
Design and Implementation of a New Run-time Life-cycle for
Interactive Public Display Applications

Jorge C. S. Cardoso1 and Alice Perpétua1,2
1CITAR/School of Arts, Portuguese Catholic University, Porto, Portugal

2FEUP, University of Porto, Porto, Portugal
jorgecardoso@ieee.org, ei08060@fe.up.pt

Keywords: Interactive Public Displays, Run-time Life-cycle

Abstract: Public display systems are becoming increasingly complex. They are moving from passive closed systems
to open interactive systems that are able to accommodate applications from several independent sources.
This shift needs to be accompanied by a more flexible and powerful application management. In this paper,
we propose a run-time life-cycle model for interactive public display applications that addresses several
shortcomings of current display systems. Our model allows applications to load their resources before they
are displayed, enables the system to quickly pause and resume applications, provides strategies for
applications to transition and terminate gracefully by requesting additional time to finish the presentation of
content, allows applications to save their state before being destroyed and gives applications the opportunity
to request and relinquish display time. We have implemented our model as a Google Chrome extension that
allows any computer with the Google Chrome browser to become a public display driver without further
software. In this paper we present our model, implementation, and evaluation of the system.

1 INTRODUCTION

In this paper, we propose a run-time life-cycle model
for interactive public display applications. This
model allows both the display application and the
display system to better manage their resources.

The most common and simple approach for
content scheduling in public displays is to follow a
playlist where each content item is given a pre-
determined amount of display time. In this approach,
display systems instantiate and kill content
according to their scheduled time. This approach
works well with time-based content where the
content’s duration is known, such as in videos, or
with non-time-based content where the display
owner can easily decide how much display time the
content should have, as in still images or text.

However, the movement towards open display
systems (Davies, Langheinrich, Jose, & Schmidt,
2012) creates a more complex environment where
the traditional scheduling approach may compromise
the user’s experience. In an open network, display
owners can easily interconnect their displays and
take advantage of various kinds of existing content,
including rich interactive applications. Application

developers can create applications and distribute
them globally, to be used in any display. Users can
not only watch the content played on the display, but
also appropriate it in various ways such as
interacting with it, expressing their preferences,
submitting and downloading content from the
display.

In this environment, while display owners may
still have control over what is displayed, display
systems must be prepared to efficiently manage the
resource of an increasing number of applications in a
more flexible and unanticipated way.

This type of environment requires display
systems to function more as operating systems, and
it also requires a specific application framework that
defines a more fine-grained run-time life-cycle. This
will allow a better display resource management just
like we have in other platforms. For example, the
Android platform defines a rich run-time application
life-cycle that breaks down all the possible states
and transitions between states of an application from
the time it is loaded into memory and started, to the
time it is shut down and removed from memory.
This break down of possible states allows
application programmers and system to negotiate the
resources that an application needs in each state,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional da Universidade Católica Portuguesa

https://core.ac.uk/display/70690159?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

guaranteeing an efficient usage of those resources on
the one hand, and rapid application switching and
loading, on the other hand. For example, an
application may be paused if another application
comes to the foreground (e.g., because the user
requested another application), stopping animations
and other CPU consuming operations and save its
state to persistent storage (because paused
applications may be destroyed by the system if it
needs memory). When the application is resumed, it
can start the animations again.

It is easy to imagine that display systems will
need this kind of resource management when the
number of applications that each display handles
grows. In this paper, we present the design,
implementation and evaluation of a new life-cycle
model for public display applications.

The contributions of this paper are twofold:

1. A new run-time life-cycle model for public
display applications that allows a fine-grained
management of the display and application
resources.

2. An implementation of the proposed model in a
public display application player as a Google
Chrome extension, available as an open-source
project (Cardoso, 2014a).

