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RESUMO 

  

O arroz (Oryza sativa L.) alimenta mais de metade da população do mundo e é rico em 

diversidade genética, com milhares de variedades cultivadas em todo o mundo. A deficiência 

de ferro (Fe) constitui um dos principais stresses abióticos na produção agrícola dado que, em 

solos calcários, que abrangem cerca de 30 % dos solos cultivados do mundo, o Fe forma 

complexos solúveis e não está prontamente disponível para absorção pelas plantas. Durante 

muito tempo, as plantas foram divididas em dois grupos distintos, pela sua capacidade de 

absorção de Fe: dicotiledóneas, que utilizam a Estratégia I e utilizam um sistema de redução e 

transporte de Fe
2+

; e as monocotiledóneas gramíneas, plantas da Estratégia II, que usam um 

sistema baseado nos fitosideróforos (PS). Recentemente, evidências sugerem que o arroz, 

além de usar a Estratégia II, pode também usar um transportador de Fe
2+

, típico das plantas de 

Estratégia I, conferindo vantagem em solos alagados onde o Fe
2+ 

está mais disponível. 

O objetivo deste estudo foi compreender se as plantas de arroz têm ou não a 

capacidade de sobre expressar mecanismos relacionados com a Estratégia I para a absorção de 

Fe. De forma a cumprir estes objetivos, duas cultivares diferentes de arroz com 

suscetibilidades diferentes para a deficiência de Fe foram cultivadas em sistema hidropónico, 

nomeadamente, Nipponbare (cujo genoma foi já sequenciado) e Bico Branco (nunca antes 

estudada), para analisar vários parâmetros ao nível fisiológico e molecular. 

Os resultados obtidos mostraram que a cultivar Bico Branco acumulou mais minerais 

nas raízes e a Nipponbare na parte aérea e que, quando a absorção de Fe é reduzida, há um 

aumento na absorção de outros minerais, principalmente de zinco (Zn), manganês (Mn) e 

cobre (Cu). No que diz respeito aos pigmentos fotossintéticos, a cultivar Bico Branco 

mostrou-se mais suscetível à deficiência de Fe do que Nipponbare, por ter desenvolvido maior 

clorose. Além disso, teve maior atividade da enzima reductase de Fe sob deficiência de Fe e 

apresentou níveis elevados de expressão do gene OsFRO2 nas raízes, gene responsável pela 

redução de Fe. Esta nova descoberta mostra que certas cultivares de arroz podem beneficiar 

do sistema de redução de Fe, principalmente porque o arroz é conhecido por produzir PS em 

baixas quantidades e crescer em solos aeróbicos/terras altas, onde o Fe
3+

 é abundante.  

Foram também identificados novos genes candidatos no arroz, nomeadamente, 

OsFPN1, OsFPN2, OsMYB2 e OsMYBS3, que revelaram ser importantes na homeostase do 

Fe em arroz. 

 

 



Study of the Fe uptake systems in two different rice cultivars 

 

iv 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Study of the Fe uptake systems in two different rice cultivars 

 

v 

 

ABSTRACT 

 

Rice (Oryza sativa L.) feeds more than half of the world’s population and is rich in 

genetic diversity, with thousands of varieties grown throughout the world. Iron (Fe) 

deficiency is a major abiotic stress in crop production, since in calcareous soils, which 

account for about 30% of the world’s cultivated soils, Fe form soluble complexes and is not 

readily available for uptake. For a long time plants have been divided into two distinct groups, 

by their capacity for Fe uptake: dicotyledoneas, that belong to Strategy I and utilize an Fe 

reduction and Fe
2+

 transporter system; and graminaceous monocotyledoneas, strategy II 

plants, that use an phytosiderophore (PS)-based system. Recently, evidences suggest that rice, 

in addition to use Strategy II, can also use an Fe
2+

 transporter, typical in Strategy I plants, that 

could confer advantage in flooded soils where Fe
2+ 

is more available. 

The aim of this study was to understand if rice plants have or not the capacity to up-

regulate Strategy I mechanisms for Fe uptake. To meet these purposes, two different rice 

cultivars with different susceptibilities to Fe deficiency, were grown hydroponically, namely, 

Nipponbare (whose genome has already been sequenced) and Bico Branco (never studied 

before) to analyze various parameters at a physiological and molecular level. 

The results obtained showed that Bico Branco cultivar accumulated more minerals in 

roots and Nipponbare in shoots and that when Fe uptake is decreased there is an increase on 

the uptake of some other minerals, mainly zinc (Zn), manganese (Mn) and copper (Cu). In 

what concerns the photosynthetic pigments, the Bico Branco cultivar showed to be more 

susceptible to Fe deficiency than the Nipponbare cultivar, as the first developed more 

chlorosis than the latter. Furthermore, the Nipponbare cultivar revealed the highest Fe-

reductase activity under Fe deficient conditions and revealed higher levels of expression of 

OsFRO2 gene in the roots, a gene that is responsible for Fe reduction. These new findings 

show that some rice cultivars may utilize the Fe-reduction system, mainly because rice is 

known for producing PS in low amounts and grow in aerobic/upland where Fe
3+

 is more 

available.  

Also, new candidate genes in rice were identified, namely OsFPN1, OsFPN2, OsMYB2 

and OsMYBS3, and they revealed to be important in Fe homeostasis in rice. 
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1. INTRODUCTION 

 

 

1.1 History and production 

 

Rice is the oldest food of the world and at the same time the most current (Maclean et 

al., 2002). Its origins have been debated for some time, but it is thought that rice plant 

remains from 10,000 B.C. were discovered in a Spirit Cave on the Thailand-Myanmar border. 

Migrant people from southern China or perhaps northern Vietnam carried the traditions of 

wetland rice cultivation to the Philippines during the second millennium B.C. (Maclean et al., 

2002). The crop may well have been introduced in Europe, more accurately in Greece and the 

neighboring areas of the Mediterranean by Alexander Magno in expedition to India around 

344-324 B.C. From central positioning in Greece and Sicily, rice gradually spread throughout 

southern Europe and to a few locations in northern Africa (Maclean et al., 2002). 

The Arabs introduced rice in the Iberian Peninsula in the 8th century (771),  but it was 

during the reign of D. Dinis, O Lavrador (1279-1325), that the first references to rice 

cultivation appear in Baixo Mondego, in the area of Montemor-o-Velho. After his reign, rice 

growing was abandoned and then restored in the 18th century (MADRP, 2002). During World 

War I, rice consumption was strongly increased and became embedded in Portuguese 

agriculture (Lains, 2003). In 1929, under the dictatorial regime of Salazar, began a strong 

regulatory protectionist stance for cereals, known as the "Wheat Campaign" where wetland 

areas were reclaimed and these arable lands that were unproductive, were chosen to plant rice 

(MADRP, 2002). In 1972 the total amount of land harvested for rice reached its maximum at 

43.487 ha, showing the great success of Salazar's protectionist policies (Vianna Silva, 1975). 

The first reform in 1995 (COUNCIL REGULATION (EC) 3072/1995) provided further 

stimulus to grow rice, the production-dependent subsidies were seen as an incentive for 

greater improvement in yields that led to an unexpected increase in rice production 

(Commission of the European Communities, 2002). Currently, rice is grown in the basins of 

Mondego (Figueira da Foz, Coimbra), Sado (Alcácer do Sal), Tejo, Beira Baixa and other 

regions in smaller scale (Panzone et al., 2009). 
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Rice is grown in more than a hundred countries, with a total harvested area in 2012 of 

approximately 163 million ha (FAO, 2012), producing more than 700 million tons annually. 

The main producer in the world is Asia, which accounts for over 90 % of the world 

production of rice (Figure 1.1.1A), with China and India producing the most, according to the 

latest data provided by FAO (2012). Thailand is the world largest exporter of milled rice, with 

about 10 million tons exported in 2011, followed by Vietnam, India and Pakistan. 

Rice production in Europe is indicated in Figure 1.1.1B. Italy and the Russian 

Federation, in that order, are the largest producers with about 1,500,000.00 and 1,051,891.00 

tons in 2012, respectively, followed closely by Spain with a production of 881,000.00 tons. 

Portugal is currently the sixth producer in Europe with 184,100.00 tons produced in 2012, 

supplying more than 236 million tons of rice in 2009, more exactly 151 Kcal/capita/day. In 

2011, Portugal exported about 25,609.00 tons of rice (FAO, 2012). 

 

 

Figure 1.1.1 A) Percent of global rice production by region in 2012; B) Rice production in 

Europe in 2012 (data from FAO, 2012) 

 

In addition to being the most important staple food in the world, rice is also part of 

many cultures and traditions, being used in several religious ceremonies and festivals 

(Maclean et al., 2002). In 2004 the United Nations declared it the International Year of Rice, 

as a "symbol of cultural identity and unity among peoples". 

 

 

B) A) 
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1.2 Rice growing habitats and grain types 

 

Rice, as a very diverse plant, can grow in a wide range of environments where other 

crops would fail. Currently, rice-growing environments throughout the world (Figure 1.2.1) 

include irrigated rice, rain-fed lowland and rain-fed upland (IRRIa, 2013), as follows: 

 

 Irrigated rice is grown in fields with 5–10 centimeters (cm) of water 

(“floodwater”) in the field, receiving about 40 % of the water from irrigation. This 

anaerobic environment is the most common method used worldwide, having 

about 80 million ha of this cultivation providing 75 % of the world’s rice 

production; 

 

 Rainfed lowland rice is grown in bunded fields that are flooded with rainwater for 

at least part of the cropping season. This can originate multiple abiotic stresses 

and high uncertainty in timing duration, and intensity of rainfall. About 60 million 

ha of rainfed lowlands supply about 20 % of the world’s rice production. This 

technique predominates in areas of greatest poverty: parts of Southeast Asia, 

South Asia, and essentially all of Africa. Thus, yields are very low (1–2.5 t/ha) 

which leads to poverty of these families; 

 

 Upland rice is grown under dry land conditions in mixed farming systems without 

irrigation and without puddling. These aerobic environments are highly variable 

in terms of moisture and soil fertility and sometimes there are problems of 

nutrient deficiencies, in particular of Fe-deficiency. Although this method 

constitutes around 13 % of the total rice area worldwide, it is the predominant 

rice-growing method Latin America and West Africa, where poverty is 

widespread. 
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Figure 1.2.1 Distribution map of irrigated rice, rainfed lowland rice and rainfed upland rice in 

different world regions (from IRRIa, 2009). 

 

Rice belongs to the family Gramineae, that includes other cereals such as wheat, corn 

or barley (IRRIb, 2009), and to the genus Oryza, which includes 21 wild species and 2 

cultivated species, Oryza glaberrina Steur and O. sativa L. (Ge et al., 1999). While O. 

glaberrina is cultivated in restricted areas of western Africa, O. sativa is cultivated all over 

the world (Londo et al., 2006). 

Oryza sativa L. was the first fully sequenced crop genome, and besides having the 

smallest genome (430 Mb across 12 chromosomes), it is easy to genetically modify and it is a 

model organism used for research in cereals and other monocotyledonous plants (Ohnishi et 

al., 2011). In 1928, the pioneering work of Kato et al. showed the existence of two main 

variety types, designated as indica and japonica. In ecogeographical terms, the first one is 

produced in Southern Asia, while the second is typically found in upland areas of Southeast 

Asia, temperate East Asia, and high elevations in South Asia (IRRIb, 2013). However, more 

recent studies to interpret the evolutionary relationships between groups revealed a total of 

five distinct groups known, corresponding to aus, aromatic, indica, tropical japonica, and 

temperate japonica, where group differences were explained through contrasting 

demographic histories (Garris et al., 2005). It is estimated that about 120,000 rice cultivars 

http://www.knowledgebank.irri.org/submergedsoils/rice-growing-environments/lesson-1.html
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exist in the world (Khush, 1997). This ecological diversity is result of natural and human 

selection, diverse seasons, climates and soils, and varied cultural practices (Maclean et al., 

2002).  

