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ABSTRACT 

Food systems physical properties and stability are critical for delivering safe and 

healthy food to the consumers, and thus this is a theme that attracts food scientists for a long 

time. Recently, literature suggests that stability can only be fully grasped if food molecular 

dynamics and structure are taken into consideration, i.e. an appropriate understanding of the 

behaviour of food products requires knowledge of its composition, structure and molecular 

dynamics, through the three-dimensional arrangement of the various structural elements and 

their interactions.  

Food systems behaviour is strongly dependent on the water molecular dynamics. 

Understanding changes in water location and mobility represents a significant step in food 

stability knowledge, once that water “availability” profoundly affects the chemical, physical and 

microbiological quality of foods.  

Nuclear magnetic resonance (NMR), through the analysis of nuclear magnetisation 

relaxation times, has been presented as a powerful technique to investigate water dynamics 

and physical structures of foods. It provides information on molecular dynamics of different 

components in complex systems. The application of this technique may be very useful in 

predicting food systems physicochemical changes, namely texture, viscosity or water 

migration. 

The research leading to this thesis focused on two main food systems: i) films from 

biological sources, for their interest as model matrices and potential for food industry; and ii) 

fresh-cut fruit, due to its complexity and significance in food markets.  

Films from biological sources, particularly chitosan, present several applications 

including biodegradable packaging and edible coatings for shelf-life extension. As model food 

systems, films from biological sources are partially crystalline, partially amorphous, and easily 

reproducible materials. From a fundamental perspective, foods are mainly edible and 

digestible biopolymers that are also partially crystalline/partially amorphous. Despite of the 

wealth of information on literature, a systematic approach to understand the contribution of film 

forming solutions (FFS) on chitosan films physical properties, as well as the knowledge on its 

molecular dynamics to such properties, are still uncommon. In this thesis, the relevance of 

FFS composition on films properties is highlighted through the monitoring of solutions with 

different polymer/plasticiser ratios. Also the molecular dynamics, evaluated through NMR 

methodology, was analysed and compared with the films physical properties. Results 

demonstrated the influence of solutions polymer/plasticiser concentrations on both thermo-

mechanical and water related properties. Chitosan concentration in solutions affected 

consistency coefficient, and this was related with differences in films water retention and 

structure. Plasticiser quantities used in FFS are responsible for films compositions, while 

polymer/plasticiser ratio determined the thickness and thus the structure of the films. NMR 

allows understanding the films molecular rearrangement, demonstrating that water is also an 
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important component in these matrices and performs differently when compared with the 

plasticiser. A relationship between water and plasticiser dynamics and films macroscopic 

properties was also observed. 

Fruits are high water content products with a complex cellular structure, where water 

can be present in both intra and extra cellular spaces. Fresh-cut fruit, due to processing, has 

high metabolic rates with faster physiological and biochemical changes and microbial 

degradation, which results in product’s colour and texture alterations. The second part of this 

thesis focused on fresh-cut fruits, pear and melon, which were chosen for their significantly 

different composition and structure. Fresh-cut fruit was monitored during 7 days of refrigerated 

storage conditions. Relevant quality parameters, such as colour and firmness, were analysed. 

Water activity (aw) and water molecular dynamics (T2), measured by a NMR technique, were 

also assessed throughout storage. Results demonstrated that processing and storage affected 

quality parameters, as was expected, but also system’s water molecular dynamics. 

Throughout storage, it was possible to find relationships between the molecular dynamics and 

the quality parameters. These relationships were different for the two studied fruits, and the 

role of microstructure on food stability could be observed. 

These studies highlight the significance and impact of molecular dynamics on physical 

properties and stability of foods, and also the usefulness of NMR methodology as a tool to 

evaluate food physical properties and stability. Therefore, NMR could provide a novel 

instrument to improve the knowledge of food systems, even when complex. 
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RESUMO 

 O controlo das propriedades físicas e da estabilidade dos alimentos é requisito 

essencial para o fornecimento de produtos seguros e saudáveis aos consumidores. Por este 

motivo, desde há muito tempo que o tema tem despertado a atenção e a curiosidade dos 

cientistas que trabalham na área alimentar. 

 A literatura tem vindo a sugerir que as propriedades físicas e a estabilidade só podem 

ser plenamente compreendidas se a dinâmica molecular e a estrutura dos alimentos for tida 

em consideração; ou seja, é necessário um conhecimento da composição, da estrutura e da 

dinâmica molecular dos sistemas alimentares, entendendo o arranjo tridimensional dos vários 

elementos estruturais e das suas interacções.  

 No caso particular dos alimentos, a dinâmica molecular da água desempenha um 

papel fundamental no seu comportamento. A “disponibilidade” da água influencia 

profundamente a qualidade química, física e microbiológica dos sistemas alimentares. A 

compreensão das alterações na localização e mobilidade da água do sistema representa um 

passo significativo no conhecimento dos mecanismos que estão associados às reacções de 

degradação dos alimentos. 

 A ressonância magnética nuclear (RMN), através da análise dos tempos de relaxação 

da magnetização nuclear, tem sido considerada uma poderosa técnica para investigar a 

dinâmica da água e avaliar estruturas físicas em sistemas complexos como os alimentos. A 

aplicação desta técnica pode ser muito útil na previsão de alterações físico-químicas como a 

textura, a viscosidade ou a migração da água na matriz. 

 Esta tese considerou dois sistemas alimentares distintos: (i) filmes de origem 

biológica, pelo seu interesse como matrizes modelo e potencial para a indústria alimentar; e 

(ii) fruta minimamente processada, pela sua complexidade e reconhecida importância 

económica nos mercados de alimentos. 

 Os filmes com origem biológica, neste caso específico provenientes do quitosano, 

possuem várias aplicações industriais como é o caso das embalagens ou revestimentos 

comestíveis, que têm como objectivo prolongar a vida útil dos produtos. Como modelo para 

sistemas alimentares mais complexos têm as vantagens de: serem facilmente reprodutíveis; e 

tal como os alimentos, de um ponto de vista fundamental podem ser considerados 

biopolímeros comestíveis parcialmente cristalinos, e parcialmente amorfos. Apesar da vasta 

informação que existe na literatura sobre as propriedades físicas dos filmes de quitosano, 

uma abordagem sistemática para a identificação da contribuição das soluções formadoras do 

filme, assim como a influência da dinâmica molecular nessas propriedades, revela-se ainda 

necessária. Nesta tese, a importância da composição das soluções formadoras nas 

propriedades dos filmes é realçada através da monitorização de soluções formadoras com 

diferentes proporções polímero/plasticizante. A importância destas soluções foi avaliada 
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também nas alterações das propriedades termomecânicas dos filmes assim como a sua 

influência na dinâmica molecular dos mesmos (através de técnicas de RMN).  

 Os resultados demonstram que a composição das soluções formadoras influenciou as 

propriedades mecânicas e térmicas dos filmes, bem como as propriedades relacionadas com 

a água (atividade, solubilidade, permeabilidade e a dinâmica molecular). A concentração de 

quitosano afetou o coeficiente de consistência das soluções formadoras, o que pode ser 

relacionado com diferenças na estrutura e na retenção de água dos filmes. Por outro lado, a 

quantidade de plasticizante usado na preparação das soluções formadoras é responsável 

pela composição dos filmes, enquanto a razão polímero/plasticizante determinou a espessura, 

logo a estrutura dos filmes. Através dos estudos de RMN foi possível compreender o rearranjo 

molecular dos filmes, demonstrando o papel importante que a água, como componente, 

desempenha neste tipo de matrizes, revelando diferenças de comportamento entre esta e o 

plasticizante. Estes resultados revelaram ainda que existe uma relação entre a dinâmica 

molecular quer da água quer do plasticizante nos filmes com as propriedades macroscópicas 

dos mesmos. 

 As frutas são alimentos com uma estrutura celular muito complexa, ricos em água que 

pode estar presente quer nos espaços intracelulares, quer nos extracelulares. As frutas, 

minimamente processadas, devido ao ferimento a que são sujeitas, tem altas taxas 

metabólicas que provocam rápidas alterações fisiológicas, bioquímicas e de degradação 

microbianas, resultando, por exemplo, em perda de cor e textura. A segunda parte desta tese 

dedica-se ao estudo de pêra e melão minimamente processados. Estas frutas são muito 

diferentes no que diz respeito à estrutura. As amostras foram estudadas durante 7 dias de 

armazenamento em condições de refrigeração. Foram avaliados alguns dos parâmetros de 

qualidade mais relevantes, como é o caso da cor e da textura. A atividade da água (aw) e a 

dinâmica molecular da água (T2), analisada através de uma técnica de RMN, foram também 

monitorizadas durante o tempo de armazenamento. Os resultados mostram que quer o 

processamento quer o tempo de armazenamento afetaram os parâmetros de qualidade, bem 

como a dinâmica da água nos sistemas. Observou-se ainda uma relação entre os parâmetros 

de qualidade e os valores da dinâmica da água. Esta relação foi diferente para os dois frutos 

estudados, realçando o papel da estrutura na estabilidade dos alimentos. 

 Nesta tese evidencia-se o interesse e a utilidade dos estudos de dinâmica molecular, 

utilizando a técnica de RMN como ferramenta na avaliação das propriedades físicas e da 

estabilidade de sistemas alimentares e complexos. 
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SCOPE AND OUTLINE 

Food physical properties are critical for product and process design, safety and 

sensorial attributes and contribute to food stability. Stability is a critical parameter for 

both consumers and industry. Concerning consumers, it assures safety, nutritional 

and sensorial quality of food products. For industry, stability allows maximising shelf-

life: minimising waste along the distribution chain, increasing profit and reducing the 

environmental impact. 

For a long time scientists believed that aw was the determinant parameter in 

food stability and physical properties. This concept was challenged with the 

revolutionary approach to the study of food systems using the glass transition 

concept. Recently, scientific research suggests that water molecular dynamics is a 

fundamental approach to fully attain food physical properties and stability. Food water 

content, location and interactions with other components are critical in microbial 

growth, degradation reactions and sensorial aspects. 

This dissertation aims to contribute at clarifying the influence of systems 

molecular dynamics, with particular relevance on water molecular dynamics. Thus, 

this project addresses studies on matrices with different complexities, i.e. films from 

biological sources, and fruits as more complex high water content products. Micro and 

macroscopic behaviour will be analysed, by means of assessing texture, dynamic 

linear viscoelastic behaviour and thermodynamic transitions. Molecular mobility will be 

evaluated by means of NMR. 

 

 

Outline of dissertation structure 

This dissertation is divided into 4 main parts, each with a variable number of 

chapters. Figure 0.1 presents schematically the dissertation structure, illustrating the 

relationships between each subject. 
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Figure 0.1 Schematic structure of the dissertation. 
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Part I, the introductory section, is composed by chapter 1 dedicated to a 

review of the critical factors affecting the physical properties and stability of food 

systems, identifying water as a critical component, considered as the main factor in 

systems dynamics.  

 

In Part II, studies on the relationship between composition, microstructure, 

functional properties and molecular dynamics of simple food matrices were 

developed. This part was divided into 3 chapters. Films from biological sources were 

chosen, in particular chitosan films. Chitosan, a natural polysaccharide obtained by 

deacetylation of chitin, is an excellent edible film component due to its film-forming 

capacity, good mechanical and barrier properties and antimicrobial activity. Physical 

behaviour is vital for proper film functionality and is also critical for product and 

process design. Critical physical properties are water, gas and other molecules 

diffusion through the film and thermal-mechanical properties. Studies on the 

formulation and processing effects on chitosan films physical behaviour have been 

long presented in the literature. However, results on molecular mobility in films are 

less common. The novelty of this work is that gathering such data was carried using a 

systematic approach, linking physical properties with NMR results on molecular 

mobility. In chapter 2, the FFS polymer/plasticisant ratio was analysed in order to 

describe its effect on films properties. In both chapters 3 and 4, data on molecular 

mobility of the films, previously characterised, was measured, by means of NMR. 

Water related properties, in chapter 3, and physical properties, in chapter 4, were 

compared with the molecular dynamics measurements. 

 

Part III is dedicated to the study of fresh-cut fruit, along refrigerated storage 

time. Fruits are high water content products. Due to their cellular structure, water can 

be presented in both intra and extra cellular spaces. This influences the water 
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dynamics. Specifically, fresh-cut fruits are interesting matrices for these studies, since 

it is well known that fruits processing promotes a faster physiological deterioration, 

biochemical changes and microbial degradation, which may result in degradation of 

overall perceived quality. The observed chemical and physical changes could 

certainly be clarified by systems molecular dynamics and structure alterations, and 

monitoring with the support of NMR techniques. The purpose of this part of the thesis 

was to relate, for fresh-cut melon and pear, NMR parameters with some of the most 

important quality parameters, i.e. colour, softening rate and aw. Chapter 5 - section A 

focuses on fresh-cut melon, while chapter 5 - section B is about fresh-cut pear. Melon 

and pear represent important segments in the world of fruit market. However, the 

biochemical bases for colour and firmness changes, for example, are completely 

different, as well as their structures. 

 

Finally, conclusions and suggestions for further work, based on critical 

questions arising from this dissertation, are presented in chapter 6 (Part IV). 
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1.1. Overall molecular dynamics concept 

 Molecular dynamics has been pointed as the actual most promising parameter 

for characterising multi-component systems. Analysis of systems at a molecular scale 

has been demonstrated to be an useful methodology for investigating complex 

geometries and molecules, as well as study structural and dynamic properties (Wang 

and Liapis, 2012). 

 Molecular dynamics involves, at a microscopic level, the displacement of 

reactants towards with other within the food matrix, which promote chemical reactions. 

Macroscopically, molecular dynamics can be related to the viscosity of the material, 

which in turn controls the flow properties, structure collapse, mechanical properties, 

and thus the product texture (Roudaut et al., 2004).  

 It is generally accepted that the knowledge of molecular dynamics is 

determinant for assessing physico-chemical and microbiological stability of food 

systems (Lin et al., 2006; Roudaut et al., 2004), and is quite dependent on 

composition and matrices microstructure.  

 Food stability is a critical parameter for different stakeholders. Concerning 

consumers, stability assures safety, nutritional and sensorial quality of food products 

and answers to the increasing demand for a diversity of ready-to-eat food with fresh 

appearance and health-promoting properties (Olsen et al., 2010). For industry, 

stability allows maximizing shelf-life: minimising waste along the distribution chain, 

increasing profit, and reducing the environmental impact (Labuza et al., 1972; 

Rahman, 2006, 2010; Ubbink and Kruger, 2006).  

 Food physical stability is assessed by shelf-life changes of mechanical, 

thermal, or surface properties, which are often related with food product’s quality, 

processing behaviour or development of novel food products and processes (Berk, 

2013; Lewicki, 2004). Physicall state is directly affected and responsible for the 

molecular dynamics of a matrix (Ludescher et al., 2001; Quintas et al., 2010). 
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 It is possible to observe in Figure 1.1 a simplified scheme of how molecular 

dynamics covers several concepts related to food properties and stability, being a key 

and linking factor between all aspects involved in food systems assessment, including 

food structure/microstructure. The better understanding of these factors and 

relationship between them are essential for controlling degradation reaction rates and 

maintaining food integrity (Rahman, 2006). 

 

 

Figure 1.1 Schematic representation of molecular dynamics as a key factor for food physical 

properties and stability assessment. 

 

 Food systems are complex mixtures of water, biopolymers (proteins and 

polysaccharides), low-molecular weight ingredients (minerals, sugars, surfactants, 

etc.), and colloid particles (oil droplets or air bubbles). The molecular dynamics 

between these different components reflects on the stability of such systems, 

determining the physical state, microstructure and composition, which impacts on food 

characteristics (Roos, 1995). Water, as one of the most important food constituents 
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and its interactions with other food ingredients, controls both thermodynamic and 

dynamic properties of all aqueous elements (Roudaut et al., 2004). These interactions 

affect mainly appearance and sensory attributes (texture/firmness) (Palzer, 2010; 

Toivonen and Brummel, 2008; Watada and Qi, 1999), nutrient quality (Watada and Qi, 

1999), and the microbiological load (Kou et al., 1999). The extensions of the reactions 

between food constituents, usually associated with metabolic processes, are 

responsible for the degradation of quality, safety and nutritional attributes.  

Although molecular dynamics has been considered an useful methodology for 

investigating complex systems (geometries and molecules) (Wang and Liapis, 2012) 

and the degradation reactions extension, a high number of studies have been focused 

on chemically pure or homogeneous materials, such as proteins or polysaccharides, 

instead of food systems. The data for “pure and simple” systems cannot be 

extrapolated when considering food systems, since it is necessary to take into 

account the heterogeneity of the systems, as well as their interactions with water 

(Roudaut et al., 2004). Moreover, it is important to consider the system’s 

microstructure, to understand the spatial and molecular distribution of water within its 

food matrix environment and determine if water is already bound or free for metabolic 

reactions. 

 

 

1.2. Aspects of water molecular dynamics 

Water is the most important solvent, dispersion medium and plasticiser in 

biological and food systems (Matveeva et al., 2000). It affects reactions, can be a 

substrate and a product of reactions, and is involved in nutrient transport and 

dissolution of salts and other solutes. It establishes pH, acts as a polymer plasticiser 

and modulates viscosity, osmotic pressure, etc. (Vittadini et al., 2005). Specifically, 
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the state of water in food influences physical properties, such as rheological, 

electrical, optical, thermal or mass transfer (Lewicki, 2004). 

For long, water has been considered as one of the most important food 

components in impacting food physicochemical and microbiological attributes, shelf-

life and deteriorative changes (Hills et al., 1996a; Labuza, 1977; Labuza et al., 1972; 

Lewicki, 2004; Mathlouthi, 2001; Pittia and Sacchetti, 2008; Rahman, 2010; Sablani et 

al., 2007; Slade and Levine, 1991). Therefore, determination of water content is one 

of the most frequent analyses in the food industry laboratories (Mathlouthi, 2001). 

Water content of food systems normally ranges from 80-95%, for high moisture foods, 

to a percentage close to zero in semi-dry and dry foods (Anese et al., 1996; Pittia and 

Sacchetti, 2008). However, various foods with the same water content differ in stability 

(Kou et al., 1999), which demonstrates that the sole value of “water content” in a food 

does not inform about the nature of water (Fennema, 1996; Kou et al., 1999; 

Mathlouthi, 2001). In fact, in a food matrix, water molecules can be “bound” to other 

constituents or “free” to participate in degradation reactions (Mathlouthi, 2001).  

The knowledge of each of these fractions is important, specifically because 

available water, its location, and the interactions with the other food components (like 

proteins and polysaccharides) are responsible for the physicochemical and 

microbiological properties and stability of foods (Matveeva et al., 2000; Sablani et al., 

2007). As such, besides water content in a food material, it is important to understand 

the water state and dynamics for a proper comprehension of properties and stability of 

food products. 

Water mobility/dynamics can thus be described as a manifesto of how “freely” 

water molecules can participate in reactions or how easily water molecules diffuse to 

the reaction sites to participate in reactions (Ruan and Chen, 1998). Presence of 

molecules of different molecular weight and solubility in water can have a profound 

influence on water mobility/dynamics, as this is dependent on the physicochemical 
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properties of other nonaqueous food constituents and their interactions with water and 

among themselves (Ruan and Chen, 1998; Vittadini et al., 2003). 

Different parameters have been used in the literature to describe water 

dynamics in the food systems and its repercussion in stability: like water activity (aw), 

glass transition temperature (Tg) or water relaxation time (T2). These concepts are 

detailed in the next sub-sections.  

 

 1.2.1. Water activity concept and shortcomings 

Water activity concept was introduced in middle of 20th century as a critical 

parameter for estimating food stability (Rahman, 2010), and has been one of the most 

widely used to determine food’s water availability (Kou et al., 1999). For a long time, 

aw was regarded as the most important parameter controlling the behaviour of foods 

during processing and storage, with particular emphasis on its effects on reaction 

degradation rates (Anese et al., 1996; Labuza, 1977; Maltini et al., 2003; Sablani et 

al., 2007). This parameter has been used thoroughly as the indicator  for microbial 

growth and microbial stability of a food system (Vittadini and Chinachoti, 2003). Also, 

with respect to most of degradation reactions of a chemical, enzymatic, or physical 

nature, such as lipid oxidation, non-enzymatic and enzymatic activities, and the 

texture/mouthfeel of foods following production, water activity is currently used as an 

important parameter (Maltini et al., 2003; Sablani et al., 2007; Slade and Levine, 

1991). 

Despite of the irrefutable significance of aw for food science and engineering, 

the limitations of this analysis are, actually, evident. Water activity is a thermodynamic 

measure of the chemical potential of water in the system, assuming that food is in 

equilibrium with the surrounding atmosphere (Lewicki, 2004). However, it is well 

known that most foods are not in the state of equilibrium (Hills et al., 1996a; Rahman, 

2006). Water activity measurements may not provide, for example, the relationship of 
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the evolution of the structural changes of the food material with the changes of the 

water-macromolecules and water-water interactions that occur during food shelf-life 

(Wang and Liapis, 2012). Studies have stressed that under many common 

circumstances, the thermodynamics activity of water is far less relevant to processing 

and storage than structure-related properties, which can restrict the mobility and 

diffusion of the reactants (Anese et al., 1996; Slade and Levine, 1991).  

Moreover, the aw analysis does not consider microstructure nor the possibility 

that there may be local regions differing in water content and presumably in water 

availability (Hills et al., 1996a). This can be important for microbiological stability, 

since some authors (Hills et al., 1996b; Hills et al., 1997; Vittadini et al., 2005) 

demonstrated that microorganisms are sensitive to the local properties of the system, 

i.e. local water activity, translational motions and microstructure, and not to the bulk 

water activity. Some authors also showed that microbial response in a solution is 

more dependent on the solute used to control aw values than on aw itself (Chirife and 

Buera, 1994; Vittadini and Chinachoti, 2003), showing the importance of solute 

interaction. Water activity defined as a relative vapour pressure, reflects only the 

surface properties of a system and not necessarily the molecular dynamics that takes 

place in its interior (Vittadini et al., 2005). Furthermore, it has been reported that 

solutions with the same water activity can present dramatic differences in the system’s 

“kinetics” (here assessed by viscosity) (Anese et al., 1996; Maltini et al., 2003) (see 

Figure 1.2). 
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Figure 1.2 Viscosity versus water activity (aw) of model solutions produced with different 

solutes (Anese et al., 1996). 

 

 1.2.2. Glass transition temperature 

The glass transition temperature (Tg) was introduced in the early 1980’s aiming 

at finding a new parameter that would be able to assess food stability and overcome 

the limitations of aw. This concept has been extensively applied, giving way to a new 

important area of research and application: food material science (Angel, 1996; 

Rahman, 2006; Roos, 1995; Slade and Levine, 1995). Essentially, this approach 

“simplifies” the foods as partially crystalline partially amorphous materials. The 

amorphous part is in a metastable state, which is very sensitive to changes in 

moisture content and temperature. Such amorphous matrix may exist either as a very 

viscous glass or a more liquid-like “rubbery” amorphous structure. The characteristic 

temperature, Tg, at which the glass-rubber transition occurs, is the physicochemical 

parameter that is nowadays a basis for product properties, stability and safety of foods 

(Chirife and Buera, 1995; Roos, 1998; Slade and Levine, 1991) (Figure 1.3).  
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Figure 1.3 Representation of glass transition temperature (Tg) effects on structural 

transformation and diffusion-controlled changes in biological food systems (Roos, 1998). 

 

The transition observed at Tg is a second order thermodynamics transition, in 

which the material undergoes a change in state but not in phase (Rahman, 2006), and  

is dependent on both composition and solid content of a material (Ferry, 1980). Tg 

greatly influences food stability, as the water in the concentrated phase becomes 

kinetically immobilised and therefore does not support or participate in reactions 

(Rahman, 2006; Slade and Levine, 1991). Below Tg, the food is expected to be stable; 

and above this temperature the difference (T- Tg) between Tg and the storage 

temperature T, is assumed to control the rate of physical, chemical and biological 

changes. As discussed already, these physical and chemical reactions, which are 

dependent on the diffusion of reactant molecules would be quite slow in the 

supercooled liquid or rubber, in the vicinity of the Tg, and kinetically controlled by 

mobility or viscosity (Champion et al., 2000). 

Tg is therefore a very promising and innovative concept for food science, and 

is considered as a future challenge when associated with other food mechanisms 

(Rahman, 2006). Despite of this, experimental evidences demonstrate some fragility 
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(Chirife and Buera, 1994; Hills et al., 1996c; Lin et al., 2006; Vittadini et al., 2003). Tg 

considers mobility at a macromolecular level and, therefore, is a parameter descriptive 

of the physical state and overall mobility of macromolecules, which differs from the 

molecular mobility of smaller molecules such as water (Lin et al., 2006; Vittadini et al., 

2005). 

Moreover, some experimental evidence does not support a clear correlation 

between Tg and microbial activity (Chirife and Buera, 1994; Vittadini et al., 2003). 

Similarly, many investigations demonstrate that glass transition alone cannot explain 

enzymatic and nonenzymatic activities below Tg. In some cases, reactions occur 

slower in the rubbery state than in the glassy state (e.g. ascorbic acid oxidation, 

because the structural collapse in the rubbery state does not allow O2 diffusion 

through the system, which results in slower ascorbic acid degradation rates) (Lin et 

al., 2006). 

Moreover, Tg is not as easy to measure as, for example, water activity, and 

may not be a representative parameter in multicomponent, multidomain complex 

foods (Maltini et al., 2003). 

 

 1.2.3. Water proton relaxation time and NMR as a powerful technique for 

 assessing proton relaxation time  

 Biological systems, and particularly foods, consist largely of water and 

macromolecules, both rich in protons. Proton relaxation time (T2) is a characteristic of 

proton dynamics/mobility (Champion et al., 2000), and is a function of physical and 

chemical characteristics of individual chemical compounds, as well as interactions 

among them (Marcone et al., 2013; Ruan and Chen, 1998). Water protons are one of 

the most important contributors to the proton relaxation in biological systems, and the 

interactions between water and macromolecules is the most important factor affecting 

proton relaxation process (Ruan and Chen, 1998). 
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Nuclear magnetic resonance (NMR) spectroscopy is one of the most common 

investigated techniques used to evaluate systems molecular dynamics, by identifying 

molecular structures and evaluating the progress of chemical reactions (Marcone et 

al., 2013). This technique provides information on different food components, that are 

considered as dense complex systems (Domjan et al., 2009; Hills et al., 1991; Ruan 

and Chen, 1998), both in solution and solid state (Claridge, 2009; Keeler, 2002; Yan 

et al., 1996). It also allows to study independently the dynamics of water and food 

solids (Kou et al., 1999). 

Water dynamics/mobility can be analysed by NMR, through proton (1H), 

deuterium (2H) and oxygen-17 (17O) (Vittadini et al., 2003). 1H NMR, as the most used 

NMR technique, has been used to investigate water dynamics and physical structures 

thought analysis of proton nuclear magnetisation relaxation times (Li et al., 2000). 

Many researchers have found that the mobility of water, as measured by NMR, is 

related to the dynamics and “availability” of water in complex system (Hills et al., 

1991; Ruan and Chen, 1998), i.e. the higher mobility of water, the higher the 

availability of water and very mobile water molecules take a long time to reach their 

equilibrium state, or relax very slowly, thus having a small relaxation rate or long 

relaxation time (Ruan and Chen, 1998).  

In these measurements the samples are submitted to a static magnetic field 

and the protons are excited by means of a radiofrequency pulse. The analysis of the 

signal emitted while the samples return to equilibrium (FID) allows determining the 

spin-lattice (T1) and spin-spin (T2) relaxation. This later variable is related with the 

mobility of the protons in the sample matrix.  

For example, in plant tissues different compartments can be discriminated, 

where water molecules or protons are in exchange. These exchange rates between 

compartments are controlled by the proton permeability of the membranes separating 
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the compartments, and/or by the diffusion process by which water molecules reach 

the membranes (Snaar and Van As, 1992). 

NMR can be applied in complex food systems to do quantitative and 

conformational analysis (nutritional or functional aspects), quality control of packaging 

materials, process control (Marcone et al., 2013), and also to evaluate food quality 

during storage period. In the last case, the degradation changes that occur along 

storage promote changes both in water and solutes bounding and structure, which 

results in differences in NMR properties of the food (Ludescher et al., 2001; Ruan and 

Chen, 1998). 

Literature reports diverse studies applying this technique to different foods and 

with different purposes. Some examples are discussed below (section 1.4). 

 

 

1.3. Food structure/microstructure 

Food “matrices” (systems) physical behaviour and stability depend strongly on 

their molecular mobility, but also on microstructure. Food microstructure recognises 

that foods are highly structured and heterogeneous materials, composed of 

architectural elements. The types of such structural units and their interactions are 

decisive in the food physical behaviour and functional properties, such as texture or 

sensorial attributes, and also physical and chemical stability during storage. They 

influence the water/solute interactions and hence the water availability to participate in 

microbial growth and degradation reactions (Aguilera, 2000). In fact, these 

intermolecular interactions in which the water molecules play a very important role, 

can determine the structure of the food material at the beginning of a given process 

and during processing (Wang and Liapis, 2012). 
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Also, the effective water diffusivity in foods, as well as free water content, 

highly depends on pore structure or particle size distribution (Peppas and Brannon-

Peppas, 1994; Pittia and Sacchetti, 2008; Xiong et al., 1992).  

In addition to water, other structural elements can be identified in foods, such 

as oil droplets, gas cells, fat crystals, strands, granules, micelles, and interfaces 

(Aguilera, 2000). These structural elements, composed of proteins, carbohydrates, 

and lipids (in various combinations and proportions), can exist in different states 

(glassy/rubbery/crystalline) even at uniform temperatures and water activity. This 

structural heterogeneity will necessarily affect the molecular dynamics in the system 

and consequently the macroscopic food quality attributes (Ludescher et al., 2001) and 

their behaviour along storage.  

Designing the food structure during processing can also affect its behaviour 

during shelf life. For example, physically separating the reactants in microstructural 

locations can control the biochemical activity by avoiding the reactants to be in 

contact, thus minimizing the development of off-flavours and browning reactions 

(Aguilera, 2000). Food microstructure can also be altered by controlling various 

intermolecular and inter particle interactions among the different ingredients during 

processing and storage (Lesmes and McClements, 2009). Engineering structures 

requires knowledge on the molecular organisation of the ingredients (short and long 

range molecule assemblies) and physical properties, such as charge density, 

hydrophobicity, molecular size and conformation under different environmental 

conditions (Scholten et al., 2014). The expression “structure-function”, nowadays 

widely used, describes basically the way in which physicochemical and functional 

properties of foods are related with their structure (Aguilera et al., 2000). 
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1.4. Practical applications of NMR to assess molecular dynamics and structure 

As previously referred, molecular mobility/dynamics has been identified as one 

of the actual most promising parameters for assessing physicochemical properties in 

multi-component systems. This fact justifies the significant number and type of 

experimental works performed in food systems. This section briefly discusses 

examples of 1H NMR practical applications on food systems, considering matrices of 

different complexities. 

 

 1.4.1. Edible films as food systems models 

Edible films have been studied for a long time for their potential to improve 

shelf-life and safety of food products (Aider, 2010; Epure et al., 2011). The literature is 

extensive in characterisation of such materials, and particularly in reporting the thermo 

mechanical behaviour and barrier properties of glassy biopolymers and polymers 

(Butler et al., 1996; Lazaridou and Biliaderis, 2002). These systems are partially 

crystalline/partially amorphous and easily reproducible materials. From a fundamental 

perspective, foods are mainly edible and digestible biopolymers that are partially 

crystalline/partially amorphous (Wang and Liapis, 2012), and thus edible films can be 

very interesting food model systems for mobility and microstructure studies. Also, in 

these films, water is one of the most important components, i.e. is used significantly 

as a plasticiser, creating hydrogen bonds with the polymeric chains present in the 

system and influencing its physical properties, e.g. relaxation (Hasegawa et al., 1992).  

However, it is evident the lack of systematic information about the relationship 

between the effect of films composition on the microstructure and molecular dynamics 

of polymeric systems behaviour. A few published papers take advantage of these 

techniques. 1H NMR has been used to characterise starch-chitosan films with different 

levels of glycerol (Liu et al., 2013). This technique proved to be useful in clarifying the 

interactions between films components. It was showed that the addition of glycerol 
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promoted the interactions among chitosan, starch and glycerol through hydrogen 

bonding. The stronger glycerol/starch/chitosan interactions in samples containing 

higher glycerol concentration were confirmed by an observed decrease of glycerol 

mobility. 1H NMR experiments have also allowed understanding the differences on 

ascorbic acid stability observed in different films (León et al., 2008). This study proved 

that the water dynamics influences the ascorbic acid stability and recognises which of 

the compounds added to film forming solutions (e.g. calcium) interacted with this 

dynamics. 

 

1.4.2. Real food matrices 

Fruits are high water content products with a complex cellular structure, where 

water can be present in both intra and extra cellular spaces. The general fruit 

constitution may be described as a watery solution of low molecular weight species, 

mainly sugars, salts and organic acids, and high molecular weight hydrocolloids, 

contained in a water insoluble cellular matrix of macromolecules, mostly 

carbohydrates including insoluble pectic substances, hemicelluloses, proteins and, 

sometimes, lignins. Intracellular air spaces are present in parenchymous tissue and 

these may be considered as true structural elements, having a very characteristic 

influence on the perceived texture. This complexity makes these systems of special 

interest for mobility studies.  

Many studies have been performed on the application of 1H NMR techniques 

for evolution of quality in fruits. This technique allows using the changes in the 

distribution of water proton transverse relaxation times to monitor the subcellular 

compartmentation of water.  

1H NMR has been a tool used for purposes as diverse as study the effect of 

preservation processes (Hills and Remigereau, 1997; Panarese et al., 2012; Tylewicz 

et al., 2011), monitoring food quality changes during storage (Zhang and McCarthy, 
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2013), analysing food quality characteristics (Hernández-Sánchez et al., 2007; 

Marigheto et al., 2008; Tu et al., 2007), or just monitoring ripening (Raffo et al., 2005). 

The work of Hills and co-workers (1991) was an important milestone in the use 

of this technique. The group first identified the signals of water in the cellular wall, 

cytoplasm and vacuole (Hills et al., 1991; Hills et al., 1996a; Hills et al., 1996c) and 

applied the methodology for studying the effect of preservation processes on foods. 

An example is the study on changes in subcellular water compartmentation in 

parenchyma apple tissues during freezing/thawing (Hills and Remigereau, 1997). 

Figure 1.4 shows the differences in water proton transverse relaxation time profile for 

fresh and freezing/thawing apple tissues. For the fresh apple tissue, behaviour 

presents a proton distribution following three peaks that can be assigned to water 

located in the vacuolar, cytoplasm and cell wall compartments. After thawing the 

absence of the three peaks indicate membrane rupture and loss of turgor in the 

tissue, the cellular structure was broken and the vacuole, cytoplasm and cellular wall 

lost their integrity and become just one compartment. 

 

 

Figure 1.4 Distribution of transverse water proton relaxation times in fresh and freeze-thawed 

apple tissues (Hills and Remigereau, 1997). 
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As discussed, another example on the use of NMR is to understand the 

response of fruit’s quality parameters to different storage conditions, such as on 

pomegranate fruit (Zhang and McCarthy, 2013). In this case, NMR measurements 

allow analysing the microscopic structure changes during storage and confirm the 

water environment in each component. The authors found that water was redistributed 

between subcellular compartments of the pomegranate aril tissues during controlled 

atmosphere storage.  

Another study has addressed the water proton relaxation times in different 

pear varieties with two different levels of internal damage (sound tissue and 

disordered tissue) and tried to find a relationship with the internal browning process 

and complement the observations with image techniques (Hernández-Sánchez et al., 

2007). If was possible to conclude that, at least for one pear variety, internal browning 

(postharvest disorder) may be identified and correlated with the NMR parameters. 

Moreover, it was also possible to infer that the cell decompartmentation facilitates the 

accessibility of enzymes and subtracts (responsible for browning reactions). The 

analysis of firmness and soluble solids content were performed and no correlation 

between internal browning was found, evidencing once again the relevance of NMR to 

support the internal inspection of the fruit. 

One last example is a study aiming at understanding the banana ripening 

phenomenon (Raffo et al., 2005), showing the relationship between changes in water 

dynamics and variations in chemical composition. Results from NMR allow explaining 

the ripening process that happen for a period of seven days, and where membrane-

bound starch granules are almost converted to soluble sugars. Shortly, three 

components were determined, attributed to vacuole, cytoplasm and cell wall. T2 

values attributed to cytoplasmatic and vacuolar water show a gradual increase, 

correlated with the disappearance of starch that acts as a relaxation sink (Figure 1.5). 

The disappearance of these granules during ripening increases the cytoplasm and 
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vacuolar water fractions, that can be influenced by the chemical diffusive exchange 

effect, increasing cytoplasm and vacuole T2. 