2 RELATED WORK

Many public display content players / content
schedulers have been implemented by researchers
and industry. For example, (Lindén, Heikkinen,
Ojala, Kukka, & Jurmu, 2010) proposes a web-based
framework for managing the screen real estate of the
UBI-hotspot system - a public display system that
supports concurrent applications on a single display.
The framework was implemented using Mozilla
Firefox browser and custom JavaScript code that
manages the temporal and spatial allocation of the
screen to various applications. The UBI-hotspots
support two modes: a passive broadcast mode, and
an interactive mode. These two modes represent
different ways for deciding when and which
application/content should be loaded by the display
system. The framework does not support any type of
fine-grained control over the execution of an
application. For example, if an application takes a
long time to load, the user will be aware of this (at
best the application may use a splash screen).
Similarly, when unloading, the system simply
unloads the content, giving no possibility for the
application to run clean-up operations. Even if an
application is often used, it will always have to be
completely loaded and unloaded every time it is

used; the system does not put applications in a
suspended state for rapid resuming.

Yarely (Clinch, Davies, Friday, & Clinch, 2013)
is a public display player for open pervasive display
networks that was developed to replace the existing
software infrastructure of the Lancaster e-Campus
system (Storz, Friday, & Davies, 2006). Yarely uses
a subscription management system where each
display node receives a content descriptor set that
lists the content that the player should play and how
it should be scheduled. It also supports caching of
content items so that displays still function under
network failures and disconnections. Even though
Yarely is a very powerful software player, even
capable of running native content, it is still geared
towards passive content that is scheduled
consecutively and where the content length can be
known a priori. Yarely supports dynamic schedule
changes that allow it to display unforeseen content
such as emergency broadcasts, but it does not
provide any specific support for interrupted content
to be resumed.

(Elhart, Langheinrich, Memarovic, & Heikkinen,
2014) identified several limitations in existing
scheduling systems for public displays, particularly
when dealing with interactive applications. They
proposed a scheduling system that is able to
schedule applications with arbitrary start time and
durations. They define a notation that allows the
description of the display environment, the
application environment, and rules for display
behaviours. The work presented in this paper
addresses similar issues but at a different level.
While (Elhart et al., 2014) were concerned with the
high-level scheduling issues, at the display network
system level, we are concerned with lower-level
issues such as managing the resources of the
individual display and application.

3 EXISTING PROBLEMS AND
DESIGN GOALS

Previous work on interactive public display
applications (Cardoso, 2014b; Elhart et al., 2014)
has identified a number of shortcomings in existing
public display systems. In this section, we present
and extend the observed problems, and the
associated design goals for the run-time life-cycle
we propose in this paper.

3.1 Application Loading

Many interactive applications have noticeable
loading times that designers usually address by

showing a splash screen or loading indicator.
Loading times may be, in some cases, avoidable or
reduced by leveraging on caching techniques, but
they are not generally solvable. Many applications,
particularly web-based applications, have to set up
communication channels with their own servers and
with external services. These initialization processes
may be hard to circumvent to give users the
impression of instant loading. On public displays
these loading times represent wasted display
resources and hinder the user experience: the time an
application takes to load could have been used to
display the previous content for a bit more time.
This problem is illustrated in Figure 1.

Our goal is to create a display system that
efficiently manages the display in these situations by
assigning display time only when the application is
ready to display useful content.

3.2 Graceful Transitions

Interactive applications have no intrinsic
duration that display owners can use when setting up
their display’s schedule. The result is that
applications may be assigned an arbitrary time slot
for execution. For some applications, this results in a
suboptimal user experience because they are
sometimes interrupted in the middle of an important
operation. The interactive video player application is
a paradigmatic example: an application that lets
users search/select videos to play next. The public

display player may terminate this application before
the video finishes, representing an obvious failure
for users. This problem is illustrated in Figure 2.

Our goal is to allow applications to, within
system-defined bounds, request additional display
time to finish an important operation or process.
Obviously, these requests may not be honoured by
the system if another content with higher priority
needs display time.

3.3 Abrupt Termination

Another issue we notice in interactive applications is
the difficulty of running proper finishing/cleaning
processes before the application is terminated.
Usually, applications are simply unloaded from the
browser component without warning. This results in
added difficulty for the application to save state and
terminate connections in a proper manner.

Our goal is to allow applications to terminate
properly, giving them time to contact servers and
save their state remotely or locally.