Rice has physical characteristics that distinguish one variety from others. It can be of 

short, medium or long grain size. Its pericarp can also vary in terms of color, including brown, 

red, purple and black (FAO, 2004). Three different types of rice are produced, namely white 

rice, which has long grain without the hull and bran; brown rice, which retains most of the 

cuticle that covers the grain, having a certain brown tone, and a fiber content higher than that 

of other varieties; and the steamed rice, which has the same nutritional value and a golden 

color similar to the "integral" rice (Decree-Law nr. 62/2000). 

In Europe, the most cultivated variety is japonica, with a medium round grain. In 

Portugal the main types produced are japonica (or Carolino) and indica (Agulha) (Pacheco 

Dias and Nunes da Rocha, 2012; ANIA, 2006), and the Decree-Law number 62/2000 

establishes the classification of varieties, the methods of analysis, types of commercial class, 

and rules of their marketing, packaging and labeling. The indica variety, with long grain, 

despite being preferred in the Nordic countries constitutes 80 % of world rice. 

 

 

1.3 Nutritional characteristics of rice 

 

Rice feeds more than half of the world’s population, most of whom in developing 

countries, predominating in 17 countries in Asia and the Pacific, nine countries in South and 

North America and eight countries in Africa (FAO, 2004) where this food is, at least during 

certain seasons, their sole source of nutrients (Sautter et al., 2007). Unpolished rice is rich in 

nutrients, fibers, vitamins and minerals (Maclean et al., 2002) that supply the majority of 

daily dietary nutrients for billions of people (FAO, 2004). Rice also contains all of the amino 

acids essential for humans except lysine (Maclean et al., 2002). It is a source of complex 

carbohydrates, and provides 21 % of global human per capita energy and 15 % per capita 

protein (Maclean et al., 2002), while wheat supplies 19 % and maize 5 % of energy (FAO, 

2004). 
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Table 1.3.1 summarizes the nutritional composition of brown (unpolished) rice when 

compared to white (polished) rice. 

 

Table 1.3.1 Nutrient composition of rice grain types (adapted from FAO, 2004;  Agricultural 

Engineering Unit and IRRI, 2013). 

 

 

Most rice is consumed in its polished form and in this process some important nutrients 

such as iron (Fe), zinc (Zn) and Vitamin A are lost. White rice alone is not enough to provide 

the nutrient needed in each meal, being very important to compensate these shortages of 

nutrients by consuming other vegetables, fish and meat, to prevent nutritional deficiencies and 

other problems (Maclean et al., 2002). 

The major portion of minerals in the rice seeds are likely supplied through continuous 

uptake and translocation during reproductive growth to developing seeds (Hocking and Pate, 

1977; Sperotto et al., 2012a). Environmental factors (soil fertility, wet or dry season, solar 

radiation, temperature during grain development) and crop management (added N fertilizer, 

plant spacing) can affect rice nutrient content. When rice grows in calcareous soils with low 

amount of available Fe, nutrient content is also lower in rice seeds (Grusak and Dellapenna, 

1999). Previous studies show that when rice is grown in solutions with different Fe 

concentrations, this is reflected in the content of minerals in the rice seeds (Sperotto et al., 

2012a). 

 

 

 

 

 

Type of 

Rice  

Protein 

(%) 

Fat  

(%) 

Carbohydrates 

(%) 

Iron 

(mg/100g) 

Zinc 

(mg/100g) 

Fiber 

(g/100g) 

Unpolished 7.1 – 8.3 1.6 – 2.8 73.0 – 87.0 2.2 0.5 2.8 

Polished 6.3 – 7.1 0.3 – 0.5 77.0 – 89.0 1.2 0.5 0.6 
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1.4 Iron deficiency, a global problem 

 

Human metabolism requires various nutrients to function properly, and all of them can 

be supplied by an appropriate diet (Welch and Graham, 2004; White and Broadley, 2009). 

This diet should not only supply the energy nutrients but also the essential amino acids, 

particularly the uncommon S-rich amino acids, lysine, methionine, vitamins A, C, D and E, B 

vitamins, folic acid and ionic elements such as iodine (I), Fe, Zn and sodium (Na) (Sautter et 

al., 2007). 

When physiological requirements cannot be met through the absorption of nutrients in 

the diet, mineral malnutrition can occur (Zimmermann and Hurrell, 2007). Mineral 

malnutrition is considered to be the most serious global challenge to humankind (White and 

Broadley, 2009). Nearly two-thirds of all deaths of children are associated with nutritional 

deficiencies, many from micronutrients deficiencies (Caballero, 2002; Walker and Waters, 

2011), which increases the risk of death from common diseases such as acute gastroenteritis, 

pneumonia and measles (Caballero, 2002). 

Fe deficiency is one of the most widespread dietary challenges in human health (Lee et 

al. 2009b), affecting about 30% of the world population. It is the only nutrient deficiency 

which is also significantly prevalent in industrialized countries (WHO, 2013).  

Dietary Fe is usually divided into two types (Theil, 2004): heme Fe, found almost 

exclusively in meat, and non-heme Fe, found in animal and plant tissues as Fe
2+

 bound to 

insoluble proteins, phytates, oxalates, phosphates and carbonates, which are inhibitors of Fe 

absorption (Reddy et al., 1992). The first one is 2-6 times more available for absorption from 

the diet than non-heme Fe (SACN, 2010). In human metabolism, Fe plays important roles, 

namely in the synthesis of heme found in hemoglobin, which distributes oxygen around the 

body and in myoglobin, which stores oxygen in muscles and tissue. It also serves as a 

transport medium for electrons within cells (FAO and WHO, 2001). 

According to the World Health Organization (WHO), anemia is considered the main 

consequence of Fe deficiency (WHO, 2013). It can affect anyone at any part of the world, 

however, it is more prevalent in developing countries as South Asia and Africa, where young 

children and pregnant women are the most affected (WHO, 2005). Anemia is associated with 

clinical symptoms such as weakness, decreased respiratory capacity and dizziness. In areas 

with limited resources, this is frequently exacerbated by infectious diseases, because of a 



Study of the Fe uptake systems in two different rice cultivars 

 

8 
 

depressed immune function. Even in the absence of anemia, Fe deficiency can cause neuro-

cognitive disorders. 

Mineral malnutrition can be addressed through dietary diversification, increasing 

mineral concentrations in edible crops, Fe supplements, food fortification and/or 

biofortification (Zhao and Shewry, 2011). However, dietary diversification and Fe 

supplements by tablets are not easily available in developing countries (Gillespie and Haddad, 

2001) and in spite of food fortification being considered the best long-term strategy for 

prevention, Fe compounds of relatively high Fe availability, such as ferrous sulfate, often 

originate unacceptable color and flavor changes, whereas those compounds which are 

organoleptically inert, such as elemental Fe, are usually poorly absorbed (Hurrell, 1992). 

For various reasons, none of these intervention strategies has been very successful in 

reducing the prevalence of Fe deficiency anemia in developing countries. Nutritional health 

and well-being of humans are entirely dependent on plant foods. Plant foods contain almost 

all of the mineral and organic nutrients established as essential for human nutrition, as well as 

organic phytochemicals that have been linked to the promotion of good health (Grusak and 

Dellapenna, 1999). Because the concentrations of many of these constituents are often low in 

edible plant sources, studies have been done to understand the physiological, biochemical and 

molecular mechanisms that contribute to their synthesis, transport and accumulation in plants 

(Grusak and Dellapenna, 1999). Thus, to improve the nutrition and health of rice consumers, 

development of high-quality rice varieties seems to be an alternative approach which is more 

sustainable (Duan and Sun, 2005). 

The use of plant breeding and/or transgenic approaches to develop new cultivars with 

the potential to increase the nutrient concentration of edible portions of crop plants is named 

biofortification (White and Broadley, 2005). Currently, two of the various techniques that are 

being used in rice to improve the nutritional status of populations are the following: 

 

 use of traditional plant breeding techniques to select rice varieties with superior 

nutrients content and breed these with the most commonly grown varieties to enhance 

the nutrient content of the grains (FAO, 2004); 

 develop more nutritional rice using genetic modification techniques. The best-known 

example of this technology is “Golden Rice”. This variety was incorporated with beta-

carotenoids, precursors of vitamin A, whose deficiency causes irreversible blindness. 
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This rice is being tested in nutrition trials before it can be approved by national 

authorities (Barry, 2013). 

 

However, before increasing the mineral content of plants, it is necessary to understand 

not only how minerals are obtained from the rhizosphere, but also how the minerals are then 

distributed throughout the plant (Krämer et al., 2007). There is a lack of knowledge about 

how minerals are moved into or out of vascular tissues, translocated to vegetative tissues and 

accumulated in seeds, the edible portion of the rice plant (Colangelo and Guerinot, 2006). Fe 

translocation and Fe homeostasis in rice has already begun to be understood at the molecular 

level (Masuda et al., 2012), but the mechanisms behind these processes still need deep 

research in order to be clearly comprehended. 

 

 

1.5 Iron deficiency in plants 

 

Similar to humans, Fe is essential for plant growth and plays important roles in general 

plant metabolism (Clark, 1983). Since Fe accepts and donates electrons it serves as a cofactor 

of several proteins that are involved in a number of physiological processes in plants, such as 

respiration, chlorophyll biosynthesis and photosynthetic electron transport, hormone 

biosynthesis, production and scavenging of reactive oxygen species and pathogen defense 

(Jeong and Guerinot, 2009). 

Plants must maintain Fe homeostasis, and to achieve this they developed complex 

mechanisms to regulate the acquisition, storage and distribution of Fe to the specific 

compartments (Puig et al., 2007; Walker and Connolly, 2008), providing the necessary 

amounts of this micronutrient and preventing internal cation excess (Zimmermann and 

Hurrell, 2007). Fe deficiency is a major problem for plants that grow in aerobic soils at 

neutral or alkaline pH (calcareous soils), which cover approximately 30% of world land. 

Under these conditions, Fe forms insoluble complexes and despite its abundance in the soil, it 

is not readily bioavailable for uptake (Jeong and Guerinot, 2009). Fe deficiency is a 

widespread agricultural problem and one of the main symptoms is chlorosis, usually called 

“Fe deficiency chlorosis” (IDC) (Curie and Briat, 2003) IDC is associated with decreased 

photosynthetic rate and inhibition of chlorophyll biosynthesis (Belkhodia et al., 1998), and if 

http://link.springer.com/search?facet-author=%22Ralph+B.+Clark%22


Study of the Fe uptake systems in two different rice cultivars 

 

10 
 

severe, it can lead to reduction of plant growth and crop yield or even complete crop failure 

(Guerinot and Yi, 1994). 

Fe stress alters chloroplast ultrastructure (Spiller and Terry, 1980), protein and lipid 

composition of thylakoid membranes (Nishio et al., 1985), reduces electron transport capacity 

(Spiller and Terry, 1980), diminishes  noncyclic ATP formation (Terry, 1980) and leaf ATP 

levels (Arulanantham, 1990). Morphological and physiological characteristics of roots are 

also modified under Fe deficiency in dicotyledonous and monocotyledonous (non-

graminaceous) plants. Fe deficiency is associated with inhibition of root elongation, increased 

diameter of the root apical zone and abundant root hair formation (Romheld and Marschner, 

1981; Chaney et al., 1992).  

Another major class of plant pigments are the anthocyanins, a group in the diverse 

flavonoid family, responsible for the red-blue coloration of berries, red grapes, purple maize 

and vegetables, and are found in the cell vacuole of flowers, fruits, leaves, stems, and roots 

(Harbone, 1993; Escribano-Bailón et al., 2004). Anthocyanins serve multiple eco-

physiological functions, and it has been shown that their accumulation in leaves can be 

induced by diverse environmental and anthropogenic stressors, such as high light, UV-

exposure, chilling, pathogen infection, wounding, osmotic stress, pollution, and nutrient 

deficiencies, such as N and P, however, correlation with Fe deficiency has not yet been 

reported (Neill, 1994; Hodges and Nozzolillo, 1995). 

 

To cope with Fe deficiency, plants developed sophisticated and tightly regulated 

mechanisms to mobilize Fe in the rhizosphere and take it up across the plasma membrane of 

root cells (Puig et al., 2007). These acquisition strategies are based on two distinct 

mechanisms, namely, Strategy I and II which are depicted in Figure 1.4.1 (Grotz and 

Guerinot, 2006; for reviews please see Palmer and Guerinot (2009) and Gross et al., (2003)). 
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Figure 1.4.1 Strategies for Fe uptake from the soil. (A) Strategy I; (B) Strategy II (adapted 

from Sperotto et al., 2012b; Walker and Connolly, 2008). 

