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Abstract

Water is one of the most important bacterial habitats on Earth. As such, water

represents also a major way of dissemination of bacteria between different envi-

ronmental compartments. Human activities led to the creation of the so-called

urban water cycle, comprising different sectors (waste, surface, drinking water),

among which bacteria can hypothetically be exchanged. Therefore, bacteria can

be mobilized between unclean water habitats (e.g. wastewater) and clean or

pristine water environments (e.g. disinfected and spring drinking water) and

eventually reach humans. In addition, bacteria can also transfer mobile genetic

elements between different water types, other environments (e.g. soil) and

humans. These processes may involve antibiotic resistant bacteria and antibi-

otic resistance genes. In this review, the hypothesis that some bacteria may

share different water compartments and be also hosted by humans is discussed

based on the comparison of the bacterial diversity in different types of water

and with the human-associated microbiome. The role of such bacteria as

potential disseminators of antibiotic resistance and the inference that currently

only a small fraction of the clinically relevant antibiotic resistome may be

known is discussed.

Introduction

The development and spread of antibiotic resistance

among bacteria is considered a universal threat to human,

animal and environmental health. Numerous studies have

demonstrated the importance of the environmental

settings (e.g. water or soil) on the cycling of antibiotic

resistance in nature, either because antibiotic resistance

mechanisms can originate in environmental bacteria or

because human and animal commensals and pathogens

can contaminate the environment (Allen et al., 2010; Ba-

quero et al., 2008; Martinez, 2008; Riesenfeld et al., 2004;

Zhang et al., 2009).

Water is one of the most important bacterial habitats

on Earth, is a major way of dissemination of microorgan-

isms in nature and has been recognized as a significant

reservoir of antibiotic resistance (Baquero et al., 2008;

Rizzo et al., 2013; Zhang et al., 2009). As a microbial

habitat, water may represent the origin of resistance

genes, be an amplifier and/or reservoir of genes already

acquired by human pathogens and released as pollutants

in the environment or act as a bioreactor, facilitating the

interchange of resistance genes between pathogenic and

nonpathogenic bacteria (Baquero et al., 2008; Poirel et al.,

2005; Rizzo et al., 2013). However, and in spite of the

intense research in this area over the last years, it is not

clear under which circumstances water bacteria are

important sources of novel mechanisms of antibiotic

resistance or when do they act as carriers or helper ele-

ments that, somehow, facilitate the spread of antibiotic

resistance.

Another question, still unanswered, regards the modes

by which antibiotic resistance in water may be relevant

for human health. Because antibiotic resistance is har-

bored and transferred by bacteria, a better understanding

of the bacterial diversity and ecology may bring interest-

ing insights into the modes of resistance dissemination

from and into humans. This approach is now possible

because numerous studies conducted worldwide have

explored the bacterial diversity in water habitats over the
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last decades. In parallel, the human microbiome project

has stimulated the thorough characterization of the diver-

sity of bacteria that permanently or transiently can colo-

nize the human body. The combination of both datasets

may bring interesting information for the discussion of

antibiotic resistance transmission from water to humans

and vice versa.

This work discusses the hypothesis that bacteria sharing

different water compartments and also the human body

may represent important pieces in the network of antibi-

otic resistance dissemination. In addition, the cross-com-

parison of the bacterial diversity in human and water

habitats vs. the currently identified antibiotic resistance

genes is used to sustain the hypothesis that an important

fraction of the clinically relevant antibiotic resistome may

be yet to be unveiled.

The urban water cycle

Over the centuries, humans settled their lives preferen-

tially in sites around water reservoirs, creating high popu-

lation densities in these areas and also major sources of

pollution. The implementation of sanitation processes

capable of removing contaminants (chemical pollutants,

organic matter, microorganisms) from wastewater before

its discharge into the natural environment became a pri-

ority. In the same way, the supplying of clean and safe

drinking water, often requiring purification and disinfec-

tion, is nowadays regarded as a basic human right, essen-

tial for an effective policy for health protection (WHO &

UNICEF, 2000). Throughout the years, the scientific

knowledge and numerous technologic advances contrib-

uted to the continuous improvement of processes for the

provision of safe water and appropriate disposal and

treatment of wastewater. These two stages constitute the

man-made or urban water cycle.

Bacterial diversity in water habitats

Freshwater habitats are amongst the natural habitats that

harbor the richest bacterial diversity (Tamames et al.,

2010). In a comparative study involving 16S rRNA gene

sequences from 3502 sampling experiments of natural

and artificial bacterial habitats, Tamames et al. (2010)

concluded that soil and freshwater, represented by aqui-

fers, groundwater, lakes, rivers, drinking water and waste-

water, are the natural habitats that harbor the largest

number and most diverse group of bacterial lineages. In

this study, the bacterial diversity in different freshwater

habitats within the urban water cycle was compared

(Fig. 1 and Supporting Information, Table S1). This com-

parison was based on studies published after 1995 in

journals indexed to the ISI – Web of Knowledge, in

which the major objective was the analysis of the water

bacterial diversity, supported by 16S rRNA gene sequence

analysis.

