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Abstract: Public display systems are becoming increasingly complex. They are moving from passive closed systems 
to open interactive systems that are able to accommodate applications from several independent sources. 
This shift needs to be accompanied by a more flexible and powerful application management. In this paper, 
we propose a run-time life-cycle model for interactive public display applications that addresses several 
shortcomings of current display systems. Our model allows applications to load their resources before they 
are displayed, enables the system to quickly pause and resume applications, provides strategies for 
applications to transition and terminate gracefully by requesting additional time to finish the presentation of 
content, allows applications to save their state before being destroyed and gives applications the opportunity 
to request and relinquish display time. We have implemented our model as a Google Chrome extension that 
allows any computer with the Google Chrome browser to become a public display driver without further 
software. In this paper we present our model, implementation, and evaluation of the system. 

1 INTRODUCTION 

In this paper, we propose a run-time life-cycle model 
for interactive public display applications. This 
model allows both the display application and the 
display system to better manage their resources. 

The most common and simple approach for 
content scheduling in public displays is to follow a 
playlist where each content item is given a pre-
determined amount of display time. In this approach, 
display systems instantiate and kill content 
according to their scheduled time. This approach 
works well with time-based content where the 
content’s duration is known, such as in videos, or 
with non-time-based content where the display 
owner can easily decide how much display time the 
content should have, as in still images or text.  

However, the movement towards open display 
systems (Davies, Langheinrich, Jose, & Schmidt, 
2012) creates a more complex environment where 
the traditional scheduling approach may compromise 
the user’s experience. In an open network, display 
owners can easily interconnect their displays and 
take advantage of various kinds of existing content, 
including rich interactive applications. Application 

developers can create applications and distribute 
them globally, to be used in any display. Users can 
not only watch the content played on the display, but 
also appropriate it in various ways such as 
interacting with it, expressing their preferences, 
submitting and downloading content from the 
display.  

In this environment, while display owners may 
still have control over what is displayed, display 
systems must be prepared to efficiently manage the 
resource of an increasing number of applications in a 
more flexible and unanticipated way.  

This type of environment requires display 
systems to function more as operating systems, and 
it also requires a specific application framework that 
defines a more fine-grained run-time life-cycle. This 
will allow a better display resource management just 
like we have in other platforms. For example, the 
Android platform defines a rich run-time application 
life-cycle that breaks down all the possible states 
and transitions between states of an application from 
the time it is loaded into memory and started, to the 
time it is shut down and removed from memory. 
This break down of possible states allows 
application programmers and system to negotiate the 
resources that an application needs in each state, 
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guaranteeing an efficient usage of those resources on 
the one hand, and rapid application switching and 
loading, on the other hand. For example, an 
application may be paused if another application 
comes to the foreground (e.g., because the user 
requested another application), stopping animations 
and other CPU consuming operations and save its 
state to persistent storage (because paused 
applications may be destroyed by the system if it 
needs memory). When the application is resumed, it 
can start the animations again.  

It is easy to imagine that display systems will 
need this kind of resource management when the 
number of applications that each display handles 
grows. In this paper, we present the design, 
implementation and evaluation of a new life-cycle 
model for public display applications. 

The contributions of this paper are twofold: 

1. A new run-time life-cycle model for public 
display applications that allows a fine-grained 
management of the display and application 
resources. 

2. An implementation of the proposed model in a 
public display application player as a Google 
Chrome extension, available as an open-source 
project (Cardoso, 2014a). 