  

The Strategy I response (Figure 1.4.1A) is used by all dicotyledonous species such as 

Arabidopsis, and by non-graminaceous monocotyledonous species (Mukherjee et al., 2006; 

Jeong and Connolly, 2009), and involves the release of protons into the rhizosphere to acidify 

the soil and increase Fe
3+

 solubility (Fox and Guerinot, 1998). Ferric iron (Fe
3+

) is 

subsequently reduced to ferrous iron (Fe
2+

) in the plasma membrane of root epidermal cells, 

by a ferric reductase-oxidase (FRO) (Robinson, 1999) and the Fe
2+

 is moved across the 

plasma membrane into root cells by IRT, an Fe-regulated transporter member of the large ZIP 

family (Vert et al., 2002). The Fe
3+

-chelate reductases genes, FROs ( Wu et al., 2005; 

Mukherjee et al., 2006), and the Fe
2+

 transporters, IRT1 and IRT2 (Vert et al., 2001), have 

been isolated and characterized in Arabidopsis. The FRO2 gene encodes an enzyme thought 

to pass electrons across the plasma membrane to reduce ferric Fe chelates using two 

intramembrane heme groups (Yi and Guerinot, 1996) and is expressed primarily in the outer 

layers of roots in response to Fe-deficiency (Grusak et al., 1990). IRT1 is the main Fe-

regulated transporter that is induced in response to Fe-deficient conditions and is also capable 

of transporting Zn, Mn, Co and Cd (Vert et al., 2002). 

The Strategy II response (Figure 1.4.1B) is used by the monocotyledonous species 

(grasses, graminaceous), such as rice, wheat, corn and barley, in which phytosiderophores 

(PS), that have a high affinity for Fe
3+

, are released into the rhizosphere by 

OsTOM1/OsZIFL4 (Nozoye et al., 2011). The Fe
3+

-PS complex is taken up into root cells by 

transmembrane proteins of the yellow-stripe like (YSL) family, such as OsYSL15 (Ishimaru 

et al., 2006; Inoue et al., 2009). PS are synthesized from methionine and belong to the 

mugineic acid family (MAs) (Nozoye et al., 2011). Nicotianamine (NA) and 2′-

http://scholar.google.pt/citations?user=IrPitBgAAAAJ&hl=pt-BR&oi=sra
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2005.02624.x/full#b47
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deoxymugineic acid (DMA, product resultant from NA conversion), compounds obtained by 

the subsequent action of nicotianamine synthase (NAS) and deoxymugineic acid synthase 

(DMAS), are biosynthesis precursors of PS which chelate with metals, such as Fe, to transport 

them through the plant (Mori et al., 1991; Inoue et al., 2003). 

Different gramineae species produce different types and amounts of PS (Bashir et al., 

2006). The quantity of PS released into the soil is correlated with the ability of the plant to 

tolerate Fe deficiency (Bashir and Nishizawa, 2006). Unlike barley and rye, rice secretes PS 

in relatively smaller amounts in response to Fe deficiency and is, thus, susceptible to low Fe 

availability, especially in the earlier stages of rice development (Marschner and Hohenheim, 

1990; Bashir et al., 2006). 

 

Although responses to Fe deficiency in graminaceous plants, such as increased secretion 

and production of MAs have been described, the mechanisms of gene regulation related to 

these responses are largely unknown (Ogo et al., 2007). Recently, Ogo et al. (2006) isolated 

and identified in rice a basic helix-loop-helix (bHLH) transcription factor, OsIRO2, involved 

in the response to Fe deficiency in graminaceous plants. OsIRO2 was demonstrated to be 

strongly expressed in roots and shoots under Fe-deficiency and to be involved in the 

regulation of several genes responsible for DMA biosynthesis, including OsNAS1, OsNAS2, 

OsDMAS1 and OsNAAT1, as well as OsYSL15 (Ogo et al., 2007). 

OsIRO2 is positively regulated by IDEF1. IDEF1 is a transcription factor that also plays 

a crucial role in regulating other Fe-deficiency-induced genes involved in Fe homeostasis, 

such as OsTOM1, OsYSL15, OsYSL2, OsIRT1, OsNAS1 and OsNAS2 (Kobayashi et al., 

2009). Kobayashi et al. (2012) suggested that OsIDEF1 is essential to sense the cellular Fe 

status in rice, especially at early stages, but not necessarily at subsequent stages. 

 

Until recently, Strategy II plants were thought to only use the above-described response 

to obtain Fe from the soil (Ishimaru et al., 2006). However, an ortholog of the major root Fe 

transporter in Arabidopsis, IRT1, has already been identified in rice, and unlike other grasses, 

rice seems to have an efficient Fe
2+

 uptake mechanism (Ishimaru et al., 2006; Cheng et al., 

2007). In accordance to that, a loss-of-function mutation in OsNAAT1 results in less DMA 

secretion and decreased growth in media with Fe
3+

. However, this mutant is still able to grow 
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under waterlogged conditions or when Fe
2+

 is provided (Cheng et al., 2007), which supports 

the hypothesis that rice has combined features of both strategies.  

On the other hand, previous studies suggested that rice does not have the ability to 

reduce Fe
3+ 

(Ishimaru et al., 2006), a limiting-step of Strategy I plants (Grusak et al., 1990). 

Moreover, attempts to produce rice with the ability to create more Fe available for absorption 

in conditions of Fe deficiency by introducing the gene AtFRO2 in rice failed (Vasconcelos et 

al., 2004). However, the evidences of Fe
2+

 uptake in rice, suggests that it could benefit from 

an increased activity of the ferric chelate reductase to generate more available Fe when the 

plants are grown in upland conditions (aerobic soils), where Fe is often less available and 

insufficient to sustain proper development of the plant (Vasconcelos et al., 2004). 

 

 

1.6  New candidate genes 

 

After uptake from the soil, Fe is transported into the roots and is loaded in the xylem. 

Citrate seems to be the major Fe chelator in the xylem (Abadía et al., 2002). AtFRD3 is a 

plasma membrane transporter that mediates citrate efflux into the root xylem, a process 

important for Fe translocation to shoots (Durrett et al., 2007). However, relatively little is 

known about how metals such as Fe are effluxed from cells, an indispensable step for 

transport from the root to the shoot (Durrett et al., 2007). Ferroportin (FPN) is the sole Fe 

efflux protein identified to date in mammals, functioning in both Fe absorption in the intestine 

and Fe recycling in macrophages (Muckenthaler et al., 2008). Recently, two closely related 

orthologs were identified in Arabidopsis: IRON REGULATED1 (IREG1/FPN1) and 

IREG2/FPN2 (Morrissey et al., 2009). 

Morrissey et al. (2009) showed that FPN2 is localized in the vacuole and is expressed in 

the two outermost layers of the root in response to Fe deficiency, transporting Fe and Co into 

the vacuole. No orthologs for FPN have been described in rice. Evidence of direct Fe 

transport is still lacking, and while FPN1 could be a good candidate to mediate Fe efflux to 

the xylem, FPN2 seems to have a role in buffering metal influx (Morrissey et al., 2009). 

 

Other candidate genes for Fe homeostasis in rice belong to the MYB transcription factor 

family. Previously, it was shown that the expression of two MYB genes was upregulated by 
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Fe deficiency (Colangelo and Guerinot, 2004), suggesting that MYB genes perhaps also play 

a role in Fe metabolism. In plants, MYB transcription factors play a key role in plant 

development, hormone signal transduction, secondary metabolism, abiotic stress tolerance 

and disease resistance (Stracke et al., 2001). 

This family of genes was identified in a number of monocotyledonous and 

dicotyledonous plants (Yanhui et al., 2006). In Dendrobium hybrid Woo Leng, one of the 

most popular cut orchids in Southeast Asia, was described a MYB gene, DwMYB2, related 

with Fe deficiency (Chen et al., 2006). Moreover, the expression of DwMYB2 in Arabidopsis 

promoted Fe uptake and impaired the Fe transportation from roots to shoots. This gene was 

never identified in rice. 

OsMYBS3 is another transcription factor belonging to the MYB transcription factors 

family described to be regulated by sugars, where its expression is increased in the absence of 

sugars (Lu et al., 2002). OsMYBS3 is the homologous of MxMYB1, isolated in one apple 

species in genus Malus, which is induced under Fe deficient conditions in Arabidopsis (Shen 

et al., 2008). There are no studies to show whether OsMYBS3 plays a role in Fe homeostasis 

in rice plant or not. 
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2. OBJECTIVES 

 

2.1 General objectives 

 

 There has been some controversy about the mechanisms used by rice plant for Fe 

uptake from the rhizosphere. The aim of this study was to understand if in fact rice plants 

have or not the capacity to up-regulate Strategy I mechanisms for Fe uptake, and if its 

capacity is dependent on the rice cultivar. Thus, two different rice cultivars, namely 

Nipponbare (cv. japonica) and Bico Branco (cv. tropical japonica) were studied at the 

physiological and molecular level when grown hydroponically under Fe deficiency (0 μM 

Fe(III)EDDHA) and Fe sufficiency (20 μM Fe(III)EDDHA). 

  

 

2.2 Specific objectives 

 

Nipponbare and Bico Branco cultivars were selected and grown for three weeks under 

Fe sufficiency and Fe deficiency conditions in order to, 

  

- analyze the effect of Fe concentration in the growth medium on the accumulation of 

Fe and other micro micronutrients in different tissues (roots and shoots); 

- understand the impact of Fe deficiency on photosynthetic pigment accumulation in 

rice shoots; 

- understand if rice plants induce the Fe reductase enzyme in roots (a typical 

mechanism of Strategy I plants); 

- analyze the expression of previously described mineral-related genes involved in 

Strategy I and II of Fe uptake, in different tissues (roots and shoots) and understand 

if their expression is cultivar dependent; 

- identify new candidate genes that may be important in regulating Fe uptake in 

plants. 
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3. MATERIALS AND METHODS 

 

3.1 Cultivars selection 

 

Two major parameters were considered for cultivar selection: germination rate and Fe 

concentration. Table 3.1.1 shows the seven ecotypes of Oryza sativa L. and respective 

cultivars used in the present work. 

 

Table 3.1.1 Oryza sativa L. ecotypes, cultivar names and country of origin 

Ecotype Cultivar Names Country of Origin 

Tropical 

Japonica 

Carolina Gold United States 

Peh-Pi-Nuo China 

Bico Branco Brazil 

Temperate 

Japonica 

Shinchiku-iku 103 Taiwan 

Aichi Asahi Aichi Asahi 

Preto Regado 142 Morocco 

Aromatic 

Dom-Zard Iran 

Lambayque 1 Peru 

Mana Muri Nepal 

Japonica 

Eh-ia-Chiu Taiwan 

Nipponbare Japan 

Kalo Moni Bangladesh 

Aus 

Sada Solay Pakistan 

Hasawi Saudi Arabia 

Dhali Khama Bangladesh 

Indica 

Wie Malasya 

Pin Kaeo Thailand 

Padi Oro Indonesia 

Admix-Aus-

Indica 

Sareina India 

Tak Siah Pakistan 

Bhadoia 685 Bangladesh 
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3.1.1 Germination rate 

 

For determination of the germination rate, between nine and ten seeds of each variety 

were germinated in germination bags. The seeds were maintained at room temperature under 

natural light (~20 ºC, 8 h light), and watered every three days. At seven and 14 days, the 

germination rate was calculated using the following equation: 

 

 

 

 

                               

 

3.1.2 Seed mineral analysis 

 

For seed Fe concentration analysis, 200 mg of each variety, ca. ten seeds, were 

manually peeled and digested with five mL of 65 % HNO3 in five steps: 1-130 °C/10 min; 2-

160 °C/15 min; 3-170 °C/12 min; 4-100 °C/7 min; and 5-100 °C/3 min in Teflon reaction 

vessels and heated in a Speedwave
TM

 MWS-3+ (Berghof, Germany) microwave system. 