At high taxonomic ranks of phylum or class, in gen-

eral, the most predominant bacteria belong to the phyla

Proteobacteria (mainly of the classes Alpha-, Beta- and

Gammaproteobacteria), Actinobacteria, Bacteroidetes and

Firmicutes, irrespective of the type of water surface (lakes,

rivers, wetlands), mineral, drinking and wastewater

(Fig. 1, Table S1). However, different types of water pres-

ent distinct patterns of bacterial diversity at lower taxo-

nomic ranks, of genus or species. At least this was the

conclusion drawn whenever, according to the publications

supporting this comparison, the 16S rRNA gene sequence

analysis allowed such a discrimination. An apparent spec-

ificity for some types of water was observed. For example,

members of the class Betaproteobacteria and of the phy-

lum Bacteroidetes were frequently detected in surface,

mineral and drinking water, but not so often in wastewa-

ter. In turn, Firmicutes were frequently reported in waste-

water. Ubiquitous bacteria are those with low specificity,

occurring in different environments, including through-

out the urban water cycle or in the interface air-water-soil

(Tamames et al., 2010; Fig. 1 and Table S1). At the genus

rank, examples of the most ubiquitous bacteria in water

habitats, that is those detected in wastewater, surface- and

drinking water, are members of the genera Acidovorax,

Curvibacter, Sphingomonas, Aeromonas, Acinetobacter,

Pseudomonas, Legionella, Rhodococcus, Gordonia, Mycobac-

terium, Flavobacterium, Bacillus and Clostridium (Fig. 1

and Table S1). Bacteria belonging to these groups, and

others still unidentified, are probably capable of circulat-

ing between different aquatic habitats, spanning the whole

urban water cycle.

The use of culture-independent approaches, mainly the

high throughput sequencing methods, brought a renewed

perspective of the bacterial diversity in water habitats, in

which < 0.1% of bacteria can be cultivated (Amann et al.,

1995; Simon & Daniel, 2011; Vaz-Moreira et al., 2013).

These approaches revealed that bacteria still unidentified

below the phylum or class levels are detected in every

type of water (Table S1). This is particularly notorious

for some bacterial phyla/classes, which despite the appar-

ent poor culturability are common water inhabitants.

Good examples of groups almost or exclusively detected

by culture-independent methods are members of Delta-

and Epsilonproteobacteria, Acidobacteria, Verrucomicrobia,

Cyanobacteria, Nitrospirae, Planctomycetes, Chloroflexi,

Chlorobi, Gemmatimonadetes, Spirochaetes, Chlamydiae,

Aquificae, Thermotogae, Fusobacteria, Synergistetes and

Tenericutes, some of them including bacteria ubiquitous

in water habitats (Fig. 1, Table S1). Nevertheless, culture-

independent methods, even high throughput sequencing,
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(a)

(b)

Fig. 1. Dendrogram representations of the

bacterial diversity [(a) Proteobacteria classes

and (b) other phyla] observed in different

types of water, occurrence in the human-

associated microbiome (H) and previous

description of antibiotic resistance genes (R).

The dendrograms were constructed with the

iTOL – interactive tree of life (Letunic & Bork,

2007, 2011), based on the taxon ID codes,

corresponding to the identifications provided

in each of the publications cited (see Table

S1). Different phyla or Proteobacteria classes

(inner circle) are represented by different

colors (when are represented by two or more

bacterial genera), and the presence in

different types of water are represented by

the outer bars. Types of water: SW, surface

water that includes W (wetlands), R (rivers), L

(lakes); MW, mineral drinking water that also

includes spring water; U-DW, untreated

drinking water; T-DW, treated drinking water;

Ur-WW, urban domestic wastewater that may

also include industrial wastewaters; A-WW,

animal wastewater.
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may fail on the detection of some bacterial groups, in

particular the less abundant organisms (Pinto & Raskin,

2012). Different biases (e.g. DNA extraction, PCR or

sequence data analysis) may hamper the detection of cer-

tain community members. On the other hand, the 16S

rRNA gene sequence analysis, particularly of small gene

fragments as those generated with high throughput

sequencing methods, may not allow a reliable identifica-

tion of bacteria (e.g. Clarridge, 2004). These arguments

may explain why bacteria of the genera Escherichia or

Enterococcus, used as indicators of fecal contamination,

and frequently detected in wastewater habitats at counts

as high as 104–106 colony-forming units per mL (Ferreira

da Silva et al., 2007; Garcia-Armisen & Servais, 2004;

Levantesi et al., 2010) are not detected in studies survey-

ing the bacterial diversity, as those summarized in Fig. 1.

The low abundance of these bacteria in water habitats,

even in those with fecal contamination, is also suggested

by cultivation procedures. Indeed, the cultivation of Esc-

herichia or Enterococcus usually requires the use of selec-

tive culture media, while on general culture media, such

as Plate Count Agar, if isolated, they represent a small

fraction of the cultivable populations. Although both

approaches are truly complementary to explore the bacte-

rial diversity of an ecosystem, the current state of the art

suggests a poor synchronization between culture-indepen-

dent and culture-dependent methods. This represents a

serious limitation in a comprehensive analysis of the bac-

terial diversity, mainly when the assessment of the fea-

tures such as metabolism, physiology, genetics, virulence

and antibiotic resistance of a specific group is under dis-

cussion. Expectably, one of the major outcomes of the

implementation of culture-independent methods will be

the improvement of cultivation methods and the

strengthening of studies based on pure cultures (Anony-

mous, 2013; Lagier et al., 2012; Prakash et al., 2013).

These advances will be indispensable to the thorough

assessment of possible intersections between distinct

microbiomes, for example, environmental and human.

Evidences of the natural antibiotic resistome

Over the last 70 years, clinically relevant antibiotic resis-

tance, that is in pathogens and opportunistic bacteria,

increased to worrisome levels, mainly in areas with strong

human intervention (Andersson & Hughes, 2011; Baquero

et al., 2008; Cant�on & Morosini, 2011; Martinez, 2009).