3.4 Pausing and Resuming

In some situations it is more efficient to pause
and resume an application instead of unloading and
reloading it again in the future. For example, if a
notification must be displayed, the interrupted
application probably does not need to be unloaded,
but simply taken to a paused state where it stops
most activity, until the alert is removed from the
display. However, the most common approach is to
unload the current application and then reload it
again after the notification has ended. This problem
is illustrated in Figure 3. Our goal is to support
application pausing, and resuming. Applications
should be able to quickly resume operation if they
are interrupted by the system, without having to be
completely loaded again.

Figure 2: The problem with arbitrary duration.

Figure 1: The problem with application loading times.

Figure 3: The problem with application interruptions.

3.5 Application-requested Loading
and Unloading

Another problem faced by interactive applications
for public displays is that they usually have no way
to request display time by themselves, or to
relinquish the display if they have no possibility to
continue. Although some public display players do
allow unanticipated content to be displayed, this
usually requires manual intervention. Ideally,
applications should be able to request display time in
order to display short-term notifications, for
example. Conversely, applications that find
themselves in a situation where they can no longer
continue to execute (e.g., because a fundamental
resource could not be loaded) should be able to
inform the display system and relinquish the display.
This is illustrated in Figure 4. Obviously, this
requires additional management policies on the
display system to guarantee that applications do not
misbehave and take over the display.

Figure 4: The problem with unforeseen termination.

Our goal is to support this kind of operation,
allowing display applications to request display time
for short periods, and to give up the display time if
they are unable to continue operating.

4 ANALYSIS OF EXISTING
PLATFORMS

We have looked at various computing platforms in
order to understand the existing approaches to run-
time life-cycles. We then synthesized these models
and adapted the result to take into account our
design goals.

We have analysed Android, iOS, Windows
Phone, Windows 8, Applets, and HTML/Javascript
platforms. Each platform has different ways to

manage applications and give applications different
levels of granularity for managing their resources.
However, we can identify commons categories of
application states and event callbacks. In all these
platforms, primary memory is a central resource.
When an application is “loaded” or “initialized”, this
means that it is being loaded into primary memory.
Conversely, when an application is “unloaded” or
“destroyed”, this means that it is being unloaded
from primary memory. Most application states are
defined for when the application is loaded in
memory. These states allow the application, and the
system, to better manage their resources (memory,
CPU, energy consumption, bandwidth, etc.) in an
efficient manner, while still maintaining the
responsiveness of the application, and system.

The main event callbacks associated with each
platform are presented in Table 1 and described
next.

Initializing refers to callback methods that are
invoked only once by the system, when the
application is initialized. Initialization callbacks are
usually called by the system before the application is
shown to the user, so that lengthy operations can be
executed without disturbing the user experience.
Typically, programmers should use these callbacks
to instantiate user interface resources and other
startup logic that happens only once in the lifetime
of the application. On the Android platform, for
example, the onCreate() is the only initialization
callback and programmers are instructed to declare
the user interface, which is usually defined in an
XML file and thus must be parsed and converted to
actual programming objects.

Starting/Resuming refers to callback methods
that are called before the application is put into the
foreground, either for the first time, or because the
user is resuming the application. These callbacks
may be invoked several times during the lifetime of
the application in memory. In general these
callbacks allow applications to start graphical
animations, sounds, and other quick initializations,
but different platforms provide different levels of
granularity. For example, the Android platform
provides three different start/resume callbacks
giving a very fine-grained control to programmers:
onStart() signals the transition from an invisible state
to a visible state and is always called before
onResume(). Together, they allow programmers to
separate different initialization procedures to make
sure that the application is displayed as fast as
possible. Additionally, there is also the onRestart()
callback, called before onStart(), that allows
programmers to know if the application is starting
for the first time, or restarting.

 Pausing refers to callbacks that signal the
application that it is being interrupted and is being
taken from view, at least partially. In these cases,
applications should stop animations, sound, and
other CPU intensive operations.

Stopping/Destroying refers to callbacks that
signal the application to stop executing, unload all
unnecessary resources, and perform state saving
routines. Stopped applications may not be
immediately removed from memory, but are good
candidates if the system needs the resources.