After digestion, the resulting clear solutions were diluted to 20 mL with ultrapure water. 

Mineral concentrations were measured using inductively coupled plasma atomic emission 

spectrometry (Optima 7000 DV ICP-OES, PerkinElmer) (Massachusetts, USA). The element 

was quantified using the axial alternate method. 

 

3.2 Plant growth 

 

Rice (Oryza sativa L.) seeds of two cultivars, cv. Bico Branco (tropical japonica) and 

cv. Nipponbare (japonica), were germinated on filter paper moistened with deionized water, 

wrapped in silver paper and incubated in a greenhouse at 25 ºC in the dark. They were 

watered with CaCl2 250 mM every three days. After three weeks of germination, ten seeds of 

each variety were transferred to a nutrient solution. The composition of the nutrient solution 

was 3 mM KNO3, 1 mM Ca(NO3)2, 0.5 mM KH2PO4, 0.75 mM K2SO4, 0.5 mM MgSO4, 25 

                  
                         

                       
     (3.1.1.1) 
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mM CaCl2, 25 mM H3BO3, 2 mM MnSO4, 2 mM ZnSO4, 0.5 mM CuSO4, 0.5 mM H2MoO4, 

0.1 mM NiSO4 and 0.1 mM K2SiO3. All nutrients were buffered with 1 mM MES, pH 5.5. 

Five rice plants were transferred to an Fe-free nutrient solution (Fe deficiency) and 

another five plants were transferred to a nutrient solution containing 20 μM Fe(III)-EDDHA 

(Fe sufficiency) as control, for more three weeks. The hydroponic experiments were carried 

out in an environmental growth chamber (Aralab Fitoclima 10000EHF), with relative 

humidity of 75 % and with a photoperiod of 16 h day (with photosynthetic active radiation of 

490 μmol m
-2

 s
-1

 and temperature of 24–26 °C) and 8h night (with temperatures of 19 – 20 

°C). Growth solutions were changed weekly. 

 

 3.3. Photosynthetic pigment extraction 

 

Anthocyanin, chlorophyll and carotenoid concentrations were measured in plants 

grown in Fe deficient and Fe sufficient conditions, as described previously. The referred 

compounds were extracted and quantified according to a modified protocol of Sims et al. 

(2002).  Briefly, 0.1 g of shoot samples were grinded with a mortar and pestle using liquid 

nitrogen. Photosynthetic pigments were extracted with 0.4 mL of a cold acetone/Tris buffer 

solution (80:20 vol:vol, pH = 7.8). After homogenization, samples were incubated at 4 ºC for 

1h. The supernatants were transferred to a new tube and diluted fivefold with additional 

acetone/Tris buffer to measure absorbance at 470, 537, 647 and 663 nm with a 

spectrophotometer (Implen, Isaza, Portugal).  

The amount of anthocyanins, chlorophyll a and b and carotenoids were determined 

through the following equations (3.3.1): 

 

(3.3.1) (3.3.1) 
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3.4. Root Fe-reductase activity assay 

 

Root capacity to reduce Fe(III)-EDTA in Bico Branco and Nipponbare cultivars, was 

analyzed according to Vasconcelos et al. (2006), via the spectrophotometric measurement of 

Fe
2+

 chelated to BPDS (bathophenanthroline disulfonic acid). Roots of each single intact (Fe 

sufficient or Fe deficient) rice plant were submerged in an assay solution containing: 1.5 mM 

KNO3, 1 mM Ca(NO3)2, 3.75 mM NH4H2PO4, 0.25 mM MgSO4, 25 µM CaCl2, 25 µM 

H3BO3, 2 µM MnSO4, 2 µM ZnSO4, 0.5 µM CuSO4, 0.5 µM H2MoO4, 0.1 µM NiSO4, 100 

µM Fe(III)-EDTA and 100 µM BPDS. The solution was buffered with 1 mM MES, pH 5.5. 

The assays were conducted in the dark at room temperature and were terminated after 45 

minutes by removal of the roots. The absorbances were obtained spectrophotometrically 

(Implen, Isaza, Portugal) at 535 nm, and an aliquot of the solution that had no roots during the 

assay was used as blank. The amount of Fe
3+

 reduced was calculated using the molar 

extinction coefficient of 22.14 mM
-1

 cm
-1

. 

The contribution of root-released soluble reductants to overall root Fe reduction was 

determined by conducting additional assays with plants grown in the same conditions 

described before. Roots were placed for 45 min in buffered nutrient solution with no Fe 

source or BPDS. An aliquot of the solution from each root system was added to a solution 

containing 100 µM Fe(III)-EDTA and 100 µM BPDS and left for 30 min; absorbance was 

then read at 535 nm as described above. 

 

 

3.5 Total RNA extraction 

 

Rice shoots and roots of Bico Branco and Nipponbare cultivars were collected after 

three weeks growing under Fe sufficient and Fe deficient conditions and immediately frozen 

in liquid nitrogen.  A pool of three plants from each treatment were grinded thoroughly with a 

mortar and pestle until a fine powder was obtained and stored at – 80 ºC for RNA extraction. 

Total RNA was extracted using a Qiagen RNeasy Plant Mini Kit (USA, Nr. #74904), 

according to the manufacturer's instructions with some modifications, and treated with 

RNase-free DNase I to remove contaminating genomic DNA. 
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Briefly, about 50 mg of shoots and 100 mg of roots were weighed, and placed in an 

eppendorf tube containing 750 μL and 450 μL of RLC and RLT extraction buffer, 

respectively, with 1 % of β-mercaptoethanol. Samples were vigorously vortexed and, while 

shoots samples were incubated at room temperature for six min, root samples were incubated 

for three min at 56 ºC. The lysates were transferred to a QIAshredder spin column placed in a 

two mL collection tube, and centrifuged for five min at full speed. Then, the supernatants 

were carefully transferred to a new microcentrifuge tube to which was added 0.5 volume of 

100 % ethanol to the cleared lysate, mixed immediately by pipetting and transferred to an 

RNeasy spin column placed in a two mL collection tube and centrifuged for 15 seconds at 

10,000 rpm. After discarding the flow through, 700 μL of RW1 buffer was added to the 

RNeasy spin column of each sample and centrifuged for 15 seconds at 10,000 rpm. The 

column was washed with 500 μl Buffer RPE twice in shoots samples and three times in roots 

samples, centrifuging for 15 seconds at 10,000 rpm between each addition and discarding the 

flow-through. Lastly, each spin column was transferred to another sterile tube and 30 μl of 

RNase-free water was added and centrifuged for one min at 10,000 rpm to elute the RNA. 

The previous step was repeated, passing the eluate through the membrane again and 

submitting the tubes to a new centrifugation to ensure maximal yield. RNA quality and 

quantity were checked by UV-spectrophotometry, using a nanophotometer (Implen, Isaza, 

Portugal). Samples were stored at – 80 ºC for further analyses. 

 

 

3.6. cDNA Synthesis 

 

Single-stranded cDNA was synthesized from extracted RNA using the First Strand 

cDNA Synthesis Kit (Fermentas UAB, Cat. Nr. #K1612), according to manufacturer’s 

instructions. Briefly, about 1000 ng of RNA was added one µL of Random Hexamer Primer 

and nuclease-free water to a final volume of 11 µL. To this mixture four µL of 5x Reaction 

Buffer, one µL of RiboLock RNase Inhibitor (20 u/ µL), two µL of ten mM dNTP Mix and 

M-MuLV Reverse Transcriptase (20 u/µL) were added. This mixture was incubated in a 

Thermal cycler (VWR, Doppio, Belgium) for five min at 25 °C followed by 60 min at 37 °C. 

The reaction was terminated by heating at 70 °C for five min. 
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cDNA quantity and quality were checked by UV-spectrophotometry, using a 

nanophotometer (Implen, Isaza, Portugal). cDNA samples were stored for further analyses. 

 

 

3.7 Gene expression analysis 

 

Accession numbers of genes identified in Fe nutrition in rice plants were chosen using 

NCBI databases. Accession orthologs to AtTOM1, AtFPN1/IREG1, AtFPN2/IREG2 and 

DwMYB2 were identified using the TBLASTN tool against the GenBank databases with 

search specifications for Oryza sativa [Organism]. The new sequences in rice were named 

Oryza sativa TOM1 (OsTOM1), OsFPN1 and OsMYB2. Only sequences that showed an e
-value

 

< 6e
-14

 were considered significant (Annexes, Table 3.7.1). 

Primer sequences were designed for 11 genes, using Primer-BLAST software (Ye et al., 

2012) with the following criteria: primer size between 18 and 20 base pairs and primer 

annealing temperatures between 57 °C and 60 °C. Accession numbers and the respective 

sequences are presented in Table 3.7.2 (Annexes). The primers used were hydrated according 

manufacturer’s instructions. 

cDNA, extracted from roots and shoots of Bico Branco and Nipponbare cultivar 

growing under Fe sufficient and Fe deficient conditions, was amplified by qRT-PCR in a 

Chromo4 Thermocycler (Bio-Rad, CA, USA). 

Amplifications were carried out using 100 ng of cDNA, 1.25 μL of each primer, 1.5 L 

of molecular biology grade water and mixed to 12.5 μL of 2×PCR iQ SYBR Green Supermix 

(Bio-Rad) in a final volume of 25 μl. Three technical replicates were performed for each gene 

tested in qPCR reactions, as well as for controls. Thermal cycling conditions were: initial 2 

min denaturation at 50 ºC and then 10 min at 95 ºC, followed by 39 cycles of 15 s at 95 ºC 

and 1 min at 57 ºC, and a final dissociation step of 1 min at 72 ºC. 

Melting curve from 50.0 ºC to 65 ºC was read every 1 ºC holding 1 s. Then, melt curves 

profiles were analyzed for each gene tested. The comparative CT method (ΔΔCT) (Livak and 

Schmittgen et al., 2001) for the relative quantification of gene expression was used for 

assessing the normalized expression value using the 18S rRNA as the housekeeping gene and 

for normalization of expression of each gene (Opticon Monitor 3 Software, Bio-Rad). Data 
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were transferred to Excel files and plotted as histograms of normalized fold expression of 

target genes. 

 

3.8 Elemental analysis 

 

To determine mineral concentrations, Bico Branco and Nipponbare cultivars were 

grown under Fe deficient and Fe sufficient conditions for three weeks. Roots and shoots were 

separately harvested, washed to exclude the contamination of Fe from the hydroponic solution 

and then dried at 65 ºC. Samples were reduced to a fine powder digested and analyzed with 

ICP-OES, as described in section 3.1.2 

 

 

3.9 Statistical analysis 

 

Data processing and statistical analysis of ICP-OES data, root Fe reductase activity 

assay, anthocyanins, chlorophyll a and b, total chlorophylls and carotenoids analyses were 

performed using Microsoft Excel and GraphPad Software. Differences between treatments 

were tested with an unpaired t-test. 
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4. RESULTS AND DISCUSSION 

 

One important gap in the understanding of Fe allocation to the rice grain is the 

knowledge about how Fe is acquired from the environment (Sperotto et al, 2012). When 

plants are grown in aerobic conditions, where Fe is not available, they induce a set of 

mechanisms that function at the root–soil interface to solubilize Fe and subsequently transfer 

it across the plasma membrane of root cells (Palmer and Guerinot, 2009). 

Dicotyledonous plants use Strategy I for Fe uptake from the soil under Fe deficiency, 

and Strategy II was described to be used by all grasses (Romheld, 1987). However, even 

though rice (Oryza sativa L.) is a Strategy II plant, reports suggest that it could have the 

ability to use both strategies for Fe uptake. Ishimaru et al. (2006) showed that rice has an 

efficient Fe
2+

 uptake system, since its genome encodes two proteins - OsIRT1 and OsIRT2 - 

which are higly similar to the Strategy I transporter IRT1. This could be an adaptation of rice 

plants to flooded/anaerobic soils, where low redox conditions occur and Fe
3+ 

is reduced to 

Fe
2+

, being the latter directly transported through OsIRT1 (Ishimaru et al., 2006). On the 

other hand, in upland rice, where aerobic conditions prevail, Fe
3+

 is present in greater quantity 

than in anaerobic soils. Since rice is, of all grasses, the one which produces lower amounts of 

PS (Mori, 1991), one could hypothesize that the utilization of Strategy I mechanisms would 

represent an environmental advantage to compensate for the lack of available Fe in aerobic 

conditions. 

