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ABSTRACT 

 

The Human Immunodeficiency Virus type 1 (HIV-1) is characterized by extensive genetic 

diversity at the population level but also within a single infected individual. The swift 

capacity of the virus to generate extensive diversity within the human host played a central 

role in the origin of the disease and is also key for the current global proportions of the HIV-1 

pandemic. The epidemic started in Africa with multiple zoonotic transmissions of simian 

immunodeficiency virus (SIV) to humans. This was followed by a period of diversification 

and adaptation to the human population that, enhanced by the high rates of mutation and 

recombination of the virus, allowed the emergence of a virus capable of efficient sexual 

transmission among humans. The spread of the human adapted virus is estimated to have 

initiated from late 1950s to the early 1960s from Africa to the rest of the world. The 

predominance of the subtype B HIV-1 virus in Western Europe suggests that this was the first 

subtype to be introduced in this region. The subtype diversity pattern of HIV-1 in Portugal 

resembles the ones found in Central Africa being far more complex than the viral diversity 

patterns observed in the rest of Western Europe highlighting the relevance of in detailed 

studies of the Portuguese HIV-1 epidemics.  

In this work we have characterized the local HIV-1 epidemic of the Portuguese city of Braga 

in the years from 2000 to 2012. We found that the most frequent HIV-1 subtypes were G and 

B and by combining epidemiological and phylogenetic analysis we were able to uncover 

local transmission clusters of non-B and non-G subtypes among locals in association with 

sexual transmission networks that initiated transmission in the early 2000s. This corroborates 

Portugal as an early point of introduction of non-B HIV-1 subtypes in Western Europe. 

Having performed this characterization at the level of this local population we then focused 

on analyzing the duration of infection at the level of the infected patient. For this purpose we 

have optimized a methodology to differentiate recent from chronic infections. It was based on 

the study of ambiguous nucleotide calls obtained from routine HIV-1 genotyping. We found 

that the analysis of these ambiguities, as an expression of intra-host HIV-1 diversity, allowed 

the inference of the duration of infection in this study population. Subsequently, we 

questioned if high HIV-1 subtype diversity found in this region correlated with higher rates of 

transmission of drug resistance mutations. We found that the level of transmitted drug 

resistance in this population was similar to other European regions and independent 
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predictors of transmitted drug resistance (TDR) could not be identified supporting the 

recommendation of universal viral sequencing at patient admission.  

This study performed in a country that is unique in Western Europe in what regards to HIV-1 

diversity supported Portugal as one of the early entry-points of non-B HIV-1 subtypes in 

Western Europe and also reinforced the need for more efficacious local control measures 

targeting sexual transmission routes. We believe this study is of general importance 

especially in a time when several reports suggest that the prevalence of non-B subtypes in 

Western Europe is increasing. The knowledge herein generated also contributed for the 

development of method to discriminate recent from non-recent HIV-1 infections, a step of 

crucial importance to validate prevention strategies. Importantly, it was also shown that the 

higher HIV-1 subtype diversity found in this study population does not correlate with an 

increase in the rate of transmission of drug resistance when compared to the rest of the 

Western Europe. 
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RESUMO 

 

O Vírus da Imunodeficiência Humana Tipo 1 (VIH-1) é caracterizado por uma extensa 

diversidade genética não só a nível da população, mas também a nível individual, em cada 

hospedeiro. A rapidez do vírus para gerar grande diversidade dentro do hospedeiro humano 

desempenhou um papel central na génese da doença e é também essencial para as proporções 

globais atuais da pandemia do VIH-1. A epidemia começou em África, com várias 

transmissões zoonóticas de vírus da imunodeficiência símia (SIV) para seres humanos. Isto 

foi seguido por um período de diversificação e adaptação na população humana que, 

amplificada pelas altas taxas de mutação e de recombinação do vírus, permitiu o surgimento 

de uma nova espécie de vírus capaz de transmissão sexual eficiente entre os seres humanos. 

O início da propagação deste vírus já adaptado ao ser humano é estimada a partir do final dos 

anos 1950 ao início dos anos 1960, da África Central para o resto do mundo. A 

predominância do subtipo B do VIH-1 na Europa Ocidental sugere que este foi o primeiro 

subtipo a ser introduzido nesta região. O padrão de diversidade dos subtipos do VIH-1 em 

Portugal assemelha-se ao encontrado na África Central, sendo muito mais complexo do que 

os padrões de diversidade vírica observados no resto da Europa Ocidental. Este facto justifica 

o relevo que estudos detalhados sobre o VIH-1 em Portugal possam ter para a compreensão 

das epidemias de VIH-1. 

Neste trabalho foi caracterizada a epidemia local por VIH-1 na cidade portuguesa de Braga, 

entre os anos 2000 e 2012. Descobrimos que os subtipos VIH-1 mais frequentes foram G e B. 

Pela combinação de análise epidemiológica e filogenética pudemos demonstrar grupos de 

transmissão locais de subtipos não-B e não-G entre os residentes em associação com redes de 

transmissão sexual que iniciaram a transmissão no início da década de 2000. Isto indicia o 

papel de Portugal como um ponto de início da introdução de subtipos não-B do VIH-1 na 

Europa Ocidental. Tendo realizado esta caracterização a nível da população local, o trabalho 

concentrou-se na análise da duração da infeção ao nível individual. Para este efeito, 

aperfeiçoou-se uma metodologia para diferenciar infeção recente de infeção crónica. 

Baseados no estudo de posições nucleotídicas ambíguas obtidas a partir de genotipagem 

rotineira doVIH-1,descobrimos que a análise dessas ambiguidades, como uma expressão da 

diversidade intra-hospedeiro do VIH-1, permite inferir a duração da infeção nesta população 



VIII 

 

em estudo. Posteriormente questionamos se a elevada diversidade do VIH-1 encontrada nesta 

região se poderia correlacionar com maiores taxas de transmissão de mutações de resistência 

aos antiretrovíricos. Descobrimos que o nível de resistência à terapêutica transmitido nesta 

população foi semelhante a outras regiões europeias. Não foram identificados preditores 

independentes de resistência transmissível aos antiretrovíricos, suportando a recomendação 

de sequenciamento viral universal no momento do contacto do doente com os serviços de 

saúde. 

Este estudo realizado num país que é único na Europa Ocidental no que diz respeito à 

diversidade do VIH-1,validoua noção de Portugal como um dos pontos de entrada iniciais de 

subtipos não-B do VIH-1 na Europa Ocidental e também reforçou a necessidade de medidas 

locais de controlo mais eficazes, que visem modos de transmissão sexual. Acreditamos que 

este estudo é relevante, especialmente num tempo em que vários artigos sugerem que a 

prevalência de subtipos não-B na Europa Ocidental está a aumentar. O conhecimento aqui 

gerado também contribuiu para o desenvolvimento de um método para discriminar infeções 

recentes pelo HIV-1 das não-recentes, um passo de importância crucial para validar as 

estratégias de prevenção. Relevantemente, também foi demonstrado que à maior diversidade 

doVIH-1 encontrada na população em estudo, não correspondeu um aumento na taxa de 

transmissão de resistência à terapêutica, quando comparada com o resto da Europa Ocidental.  
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GENERAL OBJECTIVES AND OUTLINE OF THE THESIS 

 

The human immunodeficiency virus (HIV) appeared as a human pathogen recently, but it is 

unquestionably a successful one, in great part due to an extraordinary ability to elude human 

immune defenses. High evolution rates that led to high viral diversity are key features for the 

success of HIV as a pathogen. This genetic diversity comes with a price to HIV, though: it 

can be used against it, in predicting its progression and in combating its propagation. 

Actually, studies on the origin of HIV and its evolution within individuals and between 

populations, leading to present day diversity, are essential to understand HIV pathogenesis 

and the emergence acquired immunodeficiency syndrome (AIDS). 

Although there are hundreds or even thousands of HIV variants circulating worldwide, the 

vast majority of HIV infections are caused by type 1,group M
1
, hereinafter referred as HIV-1. 

HIV-1 genetic diversity has important implications in screening, diagnostic testing, disease 

monitoring and treatment outcomes and may also affect viral transmissibility and 

pathogenicity. 

To explain how HIV-1 achieved its present degree of diversity and how this diversity can be 

used to monitor the progression of the epidemic at a local or regional level, the thesis is 

organized in five chapters. 

The major aim of the first chapter is to describe the path forHIV-1 diversity, from a local 

zoonosis to a global pandemic composed of regional/local epidemics, and how this process 

shaped the evolution of the pandemic. HIV-1 infection is a well-suited example of 

evolutionary dynamics, occurring simultaneously on spatial and temporal scales. Determining 

the factors that conducted the evolution of the pandemic is far beyond historical interest:  it 

can also be the key to control this disease. 

In the second chapter of this work it is proposed to (a) detect and depict transmission 

networks and (b) to take advantage of the information provided by molecular epidemiologic 

characterization of HIV-1 infection phylodynamics at a local level in order to better design 

preventive measures to curtail further spread of local or regional epidemics. 
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In chapter 3 it was intended to design an algorithm applicable to the determination of 

incidence. Infections were categorized as recent or not recent by evaluating HIV-1 viral 

diversity and its association with the length of infection in HIV-1 infected patients attended in 

Hospital de Braga with at least one HIV-1 pol gene sequencing available. This was 

accomplished by examining the relationship between the proportion of ambiguous sites in 

initial sequencing and time of infection, in association with related variables, such as time 

since HIV-1 infection diagnosis, CD4+ cell count and AIDS status. 

In chapter 4, drug resistance surveillance, by means of transmitted drug resistance analysis 

and identification of polymorphisms was performed, aiming at better management of 

antiretroviral therapy 

In chapter 5, a general discussion of the thesis is presented, where the main results are 

highlighted and placed in the context with the relevant literature. Based on data presented in 

this thesis and on the current literature, study of HIV-1 diversity is applied to epidemic 

monitoring. Lastly, the main conclusions and future perspectives resulting from this work are 

addressed, and the potential clinical applicability of the reported findings is proposed. 
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History of AIDS pandemic 

 

The disease currently known as acquired immunodeficiency syndrome (AIDS) was first 

described in June 1981 in a paper published in Morbidity and Mortality Weekly Report 

(MMWR) named "Pneumocystis pneumonia — Los Angeles”
2
. 

Definitely, the authors couldn't predict then all the devastation they were unveiling or 

imagine the epidemics future scale or even its global dissemination. The World Health 

Organization estimates there are more than 34 million people infected with HIV and about 

2.5 million new infections acquired in only 2012
3
. It is calculated that around 0.8% of all the 

people worldwide aged 15 to 49 years is infected with HIV, although the prevalence is quite 

variable geographically, from 0.1% in Middle East and North Africa to 4.7% in Sub-Saharan 

Africa
3
. 

In the begging of the AIDS pandemic, patients suffering from this mysterious syndrome were 

reported in crescent numbers since its initial description. In a few months, the basics of 

disease transmission were identified: even though all the initial patients were homosexual 

men, soon other risk factors were identified: Haitians
4
, hemophiliacs

5
 and intravenous drug 

users
6
. For the first time contaminated blood was hypothesized to be propagating the disease. 

The diagnosis of several Haitians with Kaposi's sarcoma and other AIDS-related conditions, 

with no history of homosexual practices or intravenous drugs use, raised the hypothesis that 

AIDS had come from Haiti, and that Haitians were responsible for the AIDS epidemic in the 

United States. These claims, which were often founded on dubious evidence, based on a 

culture of blame and prejudice that surrounded HIV and AIDS in the early years, fuelled 

racism in the United States and many Haitians suffered from it. It was then politically 

difficult to present epidemiological findings in a neutral and objective way. Ironically, later it 

was discovered that Haiti is the local of oldest-known HIV/AIDS epidemic outside Africa 

and that probably exported HIV to America mainland
7
. 

In 1982, four events changed the way this syndrome was seen. First, it was named Acquired 

Immunodeficiency Syndrome (AIDS)
6
. 

Secondly, the first report of a possible heterosexual transmission, in five women
8
, turned a 

illness that has thought to affect only marginal and well-defined groups into an universal 
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disease with potential to become a pandemic, also making the "risk behavior" concept 

somewhat obsolete. 

Thirdly, in November were published the first guidelines on health and laboratory personnel 

precautions
9
, comparing the spread of this new disease with the B hepatitis mode of 

transmission. 

And, finally, it was demonstrated the role of contaminated blood as a source of this new 

syndrome, when a child was diagnosed after a blood transfusion
10

. Soon after, four affected 

children were described as the first vertical transmission occurrences
11

. 

When 1982 ended, the disease had a name – AIDS - and all the major routes of transmission 

were identified: mother-to-child, sexual and blood borne. However, without a laboratorial 

diagnostic test, blood banks had difficulty in preserving the safety of blood supply, leading to 

at least 15 000 hemophiliacs infected in the United States alone, between 1981 and 1984
12

. 

Similarly, intravenous drug users were at high risk due to exchange of blood during needle 

sharing. The first needle exchange program was set up in Amsterdam in 1984, trying to 

decrease the circulation of contaminated injection equipment, thereby reducing the spread of 

blood-borne pathogens in the community
13

. 

So far, all the known patients lived in United States of America, Haiti or Western Europe. In 

March 19, 1983, the first five African patients are described
14

. The authors recognized the 

potentially devastating future of this disease in Africa, forwarded by a rise in opportunistic 

infections. 

All the data at this time pointed to an infectious disease but the infectious agent responsible 

for AIDS was still unknown. The first possible cause of AIDS to be suggested was the 

cytomegalic virus (CMV), a herpesviridae family member. This assumption was based on the 

coincidence of those affected by this new immune deficiency with high rates of CMV
2,15

 

infection, coupled with the fact that CMV displays some immunosuppressive potential. 

However, this theory could not fully explain all the known cases and was therefore quickly 

abandoned. Two related substances were alternatively suggested to be the cause of AIDS, 

amyl nitrite and isobutyl nitrite, used at the time as sexual stimulants and admittedly 

immunosuppressant agents
16

. However, soon cases emerged in people who had never had 

contact with any of the drugs. Another hypotheses put forth was that repeated exposure to 

exogenous sperm running with alloantigen could trigger a chronic immune stimulation, 
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flowing in a condition similar to graft-versus-host disease and, consequently, in opportunistic 

infections
17

. Outside the scientific community, this new disease has also been considered as a 

sort of punishment, punishing "less desirable" lifestyles (homosexuality, intravenous drug 

use) 
18

. At this time a viral cause for AIDS was just one among many other hypotheses. 

Those who worked with hepatitis B, considered quite plausible such hypothesis, since AIDS 

affected similar groups of people. Also who was familiar with retroviruses, like feline 

leukemia virus, which causes a generalized immunodeficiency in felines, had the notion that 

this syndrome in humans was comparable and could therefore be also caused by a retrovirus. 

Doubts about the viral etiology of AIDS remained until the effective isolation and 

identification of HIV.  

In May 1983, researchers from Luc Montagnier's laboratory at the Pasteur Institute in Paris 

reported to have isolated a new retrovirus from lymphoid ganglions that they hypothesized to 

be the cause of AIDS
19

. The virus was later named lymphadenopathy-associated virus (LAV) 

and a sample was sent to the United States Centers for Disease Control, which was later 

passed to the National Cancer Institute. In May 1984, a team from the National Cancer 

Institute led by Robert Gallo confirmed the discovery of the virus, renaming it human T 

lymphotropic virus type III (HTLV-III)
20

. In January 1985, a number of more-detailed reports 

were published concerning LAV and HTLV-III, and by March it was clear that the virus were 

the same, were from the same source, and were the etiological agent of AIDS. 

Later in 1985, the FDA approved the first commercial test for the detection of the recently 

discovered virus 
21

, which had a significant impact on the safety of blood banks, one of the 

biggest concerns at the time, and on people with high-risk behaviors. 

Finally, in 1986, the Centers for Disease Control and Prevention (CDC) reported the first 

AIDS case definition that, for being largely consensual, has been universally adopted as a 

diagnostic criterion
22

. This definition recognizes 21 opportunistic conditions, infectious or 

neoplastic, diagnosing AIDS, when associated with a positive serologic test. This 

classification would suffer only one update, in 1993
23

, to include pulmonary tuberculosis, 

recurrent pneumonia, invasive cervical carcinoma and the CD4 cell count of less than 

200/mm
3
 in the list of AIDS defining conditions. This last criterion was responsible for an 

increase of almost 200% in cases in the United States of America, when comparing 1993 with 

1992. 
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Meanwhile, another virus had been identified in September 1985
24

,the HTLV-IV. It was at 

this point that the name of the virus was changed, assuming the identity by which is known 

until today –human immunodeficiency virus –HIV, further divided in types 1 and 2
25

. The 

HIV-1 is responsible for the global pandemic, while the HIV-2 is restricted to West Africa 

and a few countries historically related, like Portugal and France
26

. The epidemic quickly 

evolved from a series of small outbreaks in the so-called risk groups in the United States and 

Western Europe to a global and catastrophic threat to public health worldwide. Great efforts 

have been then undertaken, ranging from molecular biology to public health, leading to 

relevant advances in epidemiology, etiology, diagnosis and patient management. 

Two initiatives, apparently humble, have shown positive results in the developed world: sex 

education with a particular focus on the use of condoms
27

 and investment in prevention 

among intravenous drug users, particularly through needle exchange programs
28

. It was 

possible to limit the horizontal spread in places where such programs were implemented 

firmly and without prejudices. However, there are still social, political, religious, cultural and 

even personal barriers that prevent the more widespread use of these two measures. 

In 1993, AIDS became the leading cause of death in the United States of America in the age 

group 25-44 years
29

. But this epidemic will literally devastate the sub-Saharan region of 

Africa, where 69% of all the people infected with HIV live nowadays, where 1 in every 20 

adults is infected and where 71% of the approximately 7000 new daily infections occur – 2.5 

million new infections globally in 2012
3
. The impact on the productive layers of the 

population is reflected in the economic and social disruption and political destabilization of 

entire countries where HIV prevalence is high – Zimbabwe, Swaziland, Lesotho, Botswana 

and Namibia, citing some examples
30

. Here the epidemic evolves in two different ways: 

horizontally, by sexual transmission between adults; and, to a lesser extent, vertically, in 

which infected mothers give birth to infected children
31

. 

One last word regarding specific therapy: in March 1987 the first antiretroviral drug was 

approved, AZT
32

. Another chapter started here, transforming this disease from an invariably 

fatal condition into a chronic pathology, requiring daily medication, periodic blood testing 

and routine medical appointments. The introduction of combined antiretroviral therapy of 

high efficacy, in 1996 in developed countries and since 2004 in the rest of the world, greatly 

contributed to further consolidate this change
32

. This therapeutic regimen is considered one of 

the most cost-effective measures in healthcare, allowing to save 14 million years-life in 
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developing countries. In 2012, for the first time, a majority of people eligible for treatment 

(54%) was receiving antiretroviral therapy.  

However, in spite of all our present knowledge, there are still significant failures in 

prevention and control, which translate to the following paradox: despite the growing 

available financial and scientific resources, global attention and a variety of dedicated 

political agendas, HIV continues to infect and kill, especially in poorer nations. Effective 

vaccines are not expected at short term and productive public discussion about sex and drugs, 

after all the main transmission routes, is missing on the agenda of most international public 

powers. In contrast, other transmission paths, such as vertical and transfusional, have been 

fought with success, at least in the developed world. Still, it is estimated that about 1.7 

million people may have died with AIDS-related causes during the year 2011
33

 and probably 

more than 25 million since the beginning of this epidemic. 

 

HIV-1 origin 

 

AIDS emerged as result of a combination of human behavior, social conditions and zoonotic 

transmissions of a virus, probably in the first decade of the 20
th

 century in a region known 

then as French Equatorial Africa. 

As strains of HIV-1 were sampled from around the world, it became apparent that they 

exhibit extremely high genetic heterogeneity and that analysis of the evolution of this 

diversity could be critical in revealing insights into the enigmatic origin of the virus. What 

were the reasons for its sudden emergence, epidemic spread and unique pathogenicity? 

Furthermore, the key to understand the origin of HIV was the discovery that closely related it 

whit other virus — the simian immunodeficiency virus (SIVs) —present in a wide variety of 

African primates. In fact, both HIV and SIVs are classified as lentivirus, a retrovirus family, 

and SIVs have been identified in more than 40African primate species
34

.The nomenclature in 

use appends the initials of each non-human primate after “SIV”. For example, SIVcpz is a 

chimpanzee-infecting virus and SIVsmm infects a monkey called sooty mangabey. A high 

genetic diversity is observed among the different SIVs, but generally each primate species is 

infected with a species-specific virus, which forms monophyletic lineages in phylogenetic 

trees. Among these monophyletic lineages, there are examples of co-evolution between virus 
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and their primate hosts, but there are also many examples of cross-species transmissions 

followed or not by recombination between distant SIVs
35

. Notably, SIVs don´t seem to be 

pathogenic to its natural hosts, although there are few studies conducted in wild 

populations
36

. These two findings suggest an ancient host-virus relationship, although not a 

host dependent evolution. In fact, it seems unlikely a co-evolution pattern given that monkeys 

clades are millions of years old and the most recent common ancestors of SIVs are far 

younger
37

.Preferential host switching and subsequent diversification accounts for 

resemblance between host and pathogen phylogenies
35

.  

Based on phylogenetic trees of the primate lentivirus, the evolutionary history of HIV-1 and 

HIV-2 could be reconstructed. The enigma of HIV-2 origin was solved first: it is intimately 

related to SIVsmm
38

, a virus infecting with high prevalence a mangabey monkey 

(Cercocebus atys) living in West Africa, where HIV-2 probably emerged. 

The close genetic relationship found between HIV-1 and SIVcpz, the chimpanzee infecting 

SIV, allowed hypothesizing the later as a precursor of the former
39

. Initially, the rarity of 

isolates of SIVcpz among chimpanzees raised doubts about whether chimpanzees represented 

a true SIV reservoir
39

. A non-invasive technology of detecting SIVcpz antibodies in urine and 

fecal samples allowed drawing a precise picture of SIVcpz distribution
40

. Chimpanzees are 

classified into two species, the common chimpanzee (Pan troglodytes) and the bonobo (Pan 

paniscus). Common chimpanzees have traditionally been further subdivided into four 

geographically differentiated subspecies: western (P. t. verus); Nigeria-Cameroonian (P. t. 

ellioti, formerly termed P. t. vellerosus); central (P. t. troglodytes); and eastern (P. t. 

schweinfurthii). In only two of these four subspecies SIVcpz was found: central (P. t. 

troglodytes) and eastern (P. t. schweinfurthii) chimpanzees
40

. SIVcpz isolated in P. t. 

troglodytes has a particular close relationship to the HIV-1 group M, the major cause of 

AIDS pandemic
39

. Central chimpanzee (P. t. troglodytes) lives in the African region(Congo 

river basin) that presents the greatest genetic diversity of HIV
41

,a fact that could be expected 

if this was the place where HIV-1 first emerged. SIVcpz infection is common among 

chimpanzees in that region
42,43

and so it was established that chimpanzees of that particular 

subspecies are the natural reservoir for SIVcpz and the source of HIV-1 group M, answering 

the “where” question: HIV-1 group M ancestor came from southeastern rain forests of 

Cameroon (modern East Province) near the Sangha River (figure 1).This region is 

presumably where the virus was first transmitted from chimpanzees to humans
40

. However, 

reviews of the epidemiological evidence of early HIV-1 infection in stored blood samples, 
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Figure 1: Habitat of Central chimpanzee (Pan troglodytes troglodytes) and HIV-1 phylogenetic tree. 

Red circle marks the region in southeast Cameroon where SIVcpz strains closely related to HIV-1 group 

M are found. The phylogenetic relationships of representative SIVcpz, HIV-1, and SIVgor strains are 

shown. SIVcpz and SIVgor sequences are shown in black and green, respectively. The four groups of HIV-

1, each of which represents an independent cross-species transmission, are shown in different colors. 

Black circles indicate the four branches where cross-species transmission-to-humans has occurred. 

White circles indicate two possible alternative branches on which chimpanzee-to-gorilla transmission 

occurred. The phylogenetic tree was estimated using maximum likelihood methods. The scale bar 

represents 0.05 nucleotide substitutions per site. Based on reference 1. 

and of old cases of AIDS in Central Africa, seems to point to a HIV-1 group M early human 

center not in Cameroon, but rather farther south in the Democratic Republic of Congo, more 

probably in its capital city, Kinshasa
41

.Leopoldville, as it was known before independence, 

was not only the largest city in the region, but also a likely destination for a virus escaping 

from southeast Cameroon. Indeed, in the early 1900s, the main routes of transportation out of 

that remote forest region were rivers; those surrounding this area flow south, ultimately 

draining into the Congo River, and leading to Leopoldville (figure 2). 

The absence of SIVcpz infections in two of the four subspecies suggested that chimpanzees 

had acquired this virus recently. Nonetheless, SIV evolution is complex and recombination 

does occur between different variants. Probably SIVcpz is a recombinant virus, originated by 

a dual infection with another SIVs, the descendants of which are now found in red-capped 

mangabeys (Cercocebus torquatus, SIVrcm) and greater spot-nosed monkeys(Cercocebus 
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nictitans, SIVgsn)
44

. Chimpanzees share the habitat and hunt and kill these smaller monkeys, 

opening chances for cross-species infection during predation
45

.  

Noticeably, every HIV-1groupcorresponds to a different SIV introduction, as we can perceive 

because HIV lineages are interspersed among the SIVcpz branches
1
.Indeed, the SIVcpz 

strains from P. t. troglodytes form a monophyletic cluster with all HIV-1 strains. This mixing 

of HIV and SIV lineages, patent in figure 1, points to an independent origin of groups M, N, 

O and P. The vagaries in sampling make impossible to determine exactly when and how 

those cross-species transfers have occurred, but at least four jumps were needed to originate 

the four HIV-1 groups (marked with a black circle in figure 1). For example, HIV-1 group N 

seems to be a recombinant between a SIVcpz strain and a virus related to the ancestor of 

group M, with this recombination occurring before the establishment in humans. The recently 

recognized HIV-1 group P clusters significantly with SIVgor strains
46

and the most likely 

explanation for its emergence is gorilla-to-human transmission of SIVgor. However, a 

chimpanzee origin for the HIV-1 group O and SIVgor lineage has been proposed, so the 

possibility that SIVcpz also gave rise to HIV-1 group P cannot be ruled out, either indirectly 

by transmission to gorillas and then to humans or directly by transmission to humans and also 

to gorillas. Regarding group M, there are presently 9 subtypes identified (A-D, F-H, J, K) and 

dozens of recombinant forms that diverged from the same ancestral (figure 1). In 2008, 

Worobey et al found HIV-1 sequences preserved in a Congolese woman lymph node biopsy 

done in 1960 and called it DRC60. For HIV, as for all rapidly evolving virus, it is possible to 

calibrate their evolutionary rates by comparing virus isolated at different time points and then 

generalizing this molecular clock to estimate dates of divergence of the different clusters in 

the evolutionary trees.ComparingDRC60 with viral sequences from a blood-plasma sample 

originally obtained in 1959, also from Kinshasa (ZR59)
47

, a high divergence was found 

(approximately 12%).These viral sequences were classified in different subtypes: ZR59 was a 

subtype D and DRC60 was a subtype A. This divergence demonstrated that at least 55 years 

ago group M HIV-1 strains had already undergone substantial diversification. Using relaxed 

molecular clock analyses incorporating DRC60 and ZR59,the authors could date the M 

group's most recent common ancestor near the beginning of the 20th century, between 1884 

and 1924
48

.This is the most convincing answer we have to the “when” question until now. 
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Figure 2: A plausible mechanism for acquisition and early propagation of HIV-1. 

1 – Humans butcher chimpanzees infected with SIV; 2 – The virus is carried by people travelling 

along the rivers… 3 - …to Kinshasa, where the epidemic begins. 

Initially, SIVcpz was thought to be harmless for its natural host, since sooty mangabeys have 

no sign of immunodeficiency despite SIVsmm high viral loads. Several studies proved other 

way, providing compelling evidence that SIVcpz was pathogenic to its natural host, causing 

CD4+ T-cell depletion and histopathological findings similar to end-stage AIDS
42,43

. This 

natural history is also consistent with recent acquisition.  

Probably, SIV transmission to humans has taken place at low frequency for hundreds of 

years. But there's no evidence of endemic HIV-1infections in late 19
th

 or early 20
th

 centuries. 

Why is there an AIDS epidemic now? Some strains could be nonpathogenic; others were 

maybe non-transmissible between hosts; or infected individuals got sick and died without 

spreading the virus, due to low population density or lack of risky sexual behavior. 

Several factors were needed to start a pandemic disease, such as AIDS (see figure 2): 

a) Increased exposure risk 
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b) Increased probability of transmission 

c) Increased probability of virus adaptation to humans 

Increased exposure risk – Colonial authorities used intensive and forced labor in Central 

Africa to build railroads and extract rubber between late 1890s and 1930s. Local and non 

local workers were concentrated in camps where there was a disproportional man to women 

ratio, nearing 12:1, and not enough food supplies
49

. This dislocation and concentration in 

wild areas, like forests, probably led to significant increases in hunting for food. Fire guns 

were more accessible, especially after World War I. This facilitated killing of large animals, 

like chimpanzees. 

 

Increased probability of transmission – The distorted sex ratio in labor camps certainly was a 

risk to sexual promiscuity as most women were placed in those camps for "recreational" 

purposes. Since the end of 19
th

 century, riverboat traffic along the Congo River and its 

effluents became regular and intense, connecting areas where people had little or no contact 
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with each other previously
49

.After 1940s, railroads helped establishing massive migrations to 

major cities, like Kinshasa (former Leopoldville) and Brazzaville, leading to its rapid 

expansion (figure 3). Such a quick "urbanization" created favorable conditions to disease 

establishment and propagation. 

Last, we must remember that there were massive sanitary campaigns happening at that time, 

carried out with very limited resources: in 1916 more than 80000 people in the Nola region 

(in Central African Republic, near Cameroonian border, by Sangha River) were treated with 

intravenous drugs for trypanossomiasis with only six syringes
50

. 

It was reported by Pépin et al how intravenous treatment of endemic infections 

(trypanossomiasis in southeast Central African Republic and malaria in southern Cameroon) 

led to an increased level of transmission of two blood borne virus, hepatitis C virus and 

HTLV-1, in the first half of 20
th

 century
51

. 

As mentioned before, those two regions are coincident with Pan troglodytes troglodytes 

habitats, the chimpanzee that harbored SIVcpz, believed to be the HIV-1 precursor, so 

authors hypothesize that those iatrogenic exposures may have proportionate an opportunity 

for HIV to evolve from a few isolated cases to a larger reservoir of infection. In thatpaper
51

, 

the authors describe an increased mortality in the elder groups in association with these 

therapeutic interventions. 

Although impossible to confirm, the excess mortality was probably due to HIV, acting as a 

quicker killer than HTLV-1 and HCV, two virus compatible with prolonged survival. 

Parenteric therapy for endemic infections more than 50 years ago might have contributed to 

ignite HIV pandemic. 

Increased viral adaptation – For decades, cross-species events must have occurred, resulting 

in epidemiological dead ends: a hunter kills an ape, infects himself manipulating the carcass, 

eventually infects his wife and both die of AIDS in their village. Establishing transmissibility 

is crucial for a successful pandemic. SIV must therefore to have changed into a new species, 

adapted to its new host. This topic will be further developed ahead. 

In conclusion, HIV probably crossed the species barrier in the bloody process of butchering 

chimps for food. The spread of the virus in the Belgian and French colonies of central Africa 

in the mid-20th century was probably accelerated by rapid, male dominated urbanization and 

the concentration of workers in camps with attendant prostitution. Health campaigns where 
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needles were repeatedly reused may also have contributed. The links between francophone 

Central Africa and Haiti provided HIV with a staging post to the western hemisphere; genetic 

analysis suggests that the virus was imported from Haiti to the United States of America in 

the late 1960s
7
. 

The sexual liberation of the 1960s and 1970s combined with homophobia concentrated large 

groups of sexually active gay men in small enclaves of tolerance in cities like New York and 

San Francisco. Anal sex is inherently more dangerous for passing on virus than vaginal sex 

because it is more likely to cause small tears and lesions. That, together with a high turnover 

of partners, provided perfect conditions for the rapid spread of HIV. Because these men were 

young, otherwise healthy and largely well educated and white, their illness attracted attention 

in a way that earlier cases in Africa and the Caribbean had not. AIDS came out of the 

shadows. 
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BIOLOGY AND PHYLOGENY OF HIV 

 

What is HIV? 

