaos: the latter is tested in simulations by noting whether the system can be transported
from the state {I(0)} ≡ {p = 0, q = π/2} (the inner saddle) beyond the neighbouring outer
saddles, {O(0)} and {O(1)}, i.e. if the coordinate reaches either −π/2 or 3π/2. The grid in the
regions bounded by the rectangles was made significantly denser than beyond them in order to
find more accurately the boundaries of the “chaotic” spikes. The integration time for each point
of the grid is 12000π. After [?].
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Fig. 33. The evolution of the stroboscopic (for instants n2π/ωf with n = 0, 1, 2, ...) Poincaré
section of the system (4.3.14) as the amplitude of the perturbation h grows while the frequency
is fixed at ωf = 0.401. The number of points in each trajectory is 2000. The chaotic trajectories
starting from the states {I(0)} and {O(0)} are drawn in green and blue respectively. The stable
stationary points (the 1st-order nonlinear resonances) are indicated by the red and cyan crosses.
The chaotic trajectories associated with the resonances, in those cases when they do not merge
with the green/blue chaotic trajectories, are indicated in red and cyan respectively (their real
width is exponentially small and much less than the width of the line as drawn). Examples of
KAM trajectories embracing the state {I(0)} while separating various chaotic trajectories are
shown in brown. After [?].
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Fig. 34. The evolution of the separatrices (full lines) of the 1st-order resonances within the
resonance approximation (cf. (4.2.4) at Γ = 0) in the action-angle plane, for the same parameters
as in Fig. 33. The dashed lines show the levels of the barriers. After [?].
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Fig. 35. Regions of chaos (shaded), i.e. where positive Lyapunov exponents exist, in the plane of
the driving force parameters, for the system (4.2.3) with Γ =0.05, ω0 =0.5924, β =1.026, γ =1.
Local bifurcations of the corresponding reduced system (4.2.4) with n = 1 (1st-order resonance)
are indicated by full curves. After [?].
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Fig. 36. Some of the bifurcation lines of the resonance approximation (4.2.4) at n = 1, 2 for
the system (4.2.3) with the same parameters as in Fig. 35. The region where the two attractors
with n = 1 coexist lies between the dotted lines. There are two (one) attractors corresponding
to n = 2 between the inner (inner and outer) full lines. The dashed line marks the ZDNR/NR
transition at n = 2 (see Fig. 37). After [?].
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Fig. 37. Typical evolution of three 2π bands of the phase space structure for the reduced system
(4.2.4) at n = 2, with the same parameters as in Fig. 35 and ωf = 0.95 for (a) h = 0.055, (b)
0.075; note that the phase space is periodic in angle, with a period of 2π but, in the interests
of clarity, we draw only three 2π bands. Dots and open circles mark attractors and saddles
respectively. Trajectories coming to/from saddles are drawn as full/dotted lines. Trajectories
coming to saddles form the boundaries of the basins of attraction. After [?].
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Fig. 38. The bifurcation diagram for the full system (4.2.3) with the same parameters as in Fig.
35. Various bifurcations, found from the analysis of Poincaré sections, are indicated by thin full
lines and by the corresponding labels (to simplify a little the visual perception of the figure, we do
not show the lines of period-3 bifurcations since they lie entirely to the right from ωf = 1.2 and
seem to be irrelevant to the onset of chaos). Regions where strange attractors exist match well the
regions where positive Lyapunov exponents exist. The latter regions are shaded. To resolve the
two different types of chaotic attractor (see text) labelled chaos–1 and chaos–2, we use different
markers (circles and rhombuses) for shading the corresponding regions; note that there is a slight
overlap of the regions (where both types of chaotic attractors coexist). Dotted lines mark the
local bifurcations calculated in the resonance approximation for resonances n = 1, 2 (cf. Fig. 36).
The dashed line marks the (calculated in the resonance approximation) ZDNR/NR transition
for n = 2 (cf. Figs. 36 and 37). Thick full lines are related to the interaction between oscillations
of different frequency, and their intersections are indicated by the arrows and corresponding
numbers. After [?].
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(b.4) h=0.08 (b.5) h=0.086 (b.6) h=0.110