In strategy I plants, it is known that Fe deficiency induces an increase in root Fe
3+

- 

reductase activity (Kochian and Lucas, 1991), but Strategy II plants were described to not 

possess this reduction capacity. Ishimaru et al. (2006) measured the Fe
3+

-chelate reductase 

activity in the surface of rice roots under Fe deficient conditions and showed that rice has very 

low Fe
3+

 reductase activity. They also found increased chlorosis of the fully expanded 

youngest rice leaves showing, like others, that Fe deficiency inhibits the biosynthesis of 

chlorophyll (Belkhodia et al. 1998).  

Besides altering chlorophyll synthesis, mineral deficiencies were described to increase 

the production of anthocyanins pigments, that are thought to protect plants from this type of 

stress conditions (Neill, 1994; Hodges and Nozzolillo, 1995; Gould, 2004). However, there 

are no studies available to demonstrate the relationship between this pigment in rice and Fe 

deficiency stress. 
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To sum up, due to the major enigma surrounding the Fe uptake mechanisms utilized by 

rice, in this report, a focus on physiological and molecular parameters was taken to elucidate 

the question behind rice strategies alternation. Oryza sativa L. cv. Nipponbare and cv. Bico 

Branco were grown under Fe deficient and Fe sufficient conditions to evaluate mineral 

concentration, photosynthetic pigment accumulation, Fe-reductase activity and expression of 

Fe metabolism related genes. 

 

 

4.1 Rice cultivar selection 

 

Given the high degree of variability in molecular and physiological responses between 

cultivars, an initial screening stage was conducted in order to select two cultivars with 

contrasting responses to Fe deficiency. The criteria for selection were a high germination 

capacity, as well as a good nutritional Fe status of the seeds, and an optimum growth in 

hydroponic conditions. Moreover, we were interested in selecting two cultivars with different 

ecotypes, as growth habitats may influence the plants response to Fe deficiency. 

The germination rates of 21 rice cultivars were evaluated at seven and 14 days, as 

shows Figure 4.1.1 

Figure 4.1.1 Germination rate of 21 rice (Oryza sativa L.) cultivars at seven and 14 days after 

germination. 
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In general, Bico Branco, Dom-Zard, Lambayque 1, Mana Muri, Nipponbare, Padi Oro, 

Hasawi and Tak Siah had the highest germination rate, ranging from 89 to 100 %.  Cultivars 

of temperate japonica ecotype revealed the lowest germination rates, with values reaching 

only 10 % for Aichi Asahi and for Preto Regado 142, and no germination of Shinchiku-iku 

103 (Figure 4.1.1). 

 

Another criterium utilized was the seed Fe concentration. This enabled us to understand 

the nutritional variability of our cultivars, and to select the varieties to use in the subsequent 

analyses.  

Figure 4.1.2 shows that, in general, Mana Muri seeds had the highest concentration of 

Fe, followed by Nipponbare and Lambayque 1. The cultivars with lowest Fe concentrations 

were Pin Kaeo, an indica-type, and Bhadoia 685, an admix-aus-indica-type. 

 

 

Figure 4.1.2 Concentration (μg/g dry weight (DW)) of Fe in seeds of 21 rice (Oryza sativa 

L.) cultivars. Data are mean±standard error. An average of three technical replicates were 

analyzed. 
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The values obtained ranged from 11 μg/g DW to 24 μg/g DW in seeds, from Pin Kaeo 

to Mana Muri, respectively. In other studies, Fe concentration in rice grains had the lowest 

levels when compared to other cereals, ranging from 6 to 22 μg/g compared to 10 to 160 μg/g 

in maize and 15 to 360 μg/g in wheat (Gómez-Galera et al., 2010). Gregorio et al. (2000) 

evaluated the genetic variability of Fe concentration in other rice varieties and, among the 

1,138 samples analyzed, the Fe concentration in brown rice ranged from 6.3 to 24.4 ppm. The 

highest grain-Fe concentrations (ranging from about 18 to 22 μg/g) were found in several 

aromatic rice varieties, such as Zuchem, Jalmagna and Xua Bue Nuo. 

Excluding Padi Oro and Tak Siah, the cultivars with highest germination rates also had 

higher seed Fe concentrations. Therefore, experimentally, the seven cultivars with highest 

germination rates were grown under Fe deficient and Fe sufficient hydroponic conditions to 

evaluate their growth capacity in Fe limiting conditions. In this work we aimed at 

understanding the physiological molecular response to Fe deficiency in two rice cultivars with 

different growth habitats and ecotypes. As Bico Branco and Nipponbare were the cultivars 

that grew better and also had good nutritional value and high germination rates these were the 

ones selected for further studies. 

 

 

4.2 Physiological responses to Fe deficiency 

 

When plants are under mineral stress conditions, they develop a range of mechanisms to 

cope with these fluctuations, such as storage and remobilization of mineral nutrients and 

changes in morphology and physiology (Marschner, 1995). In aerobic conditions, Fe is highly 

unavailable for plant uptake, and its deficiency can be severe in plants grown in calcareous 

soils (Jeong and Guerinot, 2009). 

Here, the photosynthetic pigment accumulation in shoots, as well as micronutrients 

concentration in rice tissues and root Fe-reductase activity of two different rice plants grown 

hydroponically under Fe deficient and Fe sufficient conditions will be analyzed. 
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4.2.1 Photosynthetic pigment accumulation 

 

As referred in the Introduction section, IDC is one of the earliest symptoms observed 

in the leaves of plants growing in soils with low Fe availability (Abadía et al., 1999). In rice, 

Sperotto et al. (2007) visualized the first symptoms of chlorosis after 11–13 days of Fe 

deficient treatment, which was well established after 18 days, with significant decreases in 

chlorophyll concentration.  

Figure 4.2.1.1 shows the growth differences between shoots of plants after three weeks 

under Fe deficient and Fe sufficient conditions, where shoots of Fe deficient plants showed 

more yellowing than under Fe sufficient ones. Abbott (1967) previously described an evident 

difference in the size of shoots between treatments that was also observed in this study. 

Figure 4.2.1.1 Fe deficiency chlorosis in shoots of (A) Bico Branco and (B) Nipponbare 

cultivars after three weeks under Fe deficiency (Fe-) (0 μM Fe(III)-EDDHA) (left panels) and 

Fe sufficiency (Fe+)  (20 μM Fe(III)-EDDHA) (right panels) hydroponic conditions. 

 

IDC has been usually attributed to inhibition of chlorophyll synthesis, since Fe plays a 

role in the biosynthesis of this photosynthetic pigment and its precursors in leaves (Pushnika 

et al., 1984). Thus, under Fe deficiency, the loss of chlorophylls as well as carotenoids, are 

the primary responses associated with the unavailability of this element (Belkhodia et al., 

1998; Hendry and Price, 1993). On the contrary, anthocyanins, which are natural pigments 

belonging to the flavonoid family and are responsible for the red-blue coloration (Pascual-

Teresa and Sanchez-Ballesta, 2008), are known to accumulate in leaves with nutrient 



Study of the Fe uptake systems in two different rice cultivars 

 

28 
 

deficiency, especially P and N (Neill, 1994; Hodges and Nozzolillo, 1995). Thus, these 

pigments may be good indicators of plant stress (Hendry and Price, 1993). 

In this work, anthocyanin, chlorophyll and carotenoid concentrations were measured 

in Bico Branco and Nipponbare cultivars shoots and results are presented in figure 4.2.1.2. 

Figure 4.2.1.2 Anthocyanin (Anth), chlorophyll a (Cha) and b (Chb), total chlorophyll 

(ChT) and carotenoid (Cart) concentrations in shoots of (A) Bico Branco and (B) Nipponbare 

cultivars. Plants were grown in 0 μM Fe(III)-EDDHA (Fe-) and 20 μM Fe(III)-EDDHA (Fe+) 

conditions for three weeks. Results show the mean+SEM of five plants. Significant 

differences are indicated by asterisk (p<0.05). 

 

The results obtained showed that Bico Branco cultivar had lower chlorophyll, 

carotenoid and anthocyanin levels under Fe deficient conditions than Nipponbare cultivar. 

Particularly with the anthocyanin, chlorophyll b and carotenoid values, Bico Branco suffered 

a significant decrease (p<0.05) when under Fe deficiency when compared to the control 

treatment (Fe+). 

In rice, the effects of Fe deficiency in chlorophyll concentration have already been 

studied. Wu et al., (2001) evaluated the chlorophyll content through SPAD-502, a portable 

meter, in rice (cv. Nipponbare) leaves during 14 days, and found that after five days of Fe 

deprivation there was a significant decline of chlorophyll concentration, and chlorotic 

symptoms were induced in newly developed leaves. Zheng et al. (2009) also studied the 

chlorophyll content of rice (cv. Nipponbare) under –Fe+P, +Fe+P, +Fe–P and –Fe–P 

conditions, and showed that chlorophyll content decreased in Fe deficiency (–Fe) media. They 
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also observed a chlorotic phenotype, consistent with chlorophyll content and Fe 

concentrations decreased in both roots and shoots. 

Hodges and Nozzolillo (1995) demonstrated that anthocyanins tended to increase 

under N starvation and to decrease under P and K starvation. In contrast, in bean plants 

cultured on P deficiency media, the concentrations of anthocyanins were higher in leaves 

maybe to protect the plant from oxidative stress (Juszczuk et al. 2004). It is known that 

anthocyanins can persist throughout the leaf’s entire life span (Gould et al., 2000), or else 

they are induced and retained only after the plant has experienced stress (Chalker-Scott, 

1999).  

In the present work, anthocyanins pigment accumulated more in Nipponbare cultivar 

than in the Bico Branco counterpart under Fe deficiency, and as the Nipponbare cultivar 

presents less signs of chlorosis than Bico Branco, these results support the idea that this 

pigment may protect plants from their degradation. Furthermore, both cultivars had higher 

levels of this pigment than any other parameter (Figure 4.2.1.2), which suggests that 

anthocyanins are produced in response to Fe deficiency, and not just to P and N deficiency, as 

it has been described. 

In general, the Nipponbare cultivar seems to be less affected by chlorosis since no 

significant differences were detected between Fe treatments (Figure 4.2.1.1B) (p>0.05). 

 

4.2.2 Mineral Accumulation in shoots and roots 

 

When the nutrient supply into roots is compromised, plants trigger a series of 

mechanisms to resolve these imbalances (Marschner, 1995) and an increase in mineral 

content in one organ results from the uptake and translocation from the soil, or from 

remobilization from one organ to another (Sperotto et al., 2012a). 

There are several micronutrients considered to be essential for higher plants, such as Fe, 

Zn, Mn, Cu, Ni, B, Mo, and Cl (Welch and Shuman, 1995). To test the impact in whole plant 

mineral dynamics by Fe deficiency, Bico Branco and Nipponbare cultivars were grown under 

Fe deficient and Fe sufficient conditions and nutrient accumulation was determined by ICP-

OES. Figure 4.2.2.1 shows the accumulation of micronutrients in the shoots and roots of Bico 

Branco (Figure 4.2.2.1A) and Nipponbare (Figure 4.2.2.1B) plants. 

 

http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A%28Welch%2C+R+M%29
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A%28Shuman%2C+L%29


Study of the Fe uptake systems in two different rice cultivars 

 

30 
 

 

Figure 4.2.2.1 Micronutrient concentrations (µg/g dry weight) of shoots (, ) and roots 

(, ) of (A) Bico Branco and (B) Nipponbare cultivars, using ICP-OES. Rice plants were 

grown for three weeks in Fe deficient (0 μM Fe(III)-EDDHA) (, ) and Fe sufficient 

(20 μM Fe(III)-EDDHA) (, ) hydroponic conditions. Results show the mean±SEM of 

three plants. Significant differences between Fe treatments for each species are indicated by 

an asterisk (p<0.05). 
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According to Sperotto et al. (2012a), rice accumulates lower Fe concentrations in both 

shoots and roots of plants grown under Fe deficient conditions than under Fe sufficiency, but 

accumulates more in roots than in shoots (Silveira et al., 2007). In this study, Bico Branco 

shoots had 67.89 µg/g DW of Fe under Fe deficiency and 79.38 µg/g DW of Fe under Fe 

sufficiency (Figure 4.2.2.1A1). Also, roots accumulated more Fe than shoots, as previously 

reported, namely 1078.29 µg/g DW of Fe under Fe deficiency and 2711.40 µg/g DW of Fe 

under Fe sufficiency (Figure 4.2.2.1A2) (Sperotto et al., 2012a). 