5 RUN-TIME LIFE-CYCLE

Our model for a run-time life-cycle for public
display applications is presented graphically in
Figure 5, and described next.

onCreate() – This represents the application’s
entry point method and is called only once in the
lifetime of the application in memory. Depending on
the implementation, it is possible that application
code may execute before this method is called. In
our Javascript implementation for example, we
cannot prevent applications from executing before
the onCreate() method is invoked. However, only
after onCreate() can an application interact with the
display system and it should not be assumed that the

display system functions are ready before the
onCreate() is called.

onLoad() – is called when the display system
decides to give display time to the application.
Before display time is actually assigned to the
application, the system calls onLoad() and expects
applications to reply with a loaded() call. At the
onLoad() stage, applications should perform all
necessary loading routines to ensure the application
is ready to be displayed. The system will only
consider the application ready to be displayed when
it receives the loaded() response from the
application. The onLoad() callback (in addition to
the onResume() described next), address the
problem of “Application Loading” described earlier.
While the display system is waiting to receive the
loaded() response from the application, it can
display other useful content. This makes the use of
splash screens and loading indicators unnecessary
(at least as a way to mask initializations).

onResume() – is called immediately before the
application is put visible on the display. At this
phase, applications should make sure they are ready
to show content. This callback can be used to
perform very fast initialization routines such as
starting animations. When this method is called
there should be no noticeable delay before content is
displayed by the application.

onPauseRequest() – this callback signals the

Table 1: Summary of analysed platforms

Callback
categories

Platforms

 Android iOS Windows
Phone

Windows 8 Applets HTML

Initializing onCreate() WillFinishLaunchingWithOptions()
DidFinishLaunchingWithOptions()

Launching() onLaunched() Init() Onload()

Starting/
Resuming

onStart()
onResume()
onRestart()

DidBecomeActive() Activated() Activating()
Resuming()

Start() Onpageshow() onfocus()

Pausing onPause() WillResignActive()
WillEnterForeground()

Deactivated() VisibilityChanged()
Suspending()

 Onpagehide() onblur()

Stopping/
Destroying

onStop()
onDestroy()

DidEnterBackground()
WillTerminate()

Close() Stop()
Destroy()

Onbeforeunload()
onunload()

Figure 5: Proposed run-time life-cycle model for public display applications.

application that it will be taken off the display. In
this stage applications can still notify the system
about how much more time they need to finish
gracefully. The system will honour the application’s
time request, within pre-defined limits, and call
onPause() when the time required by the application
expires. This callback may not be invoked if the
system has another urgent content to display, in
which case the onPause() callback will be used
immediately. Applications should implement this
callback and return a numeric value corresponding
to the number of seconds they need to finish
gracefully. This callback addresses the “Graceful
Transitions” problem identified earlier. With this
approach, applications can request extra display
time, beyond the time originally defined by the
display owner, to finish what they were doing in a
way that causes the least disturbance to the user’s
experience. For example, a video player application
can request an extra time that allows it to finish
playing the current video.

onPause() – called to signal that the application
should pause animations, sounds and other
unnecessary operations. In this stage the application
is either not visible or only partially visible. Paused
applications may be resumed quickly by the system
by invoking the onResume() callback. Paused
applications should make sure they are able to
display useful content quickly when they are put
back on the display. By allowing applications to be
paused, instead of completely unloading them, we
address the “Pausing and Resuming” problem
described earlier.

onUnload() – the display system may decide to
unload a paused application when it expects that the
application will not be put back on the display soon.
When the onUnload() callback is invoked,
applications should unload any memory and CPU
demanding resources, and keep only the minimum
network connections required.

onDestroy() – is invoked just before the
application is completely unloaded from memory.
Applications should perform any finalization
routines here, perhaps saving state to persistent
storage either locally or remotely. The onUnload()
and onDestroy() callbacks address the “Abrupt
Termination” problem described earlier by explicitly
providing a means for applications to perform
finalization routines.

showMe() – Applications can signal the system
that they want display time by calling the showMe()
method. The system will then apply its internal
policy to determine if and when the application
should be given display time.

releaseMe() – Conversely, applications can
signal the system that they cannot display any more
content (perhaps due to a server error or other

condition). The system will then take the necessary
steps to bring another application to the display. The
showMe() and releaseMe() callbacks address the
“Application-requested Loading and Unloading”
problem described earlier.