(b.7) h=0.190 (b.8) h=0.215 (b.9) h=0.227

Fig. 39. An evolution of the stroboscopic (t = 0, 2π, ...) Poincaré section p − q, for the same
system as in Fig. 35, for: (a) ωf = 0.95, (b) ωf = 1.05, as h increases. It demonstrates how
chaos-1(a) and chaos-2(b) are born. Regular attractors are indicated by dots; chaotic attractors
are shown by grey in (a.7), (a.8) and by black in (b.6), (b.7). Basins of attraction are shown by
different shades. After [?].
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Fig. 40. Bifurcation diagram similar to that in Fig. 38 but for the case β = 0.9 (Γ, ω0 and γ are
the same as in Fig. 38: Γ = 0.05, ω0 = 0.5924 and γ = 1 ). After [?].
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Fig. 41. Bifurcation diagram similar to that in Fig. 38 but for the case Γ = 0.01 (ω0, β and γ
are the same as in Fig. 38: ω0 = 0.5924, β = 1.026 and γ = 1 ). After [?].
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Fig. 42. The normalized frequency-dependence of the signal-to-noise ratio in the asymptotic
limit of small dissipation, as given by the function R(x) defined in Eqs.(5.1.9),(3.3.19). After [?].
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Fig. 43. The dependence of the signal-to-noise ratio on noise intensity for: (a) the single-well
SQUID potential of Fig. 3(a), with Ω = 0.62 and A = 0.016; and (b) the multiwell SQUID
potential of Fig. 3(b), with Ω = 0.39 and A = 0.005. The results of the electronic experiments
and numerical calculations are shown respectively by the circles and the solid lines. After [?].
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Fig. 44. The experimental (data points) and numerically calculated (solid line) frequency depen-
dence of the SNR at fixed noise intensity for (a) the single-well SQUID potential of Fig. 3(a),
with T = 4.8 and A = 0.016; and (b) the multiwell SQUID potential of Fig. 3(b), with T = 0.47
and A = 0.005. Dash-dotted lines mark the positions of the relevant extrema of ω(E) (see Fig.
4). After [?].
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(a)

(b)

Fig. 45. The dependence of the signal-to-noise ratio (normalized by a squared signal amplitude)
on the noise intensity T and the signal frequency Ω, calculated using (5.1.4) and the numerical
algorithm described in sub-section 3.5, for: (a) the single-well SQUID potential of Fig. 3(a); and
(b) the multiwell SQUID potential of Fig. 3(b). After [?].
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Fig. 46. Dependence of the squared modulus of the susceptibility on temperature, for the TDO
(5.2.2) with parameters of the potential as in Fig. 22 and Γ = 0.0122. The curves represent the
calculated |χ(ω)|2 at the second harmonic (ω = 2Ω) of the field frequency Ω in the model (5.2.2).
The frequencies for different curves are (a) Ω/ω0 = 0.490, (b) Ω/ω0 = 0.483, (c) Ω/ω0 = 0.463,
(d) Ω/ω0 = 0.440, (e) Ω/ω0 = 0.415. After [?].
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Fig. 47. Frequency dependence of |χ|2 for the same model as in Fig. 46, for different values of
temperature: (a) T = 0.0065, (b) 0.035, (c) 0.080. After [?].
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Fig. 48. Dependence on temperature T of the susceptibility at the second harmonic (ω = 2Ω)
for the same model as in Fig. 46, for two different frequencies: Ω/ω0 = 0.483 (solid curves) and
Ω/ω0 = 0.415 (dotted curves). The real parts χ′ are shown by (b) and (d), and the imaginary
parts χ′′ by (a) and (c). After [?].
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Fig. 49. Comparison of signal intensities measured for the analog electronic model (for Eq.
(5.2.2)) with susceptibilities calculated from (5.1.4), as a function of temperature T in units
of ω4

0/γ. The measured values (circles and squares) have been scaled by β2A4/(16(ω2
0 − Ω2)4)

with β = 5/3 and A = 0.0176 to facilitate direct comparison with the relevant theoretical
curves from Fig. 46. The pluses also represent calculated susceptibilities, but using in (5.1.4)
fluctuation spectra derived from digital simulations of the dynamics. The frequencies used were
(a) Ω/ω0 = 0.483 and (b) Ω/ω0 = 0.415. After [?].
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Fig. 50. (a) Dependence on temperature T (in units of ω4
0/γ) of the angle φ of the response at the