 

 

Figure 1.5 Banana proton transverse relaxation time, during seven days of storage (Raffo et 

al., 2005). 
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1.5. Conclusions 

This section reviewed some critical issues and highlighted works in food 

systems molecular dynamics assessment. Molecular dynamics together with 

structure/ microstructure are important approaches to study food systems properties 

and stability. Water is one of the most important food components and is a key factor 

in biological systems performance. Water activity, glass transition temperature and 

water proton relaxation time are three concepts that have been used to determine the 

water performance. Water proton relaxation time, assessed by NMR techniques, is 

one of the broadest methods to understand dynamics, even in complex biological 

systems like foods. Dynamic properties play an important role in complementing the 

information provided by methods based on systems equilibrium and global kinetics. 

However, it is evident the lack of systematic information, even in straightforward 

model food matrices.  

Further work on relationships between water and solids mobility and glass 

transition or water activity in food systems is a fundamental and necessary approach 

to fully attain food physical properties and stability. The absence of studies on the 

relationship between degradation of quality factors and molecular mobility along shelf-

life is also evident.  

These studies may be extremely useful for food product and process design, 

safety and sensorial attributes and also for better understanding and predicting, for 

example, food storage stability conditions. 
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Abstract 

In this chapter the physico-chemical properties of chitosan/glycerol film forming 

solutions (FFS) and resulting films were analysed. Solutions were prepared using 

different concentrations of plasticising agent (glycerol) and chitosan. Films were 

produced by solvent casting and equilibrated in a controlled atmosphere. FFS water 

activity and rheological behaviour were determined. Films water content, solubility, 

water vapour and oxygen permeabilities, thickness, and mechanical and thermal 

properties were determined. Fourier transform infrared (FTIR) spectroscopy was also 

used to study the chitosan/glycerol interactions. 

Results demonstrate that FFS chitosan concentration influenced solutions 

consistency coefficient and that this was related with differences in films water 

retention and structure. Plasticiser addition led to an increase in films moisture 

content, solubility and water vapour permeability, water affinity and structural 

changes. Films thermo-mechanical properties were significantly affected by both 

chitosan and glycerol addition. FTIR experiments confirmed these results. 

This chapter highlights the importance of glycerol and water plasticisation in 

films properties. 
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2.1. Introduction 

Edible films technology presents several challenges, especially on the 

relationship between the composition and properties of FFS and the properties of the 

obtained films. The viscosity and molecular entanglement of the FFS are of great 

importance since it may affect the obtained film properties, such as thickness, 

mechanical and thermal properties, water retention capacity, water affinity and oxygen 

permeability.  

Natural polymers are inherently brittle due to their complex branched primary 

structure and weak intermolecular forces (Srinivasa et al., 2007). The primary role of 

plasticisers is to improve the flexibility and processability of polymers, by reducing the 

intermolecular forces, softening the rigidity of the film structure and rising the mobility 

of the biopolymeric chains (Melissa Gurgel Adeodato Vieira, 2011; Srinivasa et al., 

2007). These additives reduce the tension of deformation, hardness, density, viscosity 

and electrostatic charge of a polymer, simultaneously increasing chain flexibility, 

resistance and the dielectric constant (Ferry, 1980). 

Glycerol is the most widely used plasticiser due to its good efficiency, large 

availability and low exudation (Epure et al., 2011). Moreover, this plasticiser has a 

boiling point and hydrogen bond ability causing high retention in the polymer. Glycerol 

has also been used to modify natural macromolecules like proteins (Quijada-Garrido 

et al., 2007; Zhang et al., 2005) and carbohydrates.  

Water is also one of the most important plasticisers of biological systems, such 

as foods (Neto et al., 2005; Roos, 1995), since water molecules create hydrogen 

bonds with the polymeric chains present in the system.  

Chitosan is a semicrystalline biopolymer, having a great potential for chemical 

and mechanical modifications, to create novel properties, functions and applications in 

different areas (Pillai et al., 2009). Due to its properties, the use of chitosan in edible 

films development has been long studied (Neto et al., 2005; Pillai et al., 2009). These 
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studies have shown that chitosan films properties depend on several parameters, 

such as chitosan molecular weight and degree of deacetylation, organic acid used 

and the possible presence of plasticiser (Epure et al., 2011; Suyatma et al., 2005). 

The film structure is one of the main responsible for its properties. This is 

reported to be related with the polymer free volume, which affects molecular mobility 

of the polymeric matrix (Dlubek et al., 2005; Slade and Levine, 1991). The structure of 

the film is strongly affected by the composition, specially the amounts of polymer and 

plasticiser in the FFS and the ratio between these compounds.  

This chapter aims at systematically investigating how the properties and 

structure of chitosan films are influenced by the properties and composition of the 

FFS. To achieve that, film forming solutions were prepared with 3 different chitosan 

concentrations and with three chitosan/glycerol ratios, and the rheological behaviour 

was characterised. The water, barrier, mechanical and thermal properties and FTIR 

spectra of the obtained films were characterised. 

 

 

2.2. Material and methods 

 

 2.2.1. Chitosan FFS preparation 

 FFS were prepared by dissolving different chitosan (90% deacetylation, Aqua 

Premier Co., Thailand) concentrations (1%, 2% and 3% w/v) in a 1% lactic acid 

solution (Acros Organics, Belgium), and adding to different levels (10%, 50% and 90% 

w/w) of plasticising agent, (glycerol - Panreac, Spain). These conditions allow the 

achievement of the same ratio chitosan/glycerol (see Table 2.1). It was decided not to 

consider films without glycerol, since these films are too brittle, making impossible to 

perform most of the analysis. To promote a good homogenisation an Ultra-Turrax was 

used (IKA T18 basic, Wilmington, NC, USA). To allow significant comparisons, two 
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replicates (samples) were made for each experimental condition (chitosan/plasticiser 

ratio). 

 

 2.2.2 Characterisation of FFS 

 

2.2.2.1. Rheological behaviour 

Rheology of FFS was studied by viscometry tests, using a controlled stress 

rheometer Bohlin VOR (Bohlin Instruments Ltd, Cirencester UK) at 23 ºC and a cone-

plate configuration. For each sample three measurements were carried out.  

 

2.2.2.2. Water activity 

Measurements were performed with a dew point hygrometer (Aqualab - Series 

3, Decagon Devices Inc., USA.), at 23 ± 1 ºC. The sensitivity of the equipment was 

0.001. Calibration was carried out before experiments with distilled water and 

saturated saline solutions. Water activity value of each sample resulted from the 

average of nine readings. 

 

 2.2.3. Chitosan films preparation 

A constant amount (300 mL) of the chitosan solutions was casted in 32 X 40 

cm plates and dried in an incubator at 40 ºC, for three days. Prior to any 

characterisation, films were stored at 22 ºC and 53% RH, until equilibrium was 

reached. Once again, to allow significant comparisons, two replicates of films 

(samples) were produced for each experimental condition (chitosan/plasticiser ratio). 

All measurements were performed at controlled temperature (22 ºC) and humidity 

(53%) room. 
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 2.2.4. Characterisation of films 

 

2.2.4.1. Water activity, moisture content and solubility 

Films aw were determined using the same methodology described under point 

2.2.2.2.  

To determine the films moisture content (MC), approximately 50 mg of film 

were dried at 105 ºC, until weight equilibrium was attained. The weight loss of the 

sample was determined, and MC was calculated as the percentage of water removed 

from the system. Three measurements were obtained for each sample. 

Solubility (SOL) was determined as the content of dry matter solubilised after 

24 hours of immersion in distilled water. Two pieces of each sample, previously dried 

until constant weight, were immersed in 50 mL of water (at 23 ºC). After 24 hours of 

immersion with agitation, the pieces of film were withdrawn and dried until constant 

weight in an oven at 105 ºC, to determine the weight of dry matter not solubilised in 

water. SOL of films in water was determined as the percentage of soluble material. 

Three measurements were obtained for each sample. 

 

2.2.4.2. Films barrier properties 

Water vapour permeability (WVP) was evaluated gravimetrically based on 

ASTM E96-92 method (Bourbon et al., 2011; V. Guillard, 2003). The film was sealed 

on the top of a permeation cell containing distilled water (100% RH; 2337 Pa vapour 

pressure at room temperature), placed in a desiccator at 22 ºC and 0% RH (0 Pa 

water vapour pressure) containing silica. The cells were weighed at 2 h intervals for 

10 h using an analytical balance (McHugh et al., 1993). Two measurements were 

made for each sample. 

Oxygen permeability (O2P) was determined based on the ASTM D 3985-02 

(2002) method (Martins et al., 2010). Briefly, the films were sealed between two 
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chambers, having each one two channels. In the lower chamber, O2 was supplied at a 

controlled flow rate (J & W Scientific, ADM 2000, USA) to maintain its pressure 

constant in that compartment. The other chamber was purged with a nitrogen stream, 

also at controlled flow rate. Nitrogen acted as a carrier for the O2. To determine O2 

concentration, 1 mL of sample was injected in a gas chromatograph (Chrompack 

9001, Middelburg, The Netherlands) at 110 ºC, equipped with a column Porapak Q 

80/100 mesh 2 m x 1/8’’ x 2 mm SS, and a thermal conductivity detector at 110 ºC. 

Helium at 23 mL min-1 was used as carrier gas. A standard mixture containing 10% 

CO2, 20% O2 and 70% N2 was used for calibration. The flows of the two chambers 

were connected to a manometer to ensure the equality of pressures (both at 1 atm) 

between both compartments. As the O2 was carried continuously by the nitrogen flow, 

it was considered that partial pressure of O2 in the upper compartment is null, 

therefore ΔP is equal to 1 atm. Three measurements were taken for each sample. 

 

2.2.4.3. Films thickness 

The thickness of the produced films was measured using a digital micrometer 

(Mitutoyo, Japan). From each sample a minimum of 8 stripes (15 × 170 mm) were cut, 

and at least 2 readings were randomly performed at different positions. 

 

2.2.4.4. Films mechanical properties 

Films mechanical properties, namely elongation at break (EB) and tensile 

strength (TS), were determined in extension with an Instron Universal Testing 

Machine (Model 4500, Instron Corporation, U.S.A.), following the ASTM D 882-91 

(1991). The initial grip separation and the crosshead speed were set at 100 mm and 

50 mm min-1, respectively. EB was calculated as the ratio of the final length at the 

point of sample rupture to the initial length of a specimen (100 mm), and expressed as 

a percentage. TS was expressed in MPa and calculated dividing the maximum load 
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(N) by the initial cross-sectional area of the specimen. EB and TS tests were 

replicated nine times for each sample. 

 

2.2.4.5. Films thermal properties 

The films thermal profiles, glass transition temperature (Tg), melting enthalpy 

(∆h) and melting temperature (Tm), were determined using differential scanning 

calorimetry (DSC). DSC was performed using a TA-60WS, Shimadzu Corporation, 

Japan, with a cooling accessory, under N2 atmosphere (20 mL min-1). 

Film samples of approximately 5 mg were weighed into aluminium cups and 

sealed hermetically. An empty cup was used as reference and the temperature was 

increased at 20 ºC min-1, from -150 to 200 ºC. The maximum temperature of 200 ºC 

was selected in order to avoid possible chitosan degradation (Bourbon et al., 2011). 

Thermograms were analysed using the Universal Analyses Software TA-60WS 

(Shimadzu Corporation, Japan). Two measurements were made for each sample. 

 

2.2.4.6. FTIR-ATR spectroscopy 

All spectra were acquired using a spectrometer Perkin-Elmer (Spectrum BX, 

Germany) set up for mid-infrared measurements equipped with a horizontal one single 

reflection ATR Golden Gate (Specac, Germany). The software OPUS v. 5.0 (Brüker, 

Germany) was programmed to record each spectrum between 4000 and 600 cm-1, at 

a resolution of 4 cm-1. Samples and background measurements were made by 

coadding 128 scans for each spectrum before Fourier transformation. The 

interferometer was operated at a laser frequency of 10 kHz and in the single-sided 

directional mode. Fourier transformation was done with a Mertz phase correction, a 

triangular apodisation function, with a zero-filling factor of 2. At least three spectrum 

replicates were recorded for each film composition. 
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2.2.4.7. Data analysis 

To conclude on the isolated effect of chitosan addition in film forming solutions 

and obtained films (p<0.05), experimental results were analysed by one-way ANOVA 

and post hoc multiple comparison tests (Tukey’s test), for a fixed glycerol 

concentration. To evaluate glycerol addition, statistical analysis of the data was 

performed fixing the chitosan concentration. 

To assess samples rheological behaviour a power law model (Eq. 2.1) was 

fitted to the experimental data of shear stress (�) as a function of shear rate (�̇): 

 � = �ሺ�̇ሻ�         (2.1) 

where n is the flow behaviour index, and K the consistency coefficient. 

 

WVP was estimated using regression analysis from equation 2.2; adapted 

from literature (Sobral et al., 2001) and corresponding 95% confidence intervals were 

calculated: 

 ௪ × ௫� ×�� = WVP × �        (2.2) 

where x is the average thickness of edible films, A the permeation area 

(0.005524 m2), ∆P the difference of partial vapour pressure of the atmosphere (2337 

Pa at 20 ºC), w the weight loss, and t the experimental time. 

Spectra analysis was performed using the CATS 97 program (Barros, 1999). 

Principal component analysis (PCA) was used to reduce the dimensionality of the 

data and to extract the main sources of variability. 
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2.3. Results and discussion 

 
 2.3.1. Characterisation of the FFS 
 

The rheological behaviour and aw of the FFS used in this study are presented 

in Table 2.1 (results are included in Appendix A, Tables A.1.1 and A.1.2).  

For all the tested FFS, results show a shear thinning behaviour, which is 

commonly used for describing the polymer melt behaviour (Steffe, 1996). The Power 

Law Model (Eq. 2.1) successfully described the obtained rheograms. Flow index (n) 

and consistency coefficient (K) were estimated and the corresponding 95% 

confidence limits calculated (Table 2.1) (Chillo et al., 2008; Garcia et al., 2004) (data 

in Appendix A, Table A.1.1). 
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Table 2.1 

Experimental results for the characterisation of film forming solutions. 

 

 

 

 

 

 

 

 

 

 

*Mean values followed by the same letter are not significantly different at 0.05 by the Tukey HSD test; Letters from Gly column concern to differences between glycerol concentrations (for the 
same chitosan concentration); Letters from Chit column refer to analysis of the effect of chitosan concentration (for the same glycerol content). 

 

K: consistency coefficient; n: flow index; aw: water activity 

 

   
 

Viscosity Parameters 
   

 
Chit 

 
Gly 

 
Chit/ Gly 

 
K (Pa s

n
) 

 
n 

 
aw 

 
Gly 

 
Chit 

(w/v %) (w/v %) Ratio (w/w) (± 95% Confidence Error) (± 95% Confidence Error) (± Standard Deviation) * * 

 
1 

 
10 

 
7.92 

 
0.198±0.010 

 
0.810±0.018 

 
1.002±0.001 

 
a 

 
a 

1 50 1.59 0.254±0.021 0.803±0.006 1.000±0.001 a a 

1 90 0.88 0.219±0.013 0.814±0.004 0.999±0.002 a a 

        

2 10 7.94 2.132±0.430 0.656±0.018 1.001±0.001 a a 

2 50 1.58 1.450±0.104 0.682±0.001 1.001±0.001 a a 

2 90 0.88 1.591±0.135 0.683±0.008 0.997±0.001 a a 

        

3 10 7.94 3.371±0.260 0.620±0.005 1.002±0.001 a a 

3 50 1.59 3.221±0.095 0.623±0.003 0.999±0.001 ab a 

3 90 0.88 3.034±0.130 0.635±0.002 0.995±0.002 b a 
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Glycerol addition showed no significant effect on FFS rheological behaviour, 

assessed by n and K estimates. On the other hand, chitosan concentration affected 

significantly FFS rheological behaviour, ranging from close to Newtonian (low chitosan 

concentrations, n→1) to a pseudoplastic behaviour (with increasing chitosan 

concentration, n decreasing). Also, K significantly increased with chitosan addition. 

These results can be related with the lower amounts of water present in the solutions 

with higher polymer/plasticiser concentration.  

As discussed before, although different chitosan and glycerol concentrations 

were used to prepare the FFS, for each chitosan level studied (1, 2 and 3%), the 

same ratios chitosan/glycerol were tested (see Table 2.1). However, the observed 

rheological behaviour showed that the amount of polymer in the solution has a higher 

impact on FFS viscoelastic properties than the ratio between polymer and plasticiser. 

Regarding aw, a significant effect of chitosan and glycerol addition was 

observed, while no differences were found between replicates (p>0.05, Main Effects 

ANOVA, data in Appendix A, Table A.1.2). To conclude on the significance (p<0.05) 

of the isolated effect of glycerol concentration on the aw of the FFS (for the same 

chitosan concentration), results were analysed using the glycerol concentration as the 

categorical predictor factor (Gly column on Table 2.1.). For testing significance of the 

effect of chitosan concentration (for the same glycerol concentration), results were 

analysed using chitosan concentration as the factor (Chit column on Table 2.1).  

Results show that there is no significant effect of the amount of the polymer 

present on the aw of the solutions. However, the addition of glycerol as a plasticiser 

showed a different effect depending on chitosan concentration: for lower chitosan 

concentration (1%), the addition of glycerol did not affect aw. While, with increasing 

chitosan concentration, glycerol addition decreased solutions aw. This effect would be 

even more evident for higher chitosan concentrations. Statistical analyses show that 

solutions with 3% chitosan concentration and different levels of glycerol are 
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significantly different, while at lower chitosan concentration (1%) glycerol additions 

lead to no significant differences between samples (Gly column on Table 2.1).  

These results may indicate that interaction of the plasticiser and water 

molecules with the polymeric chain plays a critical role not only in films, but also in the 

FFS and may influence the water evaporation during films drying.  

 

 2.3.2. Characterisation of chitosan films 

 

2.3.2.1. Water and barrier properties 

Experimental results for aw, MC, SOL and WVP of chitosan films are presented 

in Table 2.2 (data in Appendix A, Tables A.2.1, A.2.2 and A.2.3). No differences 

between replicates were observed (p>0.05, Main Effects ANOVA, data in Appendix A 

Section A.3). Again, to conclude on the significance of glycerol and chitosan 

concentrations effects on the different film´s properties, experimental results were 

analysed first using the glycerol concentration as categorical predictor factor (Gly 

column on Table 2.2). For testing significance of the effect of chitosan concentration 

(for the same glycerol concentration), results were analysed using chitosan 

concentration as the factor (Chit column on Table 2.2).  

The aw results show that chitosan concentration has a significant effect on this 

parameter (Table 2.2). However, glycerol only has a significant effect for films 

produced with higher chitosan content (3%). In this case, higher glycerol content led 

to higher aw values. These results may be related with the polymer, plasticiser and/or 

water ratios and bindings. 
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Table 2.2 

Experimental results for chitosan films water related properties. 

 

*Mean values followed by the same letter are not significantly different at 0.05 by the Tukey HSD test; Letters from Gly column concern to differences between glycerol concentrations (for the 

same chitosan concentration); Letters from Chit column refer to analysis of the effect of chitosan concentration (for the same glycerol content). 

 

aw: water activity; MC: moisture content; SOL: water solubility; WVP: water vapour ppermeability 

 

Chit Gly aw Gly Chit MC (%) Gly Chit SOL (%) Gly Chit WVP (g Pa
-1 

s
-1 

m
-1

) 

(w/v %) (w/v %) (± Standard Deviation) * * (± Standard Deviation) * * (± Standard Deviation) * * (± 95% Confidence Error) 

 
1 

 
10 

 
0.5543±0.0179 

 
a 

 
a 

 
28.87±5.91 

 
a 

 
a 

 
48.91±2.11 

 
a 

 
a 

 
6.768E-08±2.332E-08 

1 50 0.5561±0.0305 a a 36.64±8.57 ab a 54.09±4.56 a a 9.111E-08±4.118E-09 

1 90 0.5658±0.0170 a a 51.1±3.03 b a 67.52±7.31 b a 8.657E-08±4.210E-09 

             

2 10 0.5195±0.0123 a b 17.83±1.28 a b 36.06±0.95 a b 1.029E-07±5.244E-08 

2 50 0.5031±0.0140 a b 38.32±4.67 b a 51.02±3.78 b a 6.011E-08±8.235E-08 

2 90 0.5011±0.0067 a b 51.92±4.52 c a 61.40±4.22 c a 1.872E-07±1.182E-08 

             

3 10 0.5072±0.0029 a b 16.36±0.88 a b 29.73±1.06 a c 1.601E-07±9.046E-08 

3 50 0.5116±0.0062 ab b 38.87±1.36 b a 49.77±0.89 b a 1.668E-07±7.924E-08 

3 90 0.5296±0.0091 b c 55.06±0.83 c a 63.45±0.65 c a 2.885E-07±9.259E-08 
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Regarding MC, it was observed that higher glycerol concentration solutions 

produced films with significantly higher MC. For every chitosan concentration, 

increasing FFS plasticiser content produced a significant increase on film’s MC (Table 

2.2).  

SOL was significantly higher in films produced with higher glycerol 

concentrations (Table 2.2). However, chitosan content only had a significant effect on 

solubility of films produced with low glycerol content (10%). These results may be 

related with high solubility of glycerol in water (and its hygroscopic nature), due to the 

three hydrophilic hydroxyl groups present (Chillo et al., 2008). 

For the results of chitosan films WVP, it is observed that there are significant 

differences for different chitosan concentrations (Table 2.2): higher chitosan 

concentrations led to higher values of WVP. This tendency could be explained by an 

increase of amino groups present and consequent higher hydrophilicity of the 

biodegradable blend films when increasing the chitosan content (Bourtoom, 2008). 

Also, samples with higher plasticiser concentration show higher WVP values. These 

results are probably due to an increase in the free volume between the polymer 

chains - when hydrophilic plasticisers are incorporated into polysaccharide films, there 

is a decrease of the intermolecular forces, making the polymer network less dense 

and hence more permeable (Cuq et al., 1997; Lavorgna et al., 2010). 

With respect to samples O2P, no significant differences were observed nor 

between chitosan neither between glycerol concentrations. Nevertheless, Figure 2.1 

demonstrates a general tendency with respect to polymer and plasticiser proportions: 

higher chitosan concentrations in the FFS led to higher values of O2P; and higher 

plasticiser concentrations led to lower values of O2 permeability. The exception is 

samples produced with 1% chitosan, where O2P values were almost constant for 

different glycerol concentrations (results are included in Appendix A, Table A.2.3).  
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Figure 2.1 Oxygen permeability of films prepared with different chitosan and glycerol 

concentrations (■ 1%, □ 2%; ● 3% chitosan). 

 

These results are supported by a direct relationship between decreasing 

crystallinity of the films (see Table 2.3 of the section below) and the decrease in O2P, 

and may indicate that structural changes should be investigated in the future. 

Overall, the addition of plasticiser led to an increase in MC, SOL and WVP of 

the films, showing increased water affinity and structural changes. This was also 

reflected on O2P decrease with glycerol addition. Chitosan concentration did not 

significantly affect such properties. 

 

2.3.2.2. Mechanical and thermal properties 

The experimental results for the mechanical and thermal analysis of chitosan 

films are presented in Table 2.3 (results included in Appendix A, Tables A.2.5 and 

A.2.6).  
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Table 2.3 

Experimental values for films mechanical and thermal characterisation. 

 

*Mean values followed by the same letter are not significantly different at 0.05 by the Tukey HSD test; Letters from Gly column concern to differences between glycerol concentrations (for the 
same chitosan concentration); Letters from Chit column refer to analysis of the effect of chitosan concentration (for the same glycerol content). 

 

EB: elongation at break; TS: tensile strength; Tg: glass transition temperature; ∆h: melting enthalpy 

 

 

 

Chit Gly Thickness (mm) Gly Chit EB (%) Gly Chit TS (MPa) Gly Chit Tg (ºC) Gly Chit ∆h (J g
-1
) Gly Chit 

(w/v %) (w/v %) (± Standard Deviation) * * (± Standard Deviation) * * (± Standard Deviation) * * (± Standard Deviation) * * (± Standard Deviation) * * 

1 10 0.0642±0.0292 a a 46.10±9.29 a a 8.25±2.97 a a -20.02±12.74 a a -70.00±26.47 a a 

1 50 0.0556±0.0117 a a 62.17±21.40 ab a 4.50±2.09 a a -60.81±14.10 b a -151.63±14.69 a a 

1 90 0.0605±0.0132 a a 66.51±28.84 b a 1.82±0.89 a a -72.34±1.43 b a -184.25±76.87 a a 

                 
2 10 0.1343±0.0144 a a 20.00±10.64 a b 12.15±4.79 a a -5.12±8.88 a a -165.22±48.92 a b 

2 50 0.1357±0.0227 a b 34.48±5.05 a b 0.95±0.38 b b -51.54±12.35 b a -203.86±23.16 a b 

2 90 0.1527±0.0158 a b 32.02±7.55 a b 0.28±0.07 b b -65.08±3.31 b a -203.75±52.55 a a 

                 
3 10 0.2844±0.0896 a b 9.19±7.64 a b 6.03±2.04 a a 26.39±9.81   a b -175.87±37.96 a b 

3 50 0.2348±0.0100 a c 25.58±3.11 a b 1.47±0.31 b b -64.62±2.09 b a -249.20±19.36 ab c 
3 90 0.2452±0.0216 a c 19.96±7.09 a b 0.47±0.11 b b -82.92±3.29 c b -313.12±63.31 b a 
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The films thickness was only significantly affected by the chitosan content, 

showing that possible structural changes due to plasticisation, e.g. increase in free 

volume, are not reflected on this property (data included in Appendix A, Table A.2.4). 

Also, the MC (Table 2.2) showed no relationship with the thickness of the obtained 

film. This may indicate that chitosan is the main contributor to film thickness. 

 

Regarding the films mechanical properties, both chitosan and glycerol addition 

led to significant differences in EB and TS. At 1% chitosan, the amount of glycerol 

added shows a conventional action of plasticisers, increasing EB and decreasing the 

TS. This effect is due to chitosan chains interactions, decreasing intermolecular 

attraction and increasing polymer mobility, which facilitates film elongation (Suyatma 

et al., 2005; Ziani et al., 2008). However, films produced with solutions with higher 

chitosan content (2 and 3 w/v %) and 50% glycerol had a deviant behaviour: showing 

higher EB than films with 90% of glycerol. This behaviour has been previously 

observed and may occur due to the relationship between polymer/plasticiser 

concentrations, corresponding to an antiplasticisation phenomenon: a stronger 

interaction might be occurring between the polymer and the plasticiser, producing a 

“cross-linker” effect, which decreases the free volume and the molecular mobility of 

the polymer (Lourdin et al., 1997; Suyatma et al., 2005; Ziani et al., 2008). 

 

Tg is associated with a change in the physical properties and state of 

materials, and can be related with the plasticisation of amorphous regions within semi-

crystalline materials (Roudaut et al., 2004). Tg is considered a second order phase 

transition and occurs over the temperature range at which a glassy material enters the 

rubbery domain (Lazaridou and Biliaderis, 2002). At temperatures above Tg various 

physical properties are significantly affected (Lazaridou and Biliaderis, 2002; Slade 

and Levine, 1991). Table 2.3 shows the Tg for the different films analysed. Results 
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demonstrate that glycerol significantly affected films Tg. As expected, plasticiser 

(glycerol) lowered Tg (Rivero et al., 2010; Suyatma et al., 2005), which also correlated 

well with MC (Table 2.2), since water acts as plasticiser itself (Arvanitoyannisa et al., 

1998; Dai et al., 2006; Rivero et al., 2010). The chitosan/glycerol ratio also affected Tg 

(Figure 2.2a): increasing ratio lead to a Tg decrease. This may be related with the free 

volume in the films (as was discussed above). Higher plasticiser content increases 

free volume, and higher polymer content decreases this variable (Lourdin et al., 1997; 

Rivero et al., 2010; Roudaut et al., 2004). 

 

 

Figure 2.2 Glass transition temperature (Tg) (a) and melting temperature (Tm) (b) of the 

chitosan films prepared with different chitosan/glycerol concentrations (■ 1%, □ 2%; ● 3% 

chitosan). 

 

The crystalline component of the films was evaluated by the melting enthalpy 

(Δh) and melting temperature (Tm). Table 2.3 shows that Δh increased with increasing 

chitosan concentrations, particularly for samples produced with lower glycerol 

concentrations. This result was expected once that chitosan, as a polymer, is 

responsible for the formation of crystals in the system. Also, plasticiser addition 



CHAPTER 2 

 

 

45 

 

increased the Δh, i.e. increases the samples crystallinity, and this may be due to 

glycerol interaction with chitosan chains: the H-bonds stabilised the chitosan crystals 

(Okuyama et al., 1997).  

In Figure 2.2b the values of the Tm ranged from 110 to 140 ºC. Despite the fact 

that these values were not significantly different between formulations, a tendency in 

values depending on the FFS composition is observed. Higher concentrations of 

chitosan presented lower Tm values. On the other hand, temperature of the main peak 

shifted to higher melting temperatures when increasing plasticiser concentration 

(decreasing ratio), as referred in previously published results (Rivero et al., 2010), and 

may be also related with an increase of the strength of the H-bonds stabilising the 

chitosan crystals in the presence of plasticiser (Okuyama et al., 1997). 

Overall, thermal and mechanical characterisation showed a significant effect 

on the properties of films produced with FFS of different compositions. Once again, 

the observed effect on these properties reflects changes in the films structure. 

 

2.3.2.3. FTIR-ATR spectroscopy results 

FTIR has been extensively applied for the characterisation of biopolymers, as 

this technique reveals specific information about the molecular structure of chemical 

compounds (Gao et al., 2006; Lawrie et al., 2007). Also, important information about 

specific interactions between the different constituents of the biopolymers can be 

extracted from the infrared spectrum. 

Figure 2.3 presents the results obtained from FTIR measurements. Figure 2.3a 

presents typical spectra of the different films with different compositions. In order to 

better understand the possible interaction of the different constituents of the films, a 

band assignment was performed by comparing the films’ spectrum with the spectra of 

their pure compounds and comparison with literature results. 
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Figure 2.3 Results obtained from FTIR measurements: a) FTIR measurements with different 

chitosan/glycerol percentage, b) representation of the scores resulting from PCA model 

applied to the films with different chitosan/ glycerol percentages (1-1%, 2-2% and 3-3% of 

chitosan) and c) PC1 and d) PC2 loading profiles plots of films according their 

chitosan/glycerol composition. 
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The residual lactic acid is evident in all films, as confirmed by a band arising at 

1715 cm-1 (Figure 2.3a) corresponding to the C=O from the carboxylic acid stretching 

(Lawrie et al., 2007).  

Analysis of the whole spectra shows differences in the regions between 3400 

and 2815 cm-1, refining the band with increasing glycerol content. This region 

corresponds to the stretching vibrations of the –O–H and –C–H groups, present in 

glycerol (C3H8O3).  

Literature reports that chitosan with 85% of degree of deacetylation displayed 

two strong vibration bands at 1645 and 1584 cm-1; those bands were assigned to 

amide I and amide II vibrations, respectively. It is also reported that amine 

deformation vibrations usually produce strong to very strong bands in the 1638-1575 

cm-1 region (Lawrie et al., 2007).  

In a chitosan spectrum, bands arise at 1638 cm-1 and 1583 cm-1 corresponding 

to the amide I, amine II and to the amine deformation. In Figure 2.3a a big band at 

1569 cm-1, in between of two shoulders at 1631 cm-1 and 1529 cm-1, are observed. 

The shift of those bands when compared with the pure chitosan spectrum could be 

due to the NH bending vibration at 1583 cm-1, which overlaps the amide II. Also, 

considering the protonation of the amines, which can cause an anti-symmetric 

deformation in the 1625-1560 cm-1 range and a symmetric deformation in the 1550-

1505 cm-1 range, and the amide and amine moieties present in the films, the two 

represented bands must embody an envelope of at least five bands in close proximity 

(Lawrie et al., 2007). 

Previous works have observed that the intensity of the amide II band was 

significantly affected by the level of plasticiser in a protein based film-films, without 

glycerol presenting a broader band’s shape when compared with those with 40% of 

plasticiser in its composition (Gao et al., 2006). This observation is in agreement with 

the results presented in Figure 2.3a, where films with lower concentration of glycerol 
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(10%) in their composition presented a untidy band at 1569 cm-1, when compared with 

the films with higher plasticiser (50% and 90% of glycerol) in their composition. This 

indicates higher molecular vibration in the films with higher plasticiser content, which 

may be correlated by an increase of molecular mobility in these samples. Such 

hypothesis is supported by the increase of crystallinity in these samples (Table 2.3), 

with consequent increased free volume. 

 

Figure 2.3b represents the PCA analysis of the films with different 

compositions; this figure confirms the previous results showing that the films form 

three homogenous clusters along the PC1 (reflecting glycerol interaction).  

The loading profile of PC1 (Figure 2.3c) shows that the separation in the 3 

different clusters is due mainly to the –O–H stretching vibration at 3265 cm-1, the –O–

H bending at 1665 cm-1, the vibrations of –C–H group at 1433 cm-1, reflecting the 

increased glycerol and water content of the films, and to the C-O stretch vibrations 

with bands between 1300 to 1000 cm-1 range, reflecting differences in the interaction 

between the different components (chitosan/glycerol/residual lactic acid) depending 

on film forming solution composition. Figure 2.3d also shows the separation of the 

films along the PC2 - in this case the contribution for this separation was attributed to 

the chitosan interaction, which increased with FFS chitosan concentration.  

It is important to notice that the separation of samples within the same cluster 

decreased as the proportion chitosan/glycerol decreases (Table 2.1). This may be 

taken as an indication of chitosan conformational changes within the film with the 

increasing plasticiser agent, and shows the influence of polymer/plasticiser content on 

the film’s final structure. 
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2.4. Conclusions  

The properties of films produced with FFS at 3 different concentrations of 

chitosan and 3 different levels of glycerol were measured. 

It was observed that the rheological behaviour of the FFS was chitosan 

concentration dependent. K (and indirectly the molecular entanglement in the solution) 

affected the MC and the properties of the films obtained after drying. This may be due 

to differences on the drying behaviour during film production and thus significantly 

affecting the mechanical and thermal properties of the obtained films. 

Glycerol addition caused changes in the films structure, by increasing free 

volume. This was reflected on the mechanical and thermal behaviour of the films and 

also in the barrier and water related properties. Moreover, glycerol affected the 

crystalline lattice of the film, by changing the H-bonds in chitosan crystals. This 

conclusion is also supported by the FTIR results, where different interaction groups 

were observed according with the chitosan/glycerol ratios. 

The effect of polysaccharide/plasticiser concentration on the microstructure 

and molecular dynamics of polymeric films systems will be a complementary study for 

understanding the behaviour of these structures. 
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Abstract  

This chapter has the purpose to investigate the effect of 

polysaccharide/plasticiser concentration on the microstructure and molecular 

dynamics of polymeric film systems, using transmission electron microscope imaging 

(TEM) and nuclear magnetic resonance (NMR) techniques. Experiments were carried 

out in chitosan/glycerol films prepared with solutions of different composition. The 

films obtained after drying and equilibration were characterised in terms of 

composition, thickness and water activity.  

Results show that glycerol quantities used in FFS were responsible for films 

composition; while polymer/total plasticiser ratio in the solution determined the 

thickness (and thus structure) of the films. These results were confirmed by TEM.  

NMR allowed understanding the films molecular rearrangement. Two different 

behaviours for the two components analysed, water and glycerol, were observed: the 

first is predominantly moving free in the matrix, while glycerol is mainly bounded to the 

chitosan chain. 
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3.1. Introduction 

In the last years nuclear magnetic resonance (NMR) has been presented as a 

powerful technique to understand and evaluate molecular mobility of semi crystalline 

systems. Specifically, 1H NMR has been used to investigate water dynamics and 

physical structures of foods through analysis of nuclear magnetisation relaxation times 

(Li et al., 2000). In these measurements the samples are submitted to a static 

magnetic field and the protons are excited by means of a radiofrequency pulse. The 

analysis of the signal emitted while the sample returns to equilibrium (FID) allows 

determining the spin-lattice (T1) and spin-spin or transverse (T2) relaxation. This later 

variable is related with the mobility of the protons in the samples matrix. The stability 

of food “matrix” (system) depends strongly on its molecular mobility (as discussed 

before) but also on its microstructure. Foods are highly structured and heterogeneous 

materials composed of architectural elements. The types of such structural units and 

their interactions are decisive in the food stability, since they influence water/solute 

interactions and hence the water availability to participate in degradation reactions. 

Microscopy techniques have been widely used in foods to study their architecture and 

microstructure (Aguilera et al., 2000). Transmission Electron Microscopy (TEM) 

specifically, visualises the internal structure of food samples (Kaláb et al., 1995), 

helping to clarify biological systems dynamics. 