 

As mentioned above, HIV-1 is a member of the genus Lentivirus, part of the 

family Retroviridae. This virus is the causal agent of the Acquired Immune Deficiency 

Syndrome. There are two phylogenetically distinct types of HIV, known as HIV-1 and HIV-

2. HIV-1 was isolated in 1983 in the United States of America from homosexual men 

afflicted with rare opportunistic infections
19

; HIV-2, which has a slightly different genomic 

structure, was isolated from West African AIDS patients in 1986 
24

. HIV-1 is further divided 

into four groups: M (for main or major) is responsible for the global pandemic; N (for non-M 

non-O) is confined to a dozen patients infected in Cameroon; O (for outlier) infected less than 

hundred thousand people and is restricted to Cameroon and Gabon; and P, discovered in 

2009, has infected two patients in Cameroon so far
46

.On other hand, HIV-2, that appears to 

be less pathogenic
52,53

, is mainly restricted to West Africa
26

 and countries with historical links 

to that area, like Portugal and France. 

Lentiviruses are characteristically responsible for long-duration illnesses with a 

long incubation period, also features of HIV-1 infection
54

.The long infection period of HIV 

within the host, in the absence of long term treatment, is followed by almost universal 

progression to AIDS, reaching a mortality rate of near 100%. The long infection period in 

conjunction with population demographics has led to the HIV-1s unique epidemiology, as 

described previously. 

 

HIV-1 structure 

 

HIV-1 is different in structure from other retroviruses. It is spherical in shape, roughly 80 – 

100 nm in diameter and possesses two usually identical copies of a single stranded RNA 

genome of approximately 9 kilobases in length. The HIV-1 genome, represented in figure 4, 

is primarily a coding RNA and contains nine open reading frames that produce 15 proteins
55

.  
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Figure 4: HIV-1 genomic landmarks. Los Alamos National Laboratory reference strain (HXB2), 

showing HIV-1 genomic structure consisting of nine genes (gag, pol, env, tat, rev, nef, vif, vpr and 

vpu). Figure and description of gene functions based on http://www.hiv.lanl.gov. 

 

GAG: The genomic region encoding the capsid proteins (group specific antigens). The gag 

polyprotein precursor is proteolytically processed by the viral protease to generate the matrix 

(MA or p17), capsid (CA or p24), nucleocapsid (NC or p7) and p6 proteins. Gag associates 

with the plasma membrane, where virus assembly takes place. 

POL: This genomic region encodes three pol proteins, protease (PR), reverse transcriptase 

(RT) and integrase (IN), providing essential enzymatic functions for HIV life cycle. These 

enzymes are produced as a gag-pol precursor polyprotein, which is processed by the viral 

protease. 

ENV: Viral glycoproteins produced as a precursor (gp160), which later is processed resulting 

in two envelope proteins, surface or gp120, which mediates virus attachment and entry into 

host cells via interaction with host cell receptors, and transmembrane or gp41, responsible for 

membrane fusion. Protein gp120 contains the binding site for the CD4 receptor. 

TAT: Trans-activator of transcription (HIV gene expression). One of two essential viral 

regulatory factors (the other is rev) for HIV-1 gene expression. Mainly, it acts by activating 

RNA transcription initiation and preventing its premature termination. 

REV: Regulator of expression of virion proteins. The second regulatory factor for HIV 

expression, rev acts by promoting the nuclear export, stabilization and utilization of the viral 

mRNAs. Rev is considered the most functionally conserved regulatory protein of lentiviruses. 

VIF: Viral infectivity factor, promotes the infectivity but not the production of viral particles. 

In the absence of vif, the produced viral particles are unable to freely infect cells, although 

cell-to-cell transmission is not affected. It also prevents the action of the cellular APOBEC-
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Figure 5: HIV-1 life cycle. HIV-1 is represented in green, RNA in red, pro-viral DNA in blue and host 

cell DNA in yellow. 1 –Binding to the target cell; 2 – Reverse transcription of HIV RNA; 3 – 

Integration into the host genome; 4 – Transcription of viral proteins; 5 – Assembly of a new viral 

particle; 6 – Release of immature virions; 7 – Maturation of the virion  

3G, an host factor that inhibits infection by deaminating DNA:RNA heteroduplexes in the 

cytoplasm. 

VPR: Viral protein R, which enhances post cell entry infectivity. 

VPU: Viral protein U, which is found in HIV-1 and SIVcpz but not in HIV-2 and several 

other SIVs. Vpx, found in HIV-2 is a vpr homolog, apparently resulting of a gene duplication 

event, possibly by recombination. Both have similar functions, suggesting redundancy. They 

degrade CD4 in the endoplasmic reticulum thus allowing virion release from the plasma 

membrane of HIV infected cells. 

NEF: negative factor, which down regulates CD4, the primary viral receptor, and MHC class 

I expression, increasing viral infectivity. Nef genes are essential for efficient viral spread and 

disease progression, maintaining high viral loads. 

 

HIV-1 life cycle 
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In order to replicate, virus must infect a host cell. A property called tropism determines which 

cell type a given virus will infect. HIV-1 searches for cells that have CD4 surface receptors, 

because this particular protein enables the virus to bind to the host cell. T-lymphocytes and 

cells of monocyte macrophage lineage both express the CD4 receptor and can therefore be 

infected by HIV-1. As described earlier, HIV-1 genome consists in nine genes, encoding for 

15 proteins. Each of these proteins plays a role in HIV-1 life’s cycle, which includes binding, 

reverse transcription, integration, transcription, assembly, release and maturation
55

. 

CELL BINDING AND ENTRY: HIV is an enveloped virus. In this envelope, the viral 

protein type I transmembrane glycoprotein (gp), coded by the env gene, is expressed. HIV-

1env is produced in a host cell as gp160, later cleaved to gp120 (extracellular component) and 

gp41 (transmembrane component). The first step of HIV-1 binding occurs when extracellular 

gp120 binds to its primary cell surface receptor CD4.  Binding of gp120 to CD4 results in a 

conformational change in env, enabling binding of gp120 to a cellular co-receptor. While a 

number of cellular co-receptors for HIV-1 binding have been described, the most important 

are CCR5 and CXCR4.Both co-receptors are expressed in memory CD4+ T cells
56

,but CCR5 

can be expressed also in macrophages and monocytes
57

. Individual virus strains can display 

increased affinity for both or either receptors, showing R5 tropism, X4 tropism or dual 

tropism. Initial infection typically occurs via an R5-tropic virus, which evolves over the 

course of an untreated infection into an X4-tropic virus, often with a dual-tropic 

intermediate
58

. There is evidence that X4-tropic virus may be more pathogenic that R5-tropic 

virus
59

.  

Engagement of gp120 with the cellular co-receptor induces additional conformational 

changes with resultant interaction of the gp41 component of env with the plasma membrane, 

fusion of the viral and host membranes, and insertion of the viral core into the cytoplasm
60

. 

Binding is the first step for HIV-1 infection and env is the only viral protein expressed in the 

HIV-1 envelope, so it seemed attractive targeting both in vaccine development. However, 

HIV-1displays an immune evasion strategy consisting in hypervariability and extensive 

glycosylation of gp120, turning all vaccination efforts useless to date. 

HIV-1 REVERSE TRANSCRIPTION: Once fusion of the viral and cellular membranes takes 

place, the viral core enters the cytoplasm of the target cell.  The HIV-1 viral core is a 

multimeric structure composed of capsid (CA or p24, a component of gag) proteins.  

Contained within the viral core are two copies of the viral single plus strand RNA genome, as 
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well as viral proteins (reverse transcriptase, nef, vpr, nucleocapsid, integrase), and primer 

tRNA.  Following uncoating and degradation of the viral core, the viral genome enters the 

nucleus for integration
61

. 

Reverse transcription is a multistep process entailing the transition of the single-stranded viral 

RNA into double-stranded proviral DNA, which is then integrated into the host chromosome. 

This is accomplished by HIV-1 reverse transcriptase (a component of pol), ultimately a DNA 

polymerase (simultaneously RNA- and DNA-dependent) and a ribonuclease, combining 

DNA polymerization and RNA cleavage. Outstandingly, HIV-1reverse transcriptase lacks the 

functional “proof-reading” activity that is present in other DNA polymerases, contributing to 

the high mutation rate of the virus
62

.However, the dimeric nature of the retroviral HIV RNA 

genome is the true responsible for its high genetic variability by means of forced and non-

forced copy-choice recombinations during reverse transcription
63

. Later, this recombination 

as a form of primitive sexual reproduction will be detailed. 

HIV-1 DNA INTEGRATION: Transcription of RNA to DNA and subsequent integration 

into the host cell genome are distinctive features of retroviruses. HIV-1, as other retroviruses, 

benefit of integration in terms of protection, as unintegrated genetic material is quickly 

degraded. 

HIV-1 integration begins as the newly synthesized viral DNA binds HIV-1 integrase in the 

LTR region in the cytosol of the host cell. Combined with additional host and viral proteins, a 

pre-integration complex (PIC) is formed
64

. This complex translocates to the host cell nucleus. 

Once inside the nucleus, the PIC binds to the host cell DNA. Next, the 3’ overhang of the 

viral DNA is inserted into the 5’ target host DNA.  Evidence exists that HIV-1 DNA 

preferentially integrates into actively transcribed regions of the host cell DNA
65

. At this 

point, there still remain unpaired flanking regions and gaps between the viral DNA and the 

host genome. Since the cell does not recognize this newly inserted DNA as foreign, host 

DNA repair elements will respond and repair the ends, leading to fully integrated HIV-1 

DNA
66

. 

After successful integration, the provirus can either be transcribed, leading to new progeny 

virions, which is discussed in the next section, or can lie dormant without viral protein gene 

expression, in a state of latency. HIV-1 latency is a major barrier in accomplishing a cure of 

the infection. Once integrated, if the virus lays dormant, it will evade the host’s immune 

response and is unaffected by current therapies that target active viral proteins
67

. Current 
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research suggests that the half-life of a latently infected, resting memory T cell, can be as 

long as four years
68

. Transcription of provirus upon reactivation allows replenishment with 

HIV virions, making nearly impossible to eradicate HIV from the system without first 

eradicating the latently infected cells.   

TRANSCRIPTION AND REGULATION OF VIRAL PROTEINS: After integration, HIV-1 

transcription is controlled in part by the HIV-1 protein tat. This protein binds to the 5’ LTR of 

the integrated viral DNA and ultimately leads to HIV’s transcription elongation. Some of the 

HIV-1 genes overlap and require splicing, which may result in splice variants. Splicing 

variants that contain sequences for proteins involved in virion formation, including structural 

proteins and enzymes, containing a rev-responsive element that allows HIV-1 rev to bind the 

mRNA and transport it out of the nucleus to be translated
69

.  

ASSEMBLY OF HIV-1 VIRIONS: The next step of the HIV-1 life cycle is packaging and 

creating the virus (assembly). Gag and gag/pol proteins are of major importance for assembly 

to take place. Gag is responsible for recruiting HIV-1 proteins to the cell membrane where 

assembly takes place. Matrix, capsid, nucleocapsid, and p6 are encoded by gag. Before being 

trafficked to the membrane, the newly synthesized gag binds the genomic HIV RNA that has 

been exported from the nucleus via its nucleocapsid region and to a less selective region of 

matrix. Once at the plasma membrane, matrix anchors the polyprotein to the plasma 

membrane. Env is trafficked separately from gag. The p6 and capsid domains are responsible 

for protein: protein interactions necessary to assemble the virion. Capsid and its interactions 

with matrix, nucleocapsid and p6 align and concentrate gag proteins in preparation for 

budding
70

. 

BUDDING OF HIV-1 VIRIONS: Budding consists in a virion leaving the infected cell with 

components of the plasma membrane encircling it. By crossing the plasma membrane, HIV-1 

obtains its lipid envelope. It is a complex process, requiring recruitment of host factors and 

opposition to mechanisms developed to combat the release of immature virions
71

. HIV-1 vpu 

as an important role in antagonizing such mechanisms
72

. 

MATURATION OF HIV-1 VIRIONS: The final step of HIV-1 life cycle is called maturation 

and corresponds to the process of structural changes that allows the virus to infect new host 

cells. The HIV-1 protease is the key to the assembly of a mature infectious virion. When 

translated, the viral proteins are translated as polyproteins. The HIV-1 protease is responsible 

for cleaving the polyproteins so they can structurally form the virion. After cleavage of gag, 
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the viral RNA becomes condensed and stabilized
73

. The structural components are assembled 

and an HIV-1 virion is formed. This is considered a turning point, because now the virion has 

transformed from a vesicle budded from the host cell to a mature virus that can infect, 

replicate, and survive in new cells. 
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EVOLUTION TO DIVERSITY 

 

HIV-1adaptation to a new host 

 

When a virus enters a new host species for the first time, several outcomes may occur, 

ranging from incidental infection to epidemic spread. As referred above, HIV-1 has 

originated from cross-species transmission of another lentivirus, SIVcpz, probably in 

southeast Cameroon, circa 1900. There are five arguments in favor of this hypothesis, all of 

them mentioned in the previous section: 

1. Similarities between both genomes 

2. Phylogenetic trees showing close relations 

3. SIV’s prevalence in their natural hosts 

4. Geographical coincidence 

5. Plausible mechanisms of transmission 

 

In 2000, a study was published providing proof that HIV-1 group N related virus circulate in 

wild chimpanzees, confirming inter-species transmission
74

. 

However, we also know that SIVs infects its natural hosts for hundreds or thousands of years 

without causing disease or immunodeficiency even in the presence of high viral loads, 

contrasting with its name
36,75

. Nevertheless, when a SIVsmm was accidentally transmitted in 

captivity from a sooty mangabey to an Asiatic macaque, the later developed a fatal 

immunodeficiency, resembling AIDS
76

. This occurrence was experimentally reproduced 

later, originating SIVmac, which allowed rhesus monkeys to serve as an AIDS animal 

model
77

. We must remember that no SIV was ever identified in non human primates outside 

Africa. 

SIVcpz, who shares a common ancestral with HIV-1 groups M and N, is in turn a chimera 

between older SIVs
44

. This make it a phylogenetically recent virus, eventually explaining 

why it can produce CD4+ cell depletion in chimpanzees and curtail their life expectancy
42

, 

although not as dramatically as in HIV or SIVmac infections. 

In 1992 and 1994 two cases of accidental transmission of SIVsmm to laboratory technicians 

resulted in a spontaneous clearance of the virus
78

 or in an asymptomatic infection
79

. 
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However, it was recently demonstrated that SIVcpz is able to replicate in human lymphoid 

tissue, as long as a viral matrix protein undergo an adaptation
80

. All these facts allow 

concluding that SIV is not the cause of AIDS and that AIDS is not a true zoonosis. 

Indeed, zoonosis (transfer of a pathogen from non-human animals to humans) and subsequent 

spread of the pathogen between humans, requires the following conditions: 

1. Ahuman population 

2. A nearby population of a host animal 

3. An infectious pathogen in the host animal that can spread from animal to human 

4. Interaction between the species to transmit enough of the pathogen to humans to 

establish a human foothold, which could have taken millions of individual exposures 

5. Ability of the pathogen to spread from human to human (perhaps acquired 

by mutation) 

6. Some process allowing the pathogen to disperse widely, preventing the infection from 

"burning out" by either killing off its human hosts or establishing immunity in a local 

population of humans. 

Criteria 1 to 4 are clearly fulfilled by HIV-1. Criteria 5 and 6 imply some kind of adaptation 

to the new host species. Classifying HIV infection as a zoonosis is not just semantics. If 

AIDS was a true zoonosis, it meant that it was naturally acquired directly from an animal 

source. SIVcpz is accepted as the original source of HIV-1 but not as the original source of 

AIDS. The importance of classifying HIV infection as being or not a zoonosis resides in 

understanding the processes by which animal virus can cause epidemics or pandemics. In 

another words, understanding the adaptative process (es) in a new host that will eventually 

lead to a new emerging disease. 

There are several arguments disfavoring AIDS as a classic zoonosis, being rather a zoonotic 

transmission of a virus ultimately causing a human infectious disease: 

1. A large number of exposures to different SIVs are calculated to have happened in 

Central and West Africa for centuries
81

. In spite of that, only 12 cross-species 

transmissions are documented, giving birth to four HIV-1 and eight HIV-2 groups
82

. 

Even in the presence of massive exposure, SIV infections in humans are 
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exceedinglyrare
83

. In fact, only four of these crossover events resulted in epidemic 

strains. They are the HIV-1 group M, the major group of virus of the pandemic, group 

O, which is responsible for around5% of cases in Cameroon
84

 and groups A and B of 

HIV-2, which are the epidemic forms of HIV-2
85,86

. All other HIV-1 and 2 groups are 

outstandingly rare. 

2. SIV infections in accidental (non natural) primate hosts are weakly or non-pathogenic 

and usually spontaneously cleared
87,88

, with the previously noted exceptions of 

SIVmac. It seems obvious that cross-species transmission of a lentivirus is not the 

only requirement for the selection of a pathogenic virus in the new host and that some 

mechanism of virus adaptation to the new host is mandatory. 

3. The SIVs infections in their natural host are generally asymptomatic in spite of high 

viral loads over long periods of time
36,75

. This finding reinforces the assumption that a 

change in the pathological potential of the virus is needed for SIV to become 

pathogenic in anew primate host. 

4. The epidemic only emerged in the second half of the 20
th

 century in spite of several 

previous decades of exposure, which suggests the intervention of some human factors, 

like deforestation, urbanization and travel, providing the necessary epidemiologic 

conditions for a pandemic to rise. 

 

Direct contacts with infected animals were clearly not enough to start the pandemic. Those 

early contacts certainly assumed several forms, like accidental blood borne acquisition, by 

hunting or manipulating carcasses or even bites of pet monkeys. Once breaking the species 

barrier, a sum of biologic, demographic and epidemiologic factors favored the infection 

progression among human populations. In this section, the biologic factors will be discussed. 

 

After exposure and direct contact, the second step for a pathogen to be able to infect his new 

host is compatibility. That means the existence of appropriate receptors on host cells. The 

genetic affinity between humans and chimpanzees may enlighten the cross-species jump of 

HIV-1, as the tropism of SIVcpz must have been fundamental for human cells permissivity to 

infection. As explained before, there must have been at least 12 cross-species transmissions, 

originating two HIV types further divided into groups (Figure 6). These are quite different in 

terms of spread and pathogenicity. Due to their different origins, HIV-1 and HIV-2 are 

phylogenetically and genomically distinct, probably explaining their differences. A question 



44 

 

remains: why is HIV-1 Group M the pandemic virus? This could be due to a combination of 

sociological factors and intrinsic viral properties. 

 

 

 

 

As seen in the previous section, molecular clock studies estimated the foundation of HIV-1 

group M at a time (early 20
th

 century) that coincides with high population growth in Africa 

and migration to major cities around the zone of cross-species transmission. This 

demographic particularity provided a sufficient host-population size and transmission 

networks to facilitate the establishment of HIV-1.Contrasting,  the emergence of the most 

recent common ancestor (tMRCA) of HIV-1 Group O is about 1920 (1890 – 1940) and HIV-

1 Group N tMRCA is about 1963 (1948 – 1977)
89

, when demographic and socio-economical 

factors were less favorable to start a pandemic. 

Figure 6: HIV evolutionary history. The precursor of HIV-1, SIVcpz is of hybrid origin, resulting 
from a chimera between SIVrcm and SIVgsn. HIV-1 is the result of three independent cross-
species transmission of SIVcpz from chimpanzees and one transmission of SIVgor from gorilla 
(itself the descendant of transmission from SIVcpz); and HIV-2 arose from eight independent 
cross-species transmission of SIVsmm from sooty mangabeys to humans. Blue arrows mark the 
necessary adaptations to a new host. 
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Nevertheless, there is also evidence of intrinsic properties of HIV-1 group M strains that 

might explain its more effective viral replication. Specifically, HIV-1 virus isolates from 

group M have a higher replicative capacity and display more effective viral countermeasures 

that antagonize host restriction factors
90

. Restriction factors are effectors of the innate 

immune response against viral pathogens that inhibit viral replication by operating as 

molecular barriers to essential steps of the viral life cycle. There are several host restriction 

factors againstHIV-1 and other retroviruses that have been identified to date. They are 

germline-encoded, not involving somatic learning and immunologic memory. Indeed, many 

of these factors are proteins highly induced upon interferon stimulation as part of switch to an 

"antiviral state" of the cell
91

. Some of these restriction factors assume relevance in defending 

host cells from retroviral infection. It is believed that HIV-1 group M adaptation to human 

hosts and resultant successful infection resides in countermeasures (represented by accessory 

genes) to restriction factors. Some of these restriction factors drove this adaptation and 

ultimately gave birth to HIV-1: APOBEC3G, tetherin and SAMHD1. 

APOBEC3G 

APOBEC3G (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like editing 

complex 3) was identified because of its antagonism by HIV-1 vif
92

. APOBEC3G is a host 

cellular cytidine deaminase enzyme, primarily expressed in the natural targets of HIV 

infection: CD4+ T lymphocytes, macrophages and dendritic cells
93

. APOBEC3G can inhibit 

viral propagation mainly through deamination activity, mutating dC in dU in nascent viral 

DNA strands generated by reverse transcription, leading to the destruction of some of these 

strands. For those who evade destruction, the G to A hypermutations will lead to premature 

termination codons or mutated viral proteins
94

.APOBEC3G also displays some inhibitory 

deaminase independent activity, by binding viral RNA, by interfering with the DNA strand 

transfer acrobatics of reverse transcription, by physically blocking reverse transcriptase and 

by obstructing integration into the host cell genome
95

. APOBEC3G is packaged into virions 

in infected virus-producing cells and it has been shown that it is largely this virion-packaged 

fraction, rather than the pool of cytoplasmic APOBEC3G, that is most active on the viral 

genome in newly infected cells
96

. APOBEC3G restriction of HIV-1 is antagonized by vif
97

. If 

HIV accessory gene vif is expressed, APOBEC3G averts packaging into nascent virions and 

lose its antiviral activity. In the target cell, vif directly binds to APOBEC3G, targeting it for 

ubiquitin-dependent proteasomal degradation. However, there is species-specificity between 

APOBEC3G-vif interactions. For example, human APOBEC3G can be targeted by HIV-1 vif 
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but not by SIVagm vif; reciprocally, African green monkey's APOBEC3G can be targeted by 

SIVagm vif but not by HIV-1 vif
96

. A single amino acid change on APOBEC3G can toggle 

the species-specific switch of vif sensitivity
98

. This means that host evasion from vif 

antagonism requires a single adaptive change and consequently imposes a species-specific 

barrier. Thus, HIV-1 vif acts as an adaptor protein that targets the host cellular machinery to 

remove APOBEC3G. As a result, APOBEC3G is not packaged into virion particles and virus 

keeps its infectivity. Of relevance, suboptimal blockade of APOBEC3G function by partially 

defective vif mutants will lead to an increase of G-to-A viral mutations that can facilitate the 

emergence of some antiretroviral resistance mutations, even in the absence of drug 

exposure
99

. 

Tetherin 

Tetherin, also known as CD317 or BST-2 (bone marrow stromal antigen 2) is a host 

restriction factor capable of inhibiting the release of a broad range of virus from the plasma 

membrane of infected cells. Tetherin restricts virus release by physical linkage between the 

nascent virion and the host cell plasma membrane
100

. Tetherin is expressed by all major 

cellular targets of HIV-1 infection, including CD4+ T lymphocytes. Its tetramer structure is 

formed by two parallel dimers with pronounced flexibility. This intrinsic protein topology 

determines its function rather than the coding amino acid
100

. As a result, tetherin also inhibits 

the release of other virus, such as filovirus (Ebola and Marburg virus), arenavirus (Lassa 

virus), and other retrovirus, including gammaretrovirus (murine leukemia virus) and 

spumaretrovirus (foamy virus)
101

. 

Retroviruses have developed at least three strategies to counteract tetherin. First, the vpu 

protein from HIV-1 abrogates the retention phenotype in cells that express tetherin and has 

been observed to be co-localized with tetherin. Vpu displays species specificity and 

counteracts human tetherin by targeting it for degradation. Notably, vpu is encoded by a 

unique lineage of primate lentivirus, including HIV-1, SIVcpz and SIVgsn/mus/mon. HIV-1 

vpu directly binds to tetherin leading to the ubiquitination of tetherin and to its lysosomal 

degradation
102

. In contrast, SIVcpz, the immediate precursor of HIV-1, whose vpu shares a 

common ancestry with HIV-1 vpu, uses nef instead to counteract chimpanzee tetherin. 

Human tetherin, however, is resistant to nef and thus poses a significant barrier to zoonotic 

transmission of SIVcpz to humans
103

. Outstandingly, to counteract tetherin, HIV-1 vpu 

evolved, substituting nef. Here, HIV-1 adaptation derives from an adaptative escape from a 

past antagonist and, unlike expected, HIV-1 neofunctionalized a different protein instead of 
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adapt the original antagonist
100

. This evolution of vpu to antagonize tetherin may have freed 

HIV-1 nef to evolve and contribute to its pathogenicity. This switch, being exclusive of HIV-

1 group M, suggests that it could be essential to the establishment of pandemicity. 

Second, lentiviruses from the SIVsmm/SIVmac lineage also have evolved the ability to 

counteract tetherin through the nef protein. The nef proteins from SIVsmm and SIVmac 

display species specificity in their ability to counteract their hosts, sooty mangabey and 

rhesus macaque respectively, and closely related tetherins. Nef binds to the cytoplasmic tail 

domain of tetherin leading to internalization of cell-surface tetherin and intracellular 

retention, counteracting its anti-viral activity
103

. 

Third, as HIV-2 does not encode vpu to overcome the action of tetherin, it uses an alternative 

way through env. HIV-2 env antagonism of tetherin promotes the cell surface downregulation 

of tetherin, similar to vpu. However, env does not induce protein degradation, but leads to the 

intracellular sequestration of tetherin
104

.  

As referred above, at least three SIV/HIV gene products (vpu, nef and env) have the potential 

to counteract primate tetherin proteins, often in a species-specific manner. Human tetherin 

developed a deletion resistance to nef
105

. During its adaptation process to humans, HIV-1 

group M obviated this hassle  by switching from nef to vpu to antagonize human tetherin
106

. 

In contrast, vpu proteins from non-pandemic group O and group P virus do not antagonize 

tetherin
106,107

 and those of the group N virus gained some modest antitetherin activity but do 

not degrade CD4
106

. The finding that pandemic HIV-1 group M, but not non-pandemic 

groups O, N and P virus, efficiently antagonize the human tetherin supports that pandemic 

HIV-1 group M strains are better adapted to humans. The inability to antagonize human 

tetherin may potentially explain the limited spread of these later groups in the human 

population. 

Several other virus can counteract tetherin actions, by means of downregulation or 

sequestration. These independent acquisitions of a viral tetherin antagonist by multiple virus 

further emphasize the role of tetherin and the strong selective pressure imposed by its potent 

and large restriction spectrum. 

SAMHD1 

SAMHD1 (sterile alpha motif (SAM) and histidine-aspartate (HD) domain-containing protein 

1) is a deoxynucleoside triphosphate triphosphohydrolase, a cellular enzyme, responsible for 
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blocking replication of HIV-1 in dendritic cells, macrophages and monocytes, where it is 

highly expressed and functional
108

. By converting nucleotide triphosphates to 

a nucleoside and triphosphate, SAMHD1 depletes the pool of nucleotides available to 

a reverse transcriptase for viral cDNA synthesis and thus prevents viral replication. 

SAMHD1 was identified when the accessory protein vpx was shown to be decisive for the 

capability of primate lentiviruses to efficiently infect monocytes and dendritic cells
109

. Only 

HIV-2 lineage and another lineage of SIVs, represented by SIVrcm, encode the auxiliary 

protein vpx that potently overcomes the block to viral replication constituted by SAMHD1, 

by promoting its degradation by the proteasome machinery. Vpx is absent from SIV strains 

related to HIV-1 as well as from HIV-1 itself. So, in contrast to the other restriction factors, 

HIV-1 has no means to counteract SAMHD1
110

, which was dispensable for efficient HIV-1 

spread. This raises the hypothesis of a possible advantage for HIV-1 and the related SIV 

strains not to counteract SAMHD1. 

Evolutionary analysis by Laguette et al showed that SAMHD1 experienced strong positive 

selection episodes during primate evolution
111

. SAMHD1 proteins of apes, monkeys, and 

lemurs were all active against HIV-1, whereas vpx degraded and antagonized SAMHD1 in a 

species-specific manner. Laguette and colleagues questioned whether the presence of vpx 

represents an advantage favoring cross-species transmission and observed that vpx appears to 

be dispensable for persistence and spread in humans. 

Lim et al also noted that only two out of eight primate lentivirus lineages encode vpx, 

whereas its paralog, vpr, is conserved across all existing primate lentiviruses
112

. By functional 

analysis, these authors found that multiple vpx proteins shared the ability to degrade 

SAMHD1, but that this ability was often host specific. Additionally, some vpr proteins from 

virus lacking vpx could also potently degrade SAMHD1. Evolutionary analysis showed that 

the ability to degrade SAMHD1 resulted from neofunctionalization of vpr that preceded the 

acquisition of vpx in primate lentiviruses. It was concluded that vpr gained a new function to 

degrade SAMHD1 once during viral evolution, thereby initiating an evolutionary “arms race” 

with SAMHD1. However, the authors also noted that many lentiviral lineages, including the 

precursors of HIV-1 and HIV-1 itself, never acquired this function
113

. 

Apparently, no advantage for HIV-1 seems to be inferred from not antagonizing SAMHD-

1.A cell intrinsic sensor for HIV-1 exists in dendritic cells and mediates an antiviral immune 

response. If there is no dendritic cells infection, this sensor is not typically engaged 
114

. The 
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virulence of HIV-1 may be related to the evasion of this mechanism. Accordingly to this 

hypothesis, HIV-1 did not evolve an anti-SAMHD1 counteracting protein to avoid the 

cellular detection of viral proteins and consequent immune activation. 

Still, the higher pathogenicity of HIV-1 group M relative to other HIV-1 groups and to HIV-2 

may be explained by other unique antagonistic functions (or more effective countermeasures) 

that collectively allow HIV-1 group M to achieve sufficient replicative potential in target 

cells. 

The innate immune defense proteins battle viral infection and their viral counterparts fight 

back, hindering their function mainly by degradation, internalization and sequestration. This 

leads to a never-ending evolutionary race between the host and the pathogen. When SIV took 

a foothold in humans, this two sided arms race leaded to adaptation, overcome of species 

barrier and ultimately to the emergence of a new lentivirus, HIV. 

 

Genetic diversity 

 

Genetic diversity proved essential for HIV-1 success as a human pathogen. It explains viral 

persistence in face of immune selection, hindering virus identification and facilitating 

immune escape, the emergence of drug resistance and the absence of a vaccine after all these 

years. This diversity is patent as sequence variability, particularly within the env variable (V) 

regions
115

. 