frequency Ω of the driving force for Ω/ω0 = 0.483 and the reduced field amplitude A = 0.0176
measured for the analogue model of (5.2.2) (solid circles). The results are compared to the
theory (solid line) for φ (see text), to the values of φ obtained from computer simulations of the
spectrum of fluctuations (crosses), and to direct computer simulations of φ for these parameters
(bars). (b) As in (a) but with squares in place of circles, without direct computer simulations,
and with A = 0.0044 i.e. four times smaller than in (a), so that χ ≈ χ(1). After [?].
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Fig. 51. As in Fig. 50(a),(b) but for Ω/ω0 = 0.415 and with squares in place of the circles in
Fig. 50(a). After [?].
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Fig. 52. The Duffing potential U(q) = −q2/2 + q4/4.
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Fig. 53. The asymmetric periodic potential U(q) = sin(q) + 0.3 sin(2q + 0.4). Noise-induced
escapes from the bottom of one of the wells are shown schematically by dashed lines with arrows
labelled + and − for escapes over the right or left barrier respectively.
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Fig. 54. Moduli of the spectral densities |χ̃+(Ω)| (solid curves) and |χ̃−(Ω)|, related to the escape
respectively to the right or to the left from any of the minima of U(q) shown in Fig. 53. The
two pairs of curves related to different values of Γ are indicated. The inset shows (|dω/dE|)−1/2
as a function of energy E. After [?].
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Fig. 55. Stroboscopic (Ωt = 0, 2π, 4π, ...) Poincaré section q̇− q of the noise-free (T = 0) system
(5.3.1) for A = 0.07, Ω = 1.7 as Γ decreases: (a) Γ = 0.07, (b) Γ = 0.025, (c) Γ = 0.005.

Attractors corresponding to q
(1,2)
st are marked by dots and labels 1, 2. Their basins of attraction

are shown by different shades of grey (small black areas in (c) are basins of attraction of period-3
orbits). The mixing of basins is: (a) absent, (b) already significant, (c) well developed. After [?].
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Fig. 56. (a) Ub−E(nd)
m as a function of A (note logarithmic scales) for Ω = 1.7, (b) (Ub−E(nd)

m )/A
as a function of Ω for A = 0.0001, 0.001, and 0.01 (solid, dashed, and dotted lines respectively).

E
(nd)
m is the minimal energy in the chaotic layer in the Poincaré section of the non-dissipative

system (cf. Fig. 57). After [?].
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Fig. 56. (a) Ub − E(nd)
m as a function of A (note logarithmic scales) for � = 1:7, (b) (Ub − E(nd)

m )=A as a function of �
for A = 0:0001, 0:001, and 0:01 (solid, dashed, and dotted lines respectively). E(nd)

m is the minimal energy in the chaotic
layer in the Poincar]e section of the non-dissipative system (cf. Fig. 57). After [84].

Fig. 57. The chaotic layer (black) which provides the inter-well chaotic transport in the non-dissipative noise-free system
(Eq. (5.3.1) with � = 0 and B(t) ≡ 0), for A= 0:01 and (a) � = 1:1, (b) � = 1:2. After [84].

Let us Mrst try to generalize the evaluation of this part [95] corresponding to the case when
the homoclinic tangle and related reduction in the exit energy are absent (described in part A of
Section 5.3.1) for the more general case in which the tangle and reduction may be present. Using
arguments similar to those of [95], �S(r)

a may be described by the formula

�S(r)
a ≈ −| ˜̃?|A; ˜̃? =−

∫ tex

−∞
dt ei�t ˙̃Q(t) ; (5.3.15)

Fig. 57. The chaotic layer (black) which provides the inter-well chaotic transport in the non-dis-
sipative noise-free system (Eq. (5.3.1) with Γ = 0 and ξ(t) ≡ 0), for A = 0.01 and (a) Ω = 1.1,
(b) Ω = 1.2. After [?].
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Fig. 58. −δSa (a) as a function of A for Γ = 0.025, and (b) as a function of Γ−1/2 for A = 0.07;
Ω = 1.7 in both cases. Stars correspond to data extracted from computer simulations of (5.3.1)

(for details of this procedure see footnote 50); dotted lines are theory for −δS(r)
a , based on

the resonant mechanism [?] (see (5.3.4)); solid lines are theory, based on the layer mechanism

(5.3.13), for Ub − Emin. The dashed line in (b) shows Ub − E
(nd)
m , which is our theoretical

non-dissipative asymptote for the solid line. After [?].
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Fig. 59. The universal asymptotic shape of the zero-dispersion peak in the absolute value of the
spectral density of logarithmic susceptibility, |χ̃(Ω)|, presented in dimensionless units. After [?].
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Fig. 60. Absolute values of the spectral densities χ̃(+)(Ω) (solid lines) and χ̃(−)(Ω) (dashed
lines), for escape to the right and to the left respectively, calculated numerically from Eqs.
(5.3.3) and (5.3.4) for the potential shown in Fig. 61(a) while Γ is: (a) Γ = 0.1, (b) Γ = 0.01,
(c) Γ = 0.001. The insets compare the results of numerical calculations based on the exact
equations (5.3.3)–(5.3.4) with the explicit asymptote formula (5.3.28), for the 1st ZD har-
monic; the relevant parameters in (5.3.28) are: Ee = 0.70496 (Em = −1.3413), Ωm = 0.65836,
d2ω(Ee)/dE

