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ABSTRACT 

 

Fluoroquinolones are bactericidal drugs which have been widely used due to their 

great activity and wide spectrum namely against gram negative bacteria like 

Enterobacteriacea. Multidrug resistance is a rising health concern worldwide and increased 

AcrAB-TolC efflux pump expression has been documented in association with resistance to 

fluoroquinolones. The classic susceptibility methods are based on growth in the presence of 

antimicrobial drugs which takes at least 24 to 48 hours and empiric therapy usually is used to 

overcome this delayed answer. A rapid assay was created to determine the susceptibility of 

gram negative bacteria to ciprofloxacin and levofloxacin; facing a resistant phenotype, 

another protocol was developed to detect the presence of efflux pump over-expression. These 

are rapid and accurate protocols based on flow cytometry that demonstrated great advantages 

for clinical Microbiology. Sixty two resistant and susceptible clinical isolates of 

Enterobacteriaceae were tested for ciprofloxacin and fifty three were tested for levofloxacin, 

previously evaluated by Vitek2
®

. Genetically modified E. coli K12 with AcrAB-TolC efflux 

system inactivated, over-expressed and wild-type were used as efflux controls. For 

susceptibility profile, the cells were incubated with antimicrobial breakpoints according to 

CLSI, then fixed with ethanol 70% (v/v) and stained with SYBR-Green I, a nucleic acid 

probe. CFU assays were performed before flow cytometric analysis. For efflux activity study 

thirty resistant strains were tested. Bacteria were diluted in PBS supplemented with glucose 

and subinhibitory concentrations of ciprofloxacin and stained with Ethidium Bromide. In 

parallel the same strains were incubated with chlorpromazine, a pump inhibitor, and the 

protocol repeated. Flow cytometric analysis was performed in FL1 (520 nm) and FL3 (600 

nm) for susceptibility phenotype and efflux determination, respectively. In the susceptibility 

test, susceptible strains showed a decrease in the fluorescence intensity compared to the 

control; conversely, resistant strains maintained approximate values, even after incubation 

with high concentrations of the drugs. Correlation between conventional CFU assay and flow 

cytometry was successfully achieved. In the efflux assay, a comparison between the 

fluorescence intensity with and without chlorpromazine was done. When it decreased there 

was AcrAB-TolC over-expression, if the values maintained there wasn’t. Flow cytometry 

demonstrated to be an excellent approach to evaluate the resistance to fluoroquinolones and 

the responsibility of efflux pumps on such resistance. 
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RESUMO 

 

 As fluoroquinolonas são fármacos bactericidas amplamente utilizadas devido à sua 

elevada actividade e largo espectro nomeadamente contra bactérias gram negativo como é o 

caso das Enterobactereaceae. A resistência a antibacterianos é um tema preocupante a nível 

mundial. Os métodos de susceptibilidade clássicos baseiam-se no crescimento bacteriano na 

presença de antibacterianos, cujos resultados demoram pelo menos 24 a 48 horas a obter, 

sendo muitas vezes necessário recorrer a terapia empírica. Foi criado um teste rápido para 

determinar a susceptibilidade de bactérias gram negativo à ciprofloxacina e levofloxacina; no 

caso de fenótipos resistentes foi desenvolvido um outro protocolo para detectar a presença de 

sobre-expressão de bombas de efluxo, um mecanismo de defesa bacteriano bem 

documentado. Tratam-se de testes rápidos e precisos que utilizam a citometria de fluxo e 

demonstraram grandes vantagens para a Microbiologia clínica. Sessenta e dois isolados 

clínicos de Enterobactereaceae foram testados para a ciprofloxacina e cinquenta e três para a 

levofloxacina, previamente avaliados pelo sistema Vitek2
®

. E. coli K12 geneticamente 

modificadas com o sistema de efluxo AcrAB-TolC inactivado, sobre-expresso e wild-type 

foram utilizadas como controlos de efluxo. Para o perfil de susceptibilidade, as células foram 

incubadas com os breakpoints fornecidos pelo CLSI, em seguida fixadas com etanol 70% 