Korber et al described the amazing diversity of HIV quasispecies in a single infected 

individual, comparing it to the annual variation of influenza
116

. It was found that a 

phylogenetic tree of influenza virus sequences sampled world-wide in 1996 showed much 

less diversity than a sampling of subtype B HIV-1 envelope sequences from a single city, 

Amsterdam, in 1990–1991. This extent of diversity can be explained by a set of factors, 

namely high viral turnover, high mutation rates, frequent recombination, host immune 

selection and genetic and phenotypic limitations to variation. A quasispecies can be defined 

as a cloud or swarm of genetically diverse variants that are linked through mutations that 

interact cooperatively on a functional level but collectively contributing to the characteristics 

of a population
117

. 
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Nucleotide sequence variation between HIV-1 groups may reach 30%
118

. Diversity within 

HIV-1 group M is large, even if compared with other rapidly evolving virus, like influenza
116

, 

thus it is catalogued in nine subtypes (A-D, F-H, J and K)
119

. Subtypes A and F have been 

further divided into sub-subtypes A1-A3 and F1-F2, respectively. Subtypes E and I don’t 

exist, as their recombinant nature was revealed by complete genome sequencing and were 

later reclassified as CRF01_AE and CRF04_cpx respectively
120

. This classification suffers 

from arbitrariness in terms of definition, however it provides a common language for 

referring to related lineages and captures a fundamental feature of the virus: the gene and 

protein sequences within a HIV-1 subtype are more closely related to one another than to the 

genes and proteins from other subtypes. The associations and groupings of subtypes can be 

statistically validated through phylogenetic analysis
121

. CRF stands for Circulating 

Recombinant Forms and describe viral genomes that contain clearly delineated sections 

derived from different subtypes or other recombinants, that share a common ancestor, and 

that are the basis of multiple infections – in at least three different patients epidemiologically 

unrelated (http://www.hiv.lanl.gov/content/sequence/HelpDocs/subtypes-more.html). CRFs 

are thus epidemic strains, which, like subtypes, are of global importance. There are currently 

61 defined CRFs (according to Los Alamos HIV Sequence Database, accessed on February 

14th, 2014), from first generation recombination or from second generation recombination, 

the later occurring when recombination takes place between more than one first generation 

CRF or between CRFs and different subtypes. Some of the CRFs cause more infections than 

“pure” subtypes, like CRF01_AE in Asia or CRF02_AG, found throughout Western and 

Central Africa
122

.More extensive sampling in regions of sub-Saharan Africa with great viral 

diversity has resulted in ever greater indications of the potential complexity of HIV-1 

diversity. In regions where multiple subtypes are co-circulating with a high prevalence, 

intersubtype recombination iscommon
123

 and recombination between recombinants has also 

been reported
124

. The large number of novel recombinants suggests that multiple infections of 

HIV in the same individual are not uncommon. Several new isolated examples of strains that 

do not clearly fit into any defined subtype or known circulating recombinants have been 

described and are called unique recombinant forms (URFs)
123

. The subtypes themselves are 

growing more diverse with time. By definition, a subtype is a cluster in which virus 

sequences have approximately equal genetic distances between them (10-30%), depending on 

the genes compared. The mean genetic divergence of subtype A, B, C and D genomes 

isolated in 1999 (9.8%, 10.0%, 7.9% and 8.5%, respectively) each equal that of the whole 

group M epidemic in 1985 (8.8%). The genetic divergence of the entire group M has 
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Figure 7: HIV-1 Phylogenetic trees constructed using global group M (a) and Group O (b) 

envelope gp160 sequences. The •indicates bootstrap support greater than 90%. The scale bar 

corresponds to nucleotide substitutions per site. Bold lettering corresponds to the Group M 

subtype designations from the LANL HIV Sequence Database and bold numbers represent the 

Group O clusters that correspond to previously proposed clusters. Extracted from 

http://www.hiv.lanl.gov. 

.  

 

increased to 14.9% in the same period (LANL HIV Sequence database, http://hiv-

web.lanl.gov). 

 

The representative tree (figure 7) for the group M envelope region displays the characteristic 

starburst structure that apparently defines this group’s phylogenetic diversification: an 

organization indistinct and strongly supported clades in phylogenetic trees. This phylogenetic 

substructure is characterized by a double-star phylogeny, i.e., a tendency for long branch 

lengths within subtypes that coalesce near the ancestral node of the subtype and long pre-

subtype branches that coalesce near the root of the entire tree
125

.As a result, strains within any 

given subtype are always more closely related to each other than they are to strains belonging 

to a different subtype. The lack of equidistant group O clusters or lack of a starburst structure 

is also observed in figure 7. It would seem that the group O phylogeny reflects an 

epidemiology that is dependent on host transmissions on a highly localized (endemic) 

scale
125

. As a result, the branches leading to the group O clusters tend to be deeper within the 

trees resulting in shorter branch lengths leading to the individual clusters. In fact, group O has 

a b 
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been geographically restricted to Cameroon where it is responsible for about 1.4%of all HIV-

1 infections
84

. 

This great diversity is seeded by the lack of a proof-reading mechanism in RNA viral reverse 

transcriptase, and the consequential high error rate (1.5–2.4×10
-5

mutations/bp/cycle)
126

. 

Mutations can occur at three stages of retroviral replication:(a) when viral RNA is transcribed 

from the provirus by host DNA-dependent RNA polymerase II (pol II); (b) when the single-

stranded viral RNA genome is converted into double-stranded DNA (dsDNA) by viral 

reverse transcriptase (RT); or (c) when the provirus is copied by the host DNA-dependent 

DNA polymerase during replication of the infected cell.HIV-1 generates, on average, one 

error genome per replication cycle
126

. Potentially, each provirus is anew mutant strain, unique 

at least in one base site. Mutations accumulate over successive replication cycles, leading to a 

myriad of closely related but not identical virus in every infected individual. Blood and 

lymphoid tissue from a HIV-1 infected adult contains 10
11

 CD4+ lymphocytes, of which 

between 10
9
 and 10

10
 can be showed to harbor viral DNA

127
. On account of 3×10

7
 HIV-1 

infected patients worldwide, there may be as many as 3×10
17

 HIV-1 genetically unique strain 

variants in circulation. This vast reservoir of genetic variants may increase the potential for 

successful adaptation of the HIV-1strains. This fact is the first step for forming quasispecies, 

which are a hallmark of HIV-1 infection. Quasispecies represent a genetically complex 

population of virus from an initially limited number of infectious particles, eventually just 

one. 

Besides replication errors, we must also account on the rapid turnover of HIV-1 in vivo. The 

estimated average total HIV-1 production is 10.3 × 10
9
 virions per day. The duration of the 

HIV-1 life cycle in vivo is 1.2 days on average, and the average HIV-1 generation time - 

defined as the time from release of a virion until it infects another cell and causes the release 

of a new generation of viral particles - is 2.6 days
128

.This formidable numbers allow us to 

imagine the huge diversity a single virion can incite in a single host. 

Two more important factors driving HIV-1 diversity within-host are the host selective 

immune pressures
129

, and the recombination events during replication
130

. Ultimately, HIV-1 

evolves during the course of an infection and adapts to its host. These features will be 

discussed next in more detail, knowing that, although impossible to identify and characterize 

by direct analytical methods the founder virus at or near the moment of transmission, it is this 

early virus and sequences evolving from it that will lead to productive clinical infection. 
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Around the pandemic, HIV-1 is transmitted mainly by sexual contact across mucosal 

surfaces, but also by maternal-infant exposure and by percutaneous inoculation. For reasons 

that are still incompletely understood, CCR5-tropic virus (R5 virus) are preferentially 

transmitted by all routes
131

. Transmission is followed by an orderly appearance of viral and 

host markers of infection in the blood plasma. In the acute phase of infection, HIV-1 

replicates exponentially and diversifies randomly, allowing for an unambiguous molecular 

identification of transmitted/founder viral genomes and a precise characterization of the 

population bottleneck to virus transmission. This concept of genetic bottleneck in HIV-1 

transmission was suggested in 2004, when Derdeyn and coworkers found that the virus that 

establishes HIV infection was monophyletic and highly homogeneous despite high diversity 

in donor
132

. Interestingly, these authors also found that the transmitted virus tended to have 

shorter V1-V4 regions, which meant it had fewer glycosylation sites. A likely functional 

consequence of having fewer glycosylation sites is a greater exposure of the CD4 binding 

domain, which can benefit binding to the target cell but often results in an augmented 

susceptibility to antibody neutralization. The concept that sexual transmission of HIV-1 

resulting in productive clinical infection arises from a single virus, was reinforced by Haaland 

and coworkers, highlighting the extreme bottleneck and inherent inefficiency in HIV-

1transmission
133

. Nevertheless, this severe genetic bottleneck can be mitigated by the 

presence of inflammatory genital infections in the at risk partner, suggesting that this 

restriction on genetic diversity is imposed in large part by the mucosal barrier. In fact, in 

epidemiologically unlinked transmissions, when individuals became HIV infected by 

somebody other than their spouse, the frequency with which two or more virus establish 

infection actually occurs in up to 24%, in association with the presence of either a chronic 

ulcerative disease or an inflammatory genital infection
134

. Considering several published 

studies indicating that HIV-1 subtype could be a determinant of transmissibility and disease 

progression
135,136

, it is conceivable that the presence of multiple subtypes, CRFs and URFs 

could impact in transmission bottleneck. However, Nofemela and collaborators found that the 

frequency of single variant infections in a genetically complex HIV epidemic was similar to 

the one found in cohorts of genetically restricted subtype B or C epidemics, suggesting that 

multiple circulating subtypes and unique recombinant forms do not have a significant impact 

on the transmission bottleneck
137

. 

Summarizing, it remains to be determined if HIV-1 transmission is largely a stochastic 

process whereby any reasonably fit R5 virus can be transmitted or if it is a deterministic one, 
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with features of transmitted/founder virus that facilitate their transmission in a biologically 

meaningful way. Clarification of this aspect is of extreme importance for vaccine 

development. 

 

Intra-host immune selection 

There are no doubts about the plasticity and mutability of HIV-1 genome. HIV-1 genetic 

variability at the nucleotide level can reach up to 5% within an infected individual
129

, 

explaining HIV-1 diversity and divergence. In a data set of HIV-1sequences sampled 

longitudinally from an infected patient, diversity is the average pair wise genetic (nucleotide 

or amino acid) distance within the sequences sampled at a given time point, while divergence 

is their average genetic distance from the most recent common ancestor (MRCA), i.e. the root 

of the viral genealogy. Surprisingly, HIV-1 evolves considerably faster within infected 

individuals than it does at the population level, with positive selection dominating in the 

former. Intra-host HIV-1 phylogenies have a strong temporal structure
138

, reflecting the 

successive fixation of advantageous mutations and the extinction of unfavorable ones, in a 

vivid example of Darwinian natural selection (see figure 8). 

 

Figure 8: Patterns of intra-host evolution of HIV-1.   For two mother-to-child vertically 
transmitted HIV-1, a maximum likelihood rooted tree was constructed. Each color represents a 
different pair. The scale corresponds to 5% of divergence between sequences. The bootstrap 
values are indicated. 
In each case, intra-host HIV evolution is characterized by continual immune-driven selection, such 
that there is a successive selective replacement of strains through time, so that multiple lineages 
are able to coexist at any time point. 
A major bottleneck is anticipated if the virus is transmitted to a new host, as the infecting virion 
will represent a single lineage. Data extracted from reference 138. 
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In contrast, the spatial and temporal diffusion of HIV-1 is neutral, not depending on positive 

selection but rather reflecting chance. Genetic diversity is strongly reduced by a bottleneck 

linked to transmission, leading to a homogenization of the virus during primary infection, a 

question that will be further detailed ahead. 

Behavioral aspects of HIV-1 transmission are an important factor in determining inter-host 

variation. All depends on individuals, inserted in transmission chains, so a particular viral 

strain success at population level is based on factors extrinsic to HIV-1. Even if a virus has 

extraordinary fitness, conferred by highly advantageous escape mutations, by finding himself 

infecting an individual with low rates of partner exchange, it will fail successful 

establishment in that human population. 

Lythgoe and Fraser proposed that the mismatch between viral diversity in a patient and the 

homogeneous viral infection he actually transmitted could be explained by a store and 

retrieve theory, consisting in preferential transmission of ancestral virus stored in long-lived 

latent CD4+ T lymphocytes
139

. It is known from long time that these cells effectively store 

virus, creating a stable archive
140

. The existence of a mechanism allowing for the preferential 

transmission and/or establishment of ancestral viral sequences in new hosts is therefore 

highly probable. There is indeed evidence that ancestral virus are, at least sometimes, 

preferentially transmitted
141

to new hosts. Investigating the virus in transmitting couples, has 

shown that virus circulating in newly infected heterosexual recipients tend to be more closely 

related to donor ancestral sequences than contemporary sequences circulating within the 

donor at the time ofinfection
142

. Moreover, the HIV-1 sequence a person acquires through 

heterosexual transmission tends to be similar to the sequence that will be transmitted later
141

. 

The question is what kind of mechanism can support these findings. Compartmentalization is 

ruled out, because among intravenous drug users the rate of divergence is slower than in 

sexual transmission
143

. Ancestral virus are likely to have an advantage in breaking the 

mucosal barrier,  invading T cells in the intestinal mucosa, or replicating faster in the first 

days of infection. That is because they will be similar to the original successfully transmitted 

strain, without escape mutations and free from these mutations fitness cost. 

Joint viral-host genome analysis is estimated to reflect genetic signals of escape and explain 

intra-host diversity and evolution. However, there are constraints to viral escape, which 

reflect RNA and protein structural requirements that may translate into loss of fitness. 

Although the HIV-1 genome is considered to be highly variable, 77% of amino acid positions 
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are conserved, whereas10% of the genome is under positive selection
144

.This class of sites 

defines critical residues in host-pathogen interaction, whether resulting from cytotoxic T-cell 

(CTL) or other host-selective pressures. Nevertheless, it is remarkable how the virus tolerates 

such a high degree of diversity while maintaining fitness, even considering that far more 

genomes come to dead ends than those that generate viable descendants. 

Complexity and multiplicity of HIV-1 intra-host evolution depends on multiple factors, 

although HIV-1mode of viral transmission can be considered a major 

determinant
134,145,146

.Transmission of a single viral variant occurs in about 76–78%of cases of 

heterosexual transmission
134,147

, in about 60% of cases of HIV-1 infected men who have sex 

with men (MSM)
146

, and only in about 40% of intravenous drug users (IDU) 
145

. Conversely, 

transmission of multiple viral variants of HIV-1 gradually increases from about 20% during 

heterosexual transmission to about 40% in MSM, and to 60% in IDU. As it is estimated that 

about 76-78% of heterosexual transmissions are initiated by a single virion and the remaining 

by two to five virus, the typical HIV infection is accompanied by a severe genetic 

bottleneck
133

, as noticed above. Convincing evidence that the mucosal barrier plays an 

important role in reducing multiplicity of transmitted HIV-1 is demonstrated in a paper by 

Bar et al
145

.  

As mentioned before, HIV-1 infection evolves in a patient over time to produce a 

quasispecies complex of viral genomes, originated from a founder virus. During the acute 

phase of infection, the viral population rapidly expands and viral loads reach extremely high 

levels (often in excess of 1 million RNA copies per ml), chiefly at expenditure of T-

lymphocytes of the mucosal associated lymphoid tissue
148

. Infected individuals often become 

ill with an acute syndrome resembling infectious mononucleosis. However, limited viral 

evolution precedes this viremia peak, meaning that in the first two to six days of infection the 

extent of viral diversity is probably minute, opening an opportunity to possible vaccine 

usefulness. 

About2 weeks later, plasma RNA levels drop sharply and the acute symptoms subside. This 

drop in viral load may be due in part to depletion of the most susceptible target cells, as well 

as to subsequent innate, cell-mediated and humoral adaptive immune responses to viral 

antigens. The individual now enters into a period of clinical latency that can last for several 

years. This period is characterized by a steady state level of viral replication, the set point, 

which reflects a balance between viral replication and clearance by the immune system. The 
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viral load following acute infection is a relatively good predictor of diseaseprognosis
149

, the 

higher, the worst. The determinants of viral load set-point in newly infected individuals 

include viral genetic factors and host genetic factors, representing the immune defense 

capacity of the recipient. Concomitant with ongoing viral replication is the progressive 

depletion of the levels of circulatingCD4+ T cells, eventually leading to the development of 

AIDS. In the absence of treatment, the virus and the immune system settle into an 

“evolutionary arms race”. Ensuing, genome diversification broadening occurs, leading to a 

progressive increase in both viral divergence and diversity. Eventually, the immune system 

collapses and, as progression to AIDS begins, viral divergence stabilizes and viral 

diversitydeclines
150

. This fact has been justified as a consequence of CD4+ T cell depletion, 

which likely results in less effective selection pressure on the virus, as well as significant 

decrease in target cells capable of sustaining viral replication. 

Several factors contribute for the described diversification. Mutation was previously pointed 

out, driven by infidelity of replication. Immune responses, conditioning escape phenomena, 

will be discussed now. 

In chronic infection, HIV-1 is continually being selected by the host immune response, both 

through the activity of neutralizing antibodies and through cytotoxic T-lymphocyte 

responses. This immunological pressure forces the virus to mutate and generate escape 

mutants. At least in regions where antiretroviral therapy is currently available, a third force 

determines HIV-1 evolution: drug pressure. 

To escape antibodies, HIV-1 changes the shape of its envelope proteins
151

. To escape cell-

mediated immunity, HIV-1 switches amino acids in epitopes
152

, which are short snippets of 

viral protein that are displayed on the surface of HIV-infected host cells to alert killer T cells. 

These escape mutations are identifiable because genes undergoing positive selection leave a 

classic genetic signature—non-synonymous mutations (mutations that change the amino 

acid) occur more frequently than synonymous mutations (mutations that preserve the amino 

acid). 

A technique called single-genome amplification, interpreted in the context of a model of 

random virus evolution, allowed an unprecedented look at the phylogenetic structure of HIV-

1 in the early hours post-infection, making possible an unambiguous molecular identification 

of actual transmitted/founder virus, responsible for establishing productive clinical HIV-1 

infection in humans
134

. This approach showed that, during the acute phase of replication, the 
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viral population expands rapidly under little selective pressure, displaying a star 

likephylogeny
134

. Such a precise molecular identification of transmitted/founder viral 

genomes and their evolving progeny enabled an assessment of the earliest adaptive immune 

responses that shape and constrain the early replicating HIV-1 quasispecies. 

The neutralizing antibody response against HIV-1 develops after resolution of acute 

infection, about two to five weeks after transmission
153

.Neutralizing antibodies typically play 

a key role in controlling viral infections and contribute to the protective effect of many 

successful vaccines but, in the case of HIV-1 infection, this delayed reaction does not lead to 

clearance from the infected host. However, antibodies represent a formidable force behind 

immune selection, as discussed in more detail further ahead in this section. 

Among the earliest selective forces acting on viral evolution, are the HIV-specific cytotoxic-

T-lymphocyte (CTL) responses. Positive selection is first observed in epitopes encoding 

CD8+ cytotoxic T-cell escape variants and this often occurs before seroconversion
154

, 

associated with a dramatic increase in CTL immune-adaptive mutations, particularly in 

highly variable proteins such as env and nef
155

.This findings support the hypothesis that 

effective CTL responses are essential to the resolution of the acute phase of viremia
156

. 

However, there is a delicate balance between cytotoxic T lymphocyte escape and viral 

fitness, as the virus populations explore multiple adaptive pathways. Obviously, there are 

limits to the plasticity of individual virus, even in highly variable proteins. Studies of HIV-1 

drug resistance are crucial to understand the complex interplay between the immune response 

and the sequence evolution of HIV-1, and to understand why sustained immune control of 

HIV-1 is so difficult to attain. It is well known that HIV-1 can rapidly develop drug 

resistance mutations when single sites in the viral genome are under intense selective 

pressure, such as in patients undergoing mono- and dual-drug therapy
157

. Although viral 

escape from antiretroviral therapy through the development of drug resistance mutations may 

be immediately advantageous to the virus in the presence of the drug, it also may result in a 

reduction of viral replicative fitness. Mutation M184V of reverse transcriptase is a classic 

example, offering full resistance to lamivudine and emtricitabine, on expenses of reduced 

replication capacity and, in the absence of the antiretroviral drug, of less fitness than wild-

type virus, presumably because these mutations reduce the overall activity and processivity of 

HIV-1 reverse transcriptase
158

. This concept of drug-induced selection pressure can also be 

applied to selective pressures instructed by virus-specific CD8
+
 T cell responses.  To 

illustrate the complex relationship between immune-mediated selection pressure, the 
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emergence of viral escape mutations within targeted CD8
+
 T cell epitopes, and the impact of 

these mutations on viral replicative fitness, is the example of the human histocompatibility 

leukocyte antigen (HLA)-B57. This HLA class I allele has been consistently associated with 

protection from HIV-1 disease progression
159

. Individuals expressing HLA-B57 mount a 

strong CD8
+
 T cell response against a highly conserved epitope within Gag, called TW10, 

very early in acute HIV-1 infection
160

. The development of this TW10-specific CD8
+
 T cell 

response is associated with the reduction of viral load by a thousand times
161

. The virus 

eventually evades this dominant TW10-specific CD8
+
 T cell response by selecting for escape 

variants within the epitope
162

. But despite immune escape, viral replication remains well 

controlled in these individuals, and large numbers of individuals expressing HLA-B57 have 

long-term non progressive HIV-1 infection
163

. The underlying mechanism, responsible for 

efficient control of virus replication despite viral escape from CD8
+
 T cell–mediated immune 

pressure, appears to be related to the reduced replicative fitness of virus containing escape 

mutations in the TW10 epitope
164

. Undeniably, the rapid in vivo reversion of these mutations 

back to wild-type after transmission into a new HLA-B57 negative host, and the direct impact 

of these mutations on viral replication in vitro, confirm the deleterious impact of escape 

mutations in TW10 on viral replicative fitness
162

. These studies also show that the virus tries 

to minimize the impact of these mutations by developing secondary compensatory mutations 

that can partially restore the replication defects
165. Furthermore, a population study of HIV-1 

subtypes B and C infected individuals demonstrated an inverse correlation between the 

proportion of mutations within CD8
+
 T cell epitopes and viral load

166
. The replicative 

capacity conferred by the transmitted gag correlates with set point viral loads in newly 

infected individuals, as well as with the viral load of the transmitting source. Transmitted 

virus with high replicative capacity will cause more rapid CD4+ decline over the first three 

years, independent of viral load. This suggests that the trajectory of pathogenesis may be 

affected very early in infection, before adaptive immunity can respond
167

. 

Taken together, these studies propose a model in which the virus is either controlled by 

potent virus-specific T cell responses or evades antiviral immune pressures through sequence 

variations that reduce its fitness. 

In the absence of treatment, HIV-1 intra-host genealogies tend to show an evolutionary 

temporal structure, where sequences from the same sampling time tend to cluster together and 

are the direct ancestors of sequences from the following time point, as seen in figure 8, where 

this observation is corroborated in sequences from pediatric patients infected vertically
138

. 
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Some studies suggested that genetic drift, as recognized in influenza A inter-host evolution, 

was the shaping force of intra-host HIV evolution
168

. Divergently, studies based on sequence 

comparisons of synonymous and nonsynonymous substitutions, taking into account 

phylogenetic relationships between those sequences, showed that both purifying and positive 

selection play a substantial role in the continuous emergence of new variants and in the 

ability of the virus to evade the immuneresponse
169,170

. Comparing HIV-1 sequences isolated 

early at infection with those of later virus demonstrated an increase of fitness during chronic 

infection
171

 and greater efficacy in escaping from both CD8+ T-cell responses and 

neutralizing antibodies
172

. Other factors can affect ladder-like temporal evolution of HIV-1 

within its host. The type of class I HLA allele, as mentioned before, can slow or accelerate 

disease progression, and the recruitment of archived genomes from viral reservoirs increase 

the chances of recombination. Comparison between temporally different sequences in a 

subject submitted to different conditions can provide important insights to evolutionary 

shaping of HIV phylogeny. 

Antibodies have the potential to block HIV-1 replication in at least three ways: neutralizing 

antibodies bind cell-free virus, preventing infection of target cells; infected cells are targeted 

and killed by antibody dependent cytotoxicity; and antibody dependent cell-mediated virus 

inhibition leads to reduced virus production, by antiviral cytokines and phagocytosis 

enhancement. Also antibodies exert immune pressure on the virus that will lead to escape. It 

is not clear which of these mechanisms will be most effective in containing HIV-1, because 

the relative contribution of cell-free versus cell to cell spread in HIV-1 transmission and 

pathogenesis is not entirely defined. HIV-1 can evade the antiviral action of antibodies due to 

the characteristics of its envelope spike, a target for neutralizing antibodies. This spike 

consists of a trimer of heterodimers, formed by two glycoproteins, gp120 and gp41
173

. The 

first one, gp120, is a highly glycosylated protein, organized into variable (V1-V5) and 

conserved (C1-C5) regions
174

. The receptor site for the CD4 molecule resides in a conserved 

region that is of difficult access for antibodies. The coreceptor site, both in R5 and in X4 

virus, is largely inaccessible, unless CD4 binds and trigger conformational changes. On the 

other hand, gp41, which is well conserved, is also hidden from antibody recognition
175

. 

Sequence variability of HIV-1 env, which is a major target for neutralizing antibody 

responses, is concentrated in the variable loops (V1-V5). Escape from antibody responses is 

easily attained, as variable loops mutations do not interfere with viral fitness
176

. Every time 

an efficient neutralizing antibody response develops, an escape variant is selected
177,178

. Once 
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a new response is mounted to this variant, a new escape variant will emerge, in an endless 

repetition of the process. There is a striking contrast between the widespread diversity found 

on these epitopes versus the very low levels of diversity found in more conserved regions
179

. 

It has long been accepted that a key factor to protection against HIV-1 rests with anti-

envelope antibodies that directly neutralize the virus. These neutralizing antibodies are 

extensively studied being the main focus for identifying protective HIV-1 immunogens
180

. 

Early in HIV-1 infection (within the first week of detectable viremia), antigen-antibody 

complexes are detected
181

. From here, there is a well defined sequence of antibody 

appearance: first, anti-gp41 (in a few days), then anti-gp-120 (in a few weeks). Both are 

binding antibodies, incapable of lowering viremia
181

 and apparently not exerting any selective 

immune pressure on HIV-1 envelope
134

. Truly neutralizing antibodies, against the original 

infecting strain, take months to emerge, but are not able to neutralize virus from other 

patients
182

. Through substitution, insertions and deletions, immune escape will occur, 

originating less sensitive virus to antibody neutralization. This loss of sensitivity is time and 

evolution dependent, as contemporaneous virus are more resistant to autologous 

neutralization then earlier ones
183

. Another way HIV-1 evade antibody neutralization is 

through an evolving "glycan shield”, in which shifting glycan hide epitopes, preventing 

access of neutralizing antibodies
178

, explaining complete replacement of neutralization-

sensitive virus by successive populations of resistant virus without well-defined escape 

mutations in the env region. Extensive glycosylation also acts as a shield for other vulnerable 

sites, particularly in V1 V2 regions
184

. 

As mentioned above, neutralizing antibodies tend to be highly specific, targeting variable 

envelope regions of HIV-1
185

. As escape mutants emerge, eventually more conserved regions 

will be exposed and this will lead to the induction of broadly cross-neutralizing (BCN) 

antibodies in some patients
186

. Why this happens in some individuals is unclear, but is 

probably related to the duration of infection, as years of persistent viral stimulation are 

needed to generate BCN antibodies
187

. Broader neutralizing antibodies are detected 3–4 years 

after infection, but being generated in only 20-30% of individuals, showing no efficacy per se 

in the control of HIV replication
188

. 

The definition of “broadly” is hard to standardize, being generally based in the capacity to 

neutralize heterologous virus of multiple subtypes. The relative breadth of BCN antibodies 

activity is probably the result of multiple antibody specificities, each one targeting a few viral 
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variants
189

. Theoretically, because BCN antibodies target more conserved sites, escape would 

be more difficult. This is supported by the occurrence of heterologous neutralization, seen 

more frequently among plasma with broad-cross neutralizing activity
190

. However, when one 

of this potent antibodies, targeting a highly conserved region of HIV-1 envelope 

glycoproteins, was purified, it was found that cloned virus from the same patient were 

resistant to it
191

. 

It can be therefore concluded that HIV-1 escape mechanisms exists to any given antibody. It 

is the polyclonal nature of each individual antibody responses that justifies the apparent 

absence of escape, as multiple virus variants are neutralized by different specific antibodies, 

targeting different regions of HIV-1 envelope glycoprotein. These antibodies are molded and 

maturated over time, undergoing multiple rounds of affinity/escape cycles. These antibodies 

present high levels of conformational changes and hypermutation
192

. However, it is not fully 

understood how the immune system can generate broadly-cross neutralizing antibodies. 

After all the immune pressure and related constraint mechanisms, the virus that gets 

transmitted has been selected for survival in one immunogenetic environment. What will 

happen to that viral quasispecies when it enters a new host, how rapidly it escapes, and what 

ensue to those escape mutations that were selected in the previously chronically infected host 

are relevant questions. It is possible that these escape mutations imply deficiencies in the 

fitness of the transmitted virus, before it has a chance to revert them, therefore affecting 

subsequent viral load and infection progression. 

In a study of 114 discordant couple transmission pairs, Goepfertand and colleagues found that 

multiple mutations in the nef gene did not seem to impair the transmission of the virus. In 

contrast, there was a progressive effect of escape mutations in the highly conserved HIV-1 

gag region, particularly in p24, a key structural component of the virus. When five or more 

escape mutations were present, the viral load in the newly infected partner was significantly 

lower
193

. This suggests that the virus is placed at a disadvantage by having to escape the 

immune response in the infecting partner. Those partners whose immune systems are most 

effective at targeting gag may actually transfer virus that are least fit, and this may have a 

positive long-term effect for the newly infected partner because. 

Even in a genetically homogeneous susceptible population, with shared similar HLA-I 

alleles, some advantageous mutations, such as those conferring CTL escape, might not appear 

until late in infection
194

. If these late-escape mutants do not arise until after most individuals 
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have transmitted the virus, natural selection will be less effective at the population level. As a 

consequence, HIV-1 strains might not readily adapt to the HLA haplotype distributions of the 

respective local populations, because some CTL-escape mutants have little opportunity for 

further transmission.  

Moreover, although certain CTL-escape mutants can be transmitted through the 

population
195

, it is possible that CTL-escape mutations that are passed to individuals with the 

‘wrong’ HLA background will probably be deleterious and removed by purifying selection at 

the population level. Indeed, the fact that repeated individual adaptation continues to occur, 

indicates that the HIV population as a whole is not adapted to the host HLA distribution
196

. 

For a CTL restricted response to be establish in a population, it is necessary a similarity in 

HLA-I haplotypes in the individuals integrating that same population. 

In summary, the inter-host HIV evolutionary process will not select for virus with enhanced 

transmissibility. Indeed, the intra-host evolutionary rate is higher and faster than between-

hosts
139

. The virus probes an extraordinary variety of potential escape routes. Immune escape 

is very fast, with dozens of escape routes being explored and fixing advantageous epitopes, in 

a delicate and complex balance between viral fitness and immune escape. Furthermore, as the 

star burst radiation of HIV-1 subtypes in human populations can eventually become blurred 

by the emergence of recombinant circulating strains, recombination may also play an 

important role in the evolution ofHIV-1 in an individual, a topic discussed in the following 

section. At the population level, there is evidence that HIV-1 envelope proteins are evolving 

to become more resistant to neutralization over time
197

, turning the virus less susceptible to 

immune control. On the other hand, these mutations accumulation may also lead to reduced 

virulence, as a consequence of least HIV-1 fitness. 
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Figure 9: Simplified scheme of template switching during reverse transcription of HIV RNA - 

during HIV recombination, the viral reverse transcriptase (RT) enzyme can pass from one virus 

template to another, creating a new infectious virion that is a mosaic, or chimera, of the 

parental virions. RNA degradation is not represented. Adapted from reference 200. 

 

Recombination 

Retroviruses are unique because they are the only known group of virus that contains two 

copies of RNA within the virion. RNA dimerization facilitates viral diversification by 

promoting the utilization of both RNA copies during reverse transcription
198

. The HIV 

reverse transcriptase can use both copies of the co-packaged viral genome in a process named 

retroviral recombination. Recombination occurs much more frequently than mutation(2 to 20 

events/genome/replicative cycle)
199

, and is a major determinant of viral diversification. This 

phenomenon, considered a primitive form of sexual reproduction by mixing two viral 

genomes in the creation of viral offspring which will carry genetic information from both 

“parents”, can assume one of two forms: template switching or dual infection.  

Template switching consists in a switch between co-packaged RNA templates within internal 

regions of the genome during reverse transcription, leading to formation of recombinant 

DNAmolecules
200

(figure 9).Template switching is an intrinsic part of the retroviral life cycle 

and has at least two explaining models
201

. Both rely on low binding affinity of reverse 

transcriptase. Retroviral RNA typically contains several small ruptures, although contained in 

a stable complex. When reverse transcriptase finds one of this ruptures, it jumps to the 

homologous sequence of the neighbor chain to keep synthesizing negative DNA strand.  This 

chain transfer can occur whenever there is a rupture, resulting in a hybrid DNA with genetic 
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information from both RNA strains. Other consensual mechanism for template switching is 

explained by a dynamic copy choice model: during DNA synthesis, reverse transcriptase, a 

dual-function enzyme with a DNA polymerase domain and an RNase H domain, switches its 

template from one copy of the repeated sequence to the other, thereby deleting one of the 

copies plus any intervening sequences. Both direct repeat deletion and recombination operate 

by the same molecular mechanism that causes template switching, in which a steady state 

between the rates of polymerization and RNA degradation determines the frequency of 

reverse transcriptase template switching. Either way, recombination has a powerful effect on 

the diversification of HIV-1 by mixing mutations within the viral quasispecies. 