6 PUBLIC DISPLAY
APPLICATION SCHEDULER

We have implemented a first version of our
model as a Google Chrome Extension where each
application is assigned a browser tab. This allows
any computer with the Google Chrome browser to
become a public display driver, without the need for
any further software.

Our implementation manages the life-cycle of
each application, invoking the specified callbacks on
the application code through message passing, and
determining which tab should be displayed at any
given time. Our system applies a priorities scheme to
determine which applications can interrupt which
applications.

In the next sections, we provide a more detailed
description of the main concepts.

6.1 Applications

Our scheduler supports full-screen, web-based
applications (i.e., only one application is displayed
at a time, and it must be able to run on a browser).
Our scheduler supports three types of applications:

Foreground applications correspond to
traditional public display applications. These are
applications that show relevant content whenever
they are displayed.

Background applications are applications that
are usually in the background, i.e., not showing any
content. These applications can only show relevant
content when external events occur. A notification
application that alerts users for a given calendar
event is an example of a background application.

Legacy applications are traditional web
applications that do not implement our run-time life-
cycle. Legacy applications are always foreground
applications but they were not implemented
specifically to follow our life-cycle model.

6.2 Scheduling

Our public display application scheduler
supports traditional scheduling by allowing display
owners to define a playlist of applications. This is
done within an options page in the Chrome

Extension. Figure 6 shows the current interface to
define the display’s playlist.

Figure 6: Interface to define the display's playlist.

At the moment, each display’s playlist is defined
in the display itself, but this could be easily changed
so that a central service could manage the
scheduling of several displays simultaneously. To
define a playlist, display owners must enter the
application’s URL, how much display time the
application should have, what priority it has, and
whether the application is a foreground, or
background applications (legacy applications are
handled transparently from the display owners point
of view).

When started, the system loads applications into
independent browser tabs. Background applications
are all loaded when the scheduler is started so that
they can begin executing and possibly ask for
display time whenever needed. Foreground
applications are loaded only when they are schedule
to be displayed for the first time (but are kept loaded
until the system is shutdown, or when the system
needs the resources to load other applications).

The system will go through all foreground
applications in a round-robin fashion, and assign
display time to each application according to the
value defined by the display owner. However, the
initial schedule defined by the display owner is only
indicative and can change as result of:
1. The current application requests to be taken out

of the display (for example because it lost
communication with its own server or with a
required third-party service). In this case, the
next application will be displayed before its
initial scheduled time.

2. Another application requests display time and
either

a. interrupts the current application, or
b. is scheduled to display after.

6.3 Priorities

Priorities are enforced when an application requests
display time. Different policies can be implemented,
but currently we use a simple policy to determine if

an application that requests display time should
interrupt the current application or be schedule to
display after the current application: if the requesting
application has a higher priority than the current
application, the current application will be paused,
and the requesting application will be displayed. If
the requesting application has a lower or equal
priority, it will be schedule to display after the
current application. If more than one application
requests display time, the scheduler orders them by
priority: higher priority applications will be
displayed first.

6.4 Destroying

Our scheduler destroys applications when the
system runs out of memory resources. If a new
application is being loaded and not enough resources
exist, we destroy the oldest application (the
application that was displayed the longest ago). We
currently define the resource limits based on the
number of open browser tabs: our scheduler limits
the total number of tabs and destroys applications
when the limit is exceeded. (The Google Chrome
API for inspecting the memory resources was not
yet available at the time of the development.)

7 EVALUATION

We evaluated the implemented system from two
perspectives. The first was an informal evaluation of
the behaviour of the system that allowed us to get a
better perception of the scheduling policies. The
second was an evaluation of the system from an
application programmer’s perspective in order to
understand the usability of the API of the system.