Nevertheless, antibiotic resistance is a natural property of

bacteria, occurring in environments with reduced or null

anthropogenic impacts, such as wild life or remote Earth

zones (Allen et al., 2010; D’Costa et al., 2006, 2011; Dan-

tas et al., 2008; Riesenfeld et al., 2004; Segawa et al.,

2013). In part this can be due to the fact that antibiotics

production is ancient in nature, with more than

106–109 years (D’Costa et al., 2011). Functions, as diverse

as molecular signaling, transcription activation, enhanced

gene transfer, stimulation of bacterial adhesion, increased

mutation frequency or virulence suppression, have been

attributed to antibiotics produced in nature (Dantas

et al., 2008; Davies et al., 2006; Sengupta et al., 2013;

Wright, 2007). Eventually these functions will vary among

the target bacteria and will depend on the genetic and

physiological environment of the cell. Accordingly, natu-

ral antibiotic resistance mechanisms are those that make

these molecules compatible with the normal cell function

(Sengupta et al., 2013; Wright, 2007). Natural antibiotic

resistance has been studied in depth in soil bacteria of the

phyla Actinobacteria, Proteobacteria, or Bacteroidetes,

mainly in those yielding antibiotic production or degra-

dation activity (D’Costa et al., 2006, 2011; Dantas et al.,

2008; Forsberg et al., 2012; Riesenfeld et al., 2004). How-

ever, natural antibiotic resistance is not restricted to soil

bacteria, being also reported in other environments,

including water.

Mineral and spring waters are good examples of natu-

ral water habitats, since these aquifers originate in ground

water sources and are protected from human intervention

(European Comission, 2009; Rosenberg, 2003). Unlike tap

water, mineral and spring water cannot be disinfected by

any kind of treatment to remove or destroy microorgan-

isms (European Comission, 2009) and, thus, its microbi-

ota mirrors the natural populations of the aquifer.

Because this type of water is known to contain a rich

microbiota and it is destined to human consumption,

several studies have searched the presence of antibiotic

resistant bacteria (Falcone-Dias et al., 2012; Mary et al.,

2000; Massa et al., 1995; Messi et al., 2005; Rosenberg &

Duquino, 1989; Zeenat et al., 2009). Although in some of

these studies the experiments were not designed to survey

bacterial diversity and antibiotic resistance, it is possible

to infer about the wide diversity of antibiotic resistance

patterns and the frequent occurrence of multi-resistance

phenotypes. Mineral or spring bottled waters commercial-

ized in Italy, Portugal, France and other world regions

contained bacteria resistant to multiple antibiotics, dis-

tributed by several genera and species (Afipia, Bosea, Brev-

undimonas, Ochrobactrum, Curvibacter, Ralstonia,

Variovorax, Acinetobacter, Klebsiella, Moraxella, Pseudomo-

nas, Flavobacterium, Pedobacter, Arthrobacter, Corynebacte-

rium, Microbacterium, Micrococcus, Bacillus, Kurthia, and

Staphylococcus) (Massa et al., 1995; Mary et al., 2000;

Messi et al., 2005; Zeenat et al., 2009; Falcone-Dias et al.,

2012). Bottled spring water bacteria can reach densities as

high as 102 colony-forming units per mL and display

resistance to more than 20 antibiotics belonging to eight

different classes, including 3rd generation cephalosporins,
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carbapenems and fluoroquinolones (Falcone-Dias et al.,

2012). It is remarkable that, in general, studies conducted

in different geographic areas and in different occasions

demonstrate that the natural microbiota of mineral and

spring waters contains a myriad of antibiotic resistant

bacteria, as was observed before for pristine soils or

ancient permafrost samples (e.g. Allen et al., 2009;

D’Costa et al., 2006, 2011). Many of these (multi-)drug

resistance phenotypes are probably intrinsic in these bac-

teria, and resistance transfer to human-related bacteria

can be considered highly unlikely. These considerations

require a further discussion about the nature of the

environmental antibiotic resistome.

Acquired, intrinsic and silent resistance:

different assets in the same game

Most of the discussions on antibiotic resistance are cen-

tered on acquired resistance, resultant from gene muta-

tion or genetic recombination by horizontal gene transfer

(conjugation, transformation or transduction) (Martinez

& Baquero, 2000; Livermore, 2003; Tenover, 2006; Zhang

et al., 2009; Davies & Davies, 2010). Although these can

be random processes, in the presence of selective pres-

sures, such as antimicrobial residues, bacterial lineages

with acquired antibiotic resistance will have an improved

fitness (i.e. a better capacity to survive and reproduce in

comparison with bacteria without acquired resistance),

becoming more prevalent in the community (Andersson

& Hughes, 2011; Barbosa & Levy, 2000; Martinez, 2009).

In contrast, the intrinsic resistome is described as an

ensemble of nonacquired genes with influence on the sus-

ceptibility to antibiotics (Baquero et al., 2013; Fajardo

et al., 2008). This form of resistance comprises diverse

mechanisms that can be related with structural, physio-

logical or biochemical properties of bacteria, such as

reduced permeability, metabolic functions, efflux systems,

among others (Alvarez-Ortega et al., 2011; Baquero et al.,

2013; Fajardo et al., 2008; Martinez, 2008; Wright, 2010).

Intrinsic antibiotic resistance represents a characteristic

phenotype of a species or organism, resultant from multi-

ple genes and, hence, is not easily transferable by horizon-

tal gene transfer. In the same way, it is not the direct

consequence of adaptation to antibiotics (Alvarez-Ortega

et al., 2011).