2
e = −0.8460, I(Ee) = 2.039, Q̇1(Ee) = 0.7670. After [?].
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Fig. 61. (a) The potential U (q) = sin(q) + 0:45 sin(2q+ 0:4). Note that the potential shown in Fig. 53 di;ers only in the
magnitude of the second harmonic, but the latter is enough for the latter system to lack the zero-dispersion property. (b)
The corresponding dependence of eigenfrequency on energy in between the minimum and maximum of the potential: the
local maximum and minimum of !(E) are indicated by the dashed and dotted lines respectively. After [119].

oscillate between 0 and 2�, and the smaller � is, the faster these oscillations in � become, with
a period ˙ �2. Moreover, if the potential is asymmetric, then the di;erence between U (+) and
U (−) also oscillates; and the smaller �, the faster the oscillations become.

Thus, as � decreases, the situation when the (relatively small) non-ZD contribution is extracted
from the (much larger) ZD one alternates with the situation when the contributions are added to
each other. Moreover, in the asymmetric potential this alternation occurs di;erently for escape to
the left and to the right. So, the direction of the di;usion alternates as well provided that A is still
��. In fact, this conclusion is not restricted to the ZD case but is valid generally: some evidence
in support of it was contained earlier in [95] (see Fig. 54, reproducing Fig. 1 from [95]). But, in
the ZD case, the amplitude of the oscillations of |?̃(+)|− |?̃(−)| may be larger. Indeed, this amplitude
is equal to the doubled contribution from the time range near tns in the ns harmonic, 2|?̃ns |, while
a similar contribution in the non-ZD case dominates in ?̃. Thus the di;erence between |?̃(+)| and
|?̃(−)|, which arises because of the di;erent results of interference with the next (by absolute value)
contribution, is obviously smaller than 2|?̃ns |.

Fig. 61. (a) The potential U(q) = sin(q) + 0.45 sin(2q + 0.4). Note that the potential shown
in Fig. 53 differs only in the magnitude of the second harmonic, but the latter is enough for
the latter system to lack the zero-dispersion property. (b) The corresponding dependence of
eigenfrequency on energy in between the minimum and maximum values of the potential: the
maximum and the minimum of ω(E) are indicated by the dashed and dotted lines respectively.
After [?].
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Fig. 62. The critical value A/Γ at which the homoclinic tangle arises, as given by the asymptotic
formula (5.3.30), for the potential shown in Fig. 61(a), as a function of driving frequency. After
[?].
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Fig. 63. The normalized lowering of the minimal energy in the relevant chaotic layer, i.e. in the
layer which provides unbounded transport in the noise-free (T = 0) non-dissipative (Γ = 0)
system similar to (5.3.1) but with the potential U(q) as in Fig. 61(a) (the corresponding ω(E)
possesses extrema: see Fig. 61(b)), as a function of the amplitude of the driving force, for three
values of the driving frequency. The inset presents on an enlarged scale the range of small A,
where the large jump-wise increase of the lowering occurs for the case Ω = 0.63 ≈ Ωm. After [?].
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Fig. 64. The decrease of activation energies from simulations in the periodic potential system
shown in Fig. 61(a) driven by the periodic force A cos(Ωt) with Ω = 0.63 and friction −Γq̇ with
Γ = 5× 10−4: stars and circles correspond to escape over the barrier respectively to the left or
right of the initial well. The theoretically calculated quantities Ub−Em for the layers related to
all attractors situated to the left/right from the barrier to the left/right from an initial well are

shown by the dotted/dashed line. The non-dissipative approximation, Ub − E(nd)
m , is shown by