Edible films have been studied for a long time for their potential to improve 

shelf-life and safety of food products (Aider, 2010; Epure et al., 2011). These systems 

are partially crystalline/partially amorphous, easily reproducible materials and are thus 

very interesting food model systems to molecular mobility studies and microstructure 

studies. The addition of low molecular weight plasticisers to amorphous biopolymers 

increases the matrix free volume and the molecular mobility, in an effect similar to 

increasing temperature (Lazaridou and Biliaderis, 2002; Lefebvre and Escaig, 

1993).These additives reduce the tension of deformation, hardness, density, viscosity 
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and electrostatic charge of a polymer, at the same time increasing chain flexibility, 

resistance and dielectric constant (Ferry, 1980). Plasticisers modify the matrix 

second-order interactions of materials (which are responsible for polymeric materials 

crystalline structures), without altering their fundamental chemical character. This 

modification is achieved by forming weak second-order or covalent bonds with the 

polymer. However, plasticisers can also migrate in the polymer leading to material 

recrystallization and a loss of elasticity (Domjan et al., 2009). In addition plasticisers 

can also affect water retention capacity (Lefebvre and Escaig, 1993).  

Water, considered a plasticiser, is one of the most important solvent medium in 

biological systems (Matveeva et al., 2000). It greatly affects the mobility of 

biopolymers components and is considered as an abundant and very effective 

solvent/plasticiser for hydrophilic materials (Lazaridou and Biliaderis, 2002). On a 

molecular level, water plasticisation of a polymer leads to increased free volume, 

decreased local viscosity and increased back-bone chain mobility (Slade and Levine, 

1991).  

Chitosan, structurally considered as a semicrystalline biopolymer (Bangyekan 

et al., 2006; Pillai et al., 2009; Rinaudo, 2006), is a polysaccharide composed mainly 

of (1→4) linked residues of N-acetyl β-d-glucosamine and (1→4) β-d-.glucosamine 

(Arzate-Vázqueza et al., 2012; Ostrowska-Czubenko and ska, 2009; Prashanth and 

Tharanathan, 2007; Rinaudo, 2006; Yang et al., 2010). Chitosan crystal structure is 

stabilised by intramolecular and intermolecular H-bonds, with the acetamide groups 

playing the major role in the formation of second-order bonds between adjacent 

chains (Okuyama et al., 1997), making the chitosan structure on a film very 

dependent on the type and quantity of plasticisers used.  

Through this chapter an effort is made to understand the relationship between 

the composition of FFS and the properties (composition and microstructure) of the 

obtained glycerol plasticised chitosan films, evaluating the role of water and glycerol 
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as plasticiser agents, and the effect of their concentrations in the systems 

performance. Also, we aimed at analysing the molecular mobility of such films, in 

order to recognise its properties and improve its suitability as models for more 

complex food systems. For that purpose, film forming solutions of different 

polymer/plasticiser concentrations were prepared and the obtained films characterised 

in terms of composition, molecular mobility and microstructure. 

 

 

3.2. Materials and methods 

 

 3.2.1. Chitosan films preparation 

Chitosan films preparation was performed as described in section 2.2.1. 

 

 3.2.2. Characterisation of the chitosan films 

 

3.2.2.1. Chemical composition 

The final composition in chitosan, glycerol and water of the obtained films was 

determined. Chitosan concentration was estimated using a spectrophotometric 

method (Muzzarelli, 1998). Briefly, chitosan films were dissolved in 100 mL of lactic 

acid solution 4%. Cibacron brilliant red 3B-A from Sigma (Milano, Italy) was used as 

dye. A solution of dye was prepared by dissolving 150 mg of the powder in ultra-pure 

water, using a 100 mL volumetric flask. Aliquots of the dye solution (5 mL) were made 

up to 100 mL with 0.1 M glycine hydrochloride buffer. Spectrophotometric 

measurements were done at room temperature and at 575 nm, with a wavelength 

spectrophotometer (UV – 1601; Shimadzu Co., Kyoto; Japan). 

Glycerol concentration in films was determined using a quantitative enzymatic 

determination (Free Glycerol Determination Kit, from Sigma, Milano, Italy). 
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Spectrophotometric measurements were performed at room temperature and 540 nm 

wavelength, using the same spectrophotometer.  

 Water content was determined by difference. 

 

3.2.2.2. Thickness 

Thickness of films was determined as described in section 2.2.4.3 

 

3.2.2.3. Water activity 

Films aw was determined as described in section 2.2.2.2. 

 

3.2.2.4. Nuclear magnetic relaxation 

A Bruker AVANCE III solid state spectrometer (300 MHz) was used to 

determine the samples nuclear transverse relaxation time, or spin-spin, T2, of the 

protons. 

These values were obtained from the exponential or bi-exponential echoes 

envelope of a series of Carr- Purcell-Meiboom-Gill (CPMG) multi-echo pulse 

sequence, which circumvents the field and sample heterogeneities and gives access 

to the intrinsic T2 of the protons, while the Free Induction Decay (FID) obtained from a 

single pulse just gives a T2* determined mainly by the field non-uniformity in the 

heterogeneous film sample contained in the NMR 5 mm tubes. 

The analysis of the CPMG echoes envelope showed that the relaxation of the 

protons in chitosan/glycerol films follow a bi-exponential function. Both T2 values were 

obtained by a non-linear least-square fit of the envelope data T2 water and T2 glycerol, 

of the function: 

 A = Aͳe tT2water + Aʹe tT2glycerol                                                                     (3.1) 
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A1: water population; t: time; T2water: water proton transverse relaxation time; A2: 

glycerol population; T2glycerol: glycerol proton transverse relaxation time 

The first point of the multi-echo acquisition pattern was normalised to unity; 

therefore A
1
 and A

2
 relate to the corresponding populations’ percentage. 

 

3.2.2.5. Microstructure 

Transmission electron microscope analyses were performed according to a 

literature described methodology (Tapia-Blácido et al., 2011). Small pieces of films 

were prepared by fixation in 20 mL L-1 glutaraldehyde and post-fixed in 20 g L-1 OsO4. 

Samples were dehydrated for 15 min in an ethanol series (30, 50, 70, 90 mL/100 mL), 

three times for 15 min at 99.5 mL/ 100 mL, and twice for 20 min in propylene oxide. 

The samples were then embedded in increasing concentrations of propylene oxide: 

resin (2:1, 1:1, and 1:2) for 1 h, and for 48 h in Epon 812 resin. The polymerization of 

the resin subsequently proceeded at 60 ºC for 24 h.  

Ultrathin sections (40-60 nm thickness) were prepared on a Reichert 

SUPERNOVA LEICA Ultramicrotome (Germany) using diamond knives (DDK, 

Wilmington, DE, USA). The sections were mounted on 300 mesh nickel grids, and 

examined under a JEOL JEM 1400 TEM (Tokyo, Japan). Images were digitally 

recorded using a Gatan SC 1000 ORIUS CCD camera (Warrendale, PA, USA). 

 

 

3.3. Results and discussion 

 

 3.3.1. Composition of the films 

Drying is one of the critical processes in film preparation, since during this 

process, the polymer and/or plasticiser concentrations may change (Wong et al., 
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2004). In this study, the drying process was kept constant in all films, but film forming 

solutions with different compositions were tested.  

The composition and thickness of the films obtained after drying are shown in 

Table 3.1. It can be observed that the chitosan concentration in the obtained films 

does not correlate with the chitosan content of the solutions used for preparing each 

film. For example, films prepared using 1% (w/w) chitosan FFS presented different 

final polymer content. However, it is possible to find a relationship between the 

glycerol added to the FFS and the composition of the obtained film: for solutions with 

constant polymer concentration, when the amount of plasticiser in the solution 

increases, the chitosan content in the film decreases. Moreover, it is possible to 

observe that polymer concentration in the solution is correlated with the thickness of 

the obtained films (Table 3.1), i.e. increasing the content of chitosan in the solution will 

originate thicker films (data in Appendix B, Table B.1.1). 

 

 

 

 

 

 

 

 



CHAPTER 3 

 

 

60 

 

Table 3.1 Composition and thickness of the films obtained, using different polymer/plasticiser percentages in film forming solutions.  

 

±95% Confidence error 

 

 FFS  Films 

          
Samples 

 
Chit  

 
(g) 

Gly 
  

(g) 

Ratio  
 

(Chit/Gly) 

Chitosan content 
 

(mg g
-1

 film) 
 

Glycerol content 
 

(mg g
-1

 film) 

Ratio 
 

(Chit/ Gly) 

Water content 
 

 (mg g
-1

 film) 

Thickness  
 

(mm) 

         
1%10% 5 0.63 7.94 388.13±16.885

a
 11.47±0.019

 a
 

33.84 
600.40 0.0642 

1%50% 5 3.15 1.59 196.13±34.261
 a
 31.68±0.143

 a
 

6.19 
810.17 0.0556 

1%90% 5 5.67 0.88 158.15±21.535
 a
 47.90±0.058

 a
 

3.30 
755.97 0.0605 

      
 

 
 

2%10% 10 1.26 7.94 356.88±23.494
 a
 13.47±0.027

 a
 

26.49 
629.65 0.1344 

2%50% 10 6.31 1.58 171.85±39.978
 a
 30.04±0.119

 a
 

5.72 
798.11 0.1357 

2%90% 10 11.40 0.88 164.43±9.240
 a
 36.72±0.068

 a
 

4.20 
798.85 0.1527 

      
 

 
 

3%10% 15 1.89 7.94 388.14±20.396
 a
 14.72±0.050

 a
 

26.37 
597.14 0.2844 

3%50% 15 9.46 1.59 181.63±30.075
 a
 46.18±0.039

 a
 

3.93 
772.19 0.2348 

3%90% 15 17.10 0.88 195.71±37.529
 a
 53.36±0.083

 a
 

3.67 
750.93 0.2452 
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These results suggest that films composition is governed by the amount of 

plasticiser in the FFS, while the amount of polymer added will influence the structural 

rearrangement of the film. i.e., with this work experiment design were obtained films 

with similar composition (chitosan, glycerol and water mg g-1film) with thickness 

varying ca 5 fold. This may indicate that chitosan and plasticiser molecules are 

arranged in different structures in the matrix, e.g. different crystal size and quantities 

and/or types. This hypothesis is supported by the fact that, these films (of same 

composition, but different thickness) presented different crystallinity (evaluated by the 

change in enthalpy (results included in Appendix A, Table A.2.5) and by TEM 

observation (see discussion below). The phenomenon responsible for this observation 

is not clear. However, it can be observed that the solutions used to prepare these 

films had all the same chitosan/glycerol ratio but different chitosan/total plasticiser (i.e. 

glycerol + water) ratio. This seems to indicate that this ratio is the one actually 

responsible for the type of bonds and interactions formed during the drying process.  

 

 3.3.2. Molecular mobility 

Molecular mechanisms that control functionality in polymeric films are still 

poorly understood, particularly in chitosan films. Studies on the mobility of the different 

components at molecular level in the films matrix may help to explain structural 

phenomenon and simultaneously the effect of plasticiser addition. An example 

obtained from NMR measurements is shown in Figure 3.1.  
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Figure 3.1 Proton multi-echo acquisition of a chitosan/glycerol sample with a CPMG multi-

pulse sequence. The echo envelope is bi-exponential, with a fast and a slow decay of the 

transverse nuclear magnetism. 

 

Results show that the relaxation of protons in chitosan/glycerol films follow a 

two components bi-exponential function, indicating the existence of two different 

populations, with distinct relaxation behaviour (Hills et al., 1991) (data included in 

Appendix B, Table B.2.1). The two relaxation times determined in each film were 

assigned to water and glycerol, as they were the only components with a proton with 

the capacity to move. Considering the relative size of the water and glycerol 

molecules, the higher relaxation time, corresponding to a more mobile molecule, was 

assigned to the water proton and the lower relaxation times to the glycerol proton. No 

relaxation attributable to polymer mobility was observed in the obtained spectra, even 

if the plasticisers in the system are expected to soften the rigid structure of the 

chitosan polymeric chain (Domjan et al., 2009). 

As discussed above, plasticisers are responsible for modifications in 

biopolymers physical properties (Hills et al., 1991). As referred in previous chapters, 
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water also acts has a plasticiser, since, water molecules can create hydrogen bonds 

with the polymeric chains present in the system, thus increasing the macromolecular 

system free volume and contributing to a more flexible polymeric chain. In this study, 

the molecular mobility in the films was evaluated using nuclear magnetic resonance 

techniques (NMR) to determine relaxation time of the molecules present in the 

system. 

Figure 3.2a shows the T2 of the water molecules against the composition of 

the different films. It is possible to observe that water relaxation time (T2water), did not 

seem to be dependent on the chitosan content in the films, but increases with 

increasing glycerol content. This is due to the plasticiser effect, which reduces the 

intermolecular forces and increases the overall mobility in the matrix (Srinivasa et al., 

2007). On Figure 3.2b, it is possible to observe that water mobility decreased with 

increasing chitosan/glycerol ratio in the film.  

 

 

Figure 3.2 Films relaxation time (T2) for water molecules as function of different chitosan and 

glycerol concentrations (a) and for the ratio chitosan/glycerol in the films (b). Results grouped 

films of the same final thickness: produced with ■ 1%, □ 2% and ● 3% chitosan in the film 

forming solutions. 
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A similar effect was observed in starch/glycerol films (Godbillot et al., 2006). In 

this study, the authors postulate that the number of available binding sites in the 

polymer chain will be “preferentially” occupied with glycerol, while water will only 

occupy polymer binding sites in the case no sufficient glycerol molecules are 

available. Our results for a chitosan/glycerol system follow the same observation: 

when the film glycerol content was not sufficient to occupy all the free sites on the 

polymer chain, the water molecules presented a decreased relaxation time, indicating 

water is bound to chitosan. When the amount of plasticiser molecules increase, the 

polymer binding sites get more and more occupied by the glycerol molecules, leaving 

the water free to move in the chitosan matrix. There was an exception to this 

behaviour: films produced with 2% chitosan and 50% glycerol (marked on Figure 3.2 

with a circle) presented a much lower T2 than the one observed in films with similar 

composition, and a deviate behaviour regarding the expected T2 for the determined 

ratio chitosan/glycerol. This phenomenon has been reported in literature as the 

antiplasticisation phenomenon (Lourdin et al., 1997) attributable to a strong interaction 

occurring between the polymer and the plasticiser, producing a “cross-linker” effect, 

which decreases the free volume and the molecular mobility (Lourdin et al., 1997). 

In order to better evaluate the role of polymer, plasticiser and/or water binding 

and interactions, were compared the results of water mobility with the films water 

content and aw (Figure 3.3). Figure 3.3a shows the relationship between water T2 and 

water content of the films. The water molecular mobility increases with water content, 

which in turn is higher for samples with higher glycerol content. These results confirm 

the above discussed preferred affinity between chitosan and glycerol: i.e. the water 

molecules are free in the matrix to move, because the polymer binding sites are 

occupied with glycerol (Godbillot et al., 2006).  
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Figure 3.3 Films relaxation time (T2) for water molecules as a function of water content (a) and 

water activity (b). Results grouped by films of same final composition: produced with 10% 

glycerol solution (white bullets) and 90% glycerol solution (black bullets). Samples prepared 

with 50% of glycerol are not shown because of the deviant behaviour (antiplasticisation), which 

impairs the data analysis. 

 

Literature reports that water in biopolymer systems can be present in three 

different states: free in the bulk, at the surface and bound (Hills et al., 1996c). Other 

authors have indicated that water activity is the result of the bulk and surface water 

(Mathlouthi, 2001). Since water bounded to the polymeric chain has no mobility, from 

our results, it is clear that the measured relaxation time refers to the water in the bulk: 

in films of the same composition (same total water content) the increase in water 

activity (water at the surface and in the bulk) does not reflect on water mobility (Figure 

3.3b). This observation may be of great value for studies on degradation reactions in 

food systems and contribute for understanding differences in the stability of foods with 

same aw.  

In respect to the mobility of glycerol, different tendencies were observed 

(Figure 3.4). Glycerol T2 decreased with increasing of chitosan concentrations, 

especially for the higher concentrations, again suggesting that glycerol may be closely 

a) 
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bond to the chitosan chain network (Figure 3.4a). This is in accordance with the 

results above described. Again, it is possible to observe the antiplasticisation 

phenomenon in the films produced with 2% of chitosan and 50% of glycerol (also 

marked with a circle). 

 

 

Figure 3.4 Films relaxation time (T2) for glycerol molecules of: a) different chitosan and glycerol 

concentration, and b) glycerol content (mg g
-1

film). Films produced with ■ 1%, □ 2% and ● 3% chitosan in 

the film forming solutions, each group corresponding to thickness of the obtained film. Again, 

antiplasticised samples are not shown. 

 

In Figure 3.4b it is possible to observe the relationship between glycerol 

mobility and glycerol content of films, grouped by films of similar thickness. It shows 

that for films with the same thickness, glycerol mobility increases with increasing 

glycerol content. However, comparing films with approximately the same amount of 

glycerol, T2 decreases with increasing thickness of the film (see for example the data 

points highlighted with a dashed circle). At a first glance these results are unexpected: 

the films present approximately the same amount of chitosan, which would imply that 

an increase in thickness means an increase of the free volume in the matrix. 

However, the thicker films are produced with less water molecules per chitosan 
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molecules in the FFS and thus it is possible that during the drying process more 

glycerol molecules bind to the polymeric chain – hence glycerol is not free to move in 

the matrix of the obtained film. This result supports our previous hypothesis that the 

ratio polymer/total plasticiser in the FFS is critical for the type of bonds formed during 

the films drying. 

 

 3.3.3. Microstructure 

As discussed above, in this study were obtained films with similar composition 

and significantly different thickness (Table 3.1), which may indicate differences in the 

films structure. To investigate such possibility, the films were observed using TEM. 

This microscopy technique allows characterising the interior of the films since the 

electron beam is transmitted through the sample, allowing specific observation of 

structures in the sample (Andreuccetti et al., 2009; Denavi et al., 2009; Tapia-Blácido 

et al., 2011).  

Chitosan films transmission electron images are presented in Figure 3.5, which 

shows the films semicrystalline structure. The black aggregates represent the 

crystalline component, whereas the homogeneous crowd corresponds to the 

amorphous constituent of the sample. As above, samples images are grouped by 

films with similar composition and films with similar thickness.  

Images show that the films with similar thickness present similar structures, 

with visible crystals decreasing with decreasing chitosan content: i.e. films produced 

with 1% chitosan FFS have clearly evident crystals, scattered in matrix, showing a 

heterogeneous feature. As the chitosan content decreases, crystals are not anymore 

observed in the obtained images. However, this may not correspond to an absence of 

crystals in the samples: the crystals may be smaller than the resolution of the 

equipment.  
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Figure 3.5 TEM micrographs of the films produced with different polymer/plasticiser 

concentrations. 

 

Furthermore, films with the same thickness were prepared by FFS with the 

same chitosan content (see Table 3.1). This confirms the above hypothesis that it is 

the chitosan-water ratio in the FFS that define the quantity/type of structures formed in 

the film. These structures are important, because they may interfere with transport 

phenomena in the film and how they are formed can be important information for 

functional films development. For films with similar composition, there is no apparent 

relationship with the structures visible in the image, which may be an indication that 

film composition may not be related with the functionality at macroscopic level (Vargas 

et al., 2011). 



CHAPTER 3 

 

 

69 

 

The results of the microstructure observations also confirm the discussions 

above on the polymer-plasticiser-water interactions and their effect on the molecular 

mobility: the films with more visible crystals correspond to the films with higher water 

relaxation times (higher free volume) – i.e. in the films where chitosan binding sites 

are “occupied” by polymer-polymer interactions in the crystalline lattice, the water and 

glycerol molecules are free to move in the matrix. 

 



CHAPTER 3 

 

 

70 

 

3.4. Conclusions 

Results from this chapter demonstrated that glycerol quantities used in film 

forming solutions were responsible for chitosan concentration obtained in films and, 

consequently for films composition; while film forming solutions polymer/total 

plasticiser ratio determined the thickness (and thus structure) of the films and these 

conclusions were confirmed by TEM. These results can be useful for the development 

of edible films of improved functionality. 

Results on molecular mobility contributed to the understanding of the films 

molecular rearrangement. NMR measurements showed two different behaviours for 

the two components analysed, water and glycerol: while glycerol is mainly bounded to 

the chitosan chain network, the water present in the system is predominantly free from 

the polymeric chain. However, it was possible to infer that for lower glycerol 

concentrations, free chitosan binding sites can also be occupied by water molecules.  

Water content and aw measurements also allowed concluding that not only the 

water content affects the water mobility, but also structural differences in the film may 

influence the water relaxation time. Also it was possible to observe that water mobility 

relates to the water in the bulk and thus complements information on water activity of 

a system.  
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Abstract 

Foods, from a fundamental perspective, are partially crystalline partially 

amorphous systems. Edible films are considered good models for food systems, 

because of their interesting physical properties, quite straightforward matrices, and 

easy reproduction. Chitosan has been thoroughly used in edible films studies. 

The purpose of this chapter is to investigate the relationship between the 

molecular relaxation time in chitosan films, their microstructure (crystallinity) and 

functional properties. Analyses were carried out using data on chitosan/ glycerol films 

prepared with different polymer/plasticiser concentration.  

In general, results demonstrate that there is a relationship between 

macroscopic properties and water and glycerol relaxation times. Moreover, results 

also show that while water is free in matrix, glycerol is linked to the chitosan polymeric 

chains, decreasing intermolecular attractions and increasing free volume, thus 

facilitating molecular migration. Also the data analysis reveals the usefulness of NMR 

and molecular mobility studies in the matrix for characterisation and development of 

polymeric structures.  
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4.1. Introduction 

Foods are essentially semicrystalline matrices, basically composite materials 

with crystalline and noncrystalline regions (Jeck et al., 2012; Spathis and Kontou, 

1998), whose configuration exhibit remarkably complex arrangements at the 

molecular scale (Corté and Leibler, 2007). 

The glass transition temperature concept has been applied in food science and 

technology research (Slade and Levine, 1991) and recognises the noncrystalline 

(amorphous) or partially crystalline state of solid foods, and solids plasticisation by 

water. This concept, that links food stability and glass transition, has been extensively 

studied by the food science and technology community, in order to better understand 

the molecular mobility point of view. Molecular mobility is considered a fundamental 

parameter in knowledge and understanding the dynamic properties of food 

components (Roudaut et al., 2004) Nowadays, in order to better understand this 

parameter, NMR is being used as a powerful technique to understand and evaluate 

molecular mobility of semicrystalline systems, including food systems, since it is able 

to provide information on molecular dynamics of different components in complex 

systems (Domjan et al., 2009) 

As it was mentioned before, the stability of a food system depends strongly on 

its molecular mobility. Thus, studies on relaxation times of food matrices components 

(mainly water) and its correlation with macroscopic properties seems to be of great 

value for studies on degradation reactions and can, as an example, contribute to 

understand differences in the stability of foods with the same water activity. 

Consequently, it is useful to determine how molecular mobility modulates such 

properties of foods (Ludescher et al., 2001). These studies are also of great interest in 

edible films, since they are models for more complex food systems, and also very 

useful products in food technology. Chitosan is a polymer that has been widely used 

due to its characteristics, namely its excellent filmogenic properties (Aider, 2010; 
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Martínez-Camacho et al., 2010; Rinaudo, 2006) It is of great interest to fully 

characterise the solid state physical and physicochemical properties of chitosan films, 

including the molecular mobility that occurs within the polymeric structure, in both 

wide temperature and time scale ranges (Viciosa et al., 2004). Moreover, the 

molecular mechanisms that control functionality in polymeric films, like chitosan, are 

poorly understood and it is important to clarify the solid-state structure and molecular 

mobility for better understanding of the physical properties of semicrystalline matrices 

(Kuwabara et al., 2004).  

The objective of this chapter was to systematically evaluate the link between 

molecular mobility and the thermo-mechanical properties in water glycerol plasticised 

chitosan films, as semicrystalline matrices. 

 

4.2. Materials and methods 

The data used for the analysis presented in this chapter was reported 

previously in chapters 2 and 3. Briefly, chitosan/glycerol films were prepared with 

solutions of different polymer and plasticiser concentrations. The thermal, mechanical 

and water permeability properties of the obtained films after drying and equilibration 

were determined. The transverse relaxation time of the protons was also determined 

using NMR, showing two main proton populations corresponding to water and 

glycerol. 

 

4.3. Results and discussion 

The composition and thickness of the films, resulting from the different 

chitosan/glycerol combinations used in FFS preparation, are presented in Table 4.1. It 

can be observed that films with the same composition can present different thickness 

(this was dependent on the ratio polymer/plasticiser of the FFS), i.e. the same amount 
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of molecules can be more or less dispersed in the matrix. It indicates that in these 

films the polymer may be re-arranged in different structures. 

 

Table 4.1 

Polymer/plasticiser/water composition and thickness of films produced with different 

formulations. 

 

 

 4.3.1. Molecular mobility versus thermal properties 

Figure 4.1a and b present, respectively, chitosan films water T2 and glycerol T2 

as a function of Tg). Glass transition temperature can be correlated with the molecules 

mobility in matrices, since it is considered the macroscopic manifestation of 

cooperative changes in the molecular mobility (Ludescher et al., 2001).  

Both plasticisers (water and glycerol) had similar behaviour. However, water 

presented transverse relaxation times 10 times higher than the glycerol relaxation 

times, for the same glass transition temperature (i.e. for the same film). This is related 

with the available binding sites in the polymer chain that are preferentially occupied 

FFS Films 

            
Samples Chit  

 
(g) 

Gly 
  

(g) 

Ratio  
 

(Chit/ 
Gly) 

Chit content Gly content 
 
 

Ratio 
 

(Chit/ Gly) 

Water 
content 

 
 ( mg g

-1
film ) 

Thickness  
 

(mm) 

Chit  
(%) 

Gly 
(%) 

   mg g
-1

film average mg g
-1

film average    

            
1 10 5 0.63 7.94 388.13 388.13 11.47 13.10 33.84 600.40 0.0642 

3 10 15 1.89 7.94 388.14 14.72  26.37 597.14 0.2844 

            

1 50 5 3.15 1.59 196.13 188.88 31.68 38.93 6.19 810.17 0.0556 

3 50 15 9.46 1.59 181.63 46.18  3.93 772.19 0.2348 

            

1 90 5 5.67 0.88 158.15 176.96 47,90 50.60 3.30 755.97 0.0605 

3 90 15 17.10 0.88 195.71 53,.36  3.67 750.93 0.2452 
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with glycerol, leaving the water molecules free to move in the system (Godbillot et al., 

2006). 

 

 

Figure 4.1 Films water (a) and glycerol (b) relaxation time (T2), at room temperature, as a 

function of glass transition temperature (Tg). Empty symbols correspond to thinnest films 

(range between 0.0556 and 0.0642 mm); fill symbols correspond to thickest films (range 

between 0.2348 and 0.2844 mm). Different data points symbols indicate the different 

compositions (see Table 4.1): 

 

 

At room temperature, T2 decreases with increasing Tg (Figure 4.1), and this is 

in accordance with the classic polymer theory described before. These results show 

also that for similar thickness, films with different composition (see Table 4.1) present 

different Tg, i.e. free volume, stressing the importance of these two variables on the 

thermal behaviour of the system.  

This is also evidenced on the films melting endotherm and the relationship with 

water and glycerol relaxation times (Figure 4.2). The melting endotherm is the energy 

required to melt the crystals present in the matrix and thus, an indirect measurement 

of the crystallinity.  

-176.96 Chit and 50.60Gly  - 388.13 Chit and 13.10Gly;   - 188.88 Chit and 38.93Gly;  
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Figure 4.2 Films water (a) and glycerol (b) relaxation time (T2), as a function of films melting 

enthalpy (Δh). Empty symbols correspond to thinnest films (range between 0.0556 and 0.0642 

mm); fill symbols correspond to thickest films (range between 0.2348 and 0.2844 mm). 

Different data points symbols indicate the different compositions (see Table 4.1): 

 

 

A relationship between crystallinity and relaxation times for both molecules can 

be observed: T2 increases with crystallinity (larger absolute value of Δh). Literature 

reports that the presence of crystals can change the properties of the amorphous 

regions. This is because the polymeric chain is organised in the crystalline lattice and 

the polymer binding sites are “occupied” with polymer-polymer bonds. As such, two 

factors contribute to the increase of the transverse relaxation time with crystallinity: i) 

the free volume of the system increases, and ii) the water and glycerol molecules are 

free to move in the matrix.  

 

 

 

 

-176.96 Chit and 50.60Gly  - 388.13 Chit and 13.10Gly;   - 188.88 Chit and 38.93Gly;  



CHAPTER 4 

 

 

79 

 

4.3.2. Molecular mobility versus mechanical properties 

The relationship between molecular mobility and films structure is also 

observed on the mechanical properties. Figure 4.3 presents the water (a) and (c) and 

glycerol (b) and (d) relaxation times as a function of EB and TS.  

These properties are critical for films development, since they reflect their 

ability to perform in different applications (Chen and Hwa, 1996; Leceta et al., 2013). It 

can be observed that when T2 increases, EB increases in an exponential relationship, 

while TS decreases also exponentially – showing clearly an effect of molecular 

mobility on mechanical properties. Above, it was concluded that films with higher 

molecular relaxation times are more crystalline and have more free volume. Figure 4.3 

allows also to conclude that these films are more deformable (high EB) and easier to 

break (low TS). Again, the molecular bonds and molecular rearrangement are the key 

point. In such systems there are two main types of bonds: i) strong polymer/polymer 

interactions, and ii) weak polymer/plasticisers and plasticiser/plasticiser bonds. A 

similar co-relation between increased crystallinity on the mechanical properties has 

been reported in the literature (Bourbon et al., 2011; Ziani et al., 2008). 
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Figure 4.3 Films water and glycerol relaxation time (T2) as a function of EB (respectively, 

Figures 4.3a and b) and TS (respectively, Figures 4.3c and d). Empty symbols correspond to 

thinnest films (range between 0.0556 and 0.0642 mm); fill symbols correspond to thickest films 

(range between 0.2348 and 0.2844 mm). Different data points symbols indicate the different 

compositions (see Table 4.1): 

 

 

 

 

 

 

-176.96 Chit and 50.60Gly  - 388.13 Chit and 13.10Gly;   - 188.88 Chit and 38.93Gly;  
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4.3.3. Molecular mobility versus water vapour permeability 

Figure 4.4 displays water (a) and glycerol (b) T2 against WVP. It is possible to 

observe two different behaviours depending on the studied film thickness.  

For thicker chitosan films (range between 0.2348 and 0.2844 mm), WVP 

increases with T2, and this may be related with the increase of Brownian motion in the 

matrix with higher mobility, thus increasing the Fickian mass transport phenomena 

(Pinheiro et al., 2013), i.e. higher molecular mobility makes the diffusion of water 

through the film easier. For the thinner films (range between 0.0556 and 0.0642mm), 

WVP is almost constant, with no apparent correlation with molecular mobility. This 

may be due to a lower resistance to mass transport – making the structural 

differences in the matrix not sufficient to influence the mass transfer rate (Crank, 

1975).  

 

 

Figure 4.4 Films water (a) and glycerol (b) relaxation time (T2) as a function of water vapour 

permeability (WVP). Empty symbols correspond to thinnest films (range between 0.0556 and 

0.0642 mm); fill symbols correspond to thickest films (range between 0.2348 and 0.2844 mm). 

Different data points symbols indicate the different compositions (see Table 4.1): 

 

 

-176.96 Chit and 50.60Gly  - 388.13 Chit and 13.10Gly;   - 188.88 Chit and 38.93Gly;  
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Moreover, thicker films have higher WVP (Figure 4.4). This effect has been 

reported in the literature (McHugh et al., 1993; Zivanovic et al., 2007) and was 

attributed to an increase of the relative humidity in vicinity of the films, altering the 

water vapour kinetics. 

WVP increases with crystallinity (larger absolute values of Δh) (Figure 4.5), 

again supporting that for samples with higher crystallinity there is a higher free volume 

in the matrix. 

 

 

Figure 4.5 Samples crystallinity (Δh) as function as water vapour permeability (WVP). Empty 

symbols correspond to thinnest films (range between 0.0556 and 0.0642 mm); fill symbols 

correspond to thickest films (range between 0.2348 and 0.2844 mm). Different data points 

symbols indicate the different compositions (see table 4.1.): 

 

 

 

  

-176.96 Chit and 50.60Gly  - 388.13 Chit and 13.10Gly;   - 188.88 Chit and 38.93Gly;  
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4.4. Conclusions 

The relationship between the T2, the microstructure and the macroscopic 

properties of water/glycerol plasticised chitosan films was systematically analysed and 

discussed.  

At room temperature, T2 decreases with the increase of Tg, according to 

classic polymer theory. The crystallinity increased with increasing water and glycerol 

mobility, showing that once the polymeric chains are organised in the crystalline 

lattice, the interaction polymer/plasticiser is minimised, the free volume of the system 

increases and the water and glycerol molecules are thus free to move in the matrix.  

The deformability (EB) increased with water and glycerol relaxation times, 

while TS decreased, showing again the impact of the polymer/polymer and 

polymer/plasticiser bonds effect on the properties of the system. WVP was also 

correlated with molecular mobility. This was dependent on films thickness; in thicker 

films WVP increases with relaxation time – indicating that the molecular mobility is 

related with the Brownian motion in the matrix, hence making the diffusion of water 

through the film easier; for the thinner films no apparent correlation with molecular 

mobility was found.  

All these results show the usefulness of NMR and molecular mobility studies 

for characterising and developing polymeric structures with improved functionality. 

Moreover, such concept can be associated to food science and be of great value for 

studies on degradation reactions and stability of more complex food systems. 
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Abstract 

Molecular mobility is a fundamental parameter which reflects the dynamic 

properties of food components and contributes to food degradation reactions 

comprehension. Fresh-cut fruits have become an important food market segment. 

However, processing of fruits promotes faster physiological deterioration, biochemical 

changes and microbial degradation. The purpose of this chapter was to use NMR 

methodology as a tool to evaluate fresh-cut fruit quality, during storage at refrigerated 

conditions. The fresh-cut melon and pear transverse relaxation times (T2) were 

measured for a period of 7 days of storage, at 5 ºC. The relationship between the 

obtained values, microstructure and quality parameters was investigated. In general, 

results show the existence of one class of water fluidity in the system, the one present 

in cells after processing. T2, a measure of this fluidity, is affected by processing and 

storage time. Also, a close relationship between T2 and quality parameters of total 

colour difference (TCD), firmness and aw was found. 
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5.1. Introduction 

Stability of biological systems, including foods, depends strongly on molecular 

mobility (Roudaut et al., 2004) and water “availability”. This availability is a 

manifestation of how freely water molecules can participate in reactions, namely 

degradation reactions (Ruan and Chen, 1998). Water activity has been considered, 

for a long time, as a primary guideline for safety and quality control of foods (Labuza, 

1977). However, the limitation of this measurement has been expressed (Hills et al., 

1996a; Mathlouthi, 2001; Slade and Levine, 1991), and nuclear magnetic resonance 

spectroscopy has evolved to become a powerful tool to probe the structure and 

dynamics of food constituents in solid state. Specifically, 1H NMR has been used to 

investigate water dynamics and physical structure of foods through analysis of nuclear 

magnetisation relaxation times (Li et al., 2000). Foods and biological materials consist 

largely of water and macromolecules rich in protons and, since water protons are 

major contributors to the proton relaxation, the interactions between water and 

macromolecules represent the most important factors affecting the proton relaxation 

process (Ludescher et al., 2001). In this way, this could be an interesting technique to 

evaluate food quality during storage period, since degradation reactions, water 

interactions, structure and chemical compounds changes result in altered NMR 

properties (Ludescher et al., 2001).  

Minimally processed fruit has become an important market segment due to the 

increasing demand for fresh, healthy and convenient foods (Rico et al., 2007). 

However, it is well known that processing fruits enhances physiological and 

biochemical changes, and microbial degradation, which result in degradation of fruit 

colour and texture. Fresh-cut melon and pear degradation during storage may be 

characterised by many physical and chemical parameters, such as changes in colour, 

firmness, aroma (Oms-Oliu et al., 2008) and aw. Due to processing operations, a great 
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number of cells are disrupted, which induces the release of enzymes and their 

substrates resulting in accelerated quality losses. 

The purpose of this chapter was to utilize NMR parameters to evaluate water 

behaviour in fresh-cut melon and pear along refrigerated storage and find and 

understand a relationship between water molecular dynamics and some of the most 

important physiological quality parameters, i.e. colour and softening rate. 

Material and methods will be presented as a common section while results and 

discussion will be separate in section A for melon and section B for pear. Due to the 

biochemical and structural differences between samples, separate sections will be 

helpful for the interpretation and explanation of the results. 

 

 

5.2. Materials and methods 

 

 5.2.1 Fruit material, processing, packaging and storage conditions 

‘Piel de Sapo’ melons and ‘Rocha’ pear were obtained at a local supermarket, 

at commercial maturity. In order to characterise the fruit initial maturity state, soluble 

solids content was determined using a refractometer method (Amaro, 2012; 

Simandjuntak et al., 1996). Fruits were carefully inspected for bruising and 

compression damage and only those without visual defects and uniform in shape and 

size were selected for processing and analysis. 

Melon and pear fruits were washed in running cold water, dipped in 100 µg L−1 

hypochlorite solution for 2 min, rinsed with deioniser water and allowed to drain. All 

cutting tools and containers were sanitised with 70% ethanol and allowed to dry 

before usage. 