(v/v) e marcadas com SYBR-Green I, uma sonda de ácidos nucleicos. A contagem de UFC 

foi realizada antes da análise citométrica. Para o estudo do efluxo, trinta isolados foram 

estudados onde as células são diluídas em PBS suplementado com glucose e concentrações 

subinibitórias de ciprofloxacina e marcadas com brometo de etídio. Em paralelo, as mesmas 

estirpes são incubadas com clorpromazina, um inibidor de efluxo, e o protocolo repetido. A 

análise citométrica foi realizada em FL1 (520 nm) e FL3 (600 nm) para a avaliação de 

susceptibilidade e a determinação do efluxo, respectivamente. As estirpes susceptíveis 

incubadas com os antibacterianos demonstraram uma diminuição da intensidade de 

fluorescência comparando com as não tratadas. As estirpes resistentes mantiveram valores 

aproximados, mesmo após incubação com altas concentrações de fármaco. Verificou-se 

correlação entre a contagem de UFC e a citometria de fluxo. Para o ensaio de efluxo, 

comparou-se a intensidade de fluorescência com e sem clorpromazina. Nos casos de sobre-

expressão da bomba de efluxo AcrAB-TolC a intensidade de fluorescência diminuiu. A 

citometria de fluxo demonstrou ser uma excelente ferramenta para avaliar a resistência às 

fluoroquinolonas e a responsabilidade do efluxo nessa mesma resistência.
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1. INTRODUCTION 

 

1.1.General considerations 

 

Nalidixic acid was the first quinolone introduced in the 1960’s. In the late 1980’s 

many fluoroquinolones (FQs) were commercialized: ciprofloxacin (Cipro) in 1987 and ten 

years later levofloxacin (Levo), after a period of a certain idling in fluoroquinolone research 

and development. The chemical structure of quinolones is composed of a bicyclic aromatic 

core. FQs are synthetic quinolone derivatives with an addition of a fluorine atom in the 6 

position that enhances antimicrobial activity, alters pharmacokinetic properties, improves 

potency, providing enormous advantages over quinolones. The addition of different 

substituents to the different positions of the quinolone nucleus accounts for the variability in 

antimicrobial spectrum of activity. Their mechanism of action is unique among available 

antibiotics (Andriole, 2005; Dalhoff, 2012). 

Since FQs were introduced in clinical practice, they allowed physicians to prescribe 

them orally and parenterally as broad spectrum drugs in a large range of infections such as 

urinary tract infections, gastrointestinal infections,  respiratory tract infections, chronic 

osteomyelitis and sexually transmitted diseases (Dalhoff, 2012; Greenfield, 1993). 

The earliest FQs were predominantly active against gram negative agents, especially 

Enterobacteriaceae. The newer ones, including Cipro, had a wider spectrum of activity, 

including gram positive and some atypical bacteria. The more recent FQs, such as Levo, have 

an enhanced activity against gram positive cocci, but are also active against gram negative 

microorganisms (Ball, 2000; Gootz & Brighty, 1996). 

During the last several years FQs were used in large scale, especially in outpatients. 

Different rates of FQ resistance have been reported worldwide in both nosocomial and 

community-acquired infections. Several factors contribute for these differences: the patients, 

local epidemiological factors, antibiotic policies, inadequate usage, lack of information and 

their use in animals are some of the factors (Acar & Goldstein, 1997; Dalhoff, 2012). More 

worrisome are recent reports of an overall increase in resistance to FQs amongst bacteria 

causing community-acquired infections, such as E. coli. Surveillance data from the late 

1990’s demonstrated that FQ resistance had to be associated with particular bacterial species 

on one hand, and patient populations on the other hand (Acar & Goldstein, 1997). Not much 

has changed since then and resistance increased to alarming high rates. 
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The continued increase in FQ resistance affects patient management and demands a 

change in some current guidelines (Dalhoff, 2012). 