2 RELATED WORK 

Many public display content players / content 
schedulers have been implemented by researchers 
and industry. For example, (Lindén, Heikkinen, 
Ojala, Kukka, & Jurmu, 2010) proposes a web-based 
framework for managing the screen real estate of the 
UBI-hotspot system - a public display system that 
supports concurrent applications on a single display. 
The framework was implemented using Mozilla 
Firefox browser and custom JavaScript code that 
manages the temporal and spatial allocation of the 
screen to various applications. The UBI-hotspots 
support two modes: a passive broadcast mode, and 
an interactive mode. These two modes represent 
different ways for deciding when and which 
application/content should be loaded by the display 
system. The framework does not support any type of 
fine-grained control over the execution of an 
application. For example, if an application takes a 
long time to load, the user will be aware of this (at 
best the application may use a splash screen). 
Similarly, when unloading, the system simply 
unloads the content, giving no possibility for the 
application to run clean-up operations. Even if an 
application is often used, it will always have to be 
completely loaded and unloaded every time it is 

used; the system does not put applications in a 
suspended state for rapid resuming. 

Yarely (Clinch, Davies, Friday, & Clinch, 2013) 
is a public display player for open pervasive display 
networks that was developed to replace the existing 
software infrastructure of the Lancaster e-Campus 
system (Storz, Friday, & Davies, 2006). Yarely uses 
a subscription management system where each 
display node receives a content descriptor set that 
lists the content that the player should play and how 
it should be scheduled. It also supports caching of 
content items so that displays still function under 
network failures and disconnections. Even though 
Yarely is a very powerful software player, even 
capable of running native content, it is still geared 
towards passive content that is scheduled 
consecutively and where the content length can be 
known a priori. Yarely supports dynamic schedule 
changes that allow it to display unforeseen content 
such as emergency broadcasts, but it does not 
provide any specific support for interrupted content 
to be resumed. 

(Elhart, Langheinrich, Memarovic, & Heikkinen, 
2014) identified several limitations in existing 
scheduling systems for public displays, particularly 
when dealing with interactive applications. They 
proposed a scheduling system that is able to 
schedule applications with arbitrary start time and 
durations. They define a notation that allows the 
description of the display environment, the 
application environment, and rules for display 
behaviours. The work presented in this paper 
addresses similar issues but at a different level. 
While (Elhart et al., 2014) were concerned with the 
high-level scheduling issues, at the display network 
system level, we are concerned with lower-level 
issues such as managing the resources of the 
individual display and application. 

3 EXISTING PROBLEMS AND 
DESIGN GOALS 

Previous work on interactive public display 
applications (Cardoso, 2014b; Elhart et al., 2014) 
has identified a number of shortcomings in existing 
public display systems. In this section, we present 
and extend the observed problems, and the 
associated design goals for the run-time life-cycle 
we propose in this paper. 

3.1 Application Loading 

Many interactive applications have noticeable 
loading times that designers usually address by 



 

showing a splash screen or loading indicator. 
Loading times may be, in some cases, avoidable or 
reduced by leveraging on caching techniques, but 
they are not generally solvable. Many applications, 
particularly web-based applications, have to set up 
communication channels with their own servers and 
with external services. These initialization processes 
may be hard to circumvent to give users the 
impression of instant loading. On public displays 
these loading times represent wasted display 
resources and hinder the user experience: the time an 
application takes to load could have been used to 
display the previous content for a bit more time. 
This problem is illustrated in Figure 1. 

Our goal is to create a display system that 
efficiently manages the display in these situations by 
assigning display time only when the application is 
ready to display useful content. 

3.2 Graceful Transitions 

Interactive applications have no intrinsic 
duration that display owners can use when setting up 
their display’s schedule. The result is that 
applications may be assigned an arbitrary time slot 
for execution. For some applications, this results in a 
suboptimal user experience because they are 
sometimes interrupted in the middle of an important 
operation. The interactive video player application is 
a paradigmatic example: an application that lets 
users search/select videos to play next. The public 

display player may terminate this application before 
the video finishes, representing an obvious failure 
for users. This problem is illustrated in Figure 2. 

Our goal is to allow applications to, within 
system-defined bounds, request additional display 
time to finish an important operation or process. 
Obviously, these requests may not be honoured by 
the system if another content with higher priority 
needs display time. 