The melon rind was removed with a sharp stainless steel knife, the blossom 

and stem ends were discarded, placental tissue and seeds were removed, and the 
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mesocarp was prepared in cubes of 2.5 cm3. Pears were cut into longitudinal slices 

(ca. 10–20 mm thick) also with a sharp stainless steel knife. 

Melon cubes or pear slices were randomly placed in vented polypropylene 

clamshells (~175 g) and stored at 5 ºC for 7 days. To avoid the accumulation of 

ethylene and carbon dioxide inside the packages (Vilas-Boas and Kader, 2007), 

clamshells were perforated with single 6 mm vents. Samples were analysed at 

different days after cutting preparation. 

 

 5.2.2. Transverse relaxation times measurements 

A Bruker AVANCE III solid state NMR spectrometer (300MHz for proton) was 

used to determine the samples transverse or spin-spin relaxation times, T2. The 

transverse relaxation time was obtained with a Carr-Prucell-Meiboom-Gill (CPMG) 

pulse sequence with a 90º-180º pulse spacing of 500 ms and a repetition time of 15 s. 

The magnetisation was recorded after 18 echoes arrays, with the precaution that the 

number of echoes always permits to define an exponential decay for the 

magnetisation. The samples were cut in small cylinders, 1.5 cm high, and placed in a 

5 mm standard NMR tube, for the T2 measurement. 

For each sampling day after cutting, three samples were studied for their 

transverse relaxation time evaluation. 

 

 5.2.3. Microscope techniques 

Optical and scanning electron microscopes were used to observe any 

microstructural changes that occurred in fruit samples during storage. Hence, at each 

storage time (0, 2, 4 and 6 days), a thin surface layer of the fruits tissue was removed, 

at 3 different sections and in duplicate, for both type of microscopy techniques. 

For the optical microscopy, the fruit sample was emerged to staining, in a 

solution of toluidine blue O at 0.5% (w/v), for 2 hours. The stain solution was 
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disposed, and the fruits stained portions were washed in ethanol at 97%, during 10 

seconds, and then washed with water during 30 seconds. Then the stained tissues 

were dried in microscope slides in a desiccator, during 24 hours. After this time, 

visualisation was made using a final magnification of 400 times.  

Typical fixation of the material for SEM investigations involves dehydration, 

which can remove or alter lipids that form the wax coating on the fruit surface, and 

critical point drying can shrink and destroy tissues. Therefore, a modified and 

simplified methodology was used in order to prevent destruction of the epicuticular 

wax. The cut samples were wiped with a paper towel, carefully mounted onto stubs 

and examined under a JEOL-5600 Lv microscope (Tokyo, Japan), operated under low 

vacuum mode, using a spot size of 30 and a potential of 10-15 kV. All analyses were 

performed at room temperature (20 ˚C), using a 200 times magnification. For both 

techniques, photographs were obtained of three sections cut from each fruit 

 

 5.2.4. Measuring quality parameters 

The fruit quality parameters evaluated were total colour difference (TCD), 

softening rate and water activity.  

Colour of the fresh-cut fruit surface was measured in the CIE L*a*b* colour 

space with a Konica-Minolta CR-400 chromameter (Osaka, Japan) equipped with a 

D65 illuminant and the 2º observer for colour interpretation. In this scale, L* ranges 

from 0 (black) to 100 (white), a* indicates the degree of greenness (for negative 

values) and the degree of redness (for positive values). Axis b* also ranges from 

negative to positive values indicating, respectively, degree of blueness to yellowness. 

L*0, a*0 and b*0 were evaluated from freshly cut fruit (time 0). Colour changes were 

assessed using TCD, calculated through the formula 

 

TCD=√ (L*-Lo*) 
2+ (a*-ao*) 

2+ (b*-bo*) 
2                                                         (5.1) 
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One measurement was made in each five melon cubes and pear slices from 

three duplicated clamshells per replicate.  

Firmness was measured using a TA-XT2 Plus texture analyser (Stable Micro 

Systems, Surrey, UK) equipped with a 5 kg load cell. The force to drive a cylindrical 

probe, with 5 mm diameter to perforate 5 mm into the tissue, at a speed of 1.5 mm s-1 

was recorded (Amaro et al., 2013). One measurement was taken on the lateral 

surfaces of each five cubes/slices from three clamshells, respecting to one replicate, 

from a total of two replicates, for each sampling day. 

Water activity was measured using a dew point hygrometer (Aqualab Series 3, 

Decagon Devices Inc., Pullman, WA, USA). Three measurements were performed for 

each replicate and for each sampling day. 

The quality data was subjected to statistical analysis performed using the 

software packages STASTICS© 6.0 (StatSoft, Tulsa, OK). An individual package 

constituted an experimental unit which was used as one replicate on each sampling 

day. Three replicated packages were analysed. The experiment trial was carried out 

twice.  
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5A.3. Results and discussion 

Maturity stage is an important factor that may affect the intensity of wound 

response in fresh-cut tissues (Beaulieu and Lea, 2007; Watada and Qi, 1999). These 

variances in samples maturity stage contribute, along with the natural variability 

between complex biological systems, for the differences obtained between the 

replicates. To characterise the melon maturity stage, the soluble solids content (SSC) 

was measured. The initial SSC ranged between 8.6 and 10.6, with no significant 

differences observed throughout storage. Melon SSC undergoes minor changes 

during postharvest storage of whole or fresh-cut fruit (Portela and Cantwell, 1998).  

 

 5A.3.1. Transverse relaxation times 

T2 of the samples was obtained with the purpose of evaluating water 

molecules dynamics and environment during the fruit storage degradation process. 

The CPMG data was analysed as a continuous distribution of exponential relaxation 

times with CONTIN program (Provencher, 1982), and the results are presented in 

Figure 5A.1 (data in Appendix C, Table C.1.1). 
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Figure 5A.1 Distribution of water relaxation time (T2) in fresh-cut melon measured at 300 MHz 

and room temperature. 

 

It is clear from Figure 5A.1 that all values of T2 range from about 50 ms to very 

high values (<10 s) presented in the samples, with only one pronounced maximum. In 

the first 24 hours after processing, the maximum amplitude T2 value evolves from 329 

to 285 ms. At the third day of storage, the maximum amplitude T2 value is 382 ms and 

after that remains unchanged at 442 ms until day 7. 

Comparing Figure 5A.1 with the results on whole apples, kiwifruits and pears, 

reported elsewhere (Hernández-Sánchez et al., 2007; Hills and Remigereau, 1997; 

Tylewicz et al., 2011), where pools of water are attributed to vacuole, cytoplasm and 

cellular wall, in our experiment, only one peak for water relaxation times was detected, 

probably due to loss of cellular compartmentation, as a consequence of wounding.  

Regarding the maximum amplitude, T2 value shifts to shorter values in the first 

24 hours after processing. Literature reports that after wounding there is major tissue 

disruption, whereby enzymes and substrates sequestered in different organelles come 

into contact (Beaulieu and Gorny, 2001) and signalling-induced wound responses are 

initiated with microbiological, enzymatic, and physicochemical reactions 
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simultaneously taking place, decreasing water availability (Artés et al., 2007) 

possibility due to an increase in ‘water binding’ (Chen et al., 1997), as the subcellular 

structures are disrupted and the release of solutes that were retained in the organelles 

occurs, and the consequent association of these solutes with water through hydrogen 

bonds. After this 24 hour period, where metabolic rate is elevated, water is 

continuously released from the physical barriers in the system and the observed T2  is 

more often at values closer to the free water T2. By day 4 of storage, T2 maximum 

amplitude occurs for the highest T2 value and remained constant until the end of 

storage. This may indicate that by day 4 of storage, cells reach a threshold where 

metabolic rate is decreased, wounding reactions are diminished along with increased 

membrane degradation and turgor loss. These alterations lead to a higher water 

transverse relaxation time expression in cells. This interpretation is according with 

quality changes data obtained and discussed in point 5A.3.3.  

The maximum amplitude T2 value evolving to higher T2 values with storage 

time can be interpreted as the enhanced range of water relaxation time detected and 

attributed to cell structure disorder due to the occurrence of membrane rupture and 

plasmolise (Toivonen and Brummel, 2008). Once this water proton behaviour 

indicates an alteration in cellular structure and also in water solute bonds, which can 

be associated with fresh-cut fruits quality loss during the storage period. This relation 

will be explored in the following sections. 

 

 

 5A.3.2. Microstructure analysis 

The use of two different techniques allows obtaining complementary results: 

with light microscope (LM) it is possible to get a qualitative description of the samples 

structure, while scanning electron microscope (SEM) is used to examine surfaces, 

with an improved resolution (Kaláb et al., 1995).  
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Figure 5A.2 presents the LM photos of the transversal cuts of fresh-cut melon 

(complementary microscope images in Appendix C, Section C.2.1). Toluidine Blue, 

used as dye, is especially useful for examination of fruit tissues, more specifically the 

fruit parenchyma cells, which constitute the fruit mesocarp (Kaláb et al., 1995). At day 

0 of storage, intercellular spaces and vesicles are visible in fresh-cut melon mesocarp. 

All spaces presented are round and turgid with a visible cellular wall structure. This 

visual definition is mainly attributed to the water inside the cells. By day 4 of storage, it 

is already possible to observe a decrease in cell wall strength, which could be related 

with its pectin solubilising (Fernandes et al., 2008). The observed changes correlate 

with the T2 distribution function, discussed in the previous section, and are also 

supported by the changes in the quality parameters measurements discussed below 

(see section 5A.3.3). 

As for the images obtained with SEM, Figure 5A.2 shows, for day 0, closely 

bonded cells and defined cellular walls, reinforcing the results obtained with LM. In 

fact, it is actually possible to observe chloroplasts. Chloroplasts are an important 

cellular organelle, as they contain chlorophylls and carotenoids that are pigments 

responsible for melon colour, as discussed in section 5A.3.3. After 4 days of storage, 

image shows a great number of cell walls broken down and the few remaining cells 

with severely distorted walls. This phenomenon stimulates the cellular disorganisation 

and cell size and shape variations. The cell plasmolise is also seen superficially by 

SEM, and confirms the observations of optical microscopy. Also after day 4, the 

observation of chloroplasts becomes more difficult. 
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Figure 5A.2 Light and scanning electron microscope images of fresh-cut melon, at different 

days of storage. (A-cellular wall; B-cellular organelles; C-chloroplasts; D-plasmalemma). 

 

 5A.3.3. Quality parameters 

As discussed in the introduction section, colour, firmness and water activity are 

considered important parameters in fresh-cut fruit quality assessment (Figure 5A.3) 

(results in Appendix C, Table C.3.1). Differences found between measurements are 

explained by the fruits initial maturity and the natural variability of the complex 

biological systems, as explained before. 
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Figure 5A.3 Fresh-melon quality parameters: a) total colour difference (TCD), b) firmness, and c) water activity (aw), during 7 days of storage. Vertical 

bars present the mean standard error. 
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Figure 5A.3a presents melon samples TCD tendency, along storage. As 

expected, and in accordance with literature (Toivonen and Brummel, 2008), TCD 

increases with storage time. In the specific case of fresh-cut melon, changes in colour 

are attributed to different biochemical processes, mainly chlorophyll and carotenoids 

degradation, since melon is not very susceptible to surface browning (Munira et al., 

2013; Toivonen and Brummel, 2008). The increase in colour changes observed during 

fresh-cut melon storage is generally attributed to translucency or water-soaking 

symptoms (Munira et al., 2013; Portela and Cantwell, 1998). Particularly, literature 

reported (Portela and Cantwell, 1998), also for a non-climacteric melon, that colour is 

attributed to the combination of low concentration of carotenoids and chlorophylls in 

plastids, that are inside the chloroplasts. As the storage time increases and the 

plastids degradation occurs, the pigment concentrations in melon changes and 

consequently so does colour.  

Fresh-cut melon firmness during the storage period is shown in Figure 5A.3b. 

Results demonstrate a rapid increase in firmness loss with storage time, particularly 

until day 4 of storage. At the end of storage, samples showed a degree of firmness 

around 30% (expressed as percentage of loss compared with the firmness measured 

at day 0). These changes in melon cubes firmness during storage were already 

reported for other melon cultivars and also for ‘Piel de Sapo’ (Aguayo et al., 2004). 

Fresh-cut melon is very susceptible to softening during storage, even under low 

temperatures, due to enzymatic degradation of the cell wall, specifically the middle 

lamella, and to loss of cell adhesion (Toivonen and Brummel, 2008). The enhanced 

activity of melon cell wall hydrolases in the first hours after processing, along with the 

transformation of protopectin to water-soluble pectin, lead to later alterations in 

structural features, namely thickness of the cell wall size and shape of cells, and 

volume of intercellular spaces (Rojas et al., 2001; Toivonen and Brummel, 2008) 
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These modifications are according to the observed light and scanning microscope 

images, presented in Figure 5A.2. 

Figure 5A.3c shows fresh-cut melon samples water activity decreasing along 

storage. Literature reports water activity as a parameter for food stability control, 

namely chemical reactions in foods (Labuza, 1977). As discussed in section 5A.3.1 

the decrease in this parameter may be due to the fact that water is being used for the 

physic and biochemical degradation reactions and/or microbial growth, occurring 

during the storage period.  

 

 5A.3.4. Relaxation time versus quality parameters 

In Figure 5A.4 it is possible to observe the behaviour tendency between 

maximum distribution T2 value and fresh-cut melon quality parameters, TCD, 

softening rate and water activity. Figure 5A.4a) shows the maximum distribution T2 

value against the total colour difference. Although a weak tendency was noticed, it is 

possible to observe T2 increasing with TCD. This tendency may result from 

translucency or water-soaking symptoms derived from disruption of cellular structures. 

As discussed above, alterations in fresh-cut melon colour are mainly attributed to 

altered combination of low carotenoids and chlorophylls in plastids (Portela and 

Cantwell, 1998), and not so related with water system dynamics.  

Figure 5.4b demonstrates the relationship between maximum distribution T2 

value and firmness loss/softening. As expected, T2 maximum value increases with the 

melon softening (lower firmness). At day 4, maximum distribution T2 value reaches the 

highest value, while softening of fresh-cut melon tissue stabilises from this day on.  
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Figure 5A.4 Fresh-cut melon relaxation time (T2) as function of a) total colour difference (TCD), b) firmness, and c) water activity (aw).  
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The softening together with cell wall degradation and loss of physical barriers, 

possible to observe by microscope images in Figure 5A.2, allows the leakage of 

cellular osmotic solutes into the apoplastic space, which then results in altered water 

mobility/availability (Toivonen and Brummel, 2008).  

Water activity relationship with water relaxation time is presented in figure 

5A.4c). It is possible to observe a tendency between these two parameters, i.e., cell 

water maximum distribution T2 value decreases with increasing aw. Despite of aw 

being considered as a critical parameter of food systems stability (Labuza, 1977), the 

usual measuring methods do not consider microstructure nor the possibility that there 

may be IocaI regions differing in water content, and presumably, water availability 

(Hills et al., 1996a; Mathlouthi, 2001). These results demonstrate that, considering the 

lowest water activity values, the increase in this parameter does not reflect on water 

mobility. Although it is possible to observe a relationship between these two 

parameters, water activity measurements may not provide, for example, the 

relationship of the evolution of the structural changes of the food material with the 

changes of the water-macromolecules and water-water interactions that occur during 

food shelf-life (Wang and Liapis, 2012), and studies have stressed that under many 

common circumstances the thermodynamics activity of water is far less relevant to 

processing and storage than structure-related properties, which can restrict the 

mobility and diffusion of the reactants (Anese et al., 1996; Slade and Levine, 1991).  
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5B.3. Results and discussion 

 As was discussed in point 5A.3, maturity stage is an important factor that may 

affect the intensity of wound response in fresh-cut tissues (Beaulieu and Lea, 2007; 

Watada and Qi, 1999). Furthermore, the natural variability between complex biological 

systems, in this case pear fruits, contribute for the differences obtained between the 

three true replicates. To characterise pears maturity stage soluble solids content 

(SSC) was measured. The initial SSC ranged between 12.9 and 14.2 with no 

differences observed during storage time. 

 

 5B.3.1. Transverse relaxation times 

 As happened for melon samples, fresh-cut pear transverse relaxation time (T2) 

was determined with the purpose of evaluating water molecules dynamics and 

environment during fruit storage time. Figure 5B.1 shows the distribution of water 

proton relaxation times of fresh-cut pears during storage (data in Appendix C, Table 

C.1.1). It can be observed that all values of T2 from about 50 ms to very high values 

are presented in the fruit samples, with only one pronounced maximum of T2 value 

This fact means that water, normally stored in different sub-cellular organelles in intact 

cells and often characterised by different proton relaxation times, attributed to 

vacuole, cytoplasm and cellular wall relaxation times was in our experiment free from 

organelles, as a consequence of pear processing (Hernández-Sánchez et al., 2007; 

Hills and Remigereau, 1997; Tylewicz et al., 2011). Thus, the one maximum peak of 

relaxation time detected can be attributed to the total water after the loss of cellular 

compartmentation as a consequence of wounding.  

 Similarly with fresh-cut melon samples, after 24 hours of processing, the 

maximum amplitude values of T2 shifted to lower values. Wounding, causes cell 

disruption whereby enzymes and substrates sequestered in different organelles come 

in contact (Beaulieu and Gorny, 2001). As a consequence, a signalling-induced 
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wound response takes place and enzymatic, microbiological, physicochemical 

reactions initiate. According to the literature, as the subcellular structures are 

disrupted and the release of solutes that were retained in the organelles occurs, with 

the association of this solutes with water through hydrogen bounds a decrease in 

water availability or an increase in ‘water binding’ can be detected (Artés et al., 2007; 

Chen et al., 1997). After this first day, where metabolic rate is elevated, water is 

continuously released from physical barriers in the system and the relaxation values 

occurred more often at values closer to free water. By day 3 of storage, T2 maximum 

amplitude occurs for the highest T2 value and, after this day, decreases until the end 

of the storage period. The maximum amplitude T2 value evolving to higher T2 values 

with storage time can be interpreted as the enhanced range of water relaxation time 

detected and attributed to cell structure disorder due to the occurrence of membrane 

rupture and even plasmolise (Toivonen and Brummel, 2008). The decrease of the 

signal values from water protons suggests that cells can undergo shrinkage, which 

can indicate a dehydration phenomenon (Tylewicz et al., 2011). This interpretation is 

in agreement with the quality parameters results discussed in point 5B.3.3. 
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Figure 5B.1 Distribution of transverse water proton relaxation times (T2) in fresh-cut pear 

measured at 300 MHz and room temperature. 

 

 5B.3.2. Microstructure analysis 

 Similarly to what was performed to fresh-cut melon, LM and SEM techniques 

were used (complementary microscope images in Appendix C, Section C.2.2). 

 LM images showed the transversal cuts of fresh-cut pear. At day 0 intercellular 

spaces are visible in all samples mesocarp. Spaces are round and turgid with visible 

cellular wall structure. As for the images obtained with SEM, figure 5B.2 shows, for 

day 0, closely bonded cells and defined cellular walls, reinforcing the results obtained 

with light microscope (LM) and corresponding to what happen with fresh-cut melon 

samples. Also, LM allows the observation of the sclereids or stone cells, with a shape 

of star and responsible for the gritty appearance and grainy mouthfeel of pears 

(Reeve, 1970). Image shows a loss of definition of these structures with storage. 

Images from day 4 show the sclereids spreading along the matrix. This fact may be 

related with the loss of cells natural angular morphology and integrity, together with 

the loss of compactness and coherence for whole tissue, stimulated by the great 

number of cell wall disruption and could contribute to explain the T2 decrease 
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obtained after day 3. By this day the loss of sclereids definition may decrease the free 

volume in the matrix and hence the mobility of the water proton. The phenomenon is 

also seen superficially by SEM, and confirms the observations of optical microscopy. 

 

Figure 5B.2 Light and scanning electron microscope images of fresh-cut pear, at different 

days of storage. (A-cellular wall; B-sclereids; C-cellular organelles; D-plasmalemma). 

 

 

 

 

 

B

  

Day 0 

Day 2 

Day 4 

Day 6 

LM SEM 

B

  

A 

A

  

C

  

D 
D 

B

  

B

  



CHAPTER 5 

 

 

113 

 

 5B.3.3. Quality parameters 

 Figure 5B.3 shows the quality parameters: total colour difference (a), firmness 

(b) and water activity (c) of fresh-cut pears, along 7 days storage (results are included 

in Appendix C, Table C.3.2).  

 Figure 5B.3a shows that TCD increases drastically in the first 24 hours and 

after this period remained almost constant. This colour differences increases was 

already described in the literature (Gomes et al., 2010; Toivonen and Brummel, 2008). 

Colour alterations in pears are attributed to the browning reactions in which the 

mechanism involves the biochemistry of the polyphenol oxidase (PPO) enzyme and 

its interaction with polyphenols and oxygen (Martinez and Whitaker, 1995; Toivonen 

and Brummel, 2008). In this specific case, the browning detected on the surfaces of 

pear slices cannot be strictly considered a metabolic change, as it is also a 

biochemical reaction of a cell-free extracts as consequence of membrane damage. 

PPO previously located in plastids and phenolic compounds previously sequestered in 

the vacuole come in contact (Marangoni et al., 1996) then, PPO catalyses the 

oxidation of o- diphenols into o-quinones which  polymerise forming dark melanins 

(Franck et al., 2007; Toivonen and Brummel, 2008). 

 Results from firmness are shown in Figure 5B.3b. From day 1 until day 3 it is 

observed a decrease in this parameter, around 10%. This is probably due to the loss 

of membrane integrity, cellular leakage, and the flooding of intercellular spaces 

(Soliva-Fortuny et al., 2002; Toivonen and Brummel, 2008). After day 3 of storage, an 

increase in the firmness of fresh-cut pears was observed. Fresh-cut pears become 

harder in relation to day 0 (around 10 and 15% expressed as percentage of the initial 

value of firmness). Increases in firmness of fresh-cut pear have been observed when 

puncture methods are used (Dong et al., 2008; Gomes et al., 2010; Soliva-Fortuny et 

al., 2004). This increase in firmness can be caused by the partial dehydration of the 

cut surface and the development of abrasive surface texture, by the heterogeneous 
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distribution of scleride cells in the pear tissue, or by maturation differences among 

individual pieces (Lesage and Destain, 1996). The increase in firmness at day 3 of 

storage coincides with the maximum water relaxation time as described in section 

5B.3.1. 

 Figure 5B.3c shows that aw decrease in all pear samples during storage. 

Literature reports aw as a parameter for food stability control, namely chemical 

reactions in foods (Labuza, 1977). As discussed in section 5B.3.1 the decrease in this 

parameter suggests that water is being used for the physic and biochemical 

degradation reactions and/or microbial growth, occurring during the storage period. 
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Figure 5B.3 Fresh-pear quality parameters: a) total colour difference (TCD), b) firmness, and c) water activity (aw), during 7 days of storage. Vertical 

bars present the mean standard error. 
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 5B.3.4. Relaxation time versus quality parameters 

 Figure 5B.4 shows the behaviour tendency between maximum distribution T2 

value and pear quality parameters. The maximum distribution T2 value against TCD is 

shown in Figure 6.4a where it is observed a decrease in TCD with T2. As discussed in 

section 5B.3.3, alterations in colour are largely a result of biochemical reactions 

occurring in the cell-free environment of the cell structure with water playing a vital 

role for the evolution of these biochemical degradative reactions. 

 Figure 5B.4b demonstrates the relationship between maximum distribution T2 

value and firmness. T2 maximum value increases with pear firmness loss/softening, 

as expected. The cell wall degradation together with cell structure alteration/ loss (e.g. 

sclereids spreading along the matrix), both observed along the storage period, by 

microscope images in Figure 5B.2, allows firmness modifications with impact in free 

volume and in the leakage of cellular osmotic solutes into the apoplastic space, which 

then result in altered water mobility/ availability. 

 Figure 5B.4c demonstrates the relationship between water activity and 

maximum distribution T2 value. It can be seen that aw increased with water relaxation. 

Despite of aw be considered as a critical parameter of food systems stability (Labuza, 

1977) the usual measuring methods do not consider microstructure or the possibility 

that there may be IocaI regions differing in water content, and presumably, of water 

availability (Hills et al., 1996a; Mathlouthi, 2001). 

 Although, it was recognised a relationship between aw and water relaxation 

times, water activity may not provide the relationship of the evolution of the structural 

changes of the food material with the changes of the water-macromolecules and 

water-water interactions that occurring during food shelf-life (Wang and Liapis, 2012).  
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Figure 5B.4 Fresh-cut pear relaxation time (T2) as function of a) total colour difference (TCD), b) firmness, and c) water activity (aw). 
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5.4. Conclusions 

 Water proton relaxation time from fresh-cut melon and pear samples was 

analysed during 7 days of storage. The distribution function for T2 presents one peak 

corresponding to cells total water. The peak position (T2) decreased in the first day of 

storage, indicating an increase in biochemical reactions and water-solutes bonds in 

the first 24 hours after processing. 

Respecting to fresh-cut melon this peak position increased from day 1 to day 

4, remained constant until the end of storage. This indicates cellular structure 

degradation, where water became free from physical barriers. For fresh-cut pear the 

peak position behaviour was slightly different, i.e. increased from day 1 to day 3 

(showing a cellular structure degradation where water became free from physical 

barriers), and decreased again until the end of storage. This decrease of the water 

protons signal values, observed after day 3, suggests that cells can undergo 

shrinkage indicating a dehydration phenomenon, or could be associated to the cellular 

disassembly of the stone cells. Both melon and pear results are supported by light 

and scanning electron microscope. 

 Samples quality parameters analysed demonstrated a close relationship with 

the value of T2 where the distribution function is maxima. These relationships are 

explained by several phenomena such as loss of membrane integrity, cellular 

structures disruption and leakage of cellular osmotic solutes into the apoplastic space; 

all alterations enhanced by processing-cutting. However, the relationships were 

different for melon and pear, stressing the relevance of structure on water dynamics 

and food stability.  
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6.1. General conclusions 

  As discussed in the general introduction, the primary driving force for 

the research presented in this dissertation was to contribute for a deeper 

understanding of the molecular dynamics concept on degradation reactions and 

stability of complex food systems. 

 From the literature review, it was possible to identify critical issues and 

research needs on food molecular dynamics, particularly water molecular dynamics. 

Water is one of the most important components at a structural and development level 

on both studied matrices: chitosan/glycerol films and fresh-cut-fruit. 

 Chitosan/glycerol films, used as food model matrices, allowed evaluating and 

systematising the plasticiser’s performance. Results demonstrated the relevance of 

the film forming solutions (FFS) composition. Rheological behaviour of the forming 

solutions was dependent on polymer concentration. Consistency coefficient affected 

the properties of the films obtained after drying, namely moisture content.. Glycerol 

used in FFS was responsible for films composition, by establishing the films chitosan 

concentration, while the ratio polymer/plasticiser determined the films thickness and 

indirectly structure, i.e. plasticiser addition promoted a free volume increase. These 

results were confirmed by TEM photographs. FFS glycerol addition affected the 

crystalline lattice of the film, by changing the H-bonds in chitosan crystals. This fact 

was reflected on the macroscopic properties of films, such as water and barrier 

properties or thermomechanical.  

 Films molecular mobility results demonstrate two different behaviours for the 

two plasticisers analysed: water and glycerol. While glycerol was mainly bounded to 

the chitosan chain network, the water present in the system was predominantly free 

from the polymeric chain. Furthermore, it was possible to infer that for lower glycerol 

concentrations, free chitosan binding sites can be occupied by water molecules. This 

thesis also allowed to conclude that not only the water content affects the water 
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mobility, but also structural differences in the films influence the T2. Water mobility 

relates to the water in the bulk and thus complements information on aw of a system.  

 Likewise, a relationship between plasticisers, i.e. water and glycerol, and films 

macroscopic properties and microstructure were determined. For both water and 

glycerol, T2 decreased with the increase of glass transition temperature. The 

crystallinity increased with increasing water and glycerol mobilities, showing that once 

the polymeric chains are organised in the crystalline lattice, the interaction 

polymer/plasticiser was minimised, the free volume of the system increased and the 

water and glycerol molecules were thus free to move in the matrix. The EB increased 

with the water and glycerol relaxation times, while TS decreased, showing again the 

impact of the polymer/polymer and polymer/plasticiser bonds effects on the system 

properties.. Water vapour permeability was also correlated with the molecular mobility. 

This was dependent on films thickness: in thicker films WVP increased with relaxation 

time – indicating that the molecular mobility is related with the Brownian motion in the 

matrix, hence the diffusion of water through the film was easier; for the thinner films 

no apparent correlation was found.  

 All these results, obtained in straightforward matrices, are useful for 

characterising and developing polymeric structures with improved functionality. 

Furthermore, such results can be also of great value if used as a starting point for 

studies on degradation reactions and stability of more complex food systems, such as 

fresh-cut fruit. 

 

 Fresh-cut fruit experimental work was focused on two different and well-

recognised fruits: pear and melon. Melon is one of the most important fruits in the 

world fresh-cut fruit market, while pear (‘Rocha’ pear) represents an important fruit 

market segment in Portugal. For both melon and pear, the effect of wounding was 

observed through the NMR measurements, where the distribution function for T2 
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presented one peak corresponding to cells total water, after the loss of cellular 

compartmentation, as a consequence of fruit processing. The increase in biochemical 

reactions and water solute bonds, that occur in the first 24 hours after processing as 

consequence of wounding, is demonstrated by the decrease of peak position (T2), 

observed in this period. This biochemical response is characteristic to most of 

minimally processed fruits and, as was expected, is observed for both melon and 

pear. After this period, different water dynamics tendencies were found. These results 

are related with differences in fruits physiological processes and highlight the role of 

structure on food stability. 

 Quality parameters analysed demonstrated a close relationship with the value 

of T2 where the distribution function is maxima. These relationships are explained by 

several phenomena such as loss of membrane integrity, cellular structures disruption, 

or leakage of cellular osmotic solutes into the apoplastic space, which are alterations 

enhanced by processing-related wounding.  

 

 All these studies show the usefulness of gathering the NMR concept and 

methodologies with food science, and demonstrate the great value of these studies on 

degradation reactions and stability in more complex food systems. 
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6.2. Future prospects 

 The reported research results raised new opportunities for further research: 

 Mathematically describe the relationship between the molecular and 

macroscopic parameters in different complexity levels of food matrices. 

 Clarify the role of structure on systems dynamics, since it was identified as a 

key factor on food matrices performance. 

 Understand how food preservation processes can change the dynamics of 

water in the systems. For example, during freezing water suffers interesting 

phase changes, like crystallisation and vitrification, facts that make this 

process especially interesting for mobility studies.  

 Identify the “baseline” mobility for stability in high water content food products. 

 Apply this knowledge to food industries aiming at minimising water loss along 

distribution chain and maximising incomes.  
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A.1 

 

A.1 Experimental results of film forming solution (FFS) macroscopic properties  

 

Table A.1.1 Experimental data of FFS rheological measurements  

   
Experiment 1 Experiment 2 

Gly  

(%) 

Chit  

(%) 
Sample 

Shear stress  

(Pa) 

Shear rate 

 (s
-1

) 

Shear stress  

(Pa) 

Shear rate 

 (s
-1

) 

1 90 1 2.1 20.0 1.9 20.0 

1 90 1 3.2 30.9 2.9 30.9 

1 90 1 4.9 47.7 4.4 47.7 

1 90 1 7.4 73.7 6.7 73.7 

1 90 1 11.1 113.8 10.1 113.8 

1 90 1 16.2 175.7 14.9 175.7 

1 90 1 22.7 271.3 21.4 271.3 

1 90 1 33.5 419.1 31.1 419.1 

1 90 1 43.7 647.2 42.8 647.2 

1 90 1 63.9 999.6 61.1 999.6 

1 90 2 1.9 20.0 1.7 20.0 

1 90 2 2.9 30.9 2.7 30.9 

1 90 2 4.4 47.7 4.1 47.7 

1 90 2 6.7 73.7 6.2 73.7 

1 90 2 9.9 113.8 9.3 113.8 

1 90 2 14.5 175.7 13.8 175.7 

1 90 2 20.3 271.3 23.2 271.3 

1 90 2 30.1 419.1 28.6 419.1 

1 90 2 37.4 647.2 40.3 647.2 

1 90 2 56.9 999.6 56.9 999.6 

1 90 3 2.2 20.0 1.5 20.0 

1 90 3 3.4 30.9 2.2 30.9 

1 90 3 5.2 47.7 3.4 47.7 

1 90 3 7.8 73.7 5.2 73.7 

1 90 3 11.6 113.8 7.8 113.8 

1 90 3 17.0 175.7 11.6 175.7 

1 90 3 22.3 271.3 15.9 271.3 

1 90 3 34.4 419.1 24.1 419.1 

1 90 3 44.8 647.2 30.4 647.2 

1 90 3 67.5 999.6 47.8 999.6 

1 50 1 2.0 20.0 2.2 20.0 

1 50 1 3.1 30.9 3.4 30.9 

1 50 1 4.7 47.7 5.2 47.7 

1 50 1 7.1 73.7 7.7 73.7 

1 50 1 10.9 113.8 10.7 113.8 

1 50 1 15.6 175.7 16.8 175.7 

1 50 1 21.3 271.3 24.2 271.3 
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A.2 

 

Table A.1.1 (continued) Experimental data of FFS rheological measurements  

 

   
Experiment 1 Experiment 2 

Gly  

(%) 

Chit  

(%) 
Sample 

Shear stress  

(Pa) 

Shear rate 

 (s
-1

) 

Shear stress  

(Pa) 

Shear rate 

 (s
-1

) 

1 50 1 30.9 419.1 33.9 419.1 

1 50 1 40.6 647.2 54.2 647.2 

1 50 1 62.4 999.6 64.9 999.6 

1 50 2 1.9 20.0 1.9 20.0 

1 50 2 2.9 30.9 2.9 30.9 

1 50 2 4.5 47.7 4.4 47.7 

1 50 2 6.8 73.7 6.6 73.7 

1 50 2 10.1 113.8 9.8 113.8 

1 50 2 14.8 175.7 14.2 175.7 

1 50 2 22.9 271.3 19.4 271.3 

1 50 2 30.5 419.1 28.8 419.1 

1 50 2 44.2 647.2 41.9 647.2 

1 50 2 59.0 999.6 54.7 999.6 

1 50 3 2.1 20.0 2.6 20.0 

1 50 3 3.2 30.9 3.9 30.9 

1 50 3 4.8 47.7 5.9 47.7 

1 50 3 7.3 73.7 8.9 73.7 

1 50 3 10.9 113.8 13.2 113.8 

1 50 3 16.0 175.7 19.2 175.7 

1 50 3 21.8 271.3 26.3 271.3 

1 50 3 32.2 419.1 39.1 419.1 

1 50 3 48.5 647.2 59.7 647.2 

1 50 3 63.4 999.6 75.4 999.6 

1 10 1 2.3 20.0 1.9 20.0 

1 10 1 3.6 30.9 2.9 30.9 

1 10 1 5.5 47.7 4.5 47.7 

1 10 1 8.3 73.7 6.8 73.7 

1 10 1 12.3 113.8 10.2 113.8 

1 10 1 18.1 175.7 15.2 175.7 

1 10 1 26.3 271.3 24.6 271.3 

1 10 1 37.3 419.1 32.5 419.1 

1 10 1 53.7 647.3 46.9 647.2 

1 10 1 72.7 999.6 63.3 999.6 

1 10 2 1.6 20.0 1.6 20.0 

1 10 2 2.3 30.9 2.5 30.9 

1 10 2 3.6 47.7 3.7 47.7 

1 10 2 5.4 73.7 5.9 73.7 

 



Appendix A                                                                                                                                       Appendix to Chapter 2 

 

 

A.3 

 

Table A.1.1 (continued) Experimental data of FFS rheological measurements  

 

   
Experiment 1 Experiment 2 

Gly  

(%) 

Chit  

(%) 
Sample 

Shear stress  

(Pa) 

Shear rate 

 (s
-1

) 

Shear stress  

(Pa) 

Shear rate 

 (s
-1

) 