Nipponbare cultivar also had less Fe concentration in Fe deficient tissues when 

compared to Fe sufficient ones, 18.39 µg/g DW and 36.18 µg/g DW in shoots and 718.11 

µg/g DW and 1828.03 µg/g DW in roots, respectively (Figure 4.2.2.1B1 and B2), suggesting 

less accumulation of Fe by this cultivar when compared to Bico Branco cultivar. 

 Sperotto et al. (2012a) characterized mineral accumulation in rice (cv. Kitaake) tissues 

under different Fe supplies, namely 5, 20 and 200 mM. Under medium Fe supply, Fe 

concentration ranged from 50 to 70 µg/g DW in shoots, and between 1000 and 2000 µg/g DW 

in roots, which is consistent with the results obtained here for Fe sufficient conditions. 

In what concerns the study of the other micro and macronutrients, Sperotto et al. 

(2012a) showed that Zn, Cu, and Ni were more accumulated in roots and Mn, Ca, Mg and K 

in leaves, when low Fe concentration is available. They also found that Fe, Mn and Ca were at 

lower concentrations in roots and Zn and Ni in leaves. Here, under Fe deficiency, Bico 

Branco cultivar had higher accumulation of Zn, Cu and Mn in roots, but not in shoots. This 

may have happened because under low Fe supply, Fe transporters such as NAS1 and NAS2, 

are induced and that could result in increased uptake of other nutrients (Ramani and Kannan, 

1987). This is especially important under hydroponic culture conditions, since ions of Zn, Mn 

and Cu exist abundantly in the culture solution. 

Also, when low Fe concentrations were predominant, there was higher accumulation of 

Ni, Mo, Pb and Cd in Bico Branco roots (Figure 4.2.2.1A2), which was also obtained by 

Sperotto et al. (2012a). Under Fe deficiency, Na accumulated in Bico Branco roots, but no 

values were detected in shoots. 

In Nipponbare cultivar, Cu was the only mineral that had higher accumulation in roots 

under low Fe supply (Figure 4.2.2.1B2). Since Fe and Cu can share the same transporters, it is 

understandable that when Fe uptake decreases other minerals uptake, like Cu increases 

(López-Millán et al. 2004). 



Study of the Fe uptake systems in two different rice cultivars 

 

32 
 

In contrast to what was seen in Bico Branco cultivar, higher levels of Mn and Cu were 

detected in Nipponbare shoots, with slightly smaller amounts of Na, Mo, B, Co, Ni, Al, Pb 

and Cd (Figure 4.2.2.1B1). It was already demonstrated that, besides Fe, other micronutrients 

are affected by Fe deficiency in rice plants, especially in the early stages of rice development 

(Silveira et al. 2007; Sperotto et al., 2012a). Ramani and Kannan (1987) showed an increase 

of Mn uptake and subsequent translocation to shoots, since Mn moves easily from root to 

shoot in the xylem-sap transpiration stream. Zhang et al. (1991) also described increase of Mn 

and Cu in rice plants under Fe deficiency, possible because of the presence of PS in the 

rhizosphere that may increase the availability of these ions both in the rhizosphere itself and 

in the apoplast. In Nipponbare roots a significantly higher accumulation (p < 0.05) of Zn, Co 

and Cd in roots was detected under Fe sufficiency compared with the plants grown under Fe 

deficiency (Figure 4.2.2.1B2). 

 

 

4.2.3 Root Fe reductase activity assay 

 

Monocotyledonous plants such as rice, usually utilize Strategy II for Fe uptake. 

Dicotyledonous plants, on the other hand, use Strategy I mechanisms for Fe uptake, where the 

soil pH is acidified by a release of protons and an increase of the activity of a root ferric 

reductase, which converts the less soluble ferric Fe (Fe
3+

) to the more soluble ferrous Fe 

(Fe
2+

) (Römheld and Marschner, 1986) is observed. Studies looking at root Fe reduction 

capacity usually report that plants have higher reductase activity under Fe deficiency than 

under Fe sufficiency (Romera et al., 1992; Cinelli et al., 1995; Kochian and Lucas, 1991). 

However, rice plants have been described to not reduce Fe
3+

 actively to Fe
2+

 because their 

Fe
3+

 chelate reductase activity is very low (Maruiama et al., 2005; Ishimaru et al., 2006) or 

absent (Vasconcelos et al., 2004). 

In the present study, reductase activity was measured in roots of plants grown in Fe 

deficient and Fe sufficient hydroponic conditions (Figure 4.2.3.1). Furthermore, reductase 

activity contribution from root soluble reductants release was measured and accounted for in 

the root reductase activity rates shown in Figure 4.2.3.1. 
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Figure 4.2.3.1 Roots Fe reductase activity of Bico Branco and Nipponbare cultivars, when 

grown for three weeks under Fe deficient (0 μM Fe(III)-EDDHA) () and Fe sufficient 

(20 μM Fe(III)-EDDHA) () hydroponic conditions. Results show mean±SEM of five plants. 

Significant differences are indicated by asterisk (p<0.05). 

 

The results obtained by Ishimaru and co-workers (2006) demonstrated that reductase 

activity in Nipponbare plants changes along time, ranging from 0.035 to 0.020 μmol Fe (II) g
–

1
 FW h

–1
 for plants between zero to five days after the transfer to Fe deficiency, and reaching 

0.025 μmol Fe (II) g
–1

 FW h
–1

 after 14 days under Fe deficiency. After an Fe resupply at day 

14 they found a slight increase in Fe
3+

-chelate reductase activity (0.030 μmol Fe (II) g
–1

 FW 

h
–1

). In the current experiment, at three weeks of Fe starvation a maximum values of 0.464 

μmol Fe (II) g
–1

 FW h
–1

 for Nipponbare cultivar and 0.141 μmol Fe (II) g
–1

 FW h
–1

 for Bico 

Branco cultivar were obtained, although without significant differences between treatments 

(p>0.05) that can possibly be attributed to the low number of biological replicates in the 

study. 

Other studies show that under Fe deficient conditions, some bean populations reduce 

Fe
3+

 around 0.2 μmol Fe (II) g
–1

 FW h
–1

, which are values in the range of the ones obtained 

here. 
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4.3 Molecular response to Fe deficiency 

 

Iron deficiency is one of the most serious problems in agriculture (Guerinot and Yi, 

1994). To cope with Fe deficiency, plants developed sophisticated and tightly regulated 

mechanisms to mobilize Fe (Puig et al., 2007) that are regulated at a molecular level. To 

study these mechanisms, Fe sufficient and Fe deficient shoots and roots of Bico Branco and 

Nipponbare cultivars, were analyzed for the Fe deficiency-inducible and other genes involved 

in the transport of nutrients through rice using quantitative real-time PCR (qRT-PCR). 

 

 

4.3.1 Strategy I-related genes 

 

Although rice has been for long described as a Strategy II plant (Mori, 1999), recent 

studies have demonstrated that rice can adopt a combined mechanism of Strategy I and II 

(Walker and Connolly, 2008; Ishimaru et al., 2006). This cereal is known to grow in a wide 

range of environments where other crops would fail (IRRI, 2009). In anaerobic soils, where 

Fe
2+

 is in higher amounts, the capacity of rice to transport reduced Fe into the roots, like 

plants of Strategy I, has already been described (Walker and Connolly, 2008). On the other 

hand, under aerobic soils, where Fe
3+

 is abundant, its reduction to Fe
2+

 on the root surface is 

an obligatory process for Fe acquisition in Strategy I plants (Yi and Guerinot, 1996). Rice, 

despite absorbing Fe
3+

-PS through OsYSL15 (Inoue et al., 2009; Lee et al., 2009a), secrets 

PS at lower amounts compared to other grasses (Mori, 1991), and for this reason, it suffers 

from severe problems of Fe deficiency, especially in the early stages of rice development. 

Gross et al. (2003) suggests that Fe reductase genes (FRO) from Arabidopsis thaliana may be 

present in the rice genome. Thus, there are evidences that rice may benefit from the capacity 

to reduce Fe, to compensate the lack of Fe in upland soils. 

It has been shown in Arabidopsis that under limiting Fe availability the expression of 

AtFRO2 in roots is increased (Mukherjee et al., 2006). In rice plants (Oryza sativa L.), 

OsFRO2 are thought to be exclusively expressed in shoots (Ishimaru et al., 2006). Figure 

4.3.1.1 shows that under Fe deficiency, the expression of OsFRO2 was very low in roots and 

shoots of Bico Branco cultivar (Figure 4.3.2.1.1A), whereas in Nipponbare plants, shoots 

supplied with Fe had a strong induction of this gene expression (Figure 4.3.1.1B). 
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As referred before, FRO genes encode the Fe
3+

-chelate reductase enzymes and the 

activity of this enzyme was quantified as presented in figure 4.2.3.1. Rice is known to have 

low root Fe
3+

-chelate reductase activity, but it is thought to be higher under Fe deficient 

conditions (Ishimaru et al., 2006). In the current study, Bico Branco cultivar presented low 

expression of OsFRO2 in Fe deficiency (Figure 4.3.1.1A) and, accordingly, low reductase 

activity (Figure 4.2.3.1). On the other hand, Nipponbare cultivar had higher levels of OsFRO2 

gene expression in roots and, again, reductase activity was also higher (Figure 4.3.1.1B and 

4.2.3.1, respectively). These results show that the expression of OsFRO2 gene in roots, could 

be important for root Fe uptake, particularly under high Fe availability. 

 

After Fe reduction by FRO, Strategy I plants transport Fe across the plasma membrane 

of root epidermal cells by IRT1 (Grotz et al., 2006). In graminaceous plants, such as maize 

and barley, the inducible Fe
2+

 transporter system either is absent or is expressed at very low 

levels (Zaharieva and Romheld, 2001). In rice, on the other hand, it was described that despite 

absorbing Fe
3+

-PS efficiently through OsYSL15 (Lee et al., 2009a), this plant also possesses a 

ferrous transporter, OsIRT1, and can take up Fe
2+

 (Ishimaru et al., 2006).  

Walker and Connolly (2008) also showed that OsIRT1 gene is expressed in roots under 

Fe deficient conditions. The ability to absorb Fe
2+

 probably evolved in rice as an adaptation to 

flooded paddies, where Fe
2+

 is frequently more abundant than Fe
3+

 due to the anaerobic 

conditions that prevail in wet-fields (Cheng et al., 2007). 

In the current study, as there was more expression of OsFRO2 in Fe sufficient 

conditions in both cultivars, the expression of OsIRT1 was also higher in roots of Fe 

sufficiency grown plants (Figure 4.3.1.1). However, in Fe deficiency treatment, shoots 

seemed to up-regulate this gene (Fig. 4.3.1.1), which was also described by Ishimaru et al. 

(2006), suggesting that Fe
2+

 transporters participate in Fe distribution and partitioning in rice 

plants. They analyzed stems of transgenic plants expressing the OsIRT1 promoter–GUS 

fusion, which showed that GUS activity was present exclusively in the phloem under Fe 

sufficient conditions, with higher activity levels in the phloem under Fe deficiency, 

supporting the hypothesis of a possible function in the long-distance Fe transport in rice 

plants. 

In summary, our data suggest that rice is able to up-regulate the Strategy I genes FRO 

and IRT1, but this regulation seems to be cultivar dependent. 
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Figure 4.3.1.1 Quantitative RT-PCR analysis of genes related with Strategy I and 

Strategy II of Fe uptake, in (A) Bico Branco and (B) Nipponbare cultivars. Total RNA was 

extracted from shoots and roots of plants grown hydroponically for three weeks under Fe 

deficient (0 μM Fe(III)-EDDHA) and Fe sufficient (20 μM Fe(III)-EDDHA) conditions. A 

pool of three plants of each condition was used. The results were normalized using the 

housekeeping gene 18S (-rRNA). 