3.3 Abrupt Termination 

Another issue we notice in interactive applications is 
the difficulty of running proper finishing/cleaning 
processes before the application is terminated. 
Usually, applications are simply unloaded from the 
browser component without warning. This results in 
added difficulty for the application to save state and 
terminate connections in a proper manner.  

Our goal is to allow applications to terminate 
properly, giving them time to contact servers and 
save their state remotely or locally.  
 

3.4 Pausing and Resuming 

In some situations it is more efficient to pause 
and resume an application instead of unloading and 
reloading it again in the future. For example, if a 
notification must be displayed, the interrupted 
application probably does not need to be unloaded, 
but simply taken to a paused state where it stops 
most activity, until the alert is removed from the 
display. However, the most common approach is to 
unload the current application and then reload it 
again after the notification has ended.  This problem 
is illustrated in Figure 3. Our goal is to support 
application pausing, and resuming. Applications 
should be able to quickly resume operation if they 
are interrupted by the system, without having to be 
completely loaded again. 

 
Figure 2: The problem with arbitrary duration. 

 

 

 
Figure 1: The problem with application loading times. 

 

 
Figure 3: The problem with application interruptions. 

 



 

3.5 Application-requested Loading 
and Unloading 

Another problem faced by interactive applications 
for public displays is that they usually have no way 
to request display time by themselves, or to 
relinquish the display if they have no possibility to 
continue. Although some public display players do 
allow unanticipated content to be displayed, this 
usually requires manual intervention. Ideally, 
applications should be able to request display time in 
order to display short-term notifications, for 
example. Conversely, applications that find 
themselves in a situation where they can no longer 
continue to execute (e.g., because a fundamental 
resource could not be loaded) should be able to 
inform the display system and relinquish the display. 
This is illustrated in Figure 4. Obviously, this 
requires additional management policies on the 
display system to guarantee that applications do not 
misbehave and take over the display. 

 
Figure 4: The problem with unforeseen termination. 

Our goal is to support this kind of operation, 
allowing display applications to request display time 
for short periods, and to give up the display time if 
they are unable to continue operating.  

4 ANALYSIS OF EXISTING 
PLATFORMS 

We have looked at various computing platforms in 
order to understand the existing approaches to run-
time life-cycles. We then synthesized these models 
and adapted the result to take into account our 
design goals.  

We have analysed Android, iOS, Windows 
Phone, Windows 8, Applets, and HTML/Javascript 
platforms. Each platform has different ways to 

manage applications and give applications different 
levels of granularity for managing their resources. 
However, we can identify commons categories of 
application states and event callbacks. In all these 
platforms, primary memory is a central resource. 
When an application is “loaded” or “initialized”, this 
means that it is being loaded into primary memory. 
Conversely, when an application is “unloaded” or 
“destroyed”, this means that it is being unloaded 
from primary memory. Most application states are 
defined for when the application is loaded in 
memory. These states allow the application, and the 
system, to better manage their resources (memory, 
CPU, energy consumption, bandwidth, etc.) in an 
efficient manner, while still maintaining the 
responsiveness of the application, and system. 

The main event callbacks associated with each 
platform are presented in Table 1 and described 
next. 

Initializing refers to callback methods that are 
invoked only once by the system, when the 
application is initialized. Initialization callbacks are 
usually called by the system before the application is 
shown to the user, so that lengthy operations can be 
executed without disturbing the user experience. 
Typically, programmers should use these callbacks 
to instantiate user interface resources and other 
startup logic that happens only once in the lifetime 
of the application. On the Android platform, for 
example, the onCreate() is the only initialization 
callback and programmers are instructed to declare 
the user interface, which is usually defined in an 
XML file and thus must be parsed and converted to 
actual programming objects.  