1 10 2 8.1 113.8 8.9 113.8 

1 10 2 11.8 175.7 13.1 175.7 

1 10 2 18.0 271.3 19.3 271.3 

1 10 2 25.0 419.1 28.1 419.1 

1 10 2 27.8 647.2 37.6 647.2 

1 10 2 47.3 999.6 54.2 999.6 

1 10 3 1.4 20.0 1.5 20.0 

1 10 3 2.1 30.9 2.3 30.9 

1 10 3 3.2 47.7 3.5 47.7 

1 10 3 4.8 73.7 5.3 73.7 

1 10 3 7.2 113.8 8.1 113.8 

1 10 3 10.6 175.7 11.9 175.7 

1 10 3 14.1 271.3 16.6 271.3 

1 10 3 22.6 419.1 25.7 419.1 

1 10 3 36.4 647.2 36.3 647.3 

1 10 3 41.8 999.6 50.3 999.6 

2 90 1 10.5 20.0 8.1 20.0 

2 90 1 15.5 30.9 12.0 30.9 

2 90 1 22.5 47.7 17.7 47.7 

2 90 1 32.3 73.7 25.6 73.7 

2 90 1 45.5 113.8 37.3 113.8 

2 90 1 63.0 175.7 50.9 175.7 

2 90 1 85.8 271.3 68.7 271.3 

2 90 1 114.5 419.1 94.6 419.1 

2 90 1 145.7 647.1 117.3 647.2 

2 90 1 195.0 999.6 164.0 999.6 

2 90 2 8.4 20.0 7.8 20.0 

2 90 2 12.5 30.9 11.7 30.9 

2 90 2 18.2 47.7 17.3 47.7 

2 90 2 26.2 73.7 25.1 73.7 

2 90 2 36.9 113.8 35.7 113.8 

2 90 2 51.1 175.7 50.0 175.7 

2 90 2 68.6 271.3 70.6 271.3 

2 90 2 92.6 419.1 92.5 419.1 

2 90 2 120.2 647.2 123.5 647.2 

2 90 2 159.3 999.6 160.0 999.6 

2 90 3 10.4 20.0 7.1 20.0 
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A.4 

 

Table A.1.1 (continued) Experimental data of FFS rheological measurements  

 

   
Experiment 1 Experiment 2 

Gly  

(%) 

Chit  

(%) 
Sample 

Shear stress  

(Pa) 

Shear rate 

 (s
-1

) 

Shear stress  

(Pa) 

Shear rate 

 (s
-1

) 

2 90 3 15.5 30.9 10.6 30.9 

2 90 3 22.1 47.7 15.6 47.7 

2 90 3 31.4 73.7 23.0 73.6 

2 90 3 44.0 113.8 32.3 113.8 

2 90 3 60.3 175.7 45.2 175.7 

2 90 3 81.7 271.3 62.3 271.3 

2 90 3 105.2 419.1 83.6 419.1 

2 90 3 138.5 647.2 111.3 647.2 

2 90 3 179.6 999.6 146.6 999.6 

2 50 1 8.1 20.0 6.8 20.0 

2 50 1 12.1 30.9 10.0 30.9 

2 50 1 17.6 47.7 14.6 47.7 

2 50 1 25.4 73.7 21.0 73.7 

2 50 1 35.8 113.8 29.7 113.8 

2 50 1 49.8 175.7 41.2 175.7 

2 50 1 66.0 271.3 56.3 271.3 

2 50 1 90.9 419.1 74.8 419.1 

2 50 1 118.5 647.2 97.7 647.2 

2 50 1 155.5 999.6 128.9 999.6 

2 50 2 8.2 20.0 7.8 20.0 

2 50 2 12.2 30.9 11.5 30.9 

2 50 2 17.9 47.7 16.9 47.7 

2 50 2 25.7 73.7 24.3 73.7 

2 50 2 36.4 113.8 34.3 113.8 

2 50 2 50.6 175.7 47.5 175.7 

2 50 2 68.4 271.3 63.2 271.3 

2 50 2 92.0 419.1 86.7 419.1 

2 50 2 118.1 647.2 118.3 647.2 

2 50 2 158.9 999.6 150.0 999.6 

2 50 3 9.9 20.0 8.5 20.0 

2 50 3 14.7 30.9 12.6 30.9 

2 50 3 21.5 47.7 18.5 47.7 

2 50 3 30.9 73.7 26.6 73.7 

2 50 3 43.7 113.8 37.6 113.8 

2 50 3 60.8 175.7 52.1 175.7 

2 50 3 83.4 271.3 69.4 271.3 

2 50 3 111.1 419.1 94.3 419.1 
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A.5 

 

Table A.1.1 (continued) Experimental data of FFS rheological measurements  

 

   
Experiment 1 Experiment 2 

Gly  

(%) 

Chit  

(%) 
Sample 

Shear stress  

(Pa) 

Shear rate 

 (s
-1

) 

Shear stress  

(Pa) 

Shear rate 

 (s
-1

) 

2 50 3 145.4 647.2 131.5 647.2 

2 50 3 191.3 999.6 163.2 999.6 

2 10 1 9.2 20.0 14.9 20.0 

2 10 1 13.6 30.9 21.8 30.9 

2 10 1 19.7 47.7 31.4 47.7 

2 10 1 28.1 73.7 44.4 73.7 

2 10 1 39.3 113.8 61.5 113.8 

2 10 1 53.8 175.7 83.9 175.7 

2 10 1 70.1 271.3 113.6 271.3 

2 10 1 95.8 419.1 148.1 419.1 

2 10 1 123.5 647.2 191.4 647.2 

2 10 1 151.2 999.6 245.7 999.6 

2 10 2 11.6 20.0 14.4 20.0 

2 10 2 17.1 30.9 21.1 30.9 

2 10 2 24.7 47.7 30.3 47.7 

2 10 2 35.1 73.7 42.8 73.7 

2 10 2 48.9 113.8 59.4 113.8 

2 10 2 66.9 175.7 80.9 175.7 

2 10 2 90.9 271.3 107.8 271.3 

2 10 2 118.3 419.1 142.8 419.1 

2 10 2 147.6 647.2 180.2 647.2 

2 10 2 197.8 999.6 235.1 999.6 

2 10 3 9.5 20.0 14.0 20.0 

2 10 3 13.9 30.9 20.5 30.9 

2 10 3 20.0 47.7 29.5 47.7 

2 10 3 28.4 73.7 41.7 73.7 

2 10 3 39.5 113.8 57.9 113.8 

2 10 3 53.9 175.7 79.0 175.7 

2 10 3 71.2 271.3 104.2 271.3 

2 10 3 96.0 419.1 138.9 419.1 

2 10 3 124.6 647.2 180.1 647.2 

2 10 3 150.9 999.6 229.4 999.6 

3 90 1 15.3 20.0 15.8 20.0 

3 90 1 22.3 30.9 23.0 30.9 

3 90 1 31.8 47.7 33.1 47.7 

3 90 1 44.6 73.7 46.7 73.7 

2 50 3 145.4 647.2 131.5 647.2 
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A.6 

 

Table A.1.1 (continued) Experimental data of FFS rheological measurements  

 

   
Experiment 1 Experiment 2 

Gly  

(%) 

Chit  

(%) 
Sample 

Shear stress  

(Pa) 

Shear rate 

 (s
-1

) 

Shear stress  

(Pa) 

Shear rate 

 (s
-1

) 

3 90 1 61.5 113.8 64.8 113.8 

3 90 1 83.1 175.7 88.2 175.7 

3 90 1 111.6 271.3 115.8 271.3 

3 90 1 143.5 419.1 154.1 419.1 

3 90 1 180.1 647.2 204.6 647.3 

3 90 1 238.8 999.6 253.7 999.6 

3 90 2 14.7 20.0 16.0 20.0 

3 90 2 21.3 30.9 23.4 30.9 

3 90 2 30.4 47.7 34.4 47.7 

3 90 2 42.7 73.7 47.5 73.7 

3 90 2 58.9 113.8 65.8 113.8 

3 90 2 79.6 175.7 89.2 175.7 

3 90 2 105.7 271.3 119.7 271.3 

3 90 2 138.4 419.1 154.6 419.1 

3 90 2 174.7 647.2 199.3 647.2 

3 90 2 228.8 999.6 256.2 999.6 

3 90 3 13.6 20.0 15.2 20.0 

3 90 3 19.7 30.9 22.2 30.9 

3 90 3 28.2 47.7 31.7 47.7 

3 90 3 39.0 73.6 44.7 73.7 

3 90 3 54.8 113.8 61.9 113.8 

3 90 3 74.3 175.7 84.1 175.7 

3 90 3 97.8 271.3 112.9 271.3 

3 90 3 129.2 419.1 146.4 419.1 

3 90 3 164.7 647.2 196.2 647.2 

3 90 3 215.0 999.6 243.3 999.6 

3 50 1 15.4 20.0 16.1 20.0 

3 50 1 22.4 30.9 23.2 30.9 

3 50 1 32.0 47.7 32.9 47.7 

3 50 1 44.9 73.7 45.9 73.6 

3 50 1 61.7 113.8 62.7 113.8 

3 50 1 83.2 175.7 83.8 175.7 

3 50 1 109.6 271.3 111.7 271.3 

3 50 1 144.0 419.1 143.1 419.1 

3 50 1 187.2 647.2 186.3 647.2 

3 50 1 235.4 999.6 235.0 999.6 

3 50 2 14.5 20.0 16.7 20.0 
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A.7 

 

Table A.1.1 (continued) Experimental data of FFS rheological measurements  

 

   
Experiment 1 Experiment 2 

Gly  

(%) 

Chit  

(%) 
Sample 

Shear stress  

(Pa) 

Shear rate 

 (s
-1

) 

Shear stress  

(Pa) 

Shear rate 

 (s
-1

) 

3 50 2 21.0 30.9 24.1 30.9 

3 50 2 29.8 47.7 34.2 47.7 

3 50 2 41.6 73.7 47.6 73.7 

3 50 2 57.1 113.8 65.2 113.8 

3 50 2 76.7 175.7 87.2 175.7 

3 50 2 102.9 271.3 113.5 271.3 

3 50 2 132.5 419.1 150.3 419.1 

3 50 2 171.3 647.2 188.1 647.2 

3 50 2 219.2 999.6 243.1 999.6 

3 50 3 15.8 20.0 15.3 20.0 

3 50 3 23.0 30.9 22.1 30.9 

3 50 3 32.8 47.7 31.5 47.7 

3 50 3 46.0 73.7 44.0 73.7 

3 50 3 63.3 113.8 60.4 113.8 

3 50 3 85.5 175.7 81.1 175.7 

3 50 3 113.9 271.3 106.9 271.3 

3 50 3 148.2 419.1 139.1 419.1 

3 50 3 189.8 647.2 179.8 647.2 

3 50 3 242.8 999.6 230.2 999.6 

3 10 1 18.6 20.0 16.5 20.0 

3 10 1 26.8 30.9 23.9 30.9 

3 10 1 38.0 47.7 34.2 47.7 

3 10 1 52.9 73.6 47.9 73.7 

3 10 1 72.4 113.8 66.0 113.8 

3 10 1 97.0 175.7 89.1 175.7 

3 10 1 128.9 271.3 120.0 271.3 

3 10 1 166.4 419.1 152.2 419.1 

3 10 1 211.2 647.2 196.5 647.2 

3 10 1 268.5 999.6 249.8 999.6 

3 10 2 14.9 20.0 12.8 20.0 

3 10 2 21.5 30.9 18.8 30.9 

3 10 2 30.3 47.7 26.6 47.7 

3 10 2 42.2 73.7 37.3 73.7 

3 10 2 57.4 113.8 51.4 113.8 

3 10 2 76.8 175.7 69.5 175.7 

3 10 2 101.7 271.3 93.0 271.3 

3 10 2 131.6 419.1 120.8 419.1 

 



Appendix A                                                                                                                                       Appendix to Chapter 2 

 

 

A.8 

 

Table A.1.1 (continued) Experimental data of FFS rheological measurements  

 

   
Experiment 1 Experiment 2 

Gly  

(%) 

Chit  

(%) 
Sample 

Shear stress  

(Pa) 

Shear rate 

 (s
-1

) 

Shear stress  

(Pa) 

Shear rate 

 (s
-1

) 

3 10 2 176.2 647.2 154.9 647.2 

3 10 2 214.2 999.6 198.6 999.6 

3 10 3 17.8 20.0 15.3 20.0 

3 10 3 25.7 30.9 22.2 30.9 

3 10 3 36.9 47.7 31.7 47.7 

3 10 3 50.7 73.6 44.5 73.7 

3 10 3 69.3 113.8 61.3 113.8 

3 10 3 92.9 175.7 82.8 175.7 

3 10 3 123.5 271.3 110.8 271.3 

3 10 3 158.8 419.1 143.7 419.1 

3 10 3 205.5 647.2 186.1 647.2 
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A.9 

 

 

Table A.1.2 Results of aw measurements from different FFS compositions 

 

Gly 

 (%) 
Sample Measure 

FFS aw 

Experiment 1 Experiment 2 

Chit 1 Chit 2 Chit 3 Chit 1 Chit 2 Chit 3 

90 1 1 0.999 0.996 0.994 1.003 0.998 0.993 

90 1 2 0.998 0.996 0.994 0.999 0.996 0.994 

90 1 3 0.997 0.997 0.994 0.998 0.995 0.995 

90 2 1 0.996 0.996 0.995 1.002 1.000 0.999 

90 2 2 0.997 0.998 0.994 1.000 0.998 0.996 

90 2 3 0.997 0.998 0.993 1.000 0.997 0.997 

90 3 1 0.998 0.998 0.995 1.001 1.000 0.997 

90 3 2 0.998 0.998 0.993 1.000 0.998 0.997 

90 3 3 0.998 0.997 0.994 0.999 0.998 0.997 

50 1 1 1.002 1.001 1.001 1.000 1.002 1.000 

50 1 2 1.000 1.001 1.000 0.999 1.001 1.000 

50 1 3 1.000 1.001 1.000 0.998 1.000 0.999 

50 2 1 1.002 1.000 1.000 1.001 1.000 0.998 

50 2 2 1.000 1.001 1.000 0.999 0.999 0.999 

50 2 3 1.000 1.001 0.999 1.000 0.999 1.000 

50 3 1 1.002 1.000 0.998 1.001 1.001 0.997 

50 3 2 1.001 1.001 0.998 1.000 1.001 0.999 

50 3 3 1.001 1.001 0.998 1.000 0.999 1.000 

10 1 1 1.001 1.000 1.002 1.002 1.003 1.003 

10 1 2 1.000 1.002 1.002 1.000 1.001 1.001 

10 1 3 1.000 1.002 1.002 1.000 1.001 1.001 

10 2 1 1.003 0.998 1.003 1.002 1.003 1.000 

10 2 2 1.002 1.002 1.003 1.000 1.001 1.003 

10 2 3 1.002 1.002 1.004 1.000 1.001 1.002 

10 3 1 1.003 1.001 1.005 1.004 1.003 1.001 

10 3 2 1.003 1.001 1.003 1.002 1.001 1.001 

10 3 3 1.002 1.001 1.003 1.002 1.001 1.002 
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A.10 

 

A.2 Experimental results of film macroscopic properties  

 

Table A.2.1 Experimental results of films aw measurements 

 

Gly 

 (%) 
Sample Measure 

Films aw 

Experiment 1 Experiment 2 

Chit 1 Chit 2 Chit 3 Chit 1 Chit 2 Chit 3 

90 1 1 0.553 0.499 0.526 0.576 0.514 0.540 

90 1 2 0.552 0.498 0.526 0.576 0.513 0.544 

90 1 3 0.553 0.498 0.526 0.561 0.513 0.535 

90 2 1 0.556 0.498 0.520 0.558 0.504 0.536 

90 2 2 0.560 0.499 0.521 0.558 0.504 0.535 

90 2 3 0.558 0.501 0.521 0.558 0.504 0.538 

90 3 1 0.556 0.499  0.609 0.493 0.537 

90 3 2 0.557 0.500 0.516 0.587 0.492 0.537 

90 3 3 0.560 0.500 0.516 0.591 0.491 0.510 

50 1 1 0.523 0.525 0.523  0.507 0.505 

50 1 2 0.559 0.524   0.508 0.505 

50 1 3 0.561 0.524 0.524  0.508 0.507 

50 2 1 0.575 0.495 0.518 0.600 0.509 0.506 

50 2 2 0.571 0.494 0.517 0.597 0.509 0.505 

50 2 3 0.577 0.495 0.517 0.600 0.503 0.509 

50 3 1 0.511 0.505 0.510 0.552 0.481 0.508 

50 3 2 0.514 0.505 0.510 0.568 0.479 0.507 

50 3 3 0.516 0.505 0.510 0.531 0.480 0.509 

10 1 1 0.546 0.521 0.508 0.575 0.513 0.507 

10 1 2 0.550 0.516 0.509 0.540 0.510 0.507 

10 1 3 0.551 0.515 0.508 0.570 0.507 0.504 

10 2 1 0.543 0.541 0.508 0.544 0.510 0.504 

10 2 2 0.545 0.534 0.508 0.587 0.508 0.503 

10 2 3 0.549 0.533 0.508 0.599 0.508 0.510 

10 3 1 0.550 0.540 0.513 0.548 0.511 0.509 

10 3 2 0.550 0.533 0.508 0.547 0.510 0.500 

10 3 3 0.552 0.532 0.507 0.550 0.509 0.501 
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A.11 

 

Table A.2.2 Experimental results of films water activity (aw) moisture content (MC) water solubility 

(SOL) and oxygen permeability (O2P) 

 

    Experiment 1 Experiment 2 

Chit  

(%) 

Gly  

(%) 
Sample Measure 

MC 

 (%) 

SOL  

(%) 

O2P 

 ( m
-1

s
-1

Pa
-1

) 

MC  

(%) 

SOL 

 (%) 

O2P 

( m
-1

s
-1

Pa
-1

)  

1 90 1 1 46.40 59.01 2.46E-09 48.71 67.38 2.93E-09 

1 90 1 2 
  

2.08E-09 
  

2.13E-09 

1 90 1 3 
  

2.44E-09 
  

1.61E-09 

1 90 2 1 51.47 62.75 1.26E-09 53.85 79.49 6.34E-09 

1 90 2 2 
  

1.29E-09 
  

4.40E-09 

1 90 2 3 
  

1.36E-09 
  

7.03E-09 

1 90 3 1 52.82 64.52 
 

53.83 71.98 
 

1 50 1 1 42.21 56.28 1.27E-09 28.73 48.68 2.48E-09 

1 50 1 2 
  

5.09E-10 
  

1.61E-09 

1 50 1 3 
  

6.28E-10 
  

1.41E-09 

1 50 2 1 44.67 57.37 8.89E-09 27.80 47.84 3.02E-09 

1 50 2 2 
  

1.49E-08 
  

1.71E-09 

1 50 2 3 
  

1.53E-08 
  

1.39E-09 

1 50 3 1 46.14 57.93 
 

30.27 56.44 
 

1 10 1 1 22.93 46.72 1.19E-09 28.54 51.33 4.47E-09 

1 10 1 2 
  

5.86E-10 
  

2.87E-09 

1 10 1 3 
  

4.80E-10 
  

2.37E-09 

1 10 2 1 24.34 47.67 2.04E-09 28.94 48.50 3.85E-09 

1 10 2 2 
  

2.57E-09 
  

2.03E-09 

1 10 2 3 
  

2.34E-09 
  

1.79E-09 

1 10 3 1 39.77 47.50 
 

28.68 51.74 
 

2 90 1 1 56.40 65.60 2.04E-09 46.07 55.79 7.60E-09 

2 90 1 2 
  

1.15E-09 
  

4.62E-09 

2 90 1 3 
  

2.40E-09 
  

3.56E-09 

2 90 2 1 55.83 64.58 3.13E-09 48.33 58.15 4.82E-09 

2 90 2 2 
  

1.49E-09 
  

3.89E-09 

2 90 2 3 
  

1.50E-09 
  

4.40E-09 

2 90 3 1 55.56 65.14 
 

49.35 59.13 
 

2 50 1 1 37.90 51.60 7.32E-09 41.70 52.18 3.34E-09 

2 50 1 2 
  

8.45E-09 
  

3.71E-09 

2 50 1 3 
  

4.94E-09 
  

3.12E-09 

2 50 2 1 39.62 52.83 7.99E-09 29.47 43.39 6.98E-09 

2 50 2 2 
  

4.93E-09 
  

4.82E-09 

2 50 2 3 
  

5.38E-09 
  

3.92E-09 

2 50 3 1 38.82 52.94 
 

42.43 53.19 
 

2 10 1 1 16.53 37.70 5.86E-09 19.07 35.80 2.61E-08 

2 10 1 2 
  

2.42E-09 
  

2.48E-08 
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Table A.2.2 (continued) Experimental results of films water activity (aw). moisture content (MC). 

water solubility (SOL) and oxygen permeability (O2P) 

 

    Experiment 1 Experiment 2 

Chit  

(%) 

Gly  

(%) 
Sample Measure 

MC 

 (%) 

SOL  

(%) 

O2P 

 ( m
-1

s
-1

Pa
-1

) 

MC  

(%) 

SOL 

 (%) 

O2P 

( m
-1

s
-1

Pa
-1

)  

2 10 1 3 
  

2.60E-09 
  

1.82E-08 

2 10 2 1 16.77 35.82 4.79E-09 19.00 35.60 1.01E-08 

2 10 2 2 
  

2.59E-09 
  

4.39E-09 

2 10 2 3 
  

2.37E-09 
  

3.32E-09 

2 10 3 1 16.70 34.92 
 

18.93 36.49 
 

3 90 1 1 54.29 63.07 9.60E-12 55.79 64.09 6.36E-09 

3 90 1 2 
  

5.48E-09 
  

8.77E-09 

3 90 1 3 
  

7.90E-09 
  

7.76E-09 

3 90 2 1 53.79 62.45 1.25E-08 55.47 64.17 8.64E-09 

3 90 2 2 
  

7.56E-09 
  

7.60E-09 

3 90 2 3 
  

6.63E-09 
  

5.53E-09 

3 90 3 1 55.24 63.31 
 

55.76 63.62 
 

3 50 1 1 37.31 48.76 6.10E-09 40.16 50.40 1.16E-08 

3 50 1 2 
  

5.16E-09 
  

8.39E-09 

3 50 1 3 
  

6.17E-09 
  

5.43E-09 

3 50 2 1 37.50 48.54 6.65E-09 39.70 50.47 1.07E-08 

3 50 2 2 
  

6.91E-09 
  

5.77E-09 

3 50 2 3 
  

1.97E-08 
  

5.13E-09 

3 50 3 1 38.24 50.00 
 

40.34 50.47 
 

3 10 1 1 15.42 28.60 1.36E-08 17.08 30.13 2.33E-08 

3 10 1 2 
  

8.90E-09 
  

1.18E-08 

3 10 1 3 
  

9.68E-09 
  

9.87E-09 

3 10 2 1 15.93 29.27 8.15E-09 17.70 31.56 1.85E-08 

3 10 2 2 
  

7.60E-09 
  

1.08E-08 

3 10 2 3 
  

6.13E-09 
  

9.77E-09 

3 10 3 1 15.67 29.85 
 

16.34 28.94 
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Table A.2.3 Experimental results of films water vapour permeability (WVP)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gly  

(%) 

Chit  

(%) 
Sample 

Experimental time 

 (min) 

Weight loss  

(g) 

    
Experiment 1 Experiment 2 

90 1 1 0 0.00 0.00 

90 1 1 120 0.05 0.06 

90 1 1 240 0.12 0.13 

90 1 1 360 0.18 0.20 

90 1 1 480 0.25 0.26 

90 1 1 600 0.32 0.30 

90 1 2 0 0.00 
 

90 1 2 120 0.06 
 

90 1 2 240 0.14 
 

90 1 2 360 0.21 
 

90 1 2 480 0.29 
 

90 1 2 600 0.37 
 

90 2 1 0 0.00 0.00 

90 2 1 120 0.06 0.06 

90 2 1 240 0.13 0.11 

90 2 1 360 0.19 0.16 

90 2 1 480 0.25 0.22 

90 2 1 600 0.31 0.26 

90 2 2 0 0.00 0.00 

90 2 2 120 0.05 0.06 

90 2 2 240 0.10 0.11 

90 2 2 360 0.16 0.16 

90 2 2 480 0.22 0.24 

90 2 2 600 0.28 0.31 

90 3 1 0 0.00 
 

90 3 1 120 0.03 
 

90 3 1 240 0.05 
 

90 3 1 360 0.08 
 

90 3 1 480 0.11 
 

90 3 1 600 0.15 
 

90 3 2 0 0.00 
 

90 3 2 120 0.05 
 

90 3 2 240 0.08 
 

90 3 2 360 0.11 
 

90 3 2 480 0.16 
 

90 3 2 600 0.20 
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Table A.2.3 (continued) Experimental results of films water vapour permeability (WVP)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gly  

(%) 

Chit  

(%) 
Sample 

Experimental time 

 (min) 

Weight loss  

(g) 

    
Experiment 1 Experiment 2 

50 1 1 0  0.00 

50 1 1 120  0.07 

50 1 1 240  0.14 

50 1 1 360  0.21 

50 1 1 480  0.29 

50 1 1 600  0.33 

50 1 2 0  0.00 

50 1 2 120  0.08 

50 1 2 240  0.15 

50 1 2 360  0.23 

50 1 2 480  0.32 

50 1 2 600  0.37 

50 2 1 0 0.00 0.00 

50 2 1 120 0.09 0.05 

50 2 1 240 0.15 0.12 

50 2 1 360 0.20 0.20 

50 2 1 480 0.26 0.28 

50 2 1 600 0.32 0.44 

50 2 2 0 0.00 0.00 

50 2 2 120 0.08 0.08 

50 2 2 240 0.14 0.16 

50 2 2 360 0.19 0.24 

50 2 2 480 0.23 0.31 

50 2 2 600 0.28 0.45 

50 3 1 0 0.00 0.00 

50 3 1 120 0.05 0.04 

50 3 1 240 0.09 0.11 

50 3 1 360 0.13 0.18 

50 3 1 480 0.17 0.22 

50 3 1 600 0.21 0.36 

50 3 2 0 0.00 0.00 

50 3 2 120 0.05 0.03 

50 3 2 240 0.10 0.07 

50 3 2 360 0.14 0.16 

50 3 2 480 0.19 0.22 

50 3 2 600 0.23 0.29 
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Table A.2.3 (continued) Experimental results of films water vapour permeability (WVP)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gly  

(%) 

Chit  

(%) 
Sample 

Experimental time 

 (min) 

Weight loss  

(g) 

    
Experiment 1 Experiment 2 

10 1 1 0 0.00 0.00 

10 1 1 120 0.06 0.07 

10 1 1 240 0.12 0.14 

10 1 1 360 0.18 0.24 

10 1 1 480 0.22 0.30 

10 1 1 600 0.26 0.35 

10 1 2 0 0.00 0.00 

10 1 2 120 0.14 0.08 

10 1 2 240 0.14 0.15 

10 1 2 360 0.18 0.23 

10 1 2 480 0.23 0.30 

10 1 2 600 0.27 0.64 

10 2 1 0 0.00 0.00 

10 2 1 120 0.04 0.07 

10 2 1 240 0.08 0.13 

10 2 1 360 0.14 0.21 

10 2 1 480 0.17 0.28 

10 2 1 600 0.22 0.40 

10 2 2 0 0.00 0.00 

10 2 2 120 0.06 0.05 

10 2 2 240 0.12 0.11 

10 2 2 360 0.16 0.18 

10 2 2 480 0.21 0.25 

10 2 2 600 0.25 0.39 

10 3 1 0 0.00 0.00 

10 3 1 120 0.03 0.00 

10 3 1 240 0.07 0.05 

10 3 1 360 0.11 0.11 

10 3 1 480 0.16 0.16 

10 3 1 600 0.19 0.19 

10 3 2 0 0.00 0.00 

10 3 2 120 0.04 0.00 

10 3 2 240 0.08 0.06 

10 3 2 360 0.12 0.12 

10 3 2 480 0.17 0.19 

10 3 2 600 0.21 0.25 
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Table A.2.4 Experimental results of films thickness 

 

Gly  

(%) 
Sample Measure 

Thickness (mm) 

Experiment 1 Experiment 2 

Chit 1 Chit 2 Chit 3 Chit 1 Chit 2 Chit 3 

90 1 1 0.061 0.143 0.203 0.051 0.154 0.278 

90 1 2 0.067 0.145 0.204 0.037 0.147 0.280 

90 1 3 0.075 0.129 0.203 0.034 0.145 0.274 

90 2 1 0.071 0.148 0.205 0.050 0.161 0.276 

90 2 2 0.066 0.138 0.211 0.041 0.145 0.269 

90 2 3 0.059 0.138 0.216 0.058 0.140 0.263 

90 3 1 0.075 0.152 0.196 0.066 0.123 0.266 

90 3 2 0.066 0.138 0.215 0.052 0.147 0.276 

90 3 3 0.067 0.139 0.212 0.062 0.156 0.264 

90 4 1 0.059 0.152 0.220 0.046 0.154 0.266 

90 4 2 0.076 0.163 0.222 0.041 0.155 0.266 

90 4 3 0.090 0.166 0.231 0.080 0.144 0.255 

90 5 1 0.072 0.166 0.242 
 

0.159 0.255 

90 5 2 0.065 0.163 0.241 
 

0.143 0.258 

90 5 3 0.062 0.173 0.249 
 

0.137 0.248 

90 6 1 0.067 0.165 0.254 
 

0.138 0.254 

90 6 2 0.050 0.168 0.246 
 

0.136 0.258 

90 6 3 0.047 0.184 0.238 
 

0.161 0.248 

90 7 1 0.050 0.182 0.253 
 

0.130 0.252 

90 7 2 0.059 0.171 0.253 
 

0.154 0.247 

90 7 3 0.076 0.173 0.244 
 

0.169 0.250 

90 8 1 
 

0.171 0.240 
 

0.122 0.245 

90 8 2 
 

0.163 0.235 
 

0.131 0.240 

90 8 3 
 

0.151 0.228 
 

0.140 0.252 

90 9 1 
 

0.163 0.246 
 

0.115 0.265 

90 9 2 
 

0.161 0.257 
 

0.115 0.256 

90 9 3 
 

0.193 0.264 
 

0.118 0.254 

50 1 2 0.051 0.161 0.240 0.037 0.119 0.243 

50 1 3 0.055 0.154 0.248 0.034 0.127 0.233 

50 2 1 0.055 0.161 0.216 0.050 0.133 0.254 
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Table A.2.4 (continued) Experimental results of films thickness 

 

Gly  

(%) 
Sample Measure 

Thickness (mm) 

Experiment 1 Experiment 2 

Chit 1 Chit 2 Chit 3 Chit 1 Chit 2 Chit 3 

50 2 2 0.056 0.161 0.231 0.041 0.121 0.241 

50 2 3 0.048 0.158 0.253 0.058 0.114 0.243 

50 3 1 0.042 0.163 0.234 0.066 0.187 0.239 

50 3 2 0.046 0.160 0.249 0.052 0.119 0.234 

50 3 3 0.069 0.149 0.232 0.062 0.116 0.221 

50 4 1 0.056 0.145 0.231 0.046 0.120 0.237 

50 4 2 0.055 0.154 0.228 0.041 0.105 0.236 

50 4 3 0.061 0.165 0.244 0.080 0.113 0.225 

50 5 1 0.086 0.151 0.242 0.051 0.115 0.225 

50 5 2 0.072 0.155 0.223 0.037 0.102 0.235 

50 5 3 0.072 0.130 0.219 0.034 0.101 0.227 

50 6 1 0.061 0.145 0.224 0.050 0.106 0.229 

50 6 2 0.058 0.186 0.230 0.041 0.099 0.229 

50 6 3 0.059 0.128 0.239 0.058 0.103 0.227 

50 7 1 0.056 0.146 0.248 0.066 0.115 0.224 

50 7 2 0.059 0.153 0.227 0.052 0.133 0.226 

50 7 3 0.059 0.147 0.250 0.062 0.114 0.230 

50 8 1 0.059 0.162 0.244 0.046 0.120 0.221 

50 8 2 0.060 0.131 0.241 0.041 0.118 0.252 

50 8 3 0.059 0.173 0.238 0.080 0.126 0.224 

50 9 1 0.065 0.148 0.235 
 

0.140 0.223 

50 9 2 0.058 0.154 0.245 
 

0.136 0.225 

50 9 3 0.073 0.148 0.236 
 

0.157 0.229 

10 1 1 0.069 0.114 0.343 0.059 0.123 0.243 

10 1 2 0.053 0.137 0.504 0.048 0.135 0.197 

10 1 3 0.054 0.151 0.454 0.040 0.125 0.235 

10 2 1 0.081 0.120 0.437 0.053 0.122 0.240 

10 2 2 0.078 0.125 0.383 0.054 0.107 0.268 

10 2 3 0.081 0.127 0.446 0.053 0.137 0.261 

10 3 1 0.095 0.128 0.371 0.046 0.125 0.243 

10 3 2 0.085 0.131 0.363 0.046 0.134 0.213 

10 3 3 0.077 0.109 0.499 0.045 0.127 0.240 
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Table A.2.4 (continued) Experimental results of films thickness 

 

Gly 

(%) 
Sample Measure 

Thickness (mm) 

Experiment 1 Experiment 2 

Chit 1 Chit 2 Chit 3 Chit 1 Chit 2 Chit 3 

10 4 1 0.094 0.130 
 

0.052 0.126 0.212 

10 4 2 0.087 0.139 
 

0.045 0.135 0.245 

10 4 3 0.096 0.158 
 

0.040 0.140 0.254 

10 5 1 0.069 0.138 
 

0.044 0.134 0.231 

10 5 2 0.058 0.142 
 

0.048 0.138 0.362 

10 5 3 0.071 0.146 
 

0.036 0.153 0.207 

10 6 1 0.070 0.155 
 

0.033 0.133 0.232 

10 6 2 0.084 0.138 
 

0.036 0.166 0.212 

10 6 3 0.062 0.126 
 

0.043 0.125 0.222 

10 7 1 0.077 0.135 
 

0.040 0.134 0.222 

10 7 2 0.061 0.178 
 

0.038 0.137 0.242 

10 7 3 0.067 0.137 
 

0.032 0.132 0.251 

10 8 1 0.132 0.145 
 

0.045 0.105 0.270 

10 8 2 0.179 0.144 
 

0.040 0.107 0.243 

10 8 3 0.072 0.125 
 

0.034 0.141 0.210 

10 9 1 0.127 
  

0.040 
 

0.238 

10 9 2 0.132 
  

0.044 
 

0.223 

10 9 3 0.084 
  

0.040 
 

0.222 

 

 

 

 

 

 

 



Appendix A                                                                                                                                       Appendix to Chapter 2 

 

 

A.19 

 

Table A.2.5 Experimental results of films mechanical properties. EB (elongation at break) and TS 

(tensile strength) 

 

   Experiment 1 Experiment 2 

Chit 

(%) 

Gly 

(%) 
Sample 

EB 

(%) 

TS 

(MPa) 

EB 

(%) 
TS (MPa) 

1 90 1 31.79 
 

74.20 
 

1 90 2 76.56 1.12 92.33 1.86 

1 90 3 52.30 
 

124.42 2.39 

1 90 4 85.85 1.52 75.52 3.49 

1 90 5 41.85 0.81 
  

1 90 6 44.91 1.57 
  

1 90 7 31.86 
   

1 50 1 68.43 2.82 53.93 7.65 

1 50 2 89.97 3.00 57.70 
 

1 50 3 18.29 
 

48.85 7.12 

1 50 4 83.62 3.21 50.08 
 

1 50 6 86.15 3.13 60.93 7.02 

1 50 7 72.18 
 

74.02 
 

1 50 8 76.97 2.86 34.27 2.82 

1 50 9 89.50 3.20 63.91 6.66 

1 10 1 48.41 10.82 49.98 6.91 

1 10 2 48.73 12.13 47.41 3.97 

1 10 3 48.19 8.40 57.27 10.48 

1 10 4 19.31 3.34 44.83 7.15 

1 10 5 57.32 14.46 49.36 8.67 

1 10 6 46.29 6.63 33.22 7.19 

1 10 7 50.26 7.05 48.86 9.63 

1 10 8 32.45 4.50 49.96 10.46 

1 10 9 44.25 5.76 53.64 10.88 

2 90 1 39.08 0.28 27.01 0.27 

2 90 2 36.67 0.21 23.62 0.28 

2 90 3 39.70 0.28 17.37 0.15 

2 90 4 43.19 0.27 20.65 0.30 

2 90 5 35.81 0.23 27.48 0.38 

2 90 6 36.42 0.29 28.10 0.47 

2 90 7 35.68 0.26 
  

2 90 8 33.08 0.23 
  

2 90 9 36.43 0.33 
  

2 50 1 43.02 0.84 26.93 0.85 

2 50 2 36.69 0.84 28.18 0.59 

2 50 3 40.75 0.81 31.92 1.01 
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Table A.2.5 (continued) Experimental results of films mechanical properties. EB (elongation at 

break) and TS (tensile strength) 

 

   Experiment 1 Experiment 2 

Chit 

(%) 

Gly 

(%) 
Sample 

EB 

(%) 

TS 

(MPa) 

EB 

(%) 
TS (MPa) 

2 50 4 37.70 0.66 30.66 1.17 

2 50 5 39.00 0.83 34.54 1.51 

2 50 6 36.52 0.75 35.75 1.65 

2 50 7 37.31 0.76 35.99 1.99 

2 50 8 30.86 0.73 28.44 0.70 

2 50 9 40.19 0.73 26.14 0.71 

2 10 1 19.28 14.12 9.60 5.76 

2 10 2 24.39 9.01 27.82 13.53 

2 10 3 10.95 7.51 35.21 13.30 

2 10 4 15.88 4.60 9.75 9.64 

2 10 5 22.83 11.89 36.63 20.39 

2 10 6 8.44 9.59 37.38 22.67 

2 10 7 7.74 9.31 20.30 13.78 

2 10 8 16.83 15.05 30.72 16.19 

2 10 9 
  

6.18 10.15 

3 90 1 22.23 0.38 15.61 0.65 

3 90 2 26.66 0.39 14.95 0.60 

3 90 3 27.54 0.51 17.28 0.61 

3 90 4 18.82 0.40 12.05 0.44 

3 90 5 34.03 0.50 13.86 0.53 

3 90 6 28.72 0.54 16.45 0.60 

3 90 7 29.03 0.51 15.28 0.51 

3 90 8 24.48 0.45 11.80 0.31 

3 90 9 21.30 0.43 9.18 0.22 

3 50 1 29.61 1.87 26.00 1.15 

3 50 2 22.78 1.62 21.24 0.99 

3 50 3 31.49 1.94 22.69 1.09 

3 50 4 30.55 1.97 26.54 1.29 

3 50 5 24.94 1.62 24.63 1.19 

3 50 6 26.84 1.70 24.17 1.28 

3 50 7 28.19 1.77 24.91 1.30 

3 50 8 22.45 1.52 26.66 1.30 

3 50 9 21.15 1.41 
  

3 10 1 24.83 10.04 7.78 3.85 

3 10 2 21.70 8.15 6.34 5.80 

3 10 3 19.35 8.58 4.62 4.29 
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Table A.2.5 Experimental results of films mechanical properties. EB (elongation at break) and TS 

(tensile strength) 

 

   Experiment 1 Experiment 2 

Chit 

(%) 

Gly 

(%) 
Sample 

EB 

(%) 

TS 

(MPa) 

EB 

(%) 
TS (MPa) 

3 10 4 10.31 2.51 4.98 5.98 

3 10 5 
  

3.21 5.41 

3 10 6 
  

2.35 4.96 

3 10 7 
  

3.64 5.81 

3 10 8 
  

5.83 7.01 

3 10 9 
  

4.59 6.02 
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Table A.2.6 Experimental results of films thermal properties. Tg (glass transition temperature). Δh 

(melting enthalpy) and Tm (melting temperature) 

 

   Experiment 1 Experiment 2 

Chit 

(%) 

Gly 

(%) 
Sample 

Tg 

(ºC) 

Δh 

(J g
-1

) 

Tm  

(ºC) 

Tg 

(ºC) 

Δh 

(J g
-1

) 

Tm 

(ºC) 

1 90 1 -70.57 -221.41 135.85 -73.75 -133.31 144.99 

1 90 2 -73.22 -273.78 137.19 -71.81 -108.51 152.79 

1 50 1 -56.32 -132.78 127.20 -69.70 -168.30 138.25 

1 50 2 -42.86 -155.11 126.74 -74.37 -150.33 141.95 

1 10 1 -26.60 -98.18 131.32 -33.52 -82.46 126.60 

1 10 2 -15.43 -36.89 137.34 -4.53 -62.48 94.04 

2 90 1 -65.20 -265.43 126.28 -66.40 -197.65 134.32 

2 90 2 -60.48 -137.90 132.50 -68.25 -214.02 132.81 

2 50 1 -54.28 -236.59 129.58 -39.38 -198.73 129.77 

2 50 2 -67.60 -198.16 124.70 -44.88 -181.97 129.97 

2 10 1 -5.20 -186.13 127.28 1.57 -203.23 109.19 

2 10 2 -17.65 -177.96 126.88 0.80 -93.55 119.23 

3 90 1 -78.32 -237.54 122.99 -86.10 -299.68 125.54 

3 90 2 -83.91 -390.58 124.96 -83.35 -324.69 124.99 

3 50 1 -62.25 -248.30 120.61 -63.58 -222.27 117.61 

3 50 2 -65.77 -260.68 115.78 -66.88 -265.54 122.15 

3 10 1 18.19 -132.38 89.97 36.11 -214.11 120.87 

3 10 2 17.70 -156.64 106.26 33.56 -200.33 121.59 
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A.3 Post hoc multi comparison tests (Tukey’s test). to conclude on the isolated effect of chitosan 

and glycerol addition. 