Dual infection, defined as infection of the same individual by two or more different HIV-1 

strains, is another source of genetic diversity through recombination. Dual infection can be 

further distinguished in co-infection, when there is an infection with different strains of HIV-

1 simultaneously or at least so temporally close that an immune response to the first strain 

could not be mounted (before seroconversion), and superinfection, a sequential passage of 

virus during multiple transmission events (after seroconversion)
202

. 

There are evidences of dual infections with other lentiviruses, like FIV
203

 and SIV
204

, 

suggesting that recombination within retroviral genomes is a common occurrence. 

Recombination due to dual infection is probably more frequent than reported. Intuitively, the 

existence of CRFs seems linked to dual infection and subsequent intersubtype recombination. 

We know that about 20% of HIV-1 infections around the world are caused by CRFs and 

URFs
205

 and that geographical regions with multiple circulating subtypes have a significant 

prevalence of intersubtype recombinant infections
206

. Knowing that AIDS evolves slowly and 

is a persistent infection, there are high probabilities for dual infection, just depending on 

patients' behaviors. 

When two genetically distinct strains of HIV-1 infect the same cell, recombination will 

certainly occur. Globally, dual infection is modeling the pandemic through CRFs. There is a 

gradual replacement and phasing-out of the initial predominant HIV-1 strains 

(the pure subtypes) by the increasingly-epidemiological important CRFs. Substitution of 

subtype B and CRF01_AE for BC recombinants in Southern China
207

, and for AE/B 

recombinants in Malaysia
208

and subtype B and F for BF recombinants in Brazil
209,210

 are 

examples of this evolution. 
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Figure 10: Positive effects of recombination on HIV-1 genome. a - Recombination can create 

advantageous combinations of mutations (blue circles) that increase the rate of adaptive 

evolution compared with mutation alone, or it can disassociate advantageous and deleterious 

mutations, allowing the former to spread. b - Recombination can remove deleterious mutations 

(red circles) and restore the wild-type genotype, which can lead to a selective advantage for 

recombination if deleterious mutations occur frequently enough. c - Recombination can also 

generate a functional genome from damaged parental molecules. Genetic damage, such as strand 

breaks or oxidative base modifications are represented by red lightning symbols. Yellow circles 

indicate wild-type loci. Adapted from reference 211. 

 

At the individual level, these events can alter virulence or pathogenicity, confer resistance to 

antiretroviral therapy and influence disease progression. Recombination emerges as a 

powerful evolutionary force, distinct from mutation, which can only be accountable for slow 

and steady changes, as high mutations rates will inevitably lead to degenerated viral copies. 

For an organism with a very high mutation rate, such as HIV-1, an efficient recombination 

mechanism provides theoretical advantages in attaining beneficial genetic diversity. 

Mutations allow for a rapid exploration of all nucleotide sequences conceivable. Once an 

organism is presented with a sequence encoding to peak fitness, every subsequent mutation 

will be unfavorable. Furthermore, unfavorable mutations accumulate more rapidly than 

restorative back-mutations. Genetic recombination can regenerate this lost fitness. 

Besides creating and maintaining genetic diversity, recombination has several other 

advantages from HIV point of view
211

(figure 10). It can also repair viral genomes, both 

genetically and physically. 
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During infection, HIV-1 is exposed to huge selective pressures by the host immune system. 

In order to survive, the virus must continually adapt to evade a rapidly changing immune 

response. HIV-1 has a much faster pace of change, but it is recombination that steer 

adaptation. Between HIV-1 and its human host, an evolutionary arms race develops as 

adaptation and counter-adaptation to each other weaponry leads to evolution through natural 

selection. Recombination also creates new diversity by mixing pre-existing mutations within 

a population, generating complex combinations of mutations that would otherwise have to 

arise sequentially in an asexual mode of reproduction, in a much slower and unpredictable 

pace
212

. Recombination allows different areas of HIV-1 genome to evolve separately by 

breaking linkages between mutations. For example, if a beneficial mutation is physically 

linked to a deleterious one, recombination ensures the first can be maintained and the second 

can be discarded by breaking their association. Another way recombination can favor HIV-1 

evolution is by eliminating competition among beneficial mutations. In an asexual mode of 

reproduction, two beneficial mutations will arise as individual mutations in separate lineages. 

Before fixation in a population they will compete with each other. In a sexual mode of 

reproduction, both mutations can be recombined into the same lineage. 

In the absence of recombination, organisms tend to accumulate deleterious mutations at each 

replication cycle, as new mutations are more probable than reversions and new mutations are 

more likely to have harmful than advantageous effects. As a result, with each replication 

cycle, the accumulation of mutations decreases the fitness of the virus until eventually it will 

disappear. Recombination can bypass this by recreating mutation free individuals from a 

population of mutants
213

. 

Recombination is not limited by sequence similarity. It has been demonstrated to occur inter-

group (between HIV-1 group M and O)
214

, and inter- and intra-strain within HIV-1 group 

M
215

.Recombination has become a common occurrence among different HIV-1 strains, and 

the intersubtype recombination is the most frequently observed, although intra-subtype 

recombination is also possible
216

. 

However, the impact, at the level of individual patients, of HIV-1 recombination is not 

entirely defined. The shuffling of polymorphisms found in distinct viral quasispecies 

certainly play a role in generating viral diversity
129

. Recombination is much more efficient 

and rapid than mutation in making HIV-1 evolve. The ability to maintain extensive diversity 

may be extremely important for viral pathogenesis, because it ensures the availability of viral 
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quasispecies able to escape changes in the selective pressures exerted by the immune 

response or by antiretroviral therapy. For HIV-1, recombination means increasing its 

potential evolutionary success. 

In addition to generating diversity, viral recombination could also be useful in preserving 

already existing diversity. In the course of infection in an individual patient, diversity can be 

threatened by evolutionary bottlenecks. Although reflective of an initial selective advantage, 

the emergence of a genetically homogeneous viral population could prove disadvantageous, 

because the descendants might later become susceptible to elimination by an immune 

response focused against shared antigenic determinants. An evolutionary bottleneck resulting 

from the emergence of a unique viral species with high resistance to antiretroviral agents 

creates such a risk. If, however, during or subsequent to emergence, such strains could 

recombine at high rates with preexisting strains, much viral diversity could be maintained in 

regions outside those responsible for the bottleneck. 
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Figure 11: HIV-1 diversity in Democratic Republic of Congo. Phylogenetic tree based on 

the env V3-V5 region of 197 new HIV-1 isolates, from Kinshasa (DRC), showing a very high degree 

of divergence within each subtype. Reference strains (lighter in the picture) were from strains 

representing each known subtype. Data extracted from reference 41. 

Geographic diversity 

 

Over the past 30 years, HIV-1 infection/AIDS has evolved into an increasingly 

heterogeneous pandemic composed of multiple localized epidemics. Since its emergence, as a 

result of the high error rate of reverse transcriptase, recombination and selective pressure 

exerted by human immune system, HIV-1 group M has diverged into clades or subtypes as 

well as numerous circulating and unique recombinant forms. As referred previously, HIV-1 is 

native from Central Africa, most probably from Democratic Republic of the Congo. The 

DRC is the most diverse set of HIV-1 M group sequences currently known 
41

. Analysis of 

this set of Central African virus suggest a period of slow expansion early in the epidemic, 

with more rapid expansion in recent decades, consistent with the time estimates that suggest 

that the virus was present in the human population for many decades prior to AIDS being 

detected and defined. An early ‘‘starburst’’ expansion of HIV-1 variants was hypothesized, 

leading to the different subtypes, corresponding to a period of rapid expansion in Central 

Africa. Accordingly to this model, the establishment of multiple epidemics around the world, 

started with a phase of regional expansion, with posterior emergence of geographically 

specific subtypes, in part due to specific modes and routes of transmission. 
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In figure 11, we perceive that group M strains from DRC have a less organized substructure, 

with nodes near pre-subtype branches, and more intra-subtype divergence when comparing to 

the global group M phylogenetic tree (see figure 7a). 

This difference between trees allows inference of chance exportations of strains from DRC to 

new susceptible, geographically distant, populations. Intensive viral collection from West and 

Central Africa has now uncovered strains that fall between the previously described 

subtypes
41

. This indicates that these regions of Africa were the source of the strains that 

ignited successful epidemics in other locations, in Africa and beyond, and that the subtype 

structure of the HIV-1 tree can reflect, to a large extent, sampling bias. For example, most 

HIV-1 strains isolated in North America and Europe fall into subtype B, and their relative 

similarity reflects their recent common origin from a founder in, or from, Africa. This is 

called a founder effect, consistent with the global phylogenetic tree of HIV-1 group M (see 

figure 7a), depicting long branch lengths within subtypes that coalesce near the ancestral 

node of the subtype and long pre-subtype branches that coalesce near the root of the entire 

tree: an exported virus finds a new cluster in a region distinct from its ancestral and start to 

diversificate from that moment onwards. The global expansion of relatively few viral 

subtypes is indicative of clustering at a global level. 

The commencement of radial evolution of group M viruses in multiple subtypes is likely due 

to adaptation and expansions in the first human hosts, in Central Africa. On the other hand, 

the host genetic background, host restrictive factors, transmission bottlenecks, 

social/behavioral and environmental limitations, founder effects and other viral factors could 

have contributed to variable geographic spread through the human population, throughout 

time (figure 12). That contributes to explain why specific HIV subtypes tend to be linked to 

particular geographic regions. This uneven distribution is in favor of the founder effect 

theory: a single introduction in a susceptible population followed by a rapid spread.  The 

founder effect associated with accidental exportation of a given strain from the region of the 

initial epidemic, followed by subsequent local epidemics in previously non-infected regions, 

gave rise to the current global subtype's distribution
129

. This is a stochastic or pure chance 

explanation. In current times, the impact of this founder event tends to be minimized due to 

multiple introductions of different subtypes and subsequent co-circulation in transmission 

groups, with higher probabilities of dual infections and recombination. Some variables that 

may have also shaped global subtype distribution include the influence of genetic patrimony 

of human populations, the relative fitness of each subtype and some kind of preferential 
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transmission mode according to subtype specificities. Evolutionary epidemiology contributes 

to the understanding of the establishment of an HIV-1 strain in a susceptible population: 

strains may differ by virulence, transmission or recovery rates. Hosts will differ in their 

individual susceptibility, their response to infection and in their capability of transmission 

(primarily risk behavior, in HIV infection). A model which comprises all these variables is 

astonishing difficult to obtain, so studies use simplified models, generally not taking into 

account within-host heterogeneity and compartmentalization, population density and mobility 

and still unknown viral parameters. Notwithstanding, with current understanding of 

phylogeny, some emblematic geographic patterns could be elucidated. First, a global picture 

will be described. 

 

As mentioned before, HIV-1 strains differ enormously in terms of global prevalence. Six 

strains account for the majority of HIV-1 infections: subtypes A, B, C, D and two circulating 

recombinant forms, CRF01_AE and CRF02_AG. In 2007, global proportions of HIV-1 

subtypes and recombinants have shown that subtype C is the most successful of HIV-1 group 

M lineages, accounting for more than 50% of world’s infections followed by subtypes A 

(12%), subtype B (10%), subtype G (5%) and subtype D (3%). Subtypes F, H, J and K 

Figure 12: Potential routes and timings of migration of HIV-1 group M subtypes A, B, C, D, G and F. In 

dashed arrows potential migration routes for CRF01_AE and CRF02_AG. Recombinant BC in China is 

represented as resultant from spread of B and C subtype. Based on reference 217. 
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Figure 13: Patterns of HIV-1 subtype’s distribution. In the Americas, Australia and Western Europe, 

subtype B predominates everywhere but eastern South America, where there is a substantial 

proportion of BF recombinants in addition to subtype B. In Eastern Europe, subtypes A, B, and AB 

recombinant strains dominate the epidemic. Three different patterns have been observed in Asia: 

subtype C, a mixture of B, C, and BC recombinants, and a mixture of subtype B and CRF01_AE.Africa 

shows the greatest diversity. Subtype C dominates the South and East, except for significant foci of 

subtypes A and D, as shown. West and West Central Africa harbor mainly CRF02_AG, alongside a 

complex array of other recombinants each present at a low frequency. The most complex epidemic is in 

Central Africa, where rare subtypes and a wide variety of recombinant forms circulate without any 

discernible predominant strain. This map demarcates boundaries more distinctly than they exist in 

reality. Gray representation of Northern Africa, the Middle East, and Central Asia is essentially due to 

lack of data on HIV-1 subtypes. Reprinted with permission from  International AIDS Vaccine Initiative 

Report. 

overall account for less than 1% of all HIV-1 infections. CRF01_AE and CRF02_AG 

together are responsible for 10% of infections while CRF03_AB is responsible for 0.1% of 

global infections with the other recombinants contributing to the remaining 8% of all HIV-1 

infections
217

. 

At a regional level, several trends were noticed early in the pandemic. For example, 

intravenous drug use in Southeast Asia in the mid-1980s and in Eastern Europe and Russia 

during the early 1990s led to the rapid spread of CRF01 AE and of subtype A, 

respectively
218,219

. A similar expansion of subtype B HIV-1 transmission occurred among 

MSM in North America and Europe in the early 1980s. However, HIV- 1 subtype C (the 
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dominant subtype in the world) appears to have slowly emerged globally over the past 10 to 

15 years as a consequence of multiple introductions
218

. In recent years, a substantial increase 

of recombinant forms has been observed as a consequence of the increased genetic 

complexity of the global epidemic
217,220-224

. However, the prevalence of recombinant forms 

(estimated to be around the 20%
217

) is still underestimated. Indeed, genetic complexity is not 

always detected, and this is mainly due to the subtyping of only one genetic region and not of 

the full genome. Consequently, specimens previously considered “pure” variants may be 

classified as recombinants when additional viral genes are analyzed. 

Condensing the available information about HIV-1 spatial distribution, ten different epidemic 

patterns can be identified, as indicated by different colors in figure 13. Interestingly, the 

greatest diversity of subtypes and recombinants is present in DRC, Central African Republic, 

Gabon, Angola and Chad, where only about 5% of the world’s infected individuals live
205

. 

Thus, a general observation is that a higher diversity of subtypes is associated with relatively 

slower epidemics whilst explosive epidemics generally have only one prevalent subtype, a 

consequence of the founder effect. In Africa, starting in DRC, HIV-1 divergence decreases to 

west and to south and prevalence increases as we move towards south. 

Four different examples of geographically localized epidemics may allow to understand how 

HIV-1 become global but diverse. 

Subtype B: start of an epidemic in a high-income setting 

HIV-1 group M subtype B is the most geographically widespread HIV variant, ranging from 

Americas to Europe, Asia and Australia
218

, even being a rare subtype in Central Africa, 

where it was presumably born. This was the first subtype discovered, because it was the 

cause of the first AIDS cases, reported in the United States in 1981. 

Soon after AIDS identification, evidence of a high prevalence among Haitian immigrants in 

the United States
4
 stimulated conjecture that Haiti may have been the origin of the newly 

identified syndrome, a claim that was not confirmed, as previously mentioned. However, 

Haitian HIV-1 sequences proved to be of major importance as they tend to occupy basal 

positions on the subtype B phylogeny
118

. It is now known that HIV-1 M subtype B started to 

diverge in human beings around 1950
118

 and relaxed molecular clock methods allowed to 

mark HIV-1 subtype B entry in Haiti in 1966 and in United States soon after, in 1969
7
. 

Apparently, the return of one of the many Haitians who worked in the newly independent 

Congo gave the virus a chance to migrate to America in the 1960s
225

. Upon arrival, the virus 
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spread in Haiti, seeded a clade in Trinidad and Tobago
7
 and ultimately made its way into the 

United States via emigration (eventually also to other countries in the Caribbean and in South 

America), where an ancestral virus of all subtype B infections across the world crossed from 

the Haitian community to the non-Haitian population.  This means that a single introduction 

could begin a remarkable epidemic, although there is no evidence that this ancestor possessed 

any selective advantage over other strains; this event may simply reflect chance colonization 

instead of competitive selection. Why there is no evidence of more Haiti-to-USA successful 

outbreaks, despite presumably frequent movement of the virus because of its rising 

prevalence and the thriving sex industry linking those two countries, it is a mystery. In 1978, 

there was an estimated prevalence of 5% of HIV infection among MSM in New York and in 

S. Francisco
226

, revealing several years of successful spread of the virus in those 

communities. It is plausible that HIV-1 was slowly spreading in the heterosexual population 

for an extensive period before entering the highest-risk homosexual population, where it 

found best conditions to spread explosively enough to finally be noticed: the sexual liberation 

of the 1960s and 1970s combined with large groups of sexually active gay men with a high 

turnover of partners in tolerant cities like New York and San Francisco. Recently, employing 

a high number ofvirus sequences from South America countries, Junqueira and colleagues 

add further clues to the history of HIV-1 subtype B in Americas, stating that part of the 

epidemic in South America derived directly from the Caribbean epidemic
227

. These authors 

propose an epidemiologic link between Latin America and the United States, based in waves 

of human migrations, which could have also contributed to the spread of subtype B in North 

America. 

India: a straight C connection 

At the beginning of 1986, India had no reported cases of HIV infections. Later in that year, 

the first patients were diagnosed among sex workers
228

. It was noted that contact with foreign 

visitors was almost constant in those first patients. Steadily, the number of patients started to 

rise, first in Indians returning from African countries, like Uganda and Zambia, later with a 

pattern of spreading through rail tracks and particularly through roads and highways. Truck 

drivers were detected to be a major high risk group because of promiscuous sexual behavior, 

engaging in unsafe sex along major Indian roads
229

. Most of the sex workers were married 

and entertained up to 6 customers per day
230

. Thus, the epidemic shifted from high risk truck 

drivers to low risk house wives. HIV-1 spread was fueled in those initial times by blood 

borne infection, as blood products used in transfusions were not consistently screened until 
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Figure 14: HIV-1 subtypes distribution in India in 2014. Extracted from http://www.hiv.lanl.gov. 

1997
231

. When efforts were made to ascertain virus subtypes prevalent in India, results 

showed that 82% of the patients harbored a strain closely related to a subtype C South 

African strain
232

. A link between South Africa and India could be established on account of 

methaqualone. Methaqualone was, in 1980s and 1990s, a recreational drug, widely used in 

South Africa, where it was known as mandrax. In India, many drug manufacturer companies 

shifted to mandrax production, much more profitable than acetaminophen, for example. Huge 

quantities of mandrax were estimated to be smuggled to South Africa. It is possible that, on 

return route, HIV-1 was brought back to coastal areas of India and spread to the today’s 

overwhelming subtype C dominance (figure 16). 

Maximum founder effect: the case of former Soviet Union 

In early 1990s, Soviet Union seemed relatively preserved from HIV-1 pandemic. There were 

reports of a nosocomial outbreak among children
233

, sporadic MSM infected with subtype B 

virus
234

 and several patients infected with diverse clades as a consequence of heterosexual 

contacts with people of African origin
233

. In 1995, a dramatic change occurred: starting in the 

Ukrainian city of Odessa, successive outbreaks of HIV-1 infections among IDUs spread 

widely throughout all former Soviet Union countries
235

. This epidemic, recognized in 2004 as 

the fastest-growing in the world, originated 250000 new infections among IDUs in 2002 

alone
236

. The epidemic was largely dominated by a subtype A variant of monophyletic origin, 

distinct from African clades
237

. Nowadays, a prevalence of 27% of HIV-1 infections among 

IDUs is estimated in Eastern Europe, one of the highest in the world
33

. The breakup of the 

Soviet Union with subsequent economic decline, combined with a novel travel freedom, had 

devastating consequences regarding HIV-1 transmission. The virus found itself among a very 

large population of IDUs adopting unsafe practices. The unique genetic features of this 

subtype A virus allowed easy tracking, from Ukraine to St. Petersburg and Estonia and later 

to Moscow and Siberia as well as almost all former Soviet Union republics
238

. Unfortunately, 

this clade origin was never elucidated. 
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Europe in present times: melting pot increases HIV-1 genetic diversity 

The epidemic spread in Western Europe began in early 1980s, as an extension of the 

epidemic among MSM in the United States. This is epidemiologically inferred, as most AIDS 

cases were diagnosed in homosexual men with recent travels to the United States
239

. As 

expected, almost all patients were infected with subtype B viruses
240

, like in the United States 

and with phylogenetic trees supporting multiple independent introductions in Europe
241

. 

Eventually, this subtype B epidemic spread to injection drug users. In addition, African 

clades were introduced in some countries, either by African immigrants or by individuals 

who had travelled to Africa and returned. These patients were infected almost exclusively by 

heterosexual contact
242,243

. Non-B subtypes remained largely confined to people linked to 

Sub-Saharan Africa and so subtype B dominates HIV-1 epidemic in Western Europe. In some 

countries, particularly those who have large immigrant populations or strong relations with 

Sub-Saharan Africa, like France, United Kingdom or Portugal, increases in non-B infections 

were noted in the last 7-8 years
244

. Part of these infections is attributable to cases 

epidemiologically linked to Africa, but some clades circulate among local populations. In 

Portugal, subtype G is endemic, both in heterosexual and IDUs populations
245

. In 

Switzerland, CRF11_cpx infects half of the IDUs
246

. In Finland, CRF01_AE, a variant of 

southeast Asian origin, caused an outbreak among IDUs
247

. In Greece, a recently introduced 

subtype A virus, related to former Soviet Union subtype, is rapidly substituting endemic 

subtype B
248

. This last example from Greece is paramount of other reports stating that clades 

circulating at low prevalence became prominent in a few years. It seems like chance 

introductions into unexposed populations are provoking shifts in clades distribution. All these 

findings indicate a trend toward an increasing genetic complexity in Europe. 

Current status 

From all over the world, there are reports of fast growing localized epidemics, usually 

associated to a single behavior risk: MSM in China
249,250

, IDUs in India
251

, MSM in 

Thailand
252

. In all of them, a mechanism is common: a new virus strain is introduced via 

group risk behavior, usually IDU or MSM. The new HIV-1 strains rapidly emerge and 

recombine with the “native” ones. When this happens in heavily populated regions, like India 

or China, epidemics rapidly shift from MSM or IDU to the rest of the population, increasing 

the spread potential. 

In a previous section, intra-host evolution was discussed. But, in an infectious disease, the 

implications of the evolutionary processes go far beyond the single host level and tend to 
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affect an entire population. Actually, bottlenecks that occur at transmission may “reset” viral 

evolution between hosts, with the result being that within-host selection may have little effect 

on the long-term evolution of HIV-1at the population level. However, it was demonstrated 

that HIV-1 has already reached the optimal virulence to maximize transmission between 

hosts. That could only be achieved if there is a heritable variation in virulence
253,254

.  

Historically, many more viruses undoubtedly emerged from Africa; however, these viruses 

did not establish themselves within transmission networks, or were of lower fitness which 

limited their dispersal. Founder effects can probably account for most of the current dominant 

epidemics whereby a single chance introduction of an ancestral virus resulted in major and 

successful spread. This is clearly illustrated by the success of subtype B in North America 

and Western Europe and by the rapid expansion of subtype C in India or subtype A in Eastern 

Europe. 

Although the distribution of HIV-1 subtypes is relatively more or less localized, there is a 

tendency toward progressive dispersion of all subtypes in different geographical areas and 

toward new recombinant subtypes. As a consequence, clustering will become eventually 

weaker and subtype classification will lose importance, at the same time as recombinant 

forms will become more prevalent and ubiquitous. 
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Portugal’s unique pattern of diversity 

 

By the end of 2012, 38 000 to 62 000 adults and children were estimated to be living with 

HIV/AIDS in Portugal, an increase from the 26000 to 45000 people believed to be infected in 

2001
33

. 

These figures show that the prevalence of HIV/AIDS in Portugal is one of the highest in 

Europe (around 0.6%). Concerning transmission routes, after an initial period dominated by 

homosexual transmission of HIV-1, a shift towards transmission through heterosexual 

contacts and intravenous drug use occurred. Today, as depicted in figure 15, with a decrease 

of new infections in IDUs, heterosexual contact is now the main route of HIV-1 transmission 

in Portugal
255

.  

 

In the European Union, the highest proportion of new HIV diagnoses in 2012 was reported 

among MSM (40%, 11,877 cases), followed by heterosexual transmission (34%, 9,944 

cases). The latter includes 12% (3,474 cases) of heterosexually-acquired cases originating 

from sub-Saharan African countries with generalized epidemics. People who inject drugs 

accounted for 6% (1,785 cases) of all HIV infections
256

. 

Portugal has a quite unique HIV-1 subtype distribution. The current HIV-1 epidemic in 

Portugal is caused by multiple subtypes, with predominance of subtypes B and G (together 

they are responsible for almost three quarters of infections – see figure 16). The high 

Figure 15: Total Portuguese HIV infections (1983-2013). Percentage distribution, according to 

transmission route and year of diagnosis (adapted from reference 255) 
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prevalence of these two subtypes has promoted the appearance of several unique B/G 

recombinants, and one of them is believed to be native from Portugal, CRF14_BG
257

.This 

CRF emerged in the early 1990s, spread little after to Galicia, Spain, and then to the rest of 

Europe, carried mainly by intravenous drug users. Its prevalence is decreasing though, 

probably because of difficult transmission, consequence of its predisposition to assume X4 

tropism, and a tendency to recombine, as suggested by CRF14_BG like subgenomic 

fragments existence in newly diagnosed individuals
258

. 

 

 

Classically, in Western Europe, subtype B is largely prevalent. However, several studies are 

proving a disturbing evolution. In Madrid, an usual destination and transit point for 

immigrants from Africa and South America, 71.4% of HIV-1 infected immigrants were 

carriers of non-B strains
259

. In Denmark, in a study designed to characterize the phylogeny of 

new infections, only 12% were of subtype B and almost all non-B subtypes were detected in 

people traced to countries with high-prevalence for that specific strain 
260

. In Belgium, a total 

rise in non-B subtypes from 0% in 1983 to 47% in 2001 was detected among new infections, 

Figure 16: HIV-1 subtypes distribution in Europe in 2014, highlighting Portugal. Extracted from 

http://www.hiv.lanl.gov. 
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and being a patient of African origin had an odds ratio of 6.93
242

. Differences in transmission 

modes seem to occur between B and non-B subtypes in Western Europe. In fact, in Finland 

and in the United Kingdom it was shown that most non-B subtype’s infections were 

transmitted heterosexually in direct or indirect contact with African, Caribbean or Asiatic 

individuals, contrasting with subtype B infections, transmitted mainly among MSM from 

native origin
261,262

. 

This emerging broad HIV-1 diversity in Europe is mainly caused by population movements, 

such as migration and travelling. This evolution is amplified by sexual contacts with 

individuals from countries where those variants are highly prevalent, principally from Africa 

and Asia. In Portugal, that effect must have occurred early in the epidemic, as demonstrated 

by the singular genetic multiplicity of HIV-1 strains. Given the close interactions between 

Portugal and its former colonies in Africa, studies were performed to evaluate the genetic 

diversity in those countries. However, a characteristic that differentiates the HIV-1 epidemics 

in these countries and Portugal is the main viral transmission routes: in Mozambique, Angola, 

Guinea-Bissau and Cape Verde HIV-1 is almost exclusively transmitted through heterosexual 

contact
263

, whereas in Portugal transmission by intravenous drug use accounts for 39.9% of 

the HIV infections
255

. 

In 2000, HIV-1 infection was relatively new in Guinea-Bissau. Indeed, most of HIV 

infections were caused by HIV-2, endemic in that region. Almost all patients infected with 

HIV-1 carried some variety of subtype A recombination
264

 (figure 17). Such a genetically 

restricted epidemic can be explained by events of introduction, accidentally trafficked into 

Guinea-Bissau. Due to unstable economical and political conditions persisting for the last 

decades, population movements led to recombination and dispersion of other HIV-1 

subtypes, with the current distribution represented in figure 19, noting CRF02_AG, the main 

responsible for regional epidemic in West Africa, as the predominant circulating strain. 
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Cape Verde is an archipelago, offshore West African coast. Being a small insular country, it 

was rather isolated and partially protected from mainland viruses until early 1980s. Since 

then, and due to its strategic location as a hub between Africa, Europe and America, 

international tourism and workers migrations allowed the introduction of different HIV 

strains.  According to the study by Oliveira et al, in 2012 HIV-1 subtype G was the most 

prevailing
265

. Consistently, G strains are highly divergent, as a consequence of multiple 

introductions. The authors also found that those G variants were imported mostly from 

Angola and Portugal, where highly divergent subtype G strains prevail. Of particular interest, 

30% of the viruses were recombinant, with 63% of them carrying at least one untypable 

genomic fragment
265

. A more recent and comprehensive study maintained subtype G as the 

more prevalent in Cape Verde, but report that CRF02_AG is present in 30.6% of patients and 

that the intersubtype recombinant viruses comprise 46.1% of all HIV-1 samples analysed
266

. 

Although present in lower frequency, subtype F1 is prevalent in one of the nine Cape Verde 

islands, possibly originating from a single introduction. Absence of pure subtype A is 

remarkable, as it is one of the most prevalent subtypes in Guinea-Bissau. Like in Guinea-

Bissau, country with great affinities with Cape Verde, HIV-2 represents an important 

proportion of infections (around 25%)
263

 by HIV. 

People displacements to and from Cape Verde gave HIV-1 an opportunity to enter the 

country and to diversify. Portugal is one of the main destinies for Capeverdeans emigrants 

and is a source of seasonal workers, businessmen and tourists. It is quite plausible that HIV-1 

moves along in both ways with people flow. 

Figure 17: HIV-1 subtypes distribution in Guinea-Bissau in 2014. Extracted from 

http://www.hiv.lanl.gov. 
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Mozambique is a Southeast African country, a region where HIV-1 infection prevalence is 

the highest worldwide, ranging from 5.1% in Tanzania to 26.5% in Swaziland
3
. Mozambique 

itself has the world 8
th

 higher prevalence (11.1% in 2012)
33

. Notably, in the entire region, 

subtype C is dominant and so it happens in Mozambique, with Mozambican C sequences 

widely spread across multiple clusters containing C sequences from neighboring countries, 

moving from west to east. This is strong evidence against a specific Mozambican C 

subtype
267

. 

HIV-1 epidemic in Mozambique probably started in early 1980s (first patient diagnosed in 

1986) and since then it has spread at a very high rate, especially among women
268

. From a 

prevalence of 1.9% in 1993, the Mozambican epidemic exploded to 11.5% in 2007 and 

stabilized since then
33

. This epidemic has some potential to evolve quickly also in genetic 

complexity, due to recent identification in Maputo, the capital city, of clusters of CRF37_cpx, 

originally found in Cameroon, and of sub-subtype A3, originally found in Senegal
267

. In the 

same study, Bártolo and colleagues revealed subtype G strains closely related to Portuguese 

ones, however with lack of statistical support to conclude in which way they circulated
267

. 

This explosive growth in Mozambique has the usual culprit, people displacement, mainly 

caused by a long civil war, leading to a movement of population towards major cities. 

Of all former Portuguese African colonies, Angola is the closest to DRC, presumed the 

original region of AIDS emergence. This geographic proximity explains the extremely high 

genetic diversity among circulating HIV-1 strains
269

. According to the study by Bártolo and 

colleagues, only 53% of viruses were pure subtypes, subtype A and its sub-subtypes 

Figure 18: HIV-1 subtypes distribution in Angola in 2014. Extracted from http://www.hiv.lanl.gov. 
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predominating over the remaining. A significant proportion of subtype C was also reported 

by the same authors (figure 18). 

The Angolan recombinants are complex and account for 47% of total infections. Moreover 

about a third of these are second generation recombinants
270

. This typically happens in old 

epidemics, as there is a direct association between HIV-1 genetic diversity and infection 

time
41

. The independence war urged population mobility between Angola and neighboring 

countries between 1961 and 1974, making likely that an important number of Angolans 

became infected with diverse HIV-1 subtypes before eventually returned to their own 

country. 

Spreading of HIV Angolan strains to Portugal is also believed to have started as early as 

1961, due to dislocations of soldiers caused by the same independence war. Later, in 1975, 

nearly 320 000 residents moved to Portugal in few months, soon after independence of 

Angola, according to National Statistics Institute (INE). Two thirds were under 40 years old. 

Such a formidable inflow of sexually active people certainly contributed to the introduction 

of non-B strains of HIV-1 in Portugal. Nowadays, HIV-1 prevalence in Angola (3.7% of 

adult population) is low when compared with Southern Africa yet similar to DRC. The 

prevalence was however higher in 1989, reaching 6.1%
271

.  

The social and economic connections of Portugal with former colonies is certainly the reason 

for the unique pattern of HIV-1 subtype distribution in Portugal, namely as compared to other 

European countries. 