 

B) 

A) 
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4.3.2 Strategy II-related genes 

 

There are several genes known to be related to Fe uptake in Strategy II in which PSs are 

released into the rhizosphere (Romheld and Marschner, 1990). In the biosynthesis of PS, MAs 

are biosynthesized in roots and secreted into the rhizosphere via a specific exporter, the 

OsTOM1, and under Fe deficient conditions, this transporter is expected to be more induced 

in rice roots and less in rice shoots (Nozoye et al., 2011). 

However, the expression of OsTOM1 by Bico Branco cultivar was lower under Fe 

deficiency than under Fe sufficiency, both in shoots and roots (Figure 4.3.1.1A), and in the 

Nipponbare cultivar this transporter was 3.5 fold more expressed in shoots than in roots, 

under Fe deficient conditions (Figure 4.3.1.1B). 

As showed by Nozoye et al. (2011), the expression of OsTOM1 appears to be similar to 

the genes involved in DMA biosynthesis, being responsible not only for Fe acquisition from 

the soil, but also for internal Fe transport of DMA to the phloem and xylem. Accordingly, 

these results (Figure 4.3.1.1) suggest that OsTOM1 is implicated in internal Fe transport, 

although it seems that in the current conditions this gene was not particularly involved in Fe 

acquisition. However, in the work referenced above, rice plants were transferred to Fe 

deficiency medium four weeks after germination, staying in this condition for only 5-7 days, 

differently from what was done in the current experiment, where plants were maintained 

under Fe deficiency for three weeks after germination. 

 

When PS are released into the rhizosphere, they chelate with Fe
3+

 and form a complex, 

that is transported into root cells by transmembrane proteins of the yellow-stripe like (YSL) 

family (Inoue et al., 2009; Lee et al., 2009a). The first characterized YS1 ortholog from rice 

was OsYSL15 (Inoue et al., 2009) and it was described to be up-regulated in roots and in 

reproductive tissues under Fe deficient conditions (Lee et al., 2009a). MAs are biosynthesized 

from methionine through NA (Romheld and Marschner, 1990) and it is hypothesized that 

OsYSL15 is involved in the transport of Fe(III)-MAs complexes, as its expression in the 

roots’ phloem cells may function in the long distance transport from roots to shoots via 

phloem (Lee et al., 2009a).  

Lee et al. (2009a) tested the disruption or overexpression of OsYSL15 in rice and 

concluded that only the concentration of Fe was affected, and not of Zn, Mn or Cu, showing 
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that OsYSL15 is an Fe-specific transporter. Since this gene functions as a transporter of 

Fe(III)-NA or Fe(II)-NA complexes, the obtained higher expression in root tissue (and null in 

shoots), was expectable for both cultivars (Figure 4.3.1.1). 

Moreover, under Fe deficiency, Bico Branco cultivar had almost double the amount 

expressed in the control (Fe sufficiency), whilst Nipponbare rice plants presented an inverse 

pattern (Figure 4.3.1.1A vs. 4.3.1.1A), which could indicate that the first cultivar is more 

susceptible to Fe deficiency than the latter. 

As referred above, NA is a chelator of transition metals and plays an important role in 

long- and short-distance transport of metal cations, including Fe
2+

 and Fe
3+

, in higher plants 

(von Wirén et al. 1999). Nicotianamine synthase (NAS) enzyme catalyzes the biosynthesis of 

NA and the genes encoding NAS are known to be differentially regulated by Fe status in a 

variety of plant species including maize, Arabidopsis, barley and rice (Higuchi et al., 1999; 

Inoue et al., 2003; Mizuno et al., 2003; Klatte et al., 2009). In rice, NA is a biosynthetic 

precursor of PSs and its increase causes an increase in transport of Fe from root to shoot. NA 

also serves as a transition metal chelator, and although all plants can synthesize it, only 

grasses convert NA to PSs (Lee et al., 2009b; Conte and Walker, 2011). Interestingly, Bico 

Branco cultivar overexpressed seven and four times more OsNAS1 and OsNAS2, respectively, 

in response to Fe deficiency, when compared to the Fe sufficiency plants (Figure 4.3.1.1A). 

This expression could be augmented in order to increase NA synthesis, to consequently 

produce and secrete increased amounts of MAs and help in Fe uptake, as seen in Inoue et al., 

(2003). OsNAS1 and OsNAS2 were also shown to be expressed in the pericycle cells adjacent 

to the protoxylem and metaxylem I (Inoue et al., 2003). These cells participate in Fe long-

distance transport, suggesting that NA synthesis is required for xylem loading and also for 

loading and unloading to the phloem (Schmidke et al., 1999). Hence, it is understandable that 

when in Fe sufficiency, NAS-related genes expression was increased in shoots of Bico Branco 

cultivar (Figure 4.3.1.1A). As it has been observed with other genes, Nipponbare cultivar 

presented a pattern of expression that indicates less susceptibility to Fe deficient conditions 

(Figure 4.3.1.1B). Under Fe deficiency, OsNAS1 was up-regulated in shoots, but no drastic 

changes in root expression were observed, and both shoots and roots expressed similar levels 

of OsNAS2, independently of the Fe treatment. 
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The tolerance of these plants to low Fe availability is thought to increase with the 

production and secretion of MAs (Bashir et al., 2003). However, the Nipponbare cultivar 

showed less stress signals when compared with the Bico Branco cultivar, as previously seen 

in chlorophyll content results, where the former didn’t show as acute signs of chlorosis as the 

latter (Figure 4.2.1.2). This corroborates that the Nipponbare cultivar has less susceptibility to 

low Fe conditions than the Bico Branco cultivar, reducing the need to synthesize PS synthesis 

related genes. 

Another important PS synthesis-related gene is OsDMAS1. This gene participates in 

DMA biosynthesis in rice and, like the OsNAS genes, its expression is expected to be higher 

in root tissues under Fe deficient conditions (Inoue et al., 2003; Bashir and Nishizawa et al., 

2006). The pattern of expression in the Bico Branco cultivar is consistent with these reports 

(Figure 4.3.1.1B), but the Nipponbare cultivar presented lower expression of OsDMAS1 in 

roots under Fe deficient conditions (Figure 4.3.1.1B). 

More specifically, shoots under Fe deficiency showed increased expression in both rice 

cultivars (Figure 4.3.1.1). In Mori et al. (1991), DMA was quantified and detected in Fe 

sufficiency shoots and was increased under Fe deficiency, and they proposed that it is 

possible that the DMA detected in Fe sufficiency rice shoots was translocated from roots in a 

complex with Fe (Mori et al., 1991). They also found that under Fe deficient conditions 

OsDMAS1 gene expression was localized in phloem sap, cells that participate in long-distance 

transport. Therefore this could explain why the levels of expression were higher in shoots 

than in roots for both cultivars in this study (Figure 4.3.1.1) (Bashir and Nishizawa et al., 

2006; Bashir et al., 2006). 

In rice, histochemical analysis of promoter-glucuronidase (GUS) transformants revealed 

that OsNAS1, OsNAS2, OsDMAS1 and OsNAAT1 share highly similar expression patterns, 

with significant expression under Fe deficient conditions (Bashir et al., 2006, Inoue et al., 

2003), which is consistent with the results here obtained. 

 

More recently, the genes participating in DMA biosynthesis in  rice, including OsNAS1, 

OsNAS2, OsNAAT1, OsDMAS1 and OsYSL15, have been found to be under the regulation of 

an Fe-deficiency-inducible bHLH (basic helix–loop–helix) transcription factor, OsIRO2 (Ogo 

et al., 2006) - specific to graminaceous plants. Ogo et al. (2007) studied rice plants 

overexpressing OsIRO2 (IRO2-OX) and OsIRO2 RNAi knockdown lines, and they suggest 
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that OsIRO2 regulates the PS-mediated Fe uptake system of rice, but not the Fe
2+

 uptake 

mechanism. 

OsIRO2 gene is described to be overexpressed in both rice roots and shoots under Fe 

deficient conditions (Ogo et al., 2007). Accordingly, in this study, the Bico Branco cultivar, in 

particular, presented the double and quintuple of induction in roots and shoots respectively, in 

Fe deficient compared to Fe sufficient conditions (Figure 4.3.1.1A). The Nipponbare cultivar 

had the same strong induction in Fe deficiency shoots, but in roots almost no differences were 

detectable (Figure 4.3.1.1B).  

Another transcription factor known to be expressed in the roots and shoots under Fe 

deficient conditions is OsIDEF1, which positively regulates the induction of several known 

Fe uptake and utilization genes in rice, such as OsYSL2, OsYSL15, OsIRT1, OsIRO2, 

OsNAS1, OsNAS2, OsNAS3 and OsDMAS1 (Kobayashi et al., 2007; Kobayashi et al., 2009). 

It has also been described that OsIDEF1 senses the cellular Fe status in the first days of 

exposure to Fe deficiency, but after a few days, this ability is lost (Kobayashi et al., 2009). 

Results reported here show that three weeks after exposure to Fe deficiency, OsIDEF1 was 

down-regulated in roots and shoots of the Bico Branco cultivar (Figure 4.3.1.1A) whereas it 

did not seem to be affected by the Fe treatments in the Nipponbare cultivar, having an 

augmented expression in roots. These results suggest that in Bico Branco plants OsIDEF1 

was not expressed since there was a diminished expression under Fe starvation, as seen in the 

work of Kobayashi et al., (2012); on the other hand, in the Nipponbare cultivar the expression 

of this transcription factor was similar in both Fe deficiency and sufficiency showing that, 

independently of the Fe supply, this plant is able to maintain the cellular Fe status (Figure 

4.3.1.1B). 
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Figure 4.3.2.1 integrates the results obtained in the current study for both rice cultivars. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3.2.1 Schematic diagram integrating the expression data of Strategy I and II-related 

genes in both rice cultivars obtained with quantitative RT-PCR analyses (please see text for 

further details). 

 

 

4.3.3 New candidate genes in rice 

 

Although a large number of Fe-deficiency-inducible genes have been isolated, the 

mechanisms behind direct Fe transport are still little known (Sperotto et al., 2012b). 

Ferroportin (FPN) is a protein involved in Fe absorption in mammals (Muckenthaler et al., 

2008) and, as previously mentioned, has close orthologs in A. thaliana - AtFPN1 and AtFPN2 

(Morrissey et al., 2009). These promising Fe transporters play a role in Fe transport from root 
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to shoot, and have never been described in rice. Here, we searched for two orthologs from A. 

thaliana in Oryza sativa L., OsFPN1 and OsFPN2. 

In the Bico Branco cultivar, both genes were up-regulated by Fe deficient roots (Figure 

4.3.3.1A). Previous studies have shown that FPN1 is not Fe-regulated but FPN2 is (Colangelo 

and Guerinot, 2004; Muckenthaler et al. 2008). More specifically, AtFPN1 is localized in the 

plasma membrane and expressed in the stele, effluxing metals from cytoplasm into the 

vasculature and allowing the movement of metals from root to shoot; AtFPN2 sequesters 

metals in the outer cell layers of the roots, that are effluxed into the vacuole, especially under 

Fe deficiency, suggesting that FPN2 could serve to sequester excess free Fe that would 

otherwise not be chelated or transported out of the cell quickly enough (Schaaf et al., 2006). 

Hence, while both ferroportins likely efflux metal from the cytoplasm, they play different 

roles in metal homeostasis. The Nipponbare cultivar revealed higher expression in shoots 

treated in Fe deficient conditions being more pronounced for FPN1 than for FPN2 (Figure 

4.3.2.1B), showing that these genes are indeed induced by Fe deficiency.  