the solid line. After [?].
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Fig. 65. Most probable escape paths (MPEPs), calculated as projections onto the plane of
mechanical action I and slow angle ψ̃ of the proper solutions of Eqs. (5.4.13)–(5.4.15), with
H given by (5.4.2); ω(I) and q1(I) are respectively the eigenfrequency and modulus of the
first Fourier harmonic of the coordinate (see (A.5)) as functions of I for the tilted Duffing
oscillator as in Fig. 21, and h and ωf are respectively amplitude and frequency of the driving
force as in Fig. 21(b); Γ = 0.011 as in Fig. 21. The foci and saddles are indicated by dots
and labels f1, f2 and s1, s2 respectively. The boundaries of the basins of attraction are shown
by the thick solid lines while the noise-free paths emanating from the saddles are shown in
the main figure by the thin solid lines. For escape from a single basin of attraction, and for a
transition to the basin of attraction of a neighbouring attractor, the initial and final conditions
were specified as the corresponding focus and saddle respectively: see (5.4.9) and (5.4.16). The
paths [f1 → s1], and [f2 → s1] [f2 → s2] are shown in the main figure by the bold-dashed,
dotted, and dash-dotted lines respectively; the action S along them (i.e. the activation energy

(5.4.7)) is respectively S
(12)
min = 0.00293, S

(21)
min = 0.0118 and S

(23)
min = 0.01. The MPEP from the

inner nonlinear resonance beyond the nonlinear resonance area as a whole (i.e. from f1 beyond
the outer thick solid line) is shown by the bold-dashed line and consists of two distinct sections,
the first of which coincides with [f1 → s1], while the second [s1 → s2] connects the saddles
by the projection of a smooth solution of Eqs. (5.4.13)–(5.4.15) such as to avoid intersections
with itself and with the noise-free path [s1 → f2] and with the MPEP [f2 → s2]; the activation

energy is S
(13)
min = 0.007. The upper inset shows a few direct, i.e. avoiding a relaxation into the

close vicinity of f2, first-passage paths (jagged lines) from f1 to the boundary of the nonlinear
resonance area as a whole, derived sequentially (i.e. not selected from a larger group of direct
first-passage paths) by digital simulation of Eq. (5.4.2) with noise f(t) defined in (5.4.1) of
intensity D = 0.00035: the paths concentrate nicely near the theoretical MPEP [f1 → s1 → s2]
(dashed line). The lower inset shows two “edge” smooth paths i.e. projections of such smooth
solutions of Eqs. (5.4.13)–(5.4.15) whose projections emanate from f1 while ending on the outer
boundary as close to the saddle s2 as possible: the black thin solid and dash-dotted lines show
the right and left edge paths respectively; the noise-free path [s1 → f2] and the MPEP [f2 → s2]
are shown by the grey solid and dash-dotted lines respectively. Note that actions along the right
and left edge paths are 0.0376 and 0.173 respectively, which are much larger than that along the
true MPEP [f1 → s1 → s2] (which possesses a cusp in s1), so that their role in relation to real
escapes is negligible (cf. the upper inset). After [?].
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Fig. 66. An example evolution of the spectral density of fluctuations (SDF) of coordinate Qq(ω),
for the periodically driven TDO (with parameters, friction and the driving amplitude as in Fig.
21) subjected to additive white noise (cf. Eq. (5.2.2)), as the driving frequency ωf increases,
measured for an analogue electronic model for three values of ωf . The Stokes and anti-Stokes
peaks (arising from slow oscillations in nonlinear resonances) lie immediately to the right and
left, respectively, of the sharp spectral peak at the driving frequency; the broad peak on the far
right arises from fluctuations about linear response. The normalisation of the ordinate axis is
arbitrary. After [?].
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Fig. 67. A schematic plot of energy levels in a nonlinear oscillator: the distance in energy between
adjacent levels, En+1−En, with high n (quasi-classical levels) is approximately equal to h̄ω(En)
where ω(En) is the frequency of a classical eigenoscillation of energy En. After [?].
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Fig. 68. Parts (a)–(c) of the figure show the schematic evolution of an absorption spectrum near
the extremal eigenfrequency ωm as the interaction with the thermostat increases: the formation
of the ZDP is associated with a transformation from the quantum spectrum to the classical one
in the vicinity of ωm. The major features of the evolution depend on the only parameter, namely
a ≡ ΓTEm/(|ω′′|(h̄ω(Em))4). After [?].

210



Fig. 69. The average distribution of the population as a single initially populated level (indicated
by the dot on the abscissa axis) varies: (a) m(τ = 0) = 16, (b) 12, (c) 8, (d) 4, (e) 0. The
amplitudes Am were simulated by Eqs. (6.2.6) with V = 5 × 10−2, µ = 10−3, ν = 10−3 and
Am(τ = 0) = δmm(0). The quantity 〈|Am(τ)|2〉 is calculated on long time-scales, after the steady
regime has been formed, by averaging |Am|2 over a time T = 720 that is equal to the period 2τr
of the phase oscillations. After [?].
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