Starting/Resuming refers to callback methods 
that are called before the application is put into the 
foreground, either for the first time, or because the 
user is resuming the application. These callbacks 
may be invoked several times during the lifetime of 
the application in memory.  In general these 
callbacks allow applications to start graphical 
animations, sounds, and other quick initializations, 
but different platforms provide different levels of 
granularity. For example, the Android platform 
provides three different start/resume callbacks 
giving a very fine-grained control to programmers: 
onStart() signals the transition from an invisible state 
to a visible state and is always called before 
onResume(). Together, they allow programmers to 
separate different initialization procedures to make 
sure that the application is displayed as fast as 
possible. Additionally, there is also the onRestart() 
callback, called before onStart(), that allows 
programmers to know if the application is starting 
for the first time, or restarting. 



 

 Pausing refers to callbacks that signal the 
application that it is being interrupted and is being 
taken from view, at least partially. In these cases, 
applications should stop animations, sound, and 
other CPU intensive operations.  

Stopping/Destroying refers to callbacks that 
signal the application to stop executing, unload all 
unnecessary resources, and perform state saving 
routines. Stopped applications may not be 
immediately removed from memory, but are good 
candidates if the system needs the resources.  

5 RUN-TIME LIFE-CYCLE 

Our model for a run-time life-cycle for public 
display applications is presented graphically in 
Figure 5, and described next. 

onCreate() – This represents the application’s 
entry point method and is called only once in the 
lifetime of the application in memory. Depending on 
the implementation, it is possible that application 
code may execute before this method is called. In 
our Javascript implementation for example, we 
cannot prevent applications from executing before 
the onCreate() method is invoked. However, only 
after onCreate() can an application interact with the 
display system and it should not be assumed that the 

display system functions are ready before the 
onCreate() is called. 

onLoad() – is called when the display system 
decides to give display time to the application. 
Before display time is actually assigned to the 
application, the system calls onLoad() and expects 
applications to reply with a loaded() call. At the 
onLoad() stage, applications should perform all 
necessary loading routines to ensure the application 
is ready to be displayed. The system will only 
consider the application ready to be displayed when 
it receives the loaded() response from the 
application. The onLoad() callback (in addition to 
the onResume() described next), address the 
problem of “Application Loading” described earlier. 
While the display system is waiting to receive the 
loaded() response from the application, it can 
display other useful content. This makes the use of 
splash screens and loading indicators unnecessary 
(at least as a way to mask initializations). 

onResume() – is called immediately before the 
application is put visible on the display. At this 
phase, applications should make sure they are ready 
to show content. This callback can be used to 
perform very fast initialization routines such as 
starting animations. When this method is called 
there should be no noticeable delay before content is 
displayed by the application. 

onPauseRequest() – this callback signals the 

Table 1: Summary of analysed platforms 

Callback 
categories 

Platforms 

 Android iOS Windows 
Phone 

Windows 8 Applets HTML 

Initializing onCreate() WillFinishLaunchingWithOptions() 
DidFinishLaunchingWithOptions() 

Launching() onLaunched() Init() Onload() 

Starting/ 
Resuming 

onStart() 
onResume() 
onRestart() 

DidBecomeActive() Activated() Activating() 
Resuming() 

Start() Onpageshow() onfocus() 
 

Pausing onPause() WillResignActive() 
WillEnterForeground() 

Deactivated() VisibilityChanged() 
Suspending() 

 Onpagehide() onblur() 

Stopping/ 
Destroying 

onStop() 
onDestroy() 

DidEnterBackground() 
WillTerminate() 

Close()  Stop() 
Destroy() 

Onbeforeunload() 
onunload() 

 

 
Figure 5: Proposed run-time life-cycle model for public display applications. 