Another major concern is the association of FQ resistance and Extended-Spectrum β-

Lactamase (ESBL)-production in Enterobacteriaceae. One to two thirds of 

Enterobacteriaceae producing ESBL’s were FQ resistant too, thus limiting the FQ use in the 

treatment of community, as well as healthcare acquired infections,  in all those geographic 

areas in which FQ resistance rates and/or ESBL-production is high (Dalhoff, 2012). 

Successful clones of resistant bacteria are often spread horizontally either due to poor 

hygiene, transfer of patients from one ward to another or from a hospital to a nursing home, as 

well as interregional migration and international population mobility. Meaning, humans are 

mobile vectors of drug resistance (MacPherson et al., 2009). Both, exposure of bacterial 

pathogens to antibacterials and environmental factors have a role in the emergence and spread 

of resistance. Furthermore, inappropriate antibiotic policies, poor compliance, suboptimal 

dosing, diagnostic and laboratory error, ineffective infection control, counterfeit or altered 

drugs contribute to the selection of resistance (Dalhoff, 2012).  

This should be taken into account when empiric treatment is prescribed (Barenfanger, 

Drake, & Kacich, 1999; Dalhoff, 2012). 

 

1.2.Mechanism of action of fluoroquinolones 

 

DNA gyrase is a type II topoisomerase that negatively supercoils deoxyribonucleic 

acid (DNA) in the presence of adenosine tryphosphate (ATP). It also catenates and 

decatenates circular double-stranded DNA (dsDNA) molecules, resolves knots and relaxes 

negatively supercoiled DNA in the absence of ATP. Thereby, this enzyme is indispensable for 

most vital processes involving dsDNA such as transcription, replication and recombination 

making it an appropriate target for antibacterials. DNA gyrase cleaves the double-strand, 

passes another duplex through it and reseals the molecule. The biochemical characterization 

of gyrase from E. coli shows that the enzyme is composed of two subunits GyrA (97-kDa 

protein) and GyrB (90-kDa protein) (Jacoby, 2005). The C-terminal one-third of GyrA is 

responsible for wrapping DNA around itself in a positive superhelical way. The N-terminal 

two-thirds has the cleavage-religation activity. Regarding the GyrB subunit, it’s N-terminal 

half is responsible for hydrolysing ATP and the C-terminal half is involved in the binding 

between DNA and the GyrA subunit (Hooper, 1998). Topoisomerase IV can also remove 

positive and negative supercoils and is even better at decatenation than gyrase. It is also 
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composed of two subunits, ParC and ParE. Both enzymes work together in the replication, 

transcription, recombination and repair of DNA. A few bacteria are able to function with only 

DNA gyrase, but most bacteria have both enzymes. In gram negative microorganisms, gyrase 

is more susceptible to quinolones than topoisomerase IV, and on the other hand, in gram 

positive bacteria topoisomerase IV is the prime target, thus gyrase is less susceptible to 

inhibition (Jacoby, 2005). 

A range of inhibitors have been found that interfere with the enzymatic reactions of 

DNA gyrase leading to its inactivation, and quinolones are one of them.  

When gyrase is performing DNA supercoiling the GyrA subunit covalently binds to 

the double-stranded helix, in an ATP-dependent process, where both DNA strands are cleaved 

at certain 4 base pair staggered sites. At this location described, DNA is present as single 

strands, forming a bubble-shaped “quinolone binding pocket”. Two quinolone molecules 

assemble to form a dimer structure inside the gyrase induced binding pocket. This way, the 

progress of the supercoiling procedure that includes rearrangement of the DNA segments, 

reattachment and resealing of the cuts, is locked up. Permanent gaps in the DNA strands 

induce synthesis of repair enzymes (exonucleases), initiating an uncoordinated repair process. 

This results in the breakdown of the DNA molecule leading to irreversible damage and, 

consequently, to cell death (Cabral et al., 1997; Heddle & Maxwell, 2002; Lupala, Gomez-

Gutierrez, & Perez, 2012; Mason, Power, Talsania, Phillips, & Gant, 1995). FQs are the only 

class of antimicrobial agents in clinical use that are direct inhibitors of bacterial DNA 

synthesis (Dalhoff, 2012). 