7.1 System’s behaviour

To evaluate the system’s behaviour, we developed
five applications that were then configured to run on
a public display using our scheduler:
• Random YouTube Video: a foreground

application that plays a random YouTube video
from a selected set of videos. Default duration:
40 seconds; Priority: 3 (higher value means
lower priority).

• RSS News: a legacy application that displays
RSS feed entries from a selected set of feeds.
Default duration: 30 seconds; Priority: 3.

• Weather: a legacy application that displays the
local weather. Default duration: 20 seconds;
Priority: 3.

• Calendar Alerts: a background application that
displays calendar alerts 15 minutes before the
event takes place. Default duration: 30 seconds;
Priority: 1.

• Video on Demand: a background application that
plays a YouTube video. This application has a
desktop backoffice that allows users to select a
YouTube video and create a QR Code that will
launch the video on the public display. Users can
create the QR Code and distribute it physically
so that anyone can launch that specific video on
the display at any time. Default duration: 30;
Priority: 2.

The “Random YouTube Video” was

programmed to relinquish the display when the
current video ended, and to ask for additional time if
the current video took longer than the default 40
seconds assigned to the application. The “Calendar
Alerts” application was configured with the highest
priority to make sure it interrupted any application
and was able to display the alert timely. The “Video
on Demand” application was also configured with a
high priority to make sure users did not have to wait
much to see the video after they scanned the QR
Code.

Although these applications were only setup in a
public display in our laboratory, this already allowed
us to perceive a few issues with the system:

Applications interrupted very near the end give
the impression of error. We noticed that sometimes
the Random YouTube Video application or the RSS
News application would be interrupted very near to
the end of the video, or the default application time.
When these applications were resumed, they would
appear only very briefly before giving place to the
next scheduled application. In these cases, users had
not enough time to even read the news post, and this
could be perceived as a system error, or at least as a
strange system behaviour by users.

Users loose context with applications interrupted
for a very long time. When the two background
applications requested display time, they could
interrupt the current application for a considerable
amount of time (30 seconds for the Calendar alert
plus the duration of the video to be played by the
Video on Demand application). When the
interrupted application was resumed, a few minutes
could have passed since it was interrupted and users
would have lost the context of that application. This
was most noticeable when the interrupted
application was the Random YouTube Video. Users
that were not present when the application was
interrupted would begin to see the video from the
middle.

Legacy applications continue to consume
resources. Another issue we noticed with our system

was that, although it supports legacy applications
and is able to display them correctly, these
applications continue to consume CPU and memory
even when not being displayed. We noticed this
issue particularly with the Weather application that
uses a Flash animation to represent the current
weather. Because the application does not
implement our run-time life-cycle, the Flash objects
used are constantly loaded. Even though the
browser’s plugin manages these resources so that
tabs that are not visible do not use as much resources
as visible tabs, this is still not an optimal
management, particularly for an application that is
only displayed for less than 15% of the overall
default time for all applications.

7.2 Programmers evaluation

We conducted programming sessions with a total
of 5 programmers with, at least, basic knowledge on
Javascript. The participants were asked to develop a
simple application or adapt an existing one using our
model and framework. We sent documentation to
participants the day before the session with the
following information: brief introduction (context
and motivation of the work), an image of the
proposed run-time with an explanation of each state
and callback, a template of an application that
displays on the screen the name of the callback when
called and finally the description of the task we
proposed them to do.

On the session day, we started by clarifying the
doubts of the participants, followed by a
demonstration of our extension working with some
of the developed applications. Before the
participants started to develop their applications, a
small period of time was used to hear and discuss
application’s ideas, making sure the applications to
develop would take advantage of our system. We
noted the most relevant doubts during the session
and at the end we asked the programmer’s opinions.

All programmers successfully created or adapted
an application using our framework. We observed
that all the programmers had some initial difficulties
to understand the proposed life-cycle and all its
specifications. We quickly concluded that the given
documentation and example was insufficient to
completely understand the life-cycle. At the end, all
participants have stated that a more complete
documentation would have eased the task.