 



 

application that it will be taken off the display. In 
this stage applications can still notify the system 
about how much more time they need to finish 
gracefully. The system will honour the application’s 
time request, within pre-defined limits, and call 
onPause() when the time required by the application 
expires. This callback may not be invoked if the 
system has another urgent content to display, in 
which case the onPause() callback will be used 
immediately. Applications should implement this 
callback and return a numeric value corresponding 
to the number of seconds they need to finish 
gracefully. This callback addresses the “Graceful 
Transitions” problem identified earlier. With this 
approach, applications can request extra display 
time, beyond the time originally defined by the 
display owner, to finish what they were doing in a 
way that causes the least disturbance to the user’s 
experience. For example, a video player application 
can request an extra time that allows it to finish 
playing the current video. 

onPause() – called to signal that the application 
should pause animations, sounds and other 
unnecessary operations. In this stage the application 
is either not visible or only partially visible. Paused 
applications may be resumed quickly by the system 
by invoking the onResume() callback. Paused 
applications should make sure they are able to 
display useful content quickly when they are put 
back on the display. By allowing applications to be 
paused, instead of completely unloading them, we 
address the “Pausing and Resuming” problem 
described earlier. 

onUnload() – the display system may decide to 
unload a paused application when it expects that the 
application will not be put back on the display soon. 
When the onUnload() callback is invoked, 
applications should unload any memory and CPU 
demanding resources,  and keep only the minimum 
network connections required.  

onDestroy() – is invoked just before the 
application is completely unloaded from memory. 
Applications should perform any finalization 
routines here, perhaps saving state to persistent 
storage either locally or remotely. The onUnload() 
and onDestroy() callbacks address the “Abrupt 
Termination” problem described earlier by explicitly 
providing a means for applications to perform 
finalization routines. 

showMe() – Applications can signal the system 
that they want display time by calling the showMe() 
method. The system will then apply its internal 
policy to determine if and when the application 
should be given display time. 

releaseMe() – Conversely, applications can 
signal the system that they cannot display any more 
content (perhaps due to a server error or other 

condition). The system will then take the necessary 
steps to bring another application to the display. The 
showMe() and releaseMe() callbacks address the 
“Application-requested Loading and Unloading” 
problem described earlier. 

6 PUBLIC DISPLAY 
APPLICATION SCHEDULER 

We have implemented a first version of our 
model as a Google Chrome Extension where each 
application is assigned a browser tab. This allows 
any computer with the Google Chrome browser to 
become a public display driver, without the need for 
any further software. 

Our implementation manages the life-cycle of 
each application, invoking the specified callbacks on 
the application code through message passing, and 
determining which tab should be displayed at any 
given time. Our system applies a priorities scheme to 
determine which applications can interrupt which 
applications. 

In the next sections, we provide a more detailed 
description of the main concepts. 

6.1 Applications 

Our scheduler supports full-screen, web-based 
applications (i.e., only one application is displayed 
at a time, and it must be able to run on a browser). 
Our scheduler supports three types of applications: 

Foreground applications correspond to 
traditional public display applications. These are 
applications that show relevant content whenever 
they are displayed.  

Background applications are applications that 
are usually in the background, i.e., not showing any 
content. These applications can only show relevant 
content when external events occur. A notification 
application that alerts users for a given calendar 
event is an example of a background application.  

Legacy applications are traditional web 
applications that do not implement our run-time life-
cycle. Legacy applications are always foreground 
applications but they were not implemented 
specifically to follow our life-cycle model.  

6.2 Scheduling 

Our public display application scheduler 
supports traditional scheduling by allowing display 
owners to define a playlist of applications. This is 
done within an options page in the Chrome 



 

Extension. Figure 6 shows the current interface to 
define the display’s playlist. 

 
Figure 6: Interface to define the display's playlist. 

At the moment, each display’s playlist is defined 
in the display itself, but this could be easily changed 
so that a central service could manage the 
scheduling of several displays simultaneously. To 
define a playlist, display owners must enter the 
application’s URL, how much display time the 
application should have, what priority it has, and 
whether the application is a foreground, or 
background applications (legacy applications are 
handled transparently from the display owners point 
of view).  

When started, the system loads applications into 
independent browser tabs. Background applications 
are all loaded when the scheduler is started so that 
they can begin executing and possibly ask for 
display time whenever needed. Foreground 
applications are loaded only when they are schedule 
to be displayed for the first time (but are kept loaded 
until the system is shutdown, or when the system 
needs the resources to load other applications). 