 

1.3.Mechanisms of resistance 

 

There are three main mechanisms of resistance to quinolones which are: mutations of 

target-enzymes, mutations that reduce drug accumulation in the bacterial cell and transference 

of plasmids that protect the cells from the effects of the antimicrobial (Fabrega, Madurga, 

Giralt, & Vila, 2009). 

 Target-enzyme resistance mechanisms – This is the main mechanism of resistance 

(Strahilevitz, Jacoby, Hooper, & Robicsek, 2009). As stated before, the prime targets of 

quinolone action are the indispensable enzymes DNA gyrase in gram negative bacteria and 

topoisomerase IV in gram positive bacteria. In E. coli and Klebsiella, mutations in the gyrA 

gene, that are chromosome enconded, result in resistance to FQs. Such is due to amino acid 

substitutions in gyrA, in a region called Quinolone Resistance Determining Region (QRDR), 
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that is located in the DNA-binding surface of the enzyme, and has “hot spots” that differ 

according to bacterial species (Cabral et al., 1997; Mazzariol, Zuliani, Cornaglia, Rossolini, & 

Fontana, 2002). The most accepted reason for the diminishing in susceptibility is that 

mutations reduce drug affinity to gyrase (Barnard & Maxwell, 2001).  

Once a first-step mutation has occurred, additional mutations in gyrA, gyrB or parC (in 

topoisomerase IV) can be possible augmenting resistance, despite, by themselves, they 

wouldn’t be enough to confer resistance in a wild-type GyrA, once the level of susceptibility 

is determined by the most susceptible target, which is GyrA. In other words, multiple 

mutations are generally required to confer clinically important resistance, since wild-type 

strains are highly susceptible (Jacoby, 2005; Strahilevitz et al., 2009). Furthermore, reduced 

target expression has been described as another mechanism leading to low level quinolone 

resistance (Dalhoff, 2012).  

 

 Efflux resistance mechanisms – Quinolones must cross the cell wall and the 

cytoplasmic membrane in order to reach their targets. Particularly in gram negative bacteria, 

they must penetrate an additional outer membrane. These microorganisms can regulate the 

permeability of the membrane, by altering expression of outer membrane porins that create 

channels for passive diffusion. Furthermore, bacteria in general have energy-dependent 

nonspecific efflux systems. Some of them are constitutively expressed, others are induced by 

mutations or regulated by global control systems. The AcrAB-TolC efflux system is present 

in most Enterobacteriaceae, belongs to the resistance-nodulation-division family of 

transporters that only exists in gram negative bacteria and allows the extrusion of substrates 

from the cytoplasm and/or periplasm (Paixao et al., 2009; Yang, Clayton, & Zechiedrich, 

2003). This transporter consists of three parts: TolC, an outer membrane protein, AcrB, an 

inner membrane protein and AcrA, a membrane fusion protein that facilitates the connection 

between AcrB and TolC as depicted in Figure 1.3.1 (Bratu, Landman, George, Salvani, & 

Quale, 2009; Yang et al., 2003; Zgurskaya & Nikaido, 1999). The AcrAB-TolC system plays 

a major role in quinolone efflux in E. coli and K. pneumoniae and has multiple controls 

(Fenosa et al., 2009; Jacoby, 2005; Padilla et al., 2010). 

 Since these efflux pumps have a non specific character, they can be activated in 

response to a variety of other compounds such as non-quinolone antimicrobials, antiseptics, 

detergents, sodium salicylate, amongst others. This illustrates the complexity of 

fluoroquinolone resistance mechanisms since there can be coselection of resistance by 

chemically unrelated classes of antibacterials and antiseptics (Dalhoff, 2012; Jacoby, 2005). 
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A study done with K. pneumoniae and Cipro showed that an efficient efflux pump system 

could eliminate about 90% of the cell-associated Cipro. The resistant isolates, with a Minimal 

Inhibitory Concentration (MIC) over 1 µg/ml, had medium to high levels of efflux activity 

and the ones with MICs over 16 µg/ml had high to very high levels of efflux activity. The 

most resistant strains also had associated target site mutations. This group also verified that 

high levels of efflux pump activity appeared to be the main or the only mechanism of 

resistance to FQs in some isolates with no target alterations, which leads to the conclusion 

that efflux plays a major role in resistance in K. pneumoniae strains (Aathithan & French, 

2011). 