 

Table A.3.1 Tukey’s test to conclude on the effect of glycerol 

Post Hoc Tukey HSD test 

Include condition: Chit=1 % 

Variable:  aw solution Variable:  Thickness (mm) Variable:  aw film 

Gly 

(%) 

(1) 

1.0020 

(2) 

1.0013 

(3) 

0.99900 

(1) 

0.06550 

(2) 

0.05233 

(3) 

0.06050 

(1) 

0.54525 

(2) 

0.56600 

(3) 

0.5570 

10  0.897 0.253406  0.309805 0.854521  0.284275 0.088586 

90 0.896705  0.438257 0.309805  0.694734 0.284275  0.566966 

50 0.253406 0.438257  0.854521 0.694734  0.088586 0.566966  

 

Post Hoc Tukey HSD test 

Include condition: Chit=1 % 

Variable:  Melting enthalpy (Jg
-1

) Variable:  Melting temperature (ºC) 

Gly 

(%) 

(1) 

-70.00 

(2) 

-152.1 

(3) 

-191.1 

(1) 

122.33 

(2) 

130.73 

(3) 

144.99 

10  0.180148 0.081831  0.751085 0.261404 

90 0.180148  0.706202 0.751085  0.576495 

50 0.081831 0.706202  0.261404 0.576495  

  

Post Hoc Tukey HSD test 

Include condition: Chit=1 % 

Variable:  Elongation at break (%) Variable:  Tensile strength (MPa) Variable:  Moisture content (%) 

Gly 

(%) 

(1) 

48.633 

(2) 

70.773 

(3) 

84.448 

(1) 

8.4588 

(2) 

4.4873 

(3) 

1.4900 

(1) 

26.187 

(2) 

38.536 

(3) 

52.657 

10  0.097969 0.026095  0.284275 0.088586  0.056291 0.003421 

90 0.097969  0.441057 0.284275  0.566966 0.056291  0.066061 

50 0.026095 0.441057  0.088586 0.566966  0.003421 0.066061  

Post Hoc Tukey HSD test 

Include condition: Chit=1 % 

Variable:  Solubility (%) 
Variable:  Oxygen permeability 

(g Pa
-1

 m
-1

 s
-1

) 

Variable:  Glass transition 

temperature (ºC) 

Gly 

(%) 

(1) 

48.556 

(2) 

54.110 

(3) 

71.121 

(1) 

0.000 

(2) 

0.000 

(3) 

0.000 

(1) 

-20.02 

(2) 

-56.29 

(3) 

-72.52 

10  0.459923 0.009393  0.834916 0.934683  0.016945 0.005476 

90 0.459923  0.039929 0.834916  0.987449 0.016945  0.357640 

50 0.009393 0.039929  0.934683 0.987448  0.005476 0.357640  
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Post Hoc Tukey HSD test 

Include condition: Chit=2 % 

Variable:  aw solution Variable:  Thickness (mm) Variable:  aw film 

Gly 

(%) 

(1) 

1.0010 

(2) 

1.0008 

(3) 

0.99750 

(1) 

0.12425 

(2) 

0.13550 

(3) 

0.15150 

(1) 

0.52125 

(2) 

0.50900 

(3) 

0.550375 

10  0.980783 0.063946  0.560718 0.071131  0.336148 0.136054 

90 0.980783  0.085570 0.560718  0.332819 0.336148  0.801124 

50 0.063946 0.085570  0.071131 0.332819  0.136054 0.801124  

Post Hoc Tukey HSD test 

Include condition: Chit=2 % 

Variable:  Elongation at break (%) Variable:  Tensile strength (MPa) Variable:  Moisture content (%) 

Gly 

(%) 

(1) 

20.273 

(2) 

33.703 

(3) 

31.593 

(1) 

10.606 

(2) 

0.77850 

(3) 

0.25850 

(1) 

17.842 

(2) 

37.173 

(3) 

51.659 

10  0.081157 0.146693  0.000635 0.000492  0.000572 0.000184 

90 0.081157  0.920416 0.000635  0.944888 0.000572  0.003200 

50 0.146693 0.920416  0.000492 0.944888  0.000184 0.003200  

Post Hoc Tukey HSD test 

Include condition: Chit=2 % 

Variable:  Solubility (%) 
Variable:  Oxygen permeability 

(g Pa
-1

 m
-1

 s
-1

) 

Variable:  Glass transition 

temperature (ºC) 

Gly 

(%) 

(1) 

36.229 

(2) 

50.000 

(3) 

61.030 

(1) 

0.000 

(2) 

0.000 

(3) 

0.000 

(1) 

-5.120 

(2) 

-51.53 

(3) 

-65.08 

10  0.001813 0.000192  0.455588 0.247950  0.000292 0.000189 

90 0.001813  0.007069 0.455588  0.884011 0.000292  0.138291 

50 0.000192 0.007069  0.247950 0.884011  0.000189 0.138291  

Post Hoc Tukey HSD test 

Include condition: Chit=2 % 

Variable:  Melting enthalpy (Jg
-1

) Variable:  Melting temperature (ºC) 

Gly (%) 
(1) 

-165.2 

(2) 

-203.9 

(3) 

-203.8 

(1) 

120.65 

(2) 

128.51 

(3) 

131.48 

10  0.453386 0.455296  0.163846 0.051127 

90 0.453386  0.999993 0.163846  0.733996 

50 0.455296 0.999993  0.051127 0.733996  
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Post Hoc Tukey HSD test 

Include condition: Chit=3 % 

Variable:  aw solution Variable:  Thickness (mm) Variable:  aw film 

Gly 

(%) 

(1) 

1.0020 

(2) 

0.99975 

(3) 

0.99600 

(1) 

0.31575 

(2) 

0.24250 

(3) 

0.22800 

(1) 

0.50725 

(2) 

0.51450 

(3) 

0.52700 

10  0.227304 0.005388  0.274949 0.215208  0.261966 0.006704 

90 0.227304  0.055220 0.274949  0.950255 0.261966  0.061370 

50 0.005388 0.055220  0.215208 0.950255  0.006704 0.061370  

Post Hoc Tukey HSD test 

Include condition: Chit=3 % 

Variable:  Elongation at break (%) Variable:  Tensile strength (MPa) Variable:  Moisture content (%) 

Gly 

(%) 

(1) 

15.162 

(2) 

24.905 

(3) 

21.279 

(1) 

6.9595 

(2) 

1.14035 

(3) 

0.45433 

(1) 

16.530 

(2) 

38.668 

(3) 

54.516 

10  0.174551 0.506194  0.004061 0.002537  0.000201 0.000201 

90 0.174551  0.776505 0.004061  0.746592 0.000201  0.000201 

50 0.506194 0.776505  0.002537 0.746592  0.000201 0.000201  

Post Hoc Tukey HSD test 

Include condition: Chit=3 % 

Variable:  Solubility (%) 
Variable:  Oxygen permeability 

(g Pa
-1

 m
-1

 s
-1

) 

Variable:  Glass transition 

temperature (ºC) 

Gly 

(%) 

(1) 

29.891 

(2) 

49.543 

(3) 

63.233 

(1) 

0.000 

(2) 

0.000 

(3) 

0.000 

(1) 

26.390 

(2) 

-64.62 

(3) 

-81.86 

10  0.000201 0.000201  0.209689 0.141834  0.000201 0.000201 

90 0.000201  0.000201 0.209689  0.910109 0.000201  0.018066 

50 0.000201 0.000201  0.141834 0.910109  0.000201 0.018066  

Post Hoc Tukey HSD test 

Include condition: Chit=3 % 

Variable:  Melting enthalpy (Jg
-1

) Variable:  Melting temperature (ºC) 

Gly 

(%) 

(1) 

-175.9 

(2) 

-249.2 

(3) 

-317.6 

(1) 

109.67 

(2) 

117.04 

(3) 

124.31 

10  0.124734 0.009939  0.375803 0.160845 

90 0.124734  0.192408 0.375803  0.747134 

50 0.009939 0.192408  0.160845 0.747134  
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Table A.3.12 Tukey’s test to conclude on the effect of chitosan 

 

 

 

 

 

 

 

 

 

 

Post Hoc Tukey HSD test 

Include condition: Gly=90 % 

Variable:  aw solution Variable:  Thickness (mm) Variable:  aw film 

Chit 

(%) 

(1) 

0.99900 

(2) 

0.99750 

(3) 

0.99600 

(1) 

0.6050 

(2) 

0.15150 

(3) 

0.22800 

(1) 

0.5570 

(2) 

0.50375 

(3) 

0.52700 

1  0.800930 0.481430  0.014423 0.001044  0.000443 0.007040 

2 0.800930  0.753943 0.014423  0.017836 0.000443  0.010086 

3 0.481430 0.753943  0.001044 0.017836  0.007040 0.010086  

Post Hoc Tukey HSD test 

Include condition:  Gly=90 % 

Variable:  Elongation at break (%) Variable:  Tensile strength (MPa) Variable:  Moisture content (%) 

Chit 

(%) 

(1) 

84.448 

(2) 

31.593 

(3) 

21.279 

(1) 

1.490 

(2) 

0.25850 

(3) 

0.45433 

(1) 

52.657 

(2) 

51.569 

(3) 

54.516 

1  0.000725 0.000462  0.002083 0.006150  0.951047 0.856938 

2 0.000725  0.266436 0.002083  0.535074 0.951047  0.611927 

3 0.000462 0.266436  0.006150 0.535074  0.856938 0.611927  

Post Hoc Tukey HSD test 

Include condition:  Gly=90 % 

Variable:  Solubility (%) 
Variable:  Oxygen permeability 

(g Pa
-1

 m
-1

 s
-1

) 

Variable:  Glass transition 

temperature (ºC) 

Chit 

(%) 

(1) 

71.121 

(2) 

61.030 

(3) 

63.233 

(1) 

0.000 

(2) 

0.000 

(3) 

0.000 

(1) 

-72.52 

(2) 

-65.08 

(3) 

-81.86 

1  0.201606 0.373363  0.986175 0.702910  0.062487 0.031745 

2 0.201606  0.880241 0.986175  0.714235 0.062487  0.000944 

3 0.373363 0.880241  0.702910 0.714235  0.031745 0.000944  

Post Hoc Tukey HSD test 

Include condition:  Gly=90 % 

Variable:  Melting enthalpy (Jg
-1

) Variable:  Melting temperature (ºC) 

Chit 

(%) 

(1) 

-191.1 

(2) 

-203.8 

(3) 

-317.6 

(1) 

144.99 

(2) 

131.48 

(3) 

1124.31 

1  0.979600 0.233660  0.054470 0.011498 

2 0.979600  0.195940 0.054470  0.246719 

3 0.233660 0.195940  0.011498 0.246719  
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Post Hoc Tukey HSD test 

Include condition: Gly=50 % 

Variable:  aw solution Variable:  Thickness (mm) Variable:  aw film 

Chit 

(%) 

(1) 

1.003 

(2) 

1.008 

(3) 

0.9975 

(1) 

0.05233 

(2) 

0.13550 

(3) 

024250 

(1) 

0.56600 

(2) 

0.50900 

(3) 

0.51450 

1  0.782717 0.218213  0.000811 0.000201  0.020698 0.033469 

2 0.782717  0.457225 0.000811  0.000249 0.020698  0.931186 

3 0.218213 0.457225  0.000201 0.000249  0.033469 0.931186  

Post Hoc Tukey HSD test 

Include condition:  Gly=50 % 

Variable:  Elongation at break (%) Variable:  Tensile strength (MPa) Variable:  Moisture content (%) 

Chit 

(%) 

(1) 

70.773 

(2) 

33.703 

(3) 

24.903 

(1) 

4.4873 

(2) 

0.77850 

(3) 

1.4035 

(1) 

38.536 

(2) 

37.173 

(3) 

38.668 

1  0.004274 0.001245  0.020200 0.047188  0.943738 0.999507 

2 0.004274  0.489878 0.020200  0.805971 0.943738  0.922093 

3 0.001245 0.489878  0.047188 0.805971  0.999507 0.922093  

Post Hoc Tukey HSD test 

Include condition:  Gly=50 % 

Variable:  Solubility (%) 
Variable:  Oxygen permeability 

(g Pa
-1

 m
-1

 s
-1

) 

Variable:  Glass transition 

temperature (ºC) 

Chit 

(%) 

(1) 

54.110 

(2) 

50.000 

(3) 

49.543 

(1) 

0.000 

(2) 

0.000 

(3) 

0.000 

(1) 

-56.29 

(2) 

-51.53 

(3) 

-64.62 

1  0.353369 0.286873  0.613565 0.170282  0.818246 0.557530 

2 0.353369  0.983071 0.613565  0.524589 0.818246  0.225265 

3 0.286873 0.983071  0.170282 0.524589  0.557530 0.225265  

Post Hoc Tukey HSD test 

Include condition:  Gly=50 % 

Variable:  Melting enthalpy (Jg
-1

) Variable:  Melting temperature (ºC) 

Chit 

(%) 

(1) 

-152.1 

(2) 

-203.9 

(3) 

-249.2 

(1) 

130.73 

(2) 

128.51 

(3) 

119.04 

1  0.026328 0.000843  0.756250 0.012830 

2 0.026328  0.034183 0.756250  0.025126 

3 0.000843 0.034183  0.012830 0.025126  
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B.1 

 

 

B.1 Experimental results of films chemical composition  

 

Table B.1.1 Experiment results of films chemical composition, produced with different film forming 

solutions (FFS) 

 

FFS composition Experiment 1 Experiment 2 

Chit 

(%) 

Gly 

(%) 
Sample Measure 

Chit 

 (mg g
-1

film) 

Gly  

(mg g
-1

film) 

Chit 

 (mg g
-1

film) 

Gly 

 (mg g
-1

film) 

1 90 1 1 121.0 33.2 150.9 50.5 

1 90 1 2 130.1 33.3 179.8 55.4 

1 90 2 1 138.2 33.0 164.6 
 

1 90 2 2 
  

179.5 46.2 

1 90 3 1 128.1 
 

205.4 47.0 

1 90 3 2 130.9 
 

211.2 
 

1 50 1 1 134.9 25.8 261.3 37.3 

1 50 1 2 139.1 25.4 264.7 25.9 

1 50 2 1 141.2 26.1 237.4 
 

1 50 2 2 176.1 
 

224.7 31.8 

1 50 3 1 146.8 
 

244.4 57.2 

1 50 3 2 140.1 
 

243.0 
 

1 10 1 1 408.0 10.9 372.3 9.8 

1 10 1 2 401.3 12.8 367.2 11.4 

1 10 2 1 403.9 8.2 340.0 
 

1 10 2 2 403.1 
 

338.8 14.3 

1 10 3 1 408.0 
 

403.4 12.8 

1 10 3 2 410.0 
 

401.6 
 

2 90 1 1 41.8 36.2 150.5 36.1 

2 90 1 2 47.5 38.6 174.7 37.6 

2 90 2 1 45.1 40.7 160.5 
 

2 90 2 2 45.6 
 

172.0 31.4 

2 90 3 1 49.3 
 

167.1 41.8 

2 90 3 2 38.8 
 

161.7 
 

2 50 1 1 221.2 16.1 119.2 35.0 

2 50 1 2 187.6 18.5 119.6 29.7 

2 50 2 1 188.8 19.1 115.0 
 

2 50 2 2 271.0 
 

100.5 25.4 

2 50 3 1 252.5 
 

120.0 88.1 

2 50 3 2 244.5 
 

122.4 
 

2 10 1 1 359.0 11.5 382.2 10.9 

2 10 1 2 367.7 12.0 380.9 12.9 
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B.2 

 

 

Table B.1.1 (continued) Experiment results of films chemical composition, produced with 

different film forming solutions (FFS) 

 

 

FFS composition Experiment 1 Experiment 2 

Chit 

 (%) 

Gly 

 (%) 
Sample Measure 

Chit 

 (mg g
-1

film) 

Gly  

(mg g
-1

film) 

Chit 

 (mg g
-1

film) 

Gly 

 (mg g
-1

film) 

2 10 2 2 385.2 
 

360.4 16.9 

2 10 3 1 388.0 
 

335.6 18.3 

2 10 3 2 386.5 
 

342.5 
 

3 90 1 1 168.9 31.5 189.5 58.0 

3 90 1 2 144.9 28.5 210.6 46.1 

3 90 2 1 
  

336.0 
 

3 90 2 2 152.3 
 

336.3 53.3 

3 90 3 1 184.1 
 

270.8 56.0 

3 90 3 2 162.5 
 

277.9 
 

3 50 1 1 140.8 29.7 167.5 43.2 

3 50 1 2 145.9 30.3 166.4 48.5 

3 50 2 1 
 

25.3 214.8 
 

3 50 2 2 162.8 
 

303.3 47.9 

3 50 3 1 167.8 
 

171.1 45.2 

3 50 3 2 171.7 
 

185.7 
 

3 10 1 1 416.5 11.8 364.7 10.5 

3 10 1 2 416.2 9.9 355.4 23.1 

3 10 2 1 413.6 10.3 345.2 
 

3 10 2 2 416.2 
 

344.4 17.9 

3 10 3 1 426.1 
 

369.3 19.6 

3 10 3 2 417.9 
 

372.2 
 

2 10 2 2 385.2 
 

360.4 16.9 

2 10 3 1 388.0 
 

335.6 18.3 

2 10 3 2 386.5 
 

342.5 
 

3 90 1 1 168.9 31.5 189.5 58.0 

3 90 1 2 144.9 28.5 210.6 46.1 

3 90 2 1 
  

336.0 
 

3 90 2 2 152.3 
 

336.3 53.3 

3 90 3 1 184.1 
 

270.8 56.0 

3 90 3 2 162.5 
 

277.9 
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B.3 

 

 

B.2 Experimental results of films relaxation time 

 

Table B.2.1 Experiment results of films water and glycerol relaxation time 

 

Chit  

(%) 

Gly  

(%) 

T2  

(ms) 

  
Glycerol Water 

1 90 264.3 2545.2 

1 50 107.0 367.0 

1 10 7.7 59.7 

2 90 83.5 1402.0 

2 50 5.1 51.3 

2 10 6.8 76.2 

3 90 69.3 1197.5 

3 50 40.3 688.1 

3 10 5.4 41.7 
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C.1 

 

C.1 NMR experimental results of fresh-cut fruit relaxation times (T2) distribution as function 

of water population (A) 

 

Table C.1.1 Results of fresh-cut fruit relaxation time during storage period  

Experiment 1 Experiment 2 

Day 
Melon Pear 

Day 
Melon Pear 

T2 (ms) A T2 (ms) A T2 (ms) A T2 (ms) A 

0 100000 0.0000 100000 0.0002 0 10000 0.0001 100000 0.0001 

0 86207 0.0000 86207 0.0007 0 86207 0.0002 86207 0.0002 

0 74627 0.0000 74627 0.0014 0 74627 0.0005 74627 0.0005 

0 64516 0.0000 64516 0.0023 0 64516 0.0009 64516 0.0009 

0 55556 0.0000 55556 0.0035 0 55556 0.0014 55556 0.0014 

0 48077 0.0000 48077 0.0049 0 48077 0.0020 48077 0.0020 

0 41494 0.0000 41494 0.0064 0 41494 0.0027 41494 0.0027 

0 35842 0.0000 35842 0.0083 0 35842 0.0036 35842 0.0036 

0 30960 0.0000 30960 0.0103 0 30960 0.0046 30960 0.0046 

0 26738 0.0000 26738 0.0125 0 26738 0.0057 26738 0.0057 

0 23095 0.0000 23095 0.0149 0 23095 0.0070 23095 0.0070 

0 19960 0.0000 19960 0.0176 0 19960 0.0084 19960 0.0084 

0 17241 0.0001 17241 0.0204 0 17241 0.0100 17241 0.0100 

0 14881 0.0003 14881 0.0233 0 14881 0.0118 14881 0.0118 

0 12854 0.0006 12854 0.0265 0 12854 0.0137 12854 0.0137 

0 11099 0.0011 11099 0.0298 0 11099 0.0158 11099 0.0158 

0 9615 0.0017 9615 0.0332 0 9615 0.0180 9615 0.0180 

0 8264 0.0024 8264 0.0368 0 8264 0.0204 8264 0.0204 

0 7143 0.0034 7143 0.0405 0 7143 0.0230 7143 0.0230 

0 6173 0.0046 6173 0.0443 0 6173 0.0257 6173 0.0257 

0 5348 0.0059 5348 0.0481 0 5348 0.0285 5348 0.0285 

0 4608 0.0076 4608 0.0520 0 4608 0.0314 4608 0.0314 

0 3984 0.0094 3984 0.0559 0 3984 0.0344 3984 0.0344 

0 3436 0.0115 3436 0.0597 0 3436 0.0376 3436 0.0376 

0 2967 0.0138 2967 0.0635 0 2967 0.0408 2967 0.0408 
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C.2 

 

 

Table C.1.1 (continued) Results of fresh-cut fruit relaxation time (T2), during storage period 

 

Experiment 1 Experiment 2 

Day 
Melon Pear 

Day 
Melon Pear 

T2 (ms) A T2 (ms) A T2 (ms) A T2 (ms) A 

0 2564 0.0163 2564 0.0673 0 2564 0.0440 2564 0.0440 

0 2212 0.0191 2212 0.0708 0 2212 0.0472 2212 0.0472 

0 1912 0.0220 1912 0.0742 0 1912 0.0504 1912 0.0504 

0 1653 0.0250 1653 0.0773 0 1653 0.0535 1653 0.0535 

0 1427 0.0282 1427 0.0801 0 1427 0.0565 1427 0.0565 

0 1232 0.0315 1232 0.0825 0 1232 0.0593 1232 0.0593 

0 1064 0.0348 1064 0.0845 0 1064 0.0619 1064 0.0619 

0 917 0.0380 917 0.0860 0 917 0.0642 917 0.0642 

0 794 0.0412 794 0.0868 0 794 0.0661 794 0.0661 

0 685 0.0441 685 0.0870 0 685 0.0676 685 0.0676 

0 592 0.0468 592 0.0865 0 592 0.0686 592 0.0686 

0 510 0.0491 510 0.0851 0 510 0.0689 510 0.0689 

0 442 0.0509 442 0.0829 0 442 0.0686 442 0.0686 

0 382 0.0522 382 0.0798 0 382 0.0676 382 0.0676 

0 329 0.0528 329 0.0758 0 329 0.0657 329 0.0657 

0 285 0.0526 285 0.0709 0 285 0.0631 285 0.0631 

0 246 0.0517 246 0.0652 0 246 0.0596 246 0.0596 

0 212 0.0499 212 0.0587 0 212 0.0553 212 0.0553 

0 183 0.0472 183 0.0516 0 183 0.0502 183 0.0502 

0 158 0.0437 158 0.0440 0 158 0.0445 158 0.0445 

0 137 0.0393 137 0.0362 0 137 0.0382 137 0.0382 

0 118 0.0343 118 0.0284 0 118 0.0316 118 0.0316 

0 102 0.0288 102 0.0211 0 102 0.0249 102 0.0249 

0 88 0.0230 88 0.0145 0 88 0.0185 88 0.0185 

0 76 0.0173 76 0.0088 0 76 0.0126 76 0.0126 
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C.3 

 

 

Table C.1.1 (continued) Results of fresh-cut fruit relaxation time (T2), during storage period 

 

Experiment 1 Experiment 2 

Day 
Melon Pear 

Day 
Melon Pear 

T2 (ms) A T2 (ms) A T2 (ms) A T2 (ms) A 

0 66 0.0119 66 0.0046 0 66 0.0076 66 0.0076 

0 57 0.0073 57 0.0017 0 57 0.0038 57 0.0038 

0 49 0.0037 49 0.0003 0 49 0.0013 49 0.0013 

0 42 0.0013 42 0.0000 0 42 0.0001 42 0.0001 

0 37 0.0002 37 0.0000 0 37 0.0000 37 0.0000 

0 32 0.0000 32 0.0000 0 32 0.0000 32 0.0000 

0 27 0.0000 27 0.0000 0 27 0.0000 27 0.0000 

0 24 0.0000 24 0.0000 0 24 0.0000 24 0.0000 

0 20 0.0000 20 0.0000 0 20 0.0000 20 0.0000 

0 18 0.0000 18 0.0000 0 18 0.0000 18 0.0000 

0 15 0.0000 15 0.0000 0 15 0.0000 15 0.0000 

0 13 0.0000 13 0.0000 0 13 0.0000 13 0.0000 

0 11 0.0000 11 0.0000 0 11 0.0000 11 0.0000 

0 10 0.0000 10 0.0000 0 10 0.0000 10 0.0000 

0 8 0.0000 8 0.0000 0 8 0.0000 8 0.0000 

0 7 0.0000 7 0.0000 0 7 0.0000 7 0.0000 

0 6 0.0000 6 0.0000 0 6 0.0000 6 0.0000 

0 5 0.0000 5 0.0000 0 5 0.0000 5 0.0000 

0 5 0.0000 5 0.0000 0 5 0.0000 5 0.0000 

0 4 0.0000 4 0.0000 0 6504 0.0000 4 0.0000 

0 4 0.0000 4 0.0000 0 4 0.0000 4 0.0000 

0 3 0.0000 3 0.0000 0 3 0.0000 3 0.0000 

0 3 0.0000 3 0.0000 0 3 0.0000 3 0.0000 

0 2 0.0000 2 0.0000 0 2 0.0000 2 0.0000 

0 2 0.0000 2 0.0000 0 2 0.0000 2 0.0000 
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Table C.1.1 (continued) Results of fresh-cut fruit relaxation time (T2), during storage period 

 

Experiment 1 Experiment 2 

Day 
Melon Pear 

Day 
Melon Pear 

T2 (ms) A T2 (ms) A T2 (ms) A T2 (ms) A 

0 2 0.0000 2 0.0000 0 2 0.0000 2 0.0000 

0 1 0.0000 1 0.0000 0 1 0.0000 1 0.0000 

0 1 0.0000 1 0.0000 0 1 0.0000 1 0.0000 

0 1 0.0000 1 0.0000 0 1 0.0000 1 0.0000 

0 1 0.0000 1 0.0000 0 1 0.0000 1 0.0000 

0 1 0.0000 1 0.0000 0 1 0.0000 1 0.0000 

0 1 0.0000 1 0.0000 0 1 0.0000 1 0.0000 

0 1 0.0000 1 0.0000 0 1 0.0000 1 0.0000 

0 1 0.0000 1 0.0000 0 1 0.0000 1 0.0000 

0 0 0.0000 0 0.0000 0 0 0.0000 0 0.0000 

0 0 0.0000 0 0.0000 0 0 0.0000 0 0.0000 

0 0 0.0000 0 0.0000 0 0 0.0000 0 0.0000 

0 0 0.0000 0 0.0000 0 0 0.0000 0 0.0000 

0 0 0.0000 0 0.0000 0 0 0.0000 0 0.0000 

0 0 0.0000 0 0.0000 0 0 0.0000 0 0.0000 

0 0 0.0000 0 0.0000 0 0 0.0000 0 0.0000 

0 0 0.0000 0 0.0000 0 0 0.0000 0 0.0000 

0 0 0.0000 0 0.0000 0 0 0.0000 0 0.0000 

0 0 0.0000 0 0.0000 0 0 0.0000 0 0.0000 

0 0 0.0000 0 0.0000 0 0 0.0000 0 0.0000 

0 0 0.0000 0 0.0000 0 0 0.0000 0 0.0000 

0 0 0.0000 0 0.0000 0 0 0.0000 0 0.0000 

0 0 0.0000 0 0.0000 0 0 0.0000 0 0.0000 

0 0 0.0000 0 0.0000 0 0 0.0000 0 0.0000 

0 0 0.0000 0 0.0000 0 0 0.0000 0 0.0000 
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Table C.1.1 (continued) Results of fresh-cut fruit relaxation time (T2), during storage period 

 

Experiment 1 Experiment 2 

Day 
Melon Pear 

Day 
Melon Pear 

T2 (ms) A T2 (ms) A T2 (ms) A T2 (ms) A 

3 100000 0.0001 100000 0.0001 1 100000 0.0000 100000 0.0000 

3 86207 0.0003 86207 0.0004 1 86207 0.0000 86207 0.0000 

3 74627 0.0007 74627 0.0009 1 74627 0.0000 74627 0.0000 

3 64516 0.0011 64516 0.0015 1 64516 0.0000 64516 0.0000 

3 55556 0.0017 55556 0.0022 1 55556 0.0000 55556 0.0000 

3 48077 0.0024 48077 0.0031 1 48077 0.0000 48077 0.0000 

3 41494 0.0031 41494 0.0042 1 41494 0.0000 41494 0.0000 

3 35842 0.0040 35842 0.0055 1 35842 0.0000 35842 0.0000 

3 30960 0.0049 30960 0.0069 1 30960 0.0000 30960 0.0000 

3 26738 0.0060 26738 0.0085 1 26738 0.0000 26738 0.0000 

3 23095 0.0071 23095 0.0103 1 23095 0.0001 23095 0.0001 

3 19960 0.0083 19960 0.0123 1 19960 0.0002 19960 0.0002 

3 17241 0.0096 17241 0.0144 1 17241 0.0004 17241 0.0004 

3 14881 0.0109 14881 0.0167 1 14881 0.0008 14881 0.0008 

3 12854 0.0124 12854 0.0192 1 12854 0.0013 12854 0.0013 

3 11099 0.0138 11099 0.0218 1 11099 0.0019 11099 0.0019 

3 9615 0.0154 9615 0.0246 1 9615 0.0027 9615 0.0027 

3 8264 0.0170 8264 0.0276 1 8264 0.0038 8264 0.0038 

3 7143 0.0187 7143 0.0306 1 7143 0.0050 7143 0.0050 

3 6173 0.0204 6173 0.0338 1 6173 0.0064 6173 0.0064 

3 5348 0.0221 5348 0.0372 1 5348 0.0081 5348 0.0081 

3 4608 0.0239 4608 0.0406 1 4608 0.0101 4608 0.0101 

3 3984 0.0257 3984 0.0441 1 3984 0.0122 3984 0.0122 

3 3436 0.0275 3436 0.0476 1 3436 0.0146 3436 0.0146 

3 2967 0.0293 2967 0.0511 1 2967 0.0173 2967 0.0173 
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Table C.1.1 (continued) Results of fresh-cut fruit relaxation time (T2), during storage period 

 

Experiment 1 Experiment 2 

Day 
Melon Pear 

Day 
Melon Pear 

T2 (ms) A T2 (ms) A T2 (ms) A T2 (ms) A 

3 2564 0.0311 2564 0.0547 1 2564 0.0201 2564 0.0201 

3 2212 0.0328 2212 0.0581 1 2212 0.0232 2212 0.0232 

3 1912 0.0346 1912 0.0615 1 1912 0.0264 1912 0.0264 

3 1653 0.0363 1653 0.0647 1 1653 0.0298 1653 0.0298 

3 1427 0.0379 1427 0.0676 1 1427 0.0333 1427 0.0333 

3 1232 0.0394 1232 0.0704 1 1232 0.0369 1232 0.0369 

3 1064 0.0409 1064 0.0727 1 1064 0.0405 1064 0.0405 

3 917 0.0422 917 0.0747 1 917 0.0440 917 0.0440 

3 794 0.0434 794 0.0762 1 794 0.0474 794 0.0474 

3 685 0.0444 685 0.0771 1 685 0.0506 685 0.0506 

3 592 0.0452 592 0.0774 1 592 0.0536 592 0.0536 

3 510 0.0458 510 0.0769 1 510 0.0561 510 0.0561 

3 442 0.0462 442 0.0757 1 442 0.0582 442 0.0582 

3 382 0.0462 382 0.0737 1 382 0.0597 382 0.0597 

3 329 0.0460 329 0.0708 1 329 0.0605 329 0.0605 

3 285 0.0455 285 0.0670 1 285 0.0606 285 0.0606 

3 246 0.0446 246 0.0624 1 246 0.0599 246 0.0599 

3 212 0.0434 212 0.0570 1 212 0.0582 212 0.0582 

3 183 0.0418 183 0.0508 1 183 0.0557 183 0.0557 

3 158 0.0398 158 0.0441 1 158 0.0523 158 0.0523 

3 137 0.0374 137 0.0370 1 137 0.0480 137 0.0480 

3 118 0.0347 118 0.0298 1 118 0.0430 118 0.0430 

3 102 0.0316 102 0.0228 1 102 0.0373 102 0.0373 

3 88 0.0283 88 0.0162 1 88 0.0312 88 0.0312 

3 76 0.0248 76 0.0105 1 76 0.0250 76 0.0250 
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Table C.1.1 (continued) Results of fresh-cut fruit relaxation time (T2), during storage period 

 