Since about 3% of the genes in a bacterial genome may

be related with intrinsic resistance processes (Fajardo

et al., 2008), it is expected that this native resistance form

represents an important fraction of the environmental

antibiotic resistome. A well characterized intrinsic resis-

tome belongs to the opportunistic pathogen Pseudomonas

aeruginosa, which displays intrinsic resistance to a wide

variety of antibiotics, resultant from a complex network

of genes (Alvarez-Ortega et al., 2011; Breidenstein et al.,

2011; Fajardo et al., 2008). The low permeability of the

external membrane, 12–100 times lower in P. aeruginosa

than in E. coli, and the presence of some proteins

involved in the alteration of cell metabolism, leading, for

instance, to changes in the cell growth state, are supposed

to represent the most important mechanisms of intrinsic

resistance in this organism (Hancock, 1998; Hancock &

Brinkman, 2002; Alvarez-Ortega et al., 2011; Breidenstein

et al., 2011).

Although intrinsic resistance may be characteristic of a

species, it is not necessarily common to all species mem-

bers. In E. coli, point mutations in different loci were

observed to promote reduced susceptibility to antibiotics

such as ciprofloxacin, rifampin, vancomycin, ampicillin,

sulfamethoxazole, gentamicin, or metronidazole (Tamae

et al., 2008). The potential of some members of a species

to mutate towards significant reduction or increase in

antibiotic susceptibility was observed in different species

(e.g. Helicobacter pylori, Acinetobacter baylyi, P. aerugin-

osa), being probably species-specific (Fajardo et al., 2008;

Girgis et al., 2009; Gomez & Neyfakh, 2006; Liu et al.,

2010). This kind of genome variations in bacterial popu-

lations is probably common in nature and may have

interesting implications on the ecology of antibiotic

resistant bacteria.

The implications of the intrinsic resistome on the evo-

lution of acquired antibiotic resistance are not completely

understood. However, the characterization of the intrinsic

resistome genes may bring important contributes to pre-

dict the stability, emergence and evolution of antibiotic

resistance (Fajardo et al., 2008; Martinez et al., 2007). In

a community, it is possible that intrinsic resistance will

drive bacterial selection, leading to community rearrange-

ments, mainly when selective pressures, as those imposed

by antibiotics, are present (Baquero et al., 2013). Hypo-

thetically, if a bacterial population is intrinsically resis-

tant, it will have higher chances to survive in the presence

of antimicrobial residues, and to get in contact with

potential resistance donors, proliferating more and faster

than nonintrinsically resistant organisms. Thus, it can be

hypothesized that intrinsic resistance, at least in some

highly ubiquitous bacteria, may represent an advantage

for resistance acquisition. A good example of how intrin-

sic resistance may favor resistance acquisition may be rep-

resented by P. aeruginosa, one of the opportunistic

pathogens with highest potential to acquire antibiotic

resistance (Breidenstein et al., 2011).

A major question may be whether genes related with

intrinsic resistance phenotypes may be transferred hori-

zontally. Although such an event is not supposed to

occur, at least at a high frequency, conceivably, it is not

impossible. Other resistance determinants not included in
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the classical antibiotic-resistance genes, may also occur in

nature, and bring interesting insights into the ecology of

antibiotic resistance. Silent resistance genes are hidden

forms of antibiotic resistance that do not confer resistance

to its native host, although are capable of conferring

resistance when expressed in other hosts (Dantas &

Sommer, 2012).

In summary, the natural antibiotic resistome comprises

three categories: (1) those designated as acquired resis-

tance genes, which correspond to the classical antibiotic-

resistance genes, (2) the genes related with intrinsic resis-

tance and (3) the silent resistance genes. Because some of

these genes may respond to unspecific stimuli, and not

only to antibiotics, they may contribute to the selection

of the antibiotic unsusceptible populations (Baquero

et al., 2013; Dantas & Sommer, 2012). These arguments

reinforce the need to study antibiotic resistance in a glo-

bal perspective either in the context of the cell genome or

the whole bacterial community.

Antibiotic resistance in wastewater

Among the man-made environments, wastewater

treatment plants (WWTP) are the most important

receptors and suppliers of human derived antibiotic resis-

tance (Manaia et al., 2012; Rizzo et al., 2013). The indica-

tors of fecal contamination, E. coli and Enterococcus spp.,

are often used to monitor antibiotic resistance prevalence

in urban wastewaters (Ur-WW). In these groups, high

resistance prevalence values have been observed for anti-

biotics with a long history of use, such as aminopenicil-

lins, sulfonamides and tetracyclines for E. coli or

tetracycline and erythromycin for enterococci (Manaia

et al., 2012). Moreover, it is shown that conventional

wastewater treatment does not contribute to reduce the

fraction of antibiotic resistant bacteria, leading, some-

times, to its increase in the final effluent (Ferreira da Silva

et al., 2006, 2007; Łuczkiewicz et al., 2010; Novo et al.,

2013). It is impressive that in different world regions and

using distinct types of wastewater treatment, WWTP are

responsible for the discharge of about one billion of cul-

turable antibiotic resistant coliforms per minute to the

environment (exemplified for ciprofloxacin resistance in

Fig. 2). Despite the relevance of E. coli and Enterococcus

as indicators of human fecal contamination, apparently

these bacteria are not the most prevalent bacterial groups

in sewage sludge or in wastewater (Sanapareddy et al.,

2009; McLellan et al., 2010; Xia et al., 2010b; Yang

et al., 2011; Wang et al., 2012; Ye & Zhang, 2012; Zhang

et al., 2012) (Fig. 1). Indeed, E. coli and enterococci are

probably minor representatives of the water bacterial

communities. This conclusion leads us to a new dilemma.