In summary, the profile of HIV epidemic is changing in Europe, with a growing incidence of 

non-B subtypes infections. The unique scenery of HIV-1 infection in Portugal offers a wealth 

of epidemiological lessons, almost as a foretaste of what to anticipate in a near future for the 

rest of Western Europe. 
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Assessing HIV-1 diversity implications 

 

Transmission and disease progression 

 

As mentioned above, broad associations between HIV-1 subtypes and transmission modes 

have long been reported. For instance, MSM are associated with subtype B in United States 

and Europe
7,241

. As there is no evidence that subtype B is poorly transmitted via other routes, 

probably the explanation resides in an important role played by founder effects and social 

transmission networks. In the same way, the apparent predilection for heterosexual 

transmission by non-B subtypes in Europe and North America may be linked to immigrants 

from Africa and Asia
272

. We know that in South Africa and in India the heterosexual 

epidemics is almost exclusively caused by subtype C
273

. Subtype C virus appears to have a 

stronger presence in female genital mucosa than other subtypes, which may facilitate 

heterosexual transmission
274

. In Uganda, Kiwanuka and collaborators concluded that subtype 

A viruses have a significantly higher rate of heterosexual transmission than subtype D viruses 

while studying differences in heterosexual HIV-1 transmission among HIV-discordant 

couples
136

. HIV-1 subtype distribution among these couples was 73.9% (198) subtype D, 

11.6% (31) subtype A, and 14.5% (39) recombinant viruses. In this study by Kiwanuka, only 

92 HIV-1 transmissions were investigated, it represents a small sample. This is an example of 

the great limitation of these and similar studies: how to compare transmission rates in 

populations with high genetic diversity, where true subtype advantages would be evident if 

they exist. Regarding mother to infant transmission, conflicting results were published. In 

Kenya, this kind of transmission was more common among mothers infected with subtype D 

compared with subtype A
275

, but another study in Tanzania showed preferential transmission 

of subtype C compared to subtype A or D
276

. Other authors found no association between 

subtype and rates of mother to infant transmission
277

. Many maternal factors can contribute to 

this variability, like age, immunological status or viral load. The role of viral determinants 

remains to be cleared, as we know that viral diversity in the mother is higher than that present 

in the newborn, suggesting some selection of maternal virus
278

. 

The earliest events in HIV transmission have received particular attention, including studies 

at the molecular level. Although a genotypic signature of early-transmitting viruses has 

proved difficult to identify, two key features have emerged. First, in studies of both 
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heterosexual and mother to child transmission, early-transmitting gp120 has been found to be 

shorter in length, and encode fewer potential N-linked glycosylation sites (PNG) than typical 

chronically replicating isolates. These features have thus far been only found in the context of 

infection with HIV-1 subtypes A and C
132,279

. Second, length shortening has been observed in 

the V1/V2 region, as well as in the V4 and flanking regions of gp120
279

. These two 

characteristics apparently provide early-transmitting isolates with increased transmission 

fitness. The extent of this fitness-advantage is poorly understood, however  it is known that 

V1/V2, along with V4 and flanking regions, is frequently an early target of autologous 

neutralizing antibodies
142

. The viral evolution inside a host drives escape to neutralization 

through amino acid substitutions, insertions/deletions and also by adding/shifting 

glycosylation sites. In this way, the majority of the viral population drifts away from the 

genotypic features that distinguish early-transmitting isolates. If variability compromises 

transmissibility fitness, transmitted variants have less diversity and divergence and are more 

closely related to the ancestral sequences, which represent a minority subset of HIV-1. This 

favor for transmission explains the bottleneck in HIV-1 inter-host spread. Nevertheless, it 

remains to be determined whether there is a true association between HIV-1 diversity and 

transmission or whether the differences found by some authors are associated with other 

factors that can influence transmission, like behavioral or epidemiological features. 

Considering the current body of knowledge, it is still not possible to define which virus 

would be best fit for transmission; we only have trends and models. 

A long time question yet to be answered is whether clade specificities or differences can 

influence rates of disease progression. An oversimplified view of HIV-1 infection 

progression considers that CD4+ cell counts are the distance between a train and an obstacle 

ahead, and that viral loads are the train's speed: the lower the first or the higher the second, 

sooner the crash (AIDS or death) will happen. Surely disease progression is far more 

complex. There have been several prospective, observational studies of the course of HIV-1 

infection in cohorts infected with various HIV-1 subtypes, trying to correlate genetic 

diversity with disease progression. Subtype D was associated with the most rapid disease 

progression relative to other subtypes
280

. A more recent study supported this finding by 

associating subtype D with a significantly faster decline of CD4+ cell counts, as compared 

with subtype A (p<0.001)
281

.A similar result emerged from a study conducted in an ethnically 

diversified population in London, with subtype D infection associating with a faster decline 

in CD4+ cell counts as compared whit subtypes B (p=0.02), A (p=0.004) or C (p=0.01)
282

. A 
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relevant question is if there are any biological bases for these differences. A clue was 

highlighted when Kaleebu and colleagues found that the emergence of X4 variants was more 

common in HIV-1 subtype D compared with subtype A
283

. Moreover, Huang et al. showed 

that subtype D may be dual tropic, with tropism for both R5 and X4 coreceptors, more 

frequently than other subtypes
284

. It is well known that X4 variants are associated with 

increased CD4+ cell depletion and faster disease progression
285

.  

Finally, in face of some conflicting or incongruent results, it must be remembered that 

progression of disease, such as the one caused by HIV-1, depends on many confounder 

factors, such as nutrition, co-morbidities, genetic factors of the patients and access to medical 

care, which can turn very hard to control. 

 

Diagnosis and disease management 

 

The vast majority of the serological and molecular assays for the diagnosis of HIV-1 

infection and for patient management are based on subtype B, the commonest of HIV-1 

subtypes in the United States of America and in Western Europe. These tests should be able 

to detect all genetic forms of HIV-1. However, as discussed before, HIV-1 underwent very 

extensive genetic and antigenic evolution, along with global redistribution of subtypes and 

recombinants. With the fourth generation assays for antibody detection, which are able to 

detect all known HIV-1 group M subtypes as well as HIV-2 positive samples with 100% 

sensitivity and >98% specificity
286

, the large proportion of false negatives presently involve 

HIV-1 group O
287

. Although highly divergent, HIV-1 group N virus are detected by 

commercial immunoassays
288

. More problematic are failures in detecting HIV-1 infections by 

rapid tests, widely used in Africa for diagnosis because they are cheap, simple and 

instrument-free. Minor antigenic differences in subtypes D, F, H and CRF02_AG can 

compromise sensitivity of these tests, going as low as 94.1%
289-291

. A false-negative HIV-test 

in a high prevalence area is a definite way to perpetuate transmission. Recent seroconversion 

and, paradoxically, immune exhaustion in long term infections, might be associated with low 

HIV antibodies levels, also diminishing the sensitivity of serological assays. 

Quantifying HIV-1 RNA levels is essential to monitor disease progression, detect primary or 

perinatal infections as well as the response to antiretroviral therapy.  As these assays rely on 
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HIV-1 sequence-specific primers or probes, independently of the technology (reverse 

transcriptase polymerase chain reaction, branched-chain DNA signal amplification, real-time 

polymerase chain reaction or isothermal nucleic acid sequence-based amplification), if 

reliable quantification is compromised, the results of such assay can have undesirable 

consequences, as viral load quantification is an important parameter to estimate adequate 

therapeutic response. Natural polymorphisms and genetic variation might create 

unrecognized variants. Several comparative studies demonstrated that the sensitivity and 

specificity of viral load assays varies depending on HIV-1 group or subtype, especially in 

non-B subtypes, complex recombinants and groups O, N and P
292-294

. The solution for this 

limitation was to design a test that targets a highly conserved region across all subtypes and 

CRF. The pol integrase region of the HIV-1 genome is subject to less variability than other 

regions
295

, so it is preferred as a target for amplification in the most reliable tests, covering 

the highest number of HIV-1 genetic forms. 

 

Response and resistance to antiretroviral therapy 

 

Genetic differences between HIV-1 clades can lead to altered susceptibility to antiretroviral 

drugs (ARV). A classical example is given by HIV-1 group O and HIV-2, both exhibiting 

high-level innate resistance to non nucleoside reverse transcriptase inhibitors (NNRTI) 
296,297

, 

due to natural polymorphisms. Such as HIV-1 diagnostic tools, ARV were developed in the 

Western world, so they are based in subtype B. Susceptibility of non-B subtypes to ARV is 

further obscured because genotypic and phenotypic resistance testing are also originally 

based in subtype B. There are several evidences of an apparent discrepancy in drug resistance 

among subtypes. A striking one is a statistically significant difference in the response to 

nevirapine (a NNRTI) in single dosage to prevent mother to child transmission, in which 

subtype C shows more resistance than subtypes D or A
298

. On other hand, several studies 

failed to demonstrate major differences in the response to ARV therapy according to HIV-1 

subtype. In France, a cohort of 416 adult patients (24% of whom carried a non-B subtype) 

showed that HIV-1 subtype did not affect clinical progression, viral load or CD4+ cell count 

regardless of ARV scheme used
299

. In London, in a subset of patients of African origin 

infected with non-B subtypes, the use of either protease inhibitors (PI) or NNRTI based 

therapy did not altered response to treatment
300

. When comparing patients infected with 
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subtypes A, C, D and CRF02_AG with patients infected with subtype B virus, Geretti and 

collaborators found no differences in achieving viral load suppression, when treated with a 

NNRTI or PI based regimen
301

. In the absence of any ARV pressure, reverse transcriptase 

and protease sequences are naturally polymorphic (between 30 and 40%), when comparing B 

to non-B subtypes
302

. These genotypic variations do not confer diminished susceptibility, so it 

seems reasonable to presume, with our current understanding, that different group M 

subtypes have similar susceptibilities to currently used ARV
303

. Nevertheless, a large global 

collaborative study identified 55 subtype B drug-resistance mutations and all were found in at 

least one non-B subtype
304

. On reverse, of 67 resistance mutations found in at least one non-B 

subtype, only 61 were also seen in subtype B isolates, indicating the occurrence of novel 

mutations in non-B subtypes
304

, justifying a fastidious vigilance. In top of that, there are 

subtle variations in different subtype’s genomes able to influence the emergence of resistance 

when drug exposure is present. A single nucleotide substitution from the wild-type codon 

found in subtype C can generate the mutation V106M, which is associated with NNRTI 

resistance, while at least two substitutions are needed for the wild-type subtype B codon
305

. 

This indicates that subtype C may have a lower genetic barrier to NNRTI resistance than 

subtype B. This mutation, V106M, is in fact associated with subtype C infected patients 

failing therapy, as it is frequently found after treatment with efavirenz or nevirapine
306

. 

Subtype C also appears to acquire K65R faster than subtype B
307

. This mutation is associated 

with tenofovir resistance and its presence in higher rates in subtype C, suggesting that these 

viruses may have a particular predisposition toward acquiring this mutation
308

. Apparently, 

this subtype has an intrinsic difficulty in synthesizing pol sequences that leads to template 

pausing at codon 65, facilitating acquisition of K65R under selective drug pressure
309

.  

In the protease gene, polymorphisms do not impair drug susceptibility, due to a high genetic 

barrier. Several concomitant mutations are necessary to full blown resistance occur. 

However, those polymorphisms may facilitate the genetic pathway of resistance, as soon as 

the virus generates a major resistant mutation
310

 . The minor mutation V11I, associated with 

darunavir resistance, occurs naturally in CRF37_cpx isolates
311

. The V82I natural 

polymorphism in subtype G facilitates the emergence of V82M, a mutation associated with 

resistance to indinavir
312

. The L90M mutation, that confers resistance to nelfinavir, an 

saquinavir, is rare in subtype F but common in subtype B in patients from Brazil
313

. All these 

observations suggest differences in drug resistance pathways between HIV-1 subtypes. 
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However, the evidence gathered so far is insufficient to assess the actual contribution to 

resistance of innate genetic HIV-1 diversity. 

There are many other variables that influence response to therapy, namely adherence, drug 

regimens or ethnicity, which must be controlled in large prospective studies to assess the 

efficacy of different drug schemes in patients infected with non-B subtype HIV-1. Anyhow, 

the effect of extensive recombination, fueled by geographic diversification and conditioned 

by drug pressure, can link resistance mutations and lead to multi-drug resistance. 

 

Vaccine development 

 

Long demanded, an effective vaccine against HIV infection remains a chimera hard to 

conquer. Development of a vaccine, able to hinder the HIV-1 pandemic is halted by the 

extensive genetic diversity of the virus. Several vaccine approaches have been able to 

augment the immune responses to HIV infection. However, most of these responses, whether 

cellular or humoral, have largely failed in controlling HIV infection. Indeed, fully functional 

escape variants are easily selected and overcome the immune system assault. 

For most vaccines, success consists in identifying an immunization approach that mimics or 

enhances protective host immunity. However, in HIV infection there is no known precedent 

for spontaneous immune responses leading to clearance of HIV or even durable immune 

protection from re-infection, as events of superinfection can occur
314

.  

A successful prophylactic vaccine able to prevent chronicity during natural infection depends 

of the induction of virus-specific neutralizing antibodies
315

. The initial characterization of 

HIV-1 as a retrovirus with env protein-mediated entry brought the hope that an env-based 

vaccination approach would yield neutralizing antibodies, providing protection against either 

acquisition or progression of infection. However, the development of HIV/AIDS vaccines 

targeting humoral immunity has encountered unsurpassed obstacles as the vast majority of 

antibodies elicited by immunization with monomeric env proteins were directed at bait 

epitopes with little or no neutralization activity
316

. Indeed, two large, well-conducted Phase 3 

efficacy trials of alum-adjuvanted env protein (gp120; VAX003 and VAX004) showed no 

efficacy against HIV-1 acquisition or post-infection viremia
317,318

. An alternative approach, 

capable of eliciting potent, durable, broadly neutralizing antibodies, similar to those produced 
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in some chronically infected individuals, the so called elite neutralizers
319

, seemed promising. 

These broadly neutralizing antibodies, which are produced years after seroconversion, are of 

little benefit to their bearer though, as viral escape mutants persist in those patients
320

, but, if 

present in appropriate concentration at the time of contagion, could confer protection from 

HIV-1 infection, providing they could target multiple conserve epitopes. To date, however, 

despite extensive effort, no immunogen/vaccine approach has been capable of reliably elicit 

such broadly neutralizing antibodies, and the prospects for such immunogens remain 

uncertain
321,322

. The native envelope structure is a trimer of gp120/gp40heterodimers which 

hides crucial parts of the molecule and undergoes conformational changes upon receptor 

binding. Furthermore, hypervariable loops mask critical receptor binding sites and 

carbohydrates impede antibody binding
323

. With respect to inducing antibodies against the 

envelope protein, it is important to remember that for the annual influenza vaccine less than 

2% amino acid change in the circulating influenza strain can cause a failure in the cross 

reactivity of the polyclonal response induced by the vaccine
324

. In comparison, genetic 

variation of env within a HIV-1 group M subtype can be >15% and variation between 

subtypes can be >30%
324

. 

Eliciting a cellular immune response against HIV-1 infection has the potential to lower the 

viral load setpoint and thereby slow disease progression as HIV-specific CD8+ cytotoxic T 

cells play an important role in controlling acute HIV infection. However, the initial response 

is narrow and the targeted epitopes rapidly escape
154

. To reduce the chances of viral escape, 

multiple high conserved epitopes would need to be targeted by a vaccine. A T cell based 

vaccination strategy has formidable obstacles: populations around the world vary in types and 

frequencies of HLA alleles so different individuals infected with the same HIV-1 subtype 

will recognize distinct T cell epitopes; intra-subtype responses are stronger and more frequent 

than inter-subtype reactivities
325

; and even conserved epitopes may not be presented to T 

cells, depending on the sequences flanking those epitopes
326

. 

However, HIV-1 has an “Achilles heel”, an immune vulnerability that gives its host a chance 

to prevent or control infection. In fact, there is a growing body of evidence showing the 

vulnerability of HIV-1 to immunity during the early phase of infection, when the genetic 

bottleneck that occurs during transmission largely reduces HIV diversity. In fact, several 

studies proved that the genetic complexity of chronic infection is much higher than that of 

acute/early infection
132,327

. Moreover, the majority of productive infections start with a single 

virion
133,134,146,147

. These transmitted/founder viruses should be the major target for vaccine 
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development, as these are the viral strains primarily involved in infection. However, there are 

two difficulties to put into practice this line of thought: (i) to identify acute infections and (ii) 

precisely determine HIV-1 infecting virion(s). 

Above all, a single vaccine, even protecting against major subtypes and CRFs, wouldn't 

probably be enough to adequately defend an immunized population. There would be still a 

risk of these individuals to get infected with emergent CRFs or even URFs that would rise 

new epidemic waves, by positive selection. Any successful strategy will depend on sound and 

robust molecular epidemiology data on HIV-1 subtype distribution, making possible the 

design of sequential and multivalent vaccination regimens. 
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Abstract 

 

Objective: Existing data supports Portugal as the European country with highest HIV-1 

subtype diversity. The characteristics of transmission networks may be a key determinant of 

the HIV epidemic growth and diversity patterns but Portuguese studies on this subject are 

scant. Therefore we aimed to analyze the phylodynamics of HIV-1 infection in the 

Portuguese region of Minho. 

Methods: Molecular epidemiological analysis was applied to data from 289 HIV-1 infected 

individuals followed in the reference Hospital of the province of Minho, Portugal, who had 

their virus sequenced between 2000 and 2012.  

Results: Virus of the G (29.1%) and B (27.0%) subtypes were the most frequent, followed by 

recombinant forms (17.6%), C (14.5%), F1 (7.3%) and A1 (4.2%) subtypes. Multinomial 

logistic regression revealed that the year of HIV-1 diagnosis was associated with an 

increasing risk of infection with the A1 and F1 subtypes when compared with B, G, C or 

recombinant virus. As expected, polyphyletic patterns suggesting multiple and old 

introductions of subtypes B and G were found. However, transmission clusters of non-B and -

G virus among native individuals were also found with the dates of the most recent common 

ancestor estimated to the early 2000s.  

Conclusions: Our study supports high HIV-1 subtype diversity in the Portuguese region of 

Minho and local transmission of non-B and -G subtypes that started more than one decade 

ago. The rate of infection with A1 and F1 virus, found in sexually transmitted clusters, is 

increasing, reinforcing the need for more efficacious control measures targeting sexual 

transmission routes. 

 

Key Words: HIV-1 subtypes, viral diversity, molecular epidemiology, transmission clusters, 

viral transmission networks, Portugal 
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Introduction 

 

Globally, 35.3 million people were estimated to be infected with HIV-1 at the end of 2012 

and AIDS remains one of the world’s most serious health challenges
3
. Phylogenetically, HIV-

1 is divided into four groups M, O, N and P. Most HIV-1 infections globally are caused by M 

group virus that can be further divided in at least nine subtypes, A-D, F-H, J, K and different 

circulating and unique recombinant forms
328

. Although clinical evidence is still limited and 

current antiretroviral regimens appear to have comparable efficacy in all subtypes there is 

presently evidence showing that particular HIV-1 subtypes may have transmission 

advantage
136,329-331

, higher replicative efficiency or altered drug susceptibility
282,332-335

. The 

geographic patterns of M group subtypes are continuously changing in response to human 

population migrations and active transmission networks thus inciting constant vigilance. 

Although several reports suggest that the prevalence of non-B subtypes is increasing in 

Western Europe
242,336-340

, B subtype remains the most prevalent. Portugal contrasts with the 

rest of the Western Europe in its distribution of HIV-1 subtypes. In addition to B subtype, 

Portugal also has a high prevalence of G subtype
341,342

. The high prevalence of B and G 

subtypes is thought to have promoted the appearance among intravenous drug users (IDU) of 

different types of B/G recombinant strains, namely CRF14_BG that is estimated to have 

emerged in Portugal in the early 1990’s and then spread to Spain and other European 

countries
257,343,344

. The association between HIV-1 subtype and risk-behavior patterns has 

been complex to define mainly due to difficulties in obtaining large numbers of each viral 

subtype and transmission route in a homogeneous study population
280

.  

Portugal has one of the highest HIV-1 prevalence in Western Europe and following a 

decrease in the last decade of HIV-1 infection in IDU, heterosexual contact is nowadays 

estimated to be the most relevant transmission route in Portugal
255

. The reconstruction of 

viral transmission networks is a relevant tool to monitor the disease and determine preventive 

efficacious measures. Several studies have shown that, in addition to patient interview, 

phylogenetic analysis of genetic sequences from the virus can provide valuable insights to 

identify events of onward transmission and evaluate the spread of the virus
345-347

. 

Nonetheless, limited information is available to understand HIV-1 transmission clusters in 

Portugal and to explain the high HIV-1 diversity in the region.  
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The aim of this study was to perform molecular epidemiologic characterization of a cohort of 

289 patients followed in the reference hospital for the Minho province, Portugal. Specifically, 

we aimed at identifying local transmission networks and possible relationships with 

previously described transmission clusters. In line with previous studies in Portugal we found 

large subtype diversity. In addition, our analysis supports that the transmission of non-

predominant subtypes among the local population initiated more than one decade ago, 

providing valuable insights into the dynamics of infection in this geographic area.  
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Methods 

 

Study population 

289 individuals were selected from the HIV-1 infected patients followed at Hospital de Braga 

(HB) according to two criteria: (i) availability of plasma sample or plasma-derived viral 

sequence sampled from 2000 to 2012 and; (ii) absence of previous antiretroviral treatment at 

the time of sampling. The following information was collected anonymously from the clinical 

files of each individual: presumed transmission route, gender, age, nationality, presumed 

country of infection and date of diagnosis. HB is a university affiliated hospital serving as the 

reference hospital for the 1 093 021 habitants of the northwest Portuguese province of Minho. 

The prevalence of HIV-1 infection in Minho (0.12%) is lower than the overall prevalence in 

Portugal (0.31%)
255

. By the end of 2012, a total of 748 HIV-1 patients were being followed at 

HB, representing 57% of the HIV-1 infected individuals from Minho’s region
255

. According 

to transmission mode, HB population presented significant differences from the data for the 

Portuguese HIV-1 infected individuals: more IDU and fewer men who have sex with men 

(MSM). Also, in HB, there were more men and fewer patients over 40 years old (Table 1). 

The frequency of individuals reporting heterosexual transmission is similar when comparing 

HB HIV-1 patients with the overall country data (Table 1).   

 

 
HIV-1 infections in 
Hospital de Braga 

HIV-1 infections 
in Portugal† 

p-value 

Heterosexual contact 332 (44.4%) 18424 (43.3%) 0.539 
IDU 328 (43.9%) 15992 (37.6%) <0.001*** 

MSM 71 (9.5%) 5845 (13.7%) <0.001*** 
Male 573 (76.6%) 31255 (73.4%) 0.039* 

>40 years (on diagnosis) 200 (26.7%) 13903 (32.7%) <0.001*** 
Total 748 42580  

Table 1: Comparison of the transmission route, gender and age at diagnosis between the HIV-1 
infected individuals followed at Hospital de Braga and all the available data on HIV-1 infections in 
Portugal by the end of 2012. IDU: intravenous drug users; MSM: men who have sex with men. 
† Data from reference 1.***p<0.001 *p<0.05 binomial test 

 

Sequencing of viral samples 

Viral RNA was extracted using Magna Pure Total Nucleic Acid Isolation Kits (Roche 

Applied Science). RT-PCR and DNA sequencing were performed with Trugene HIV-1 
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Genotyping System (Siemens Healthcare Diagnostics). The sequenced regions include part of 

the coding sequences of gag  (492 to 501), p6 (44 to 53), pol (60 to 402), p2p7p1p6 (129 to 

138), Protease (4 to 99) and RT (1 to 127, reported positions are amino acid positions relative 

to protein start in the HXB2 reference genome, GenBank: K03455.1). The subtyping of the 

289 sequences was made using REGA 3.0
348

  and non-automatic phylogenetic analysis. Non-

automatic bootscan analysis was also done with the program SimPlot to confirm selected 

subtypes using the F84 nucleotide substitution model and a sliding window of 200-bp, a 40-

bp step
232

. Detection of recombination was confirmed using the program RDP
349

. Sequences 

were uploaded to GenBank and assigned the following accession numbers: KM205831-

KM206119. 

Phylogenetic analysis 

The 289 HIV-1 sequences obtained in this study and 88 sequences from the databases 

including the M group consensus and a previously defined  set of  subtype reference 

sequences
348

  including at least two reference sequences from each M group subtype (A1, A2, 

B, C, D, F1, F2, G, H, J and K) and from 26 CRF (CRF01_AE, CRF02_AG, CRF03_AB, 

CRF04_CPX, CRF05_DF, CRF06_CPX, CRF10_CD, CRF11_CPX, CRF12_BF, 

CRF13_CPX, CRF14_BG, CRF18_CPX, CRF19_CPX, CRF20_BG, CRF24_BG, 

CRF25_CPX, CRF27_CPX, CRF29_BF, CRF31_BC, CRF35_AD, CRF37_CPX, 

CRF39_BF, CRF40_BF, CRF42_BF, CRF47_BF)  were aligned using MUSCLE
350

. The 

phylogenetic analysis of the 377 sequences was conducted using RAxML 7.0.3 to produce a 

maximum likelihood tree using 1000 bootstrapping replicates
351

. Analysis was repeated with 

PhyML
352

 computing the aLRT support of all tree branches and by Bayesian analysis using 

BEAST
353

. The best fitting nucleotide-substitution model for the Bayesian analysis was 

estimated using jModeltest v2.1.2
354

 to be the general time reversible (GTR) model with a 

proportion of invariant site (I) and gamma distribution of rates (G), selected among 88 

different models according to the Akaike Information Criterion (AIC), the Bayesian 

Information Criterion (BIC), and the Decision Theoretic Framework (DT). An eventual bias 

introduced by convergent evolution due to the presence of drug resistant mutations was 

discarded by repeating the analysis after removal of codons associated with drug resistance in 

the standardized list of mutations for surveillance of transmitted drug resistance established 

by the World Health Organization
355

. The general topology of the trees and identification of 

clustering remained unchanged. Clusters of at least three individuals were identified based on 

a ML bootstrap support > 95%, a Bayesian posterior probability >0.95. 
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Estimation of evolutionary dates 

Estimates of the time of the most recent common ancestor (MRCA) were performed by 

inferring simultaneously population parameters, substitution parameters, and tree topology 

using Bayesian Markov Chain Monte Carlo (MCMC) inference as implemented in BEAST 

version 1.8.0
353

. Three independent runs 160 million replicates were performed under 

Bayesian Skyline relaxed molecular clock model, using a general time-reversible nucleotide 

substitution model with heterogeneity among sites modeled with a gamma distribution. 

Examination of the MCMC samples with Tracer v1.4 indicated convergence and adequate 

mixing of the Markov chains. After inspection with Tracer, we discarded an appropriate 

number of steps from each run as burn-in, and combined the resulting MCMC tree samples 

for subsequent estimation of posteriors. We summarized the MCMC samples using the 

maximum clade credibility topology, with branch length depicted in years. 

Statistical analysis 

To identify the main predictors of HIV-1 subtype groups a multinomial logistic regression 

model was performed. With this procedure we assessed the association between the date of 

diagnostic and HIV-1 subtype groups controlling for other relevant variables. HIV-1 subtypes 

with low number of cases were pooled resulting in 5 groups that were used for statistical 

analysis: G (n=84); B (n=75); C (n=42); other subtypes (A1, n=12; F1, n=21; total n=33) and 

recombinants (n=42). The least represented subtypes J (n=1) and D (n=3) had no influence on 

the results and were excluded from the analysis. The independent variables analyzed were 

date of diagnostic, age, gender and transmission mode. The SPSS package (IBM SPSS 

Statistics v19) was used to conduct all statistical analysis and results were considered to be 

significant for p<0.05. 

Ethics 

The project was approved by the Ethics Committee of the Hospital de Braga. Written consent 

was obtained for all the patients enrolled in the study. Clinical data was codified to ensure 

confidentiality of the patients. 
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Results 

 

High HIV-1 subtype diversity 

Among the 289 individuals that met the inclusion criteria, 76.8% were male and the average 

age on diagnosis of the study population was 44.5 years ranging from 18 to 87 years. The 

most frequently reported route of infection was heterosexual contact (n=161, 55.7%), 

followed by IDU (n=99, 34.2%) and MSM (n=26, 9.0%) (Table 2). The study population was 

highly homogeneous, with >90% of the individuals being Portuguese of white ethnicity and 

presumed to be infected in Portugal. The most frequent subtypes found were G (n=85, 

29.4%), B (n=75, 26%) and C (n=42, 14.5%) followed by F1 (n=22, 7.6%) and A1 (n=12, 

4.2%) subtypes. Only 1.4% of the studied individuals had infection with other "pure" 

subtypes (D, n=3 and J, n=1). The most frequent CRF found was CRF14_BG (n=15, 5.2%), 

followed by CRF02_AG (n=4, 1.4%). Individuals infected with unique recombinant forms 

(URF) constituted 9.0% of the population (Figure 19A). 

 Variables   n % 

 
Gender 

Male 222 76.8% 

 Female 67 23.2% 

 

Age on diagnosis (years) 

≤20 17 5.9% 

 21-40 190 65.7% 

 41-50 41 14.2% 

 >50 41 14.2% 

 
Patient Nationality 

Portuguese 260 90.0% 

 Other 29 10.0% 

 

Ethnicity 

White 274 94.8% 

 Black 15 5.2% 

 

 Presumed country of 

infection 

Portugal 280 96.9% 

 other 9 3.1% 

 

Route of transmission 

Heterosexual 

contact 
161 55.7% 

 MSM 26 9.0% 

 IDU 99 34.2% 

 other 3 1.1% 

   Total 289 100% 

Table 2. Descriptive statistics on the demographics of the study 
population 

 

Increasing incidence of infection with A1 and F1 HIV-1 subtypes 

The dates of HIV-1 diagnosis in the study population spanned the period from 1987 through 

2012. The proportion of infections diagnosed each year with different subtypes was 

investigated. The less frequent subtypes were pooled to allow statistical analysis (Figure 19B) 
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and a significant logistic regression model was obtained (2
(20)=77.3, p<.001 and Pseudo 

R
2

Nagelkerke value was 0.245). Multivariate analysis revealed that the year of HIV-1 diagnosis

 

was associated with subtype A1 and F1 infection. The odds ratio (OR) for being infected with 

Figure 19: HIV-1 subtype diversity (A) and temporal distribution of HIV-1 subtypes (B) in the 

cohort of 289 infected individuals from the Minho region.  
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each subtype for a 1-year increase in the time period of diagnosis was OR=0.852 (p<.05) for 

recombinant virus versus A1 and F1 subtypes, OR=0.824 (p<.01) for G subtype versus A1 

and F1 subtypes, OR=0.781 (p<0.001) for B subtypes versus A1 and F1 subtypes, OR=0.862 

(p<0.05) for B subtypes versus A1 and F1 subtypes (Table 3). Overall these data supports 

that the rate of infection with A1 and F1 subtypes is increasing in the study population over 

the years when compared with the risk of infection with C, B, G or recombinant virus. 

Subtype B SE Wald OR 

CI 95% OR 

LB UB 

Recombinants vs. A1/F1 

subtypes 

Days since date of 

diagnosis  (1 year) 
-0.0004 0.000 6.278* 

1.000 

(0.852) 
0.999 1.000 

 
Age -0.006 0.019 0.091 0.994 0.959 1.031 

 
Males 0.298 0.638 0.218 1.347 0.386 4.699 

 
Heterosexual -0.808 0.735 1.207 0.446 0.106 1.884 

  IDU -0.346 0.820 0.178 0.708 0.142 3.533 

G vs. A1/F1 subtypes 
Days since date of 

diagnosis  (1 year) 
-0.001 0.000 10.774** 

0.999 

(0.824) 
0.999 1.000 

 
Age 0.016 0.016 1.1 1.016 0.986 1.048 

 
Males -0.847 0.476 3.167 0.429 0.169 1.090 

 
Heterosexual 1.450 1.161 1.559 4.264 0.438 41.537 

  IDU 2.012 1.214 2.747 7.475 0.693 80.672 

B vs. A1/F1 subtypes 
Days since date of 

diagnosis  (1 year) 
-0.001 0.000 17.319*** 

0.999 

(0.781) 
0.999 1.000 

 
Age -0.016 0.017 0.932 0.984 0.952 1.017 

 
Males -0.473 0.512 0.856 0.623 0.229 1.698 

 
Heterosexual -1.234 0.663 3.459 0.291 0.079 1.069 

  IDU -1.593 0.771 4.269* 0.203 0.045 0.921 

C vs. A1/F1 subtypes 
Days since date of 

diagnosis  (1 year) 
-0.0004 0.000 5.154* 

1.000 

(0.862) 
0.999 1.000 

 
Age 0.017 0.019 0.815 1.017 0.980 1.056 

 
Males -0.646 0.579 1.242 0.524 0.168 1.632 

 
Heterosexual -0.267 0.949 0.079 0.766 0.119 4.919 

  IDU 1.216 0.996 1.491 3.374 0.479 23.754 

***p<.001; **p<.01; *p<.05. Abbreviations: SE. standard error; OR. Odds ratio; LB. lower bound; UB. upper bound; IDU. intravenous 

drug users  

Table 3. Multinomial logistic regression model relating HIV-1 subtypes with date of diagnostic, age, gender and 

transmission mode. 
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Figure 20: Phylogenetic relationships among the HIV-1 sequences isolated from 289 infected 
individuals from Minho province, Portugal. Maximum likelihood (ML) phylogenetic analysis with 
was performed using 289 partial HIV-1 sequences obtained in this study and 89 subtype reference 
sequences (colored in blue) and rooted using the M-group consensus sequence. Branch lengths were 
expressed as the number of nucleotide substitutions per site. Transmission clusters were supported 
by a ML bootstrap support > 95% based on 1000 replicates and were colored in pink.   