The system will go through all foreground 
applications in a round-robin fashion, and assign 
display time to each application according to the 
value defined by the display owner. However, the 
initial schedule defined by the display owner is only 
indicative and can change as result of: 
1. The current application requests to be taken out 

of the display (for example because it lost 
communication with its own server or with a 
required third-party service). In this case, the 
next application will be displayed before its 
initial scheduled time. 

2. Another application requests display time and 
either 

a. interrupts the current application, or 
b. is scheduled to display after. 

6.3 Priorities 

Priorities are enforced when an application requests 
display time. Different policies can be implemented, 
but currently we use a simple policy to determine if 

an application that requests display time should 
interrupt the current application or be schedule to 
display after the current application: if the requesting 
application has a higher priority than the current 
application, the current application will be paused, 
and the requesting application will be displayed. If 
the requesting application has a lower or equal 
priority, it will be schedule to display after the 
current application. If more than one application 
requests display time, the scheduler orders them by 
priority: higher priority applications will be 
displayed first. 

6.4 Destroying 

Our scheduler destroys applications when the 
system runs out of memory resources. If a new 
application is being loaded and not enough resources 
exist, we destroy the oldest application (the 
application that was displayed the longest ago). We 
currently define the resource limits based on the 
number of open browser tabs: our scheduler limits 
the total number of tabs and destroys applications 
when the limit is exceeded. (The Google Chrome 
API for inspecting the memory resources was not 
yet available at the time of the development.) 

7 EVALUATION 

We evaluated the implemented system from two 
perspectives. The first was an informal evaluation of 
the behaviour of the system that allowed us to get a 
better perception of the scheduling policies. The 
second was an evaluation of the system from an 
application programmer’s perspective in order to 
understand the usability of the API of the system.  

7.1 System’s behaviour 

To evaluate the system’s behaviour, we developed 
five applications that were then configured to run on 
a public display using our scheduler:  
• Random YouTube Video: a foreground 

application that plays a random YouTube video 
from a selected set of videos. Default duration: 
40 seconds; Priority: 3 (higher value means 
lower priority). 

• RSS News: a legacy application that displays 
RSS feed entries from a selected set of feeds. 
Default duration: 30 seconds; Priority: 3. 

• Weather: a legacy application that displays the 
local weather. Default duration: 20 seconds; 
Priority: 3. 



 

• Calendar Alerts: a background application that 
displays calendar alerts 15 minutes before the 
event takes place. Default duration: 30 seconds; 
Priority: 1. 

• Video on Demand: a background application that 
plays a YouTube video. This application has a 
desktop backoffice that allows users to select a 
YouTube video and create a QR Code that will 
launch the video on the public display. Users can 
create the QR Code and distribute it physically 
so that anyone can launch that specific video on 
the display at any time. Default duration: 30; 
Priority: 2. 
 
The “Random YouTube Video” was 

programmed to relinquish the display when the 
current video ended, and to ask for additional time if 
the current video took longer than the default 40 
seconds assigned to the application. The “Calendar 
Alerts” application was configured with the highest 
priority to make sure it interrupted any application 
and was able to display the alert timely. The “Video 
on Demand” application was also configured with a 
high priority to make sure users did not have to wait 
much to see the video after they scanned the QR 
Code. 

Although these applications were only setup in a 
public display in our laboratory, this already allowed 
us to perceive a few issues with the system: 

Applications interrupted very near the end give 
the impression of error. We noticed that sometimes 
the Random YouTube Video application or the RSS 
News application would be interrupted very near to 
the end of the video, or the default application time. 
When these applications were resumed, they would 
appear only very briefly before giving place to the 
next scheduled application. In these cases, users had 
not enough time to even read the news post, and this 
could be perceived as a system error, or at least as a 
strange system behaviour by users.  