One programmer suggested to divide
onResume() on two different callbacks, in a similar
way to the Android platform: one callback for the
first time the application is put on the screen, and
another for when the application is resumed from
paused. For this developer this would make the code

easier to read and would give programmers an easy
way to determine if the application was being put on
the display for the first time.

Another programmer suggested that the
releaseMe() callback could also be available from
the paused state (currently it is only available from
the resumed state). This would allow applications to
unload themselves if an error occurs while paused.

Overall, however, all programmers stated that it
was easy or very easy to create an application for
our public display system.

8 CONCLUSIONS

We have presented a new run-time life-cycle
model for public display applications that allows a
better resource management for display systems that
have to handle a high number of independent
applications. The model allows applications to load
their resources before they are displayed, allows
applications to transition and terminate gracefully,
allows rapid pausing and resuming, and allows
applications to request and relinquish display time.

We have implemented this model as a Google
Chrome Extension where each application is
assigned a browser tab. Our implementation
manages the life-cycle of each application
determining which tab should be displayed at any
time. We support three types of applications:
foreground, background, and legacy applications.
Our system provides a priority mechanism that
allows display owners to control which applications
can be interrupted by which applications.

Our tests with this system have revealed some
issues regarding the user experience when
applications are paused very near their end, and
when they are interrupted for a long time. The best
approach to deal with these issues is still an open
question that we plan to research in the future.

Our system is, to the best of our knowledge, the
first to specifically address the problem of resource
management within a multi-application public
display system. We believe this line of research can
result in more efficient public display systems that
provide a better user experience. Our system is
available as an open-source project at (Cardoso,
2014a).

ACKNOWLEDGEMENTS

This paper was financially supported by the
Foundation for Science and Technology — FCT —
in the scope of project PEst-OE/EAT/UI0622/2014.

A “work-in-progress” version of this work has been
presented in the ICIW 2014 conference (Perpétua,
Cardoso, & Carlos C. Oliveira, 2014).

REFERENCES

Cardoso, J. C. S. (2014a). A Google Chrome based public
display application scheduler. Retrieved from
https://code.google.com/p/public-display-scheduler/

Cardoso, J. C. S. (2014b). An Interaction Abstraction
Toolkit for Public Display Applications. University
of Minho. Retrieved from
http://figshare.com/articles/An_interaction_abstracti
on_toolkit_for_public_display_applications/920152

Clinch, S., Davies, N., Friday, A., & Clinch, G. (2013).
Yarely: a software player for open pervasive
display networks. In Proceedings of the 2nd ACM
International Symposium on Pervasive Displays
(pp. 25–30). ACM. doi:10.1145/2491568.2491575

Davies, N., Langheinrich, M., Jose, R., & Schmidt, A.
(2012). Open Display Networks: A
Communications Medium for the 21st Century.
Computer, 45(5), 58–64. doi:10.1109/MC.2012.114

Elhart, I., Langheinrich, M., Memarovic, N., & Heikkinen,
T. (2014). Scheduling Interactive and Concurrently
Running Applications in Pervasive Display
Networks. In Proceedings of The International
Symposium on Pervasive Displays - PerDis ’14 (pp.
104–109). New York, New York, USA: ACM
Press. doi:10.1145/2611009.2611039

Lindén, T., Heikkinen, T., Ojala, T., Kukka, H., & Jurmu,
M. (2010). Web-based Framework for
Spatiotemporal Screen Real Estate Management of
Interactive Public Displays, 1277–1280.

Perpétua, A., Cardoso, J. C. S., & Carlos C. Oliveira.
(2014). A Runtime Lifecycle for Interactive Public
Display Applications. In Proceedings of The Ninth
International Conference on Internet and Web
Applications and Services - ICIW 2014 (pp. 72–75).
Paris, France: IARIA. Retrieved from
http://www.thinkmind.org/index.php?view=article
&articleid=iciw_2014_4_10_20083

Storz, O., Friday, A., & Davies, N. (2006). Supporting
content scheduling on situated public displays.
Computers & Graphics, 30(5), 681–691. doi:DOI:
10.1016/j.cag.2006.07.002