If most of the well-known bacteria in terms of antibiotic

resistance are minor representatives of wastewater com-

munities, it is reasonable to argue that other community

members, mainly the most abundant, may play also

important roles as donors, receptors or simply mediators

of antibiotic resistance dissemination.

Antibiotic resistance in aquaculture

environments

In aquaculture, antimicrobials are routinely used through

the direct addition into the water body. However, the

Fig. 2. A domestic wastewater treatment plant (WWTP) discharges about 1 billion (109) ciprofloxacin resistant coliforms per minute. Total and

ciprofloxacin resistant coliforms (CFU per day) discharged by WWTP in different countries [WWTP1-WWTP5, Portugal (PT); WWTP6, Poland (PL);

WWTP7, Ireland (IE)], with different sizes (average day flow of 20 000, 32 500, 900, 890, 200, 96 000 and 49 000 m3, respectively) and

treatment processes [activated sludge (WWTP1 and WWTP6), trickling filter (WWTP2), submerged aerated filter (WWTP3), aeration lagoon

(WWTP4), anaerobic lagoon (WWTP5), unknown secondary treatment (WWTP7), with bacterial removal rates above of 1.5–4 log (CFU; Galvin

et al., 2010; Łuczkiewicz et al., 2010; Manaia et al., 2010; Novo & Manaia, 2010).
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negative impacts of this procedure have been

demonstrated and include the persistence of antimicro-

bial residues in water and fish and the selection and

spread of resistance genes, with the consequent

contamination of the environment and the human food-

chain (Sørum, 1998; Cabello, 2006; Taylor et al., 2011;

Tamminen et al., 2011). The spread of antibiotic resis-

tance among fish pathogens has economic impacts on

aquaculture productivity and increases the possibilities of

the dissemination of resistance determinants to other

bacteria, including human pathogens (Cabello, 2006;

Rhodes et al., 2000). The long term effects are demon-

strated by the fact that, even in the absence of selective

pressures, when the antibiotic used was banned from an

aquaculture system, genes conferring low susceptibility

to that antibiotic will persist (Tamminen et al., 2011).

Bacterial diversity studies in aquaculture water bodies

are scant, but the presence of some genera, such as Yer-

sinia, Vibrio, Photobacterium, Pseudomonas and Aeromo-

nas, is consistently reported (Ozaktas et al., 2012;

Rodr�ıguez-Blanco et al., 2012; Schulze et al., 2006;

Sørum, 1998). These genera comprise also some bacteria

with important roles on antibiotic resistance spread, for

example qnrA, encoding a DNA topoisomerase protector

and the extended-spectrum beta-lactamase PER-6

(Girlich et al., 2010a; Poirel et al., 2005). Moreover, the

dissemination of antimicrobial resistance in aquaculture

environments may be associated with other resistance

determinants such as heavy metals or biocides (Akinbo-

wale et al., 2007; Cabello et al., 2013; Rodr�ıguez-Blanco

et al., 2012; Seiler & Berendonk, 2012).

Antibiotic resistance in disinfected drinking

water

Despite the scarce information regarding antibiotic

resistance in disinfected drinking water, it was already dem-

onstrated that it may contain bacteria, such as those of the

genera Sphingobium, Sphingomonas, Pseudomonas and Aci-

netobacter or nonfecal Enterobacteriaceae capable of resist-

ing different antibiotics (Faria et al., 2009; Xi et al., 2009;

Vaz-Moreira et al., 2011b, 2012; Figueira et al., 2012; Narc-

iso-da-Rocha et al., 2013) (Table S2). For instance, Sphin-

gomonadaceae, a bacterial group recognizedly ubiquitous,

rich in mobile genetic elements, and comprising common

inhabitants of environments contaminated with xeno-

biotcs, can be highly prevalent in disinfected drinking water

(Koskinen et al., 2000; Furuhata et al., 2007; Stolz, 2009;

Aylward et al., 2013). Tap water Sphingomonadaceae yield a

rich and diversified resistance pattern to penicillins, cepha-

losporins, carbapenems and aminoglycosides (Vaz-Moreira

et al., 2011b), but their relevance on the spread of antibi-

otic resistance is unknown.

Independent studies have demonstrated that antibiotic

resistant bacteria, at least for some classes of antibiotics,

may be more prevalent in tap than in the water source

(Gomez-Alvarez et al., 2012; Narciso-da-Rocha et al.,

2013; Vaz-Moreira et al., 2012; Xi et al., 2009). Such an

effect may be due either to the selective effect of the

disinfection processes or to the income of antibiotic

resistant bacteria downstream the disinfection point

(Gomez-Alvarez et al., 2012; Vaz-Moreira et al., 2013).

This is a fundamental and difficult to answer question,

given the complex rearrangements in the bacterial

communities that result from the disinfection processes

(Eichler et al., 2006; Figueira et al., 2011; Hoefel et al.,

2005; Kormas et al., 2010; Vaz-Moreira et al., 2013).