 

Evidence for local transmission clusters 

The phylogenetic analysis of the viral sequences allowed the identification of 14 transmission 

pairs and 17 transmission clusters (Figure 20). 

In terms of HIV-1 subtype distribution, seven clusters included subtype B virus, three 

included subtype F1, two included subtype G, two included subtype C, one included subtype 

A1, one included CRF14_BG and one included DB URF (Table 4). The mean number of 

individuals per cluster was 6.9. Among the clusters with an above the mean number of 
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individuals (≥7), the largest (11C) was composed almost integrally of IDU (27 out of 31 

individuals), 4 of these individuals reported sharing injection material. The second largest 

(17BG) was also composed of IDU (11 out of 12 individuals) with the non-IDU individual in 

the cluster reporting sexual contact with one of the other members of the cluster.  All F1 

clusters (13F1, 14F1 and 15F1) are predominantly sexual in transmission mode (Table 4). 

13F1 cluster has one patient out of the ten that is of Brazilian nationality. Furthermore, the 

phylogenetic analysis shows that the viral sequences from 13F1 and 14F1 clusters share 

common ancestors with reference sequences collected in Brazil (GenBank: AY173957.1, 

EU735538.1, EU735540.1). Additionally, BLAST analysis identified 5 sequences highly 

related to the 14F1 (Figure 21) virus that were isolated in Italy and phylogenetically linked to 

Brazil
356

. Cluster 16A1 is a sexually transmitted cluster (6 heterosexual and 3 MSM), 

including one Mozambican infected before immigrating to Portugal.  

Established local transmission of non-prevalent HIV-1 subtypes 

In order to estimate the evolutionary dates of the reported transmission clusters we performed 

a Bayesian MCMC analysis. All independent runs converged to almost identical values for all 

parameters (data not shown). The mean substitution rate was 2.16×10
-3

 (95% highest 

posterior density [HPD] interval, 1.8505×10
-3

 to 2.4929×10
-3

) substitutions per site per year. 

The date of the most recent common ancestor (MRCA) was determined for all the clusters 

and ranges from 1993-2008 (Table 4). There are no marked differences in the MRCA date 

among different subtypes. Among the clusters of non-prevalent HIV-1 subtypes 11C, 15F1, 

16A1 and 17BG were the ones with older MRCA dates ranging from 1993 to 1999. With the 

exception of one Mozambican individual from cluster 16A1 these clusters are formed by 

Portuguese individuals presumed to be infected in Portugal. When removing the Mozambican 

individual the MRCA date of 16A1 was 1999 (Table 4). These results support the existence 

of clusters of non-prevalent subtypes that have started transmitting among the local 

population more than one decade ago. In order to gain insights into the activity of the clusters 

along the years we have analyzed the date of HIV-1 diagnosis for all cluster-included 

individuals. For the majority of the clusters the results are suggestive of continuous onward 

transmission (Table 4). ). A possible exception is the cluster 17BG, since it showed the lower 

mean date of diagnosis (2002) and in the 6 years from 2006 to 2012 no virus belonging to this 

cluster were found in the study population suggesting a decrease in transmission.  
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Figure 21: Phylogenetic relationships among the F1 transmission clusters 

identified in the population of 289 infected individuals from Minho province, 

Portugal. Maximum likelihood (ML) phylogenetic analysis was performed using 

sequences obtained in this study (colored in pink), 4 subtype reference sequences 

(colored in blue) and 50 sequences that have similarity above 95% when compared 

with the 13F1 and 14F1 sequences, obtained using BLAST search among all public 

available sequences. Tree was rooted using the M-group consensus sequence. 
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Cluster 

name 

Number of 

individuals 

HIV-1 

subtype 

Date of 

diagnosis (mean, 

range) 

Route of 

transmission (n) 

Time of MRCA 

year 95% HPD 

01DB 5 DB URF 2009, 2006-2012 IDU (4), 
Heterosexual (1) 

2002 1998.2-
2006.1 

02B 3 B 2006, 2003-2008 IDU (2), 
Heterosexual (1) 

1999 1994.2 - 
2003.3 

03B 3 B 2003, 2000-2009 Heterosexual (2), 
MSM (1) 

2004 2001.9 - 
2006.5 

04B 3 B 2007, 2006-2009 Heterosexual (4) 2004 2000.7 - 
2006.9 

05B 5 B 2006, 2003-2008 MSM (3), 
Heterosexual (2) 

2003 2000.0 -
2005.6 

06B 3 B 2008, 2005-2010 Heterosexual (3) 2002 1998.4 - 
2004.8 

07B 3 B 2009, 2008-2010 Heterosexual (3) 2004 2000.0 - 
2006.9 

08B 3 B 2007, 2000-2010 Heterosexual (2), 
MSM (1) 

2002 1998.1 - 
2004.4 

09G 7 G 2006,1999-2009 Heterosexual (5), 
IDU (2) 

2000 1997.1 - 
2003.2 

10G 3 G 2010,2008-2011 Heterosexual (2), 
IDU (1) 

2008 2004.8 - 
2010.4 

11C 31 C 2004,1999-2011 IDU (27), 
Heterosexual (4) 

1994 1990.4 - 
1998.1 

12C 3 C 2006,2001-2009 Heterosexual (3) 2005 2001.6 - 
2007.6 

13F1 10 F1 2006,2000-2011 Heterosexual (7), 
IDU (3) 

2000 1993.2 - 
2003.5 

14F1 7 F1 2009,2007-2011 Heterosexual (6), 
IDU (1) 

2005 2002.7 - 
2007.2 

15F1 4 F1 2010,2009-2010 Heterosexual (4) 1994 1987.5 - 
2001.6 

16A1 9 A1 2009,2006-2011 Heterosexual (6), 
MSM (3) 

1993 
(1999†) 

1987.2 - 
1998.7 

(1994.0-
2003.3†) 

17BG 12 CRF14_BG 2002,2000-2006 IDU (10), 
Heterosexual (2) 

1999 1994.5 - 
2002.8 

† time of the most recent common ancestral of the cluster 16A1 excluding one individual known to have been infected 
before immigrating to Portugal. Abbreviations: MRCA, most recent common ancestral. 

Table 4. Characterization of the 17 HIV-1 transmission clusters identified in the study population of 
the Portuguese region of Minho. 
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Discussion 

 

Since its origin in Africa approximately 100 years ago, HIV-1 is continuously undergoing 

genetic diversification that is enhanced by the massive globalization of the human 

population
257

. Despite the notion that current antiretroviral regimens have comparable 

efficacy across existing HIV-1 diversity, there is evidence showing that some HIV-1 subtypes 

may have transmission advantage, higher replicative efficiency or even altered drug 

susceptibility
282,332-335

, raising awareness on the relevance of investigating HIV-1 diversity. 

Furthermore, for effective targeting of preventive measures it is very relevant to perform 

persistent monitoring of the HIV-1 pandemic using phylogenetic and epidemiological data 

analysis as a tool for the reconstruction of viral transmission networks
232,347,348

 and to allow 

the effective targeting of preventive measures. 

Existing data shows that Portugal contrasts with the rest of the Western Europe in its 

distribution of HIV-1 subtypes
257,341

. It is interesting to gain further understanding on the 

causes underlying this difference also in light of the evidence supporting a recent increase in 

the infections with non-B HIV-1 subtypes in several Western Europe countries
242,244,339,340

. In 

this study we have analyzed 289 HIV-1 infected individuals from the Minho province, 

Portugal. Collectively, the results obtained are consistent with previous studies in Portugal in 

showing high prevalence of non-B subtypes (73.0%), mainly virus of subtype G (29.4%), 

followed by the subtype C (14.5%). In our study population, the heterogeneity of HIV-1 

subtypes is attributable to Portuguese-born individuals presumed to be infected in the region 

with only 3.8% of the cases being among immigrants or Portuguese individuals presumed to 

be infected elsewhere. Contrarily, the rising prevalence of non-B HIV-1 subtypes in Western 

Europe has been attributed to the growing number of immigrants from Sub-Saharan Africa 

and South America where these variants are prevalent. As an example, in Spain 27% of the 

HIV-1 cases diagnosed in 2007 were of non-B subtypes and 90% of these cases were African 

and South American immigrants
258

.  Phylogenetic analysis of our study population indicates 

that the most prevalent subtypes, B and G, show high inter-individual genetic distances 

suggesting old and multiple introductions of virus of these subtypes in the region. This 

observation is in accordance with the fact that B subtype is predominant in Western Europe 

and was probably introduced in several occasions in the late 1970s and early 1980s
357

. As for 

subtype G, it is possible that the intense human migrations between Portugal and its former 
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African colonies in the 1970-80s due mostly to the independence wars
358

 contributed to the 

early introduction others HIV-1 subtypes, namely in the case of the migration connection 

with Angola where there is a large HIV-1 genetic diversity
269

, possibly due to its proximity to 

Democratic Republic of Congo, the presumed country of HIV-1 origin
41

. The analysis of 

transmission clusters showed that 39.4% of all sequences grouped in 17 local transmission 

clusters, with a mean of 6.9 sequences per cluster. The distribution of clustered sequences per 

subtype showed that almost every F1 sequences (21 out of 22) are incorporated in clusters. In 

opposition, B and G subtype clusters include only 35.9% and 11.8% of the B and G subtype 

sequences, which can be considered additional evidence of long time circulation of B and G 

subtypes among the studied population. Interestingly, we also found clusters of non-B and -G 

subtypes, namely of the C, F1, A1 and CRF14_BG that have a date of MRCA in the late 90s 

even when considering only Portuguese born individuals presumed to be infected in the 

region. This supports that these HIV-1 subtypes have been introduced in Minho more than 

one decade ago. The two largest transmission clusters, 11C and 17BG, are composed in their 

large majority (>87%) by IDU reflecting the compartmentalization and closed character of 

the transmission among individuals from this risk group. The analysis of the date of diagnosis 

of the individuals in these clusters suggests that its transmission might be decreasing namely 

in the case of 17BG since in the 6 years ranging from 2006 to 2012 no HIV-1 infection with 

virus from this cluster were found in the study population. In the last decade, other local 

epidemics with CRF14_BG have been described among IDU in Spain and Portugal
257,343

. Our 

results are in line with the data showing a decrease in the prevalence of IDU in among the 

HIV-1 infected individuals in Portugal
255

 suggesting  a positive impact of the preventive 

strategies implemented in the last decade in reducing the transmission of HIV-1 among the 

IDU population. Importantly, our data support an increased incidence of infection in the 

study population with F1 and A1 subtypes. The occurrence of events of onward transmission 

of F1 and A1 HIV-1 subtypes in our study population were strongly linked to sexual 

transmission. We identified three F1 clusters, mainly formed by individuals who report 

heterosexual contact as the presumed viral transmission route. The phylogenetic analysis 

shows that the viral sequences from clusters 13F1 and 14F1 share common ancestors with 

reference sequences collected in Brazil.  The analysis of the public databases allowed the 

identification of 5 sequences isolated in Italy that belong to the 14F1 cluster, thus suggesting 

a large geographic range of this transmission network contrarily to what was found in all the 

other clusters. In common with the 13F1 and 14F1 clusters the previously described Italian 

cluster was also phylogenetically linked to Brazil
356

suggesting to this country as the origin of 
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introduction of subtype F1 virus in southern Europe. We also identified one sexually 

transmitted A1 subtype cluster that was epidemiologically linked to Mozambique since one 

of the individuals in the cluster is Mozambican and presumed to be infected prior emigrating 

to Portugal. Despite having MRCA dates similar to 11C and 17BG, F1 and A1 subtype 

clusters have a more recent mean date of diagnosis and include sequences diagnosed in the 

last three years suggesting that these clusters might still be engaged in active transmission.  

Overall our study of local HIV-1 epidemic in the Portuguese region of Minho supports that 

these region contrasts with the rest of the Western Europe in its HIV-1 subtype distribution 

due to established transmission among native individuals of non-B subtypes. Our molecular 

and epidemiologic analysis highlight increasing incidence and onward transmission of F1 and 

A1 subtype virus via sexual transmission routes supporting the need for continuous 

monitoring and strengthening of preventive strategies targeted at these transmission modes. 
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Chapter 3: VIRAL DIVERSITY IN STANDARD HIV-1 SEQUENCES: CONTRIBUTION 

OF AMBIGUITIES TO DIFFERENTIATE RECENT FROM CHRONIC INFECTION 

 

Abstract 

 

Introduction: An individual infected with human immunodeficiency virus type 1 (HIV-1) 

generally harbors a mutant cloud of related variants, usually arising from a single founder 

virus. Intra-host viral diversity has been reported to increase with time. Ambiguous sites are 

identified in sequences obtained in the regular follow-up of HIV-1 infected patients and have 

been proposed as markers of viral diversity. As diversity increases over time, it is possible to 

estimate age of infection based on these ambiguities. 

Objective: To evaluate the contribution of ambiguous sites in HIV-1 sequences routinely 

obtained, associated with CD4+ cell counts and AIDS stage, as indicators of age of infection 

in HIV-1 infected persons attended in Hospital de Braga, Portugal.  

Methods: For 203 antiretroviral naive patients who had at least one HIV-1 sequence 

available, the proportion of ambiguous sites (PAS) was calculated and its association with 

duration of infection was investigated. Evaluation of this association was made using a subset 

of patients with confirmed recent or chronic infection. 

Results: PAS was three times greater in subjects with chronic infection (Md=1.31%) than in 

those recently infected (Md=0.44%; p<0.0001). PAS was negatively correlated with CD4+ 

cell count (p<0.0001) and positively correlated with the existence of an AIDS defining 

condition (p=0.034). An algorithm based in CD4+ cell count, AIDS stage and PAS can 

discriminate chronic from recent infection (<1 year) with a specificity of 96% and a negative 

predictive value of 0.89. 

Conclusion: There is a presently underestimated value for sequence ambiguities as an 

expression of intra-host viral diversity in estimating time of infection, especially when 

conjugated with clinical and epidemiological data. 

Key-words: HIV, Ambiguous Sites; Viral Diversity; Time of infection; Incidence; CD4+ cell 

count.  
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Introduction 

 

Identification of recent HIV infection within populations is of utmost importance as it makes 

possible the incidence evaluation and state of the HIV epidemic, as well as improving 

treatment outcomes and controlling HIV transmission. Nevertheless, the 2012 European 

HIV/AIDS Surveillance Report found that 50% of  new HIV infection diagnoses  were of late  

presenters  (CD4
+
<350/mm

3
),  including  30%  with  advanced  HIV  infection 

(CD4
+
<200/mm

3
)
359

. Time of infection is one of the most poorly defined parameters in 

epidemiologic studies, mainly because the gold standard, prospective follow-up of HIV-

uninfected people, is expensive, time-consuming and logistically demanding. Determining 

HIV incidence rates through longitudinal follow-up of uninfected people is also susceptible to 

several biases, such as the possible loss to follow-up of those at most risk of infection or the 

repeated testing leading to behavior changes 
360,361

. 

Estimation of the incidence rate through inference from prevalence measurements and 

mortality data can also be done but it also has its limitations such as the challenge to account 

for internal and international migration 
362

. Yet another method, based in identification of 

patients with acute retroviral syndrome, is fallible because such syndrome may have not 

occurred or may not have been recognized. 

Furthermore, laboratory methods have been developed that rely on the antibody levels and 

their avidity as indicators of recent infection. They are founded on the gradual response of the 

host immune system to the infection, which will result in recent seroconverters to test below a 

defined level during a post-seroconversion period window 
363

. Although their accuracy has 

been improved with their inclusion in multi-testing algorithms, they still present limitations, 

such as the misclassification of infections as recent, especially in advanced disease when 

antibody levels tend to decrease, and the different window periods for different subtypes 

which creates challenges in their application in populations with multiple viral subtypes 
364

. 

In western and central Europe the most prevalent subtype is subtype B, representing 85.20% 

of the individuals with HIV-1 infections
359

. Portugal presents itself as special case with one 

of the lowest proportion of subtype B infections in Europe (39.2%), being the remaining 

individuals infected with non-B subtypes, mainly subtype G 
365

.   

Up to 80% of HIV infections are monomorphic, initiated by a single virus 
134

. But as an RNA 

virus, HIV has a complex evolution dynamic due to several factors, including high viral 
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turnover 
366

, high mutation rates 
367

, retroviral recombination 
368

 and selection pressure from 

the host immune system 
172

. In a fast pace, the initial virion starts to diverge and soon the 

viral population of an infected individual is not represented by one single genome, but rather 

by a mutant cloud of non-identical but closely related viral variants that continuously goes 

through genetic variation and competition. As repositories of distinct viral variants, mutant 

clouds are the source of virus adaptability, acting as a unit of selection 
369

.  

It has been reported that viral diversity increases with the age of infection, first in a linear 

fashion but then at decreasing rates until a plateau is reached. Eventually, the immune system 

collapses and, as progression to AIDS begins, viral divergence stabilizes and viral diversity 

declines 
370

. How can this diversity be assessed in a way pertinent to estimating age of 

infection? 

Since 2003, recommendations exist to perform standard genotyping of HIV-1 protease and 

reverse transcriptase in all newly diagnosed infections, so antiretroviral resistance can be 

detected prior to therapy initiation 
371

. This practice originated abundant genetic material, 

mainly from pol gene, where reverse transcriptase and protease are codified. For economical 

reasons, these sequences are obtained by bulk sequencing; that is, the sequencing procedure 

is applied to a diverse sample of the HIV population. If the frequency of the most frequent 

nucleotide at a given position exceeds a threshold (typically around 80%), bulk sequencing 

returns the predominant nucleotide at this position. However, if this is not the case, then so 

called ambiguous nucleotide calls are reported, implying that the patient harbors viral strains 

with different nucleotides at this locus. Thus the fraction of ambiguous nucleotides is a 

measure of the degree of polymorphism of the HIV population within a patient. Therefore, 

the use of these ambiguous sites (also called ambiguities, ambiguous nucleotide calls, 

degenerate bases or mixtures) as a marker of genetic diversity and hence length of infection, 

constitutes a simple approach to determine the age of infection and additionally it’s 

inexpensive, as it uses sequences that are already routinely requested and available in clinical 

practice. Protease and reverse transcriptase sequencing is available in the Hospital de Braga, 

Portugal, since 2005 and in 2006 became part of the standard patient care for every newly 

admitted HIV-1-infected patient.  
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Methods 

 

The population consisted of all the HIV-1 infected and treatment naive patients followed in 

the Hospital de Braga, an university affiliated hospital with 700 beds, serving as reference 

hospital to the Northwest region of Minho in Portugal (pop.: 1,093,021), between July of 

2005 and April of 2014 with at least one HIV-1 pol gene sequencing in that period. 

Individuals without any HIV sequence or unavailable clinical data were excluded from the 

study. A total of 203 patients were selected. 

Sequencing was done using TRUGENE® HIV-1 Genotyping Kit (Siemens Medical Solutions 

Diagnostics, Tarrytown, New York, USA) and the OpenGene
TM

DNA Sequencing System 

(Siemens Healthcare Diagnostics, Tarrytown, NY). The sequences represent a real time 

polymerase chain reaction product of part of the protease (codons 4 to 99) and part of the 

reverse transcriptase (codons 38 to 247) region of HIV-1 pol gene. The shortest sequence had 

909 base pairs and the longest 918 base pairs. 

Sequences were aligned and trimmed with reference HIV-1 pol sequences from the Los 

Alamos National Laboratory using ClustalW available in MEGA5 software 
372

 and the  

REGA version 3 HIV-1 Subtyping Tool was used to identify each sequence subtype 
348

.  

Ambiguous sites were considered when an ambiguous base pair code was registered in the 

sequence instead of a normal nucleotide. The codes considered were defined by the 

International Union of Biochemistry : R (A or G), Y (C or T), K (G or T), M (A or C), S (G 

or C), W (A or T), B (C, G or T), D (A, G or T), H (A, C or T), V (A, C or G) and N ( A, C, T 

or G) 
373

. PAS was then calculated by dividing the number of ambiguous sites by the total 

base pair number of each sequence. 

Time since HIV infection diagnosis was considered as the period of time between the date of 

the diagnosis of infection and the date of sampling for the first sequencing available for each 

patient. 

Patients were empirically considered chronically infected (>1 year) if time since HIV 

diagnosis was superior to 12 months, if CD4
+
 T-cell T count was inferior to 200 cells/mm

3
 by 

the time of sequencing, as Lodi and collaborators demonstrated this count is related to 

infections lasting around 8 years 
374

, or if the patient had AIDS diagnosis at first sequence 

(S1) obtained (n=118). Otherwise patients were classified as having recent infection. They 
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were further divided by mode of transmission and by HIV-1 subtype. In 129 patients a recent 

(n=40) or chronic infection (n=89) status could be well-established based on epidemiological 

and clinical data and in the presence of an HIV negative test prior to a positive one. 

Presumed chronically infected patients were compared with presumed recently infected ones 

regarding PAS, CD4+ cell count and existence of an AIDS defining condition. 

To study the association of PAS with the length of infection, correlation analyses was 

performed between PAS at S1 and two known indicators of duration of infection: the 

presence or absence of AIDS criteria and the CD4
+
 T-cell T count. For this correlation 

analysis individuals for whom S1 was obtained after eight years of HIV diagnosis were 

excluded (n=12) as it also has been reported that the increase in PAS is almost linear within 8 

years of infection but subsequently it starts to stabilize and even decrease 
375

. Afterwards, a 

sub-analysis was done to investigate the relationship between PAS and CD4
+
 T-Cell count 

according to the mode of HIV acquisition and subtype.  

On variables with a non-normal distribution non-parametric tests were used: Mann-Whitney 

U Test to compare independent samples and Spearman's Rank Correlation Coefficient to 

study correlation between variables.  

Data was collected and registered in Microsoft® Excel® 2010 (©2010 Microsoft 

Corporation) and statistical analysis and graphical presentation was done using GraphPad 

Prism version 6.04 for Windows, GraphPad Software, La Jolla California USA. All p values 

were considered to be statistically significant if <0.05. 

Ethical Considerations 

The study was approved by the Health and Science of Life Ethics’ Subcommittee of Minho’s 

University and the Administration Board and Health Ethics’ Committee of the Hospital of 

Braga. Written consent was obtained for all the patients enrolled in the study. Clinical data 

was codified to ensure their confidentiality.  
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Results 

Characterization of study participants 

Demographic and clinical parameters of every subject at sequence (S1) sample collection are 

represented in Tables 5 and 6 and in Figure 22. Most individuals were men (78.8%) of white 

ethnicity (96.6%), infected in Portugal (89.5%). 77.3% acquired HIV through sexual 

intercourse and 21.7% through injection drug use (IDU).  

Total n=203 n (%) 

Gender  

Male 160 (78.8) 

Female 43 (21.2) 

Ethnicity  

White 196 (96.6) 

Other 7 (3.4) 

Disease Stage (on sequencing)  

AIDS 85 (41.9) 

No AIDS 118 (58.1) 

Mode of Transmission  

Heterosexual 131 (64.5) 

IDU 44 (21.7) 

MSM 26 (12.8) 

Othersa 2 (1.0) 

Age on Infection (years)  

≤20  14 (6.9) 

21-40 113 (55.7) 

41-60 64 (31.5) 

>60 12 (5.9) 

Table 5: Demographic characterization of study 

subjects. 

a- vertical, transfusional 
 

 Median 1st Quartile-3rd Quartile 

Nº of ambiguities 8 1.0-15.8 

Proportion of ambiguous sites (PAS) (%) 0.87 0.44-1.72 

Time Since HIV-1 diagnosis (months) 1.6 0.7-19.2 

CD4+ count (cells/mm3) 264 116-428 

Table 6: Characteristics of potential indicators of duration of infection by the time of 

sequencing (n=203) 
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Figure 22: HIV-1 subtype distribution for the 203 sequences available 

An AIDS defining condition was present by the moment of sequencing in 41.9% of the 

subjects. Considering the moment when HIV infection diagnosis was made, study 

participants had a median age of 37 years, ranging from 15 to 82 years. 

The most common HIV-1 subtype identified at S1 was G (26.6%), followed by B (23.6%) 

and C (12.3%). CRF02_AG was the most frequent circulating recombination form 

recognized (3.0%). A unique recombinant form was present in 7.4% of the patients. 

 

Diversity evaluation 

The median value for PAS at S1 was 0.87% but Mann-Whitney test revealed a significant 

difference between patients classified as having a potential recent infection (n=85, 

median=0.44%) and those with chronic infection (n=118, median=1.31%; p<0.0001) (Table 

7). 

 Median 1st Quartile-3rd Quartile CI (95%) P value 

Presumed recent 0.436 0.109-0.871 0.477-0.915 
< 0,0001 

Presumed chronic 1.309 0.763-2.097 1.342-1.668 

Table 7: Comparison between PAS of presumed recent and presumed chronic HIV infections 
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Figure 23: Linear regression of the correlation between (A) CD4+ count, (B) time since infection to 

sequencing and proportion of ambiguous sites 

The median time from diagnosis of HIV infection to sequence sampling was 1.6 months, with 

an interquartile range of 18.6 months. 

Assessment of age of infection 

To further study the association of PAS at S1 with factors traditionally related to length of 

infection, a correlation analysis was performed between PAS and three different variables at 

S1 sampling: existence of an AIDS defining condition, CD4+ cell count and estimated time 

of infection, here defined as time in months passed between diagnosis and sequencing. As 

mentioned previously, for this analysis, individuals with time of infection above 96 months 

were excluded. A negative correlation was demonstrated between the PAS and CD4
+
 T-Cell 

Count (rs=-0.418, n=203, p<0.0001) and a positive one between the PAS and the time since 

diagnosis (rs=0.194, n=203, p=0.0056), as shown in figure 23. The existence of an AIDS 

condition on the moment of sequencing correlated positively with PAS (rs=0.223, n=85, 

p=0.034).  

 

Trying to establish a relation between PAS, transmission modes and HIV-1 subtypes, a 

polynomial regression model failed to demonstrate any statistically significant difference 

(Table 8). To further investigate the relationship between PAS and CD4+ cell count, a 

correlation analysis was performed using the three most important transmission modes 
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(representing 99% of total) and the five more prevalent HIV-1 subtypes and URF (altogether 

accountable for 89.2% of infections). No significant correlations were also found between 

PAS and CD4+ cell counts regarding transmission mode or HIV-1 subtype. 

N  203 
    

      
R²  0,291 

    
R² adjusted  0,205 

    
SE offit (RMSE)  0,914579 

    
      

Parameter  Estimate 95% CI SE p-value 
Transmission: Heterosexual -0,4786 -1,025 to 0,06729 0,27667 0,0853 

Transmission: IDU -0,1167 -0,7160 to 0,4826 0,30372 0,7012 
Transmission: MSM -0,1525 -0,7611 to 0,4561 0,30844 0,6217 

SUBTYPE A1 0,1773 -0,3128 to 0,6674 0,24836 0,4762 
SUBTYPE B 0,3295 -0,05789 to 0,7170 0,19634 0,0950 
SUBTYPE C -0,06062 -0,5328 to 0,4115 0,23929 0,8003 

SUBTYPE F1 0,1553 -0,3560 to 0,6666 0,25912 0,5498 
SUBTYPE G 0,1651 -0,2213 to 0,5514 0,19580 0,4003 

URF 0,04621 -0,4853 to 0,5777 0,26934 0,8640 
Table 8: Relations between PAS, transmission modes and HIV-1 subtypes analyzed by polynomial 

regression model. IDU: intravenous drug user; MSM: men who have sex with men; SE: standard error; 

CI: confidence interval 

      To evaluate the capacity of PAS to discriminate between recent and chronic infections, a 

receiver-operator characteristic (ROC) curve was constructed. With a PAS value<0.544 we 

obtained a specificity of 91% (95% CI=82.4-96.3; likelihood ratio=3.171) 

Based on these results, we proposed a three steps algorithm (Figure 24): candidates to be 

infected for less than 12 months must have a CD4+ cell count superior to 200/mm
3
, no AIDS 

defining condition and a PAS inferior to 0.55. 

Evaluation of algorithm performance 

In 40 patients, a more accurate recent infection condition could be acknowledged, based in 

time of seroconversion, as each one have a HIV negative serology followed by a HIV 

positive test in less than 12 months. Furthermore, in 89 subjects a time of infection longer 

than 12 months could be established, based in epidemiological and serological data. There 

were no significant differences between these two sets of patients and the presumed recently 

or chronically infected ones, in Mann-Whitney test. Table 9 confirms a statistically 

significant difference between truly recent and truly chronic infections regarding PAS. This  
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AIDS event Yes 

PAS >0.55 

CD4+ cell count ≤200 

>2
0

0
 

N
o

 
≤0

.55
 

Chronic infection 

Chronic infection 

Chronic infection 

Recent infection 

Figure 24: Proposed algorithm to discriminate between chronic (>12 months) and recent (≤12 months) 

based on CD4+ cell counts, presence of an AIDS defining event and proportion of ambiguous sites 

 

subset of patients was used to assess the performance of the proposed algorithm. In 

recognizing a recent infection, the proposed algorithm achieved a sensibility of 0.73, a 

specificity of 0.96, a negative predictive value of 0.89 and a likelihood ratio of 16. 

 

  

 Median 1st Quartile-3rd Quartile CI (95%) P value 

True recent infections 0.218 0.109-0.599 0.270-0.724 
< 0,0001 

True chronic infections 1.412 0.763-2.175 1.350-1.714 

Table 9: Comparison between PAS of truly recent and truly chronic HIV infections 
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Discussion 

 

Lack of accurate methods to discriminate recent from chronic HIV-1 infections is a major 

obstacle for measuring HIV-1 incidence, which is essential for monitoring transmission 

dynamics in order to design, optimize and evaluate intervention programs. One other utility 

for identification of recent infections will be awareness of transmitted antiretroviral 

resistance. Knowing that around 80% of HIV-1 infections are founded by a single virus 
134

 

that will steadily diverge in the course of infection, how can we evaluate diversity and how 

can we apply such evaluation to estimating age of infection? No perfect method has been 

developed yet. However, ambiguous sites in the resistance detection requested 

protease/reverse transcriptase sequences, an abundant source of genetic material, are 

increasingly being recognized as indicators of viral diversity in HIV-1 and, consequently, as a 

potential marker of age of infection. This study investigated this potential role in 203 HIV-1 

infected patients followed in the Hospital de Braga with at least one HIV-1 sequence 

available. As shown, the median PAS at S1 was almost three times greater in patients with 

presumed chronic infect than in patients with presumed recent infection, a highly significant 

difference (p<0.0001). 

As described, the sample in this study was constituted by multiple subtypes which seem to be 

consistent with other reports about subtype prevalence in Portugal 
376

. The significant 

correlations between PAS, presumed length of infection and CD4+ cell count were 

maintained regardless of HIV-1 subtype. Same was true when we studied different 

transmission modes: PAS correlations with presumed length of infection and CD4+ cell 

count were independent of route of infection. 

These finding are in line with previous studies and support the evidence that PAS, as a 

surrogate of viral diversity, relates to the duration of HIV-1 infection. 