Experiment 1 Experiment 2 

Day 
Melon Pear 

Day 
Melon Pear 

T2 (ms) A T2 (ms) A T2 (ms) A T2 (ms) A 

3 66 0.0212 66 0.0059 1 66 0.0188 66 0.0188 

3 57 0.0175 57 0.0026 1 57 0.0131 57 0.0131 

3 49 0.0139 49 0.0007 1 49 0.0082 49 0.0082 

3 42 0.0105 42 0.0000 1 42 0.0043 42 0.0043 

3 37 0.0074 37 0.0000 1 37 0.0017 37 0.0017 

3 32 0.0048 32 0.0000 1 32 0.0003 32 0.0003 

3 27 0.0027 27 0.0000 1 27 0.0000 27 0.0000 

3 24 0.0012 24 0.0000 1 24 0.0000 24 0.0000 

3 20 0.0003 20 0.0000 1 20 0.0000 20 0.0000 

3 18 0.0000 18 0.0000 1 18 0.0000 18 0.0000 

3 15 0.0000 15 0.0000 1 15 0.0000 15 0.0000 

3 13 0.0000 13 0.0000 1 13 0.0000 13 0.0000 

3 11 0.0000 11 0.0000 1 11 0.0000 11 0.0000 

3 10 0.0000 10 0.0000 1 10 0.0000 10 0.0000 

3 8 0.0000 8 0.0000 1 8 0.0000 8 0.0000 

3 7 0.0000 7 0.0000 1 7 0.0000 7 0.0000 

3 6 0.0000 6 0.0000 1 6 0.0000 6 0.0000 

3 5 0.0000 5 0.0000 1 5 0.0000 5 0.0000 

3 5 0.0000 5 0.0000 1 5 0.0000 5 0.0000 

3 4 0.0000 4 0.0000 1 4 0.0000 4 0.0000 

3 4 0.0000 4 0.0000 1 4 0.0000 4 0.0000 

3 3 0.0000 3 0.0000 1 3 0.0000 3 0.0000 

3 3 0.0000 3 0.0000 1 3 0.0000 3 0.0000 

3 2 0.0000 2 0.0000 1 2 0.0000 2 0.0000 

3 2 0.0000 2 0.0000 1 2 0.0000 2 0.0000 
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Table C.1.1 (continued) Results of fresh-cut fruit relaxation time (T2), during storage period 

 

Experiment 1 Experiment 2 

Day 
Melon Pear 

Day 
Melon Pear 

T2 (ms) A T2 (ms) A T2 (ms) A T2 (ms) A 

3 2 0.0000 2 0.0000 1 2 0.0000 2 0.0000 

3 1 0.0000 1 0.0000 1 1 0.0000 1 0.0000 

3 1 0.0000 1 0.0000 1 1 0.0000 1 0.0000 

3 1 0.0000 1 0.0000 1 1 0.0000 1 0.0000 

3 1 0.0000 1 0.0000 1 1 0.0000 1 0.0000 

3 1 0.0000 1 0.0000 1 1 0.0000 1 0.0000 

3 1 0.0000 1 0.0000 1 1 0.0000 1 0.0000 

3 1 0.0000 1 0.0000 1 1 0.0000 1 0.0000 

3 1 0.0000 1 0.0000 1 1 0.0000 1 0.0000 

3 0 0.0000 0 0.0000 1 0 0.0000 0 0.0000 

3 0 0.0000 0 0.0000 1 0 0.0000 0 0.0000 

3 0 0.0000 0 0.0000 1 0 0.0000 0 0.0000 

3 0 0.0000 0 0.0000 1 0 0.0000 0 0.0000 

3 0 0.0000 0 0.0000 1 0 0.0000 0 0.0000 

3 0 0.0000 0 0.0000 1 0 0.0000 0 0.0000 

3 0 0.0000 0 0.0000 1 0 0.0000 0 0.0000 

3 0 0.0000 0 0.0000 1 0 0.0000 0 0.0000 

3 0 0.0000 0 0.0000 1 0 0.0000 0 0.0000 

3 0 0.0000 0 0.0000 1 0 0.0000 0 0.0000 

3 0 0.0000 0 0.0000 1 0 0.0000 0 0.0000 

3 0 0.0000 0 0.0000 1 0 0.0000 0 0.0000 

3 0 0.0000 0 0.0000 1 0 0.0000 0 0.0000 

3 0 0.0000 0 0.0000 1 0 0.0000 0 0.0000 

3 0 0.0000 0 0.0000 1 0 0.0000 0 0.0000 

3 0 0.0000 0 0.0000 1 0 0.0000 0 0.0000 
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Table C.1.1 (continued) Results of fresh-cut fruit relaxation time (T2), during storage period 

 

Experiment 1 Experiment 2 

Day 
Melon Pear 

Day 
Melon Pear 

T2 (ms) A T2 (ms) A T2 (ms) A T2 (ms) A 

4 100000 0.0001 100000 0.0001 2 100000 0.0001 100000 0.0001 

4 86207 0.0004 86207 0.0004 2 86207 0.0003 86207 0.0003 

4 74627 0.0008 74627 0.0008 2 74627 0.0006 74627 0.0006 

4 64516 0.0013 64516 0.0014 2 64516 0.0010 64516 0.0010 

4 55556 0.0019 55556 0.0021 2 55556 0.0015 55556 0.0015 

4 48077 0.0026 48077 0.0030 2 48077 0.0021 48077 0.0021 

4 41494 0.0035 41494 0.0040 2 41494 0.0028 41494 0.0028 

4 35842 0.0044 35842 0.0052 2 35842 0.0036 35842 0.0036 

4 30960 0.0054 30960 0.0066 2 30960 0.0044 30960 0.0044 

4 26738 0.0066 26738 0.0082 2 26738 0.0054 26738 0.0054 

4 23095 0.0078 23095 0.0099 2 23095 0.0064 23095 0.0064 

4 19960 0.0091 19960 0.0118 2 19960 0.0075 19960 0.0075 

4 17241 0.0105 17241 0.0138 2 17241 0.0087 17241 0.0087 

4 14881 0.0120 14881 0.0161 2 14881 0.0100 14881 0.0100 

4 12854 0.0135 12854 0.0185 2 12854 0.0114 12854 0.0114 

4 11099 0.0151 11099 0.0210 2 11099 0.0128 11099 0.0128 

4 9615 0.0168 9615 0.0238 2 9615 0.0142 9615 0.0142 

4 8264 0.0185 8264 0.0266 2 8264 0.0158 8264 0.0158 

4 7143 0.0202 7143 0.0296 2 7143 0.0173 7143 0.0173 

4 6173 0.0220 6173 0.0328 2 6173 0.0190 6173 0.0190 

4 5348 0.0239 5348 0.0361 2 5348 0.0207 5348 0.0207 

4 4608 0.0257 4608 0.0394 2 4608 0.0224 4608 0.0224 

4 3984 0.0276 3984 0.0428 2 3984 0.0241 3984 0.0241 

4 3436 0.0295 3436 0.0463 2 3436 0.0259 3436 0.0259 

4 2967 0.0313 2967 0.0498 2 2967 0.0276 2967 0.0276 
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Table C.1.1 (continued) Results of fresh-cut fruit relaxation time (T2), during storage period 

 

Experiment 1 Experiment 2 

Day 
Melon Pear 

Day 
Melon Pear 

T2 (ms) A T2 (ms) A T2 (ms) A T2 (ms) A 

4 2564 0.0332 2564 0.0533 2 2564 0.0294 2564 0.0294 

4 2212 0.0350 2212 0.0567 2 2212 0.0312 2212 0.0312 

4 1912 0.0368 1912 0.0601 2 1912 0.0329 1912 0.0329 

4 1653 0.0385 1653 0.0633 2 1653 0.0346 1653 0.0346 

4 1427 0.0401 1427 0.0662 2 1427 0.0363 1427 0.0363 

4 1232 0.0417 1232 0.0690 2 1232 0.0379 1232 0.0379 

4 1064 0.0431 1064 0.0714 2 1064 0.0394 1064 0.0394 

4 917 0.0444 917 0.0734 2 917 0.0407 917 0.0407 

4 794 0.0455 794 0.0749 2 794 0.0420 794 0.0420 

4 685 0.0464 685 0.0758 2 685 0.0431 685 0.0431 

4 592 0.0472 592 0.0762 2 592 0.0440 592 0.0440 

4 510 0.0477 510 0.0759 2 510 0.0447 510 0.0447 

4 442 0.0479 442 0.0747 2 442 0.0451 442 0.0451 

4 382 0.0478 382 0.0728 2 382 0.0453 382 0.0453 

4 329 0.0475 329 0.0700 2 329 0.0452 329 0.0452 

4 285 0.0468 285 0.0664 2 285 0.0448 285 0.0448 

4 246 0.0457 246 0.0619 2 246 0.0440 246 0.0440 

4 212 0.0443 212 0.0566 2 212 0.0429 212 0.0429 

4 183 0.0425 183 0.0505 2 183 0.0414 183 0.0414 

4 158 0.0403 158 0.0439 2 158 0.0395 158 0.0395 

4 137 0.0377 137 0.0370 2 137 0.0373 137 0.0373 

4 118 0.0348 118 0.0298 2 118 0.0346 118 0.0346 

4 102 0.0316 102 0.0229 2 102 0.0317 102 0.0317 

4 88 0.0281 88 0.0163 2 88 0.0284 88 0.0284 

4 76 0.0245 76 0.0106 2 76 0.0249 76 0.0249 
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Table C.1.1 (continued) Results of fresh-cut fruit relaxation time (T2), during storage period 

 

Experiment 1 Experiment 2 

Day 
Melon Pear 

Day 
Melon Pear 

T2 (ms) A T2 (ms) A T2 (ms) A T2 (ms) A 

4 66 0.0207 66 0.0060 2 66 0.0213 66 0.0213 

4 57 0.0170 57 0.0026 2 57 0.0177 57 0.0177 

4 49 0.0133 49 0.0007 2 49 0.0141 49 0.0141 

4 42 0.0099 42 0.0000 2 42 0.0106 42 0.0106 

4 37 0.0069 37 0.0000 2 37 0.0076 37 0.0076 

4 32 0.0044 32 0.0000 2 32 0.0049 32 0.0049 

4 27 0.0024 27 0.0000 2 27 0.0028 27 0.0028 

4 24 0.0010 24 0.0000 2 24 0.0013 24 0.0013 

4 20 0.0003 20 0.0000 2 20 0.0004 20 0.0004 

4 18 0.0000 18 0.0000 2 18 0.0000 18 0.0000 

4 15  15 0.0000 2 15 0.0000 15 0.0000 

4 13 0.0000 13 0.0000 2 13 0.0000 13 0.0000 

4 11 0.0000 11 0.0000 2 11 0.0000 11 0.0000 

4 10 0.0000 10 0.0000 2 10 0.0000 10 0.0000 

4 8 0.0000 8 0.0000 2 8 0.0000 8 0.0000 

4 7 0.0000 7 0.0000 2 7 0.0000 7 0.0000 

4 6 0.0000 6 0.0000 2 6 0.0000 6 0.0000 

4 5 0.0000 5 0.0000 2 5 0.0000 5 0.0000 

4 5 0.0000 5 0.0000 2 5 0.0000 5 0.0000 

4 4 0.0000 4 0.0000 2 4 0.0000 4 0.0000 

4 4 0.0000 4 0.0000 2 4 0.0000 4 0.0000 

4 3 0.0000 3 0.0000 2 3 0.0000 3 0.0000 

4 3 0.0000 3 0.0000 2 3 0.0000 3 0.0000 

4 2 0.0000 2 0.0000 2 2 0.0000 2 0.0000 

4 2 0.0000 2 0.0000 2 2 0.0000 2 0.0000 
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Table C.1.1 (continued) Results of fresh-cut fruit relaxation time (T2), during storage period 

 

Experiment 1 Experiment 2 

Day 
Melon Pear 

Day 
Melon Pear 

T2 (ms) A T2 (ms) A T2 (ms) A T2 (ms) A 

4 2 0.0000 2 0.0000 2 2 0.0000 2 0.0000 

4 1 0.0000 1 0.0000 2 1 0.0000 1 0.0000 

4 1 0.0000 1 0.0000 2 1 0.0000 1 0.0000 

4 1 0.0000 1 0.0000 2 1 0.0000 1 0.0000 

4 1 0.0000 1 0.0000 2 1 0.0000 1 0.0000 

4 1 0.0000 1 0.0000 2 1 0.0000 1 0.0000 

4 1 0.0000 1 0.0000 2 1 0.0000 1 0.0000 

4 1 0.0000 1 0.0000 2 1 0.0000 1 0.0000 

4 1 0.0000 1 0.0000 2 1 0.0000 1 0.0000 

4 0 0.0000 0 0.0000 2 0 0.0000 0 0.0000 

4 0 0.0000 0 0.0000 2 0 0.0000 0 0.0000 

4 0 0.0000 0 0.0000 2 0 0.0000 0 0.0000 

4 0 0.0000 0 0.0000 2 0 0.0000 0 0.0000 

4 0 0.0000 0 0.0000 2 0 0.0000 0 0.0000 

4 0 0.0000 0 0.0000 2 0 0.0000 0 0.0000 

4 0 0.0000 0 0.0000 2 0 0.0000 0 0.0000 

4 0 0.0000 0 0.0000 2 0 0.0000 0 0.0000 

4 0 0.0000 0 0.0000 2 0 0.0000 0 0.0000 

4 0 0.0000 0 0.0000 2 0 0.0000 0 0.0000 

4 0 0.0000 0 0.0000 2 0 0.0000 0 0.0000 

4 0 0.0000 0 0.0000 2 0 0.0000 0 0.0000 

4 0 0.0000 0 0.0000 2 0 0.0000 0 0.0000 

4 0 0.0000 0 0.0000 2 0 0.0000 0 0.0000 

4 0 0.0000 0 0.0000 2 0 0.0000 0 0.0000 

4 0 0.0000 0 0.0000 2 0 0.0000 0 0.0000 
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Table C.1.1 (continued) Results of fresh-cut fruit relaxation time (T2), during storage period 

 

Experiment 1 Experiment 2 

Day 
Melon Pear 

Day 
Melon Pear 

T2 (ms) A T2 (ms) A T2 (ms) A T2 (ms) A 

5 100000 0.0002 100000 0.0000 3 100000 0.0001 100000 0.0001 

5 86207 0.0005 86207 0.0000 3 86207 0.0004 86207 0.0004 

5 74627 0.0009 74627 0.0001 3 74627 0.0008 74627 0.0008 

5 64516 0.0015 64516 0.0002 3 64516 0.0014 64516 0.0014 

5 55556 0.0022 55556 0.0004 3 55556 0.0020 55556 0.0020 

5 48077 0.0030 48077 0.0007 3 48077 0.0028 48077 0.0028 

5 41494 0.0040 41494 0.0011 3 41494 0.0037 41494 0.0037 

5 35842 0.0051 35842 0.0016 3 35842 0.0047 35842 0.0047 

5 30960 0.0063 30960 0.0022 3 30960 0.0058 30960 0.0058 

5 26738 0.0076 26738 0.0030 3 26738 0.0070 26738 0.0070 

5 23095 0.0090 23095 0.0040 3 23095 0.0083 23095 0.0083 

5 19960 0.0104 19960 0.0051 3 19960 0.0097 19960 0.0097 

5 17241 0.0120 17241 0.0065 3 17241 0.0112 17241 0.0112 

5 14881 0.0136 14881 0.0080 3 14881 0.0128 14881 0.0128 

5 12854 0.0154 12854 0.0097 3 12854 0.0144 12854 0.0144 

5 11099 0.0171 11099 0.0117 3 11099 0.0161 11099 0.0161 

5 9615 0.0190 9615 0.0138 3 9615 0.0179 9615 0.0179 

5 8264 0.0209 8264 0.0162 3 8264 0.0197 8264 0.0197 

5 7143 0.0228 7143 0.0188 3 7143 0.0215 7143 0.0215 

5 6173 0.0247 6173 0.0217 3 6173 0.0234 6173 0.0234 

5 5348 0.0267 5348 0.0247 3 5348 0.0253 5348 0.0253 

5 4608 0.0287 4608 0.0280 3 4608 0.0272 4608 0.0272 

5 3984 0.0307 3984 0.0314 3 3984 0.0292 3984 0.0292 

5 3436 0.0327 3436 0.0350 3 3436 0.0311 3436 0.0311 

5 2967 0.0346 2967 0.0387 3 2967 0.0331 2967 0.0331 
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Table C.1.1 (continued) Results of fresh-cut fruit relaxation time (T2), during storage period 

 

Experiment 1 Experiment 2 

Day 
Melon Pear 

Day 
Melon Pear 

T2 (ms) A T2 (ms) A T2 (ms) A T2 (ms) A 

5 2564 0.0366 2564 0.0426 3 2564 0.0350 2564 0.0350 

5 2212 0.0385 2212 0.0465 3 2212 0.0368 2212 0.0368 

5 1912 0.0403 1912 0.0505 3 1912 0.0387 1912 0.0387 

5 1653 0.0420 1653 0.0544 3 1653 0.0404 1653 0.0404 

5 1427 0.0436 1427 0.0583 3 1427 0.0421 1427 0.0421 

5 1232 0.0452 1232 0.0620 3 1232 0.0436 1232 0.0436 

5 1064 0.0466 1064 0.0656 3 1064 0.0450 1064 0.0450 

5 917 0.0478 917 0.0688 3 917 0.0463 917 0.0463 

5 794 0.0488 794 0.0717 3 794 0.0474 794 0.0474 

5 685 0.0497 685 0.0741 3 685 0.0484 685 0.0484 

5 592 0.0503 592 0.0760 3 592 0.0491 592 0.0491 

5 510 0.0506 510 0.0772 3 510 0.0495 510 0.0495 

5 442 0.0507 442 0.0777 3 442 0.0497 442 0.0497 

5 382 0.0505 382 0.0773 3 382 0.0496 382 0.0496 

5 329 0.0499 329 0.0761 3 329 0.0491 329 0.0491 

5 285 0.0490 285 0.0739 3 285 0.0483 285 0.0483 

5 246 0.0477 246 0.0708 3 246 0.0472 246 0.0472 

5 212 0.0460 212 0.0668 3 212 0.0456 212 0.0456 

5 183 0.0439 183 0.0618 3 183 0.0437 183 0.0437 

5 158 0.0415 158 0.0559 3 158 0.0414 158 0.0414 

5 137 0.0387 137 0.0494 3 137 0.0387 137 0.0387 

5 118 0.0356 118 0.0423 3 118 0.0356 118 0.0356 

5 102 0.0321 102 0.0350 3 102 0.0323 102 0.0323 

5 88 0.0284 88 0.0277 3 88 0.0287 88 0.0287 

5 76 0.0246 76 0.0207 3 76 0.0249 76 0.0249 
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Table C.1.1 (continued) Results of fresh-cut fruit relaxation time (T2), during storage period 

 

Experiment 1 Experiment 2 

Day 
Melon Pear 

Day 
Melon Pear 

T2 (ms) A T2 (ms) A T2 (ms) A T2 (ms) A 

5 66 0.0207 66 0.0143 3 66 0.0210 66 0.0210 

5 57 0.0168 57 0.0089 3 57 0.0172 57 0.0172 

5 49 0.0131 49 0.0047 3 49 0.0134 49 0.0134 

5 42 0.0097 42 0.0019 3 42 0.0100 42 0.0100 

5 37 0.0067 37 0.0004 3 37 0.0069 37 0.0069 

5 32 0.0041 32 0.0000 3 32 0.0043 32 0.0043 

5 27 0.0022 27 0.0000 3 27 0.0023 27 0.0023 

5 24 0.0009 24 0.0000 3 24 0.0010 24 0.0010 

5 20 0.0002 20 0.0000 3 20 0.0003 20 0.0003 

5 18 0.0000 18 0.0000 3 18 0.0000 18 0.0000 

5 15 0.0000 15 0.0000 3 15 0.0000 15 0.0000 

5 13 0.0000 13 0.0000 3 13 0.0000 13 0.0000 

5 11 0.0000 11 0.0000 3 11 0.0000 11 0.0000 

5 10 0.0000 10 0.0000 3 10 0.0000 10 0.0000 

5 8 0.0000 8 0.0000 3 8 0.0000 8 0.0000 

5 7 0.0000 7 0.0000 3 7 0.0000 7 0.0000 

5 6 0.0000 6 0.0000 3 6 0.0000 6 0.0000 

5 5 0.0000 5 0.0000 3 5 0.0000 5 0.0000 

5 5 0.0000 5 0.0000 3 5 0.0000 5 0.0000 

5 4 0.0000 4 0.0000 3 4 0.0000 4 0.0000 

5 4 0.0000 4 0.0000 3 4 0.0000 4 0.0000 

5 3 0.0000 3 0.0000 3 3 0.0000 3 0.0000 

5 3 0.0000 3 0.0000 3 3 0.0000 3 0.0000 

5 2 0.0000 2 0.0000 3 2 0.0000 2 0.0000 

5 2 0.0000 2 0.0000 3 2 0.0000 2 0.0000 
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Table C.1.1 (continued) Results of fresh-cut fruit relaxation time (T2), during storage period 

 

Experiment 1 Experiment 2 

Day 
Melon Pear 

Day 
Melon Pear 

T2 (ms) A T2 (ms) A T2 (ms) A T2 (ms) A 

5 2 0.0000 2 0.0000 3 2 0.0000 2 0.0000 

5 1 0.0000 1 0.0000 3 1 0.0000 1 0.0000 

5 1 0.0000 1 0.0000 3 1 0.0000 1 0.0000 

5 1 0.0000 1 0.0000 3 1 0.0000 1 0.0000 

5 1 0.0000 1 0.0000 3 1 0.0000 1 0.0000 

5 1 0.0000 1 0.0000 3 1 0.0000 1 0.0000 

5 1 0.0000 1 0.0000 3 1 0.0000 1 0.0000 

5 1 0.0000 1 0.0000 3 1 0.0000 1 0.0000 

5 1 0.0000 1 0.0000 3 1 0.0000 1 0.0000 

5 0 0.0000 0 0.0000 3 0 0.0000 0 0.0000 

5 0 0.0000 0 0.0000 3 0 0.0000 0 0.0000 

5 0 0.0000 0 0.0000 3 0 0.0000 0 0.0000 

5 0 0.0000 0 0.0000 3 0 0.0000 0 0.0000 

5 0 0.0000 0 0.0000 3 0 0.0000 0 0.0000 

5 0 0.0000 0 0.0000 3 0 0.0000 0 0.0000 

5 0 0.0000 0 0.0000 3 0 0.0000 0 0.0000 

5 0 0.0000 0 0.0000 3 0 0.0000 0 0.0000 

5 0 0.0000 0 0.0000 3 0 0.0000 0 0.0000 

5 0 0.0000 0 0.0000 3 0 0.0000 0 0.0000 

5 0 0.0000 0 0.0000 3 0 0.0000 0 0.0000 

5 0 0.0000 0 0.0000 3 0 0.0000 0 0.0000 

5 0 0.0000 0 0.0000 3 0 0.0000 0 0.0000 

5 0 0.0000 0 0.0000 3 0 0.0000 0 0.0000 

5 0 0.0000 0 0.0000 3 0 0.0000 0 0.0000 

5 0 0.0000 0. 0.0000 3 0 0.0000 0 0.0000 
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Table C.1.1 (continued) Results of fresh-cut fruit relaxation time (T2), during storage period 

Experiment 1 Experiment 2 

Day 
Melon Pear 

Day 
Melon Pear 

T2 (ms) A T2 (ms) A T2 (ms) A T2 (ms) A 

6 
10000

0 
0.0000 

10000

0 
0.0002 4 

10000

0 
0.0000 

10000

0 
0.0000 

6 86207 0.0000 86207 0.0005 4 86207 0.0000 86207 0.0000 

6 74627 0.0000 74627 0.0011 4 74627 0.0000 74627 0.0000 

6 64516 0.0000 64516 0.0018 4 64516 0.0000 64516 0.0000 

6 55556 0.0000 55556 0.0027 4 55556 0.0000 55556 0.0000 

6 48077 0.0000 48077 0.0038 4 48077 0.0000 48077 0.0000 

6 41494 0.0000 41494 0.0050 4 41494 0.0000 41494 0.0000 

6 35842 0.0000 35842 0.0065 4 35842 0.0000 35842 0.0000 

6 30960 0.0000 30960 0.0081 4 30960 0.0000 30960 0.0000 

6 26738 0.0000 26738 0.0099 4 26738 0.0000 26738 0.0000 

6 23095 0.0000 23095 0.0119 4 23095 0.0000 23095 0.0000 

6 19960 0.0001 19960 0.0140 4 19960 0.0000 19960 0.0000 

6 17241 0.0002 17241 0.0163 4 17241 0.0001 17241 0.0001 

6 14881 0.0004 14881 0.0188 4 14881 0.0002 14881 0.0002 

6 12854 0.0007 12854 0.0214 4 12854 0.0005 12854 0.0005 

6 11099 0.0012 11099 0.0242 4 11099 0.0009 11099 0.0009 

6 9615 0.0019 9615 0.0271 4 9615 0.0015 9615 0.0015 

6 8264 0.0028 8264 0.0302 4 8264 0.0022 8264 0.0022 

6 7143 0.0039 7143 0.0333 4 7143 0.0032 7143 0.0032 

6 6173 0.0052 6173 0.0366 4 6173 0.0044 6173 0.0044 

6 5348 0.0068 5348 0.0399 4 5348 0.0058 5348 0.0058 

6 4608 0.0086 4608 0.0433 4 4608 0.0075 4608 0.0075 

6 3984 0.0107 3984 0.0467 4 3984 0.0094 3984 0.0094 

6 3436 0.0131 3436 0.0502 4 3436 0.0117 3436 0.0117 

6 2967 0.0157 2967 0.0536 4 2967 0.0142 2967 0.0142 
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Table C.1.1 (continued) Results of fresh-cut fruit relaxation time (T2), during storage period 

 

Experiment 1 Experiment 2 

Day 
Melon Pear 

Day 
Melon Pear 

T2 (ms) A T2 (ms) A T2 (ms) A T2 (ms) A 

6 2564 0.0186 2564 0.0570 4 2564 0.0169 2564 0.0169 

6 2212 0.0217 2212 0.0602 4 2212 0.0199 212 0.0199 

6 1912 0.0251 1912 0.0634 4 1912 0.0231 1912 0.0231 

6 1653 0.0286 1653 0.0664 4 1653 0.0266 1653 0.0266 

6 1427 0.0322 1427 0.0691 4 1427 0.0301 1427 0.0301 

6 1232 0.0360 1232 0.0715 4 1232 0.0338 1232 0.0338 

6 1064 0.0398 1064 0.0736 4 1064 0.0376 1064 0.0376 

6 917 0.0436 917 0.0753 4 917 0.0414 917 0.0414 

6 794 0.0472 794 0.0765 4 794 0.0451 794 0.0451 

6 685 0.0507 685 0.0771 4 685 0.0486 685 0.0486 

6 592 0.0539 592 0.0772 4 592 0.0519 592 0.0519 

6 510 0.0568 510 0.0765 4 510 0.0548 510 0.0548 

6 442 0.0591 442 0.0751 4 442 0.0573 442 0.0573 

6 382 0.0609 382 0.0729 4 382 0.0592 382 0.0592 

6 329 0.0619 329 0.0699 4 329 0.0605 329 0.0605 

6 285 0.0622 285 0.0660 4 285 0.0610 285 0.0610 

6 246 0.0616 246 0.0614 4 246 0.0607 246 0.0607 

6 212 0.0601 212 0.0559 4 212 0.0595 212 0.0595 

6 183 0.0577 183 0.0499 4 183 0.0573 183 0.0573 

6 158 0.0543 158 0.0433 4 158 0.0541 158 0.0541 

6 137 0.0499 137 0.0363 4 137 0.0500 137 0.0500 

6 118 0.0447 118 0.0293 4 118 0.0450 118 0.0450 

6 102 0.0389 102 0.0224 4 102 0.0394 102 0.0394 

6 88 0.0326 88 0.0160 4 88 0.0332 88 0.0332 

6 76 0.0261 76 0.0104 4 76 0.0267 76 0.0267 
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Table C.1.1 (continued) Results of fresh-cut fruit relaxation time (T2), during storage period 

 

Experiment 1 Experiment 2 

Day 
Melon Pear 

Day 
Melon Pear 

T2 (ms) A T2 (ms) A T2 (ms) A T2 (ms) A 

6 66 0.0197 66 0.0059 4 66 0.0204 66 0.0204 

6 57 0.0138 57 0.0026 4 57 0.0144 57 0.0144 

6 49 0.0086 49 0.0007 4 49 0.0091 49 0.0091 

6 42 0.0046 42 0.0000 4 42 0.0049 42 0.0049 

6 37 0.0018 37 0.0000 4 37 0.0020 37 0.0020 

6 32 0.0004 32 0.0000 4 32 0.0004 32 0.0004 

6 27 0.0000 27 0.0000 4 27 0.0000 27 0.0000 

6 24 0.0000 24 0.0000 4 24 0.0000 24 0.0000 

6 20 0.0000 20 0.0000 4 20 0.0000 20 0.0000 

6 18 0.0000 18 0.0000 4 18 0.0000 18 0.0000 

6 15 0.0000 15 0.0000 4 15 0.0000 15 0.0000 

6 13 0.0000 13 0.0000 4 13 0.0000 13 0.0000 

6 11 0.0000 11 0.0000 4 11 0.0000 11 0.0000 

6 10 0.0000 10 0.0000 4 10 0.0000 10 0.0000 

6 8 0.0000 8 0.0000 4 8 0.0000 8 0.0000 

6 7 0.0000 7 0.0000 4 7 0.0000 7 0.0000 

6 6 0.0000 6 0.0000 4 6 0.0000 6 0.0000 

6 5 0.0000 5 0.0000 4 5 0.0000 5 0.0000 

6 5 0.0000 5 0.0000 4 5 0.0000 5 0.0000 

6 4 0.0000 4 0.0000 4 4 0.0000 4 0.0000 

6 4 0.0000 4 0.0000 4 4 0.0000 4 0.0000 

6 3 0.0000 3 0.0000 4 3 0.0000 3 0.0000 

6 3 0.0000 3 0.0000 4 3 0.0000 3 0.0000 

6 2 0.0000 2 0.0000 4 2 0.0000 2 0.0000 

6 2 0.0000 2 0.0000 4 2 0.0000 2 0.0000 
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Table C.1.1 (continued) Results of fresh-cut fruit relaxation time (T2), during storage period 

 

Experiment 1 Experiment 2 

Day 
Melon Pear 

Day 
Melon Pear 

T2 (ms) A T2 (ms) A T2 (ms) A T2 (ms) A 

6 2 0.0000 2 0.0000 4 2 0.0000 2 0.0000 

6 1 0.0000 1 0.0000 4 1 0.0000 1 0.0000 

6 1 0.0000 1 0.0000 4 1 0.0000 1 0.0000 

6 1 0.0000 1 0.0000 4 1 0.0000 1 0.0000 

6 1 0.0000 1 0.0000 4 1 0.0000 1 0.0000 

6 1 0.0000 1 0.0000 4 1 0.0000 1 0.0000 

6 1 0.0000 1 0.0000 4 1 0.0000 1 0.0000 

6 1 0.0000 1 0.0000 4 1 0.0000 1 0.0000 

6 1 0.0000 1 0.0000 4 1 0.0000 1 0.0000 

6 0 0.0000 0 0.0000 4 0 0.0000 0 0.0000 

6 0 0.0000 0 0.0000 4 0 0.0000 0 0.0000 

6 0 0.0000 0 0.0000 4 0 0.0000 0 0.0000 

6 0 0.0000 0 0.0000 4 0 0.0000 0 0.0000 

6 0 0.0000 0 0.0000 4 0 0.0000 0 0.0000 

6 0 0.0000 0 0.0000 4 0 0.0000 0 0.0000 

6 0 0.0000 0 0.0000 4 0 0.0000 0 0.0000 

6 0 0.0000 0 0.0000 4 0 0.0000 0 0.0000 

6 0  0 0.0000 4 0 0.0000 0 0.0000 

6 0  0 0.0000 4 0 0.0000 0 0.0000 

6 0 0.0000 0 0.0000 4 0 0.0000 0 0.0000 

6 0 0.0000 0 0.0000 4 0 0.0000 0 0.0000 

6 0 0.0000 0 0.0000 4 0 0.0000 0 0.0000 

6 0 0.0000 0 0.0000 4 0 0.0000 0 0.0000 

6 0 0.0000 0 0.0000 4 0 0.0000 0 0.0000 

6 0 0.0000 0 0.0000 4 0 0.0000 0 0.0000 
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Table C.1.1 (continued) Results of fresh-cut fruit relaxation time (T2), during storage period 

 

Experiment 1 Experiment 2 

Day 
Melon Pear 

Day 
Melon Pear 

T2 (ms) A T2 (ms) A T2 (ms) A T2 (ms) A 

7 100000 0.0001 100000 0.0001 7 100000 0.0000 100000 0.0000 

7 86207 0.0004 86207 0.0004 7 86207 0.0000 86207 0.0000 

7 74627 0.0008 74627 0.0008 7 74627 0.0000 74627 0.0000 

7 64516 0.0013 64516 0.0014 7 64516 0.0000 64516 0.0000 

7 55556 0.0019 55556 0.0021 7 55556 0.0000 55556 0.0000 

7 48077 0.0026 48077 0.0030 7 48077 0.0000 48077 0.0000 

7 41494 0.0034 41494 0.0040 7 41494 0.0000 41494 0.0000 

7 35842 0.0043 35842 0.0052 7 35842 0.0000 35842 0.0000 

7 30960 0.0053 30960 0.0066 7 30960 0.0000 30960 0.0000 

7 26738 0.0064 26738 0.0081 7 26738 0.0000 26738 0.0000 

7 23095 0.0076 23095 0.0098 7 23095 0.0000 23095 0.0000 

7 19960 0.0089 19960 0.0116 7 19960 0.0000 19960 0.0000 

7 17241 0.0103 17241 0.0136 7 17241 0.0000 17241 0.0000 

7 14881 0.0117 14881 0.0158 7 14881 0.0000 14881 0.0000 

7 12854 0.0132 12854 0.0181 7 12854 0.0000 12854 0.0000 

7 11099 0.0147 11099 0.0206 7 11099 0.0000 11099 0.0000 

7 9615 0.0163 9615 0.0232 7 9615 0.0000 9615 0.0000 

7 8264 0.0180 8264 0.0260 7 8264 0.0000 8264 0.0000 

7 7143 0.0197 7143 0.0289 7 7143 0.0000 7143 0.0000 

7 6173 0.0214 6173 0.0319 7 6173 0.0000 6173 0.0000 

7 5348 0.0232 5348 0.0350 7 5348 0.0000 5348 0.0000 

7 4608 0.0249 4608 0.0382 7 4608 0.0000 4608 0.0000 

7 3984 0.0267 3984 0.0414 7 3984 0.0000 3984 0.0000 

7 3436 0.0285 3436 0.0447 7 3436 0.0000 3436 0.0000 

7 2967 0.0303 2967 0.0480 7 2967 0.0000 2967 0.0000 
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Table C.1.1 (continued) Results of fresh-cut fruit relaxation time (T2), during storage period 

 

Experiment 1 Experiment 2 

Day 
Melon Pear 

Day 
Melon Pear 

T2 (ms) A T2 (ms) A T2 (ms) A T2 (ms) A 

7 2564 0.0320 2564 0.0513 7 2564 0.0000 2564 0.0000 

7 2212 0.0337 2212 0.0546 7 2212 0.0000 2212 0.0000 

7 1912 0.0354 1912 0.0577 7 1912 0.0000 1912 0.0000 

7 1653 0.0370 1653 0.0607 7 1653 0.0000 1653 0.0000 

7 1427 0.0386 1427 0.0635 7 1427 0.0002 1427 0.0002 

7 1232 0.0400 1232 0.0661 7 1232 0.0013 1232 0.0013 

7 1064 0.0413 1064 0.0683 7 1064 0.0040 1064 0.0040 

7 917 0.0425 917 0.0702 7 917 0.0087 917 0.0087 

7 794 0.0436 794 0.0716 7 794 0.0154 794 0.0154 

7 685 0.0445 685 0.0726 7 685 0.0243 685 0.0243 

7 592 0.0452 592 0.0729 7 592 0.0348 592 0.0348 

7 510 0.0456 510 0.0726 7 510 0.0467 510 0.0467 

7 442 0.0459 442 0.0716 7 442 0.0591 442 0.0591 

7 382 0.0458 382 0.0699 7 382 0.0712 382 0.0712 

7 329 0.0455 329 0.0673 7 329 0.0820 329 0.0820 

7 285 0.0449 285 0.0639 7 285 0.0906 285 0.0906 

7 246 0.0439 246 0.0598 7 246 0.0960 246 0.0960 

7 212 0.0426 212 0.0548 7 212 0.0975 212 0.0975 

7 183 0.0409 183 0.0492 7 183 0.0944 183 0.0944 

7 158 0.0389 158 0.0430 7 158 0.0868 158 0.0868 

7 137 0.0365 137 0.0364 7 137 0.0751 137 0.0751 

7 118 0.0338 118 0.0297 7 118 0.0601 118 0.0601 

7 102 0.0308 102 0.0230 7 102 0.0435 102 0.0435 

7 88 0.0276 88 0.0167 7 88 0.0272 88 0.0272 

7 76 0.0241 76 0.0110 7 76 0.0134 76 0.0134 
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Table C.1.1 (continued) Results of fresh-cut fruit relaxation time (T2), during storage period 