However, strain tracking approaches do not support the

conclusion that the water source is the most probable ori-

gin of the antibiotic resistance detected in tap water

(Narciso-da-Rocha et al., 2013; Vaz-Moreira et al., 2011b,

2012). Regarding the origin of the antibiotic resistance

found in drinking water, it has been observed that the

majority of the resistance phenotypes in bacteria of

groups such as Sphingomonadaceae, Pseudomonas or Aci-

netobacter is species dependent. This observation suggests

a pattern of vertical inheritance of resistance and, thus, it

can be hypothesized that antibiotic resistance in these

organisms is probably intrinsic (Narciso-da-Rocha et al.,

2013; Shehabi et al., 2005; Vaz-Moreira et al., 2011b,

2012). Either being acquired or intrinsic, the impacts that

antibiotic resistant bacteria present in drinking water may

have on human health are still unknown.

Antibiotic resistance genes throughout
the urban water cycle

The tracking of antibiotic resistance genes in different

environmental compartments is an important tool to

assess the ecology and epidemiology of antibiotic resis-

tance. Antibiotic resistance genes, encoding every known

type of mechanism (target protection, target modification,

drug modification, reduced permeability or efflux), are

found throughout the urban water cycle (Table S2). These

genes have been detected either in bacterial isolates or in

total genomic DNA samples, using, most of the times,

primers or probes targeting antibiotic resistance genes

that are already known. Most of such primers and probes

were designed based on genome sequences of bacterial

isolates yielding a given resistance phenotype. Therefore,

the vast majority of surveys of antibiotic resistance genes

rely, directly or indirectly, on cultivable bacteria recog-

nized as opportunists or pathogens. Examples of the most

common hosts of the well-known antibiotic resistance

genes are members of the family Enterobacteriaceae (e.g.

genera Klebsiella, Citrobacter, Enterobacter, Raoultella) or
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the genera Acinetobacter, Aeromonas, Burkholderia, Pseu-

domonas, Enterococcus, Staphylococcus and some other that

in total represent a humble fraction of the bacterial

groups thriving in water habitats.

Wastewater, in particular raw, is the richest water habi-

tat in known antibiotic resistance genes. There, can be

found a typical signature of genes encoding resistance to

‘old’ antibiotics such as tetracyclines, sulfonamides, am-

inoglycosides and beta-lactams (e.g. tet, aac, dfr, sul, class

A beta-lactamases; Table S2). Most of these genes are

located in plasmids and some are part of the variable

gene cassettes of integrons and, probably, can easily be

mobilized amongst bacteria (Garcill�an-Barcia et al., 2011;

Partridge, 2011). Recently, Zhang et al. (2011) demon-

strated that plasmids, mainly harbored by Proteobacteria

of the classes Alpha-, Beta- and Gamma- and members of

the genera Bacillus, Mycobacterium and Nocardiopsis,

some of which are abundant in wastewater habitats, are

relevant vectors of tetracycline, macrolide and multidrug

resistance genes in these environmental niches.

Studies reporting the diversity and abundance of

antibiotic resistance genes in drinking water are scarce.

However, the occurrence of genes also detected in clinical

isolates, encoding resistance to beta-lactams, aminoglyco-

sides, macrolides or sulfonamides is described even in

disinfected water (Table S2) (Faria et al., 2009; Xi et al.,

2009; Figueira et al., 2012). The origin of these resistance

genes in drinking water is still unknown, being unclear in

which cases it results from environmental contamination.

A major limitation to answer this question is related with

the fact that most of the drinking water bacteria are of envi-

ronmental origin and poorly or not at all characterized in

terms of antibiotic resistance genes (Fig. 1, Table S1).

Commonly used arguments to explain
the evolutionary success of acquired
antibiotic resistance

Acquired antibiotic resistance is an emblematic example

of biological evolution, driven by two major mechanisms

– genetic variability (mutation and recombination) and

selection (Andersson & Hughes, 2010; Thomas & Nielsen,

2005; Wiedenbeck & Cohan, 2011). Genetic variability

results from gene mutation and horizontal gene transfer,

in which the latter has more dramatic implications on the

physiology and ecology of bacteria (Arber, 2000; Hausner

& Wuertz, 1999; Miyahara et al., 2011). On the other

hand, antibiotics, even at subinhibitory concentrations, or

other micro-pollutants such as heavy metals, contribute

for the selection of resistant bacteria (Alonso et al., 2001;