In several studies, the estimated time between seroconversion and reaching a CD4+ cell count 

inferior to 200/mm
3
 varied from 6.2 

377
 to 7.6 

378
 or 7.9 years 

374
. It seems rational to use this 

threshold as first step to discriminate recent from chronic infections. Every patient with an 

AIDS condition was classified as chronically infected, even bearing a CD4+ cell 

count>200/mm
3
, as every individual presenting with an AIDS-defining event, regardless of 

the CD4+ cell count is considered a late presenter 
379

. That is the rationale for the second 

step. 
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In this study there were available a subset of patients in whom we could differentiate time 

since infection in two categories: under a year and over a year. On examining its performance 

with this group of subjects, our logarithm exhibited a low rate of false positives (specificity of 

0.96) and a negative predictive power of 0.89, meaning it has a good discriminatory power to 

classify an infection as non recent. A high rate of false negatives (sensibility=0.73) can be 

attributed to the fraction of infections in which the number of virus leading to productive 

clinical infection is multiple, driving to higher diversity in recent infections. In our sample, 

27.5% of recent infections (9/40), with a mean estimated time of infection of 7.3 months, 

were misclassified as chronic because of PAS>0.55% (median =0.986). All but one had a 

CD4+ cell count above 500/mm
3
 so diversity should be corrected for recombination events in 

infections with multiple variants. In the Swiss Zurich Primary HIV Infection Study, 18% 

(24/130) of patients genotyped within a month from infection had >0.68% ambiguous bases 

in pol, suggesting infection with several founder virus as well 
375

. 

There is a relative inefficiency of virus transmission by sexual routes. In infection following 

intravenous inoculation, as in IDU, due to the absence of a mucosal barrier, it is more likely 

to find a higher frequency of multiple-variant transmission and therefore an earlier and 

superior diversity 
145

. Kouyos and collaborators found more genetic diversity in early 

infection amongst patients infected by a intravenous route compared to infection acquired 

sexually 
375

. In our sample, PAS of presumed recently infected IDU (n=11; median=0.55) is 

higher than PAS of presumed recently infected subjects by sexual transmission (n=73; 

median=0.33), although this is not a significant difference probably due to limitations caused 

by a small sample. 

In Braga (and in Portugal) the coexistence of multiple subtypes has the potential to expand 

the scope of HIV investigation, traditionally concentrated on subtype B, the one with the 

greatest prevalence in Western Europe and North America. Attention to the importance of an 

increasing number of recombination forms and to the diversity of the global pandemic make 

clear the importance of studies that take into account multiple subtypes. 

An advantage of our approach is that only requires biological samples obtained in the 

standard follow-up of HIV infected patients and does not require follow-up cohorts, although 

it uses a multiple parameter approach in order to improve accuracy. This means easy 

implementation and no added costs. It has a robust performance to factors such as viral 

subtype and transmission route. To be considered an optimal algorithm, accuracy must be 
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improved mainly by much more detailed analysis of diversity which could be achieved with 

pyrosequencing or ultra deep sequencing. Anyhow, inherent limitations of this methodology 

suggest that it will be more useful in contributing to population-level information on HIV-

incidence than to assess individual length of infection. 

As supplemental major limitations of this study, it must be referred the small sample size 

considered and the use of an empirical definition as an initial discriminator for chronic or 

recent infection. 

 

Conclusion 

 

This study demonstrates the existence of a relationship between the proportion of ambiguous 

sites with the age of infection, the CD4
+
 T-cell count and the AIDS status in ART naïve 

patients in a population with multiple subtypes, with a higher PAS being associated with a 

longer duration of infection. This finding served to propose an easy implementable algorithm 

to help differentiate HIV-1 sequences as being from recently (≤1 year) or chronically (>1 

year) infected patients. 
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Chapter 4: DRUG RESISTANCE, TRANSMISSION CLUSTERS AND 

POLYMORPHISMS IN A LOCAL HIV-1 EPIDEMIC 

 

Abstract 

 

Objective: To characterize HIV-1 transmitted drug resistance (TDR) and to assess its 

relations with transmission networks and respective dynamics in a circumscribed 

geographical area. 

Methods: Between 2005 and 2012, 289 HIV-1 positive individuals followed in Braga, 

Portugal, had their virus sequenced and analyzed using the WHO list of mutations for 

surveillance of TDR. Non drug exposed sequences were categorized as recent infections, 

newly diagnosed infections of unknown duration or previously diagnosed infections of 

unknown duration. Clusters of at least 3 members were identified based on a maximum 

likelihood bootstrap support > 95% and Bayesian techniques.  

Results: 17 sequences revealed TDR, representing a prevalence of 9.4% (95% confidence 

interval, 5.6% - 14.7%), comprising 3.3% resistant to nucleoside reverse transcriptase 

inhibitors, 3.9% resistant to non-nucleoside reverse transcriptase inhibitors and 3.3% resistant 

to protease inhibitors. No dual class resistance was detected but triple class resistance was 

identified in one patient. No predictor associated with TDR was found. Phylogenetic analyses 

revealed 17 transmission clusters, involving 114 out of 289 sequences and ranging in size 

from 3 to 31 members. 11 of these clusters comprised drug-resistant strains, including one 

cluster in which 2 out of 3 patients were infected with a strain carrying both K101E and 

M184V mutations. Intravenous drug use and non-B non-G subtypes were correlated with 

clustering. MSM exposure was positively related and IDU exposure was negatively related 

with cluster average growth. A98S polymorphism was present in 95.3% of subtype G virus 

and protease codon 35 insertion E35E_T was found integrating a cluster of subtype C, in a 

prevalence larger than previously described. 

Conclusions: In Braga, level of transmitted drug resistance is similar to other European 

regions and largely involved in transmission chains. This study failed in demonstrating 

independent predictors for TDR in transmission clusters, reinforcing the utility of universal 

sequencing at admission. 
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Introduction 

 

Transmitted or primary drug resistance, defined as the existence of drug resistance mutations 

(DRM) in individuals never before exposed to antiretroviral therapy (ART) is an important 

concern to public health because it jeopardizes the response to such therapy. In regions where 

ART is widely available, transmitted drug resistance (TDR) is usually the outcome of virus 

transmission between ART experienced and ART naïve people. Prevalence of TDR varies 

geographically and ranges from 5.6% in Sweden
380

 to 14.6% in United States of America
381

. 

In Europe, the multicentric SPREAD study reported a TDR prevalence of 11.1% in men who 

have sex with men from 2002 through 2007, revealing a significant difference in TDR 

according to route of transmission
382

. Temporal stage of HIV infection may also influence 

viral transmission and contribute to propagation of primary drug resistance. Early stages of 

infection are usually associated with higher viral load and unawareness of HIV status and so 

may disproportionally contribute to TDR
346

. An important role for transmission networks in 

dissemination of drug resistance is increasingly recognized
346,383,384

. Understanding the HIV-

1 transmission patterns becomes crucial to optimize prevention and control of the epidemic 

and reconstruction of transmission networks can provide valuable insights in the spread of the 

virus
385-387

. Until a decade ago, it was a task based almost exclusively in interview data 

collected from the patients. Since 2003, international guidelines recommend baseline testing 

for drug resistance in all HIV-1 infected patients
388

. This has led to a substantial increase in 

the availability of viral sequence data and allowed a new approach to study the HIV 

epidemiology, phylogenetic analysis
345

. This technique allows the identification of mutual 

characteristics of clusters, i.e. specific groups of patients in which multiple transmissions of 

HIV-1 have taken place. Studies using phylogenetics based on the pol gene of HIV were 

performed throughout the world to map local HIV epidemics in correlation with transmission 

pathway, drug resistance, risk behavior and cluster size. Some focused on the contribution of 

primary infection to onward transmission
346

, while others investigated the transmission of 

drug resistant virus
389-391

 or concentrated on specific populations
347,392

. Generally, these 

studies are centered on the predominant subtype or the most predominant route of 

transmission, with little information on the other circulating subtypes or transmission 

routes. In Braga, the local specificities in subtype diversity and patterns of transmission 

provided a chance to correlate the presence of transmission networks as established by the 

genetic relationship of the virus, with information on demographics, transmission mode, CD4 
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counts and the presence of drug resistant virus. In addition, there are several studies 

indicating regional differences regarding what fuels HIV-1 local epidemics
393,394

, motivating 

the attainment of a better insight in the dynamics of the infection and transmitted drug 

resistance in this specific geographical area. 
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Methods 

 

Study population 

Hospital de Braga is a university affiliated hospital serving as reference hospital to Minho 

region, in the Northwest of Portugal (population: 1093021). It provides care to over 900 

patients infected with HIV. Between 2005 and 2012, 289 patients older than 18 years had 

their virus sequenced and were included in the study. This represents 73.9% of all HIV-1 

infected persons admitted in the hospital in that period. 

Characterization of disease stage 

By reviewing clinical records, previous exposure to antiretroviral therapy was confirmed in 

109 patients – the ART experienced group. The drug-naïve cohort of 180 patients were 

further categorized in recent (≤ 1 year) infections (n=26), newly diagnosed patients 

(sequenced in the first 12 months after diagnosis) with infection of unknown duration (n=98) 

and previously diagnosed patients with infection of unknown duration (n=56). 

An individual fulfilling the following criteria was considered recently infected: an interval 

between the last negative HIV serology and sequencing inferior to 12 months, CD4+ 

count>200 cells/mm
3
 and absence of any AIDS defining condition. 

RNA extraction, amplification and sequencing 

Viral RNA was extracted using Magna Pure Total Nucleic Acid Isolation Kits (Roche 

Applied Science). RT-PCR and DNA sequencing were performed with Trugene HIV-1 

Genotyping System (Siemens Healthcare Diagnostics). The sequenced regions include part of 

the coding sequences of gag  (492 to 501), p6 (44 to 53), pol (60 to 402), p2p7p1p6 (129 to 

138), Protease (4 to 99) and RT (1 to 127, reported positions are amino acid positions relative 

to protein start in the HXB2 reference genome, GenBank: K03455.1). The subtyping of the 

289 sequences was made using REGA 3.0
348

  and non-automatic phylogenetic analysis. Non-

automatic bootscan analysis was also done with the program SimPlot to confirm selected 

subtypes using the F84 nucleotide substitution model and a sliding window of 200-bp, a 40-

bp step
232

. Detection of recombination was confirmed using the program RDP
349

. Sequences 

were uploaded to GenBank and assigned the following accession numbers: KM205831-

KM206119. 
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Drug resistance mutations (DRM) 

Definitions accepted by World Health Organization for drug resistance surveillance were 

adopted, according to three criteria: (i) mutations should cause or contribute to drug 

resistance, (ii) mutations should not occur as polymorphisms in the absence of therapy and 

(iii) mutations should be identified in most common group M subtypes. The following 

resistance mutations were scored: to nucleoside reverse transcriptase inhibitors (NRTI): 

M41L, K65R, D67N/G/ E, T69D/insertion, K70R/E, L74V/I, V75M/T/A/S, F77L, Y115F, 

F116Y, Q151M, M184V/I, L210W, T215Y/F/I/S/C/ D/V/E, K219Q/EN/R; to non-nucleoside 

reverse transcriptase inhibitors (NNRTI): L100I, K101E/P, K103N/S, V106A/M, V179F, 

Y181C/I/V, Y188C/L/H, G190A/S/E, P225H, M230L; and to protease inhibitors (PI): L23I, 

L24I, D30N, V32I, M46I/L, G48V/M, I50L/V, F53L/Y, I54V/L/M/A/T/ S, G73S/T/C/A, 

L76V, V82A/T/F/S/C/M/L, N83D, I84V/A/C, N88D/S, L90M. Every mutation had its 

criteria confirmed on HIV Drug Resistance Database, from Stanford University (available 

online on hivdb.stanford.edu). Transmitted drug resistance (TDR) was defined as drug 

resistance in previously untreated persons. As drug resistance rarely occurs without 

antiretroviral exposure, TDR implies that a virus with DRM was transmitted, either directly 

or through intermediates, from a person with acquired drug resistance. Polymorphisms were 

excluded, although some of it confers diminished susceptibility to antiretrovirals, because 

they represent mutations emerging frequently in virus not exposed to selective drug pressure. 

Only mutations conferring resistance to protease inhibitors (PI), nucleoside reverse 

transcriptase inhibitors (NRTI) and non nucleoside reverse transcriptase inhibitors (NNRTI) 

were considered, as integrase strand transfer inhibitors were infrequently used during the 

study period. 

RNA extraction, amplification and sequencing 

Viral RNA was extracted using Magna Pure Total Nucleic Acid Isolation Kits (Roche 

Applied Science). RT-PCR and DNA sequencing were performed with Trugene HIV-1 

Genotyping System (Siemens Healthcare Diagnostics). The sequenced regions include part of 

the coding sequences of gag  (492 to 501), p6 (44 to 53), pol (60 to 402), p2p7p1p6 (129 to 

138), Protease (4 to 99) and RT (1 to 127, reported positions are amino acid positions relative 

to protein start in the HXB2 reference genome, GenBank: K03455.1). The subtyping of the 

289 sequences was made using REGA 3.0
348

  and non-automatic phylogenetic analysis. Non-

automatic bootscan analysis was also done with the program SimPlot to confirm selected 

subtypes using the F84 nucleotide substitution model and a sliding window of 200-bp, a 40-
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bp step
232

. Detection of recombination was confirmed using the program RDP
349

. Sequences 

were uploaded to GenBank and assigned the following accession numbers: KM205831-

KM206119. 

Phylogenetic analysis and identification of clusters 

The 289 HIV-1 sequences obtained in this study and 88 sequences from the databases 

including the M group consensus and a previously defined  set of  subtype reference 

sequences
348

  including at least two reference sequences from each M group subtype (A1, A2, 

B, C, D, F1, F2, G, H, J and K) and from 26 CRF (CRF01_AE, CRF02_AG, CRF03_AB, 

CRF04_CPX, CRF05_DF, CRF06_CPX, CRF10_CD, CRF11_CPX, CRF12_BF, 

CRF13_CPX, CRF14_BG, CRF18_CPX, CRF19_CPX, CRF20_BG, CRF24_BG, 

CRF25_CPX, CRF27_CPX, CRF29_BF, CRF31_BC, CRF35_AD, CRF37_CPX, 

CRF39_BF, CRF40_BF, CRF42_BF, CRF47_BF)  were aligned using MUSCLE
350

. The 

phylogenetic analysis of the 377 sequences was conducted using RAxML 7.0.3 to produce a 

maximum likelihood tree using 1000 bootstrapping replicates
351

. Analysis was repeated with 

PhyML
352

 computing the aLRT support of all tree branches and by Bayesian analysis using 

BEAST
353

. The best fitting nucleotide-substitution model for the Bayesian analysis was 

estimated using jModeltest v2.1.2
354

 to be the general time reversible (GTR) model with a 

proportion of invariant site (I) and gamma distribution of rates (G), selected among 88 

different models according to the Akaike Information Criterion (AIC), the Bayesian 

Information Criterion (BIC), and the Decision Theoretic Framework (DT). An eventual bias 

introduced by convergent evolution due to the presence of drug resistant mutations was 

discarded by repeating the analysis after removal of codons associated with drug resistance in 

the standardized list of mutations for surveillance of transmitted drug resistance established 

by the World Health Organization
355

. The general topology of the trees and identification of 

clustering remained unchanged. Clusters of at least three individuals and pairs of 

transmission were identified based on a ML bootstrap support > 95%, a Bayesian posterior 

probability >0.95. 

Evaluation of cluster dynamics 

For each large cluster (≥5 elements) cluster growth factor was defined for the interval 2008-

2012 as the number of new sequences per sequence present in 2008 by the formula: 

, where n2012 is the number of sequences present in 2012, n2008 is the number 

of sequences present in 2008. For example, if a cluster contains 2 sequences in 2008 and 11 
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in 2012, the growth factor is  which represent the addition of 4.5 sequences for 

each original seed member. 

Statistical analysis 

Comparisons between groups were analyzed using the chi-squared test for categorical 

variables or Fisher’s exact test if assumptions to apply the chi-squared were violated, and the 

Mann-Whitney nonparametric test for continuous variables. The chi-squared test for trend 

was used to assess linear trend of drug resistance between 2005 and 2012. Logistic regression 

was performed to assess the predictive factors on the likelihood to belong to a transmission 

cluster. Statistical analysis and graphical presentation was done using GraphPad Prism 

version 6.04 for Windows, GraphPad Software, La Jolla California USA. All p values were 

two-sided and considered to be statistically significant if <0.05. 

Ethical considerations 

The project was approved by the Ethics Committee of the Hospital de Braga. Written consent 

was obtained for all the patients enrolled in the study. All clinical and laboratorial data were 

anonymized prior to analysis to ensure confidentiality of the patients.  



139 

 

Results 

 

Study population 

Overall, 76.8 % of cases were male with a median age of 34.0 years (interquartile range 

(IQR), 27.0-42.3). 94.8% of the patients were of white ethnicity and 90.0% were of 

Portuguese nationality.  No demographic significant differences were found when the study 

population was compared to the whole HIV-1 infected population attending Hospital de 

Braga in the same period. However, when compared to Portugal HIV infected population, 

this cohort have a higher prevalence of heterosexual transmission (55.0%, 95% CI 49.3-60.7 

vs. 43.3%, 95% CI 41.8-44.7; p<0.0001) and a lower prevalence of MSM (9.3%, 95% CI 6.5-

13.3 vs. 13.7%, 95% CI 12.7-14.8; p=0.027). The median CD4+ cell count in initial 

assessment was 303 cells/mm
3
 (IQR, 145.7-524.0) and the median initial viral load was 

35890 copies/ml. Based on pol gene sequencing, subtypes distribution showed subtype G as 

the most frequently found (29.4%), followed by subtype B (27.0%) and subtype C (14.5%). 

The other subtypes present were F1 (7.6%), CRF14_BG (5.2%), A1 (4.2%) and CRF02_AG 

(1.4%). Others, including D, J, and various CRFs and URFs represented 10.7%. 

Levels and trends of overall HIV-1 drug resistance 

People who were ART experienced had significantly higher rates of DRM (50/109, 45.9 %) 

than naïve patients (17/180, 9.4%; p<0.0001). The rate of drug resistance was also 

significantly higher in individuals with unknown duration of infection compared with those 

infected less than one year (24.5% vs. 10.7%; p=0.035). That difference is clearer in patients 

surely infected more than a year before sequencing, who have higher probability of carrying 

virus with DRM (31.9% vs. 12.4%; p<0.0001). However, differences between resistance 

rates according to time of infection were not significant if classes of antiretrovirals were 

considered separately. Patients with resistance mutations had a lower CD4+ cell count 

(median of 214 vs. 378; p=0.018) and no significant differences in sex, age, route of 

transmission and viral load. Frequency of resistance to any drug was higher in subjects 

infected with subtype B when compared with those infected with non-B subtypes, but not in a 

significant way (35.8% and 24.3% respectively; p=0.063). No significant difference was 

observed in resistance frequency between subtypes according to drug class (table 10). 
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With any DRM 

(n=67) 
With no DRM 

(n=222) 
P value 

Gender 
Male 49 (73.1%) 173 (77.9%) 0.415 

Age in years 
Median (IQR) 38.0 (29.3-43.6) 36.0 (27.4-48.0) 0.657 

HIV transmission mode 
Heterosexual 33 (49.3%) 126 (56.8%) 0.279 

MSM 7 (10.4%) 20 (9.0%) 0.723 
IDU 25 (37.3%) 75 (33.8%) 0.595 

CD4+ cell initial count in cells/mm3 

Median (IQR) 214 
(26.8-467.0) 

378 
(154.8-560.5) 

0.018* 

HIV-1 subtype 
B 24 (35.8%) 54 (24.3%) 0.063 
G 18 (26.9%) 67 (30.2%) 0.602 

Non B non G 25 (37.3%) 101 (45.5%) 0.237 
HIV diagnosis 

Recent infection 3 (4.5%) 25 (11.3%) 0.099 
Newly diagnosed¥ 13 (19.4%) 88 (39.6%) 0.002** 

Previously diagnosed¥ 51 (76.1%) 109 (49.1%) <0.0001*** 
Antiretroviral Therapy 

Naïve 17 (25.4%) 163 (73.4%) <0.0001*** 

Table 10: Differences among characteristics in the population studied 
regarding being infected with a virus harboring or not harboring drug 
resistance mutations (DRM). IQR: interquartile range; MSM: men who have 
sex with men; IDU: intravenous drug users; ¥: infection of unknown duration 
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Figure 25: Temporal trends of drug resistance rates between 2006 and 2012. Experienced means 

patients with previous exposure to antiretroviral therapy. 
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Overall resistance is decreasing, as it is explicit in figure 25. For ART exposed patients, there 

is a significant declining temporal trend. By class of drugs this decreasing tendency is 

significant for NRTI (p=0.012) and for PI (p=0.030), but not for NNRTI. 

Transmitted drug resistance 

Over the 8 years surveyed, the average rate of drug resistance mutations in drug-naïve 

patients to any antiretroviral drug was 9.4% (17/180; 95% CI, 5.6% - 14.7%). For protease 

inhibitors was 3.3% (95% CI, 1.2% - 7.1%), for nucleoside reverse transcriptase inhibitors 

was 3.3% (95% CI, 1.2% - 7.1%) and for non nucleoside reverse transcriptase inhibitors was 

3.9% (95% CI, 1.6% - 7.8%). 

Of the 17 naïve patients infected with virus carrying at least one mutation associated with 

drug resistance, 82.4% harbored one mutation, 11.8% two or three mutations and 5.9% over 

 

Patient 
NRTI NNRTI PI Resistance level 

 n Mutations n Mutations n Mutations 
Low Interme-

diate 
High 

R
ec

en
t 

In
fe

ct
io

n
 20 1 M41L 0 None 0 None AZT None None 

23 0 None 1 K101E 0 None EFV, ETR None None 

80 2 
T69D, 

M184V 
1 K101E 1 N88S 

ABC, EFV, 
ETR, SQV 

DDI 
3TC, FTC, 

ATV 

In
fe

ct
io

n
 o

f 
u

n
kn

o
w

n
 d

u
ra

ti
o

n
 

14 0 None 1 K103S 0 None  EFV NVP 

26 0 None 1 G190A 0 None ETR, RPV EFV NVP 

71 2 
T69D, 

M184V 
0 None 0 None ABC DDI 3TC, FTC 

109 3 
D67N, 
T215S, 
K219Q 

0 None 0 EFV, ETR 
TDF, DDI, 

ABC 
AZT None 

110 0 None 0 None 1 L90M ATV, LPV SQV None 

118 0 None 0 None 1 M46I None None None 

120 1 T215S 0 None 1 None AZT None None 

141 0 None 1 None 0 M46L None None None 

152 0 None 1 P225H 0 None None EFV, NVP None 

160 0 None 0 None 1 I54v 
ATV, LPV, 

SQV 
None None 

184 0 None 0 None 1 L90M ATV, LPV SQV None 

209 0 None 1 K101E 0 None EFV, ETR None None 

211 1 None 0 K103N 0 None None None EFV, NVP 

 270 1 Q151L 0 None 0 None None 
ABC, AZT, 

DDI 
None 

Table 11: Transmitted drug resistance among study cohort, resistance level estimated by HIVdb: 
Genotypic Resistance Interpretation Algorithm, Stanford University. Only first line antiretrovirals 
were considered. PI: protease inhibitor; NRTI: nucleoside reverse transcriptase inhibitor; NNRTI: non 
nucleoside reverse transcriptase inhibitor 
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three mutations. Mutations of resistance to just one pharmacological class were found in 

94.1% of subjects and one patient was infected with virus harboring resistance mutations to 

the three classes tested. More frequently, mutations appeared as singletons. Mutations 

represented twice were T69D, M18V and T215S against NRTI; K103N/S against NNRTI; 

and L90M and M46I/L against PI. K101E was the only mutation represented thrice (Table 

11). In recently infected patients, the prevalence of overall TDR was 11.5% (3/26; 95% CI 

2.4-30.2), no different from patients with unknown duration of infection (14/154, 9.1%; 95% 

CI 5.1-14.8). However, comparing newly diagnosed with previously diagnosed patients, a 

significant difference was found regarding existence of TDR: patients diagnosed within one 

year of sequencing had 12.2% of TDR and patients diagnosed over a year before sequencing 

had 3.6% (χ2=5.44, p=0.02). By drug class, among recently infected patients TDR was 7.7% 

against NRTI, 7.7% against NNRTI and 3.8% against PI. In patients with unknown duration 

of infection, TDR varied from 2.6% against NRTI to 3.2% against NNRTI and PI. 13 out of 

17 (76.4%) patients with TDR were clustered, an almost significant difference with patients 

with no TDR (p=0.055). No intravenous drug user had TDR, other modes of transmission 

showed no differences. There were also no differences between patients with TDR or not 

regarding sex, age, initial CD4+ cell count and HIV-1 subtype. 

Trends of TDR rates 

In figure 26 we can see a linear not significant increase in rate of TDR between 2006 and 

2012. Clearly, polynomial trend shows a parabolic temporal curve, concentrating all TDR 

y = 0,0075x - 14,974 
R² = 0,113 
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Figure 26: Temporal trends of transmitted drug resistance (TDR) rate in naïve population between 

2006 and 2012. 
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between 2008 and 2011. Disaggregating by drug class, there were sharp increases of NRTI in 

2009 and NNRTI in 2010, shaping this trend. 

Transmission clusters and clustering 

Among the 289 subjects, 114 (39.4%) were part of 17 transmission clusters, ranging from 3 

to 31 members (mean=6.7), named ‘01’ to ‘17’. 14 pairs of transmission were also identified, 

named ‘a’ to ‘n’. 28 sequences grouped in 9 small clusters (with 3 or 4 members), distributed 

by subtype B (n=6), subtype C (n=1), subtype G (n=1), subtype F1 (n=1) and 86 were part of 

8 large clusters (with at least 5 individuals), two with 5 (both of subtype B), two with 7 

(subtypes G and F1), one with 9 (subtype A1), one with 10 (subtype F1), one with 12 

(CRF14_BG) and another with 31 sequences. This largest cluster consisted of individuals 

infected with a subtype C virus, 87.1% reporting intravenous drug use as mode of 

transmission. Additional large clusters showed homogeneity in main route of transmission 

and a tendency to be composed of patients with non recent infections (Table 12). Clusters 5, 

14 and 16, formed respectively by subtypes B, F1 and A1 infected individuals, had only naïve 

patients. On other hand, clusters 11 and 17, formed respectively by subtype C and 

CRF14_BG infected individuals, had large proportions (48 and 75%) of ART experienced 

patients. 

Clustering occurred significantly more in non-B non-G subtypes, specifically in F1 

(p<0.0001), C (p=0.0008) and A1 (p=0.001). On other hand, a patient infected with either 

subtype B or G virus had significantly less probability of being part of a cluster. Regarding 

mode of transmission, clustering was significantly more probable among intravenous drug 

users (p=0.008). No significant differences were found regarding MSM and heterosexual 

contact as mode of transmission and clustering (table 13). 

Cluster Subtype n 
Main 

Transmission 
route 

Recent 
infections 

Patients 
with TDR 

Patients 
with DRM 

ART 
experienced 

Maximum 
Window 
Period 

11 C 31 IDU (87.1%) 1 0 5 15 2005-2011 

17 CRF14_BG 12 IDU (83.3%) 0 0 3 9 2006-2011 

13 F1 10 HET (70.0%) 2 1 1 3 2007-2011 

16 A1 9 HET (66.7%) 2 1 0 0 2008-2011 

14 F1 7 HET (85.7%) 0 0 0 0 2008-2011 

9 G 7 HET (71.4%) 1 0 1 1 2006-2009 

1 B 5 IDU (80%) 0 1 2 2 2007-2011 

5 B 5 MSM (60%) 1 0 0 0 2006-2010 

Table 12: Characterization of large clusters identified in study patients. Maximum window period is the time 
interval between the first and last infections within each cluster. TDR: transmitted drug resistance; DRM: drug 
resistance mutation; IDU: intravenous drug users; HET: heterosexual contact; ART: antiretroviral therapy. 
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According to the duration of infection, transmission clusters were independent from 

estimated time of infection as 75.0% of recently infected individuals and 64.4% of patients 

with unknown duration of infection are in a cluster (p=0.698). 

Several factors that could enhance the likelihood of belonging to a transmission cluster were 

investigated by a multivariate regression model. It was found that being infected with a A1 

(p=0.01), C (p=0.0004), or F1 (p<0.0001) HIV-1 subtype or had contracted the infection via  

 
Not in a Cluster 

(n=175) 
In a Cluster 

(n=114) 
P value 

Gender 
Male 133 (76.0%) 89 (78.1%) 0.684 

Age in years 
Median (IQR) 34.0 (27.0-43.0) 33.0 (26.9-41.1) 0.638 

HIV diagnosis 
Recent infection 16 (9.1%) 12 (10.5%) 0.698 
Newly diagnosed 53 (30.3%) 48 (42.1%) 0.039* 

Previously diagnosed 106 (60.6%) 54 (47.4%) 0.027* 
HIV transmission mode 

Heterosexual 103 (58.9%) 56 (49.1%) 0.104 
MSM 19 (10.9%) 8 (7.0%) 0.273 
IDU 50 (28.6%) 50 (43.9%) 0.008** 

CD4+ cell initial count in cells/mm3 

Median (IQR) 295 
(145.5-498.7) 

308 
(145.6-566.5) 

0.670 

Initial viral load (log10) 

Median (IQR) 
4.533 

(3.858-5.172) 
4.612 

(3.993-5.243) 
0.794 

HIV-1 subtype 
B 57 (32.6%) 21 (18.4%) 0.008** 
G 75 (42.9%) 10 (8.8%) <0.0001*** 

Non-B non-G 43 (24.6%) 83 (72.8%) <0.0001*** 
Drug Resistance Mutations (DRM) 

Any DRM 45 (25.7%) 22 (19.3%) 0.207 
PI 12 (6.9%) 1 (0.9%) 0.017* 

NRTI 32 (18.3%) 13 (11.4%) 0.115 
NNRTI 26 (14.9%) 17 (14.9%) 0.990 

Antiretroviral Therapy 
Naïve 104 (59.4%) 76 (66.7%) 0.215 

Table 13: Differences among characteristics in the population studied 
regarding belonging or not to a cluster. IQR: interquartile range; MSM: 
men who have sex with men; IDU: intravenous drug users; PI: protease 
inhibitor; NRTI: nucleoside reverse transcriptase inhibitor; NNRTI: non 
nucleoside reverse transcriptase inhibitor 

use of intravenous drugs (p=0.0005) were significantly related with the risk of belonging to a 

transmission cluster. On other hand, being infected with subtype G was negatively correlated 

with clustering (p<0.0001) 
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Transmission clusters and HIV-1 resistance 

Among 17 patients with TDR, 9 (52.9%) were involved in clusters and 4 were part of 

transmission pairs (Table 14). One of the transmission pairs was formed by 2 TDR 

homosexual patients, both sharing PI mutation L90M.  Cluster 6 is the only one where TDR 

patients are majority (2/3). Mutation K101E exists in all patients involved in that cluster. In 

cluster 13, a mutation in codon 103 is present in both patients who have DRM. Altogether it 

was possible to phylogenetically ascertain a relation between infecting virus in 76.5% of 

naïve patients. Considering ART experienced patients involved in clusters and transmission 

pairs, where naïve patients with TDR were identified, as "seeders" (n=11), a comparison 

between this group of seeders and all other ART experienced individuals showed a strong 

positive correlation with infection of unknown duration (spearman r=0.938, 95% CI 0.910-

0.958, p<0.0001). 

Patient 
Cluster 
(size) 

Pair Subtype 
Mode of 

Transmission 

Year of 
Infection 
(Stage) 

TDR Mutations 
DRM present in other 
cluster/pair members 

(n) 

270 01 (5) No B HET 2009 (N) Q151L K101E (1) 
26 04 (3) No B HET 2010 (N) G190A None 

80 06 (3) No B HET 2008 (R) 
N88S; T69D; M184V; 

K101E M184V+K101E (1) 
209 06 (3) No B HET 2008 (N) K101E 
71 07 (3) No B HET 2009 (N) T69D; M184V None 

211 10 (3) No G HET 2011 (N) K103N None 
14 13 (10) No F1 HET 2010(N) K103S K103N (1) 

160 15 (4) No F1 HET 2009 (N) I54V None 
109 16 (9) No A1 HET 2009 (N) D67N; T215S; K219Q None 

110 
184 

No 
No 

a 
a 

C 
C 

MSM 
MSM 

2005 (P) 
2009 (N) 

L90M 
L90M 

NA 
NA 

118 No h B MSM 2006 (P) M46I None 
141 No j B HET 2008 (N) M46L None 

Table 14: Naïve patients with transmitted drug resistance (TDR), integrated in clusters or 
transmission pairs. DRM: drug resistance mutations; HET: heterosexual contact; MSM: men who 
have sex with men; R: infections recent (≤ 1 year); N: newly diagnosed patients (sequenced in the 
first 12 months after diagnosis) with infection of unknown duration; P: previously diagnosed 
patients with infection of unknown duration; NA: not applicable 
 

A multivariate regression model trying to recognize factors correlated to the risk of TDR 

failed significance with the following parameters: age, sex, HIV-1 subtype, infection stage 

and mode of transmission. In univariate analysis, only the fact of being IDU has a negative 

significant correlation with TDR, as no case of transmitted drug resistance occurred with that 

route of transmission.  
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Cluster dynamics 

We found 8 transmission 

clusters with at least 5 

elements. The cluster growth 

factor was estimated for the 

interval 2008-2012 (table 15). 