 

Experiment 1 Experiment 2 

Day 
Melon Pear 

Day 
Melon Pear 

T2 (ms) A T2 (ms) A T2 (ms) A T2 (ms) A 

7 66 0.0206 66 0.0064 7 66 0.0041 66 0.0041 

7 57 0.0170 57 0.0029 7 57 0.0000 57 0.0000 

7 49 0.0135 49 0.0009 7 49 0.0000 49 0.0000 

7 42 0.0102 42 0.0000 7 42 0.0000 42 0.0000 

7 37 0.0073 37 0.0000 7 37 0.0000 37 0.0000 

7 32 0.0047 32 0.0000 7 32 0.0000 32 0.0000 

7 27 0.0027 27 0.0000 7 27 0.0000 27 0.0000 

7 24 0.0012 24 0.0000 7 24 0.0000 24 0.0000 

7 20 0.0003 20 0.0000 7 20 0.0000 20 0.0000 

7 18 0.0000 18 0.0000 7 18 0.0000 18 0.0000 

7 15 0.0000 15 0.0000 7 15 0.0000 15 0.0000 

7 13 0.0000 13 0.0000 7 13 0.0000 13 0.0000 

7 11 0.0000 11 0.0000 7 11 0.0000 11 0.0000 

7 10 0.0000 10 0.0000 7 10 0.0000 10 0.0000 

7 8 0.0000 8 0.0000 7 8 0.0000 8 0.0000 

7 7 0.0000 7 0.0000 7 7 0.0000 7 0.0000 

7 6 0.0000 6 0.0000 7 6 0.0000 6 0.0000 

7 5 0.0000 5 0.0000 7 5 0.0000 5 0.0000 

7 5 0.0000 5 0.0000 7 5 0.0000 5 0.0000 

7 4 0.0000 4 0.0000 7 4 0.0000 4 0.0000 

7 4 0.0000 4 0.0000 7 4 0.0000 4 0.0000 

7 3 0.0000 3 0.0000 7 3 0.0000 3 0.0000 

7 3 0.0000 3 0.0000 7 3 0.0000 3 0.0000 

7 2 0.0000 2 0.0000 7 2 0.0000 2 0.0000 

7 2 0.0000 2 0.0000 7 2 0.0000 2 0.0000 
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Table C.1.1 (continued) Results of fresh-cut fruit relaxation time (T2), during storage period 

 

Experiment 1 Experiment 2 

Day 
Melon Pear 

Day 
Melon Pear 

T2 (ms) A T2 (ms) A T2 (ms) A T2 (ms) A 

7 2 0.0000 2 0.0000 7 2 0.0000 2 0.0000 

7 1 0.0000 1 0.0000 7 1 0.0000 1 0.0000 

7 1 0.0000 1 0.0000 7 1 0.0000 1 0.0000 

7 1 0.0000 1 0.0000 7 1 0.0000 1 0.0000 

7 1 0.0000 1 0.0000 7 1 0.0000 1 0.0000 

7 1 0.0000 1 0.0000 7 1 0.0000 1 0.0000 

7 1 0.0000 1 0.0000 7 1 0.0000 1 0.0000 

7 1 0.0000 1 0.0000 7 1 0.0000 1 0.0000 

7 1 0.0000 1 0.0000 7 1 0.0000 1 0.0000 

7 0 0.0000 0 0.0000 7 0 0.0000 0 0.0000 

7 0 0.0000 0 0.0000 7 0 0.0000 0 0.0000 

7 0 0.0000 0 0.0000 7 0 0.0000 0 0.0000 

7 0 0.0000 0 0.0000 7 0 0.0000 0 0.0000 

7 0 0.0000 0 0.0000 7 0 0.0000 0 0.0000 

7 0 0.0000 0 0.0000 7 0 0.0000 0 0.0000 

7 0 0.0000 0 0.0000 7 0 0.0000 0 0.0000 

7 0 0.0000 0 0.0000 7 0 0.0000 0 0.0000 

7 0 0.0000 0 0.0000 7 0 0.0000 0 0.0000 

7 0 0.0000 0 0.0000 7 0 0.0000 0 0.0000 

7 0 0.0000 0 0.0000 7 0 0.0000 0 0.0000 

7 0 0.0000 0 0.0000 7 0 0.0000 0 0.0000 

7 0 0.0000 0 0.0000 7 0 0.0000 0 0.0000 

7 0 0.0000 0 0.0000 7 0 0.0000 0 0.0000 

7 0 0.0000 0 0.0000 7 0 0.0000 0 0.0000 

7 0 0.0000 0 0.0000 7 0 0.0000 0 0.0000 
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C.2 Scanning electron microscope (SEM) images of fresh-cut fruit, at different days of 

storage 

 

C.2.1 SEM images of fresh-cut melon during storage period 
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C.2.2 SEM images of fresh-cut pear during storage period 
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C.3 Experimental results of fresh-cut fruit quality parameters  

 

Table C.3.1 Colour, firmness and aw of fresh-cut melon, during storage period at refrigerated 

conditions 

 

Exp Day Sample Measure 
Colour 

Firmness (N) aw 
L* a* b* 

1 0 1 1 73.69 1.58 5.60 2.59 1.000 

1 0 1 2 71.35 1.79 4.09 2.97 1.000 

1 0 1 3 71.50 1.36 6.15 3.40  

1 0 1 4 68.89 1.18 6.71 2.61  

1 0 1 5 69.87 1.20 6.59 3.07  

1 0 1 6 73.90 1.75 4.86   

1 0 2 1 70.29 0.49 7.13 3.14 1.000 

1 0 2 2 69.53 0.96 7.04 3.92 1.000 

1 0 2 3 69.50 0.92 7.07 3.32  

1 0 2 4 74.15 1.32 5.81 4.91  

1 0 2 5 71.30 0.62 6.66 5.03  

1 0 2 6 72.31 0.76 6.68 5.13  

1 0 3 1 70.46 1.82 4.01 6.82 0.999 

1 0 3 2 71.12 1.50 5.43 4.85 1.000 

1 0 3 3 72.20 1.67 4.91 3.62  

1 0 3 4 67.65 1.47 5.31 5.22  

1 0 3 5 64.09 1.40 5.48 4.43  

1 0 3 6 68.08 1.38 5.54 2.98  

1 3 1 1 71.21 0.93 7.22 2.70 1.000 

1 3 1 2 67.50 1.30 6.17 3.21 0.998 

1 3 1 3 73.20 1.66 5.07 2.66  

1 3 1 4 69.29 1.37 6.16 2.68  

1 3 1 5 60.74 1.62 5.42 2.37  

1 3 1 6 70.71 1.26 6.99   

1 3 2 1 70.60 1.34 5.32 3.22 1.000 

1 3 2 2 69.58 1.30 6.18 4.42 0.996 

1 3 2 3 68.94 0.28 8.84 3.83  

1 3 2 4 65.35 0.64 8.12 4.83  

1 3 2 5 69.64 1.05 6.79 3.83  

1 3 2 6 65.17 0.91 7.50   

1 3 3 1 71.31 1.51 5.86 3.58 0.998 

1 3 3 2 71.56 1.55 5.50 3.49 0.996 

1 3 3 3 71.82 1.79 4.05 3.97  
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Table C.3.1 (continued) Colour, firmness and water activity (aw) of fresh-cut melon, during 

storage period at refrigerated conditions 

 

Exp Day Sample Measure 
Colour 

Firmness (N) aw 
L* a* b* 

1 3 3 4 68.85 1.66 4.61 3.99  

1 3 3 5 67.64 1.59 4.59 3.44  

1 3 3 6 69.46 1.33 5.46   

1 4 1 1 71.99 1.21 6.23 3.38 1.000 

1 4 1 2 70.46 1.15 6.13 2.85 0.993 

1 4 1 3 68.80 0.96 6.65 2.60  

1 4 1 4 71.35 1.32 5.19 2.64  

1 4 1 5 73.01 1.12 6.53   

1 4 1 6 68.39 1.30 5.21   

1 4 2 1 70.53 0.63 8.00 2.92 0.998 

1 4 2 2 69.07 0.19 10.81 2.65 0.992 

1 4 2 3 70.54 0.32 8.10 2.94  

1 4 2 4 73.03 0.94 7.28 5.15  

1 4 2 5 74.58 1.12 7.07 3.17  

1 4 2 6 72.75 1.13 6.76   

1 4 3 1 72.79 1.58 5.25 3.48 0.997 

1 4 3 2 72.81 1.63 4.67 3.07 1.000 

1 4 3 3 70.13 1.72 3.01 3.07  

1 4 3 4 71.49 1.67 4.14 3.25  

1 4 3 5 66.92 1.73 2.88 4.44  

1 4 3 6 73.53 1.60 4.41   

1 5 1 1 72.70 1.32 5.37 2.68 0.998 

1 5 1 2 71.62 1.21 5.62 3.10 0.997 

1 5 1 3 72.17 1.54 4.48 2.71  

1 5 1 4 71.89 1.52 4.26 3.16  

1 5 1 5 71.08 1.37 4.99 2.53  

1 5 1 6 71.28 1.57 4.52   

1 5 2 1 69.96 1.22 4.70 3.73 0.994 

1 5 2 2 75.19 1.27 5.75 3.41 0.994 

1 5 2 3 74.17 0.32 7.37 3.36  

1 5 2 4 74.66 1.21 5.61 4.78  

1 5 2 5 73.39 0.62 7.57 3.63  

1 5 2 6 71.13 0.61 6.06   

1 5 3 1 73.53 2.05 3.20 2.94 0.994 

1 5 3 2 74.18 1.94 3.52 2.90 0.995 

1 5 3 3 69.94 1.54 4.26 3.38  



Appendix C                                                                                                                                        Appendix to Chapter 5 

 

 

C.29 

 

 

Table C.3.1 (continued) Colour firmness and water activity (aw) of fresh-cut melon, during 

storage period at refrigerated conditions 

 

Exp Day Sample Measure 
Colour 

Firmness (N) aw 
L* a* b* 

1 5 3 4 66.14 1.37 4.01 2.59  

1 5 3 5 65.50 1.49 3.74 2.32  

1 5 3 6 70.63 1.61 4.44   

1 6 1 1 72.26 1.70 4.01 2.98 0.998 

1 6 1 2 63.21 0.97 5.87 3.17 0.998 

1 6 1 3 70.51 1.09 6.65 2.34  

1 6 1 4 66.55 1.37 4.55 3.28  

1 6 1 5 75.17 1.21 6.58 2.61  

1 6 1 6 70.59 1.38 4.68 0.00  

1 6 2 1 70.77 0.73 6.70 3.66 0.989 

1 6 2 2 73.41 1.18 5.70 2.94 0.994 

1 6 2 3 70.77 0.55 6.56 3.05  

1 6 2 4 71.36 1.32 4.64 3.75  

1 6 2 5 73.34 1.44 4.47 4.50  

1 6 2 6 69.51 1.27 4.51   

1 6 3 1 68.89 1.63 3.84 2.97 0.997 

1 6 3 2 70.43 1.75 4.02 3.77 1.000 

1 6 3 3 73.46 1.87 3.45 2.66  

1 6 3 4 70.76 1.76 3.50 2.53  

1 6 3 5 70.81 1.85 3.29 3.91  

1 6 3 6 71.64 1.88 2.81   

1 7 1 1 72.10 1.41 6.15 2.40 0.997 

1 7 1 2 72.94 1.30 5.78 3.24 0.997 

1 7 1 3 71.59 1.06 6.46 3.25  

1 7 1 4 71.12 1.35 4.78 2.59  

1 7 1 5 72.50 1.51 4.69 3.31  

1 7 1 6 68.39 1.45 5.11 3.87  

1 7 2 1 70.85 1.24 6.24 3.00 0.995 

1 7 2 2 68.68 0.53 6.28 3.28 0.996 

1 7 2 3 72.13 1.28 5.38 2.31  

1 7 2 4 72.42 1.17 4.96 3.72  

1 7 2 5 70.82 1.36 5.68 2.68  

1 7 2 6 70.06 0.54 7.67 3.09  

1 7 3 1 72.03 2.00 3.43 3.05 0.995 

1 7 3 2 72.60 1.91 4.60 2.58 0.998 

1 7 3 3 72.96 1.94 3.62 3.68  



Appendix C                                                                                                                                        Appendix to Chapter 5 

 

 

C.30 

 

 

Table C.3.1 (continued) Colour, firmness and water activity (aw) of fresh-cut melon, during 

storage period at refrigerated conditions 

 

Exp Day Sample Measure 
Colour 

Firmness (N) aw 
L* a* b* 

1 7 3 4 69.70 1.51 5.53 2.20  

1 7 3 5 75.22 2.14 3.27   

1 7 3 6 71.14 1.97 3.68   

2 0 1 1 77.95 2.85 10.38 10.75 0.999 

2 0 1 2 74.32 4.40 13.50 6.93 0.999 

2 0 1 3 74.79 3.27 12.73 6.71  

2 0 1 4 77.29 2.73 11.76 8.71  

2 0 1 5 76.41 4.13 12.94 5.95  

2 0 1 6 76.85 2.65 12.79   

2 0 2 1 74.73 3.09 13.96 12.51 0.998 

2 0 2 2 76.03 2.87 11.49 8.25 1.000 

2 0 2 3 79.12 3.53 7.32 7.13  

2 0 2 4 76.54 4.06 14.95 8.65  

2 0 2 5 76.93 4.19 15.51 6.29  

2 0 2 6 73.39 3.99 12.55   

2 0 3 1 79.25 3.60 13.09 12.41 0.999 

2 0 3 2 76.59 4.44 12.73 8.73 0.999 

2 0 3 3 77.51 3.37 11.25 10.78  

2 0 3 4 78.33 3.49 14.32 8.66  

2 0 3 5 79.07 3.20 14.19 9.58  

2 0 3 6 75.32 3.21 12.04   

2 1 1 1 78.57 3.66 11.52 5.89 0.991 

2 1 1 2 75.07 4.43 13.46 10.94 0.996 

2 1 1 3 78.18 3.48 10.15 10.37  

2 1 1 4 79.81 3.20 9.10 8.00  

2 1 1 5 78.75 3.26 9.23 7.73  

2 1 1 6 80.01 3.42 8.45   

2 1 2 1 76.53 3.67 11.61 9.30 0.993 

2 1 2 2 76.46 3.80 12.36 10.68 0.994 

2 1 2 3 79.22 3.73 8.80 10.73  

2 1 2 4 78.43 4.50 14.75 9.11  

2 1 2 5 76.42 4.46 12.71 7.05  

2 1 2 6 80.27 3.88 9.71   

2 1 3 1 75.57 4.21 16.61 14.70 0.997 

2 1 3 2 72.66 5.34 16.53 6.84 0.993 

2 1 3 3 77.30 4.48 15.25 10.02  
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Table C.3.1 (continued) Colour, firmness and water activity (aw) of fresh-cut melon, during 

storage period at refrigerated conditions 

 

Exp Day Sample Measure 
Colour 

Firmness (N) aw 
L* a* b* 

2 1 3 4 70.15 5.20 21.43 10.93  

2 1 3 5 79.56 3.20 11.49 7.56  

2 1 3 6 67.65 7.75 23.26   

2 2 1 1 80.04 3.88 9.45 7.17 0.982 

2 2 1 2 76.79 4.51 12.61 10.96 0.989 

2 2 1 3 79.54 3.30 11.32 10.57  

2 2 1 4 80.03 3.93 9.59 11.85  

2 2 1 5 77.38 3.76 11.22 11.60  

2 2 1 6 77.34 3.59 12.26   

2 2 2 1 76.18 2.87 7.72 6.91 0.984 

2 2 2 2 78.27 4.11 12.26 11.72 0.982 

2 2 2 3 80.06 3.60 9.73 10.13  

2 2 2 4 74.21 5.77 19.96 10.60  

2 2 2 5 79.43 4.18 10.61 9.98  

2 2 2 6 77.43 4.37 13.51   

2 2 3 1 77.43 3.25 12.54 6.61 0.984 

2 2 3 2 73.05 4.04 14.26 10.55 0.995 

2 2 3 3 71.97 5.85 22.02 8.52  

2 2 3 4 74.55 4.62 13.24 7.54  

2 2 3 5 77.80 4.17 13.50 8.42  

2 2 3 6 77.60 5.35 14.22   

2 3 1 1 77.17 2.96 10.48 5.72 0.989 

2 3 1 2 78.45 3.94 10.54 10.73 0.995 

2 3 1 3 78.40 3.47 11.44 7.22  

2 3 1 4 78.42 3.18 11.82 7.64  

2 3 1 5 75.29 4.29 12.28 11.36  

2 3 1 6 76.00 2.78 12.14   

2 3 2 1 76.40 4.07 15.98 8.07 0.976 

2 3 2 2 79.30 3.70 9.77 10.56 0.998 

2 3 2 3 75.47 3.67 11.75 9.20  

2 3 2 4 77.76 4.44 15.10 11.59  

2 3 2 5 74.90 5.01 16.60 9.31  

2 3 2 6 79.83 3.84 10.25   

2 3 3 1 78.48 3.98 14.20 6.76 0.987 

2 3 3 2 78.35 3.82 10.26 7.51 0.995 

2 3 3 3 74.37 3.85 14.35 16.49  

2 3 3 4 75.36 4.06 14.26 10.47  

2 3 3 5 78.27 4.92 13.87 12.02  
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Table C.3.1 (continued) Colour, firmness and water activity (aw) of fresh-cut melon, during 

storage period at refrigerated conditions 

 

Exp Day Sample Measure 
Colour 

Firmness (N) aw 
L* a* b* 

2 3 3 6 78.34 3.84 12.84   

2 4 1 1 74.73 3.10 11.71 8.35 0.987 

2 4 1 2 79.96 3.40 9.73 9.35 0.993 

2 4 1 3 78.66 3.96 12.26 12.51  

2 4 1 4 78.85 3.64 11.51 4.59  

2 4 1 5 79.11 3.06 9.61 7.47  

2 4 1 6 78.56 4.04 11.54 10.67  

2 4 2 1 79.93 3.70 10.52 7.99 0.956 

2 4 2 2 78.26 5.16 14.43 12.83 0.974 

2 4 2 3 72.86 4.84 10.45 7.46  

2 4 2 4 77.26 3.52 9.92 13.42  

2 4 2 5 78.93 3.92 12.48 11.10  

2 4 2 6 78.29 4.92 15.92 7.24  

2 4 3 1 64.87 7.43 21.99 11.28 0.975 

2 4 3 2 72.24 5.07 16.09 12.99 0.996 

2 4 3 3 77.82 3.60 11.08 18.16  

2 4 3 4 77.68 4.65 14.68 11.58  

2 4 3 5 68.05 6.15 20.28 12.27  

2 4 3 6 77.24 4.21 15.03 7.83  

2 7 1 1 81.35 3.76 10.17 12.68 0.991 

2 7 1 2 78.91 3.93 11.96 10.84 0.990 

2 7 1 3 79.66 4.07 11.16 9.06  

2 7 1 4 77.82 3.17 11.13 10.60  

2 7 1 5 76.01 4.05 15.11 10.33  

2 7 1 6 78.20 4.57 11.14   

2 7 2 1 78.40 4.47 11.18 11.54 0.957 

2 7 2 2 78.62 3.86 10.45 12.76 0.979 

2 7 2 3 69.11 5.40 16.15 11.93  

2 7 2 4 76.21 5.63 17.36 8.89  

2 7 2 5 74.53 3.56 11.81 8.33  

2 7 2 6 74.76 3.41 11.61   

2 7 3 1 77.45 4.48 13.98 13.92 0.979 

2 7 3 2 76.67 4.84 17.87 13.43 0.980 

2 7 3 3 74.97 5.90 15.14 11.58  

2 7 3 4 76.72 3.90 13.42 13.12  

2 7 3 5 79.38 3.60 12.27 9.55  

2 7 3 6 72.38 5.50 16.50   
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Table C.3.2 Colour, firmness and water activity (aw) of fresh-cut pear, during storage period at 

refrigerated conditions 

 

Exp Day Sample Measure 
Colour 

Firmness (N) aw 
L* a* b* 

1 0 1 1 74.37 3.27 15.00 12.24 0.985 

1 0 1 2 76.83 3.14 14.89 7.26 0.999 

1 0 1 3 79.24 2.90 12.01 6.34 
 

1 0 1 4 76.38 3.57 9.53 10.36 
 

1 0 1 5 78.96 2.34 8.75 8.66 
 

1 0 1 6 78.14 3.39 14.32 
  

1 0 2 1 77.66 2.94 8.27 13.32 0.999 

1 0 2 2 79.01 2.47 11.62 9.92 0.999 

1 0 2 3 78.69 3.09 6.66 11.13 
 

1 0 2 4 78.54 2.88 9.89 8.92 
 

1 0 2 5 79.32 1.84 12.75 12.48 
 

1 0 2 6 76.64 3.37 10.37 9.57 
 

1 0 3 1 77.28 2.52 11.60 14.44 0.999 

1 0 3 2 73.45 4.71 18.51 9.78 0.999 

1 0 3 3 75.93 4.22 14.88 12.56 
 

1 0 3 4 75.26 1.82 11.38 6.12 
 

1 0 3 5 74.21 2.72 13.25 7.67 
 

1 0 3 6 75.24 2.28 13.48 10.37 
 

1 3 1 1 73.80 3.03 14.44 9.10 0.995 

1 3 1 2 76.02 3.43 12.54 6.94 0.995 

1 3 1 3 75.22 3.34 13.39 8.43 
 

1 3 1 4 79.25 2.19 10.90 8.50 
 

1 3 1 5 75.43 2.56 12.86 11.19 
 

1 3 1 6 79.22 2.27 10.53 
  

1 3 2 1 77.28 3.03 14.44 13.87 0.997 

1 3 2 2 80.66 3.43 12.54 10.15 0.997 

1 3 2 3 76.85 3.34 13.39 9.15 
 

1 3 2 4 74.00 2.19 10.90 10.87 
 

1 3 2 5 78.90 2.56 12.86 7.06 
 

1 3 2 6 73.71 2.27 10.53 
  

1 3 3 1 80.07 2.95 8.10 11.15 0.993 

1 3 3 2 79.29 2.82 11.02 11.60 0.993 

1 3 3 3 73.39 4.08 16.05 6.68 
 

1 3 3 4 79.76 2.90 9.68 8.71 
 

1 3 3 5 75.85 3.28 13.55 6.97 
 

1 3 3 6 78.16 2.50 11.68 
  



Appendix C                                                                                                                                        Appendix to Chapter 5 

 

 

C.34 

 

Table C.3.2 (continued) Colour, firmness and water activity (aw) of fresh-cut pear, during storage 

period at refrigerated conditions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exp Day Sample Measure 
Colour 

Firmness (N) aw 
L* a* b* 

1 4 1 1 80.56 2.72 10.16 7.49 0.996 

1 4 1 2 80.20 2.01 13.42 9.77 0.978 

1 4 1 3 76.16 3.16 11.36 13.40 
 

1 4 1 4 76.36 4.92 15.40 13.92 
 

1 4 1 5 75.24 3.67 13.79 5.94 
 

1 4 1 6 77.83 2.65 11.63 
  

1 4 2 1 74.15 2.95 13.58 14.93 0.996 

1 4 2 2 77.09 3.48 13.25 11.90 0.988 

1 4 2 3 77.72 2.53 9.50 7.65 
 

1 4 2 4 77.15 1.64 15.30 9.07 
 

1 4 2 5 75.80 2.12 13.47 7.88 
 

1 4 2 6 78.44 3.15 13.28 
  

1 4 3 1 79.58 2.75 10.33 11.16 0.984 

1 4 3 2 77.84 3.40 15.77 11.59 0.993 

1 4 3 3 74.47 3.18 13.41 9.55 
 

1 4 3 4 81.78 3.16 8.99 12.16 
 

1 4 3 5 80.75 2.79 8.34 7.94 
 

1 4 3 6 77.82 3.31 11.46 
  

1 5 1 1 79.96 3.18 11.53 11.27 0.983 

1 5 1 3 78.74 3.60 11.90 13.66 
 

1 5 1 4 80.00 3.54 12.53 8.51 
 

1 5 1 5 73.76 4.86 16.48 7.39 
 

1 5 1 6 78.59 2.44 12.63 
  

1 5 2 1 78.77 3.49 6.75 12.75 0.988 

1 5 2 2 77.67 3.74 15.69 11.52 0.994 

1 5 2 3 78.06 3.18 11.65 9.64 
 

1 5 2 4 79.52 4.11 10.73 15.67 
 

1 5 2 5 78.59 3.38 13.50 9.56 
 

1 5 2 6 76.96 3.46 10.34 
  

1 5 3 1 77.48 3.19 10.38 9.55 0.981 

1 5 3 2 80.65 3.51 10.32 13.53 0.998 

1 5 3 3 73.92 4.36 17.00 10.82 
 

1 5 3 4 79.86 2.78 9.60 9.55 
 

1 5 3 5 79.17 3.40 10.80 10.94 
 

1 5 3 6 78.88 3.22 12.01 
  

1 6 1 1 75.10 3.45 13.46 15.44 0.976 

1 6 1 2 78.98 3.62 13.97 6.84 0.995 

1 6 1 3 79.14 3.39 11.89 7.79 
 

1 6 1 4 78.71 2.89 11.86 5.20 
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Table C.3.2 (continued) Colour, firmness and water activity (aw) of fresh-cut pear, during storage 

period at refrigerated conditions 

 

Exp Day Sample Measure 
Colour 

Firmness (N) aw 
L* a* b* 

1 6 1 5 75.59 3.76 15.60 6.67 
 

1 6 1 6 79.05 3.10 13.73 4.92 
 

1 6 2 1 75.88 2.87 12.51 8.70 0.978 

1 6 2 2 77.64 3.43 10.40 10.04 0.989 

1 6 1 5 75.59 3.76 15.60 6.67 
 

1 6 1 6 79.05 3.10 13.73 4.92 
 

1 6 2 1 75.88 2.87 12.51 8.70 0.978 

1 6 2 3 79.78 3.41 13.05 11.89 
 

1 6 2 4 80.01 3.12 6.58 13.05 
 

1 6 2 5 80.12 2.97 14.01 13.35 
 

1 6 2 6 77.92 3.69 13.92 
  

1 6 3 1 79.12 3.43 10.53 12.18 0.967 

1 6 3 2 75.15 3.93 13.96 13.52 0.975 

1 6 3 3 77.22 3.20 12.81 9.24 
 

1 6 3 4 75.74 4.91 18.30 11.79 
 

1 6 3 5 76.56 3.19 16.51 13.58 
 

1 6 3 6 77.59 2.81 10.37 
  

1 7 1 1 78.11 3.69 11.88 10.06 0.989 

1 7 1 2 78.32 3.24 9.28 17.32 0.956 

1 7 1 3 73.90 5.65 18.46 11.63 
 

1 7 1 4 79.86 3.30 12.65 14.74 
 

1 7 1 5 77.45 3.58 14.18 12.96 
 

1 7 1 6 79.51 3.42 11.98 7.32 
 

1 7 2 1 76.36 3.55 8.94 18.11 0.988 

1 7 2 2 79.53 3.60 12.23 12.38 0.989 

1 7 2 3 80.37 3.55 8.69 9.02 
 

1 7 2 4 75.24 4.76 16.45 11.43 
 

1 7 2 5 78.67 3.74 17.17 12.16 
 

1 7 2 6 76.78 3.32 13.26 9.55 
 

2 0 1 1 79.59 3.46 12.94 14.87 
 

2 0 1 2 77.95 2.85 10.38 10.75 0.999 

2 0 1 3 74.32 4.4 13.5 6.93 0.999 

2 0 1 4 74.79 3.27 12.73 6.71 
 

2 0 1 5 77.29 2.73 11.76 8.71 
 

2 0 1 6 76.41 4.13 12.94 5.95 
 

2 0 2 1 76.85 2.65 12.79 
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Table C.3.2 (continued) Colour, firmness and water activity (aw) of fresh-cut pear, during storage 

period at refrigerated conditions 

 

Exp Day Sample Measure 
Colour 

Firmness (N) aw 
L* a* b* 

2 0 2 2 74.73 3.09 13.96 12.51 0.998 

2 0 2 3 76.03 2.87 11.49 8.25 1.000 

2 0 2 4 79.12 3.53 7.32 7.13 
 

2 0 2 5 76.54 4.06 14.95 8.65 
 

2 0 2 6 76.93 4.19 15.51 6.29 
 

2 0 3 1 73.39 3.99 12.55 
  

2 0 3 2 79.25 3.6 13.09 12.41 0.999 

2 0 3 3 76.59 4.44 12.73 8.73 0.999 

2 0 3 4 77.51 3.37 11.25 10.78 
 

2 0 3 5 78.33 3.49 14.32 8.66 
 

2 0 3 6 79.07 3.2 14.19 9.58 
 

2 1 1 1 75.32 3.21 12.04 
  

2 1 1 2 78.57 3.66 11.52 5.89 0.991 

2 1 1 3 75.07 4.43 13.46 10.94 0.996 

2 1 1 4 78.18 3.48 10.15 10.37 
 

2 1 1 5 79.81 3.2 9.1 8.00 
 

2 1 1 6 78.75 3.26 9.23 7.73 
 

2 1 2 1 80.01 3.42 8.45 
  

2 1 2 2 76.53 3.67 11.61 9.30 0.993 

2 1 2 3 79.22 3.73 8.8 10.73 
 

2 1 2 4 78.43 4.5 14.75 9.11 
 

2 1 2 5 76.42 4.46 12.71 7.05 
 

2 1 2 6 80.27 3.88 9.71 
  

2 1 3 1 75.57 4.21 16.61 14.70 0.997 

2 1 3 2 72.66 5.34 16.53 6.84 0.993 

2 1 3 3 77.30 4.48 15.25 10.02 
 

2 1 3 4 70.15 5.2 21.43 10.93 
 

2 1 3 5 79.56 3.2 11.49 7.56 
 

2 1 3 6 67.65 7.75 23.26 
  

2 2 1 1 80.04 3.88 9.45 7.17 0.982 

2 2 1 2 76.79 4.51 12.61 10.96 0.989 

2 2 1 3 79.54 3.3 11.32 10.57 
 

2 2 1 4 80.03 3.93 9.59 11.85 
 

2 2 1 5 77.38 3.76 11.22 11.60 
 

2 2 1 6 77.34 3.59 12.26 
  

2 2 2 1 76.18 2.87 7.72 6.91 0.984 
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Table C.3.2 (continued) Colour, firmness and water activity (aw) of fresh-cut pear, during storage 

period at refrigerated conditions 

 

Exp Day Sample Measure 
Colour 

Firmness (N) aw 
L* a* b* 

2 0 2 2 74.73 3.09 13.96 12.51 0.998 

2 0 2 3 76.03 2.87 11.49 8.25 1.000 

2 0 2 4 79.12 3.53 7.32 7.13 
 

2 0 2 5 76.54 4.06 14.95 8.65 
 

2 0 2 6 76.93 4.19 15.51 6.29 
 

2 0 3 1 73.39 3.99 12.55 
  

2 0 3 2 79.25 3.6 13.09 12.41 0.999 

2 0 3 3 76.59 4.44 12.73 8.73 0.999 

2 0 3 4 77.51 3.37 11.25 10.78 
 

2 0 3 5 78.33 3.49 14.32 8.66 
 

2 0 3 6 79.07 3.2 14.19 9.58 
 

2 1 1 1 75.32 3.21 12.04 
  

2 1 1 2 78.57 3.66 11.52 5.89 0.991 

2 1 1 3 75.07 4.43 13.46 10.94 0.996 

2 1 1 4 78.18 3.48 10.15 10.37 
 

2 1 1 5 79.81 3.2 9.1 8.00 
 

2 1 1 6 78.75 3.26 9.23 7.73 
 

2 1 2 1 80.01 3.42 8.45 
  

2 1 2 2 76.53 3.67 11.61 9.30 0.993 

2 1 2 3 79.22 3.73 8.8 10.73 
 

2 1 2 4 78.43 4.5 14.75 9.11 
 

2 1 2 5 76.42 4.46 12.71 7.05 
 

2 1 2 6 80.27 3.88 9.71 
  

2 1 3 1 75.57 4.21 16.61 14.70 0.997 

2 1 3 2 72.66 5.34 16.53 6.84 0.993 

2 1 3 3 77.30 4.48 15.25 10.02 
 

2 1 3 4 70.15 5.2 21.43 10.93 
 

2 1 3 5 79.56 3.2 11.49 7.56 
 

2 1 3 6 67.65 7.75 23.26 
  

2 2 1 1 80.04 3.88 9.45 7.17 0.982 

2 2 1 2 76.79 4.51 12.61 10.96 0.989 

2 2 1 3 79.54 3.3 11.32 10.57 
 

2 2 1 4 80.03 3.93 9.59 11.85 
 

2 2 1 5 77.38 3.76 11.22 11.60 
 

2 2 1 6 77.34 3.59 12.26 
  

2 2 2 1 76.18 2.87 7.72 6.91 0.984 
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Table C.3.2 (continued) Colour, firmness and water activity (aw) of fresh-cut pear, during storage 

period at refrigerated conditions 

 

Exp Day Sample Measure 
Colour 

Firmness (N) aw 
L* a* b* 

2 3 1 1 77.17 2.96 10.48 5.72 0.989 

2 3 1 2 78.45 3.94 10.54 10.73 0.995 

2 3 1 3 78.4 3.47 11.44 7.22 
 

2 3 1 4 78.42 3.18 11.82 7.64 
 

2 3 1 5 75.29 4.29 12.28 11.36 
 

2 3 1 6 76.00 2.78 12.14 
  

2 3 2 1 76.40 4.07 15.98 8.07 0.976 

2 3 2 2 79.30 3.00 9.77 10.56 0.998 

2 3 2 3 75.47 3.67 11.75 9.20 
 

2 3 2 4 77.76 4.44 15.1 11.59 
 

2 3 2 5 74.90 5.01 16.6 9.31 
 

2 3 2 6 79.83 3.84 10.25 
  

2 3 3 1 78.48 3.98 14.2 6.76 0.987 

2 3 3 2 78.35 3.82 10.26 7.51 0.995 

2 3 3 3 74.37 3.85 14.35 16.49 
 

2 3 3 4 75.36 4.06 14.26 10.47 
 

2 3 3 5 78.27 4.92 13.87 12.02 
 

2 3 3 6 78.34 3.84 12.84 
  

2 4 1 1 74.73 3.10 11.71 8.35 0.987 

2 4 1 2 79.96 3.4 9.73 9.35 0.993 

2 4 1 3 78.66 3.96 12.26 12.51 
 

2 4 1 4 78.85 3.64 11.51 4.59 
 

2 4 1 5 79.11 3.06 9.61 7.47 
 

2 4 1 6 78.56 4.004 11.54 10.67 
 

2 4 2 1 79.93 3.7 10.52 7.99 0.956 

2 4 2 2 78.26 5.16 14.43 12.83 0.974 

2 4 2 3 72.86 4.84 10.45 7.46 
 

2 4 2 4 77.26 3.52 9.92 13.42 
 

2 4 2 5 78.93 3.92 12.48 11.10 
 

2 4 2 6 78.29 4.92 15.92 7.24 
 

2 4 3 1 64.87 7.43 21.99 11.28 0.975 

2 4 3 2 72.24 5.07 16.09 12.99 0.996 

2 4 3 3 77.82 3.60 11.08 18.16 
 

2 4 3 4 77.68 4.65 14.68 11.58 
 

2 4 3 5 68.05 6.15 20.28 12.27 
 

2 4 3 6 77.24 4.21 15.03 7.83 
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Table C.3.2 (continued) Colour, firmness and water activity (aw) of fresh-cut pear, during storage 

period at refrigerated conditions 

 

Exp Day Sample Measure 
Colour 

Firmness (N) aw 
L* a* b* 

2 7 1 1 81.35 3.76 10.17 12.68 0.991 

2 7 1 2 78.91 3.93 11.96 10.84 0.990 

2 7 1 3 79.66 4.07 11.16 9.06 
 

2 7 1 4 77.82 3.17 11.13 10.60 
 

2 7 1 5 76.01 4.05 15.11 10.33 
 

2 7 1 6 78.2 4.57 11.14 
  

2 7 2 1 78.4 4.47 11.18 11.54 0.957 

2 7 2 2 78.62 3.86 10.45 12.76 0.979 

2 7 2 3 69.11 5.4 16.15 11.93 
 

2 7 2 4 76.21 5.63 17.36 8.89 
 

2 7 2 5 74.53 3.56 11.81 8.33 
 

2 7 2 6 74.76 3.41 11.61 
  

2 7 3 1 77.45 4.48 13.98 13.92 0.979 

2 7 3 2 76.67 4.84 17.87 13.43 0.980 

2 7 3 3 74.97 5.90 15.14 11.58 
 

2 7 3 4 76.72 3.90 13.42 13.12 
 

2 7 3 5 79.38 3.60 12.27 9.55 
 

2 7 3 6 72.38 5.50 16.50 
  

 