Davies et al., 2006; Tello et al., 2012). However, the selec-

tion of antibiotic resistant bacteria may not represent the

only consequence of the environmental contamination

with antibiotics. Actually, the residues of antibiotics at

environmental concentrations (often subinhibitory) are

also correlated with disturbances on the structure and

composition of bacterial communities in water habitats

(Huerta et al., 2013; Novo et al., 2013). Moreover, in the

environment, pollutants occur in complex mixtures,

which make it difficult to predict their effects on the

microbial communities. Processes of co- or cross-resis-

tance, for instance, due to genetic linkage or to broad

enzyme specificity, may lead to the selection of resistance

genes in the absence of a selective pressure by antibiotics

(Baker-Austin et al., 2006; Harada & Asai, 2010). If the

above mentioned arguments could explain antibiotic

resistance proliferation, acquired antibiotic resistance

would be detected only in habitats such as wastewater or

in the animal or human body, mainly in the gut, during

antibiotherapy periods. However, this is not the case and

antibiotic resistance determinants are found in environ-

ments where none of the above mentioned pressures are

present (Harada & Asai, 2010). The strongest argument

to explain the occurrence of recognized clinically relevant

resistance genes in environments with no apparent selec-

tive pressure refers to the low fitness costs of antibiotic

resistance genes (i.e. when antibiotic resistance acquisition

do not reduce the survival and proliferation of a bacte-

rium, even in the absence of selective pressures) (Anders-

son & Hughes, 2010; Gullberg et al., 2011). The influence

of compensatory mutations on the reduction of fitness

costs imposed by acquired antibiotic resistance has been

demonstrated (Andersson & Hughes, 2010; Bj€orkman

et al., 2000; Handel et al., 2006; Maisnier-Patin & An-

dersson, 2004; Schulz zur Wiesch et al., 2010; Tanaka &

Valckenborgh, 2011). Since compensatory mutations may

alleviate the fitness costs associated with a given acquired

resistance, resistant and susceptible bacteria will display a

comparable fitness in the environment, although with dif-

ferent levels of tolerance to antibiotics. As a consequence,

strains harboring resistance and compensatory mutations

may have a selective advantage in the environment,

mainly in the presence of antimicrobial residues (Anders-

son & Hughes, 2010; Bj€orkman et al., 2000; Handel et al.,

2006; Schulz zur Wiesch et al., 2010). The importance of

the environmental conditions on the selection of resis-

tance and compensatory mutations is suggested by the

fact that different fitness-compensating mutations are

observed in bacteria thriving in mice or in a laboratory

medium (Bj€orkman et al., 2000). These evidences empha-

size the complexity of the antibiotic resistance ecology,

although it seems reasonable to assume that as long as

bacteria and/or genetic elements are able to move across

different water habitats, cross-resistance and low fitness

costs may explain why acquired antibiotic resistance can

reach habitats such as drinking water.
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Intersections between the water and
the human-associated microbiome

Increasing evidences on the diversity, metabolic and func-

tional capabilities of the microbiota associated with the

human body show that microbial consortia play important

roles in disease and health conditions, although their roles

are not yet completely understood (Eloe-Fadrosh & Rasko,

2013; Turnbaugh et al., 2007). Microorganisms colonizing

or infecting humans may derive from different primary

habitats, and not only the human body, and play distinct

roles in health or disease status. The expression ‘human-

associated microbiome’ is herein used to refer to all micro-

organisms capable of colonizing or infecting a human host

independently of which is their primary habitat.

Two types of intersection between the human-associ-

ated microbiome and water habitats are expected. One

refers to the release of bacteria from humans to wastewa-

ter. The other comprises bacteria that being present in

drinking water are also reported in the human-associated

microbiome. The first type of intersection was compre-

hensively analyzed by McLellan et al. (2010) who con-

cluded that, as expected, only a small fraction of bacteria

excreted by humans were represented in sewage and even

less were found in surface water. Among the bacterial lin-

eages found throughout these compartments, the pre-

dominant were Lachnospiraceae, Bacteroidaceae and

Ruminococcaceae (McLellan et al., 2010), groups poorly

characterized in terms of antibiotic resistance. Other

intersections are widely known as those of the indicators

E. coli and enterococci, which representativeness in water

and human-associated microbiomes is not so evident as

could be expected (Table S1) (Qin et al., 2010; Arumu-

gam et al., 2011; The Human Microbiome Project Con-

sortium, 2012).

The assessment of the second type of intersection is even

more difficult. The occurrence of antibiotic resistant bacte-

ria in drinking water may be important because of the

harmful effects that this could have in the human health. In

such case, transmission could be directly of water bacteria

to humans or, indirectly, via transmission of resistance

genes from water bacteria to human-related bacteria

(Fig. 3). Lee et al. (2010) used germ-free mice to

demonstrate a correlation between the microbiota of

drinking water and its presence in the gastrointestinal tract.

However, this approach hardly can be used to infer about

the fate of antibiotic resistant bacteria in the human

gastrointestinal tract, given the richness and diversity of

such habitat. Considering the value of taxonomy and phy-

logeny in the prediction of the ecology and physiology of

bacteria, the currently available information about human

and environmental microbiomes may allow interesting

inferences. Using this rationale, the occurrence of the same

bacterial lineages in drinking water and in the human-asso-

ciated microbiome may be an indication of the fitness of

those bacteria to the human body. In addition, it may sug-

gest its potential to, under favorable conditions, e.g. antib-

iotherapy, suffer positive selection or promote horizontal

gene transfer. The search of bacterial groups found in water

habitats (Table S1) in the NIH Human Microbiome Project

catalog (http://www.hmpdacc.org/catalog/) revealed that

35 groups, distributed by five phyla (Proteobacteria, Actino-

bacteria, Firmicutes, Bacteroidetes, Cyanobacteria), found in

treated drinking water can also be detected in the human-

associated microbiome (e.g. in the gastrointestinal tract,

oral cavity or skin, including lesions). Identically, 19 lin-

eages distributed by three phyla (Proteobacteria, Actinobac-

teria and Firmicutes), found in mineral water can also be

found in the human-associated microbiome (Table S1;

Fig. 1). Probably, in the future, when more data are made

available, more bacterial groups will be observed to be

common to water environments and the human body.

Nevertheless, it is already worthy of note that bacteria of

the genera Burkholderia, Acinetobacter, Aeromonas, Klebsiel-

la, Pseudomonas, Stenotrophomonas or Clostridium (Table

S1), all of them with high potential to acquire antibiotic

resistance genes (Zhang et al., 2009), can be found in

drinking water and in the human-associated microbiome.