 

Figure 4.3.3.1. Quantitative RT-PCR analysis of new candidate genes in (A) Bico Branco and 

(B) Nipponbare cultivars. Total RNA was extracted from shoots and roots of plants grown 

hydroponically for three weeks under Fe deficient (0 μM Fe(III)-EDDHA) (Fe-) and Fe 

sufficient (20 μM Fe(III)-EDDHA) (Fe+) conditions. A pool of three plants from each 

condition was used. The results were normalized using the housekeeping gene 18S (-rRNA). 
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Morrissey et al. (2009) studied chlorophyll and carotenoid levels in A. thaliana, and 

showed that a loss of FPN1 results in chlorosis, also suggesting that FPN1 loads Fe into the 

vasculature; on the other hand fpn2 mutant was not chlorotic under Fe sufficiency, but its 

chlorophyll and carotenoid levels were slightly lower than the wild type on Fe deficient 

medium. The loss of both ferroportins, however, resulted in a greatly increased Fe deficiency 

response. In the current work, ferroportins were higher expressed in Nipponbare shoots, 

which shows less chlorosis and higher photosynthetic pigments concentration under Fe 

deficiency, which is in accordance with the previous study that suggested a relation between 

these genes and photosynthetic parameters. 

 

Other genes related with Fe trafficking and allocation in plants but not described in 

rice yet, are MYB2 and MYBS3 (Chen et al., 2006; Shen et al., 2008). As previously referred 

in the Introduction section, MYB genes belong to a large family of transcription regulators 

which have important roles in plants, like regulation of plant development, hormone signaling 

and metabolism (Lipsick, 1996). Previously, it was shown that the expression of two MYB 

genes was upregulated by Fe deficiency (Colangelo and Guerinot, 2004), suggesting that 

MYB genes may play a role in Fe homeostasis. It was reported that DwMYB2 expression in 

transgenic Arabidopsis, initially isolated from orchid Dendrobium hybrid Woo Leng, affected 

Fe translocation from root and shoot, resulting in Fe accumulation in roots and deficiency in 

shoots (Chen et al., 2006). Here, we searched for an ortholog of DwMYB2 in Oryza sativa L. 

As expected, roots under Fe deficient conditions up-regulated OsMYB2 in the Bico 

Branco cultivar (Figure 4.3.3.1A). On the other hand, studies show that expression of 

DwMYB2 in Arabidopsis caused development of yellow leaf phenotype, the typical symptom 

of Fe deficiency, and hypersensitivity to Fe deficiency (Chen et al., 2006). This, alongside 

with the strong induction of MYB2 under Fe deficient conditions (Figure 4.3.3.1) obtained in 

this study reveal that MYB2 gene has a role in Fe homeostasis. 

 

Another transcription factor belonging to the MYB genes family is OsMYBS3, 

homologs of MxMYB1. Although OsMYBS3 was described to acts as a repressor of α-

amylase gene expression in sugar starvation (Lu et al., 2002), MxMYB1 possibly acts as a 

negative regulator of Fe uptake in plants (Shen et al., 2008). 



Study of the Fe uptake systems in two different rice cultivars 

 

44 
 

Studies with M. xiaojinensis could not find the function of MxMYB1 in the regulation 

of Fe uptake, but evidences from this gene’s expression in A. thaliana suggest that MYB1 

might cooperate with other proteins to modulate Fe homeostasis under Fe deficient conditions 

(Shen et al., 2008). As MxMYB1 homologs exist in a wide range of monocotyledonous and 

dicotyledonous plants, OsMYBS3 may also be related with Fe deficiency. 

Previous studies showed that OsMYBS3 was expressed in all tissues, with the highest 

expression in senescent leaves, when sugars are depleted, preventing α-amylase genes from 

being induced by the low sugar levels, which would be a wasteful process in dying cells (Lu 

et al., 2002). In the current experiment, the higher levels of expression of OsMYBS3 were 

found in Bico Branco cultivar, especially in shoots under Fe deficiency (Figure 4.3.3.1A), 

which, as can be seen in Figure 4.2.1.2 showed signs of severe chlorosis and initial 

senescence. 
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5. CONCLUSIONS 

 

In the current study, mineral content analysis suggests that Fe supply results in higher 

Fe concentration in roots and shoots, especially in the Bico Branco cultivar. Overall, under Fe 

deficiency, Bico Branco cultivar accumulated more minerals in roots than Nipponbare, while 

Nipponbare counterpart accumulated more nutrients in shoots. The results obtained here 

support that there is an interaction between minerals, namely,  when Fe uptake is decreased 

the uptake of some other minerals is increased, as showed by Sperotto et al. (2012a). 

Furthermore, photosynthetic pigments, which can be used as indicators of crop stress 

under Fe deficiency, were quantified and the results showed that the Bico Branco cultivar is 

more susceptible to Fe deficiency than the Nipponbare cultivar. However, both cultivars had 

Fe chlorosis and growth disturbance when grown under Fe deficient conditions, as also shown 

by Maruyamaa et al. (2005). 

In what concerns Fe reductase activity, a typical process of Strategy I plants, 

Nipponbare cultivar revealed the highest reductase activity under Fe deficient conditions. 

When looking at qRT-PCR results, this cultivar had higher expression of OsFRO2, 

responsible for Fe
3+

 reduction, evidencing the agreement between these results. This is a new, 

revealing result that shows that rice may have a capacity to reduce Fe. This could be an 

adaptation of rice when grown under upland rice (aerobic soils), where although Fe
3+

 is 

abundant, rice does not produce PS in sufficient amounts to cope with its Fe needs. Thus, 

Bico Branco, which did not show evidences of Strategy I transport system, showed more 

activity of genes involved in Strategy II for Fe uptake, suggesting that the induction of 

Strategy I and II genes is cultivar-dependent. 

On the other hand, although OsIRT1 was not expressed in roots of both cultivars under 

Fe deficiency, there are evidences of Fe
2+

 transport in shoots, suggesting a role in Fe long-

distance transport in both rice cultivars, as also shown by Ishimaru et al. (2006). 

Relatively to the new candidate genes, this study showed that OsFPN1, OsFPN2, 

OsMYB2 and OsMYBS3 are Fe-regulated, especially in shoots of Nipponbare cultivar and in 

roots of Bico Branco cultivar. Under Fe deficient conditions, OsMYBS3 seems to play a role 

in shoots of Bico Branco cultivar. 

These data provide novel insights for the regulation of genes involved in Fe transport in 

rice and identified potential candidate genes for further investigation. These findings also 

http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A%28Maruyama%2C+T%29
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showed that there are different responses to Fe deficiency between the studied cultivars that 

are from different climates. Between Bico Branco and Nipponbare cultivars, the former one 

(never studied until now) revealed to be an interesting cultivar both for sensing Fe deficiency, 

and for Fe uptake and transport through the plant. 
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6.  FUTURE WORK 

 

As referred in the Introduction section, rice is a very diverse specie with more than 1500 

rice cultivars. Although the Nipponbare genome has already been sequenced, few studies 

have selected other cultivars to compare the responses. For that reason, in this work we 

looked at several rice varieties before choosing the most suitable ones for our study. 

 Although significant progress has been made in recent years in our understanding of 

how metals are obtained from the soil and distributed throughout the rice plant, there is still 

some controversy about which Strategy rice uses for Fe uptake. Attempts to insert the FRO2 

gene from A. thaliana (AtFRO2) into rice (Oryza sativa L.) have already been described, 

although in a different rice cultivar (ssp. indica cv. IR68144) (Vasconcelos et al., 2004). It 

would be important to do the same in different rice cultivars, such as Bico Branco cultivar, 

and also analyze Fe-reductase activity in these plants grown under Fe deficient conditions.  

It is not known yet if each rice cultivar uses a different Strategy, or if they have a 

capacity to choose which strategy is better according with the conditions of the environment 

in which they grow. Thus, it would be interesting to grow rice cultivars in aerobic or flooded 

soil conditions, to compare the response of genes involved in Strategy I and II under these 

conditions. Since the amount of NA excreted by the rhizosphere will dictate, to a large extent, 

the capacity of the rice plant to survive in Fe limiting soils, it would be interesting to quantify 

the amount of NA excreted by our two cultivars, and see if that could explain their contrasting 

efficiencies to IDC. 

In what concerns the new candidate genes, it is important to investigate the localization 

of their expression in rice organs, maybe using the promoter-GUS analysis, to gain a more 

detailed insight into the physiological roles of each new gene referred here. Also, the MYB2 

and MYBS3, as transcription factors, had the capacity to regulate other genes, so it is 

interesting to know if they have any role in the regulation of genes related with Fe 

homeostasis in rice. 
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7. Annexes 

 

Table 3.7.1 Accession orthologs used in qRT-PCR. 

Gene 

Original 

Accession 

Number 

Accession 

orthologs 

Maxim 

score 

Total 

score 

Query 

cover 

E 

value 
Identity 

OsTOM1 AB016925.1 NM_001186569.1 374 374 47 % 2e
.101 

73 % 

OsFPN1 NM_129402.5 NM_001064402.1 96.9 148 35 % 1e
-17 

65 % 

OsFPN2 NM_001203288.1 NM_001064403.1 84.2 84.2 23 % 6e
-14

 65 % 

OsMYB2 AF485893 FJ940216.1 403 403 22 % 5e
-110 

83 % 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/nucleotide/297722268?report=genbank&log$=nucltop&blast_rank=1&RID=8G41SHGJ014
http://www.ncbi.nlm.nih.gov/nucleotide/115468537?report=genbank&log$=nucltop&blast_rank=1&RID=AV7VEG0J01R
http://www.ncbi.nlm.nih.gov/nucleotide/115468537?report=genbank&log$=nucltop&blast_rank=1&RID=AV7VEG0J01R
http://www.ncbi.nlm.nih.gov/nucleotide/284431793?report=genbank&log$=nucltop&blast_rank=1&RID=PUSGTUFA01N
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Table 3.7.2 Accession numbers and primer sequences used in qRT-PCR analysis. 

Gene 

 (Accession Number) 
Forward Primer Reverse Primer 

OsFRO2 (AB126085) ACTTTGGCAAACAAGGGACG AGGCCGCCATTCTCGTACA 

 OsIRT1 (AB070226) TCGAGATAGGCATCGTGGTG AAGAAGACGAGCACCGACCT 

OsYSL15 (AB190923) TCCCCTAAGAAAGGCTTTGG GCCTCCCGTGTAGAACCATT 

OsNAS1 (AB021746.2) GCTGCATTTGCGAAGCTAAG ACAGATGGCATGTTCCTCGT 

OsNAS2 (AB023818.1) TAATCCTGGCTGTGTCTCGC ACTCGTCGTTGTCCCCTAGA 

OsDMAS1 (AB269906) TCAGGCAGACGCTATGGAAC GAAGTTGCAGACGCCGATG 

OsIRO2 (BR000688) TCCCCTCCTACCCAGCTAAC AGAAGATGTCCGCCTCAAGC 

OsIDEF1 (BR000654) GGCCATGACAGTCGTGCTA CATGTCACTGGGAGCACCAT 

 

OsMYBS3 (AY151044) 

 

TGTCAAGCCTGTTCCAGTTC TGTGCCCTTGTTGGATT 

OsTOM1 

(NM_001186569.1) 
ATGAGGAAGCTGGTCCCCTC AATTGAACCAGCGCGACG 

OsFPN1 

(NM_001064402.1) 
CATGTTCGACCTGCTCACCT TCCAGTTCATCTTGGGCAGG 

OsFPN2 
(NM_001064403.1) 

GCCACTCTTTTCGGTCCCAT 
 

CAACACGACCAATGTTGCGA 

OsMYB2 

(FJ940216.1) 
CCAGCCGTGCGAATTTCAAG TCTTTGGAGCCCTGCAAGTT 

18S TTAGGCCATGGAGGTTTGAG GAGTTGATGACACGCGCTTA 

 

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/nucleotide/297722268?report=genbank&log$=nucltop&blast_rank=1&RID=8G41SHGJ014
http://www.ncbi.nlm.nih.gov/nucleotide/115468535?report=genbank&log$=nucltop&blast_rank=1&RID=PUN0RAH901N
http://www.ncbi.nlm.nih.gov/nucleotide/115468537?report=genbank&log$=nucltop&blast_rank=1&RID=AV7VEG0J01R
http://www.ncbi.nlm.nih.gov/nucleotide/284431793?report=genbank&log$=nucltop&blast_rank=1&RID=PUSGTUFA01N
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