Users loose context with applications interrupted 
for a very long time. When the two background 
applications requested display time, they could 
interrupt the current application for a considerable 
amount of time (30 seconds for the Calendar alert 
plus the duration of the video to be played by the 
Video on Demand application). When the 
interrupted application was resumed, a few minutes 
could have passed since it was interrupted and users 
would have lost the context of that application. This 
was most noticeable when the interrupted 
application was the Random YouTube Video. Users 
that were not present when the application was 
interrupted would begin to see the video from the 
middle. 

Legacy applications continue to consume 
resources. Another issue we noticed with our system 

was that, although it supports legacy applications 
and is able to display them correctly, these 
applications continue to consume CPU and memory 
even when not being displayed. We noticed this 
issue particularly with the Weather application that 
uses a Flash animation to represent the current 
weather. Because the application does not 
implement our run-time life-cycle, the Flash objects 
used are constantly loaded. Even though the 
browser’s plugin manages these resources so that 
tabs that are not visible do not use as much resources 
as visible tabs, this is still not an optimal 
management, particularly for an application that is 
only displayed for less than 15% of the overall 
default time for all applications. 

7.2 Programmers evaluation 

We conducted programming sessions with a total 
of 5 programmers with, at least, basic knowledge on 
Javascript. The participants were asked to develop a 
simple application or adapt an existing one using our 
model and framework. We sent documentation to 
participants the day before the session with the 
following information:  brief introduction (context 
and motivation of the work), an image of the 
proposed run-time with an explanation of each state 
and callback, a template of an application that 
displays on the screen the name of the callback when 
called and finally the description of the task we 
proposed them to do. 

On the session day, we started by clarifying the 
doubts of the participants, followed by a 
demonstration of our extension working with some 
of the developed applications. Before the 
participants started to develop their applications, a 
small period of time was used to hear and discuss 
application’s ideas, making sure the applications to 
develop would take advantage of our system. We 
noted the most relevant doubts during the session 
and at the end we asked the programmer’s opinions. 

All programmers successfully created or adapted 
an application using our framework. We observed 
that all the programmers had some initial difficulties 
to understand the proposed life-cycle and all its 
specifications. We quickly concluded that the given 
documentation and example was insufficient to 
completely understand the life-cycle. At the end, all 
participants have stated that a more complete 
documentation would have eased the task.  

One programmer suggested to divide 
onResume() on two different callbacks, in a similar 
way to the Android platform: one callback for the 
first time the application is put on the screen, and 
another for when the application is resumed from 
paused. For this developer this would make the code 



 

easier to read and would give programmers an easy 
way to determine if the application was being put on 
the display for the first time.  

Another programmer suggested that the 
releaseMe() callback could also be available from 
the paused state (currently it is only available from 
the resumed state). This would allow applications to 
unload themselves if an error occurs while paused. 

Overall, however, all programmers stated that it 
was easy or very easy to create an application for 
our public display system. 

8 CONCLUSIONS 

We have presented a new run-time life-cycle 
model for public display applications that allows a 
better resource management for display systems that 
have to handle a high number of independent 
applications. The model allows applications to load 
their resources before they are displayed, allows 
applications to transition and terminate gracefully, 
allows rapid pausing and resuming, and allows 
applications to request and relinquish display time. 

We have implemented this model as a Google 
Chrome Extension where each application is 
assigned a browser tab. Our implementation 
manages the life-cycle of each application 
determining which tab should be displayed at any 
time. We support three types of applications: 
foreground, background, and legacy applications. 
Our system provides a priority mechanism that 
allows display owners to control which applications 
can be interrupted by which applications. 

Our tests with this system have revealed some 
issues regarding the user experience when 
applications are paused very near their end, and 
when they are interrupted for a long time. The best 
approach to deal with these issues is still an open 
question that we plan to research in the future. 

Our system is, to the best of our knowledge, the 
first to specifically address the problem of resource 
management within a multi-application public 
display system. We believe this line of research can 
result in more efficient public display systems that 
provide a better user experience. Our system is 
available as an open-source project at (Cardoso, 
2014a). 
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