Others such as members of the genera Sphingomonas or

Methylobacterium which exhibit resistance to several antibi-

Fig. 3. Hypothesis about the relationship between environmental and

human antibiotic resistome. (A) cycle of known clinically relevant

antibiotic resistance determinants; (B) transfer of antibiotic resistance

genetic determinants from clinically relevant bacteria to commensal

human microbiota; (C) transfer of antibiotic resistance genetic

determinants from the natural resistome to clinically relevant bacteria

either thriving in the environment (C1) or hosted by humans (C2); (D)

indirect transfer of antibiotic resistance determinants from the natural

resistome to clinically relevant bacteria via human microbiome.
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otics, but about which almost nothing is known about anti-

biotic resistance genetics (Furuhata et al., 2006, 2007; Vaz-

Moreira et al., 2011b), can also be found in water habitats

and in the human-associated microbiome. The meaning of

these evidences is still unclear but it may hint a link

between water habitats and the human body, giving sup-

port to the hypothesis that water habitats may, directly or

indirectly, supply antibiotic resistant bacteria for the

human-associated microbiome (Fig. 3).

Missing links between natural and
contaminant antibiotic resistance

Water and soil are regarded as important potential antibi-

otic resistance reservoirs, either natural or due to animal

(and manure used as fertilizer) and human derived envi-

ronmental contamination (Bush et al., 2011; Forsberg

et al., 2012). However, except in a few well documented

cases (e.g. qnr and blaCTX-M) (Poirel et al., 2002, 2005), it

is difficult to demonstrate the passage of resistance genes

from the environment to clinically-relevant bacteria or to

clarify the mechanisms that made such a gene transfer

possible. Previous studies have demonstrated that the

human gut antibiotic resistome comprises an impressive

myriad of antibiotic resistance genes not identified before

and evolutionarily distant from the currently known resis-

tance genes (Sommer et al., 2009). The increasing num-

ber of complete bacterial genome sequences, support this

observation (http://www.ncbi.nlm.nih.gov/genome). Puta-

tive annotation data, available in public databases, suggest

that multidrug resistance as well as other specific resis-

tance mechanisms are widespread in Bacteria. However,

the annotated function encoded by these genome

sequences is not reliable to infer with accuracy the

expected phenotypes, mainly because the phenotype

encoded by a gene may depend on the genetic and physi-

ological environment (e.g. silent resistance genes) (Dantas

& Sommer, 2012). Probably, most of the still unknown

resistome is composed by resistance genes not yet validly

annotated and others which expression is host-dependent.

However, the clinical relevance of these genetic determi-

nants as well as their influence on antibiotic resistance

emergence is not clear yet. Although it can be hypothe-

sized that the ‘unkown’ human resistant microbiome may

represent the missing link between the environment and

the human pathogens, evidences that ingested products

(food and water) can be the major sources of antibiotic

resistance genes are still missing.

Antibiotic therapy imposes profound and long lasting

rearrangements in the human-associated microbiome,

characterized by the increase of Proteobacteria and the

simultaneous reduction of other groups such as Bacteroi-

detes or Firmicutes (Antonopoulos et al., 2009; Jakobsson

et al., 2010; Jernberg et al., 2010; Young & Schmidt,

2004). Eventually, it can be argued that, under specific

conditions (e.g. antibiotherapy), minor or silenced parts

of the human antibiotic resistome may lead important

microbial and genomic rearrangements responsible for

resistance development. Apparently, the environmental

and pathogenic resistomes are not distinct, with the

same genes being detected in both, although with

higher prevalence in the pathogenic resistome (D’Costa

et al., 2006; Allen et al., 2010; Forsberg et al., 2012)

(Fig. 3). Indeed, antibiotic resistance genes and gene

mobilization cassettes, many of which without recog-

nized clinical relevance, are widespread in nature, span-

ning numerous lineages of the bacterial world (Allen

et al., 2010; Cant�on, 2009). However, apparently only a

small fraction of these genetic elements was successfully

spread through animals, humans and the environment,

representing a public health threat. Which are the

genetic characteristics or the external conditions that

support the evolutionary success of an antibiotic resis-

tance gene is still a major question.

Concluding remarks

In summary, the previous discussion on the diversity and

ecology of water bacteria and antibiotic resistance led to a

few conclusions and raised some new hypothesis:

1 Water habitats host an impressive bacterial diversity.

However, only a few lineages are known to harbor antibi-

otic resistance genes of already recognized clinical rele-

vance. The hypothesis that many bacterial lineages, some

of them still unculturable, inhabiting water may represent

a reservoir of new or emerging antibiotic resistance

determinants cannot be discarded;

2 Bacteria belonging to the same bacterial lineages inha-

bit different types of water, including pristine water, dis-

infected water and raw wastewater. The hypothesis that

these lineages can transfer relevant properties, mainly

those that can be acquired by horizontal gene transfer,

from unclean water habitats to clean environments,

cannot be discarded;

3 Only a few groups of bacteria found in waters were, so

far, identified in the human-associated microbiome.

Although it is still uncertain in which cases the same spe-

cies and strain can live in water and colonize humans, it

is arguable that at least some of those lineages can repre-

sent a link between the water habitats and humans. In

such case, those bacteria may be involved in the direct or

indirect transfer of properties, including antibiotic

resistance;

4 Well-known human commensal (as coliforms or

enterococci) and pathogenic bacteria are minor and often

undetected representatives of the water microbial com-
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munities assessed based on metagenomic analysis.

Therefore, metagenomic approaches may be of limited

value to detect antibiotic resistance determinants already

described in these organisms, unless enrichment or tar-

geted methods are used.

5 Studies designed to survey the phylogeny of the antibi-

otic resistance genes and tracking the same gene types

over different environmental compartments may contrib-

ute to shade some light on the relevance of environmen-

tal bacteria on the spread and transfer to humans of

antibiotic resistance.
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