All increased on size, by an 

average factor of 2.02. An 

average growth of 1 was used 

as cutoff to discriminate clusters, based in the assumption that a value over 1 means 

sustainable growth in the considered period of time. Noticeably, larger average growth rates 

were related to sexual transmission especially among MSM. On the contrary, IDU exposure 

was strongly related to slow growth clusters (table 16). Newly diagnosed patients with 

infection of unknown duration were significantly associated with cluster average growth>1. 

No differences were detected regarding sex, age, CD4+ cells initial count and recent 

infections. Initial viral load had a higher not significant median in fastest growing clusters, 

with p=0.059. 

 

 

Cluster 
(subtype) 

Elements in 2008 Elements in 2012 
Growth 
factor 

11 (C) 18 31 0.72 
17 (BG) 8 12 0.50 
13 (F1) 5 10 1.00 
16 (A1) 1 9 8.00 
14 (F1) 2 7 2.50 
9 (G) 5 7 0.40 
1 (B) 2 5 1.50 
5 (B) 2 5 1.50 

Table 15: Cluster growth between 2008-2012 for the clusters 
with n≥5 

 
Average Growth>1 

(n=26) 
Average Growth≤1 

(n=60) 
P value 

Gender 
Male 19 (73.1%) 49 (81.7%) 0.369 

Age in years 
Median (IQR) 37.0 (22.9-44.2) 32.0 (27.0-40.0) 0.840 

HIV transmission mode 
Heterosexual 15 (57.7%) 18 (30.0%) 0.015* 

MSM 6 (23.1%) 0 (0%) 0.0001*** 
IDU 5 (19.2%) 42 (70.0%) <0.0001*** 

CD4+ cell initial count in cells/mm
3 

Median (IQR)
 301.0 

(135.7-591.2) 
363.5 

(203.8-579.6) 
0.602 

HIV-1 initial viral load (log10) 

Median (IQR) 
4.768 

(4.083-5.610) 
4.425 

(3.694-4.806) 
0.059 

HIV diagnosis 
Recent infection 3 (11.5%) 4 (6.7%) 0.448 

Newly diagnosed
¥
 14 (53.8%) 18 (30.0%) 0.036* 

Previously diagnosed
¥
 9 (34.6%) 38 (63.3%) 0.014* 

Table 16: Differences among characteristics in patients integrating clusters 
regarding average growth. IQR: interquartile range; IDU: intravenous drug users; 
MSM: men who have sex with men; ¥: infection of unknown duration 
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Reverse transcriptase A98S polymorphism and protease E35_T insertion 

These two non-resistance related mutations were studied because of their strong association 

with a subtype in a geographic region (subtype G in Iberian Peninsula for A98S) and for its 

rarity among naïve patients (for protease codon 35 insertion). In our cohort, A98S was found 

in 104 (36%) sequences. The subtype distribution was disproportional, as in subtype G, 81/85 

(95.3%) sequences carried this mutation with extra 7 present in several recombinant forms of 

subtype G. The remaining 16 A98S polymorphisms were present in subtype B virus (10), 

subtype C (4), F1 and CRF_47 (1 each). 33/104 of A98S positive sequences clustered 

(31.7%, comparing with 58.9% clustered A98S negative sequences; p<0.0001), 18 of them in 

subtype G clusters or pairs of transmission. All of cluster 01 (subtype B) elements (n=5) 

carried the polymorphism as well as 4 of the 31 members of cluster 11 (subtype C). This 

polymorphism appeared in 60 sequences obtained from naïve patients (with no significant 

difference to A98S negative sequences found in naïve patients) and in association with 26 

sequences carrying some DRM. Among those, 20 were resistance mutations to NNRTI, 

although in only two patients these DRM were classified as TDR (K101E and K103N). 25% 

of recent infections carried A98S mutation, comparing with 8% of infections with unknown 

duration (p=0.01). 

Insertion of a threonine (nucleotides: ACA) at codon 35 of protease (E35E_T) was found in 

22 subtype C sequences, all involved in the same cluster, indicating its monophyletic origin. 

Its prevalence in this cohort was 7.6%, but among naïve patients was 12.2% and in subtype C 

infected individuals it was 52.4%. This insertion was not found in any other HIV-1 subtype in 

Braga. CD4+ cell count median was 203 cells/mm3, range 22 to 478. Through coalescent-

based analysis it was concluded that the time of the most recent common ancestor was 1994 

(1990-1998). Intravenous drug use was the route of transmission for 86.4% and all but three 

patients, one from Lisbon and two from Oporto, where from Braga region. None was 

considered a recent infection and 13 were never exposed to ART. No PI resistance mutations 

were found in any of these patients. In one patient K103N was detected and in another there 

were 6 RT resistance mutations (K65R, V75M, Y115F, M184V for NRTI and K103N, 

V106M for NNRTI). Both of these patients were ART experienced. 

Six of the subtype C cluster patients were re-sequenced (mean interval between the 2 

sequences dates: 25 months, range 8 to 42 months). Three of them already carried E35E_T 

insertion and maintained it 2 years later. In the other three, that insertion emerged. In the first 

sequencing, none of these 3 virus exhibited DRM. In the second sequencing, one of it carried 
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K103N and Y181C against NNRTI, and K65R, L74I, Y115F, M184V against NRTI. This 

patient initiated ART with efavirenz, tenofovir and emtricitabine 15 months after first 

sequence and 27 months before the second. No DRM against protease inhibitors were 

detected in none of these patients. 
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Discussion 

 

HIV transmission depends on many factors: access to screening, access to antiretroviral 

therapy, human behavior, viral load, sexually transmitted diseases and other coinfections. 

That is probably why some studies concluded by a disproportionately high responsibility of 

early stages for transmission in TDR
395

 and others suggest that most transmitters are 

individuals chronically infected and on antiretroviral therapy
396

. Probably, all stages of 

infection are contributing to the transmission of HIV-1. Primary infection is surely more 

contagious but for a shorter period. On other hand, asymptomatic stages, even being less 

infectious, will typically contribute more to the net transmission of HIV-1 because of its 

longer extent in community. Transmitted drug resistance has a potential impact on first line 

regimens of ART, compromising its efficacy and durability. It is of immense importance to 

take full advantage of this initial treatment offered to a HIV-1 positive person in order to 

control his viral load (and in that way prevent transmission and setback progression to 

AIDS), prevent more drug resistance mutations, while maintaining toxicity and costs at a 

reasonable level. Missing this target means second-line therapy, usually more complex to 

adhere, iatrogenic and expensive. In that sense, TDR surveillance is a fundamental public 

health approach to minimize its occurrence. Comparing to data from previous regional or 

national surveys, TDR prevalence in Braga (9.4%) is in line with overall levels found in 

Portugal (7.8%)
245

, in France  (9.0%)
397

, in Leuven (9.6%)
398

, in Madrid (9.7%)
399

 and 

globally in Europe (8.9%)
382

. Nevertheless, it is somewhat distant from the low value of 5.6% 

in Sweden
380

 and from an elevated 14.6% in United States of America
381

. Regarding routes of 

transmission, this study cohort is different from Portugal reality – more heterosexual contact 

and less MSM. It is then possible that TDR prevalence from a region is not representative 

from a country, as it is demonstrated in several studies
400,401

. These differences are supportive 

of the importance of studying local and regional epidemics and integrate data in larger 

multicenter initiatives.  

In this study there is no influence of migrations, as more than 90% of the population is native 

and infected in the region. Other locations have sharp differences between native population 

and immigrants, with the later contributing in large scale for TDR
380,402

. 

Several significant associations were found: clustering was significantly related to non B non 

G subtypes and to transmission via intravenous drug use. In the first case it is believed that 
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the longer persistency and diffusion of subtypes B and G in this region led to sparse and 

scattered clustering. Concurrent to that is the fact that subtype B is implicated in 8 clusters, 

all with 3 to 5 elements, contrasting with larger clusters of subtypes A1, C, and F1. IDU 

networks of transmission are typically formed in closed subpopulations, while sexual 

transmission engages in more complex and open network structures, explaining why IDU 

transmission correlates positively with clustering. 

It seems logic that a chronic infection gives birth to more mutations as the positive 

association found in this study indicate. Late presenters are patients who have a CD4+ cell 

count under 200/mm
3
 in the moment of diagnosis. They have a remarkable influence in the 

presence of DRM: CD4+ count<200 cells/mm
3
 in initial counting significantly correlates 

with presence of any mutation (p=0.021) 

Although 76.5% of patients with TDR were involved in clusters or transmission pairs, none 

of the studied factors were significantly associated with transmission clusters containing 

TDR. Therefore, it was impossible to identify a non-sequence-based predictor of being in a 

transmission cluster with TDR, probably due to small size of most transmission chains in 

Braga. The same conclusion was reached recently by Yebra and colleagues in Spain
399

. There 

was a negative predictor, as no patient presumably infected via intravenous drug use 

exhibited TDR. This finding is coherent with observations made in Madrid, where TDR 

among IDU is lower than among MSM, even inexistent in some years
403

, and with SPREAD 

Programme, which revealed an IDU TDR prevalence lower than in MSM or heterosexually 

infected people
382

. 

Before 2008 and after 2011 no TDR was found in this cohort. The trend of TDR in 2008-

2011 is justified with a sharp increase on NRTI resistance in 2009 and on resistance to 

NNRTI a year later. These peaks were not related to clustering or recent infections. Probably, 

they translate prescription practices, with use of more potent regimens with large scale use of 

NNRTI beginning some years earlier, as the peak of resistance to both classes among ART 

experienced patients occurred in 2006. Trend of DRM in ART exposed individuals is 

significantly decreasing, explained by better virologic control and better management of drug 

resistances. This tendency will reflect on TDR with some delay. Consequently, ART 

experienced patients will tend to be less important in transmitting drug resistance and we are 

still experiencing a rising trend of naïve patients in perpetuating TDR. 



151 

 

As reported previously
404,405

, the majority of patients with TDR (82%) had virus with 

singleton resistance mutations. Resistance profiles would compromise first line therapeutics 

if based in NNRTI for patients 14, 26, 152 and 211. In all other, recommended first line 

regimens were predicted to be effective but the mutations present will lower the threshold for 

subsequence emergence of resistance and thus affect treatment efficacy. The presence of the 

mutation pair D67N/K219Q in a patient justifies apprehension because this specific 

combination has a low fitness cost to the virus, is readily transmitted and is durable in the 

recipient
406

. 

Cluster growth factor was used as a measure of cluster dynamics. In the way it was defined in 

this study, this rate cannot be used as a measure of onward transmissions as our population 

has a definite date of diagnosis but not an accurate date of infection. However, a cluster still 

reflects related infections and when sampled over an exact period of time, cluster with larger 

growth factors can indicate subepidemics with greater relative transmission rates. Larger 

average growths in a cluster were found to be associated with sexual transmission, 

particularly among MSM, and newly diagnosed infections. A strong negative association 

with IDU exposure might denote a deceleration in growth of clusters integrating intravenous 

drug users, leading these clusters (particularly 11C and 17BG) to unsustainable growth rates 

and eventually to inactivity. No association with recent infections was established, however 

infections with evolution superior to one year were more frequently found in slower growing 

clusters, a logical assumption when we remember that existing clusters informs on historical 

transmissions, not necessarily active relations between partners. 

In an international multicenter study, Kantor and collaborators compared more than 3600 non 

B subtypes sequences with more than 4700 subtype B sequences to conclude for the existence 

of subtype-specific polymorphisms
304

. Among those it was A98S, a mutation in HIV-1 

reverse transcriptase, described as a subtype G polymorphism. However, when reviewing the 

data, we found that more than 70% of subtype G sequences used were originated from 

Portugal and Spain. Querying Stanford HIV Drug Resistance Database and selecting subtype 

G sequences from drug naïve persons (n=165; 57 from Portugal or Spain and 108 from other 

countries) it was found that 51/57 (89.5%) of the Iberian sequences harbored the A98S 

mutation against only 10/108 (9.3%) of sequences from the rest of the world. A paper 

published in 2001 highlighted the unique occurrence of this polymorphism in samples from 

Spain and Portugal
407

. Considering that HIV-1 distribution obeys to several geographical 

bias, it is plausible to consider that patterns of subtype-specific polymorphisms may be 
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geographic-specific instead. In Braga’s cohort it was evident a massive predilection of A98S 

polymorphism for subtype G and a significant greater occurrence in recent infections. On the 

contrary, A98S positive sequences clustered less than their counterparts, probably because a 

patient infected with subtype G virus had significantly less probability of being part of a 

cluster.  

To our knowledge, this is the largest prevalence (7.6%) ever reported of a protease codon 35 

insertion. These insertions have been reported since 2001, although with prevalences much 

smaller than ours, varying between 0.2% and 4.5%
408-411

. There are several variants of this 

insertion, configuring a heterogeneous group in terms of phenotypic consequences: insertion 

E35E_G and E35E_E apparently replicates better than the wild type virus
408,409

, E35E_TN 

decreased the replication rate of PI-resistant strains, E35E_TD and E35E_T were associated 

with decreases in replicative capacity in single case reports
412,413

, but to date none of these 

insertions showed potential to alter drug susceptibility. In any case, the impact of the 

insertion on viral replication is difficult to predict, depending on the nature of the inserted 

amino acids and the pattern of drug-resistance-associated mutations. In our cohort it was 

E35E_T that was isolated, the same insertion described in another Portuguese city, Coimbra, 

in 2009
414

. In both centers only subtype C was involved and the insertion clustered in one 

phylogenetic lineage, suggesting the possibility of transmission. In the same way, no 

mutations conferring resistance to protease inhibitors were found.  In Coimbra, the cluster 

related mainly to sex workers, in Braga the main transmission route was IDU.  Equally, 

CD4+ cell count and viral load varied to a great extent, signaling no influence of codon 35 

insertion on disease progression. Overall, protease insertions were observed both in PI-treated 

patients and in PI-naïve patients and were transmissible. In PI-naïve patients, protease 

insertion virus persisted for a long time. In addition, codon 35 insertions were able to emerge, 

even in the absence of PI pressure. As stated earlier, if this insertion decreases viral 

replicative capacity, although with no impact on resistance level, what permit its persistence? 

A clue is given by Paolucci and collaborators, who found that E35E_G insertion could 

recover the viral replication under antiretroviral treatment
409

, but further investigation is 

needed to elucidate the effects of other insertions on viral fitness. In any case, this protease 

insertion could be useful as epidemiological signature 

The main limitation of this study resides in its cross-sectional design, which included 

convenience sampling, collected as patients were diagnosed or came into clinics for care. 

This methodology may not truly represent the region's population and may explain why there 
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were no TDR among IDU, for example. The representativeness of the population studied can 

be further disturbed by the impossibility of sequencing virus from the persons who remain 

undiagnosed and unaware of their HIV status. In addition, chronically infected and treated 

individuals with undetectable viral loads cannot be genotyped, although some of them might 

have been source of infections before achieving virologic suppression. 

In summary, in Braga there is a prevalence of TDR similar to other locations in Europe. In 

the only published study focusing TDR in Portugal
245

,TDR rate was no different (14/180 vs. 

17/180), in a sample including more MSM and less IDU, collected in a single year (2003) and 

trying to reflect the distribution of HIV-1 infections in Portugal. However, local specificities 

are of utmost relevance to the clinician, as local TDR data accurately reflects the ecology of 

the virus, driving more adequate use of ART and phylogenetics applied at clinical level may 

reveal related infections. Subsequently, this data needs to be collated at regional, national and 

international level for purposes of TDR surveillance and to elucidate transmission patterns 

and trends. A relation of faster growing clusters with sexual modes of transmission was 

detected. Opposing, IDU exposure in clusters was related with unsustainable growth rates, 

indicating network transmissions with little activity. 

This study cohort was mainly composed of patients with unknown duration of infection and 

76.4% of the patients with TDR were involved in transmission networks. Among patients 

with unknown duration of infection, being diagnosed less than a year before sequencing was 

significantly correlated with presence of TDR. In addition, most clusters mix naïve and ART 

experienced patients, as well as recent and chronic infections. This means, as this study was 

unable to significantly identify a population that could be targeted for future TDR prevention 

strategies, that it seems rational to stress two points: first, the importance of universal 

performing of baseline HIV-1 genotyping; and second, early access to antiretroviral 

treatment. Achieving these two goals will allow sources of transmission (seeders) 

identification and offer them better virologic control, lowering the risk of HIV-1 

transmission. 
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CHAPTER 5: GENERAL DISCUSSION AND CONCLUSIONS 

 

HIV-1 elusive origins can be looked as a fable with several moralities attached. By the time 

physicians realized that HIV-1/AIDS existed it was already well established in the human 

host, serving as a practical reminder of the conditions that foster the emergence of new 

infectious diseases: zoonosis, originated in wildlife and correlated with socio-economic, 

environmental and ecological factors. For decades, HIV-1 infected human populations but 

had such a small impact that it passed unnoticed. In comparison to pathogens like malaria 

(which is carried by mosquitoes) and the common cold (which can travel through the air), 

HIV-1 is quite untransmissible, relying on the direct transfer of body fluids. There was a 

coincidence of historical events that allowed the window of opportunity for the virus to 

spread in humans. These include: the practice of hunting chimpanzees; the rise of densely 

populated cities in Africa; and a correlated increase in high-risk behaviors involving the 

exchange of body fluids such as injection drug use or prostitution. The fact that changes in 

human societies were so critical in the rise of the virus raised the awareness to emerging 

infectious diseases with zoonotic origins as human populations grow and affect the climate 

and wildlife. 

An ancestral virus in chimpanzees existed, it is possible that multiple subsequent cross-over 

events between non-human primate species occurred or that the virus was carried in humans 

prior to the expansion of the M group for a large period of time. Chimpanzees might be 

considered a "passage" for lentiviruses to adapt to humans, given the genetic similarity 

between humans and chimpanzees. For example, vpx gene was lost by deletion upon 

adaptation to chimpanzees
415

. This genomic deletion resulted in the reconstruction of the 

overlapping vif gene by ‘‘overprinting,’’ creating a unique vif that overlaps in its 3’ end with 

the vpr gene and can antagonize hominid APOBEC3 more efficiently than its ancestors
415

. 

Consequently, viral gene loss and adaptation in chimpanzees predated the origin of HIV-1, 

which was originated through a series of gene loss and adaptation events in its chimpanzee 

precursors, inducing viral adaptations to new hosts proteins. This allowed for efficient 

infection in the human host. This transition between species was facilitated by the proximity 

between the primate species and by the versatility of the virus.  
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The generation of genetic variability is a million times faster in HIV-1 than in Homo 

sapiens
82

posing a large challenge for viral recognition by the host immune system and 

contributing to the fact that HIV-1 is still responsible for thousands of deaths each year. 

The high level of HIV-1 genetic diversity has important implications in the diagnostic, 

treatment and monitoring of the disease
289,290,416

. Questions have been raised on whether 

diversity may also affect viral transmissibility and pathogenicity
274,417,418

. Since the human 

immune response to HIV-1 is strain-specific
419

it is consensual that the viral genetic diversity 

has been a major limitation in the design and development of an effective vaccine. This work 

mainly focused on the comprehension of how viral diversity and evolution may provide 

important tools to undergo surveillance and monitoring of a local or regional HIV-1 

epidemic. 

HIV-1 strains are not randomly distributed across the World but display distinctive 

geographical distributions, with regional subtype variation
217

. The existing regional 

differences are thought to be related with the founder effect that occurred when a certain 

subtype was introduced in a new susceptible population where it initiated a new transmission 

network with posterior diversification. Eventually, some strains were of poorest fitness and 

could not spread far from their origin and others could not establish in extensive transmission 

networks. However, possibly due to increasing migrations and global human circulation, 

these geographic patterns are becoming imprecise as diversity increases at regional and 

national levels.  

HIV-1 genetic diversity among different clinical isolates, especially when collected from 

different geographical locations, can be very high. However, even in isolates from the same 

patient variants are present as relatively similar quasispecies
420

. This population of 

genetically diverse virus that develops in each infected individual confers to HIV-1 the 

capacity to rapidly and effectively adapt to changes in host immune responses or other 

constrains. 

Emergence of HIV/AIDS was facilitated by this ability of viral adaptation and by 

demographic and social changes in the host population that favored transmission such as 

higher population density, urbanization and massive migrations
421

. Nevertheless, HIV-1 has 

poor transmissibility when compared with other agents, like hepatitis B virus, influenza virus 
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or measles virus. Its high latency time and in particular its capacity to undergo sexual 

transmission explains HIV-1 success as a human pathogen. 

It is well established that the expanding HIV-1 diversity in Western Europe is mainly caused 

by population movements, such as migration and travelling, and sexual contacts among 

individuals from different countries where different variants are highly prevalent
422-427

.In 

Portugal that must have happened earlier in the epidemic, as demonstrated by the singular 

genetic diversity of HIV-1 strains circulating in the country. Knowing the close commercial 

and social relations between Portugal and its former colonies in Africa, studies were 

performed to evaluate the genetic diversity in those countries. In Cape Verde HIV-1 subtype 

G was the prevailing subtype in Oliveira et al study, in 2012
265

. They also found that G 

variants present in Cape Verde were imported mostly from Angola and Portugal where highly 

divergent subtype G strains prevail. In Angola, the phylogenetic analyses showed extremely 

high genetic diversity among circulating HIV-1 strains
269

. Only 53% of the circulating virus 

were pure subtypes with subtype A and its sub-subtypes A1 and A2 predominating over the 

other subtypes. There is also a significant proportion of subtype C (11.3%). Expansion of 

these virus to Portugal may have started as early as 1961, due to large migratory movements 

caused by Angolan independence war. Thus, Portugal is likely one of the entry-points of 

HIV-1 in Western Europe, especially in the case of non-B subtypes. Subtype B, the dominant 

HIV-1 subtype in the Occident, is thought to come from the United States via Haiti, where 

risky behavior of military personnel returning from Central Africa may have facilitated the 

viral introduction in Americas
7
. In Braga, similarly to Portugal, we found a high diversity in 

subtypes and CRF circulating, as it is evident in the local epidemic characterization made in 

this work. The co-circulation of recombinant virus is known to lead to the appearance of 

URF, in a so called recombination hotspot
428

. In fact, in figure 19B we can see the rise in the 

incidence with infections with locally rarer subtypes (A1 and F1), as well as several CRF and 

URF. Actually, URF represented 9% of total infections in Braga. The geographic distribution 

of subtypes is subject to constant change. With the globalization new HIV-1 strains are 

emerging in areas where they were originally non-existent
429-431

. Thus importation and 

exportation of new types, subtypes and even CRF of HIV-1 is possible. Tracking the presence 

of new HIV-1 strains is important for surveillance purposes, diagnosis and disease 

monitoring and possibly also effective development of vaccines. Molecular epidemiology as 

recently emerged as an excellent tool to investigate HIV-1 diversity and to perform disease 

surveillance and monitoring
432

. 
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There are clinical and biological differences between HIV-1 group M subtypes, justifying on 

their own an interest in the study of HIV-1 diversity. One emblematic example are the 

subtype-related differences in disease progression and viral transmission for subtypes C and 

D that were shown to be more aggressive than subtype A
135,417,433

. It is reassuring that no 

difference is apparent in response to antiretroviral therapy across a broad spectrum of HIV-1 

subtypes
434

. In addition, some patients, called elite controllers, are able to mount effective 

host immune responses that seem to be dependent on host genetic factors and not on viral 

subtype
435

. Thus far the usefulness of phylogenetic study of HIV-1 diversity resided mainly 

on addressing several relevant questions, including the HIV-1 origin, its evolutionary driving 

forces and intra- and inter-host diversity. The continuous development of robust statistical 

and informatics tools can further deliver powerful insights into host-related and 

environmental evolutionary processes. These will likely allow the identification of 

population-level phylogenetic patterns reflecting both transmission dynamics and genetic 

change and contributing to the elucidation of viral polymorphisms associated with 

transmission and to a better characterization of viral evolution at the individual and 

population levels. 

In the current work, the option was to study diversity at regional level, addressing three 

dimensions: phylodynamic analysis of a local HIV-1 epidemic; classification of the duration 

of infection; and assessment of transmitted drug resistance and polymorphisms. 

In chapter 2, the existence of high HIV-1 diversity in Minho was confirmed. Investigation of 

this diversity revealed that heterogeneity of HIV-1 subtypes is attributable to Portuguese-born 

patients, presumably infected in Portugal. This fact opposes to what is described for the rest 

of Europe, where immigration is related to most of non-B infections. Just like any other 

“endemic” infection, this proves ancient more ancestral arrival of non-B HIV-1 subtypes to 

Portugal when compared with the rest of Western Europe. Combining these data with the fact 

that Portugal had intense and close relations in African countries with high rates of viral 

diversity, and with the historical data on intense human migrations between these countries, 

we can speculate that the non-B HIV-1 epidemic in Portugal dates back to several decades 

ago and probably was one of first in Western Europe. HIV-1 infection in Minho has a high 

clustering rate, more pronounced among a specific population (IDU) and among non-B 

subtypes. In the first case, it is evidence for a closed risk group, in the second it is probably 

related with the founder effect and more recent viral introduction. Noteworthy, incidence of 
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these non-B subtypes is increasing, particularly among heterosexual mode of transmission. 

This finding may contribute to a refocusing of prevention strategies. A specific transmission 

cluster (17BG), found to be composed almost exclusively by intravenous drug users, 

illustrates an interesting condition. There are no phylogenetic relations with other CRF14_BG 

clusters reported in nearby regions and this can be considered as additional evidence of a 

founder effect and a “closed-circuit” transmission network. The fact that no additional 

members have been found in the recent years is in favor of the regional success in the 

implementation of a controlling strategies proposed and applied to control HIV-1 infections 

among IDU namely based on syringe exchange programs and opioid substitution treatment. 

In Chapter 3, we aimed to design a simple yet reliable methodology to differentiate recent 

from non-recent infections, defined as those occurring more than one year ago. This 

apparently humble task has a formidable potential in order to determine the HIV-1 incidence, 

a step of crucial importance to study the evolution of the epidemic and thus validate 

prevention strategies. Ambiguous nucleotide calls are a byproduct, usually treated as noise 

when it comes to HIV-1 genotyping. However, as they reflect the variability of the virus and 

are related to the length of infection, have proven its potential for the construction of an 

algorithm to estimate if the infection took place more or less than one year from diagnosis. 

Although with far from ideal sensibility (0.73) and negative predictive value (0.89), it has a 

specificity of 0.96 and a likelihood ratio of 16. One of the most relevant features of the 

developed methodology is that it is easily implementable implicating no additional costs and 

has a robust performance to factors such as HIV-1 subtype and transmission mode. It is not 

an algorithm to assess individual length of infection, due to lack of accuracy, but it can prove 

useful at population level. For example, detection of chronic stage infections may contribute 

significantly to design targeted policies preventing patient’s unawareness of their infection 

status and poor linkage to care and treatment, by characterizing related demographic or socio-

economic factors. 

In chapter 4, we found a rate of transmitted drug resistance (TDR) in Braga (9.4%) similar to 

the ones described in other Portuguese and Europeans studies. This rate can be considered 

low but remains worrisome, especially because in 4 naïve patients, representing 23.5% of the 

patients with TDR and 2.2% of the population studied, a first line therapy with NNRTI was 

predestined to fail. Although reversion of resistance mutations is sometimes observed, it is 

much slower than the initial installation of a resistant strain
436

. If a resistance mutation does 
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not compromise fitness, that mutation will tend to persist. Consequently, TDR is a critical 

feature to control, when ART is indicated. Probably, it will be easier to prevent an epidemic 

of drug resistant HIV-1 from occurring than to control it once it emerges. Two strategies are 

being implemented in resourceful locations: “test-and-treat”, which scale-up diagnosis and 

recommend start of ART as soon as an individual is diagnosed; and pre-exposure 

prophylaxis. Both strategies count on antiretroviral efficacy, but TDR is more prevalent 

precisely where ART use is more frequent
391

. For all this, appropriate surveillance of TDR is 

imposed as a preventive measure. To detect how, when and in whom TDR is more frequent, 

we can intervene in order to maximize the effectiveness of ART. In Braga, it was impossible 

to identify a predictor of TDR, except sequencing. Nevertheless, more than 76% of the 

patients were involved in transmission clusters, mainly associated with non-B and non-G 

subtypes. A disconcerting finding was that all TDR was concentrated in the period between 

2008 and 2011. Drug resistance mutations are decreasing in ART exposed individuals, 

probably on account of better retention in health care. Eventually, this trend will reflect in 

naïve patients. Even with small convenience samples, the evaluation of TDR at a local level 

will unveil specificities that can prove relevant to the treating clinician. These data will 

reflect the local environment of the virus before integrating larger databases, at national or 

international level, where it will contribute to TDR global surveillance and to clarify 

transmission patterns. 

Since Kantor’s large scale study
304

, it is well recognized the existence of subtype-specific 

polymorphisms. In our population, a natural polymorphism of the reverse transcriptase gene, 

A98S, confirmed to be subtype G specific and so far only found in the Iberian Peninsula
407

. 

Also a protease insertion on the codon 35 proved transmissible and was restricted to a 

subtype C cluster, mainly composed of intravenous drug users. Both occur naturally, do not 

entail changes in HIV-1 biology and so may be used as a genetic signature, similar to HIV-1 

subtype A, former Soviet Union variant, whose unique genetic features permitted easy tracing 

in geographically distinct epidemics
238

. 

The three investigational studies that compose this work provided additional tools to 

investigate the epidemic at the regional level, characterizing their transmission networks, 

facilitating the study of the incidence and watching the evolution of drug resistance. 

Incidentally, they provided clues to genetic signatures that may prove important when 
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integrating these data in multicenter studies. HIV-1 pandemic cannot be globally curbed 

without implementation of local actions.  
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Conclusions 

 

A peculiar conjunction of biological, socio-economic and demographic features gave rise to 

one formidable pathogen, responsible for a devastating pandemic, still uncontrolled. For this 

virus it was a matter of the right event (species leap) in the right time (demographic 

expansion and urbanization in Africa). There is a legitimate concern about the possibility of 

such coincidence be repeatable, with a new, yet unknown, microbiological agent taking 

advantage of social and economical disruptions still abundant in those regions. Nowadays, 

globalization of a potential pathogen surely would be faster. HIV took a few decades to 

become global and to originate a myriad of local epidemics. The diversity HIV-1 gained 

along its path made it an undefeatable adversary so far, but this same diversity can work for 

Man in this two arms race. 

In Braga, as well as in Portugal, HIV-1 encompasses a high genetic diversity, probably 

supported in multiple and ancient introductions of different subtypes, in a remarkable contrast 

with subtype B dominance in Western Europe, although in decline. Over time, the local 

incidence of these subtypes varied, according to founder effects and genetic bottlenecks 

during onward transmission events. Outstandingly, in present days these variations in 

incidence do not depend on immigration but are verified among native population. The 

assessment of this diversity enlightened the comprehension of a local HIV-1 epidemic and 

allowed to: 

 Demonstrate an increasing incidence and onward transmission of non predominant 

subtype virus via sexual exposure with potential for geographic expansion. 

 Confirm that diversity positively related with duration of infection and its assessment 

can be used to estimate length of infection in order to facilitate incidence studies. 

 Monitor cluster dynamics and transmitted drug resistance in order to improve efficacy 

of antiretroviral therapy. 

 Detect natural polymorphisms with particularities enabling them to serve as genetic 

signatures. 

 Perform continuous monitoring of epidemic evolution and so reinforce preventive 

strategies that should not be restricted to specific populations, rather be 

comprehensive. 
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These purposes were fulfilled with practical application of 3 simple and undemanding 

strategies, illustrated in chapters 2, 3 and 4: phylogenetic analysis of clusters and inference of 

most recent common ancestors, appliance of ambiguities found in standard sequences to 

distinguish between recent and chronic infections, and surveillance of transmitted drug 

resistance and natural polymorphisms. 
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