 

Figure 1.3.1 – Schematic drawing of tripartite RND multidrug efflux system AcrAB–TolC of the gram negative 

bacteria Escherichia coli. The activated AcrAB transporter triggers opening of the periplasmic tip of TolC to allow diffusion 

of substrates across the outer membrane. Reprinted from (Pos, 2009). 

 

In E. coli, there is evidence that AcrAB-TolC over-expression is important for 

quinolone resistance, but for actual clinical resistance has to be added to mutations in target 

enzymes and/or is associated with over-expression of other efflux pumps from other 

transporter families (Yang et al., 2003). In gram negative organisms in general, resistance due 

to efflux pump over-expression does not account for high level resistance by itself, but helps 

increase the MICs (Hernandez, Sanchez, & Martinez, 2011). 

 

 Plasmid-mediated resistance – Until recent times, the mechanisms of 

resistance to quinolones in Enterobacteriaceae were believed to be only two chromosome 

encoded: alterations in the target enzymes and over-expression of naturally-occurring efflux. 
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However, emergence of Plasmid-Mediated Quinolone-Resistance (PMQR), which consists of 

horizontally transferable elements, was first reported in 1998 in a K. pneumoniae isolate. 

Three PMQR mechanisms are known: Qnr proteins, aminoglycoside acetyltrasferase 

AAC(6’)-lb-cr  and efflux pump QepA. Five types of Qnr proteins have been reported and 

they bind and protect DNA gyrase and type IV topoisomerase from quinolone action acting as 

part of a Stress-Response mechanism (Dalhoff, 2012; Guillard et al., 2011; Ruiz, Pons, & 

Gomes, 2012). They are widespread in Enterobacteriaceae (Da Re et al., 2009) and usually 

plasmids carrying qnr genes also encode ESBL’s, which could be one of the reasons for the 

high frequency of resistance to quinolones observed in ESBL-producing bacteria. The 

expression of these genes is upregulated by the presence of Cipro (Briales et al., 2012; 

Dalhoff, 2012; Jacoby, 2005). The AAC(6’)-lb-cr acetylates several FQs and has two amino 

acid substitutions compared to the wild type. The more recently reported QepA are plasmid-

encoded efflux pumps that extrude hydrophilic FQs, such as Cipro. So far, Qnr and AAC(6’)-

lb-cr have been reported worldwide even from unrelated enterobacterial species. PMQR 

confers a low level resistance and is usually associated with other mechanisms of resistance to 

confer clinical non-susceptibility (Guillard et al., 2011; Jacoby, 2005). 

 

1.4.Detection of susceptibility profile in vitro 

 

It is a wide-held premise that an ideal susceptibility test is based on cellular growth and 

viability. Routine susceptibility tests have made possible the quantitative and qualitative 

assessment of drug susceptibility. 

The development and standardization of susceptibility tests to antimicrobials in vitro is 

crucial in predicting and ensuring the success of therapeutic outcome. Despite their 

importance, these tests are not always required by the physician, who then applies an 

empirical based therapy. The results of the in vitro susceptibility tests are affected by several 

factors such as inoculum concentration, composition and pH of the culture media, 

temperature, incubation time and the physical and chemical properties of the antimicrobial.  

Such complexity has led to the development of reference susceptibility protocols, 

standardized and provided by the Clinical and Laboratory Standards Institute (CLSI). These 

protocols are based on microdilution and allow the determination of MICs with good 

reproducibility (CLSI, 2013). Later, the European Comittee on Antimicrobial Suseptibility 

Testing (EUCAST) has also developed standardized protocols for bacterial susceptibility. 

Although the CLSI and EUCAST protocols are equivalent, there are some differences, such 
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as incubation times, inoculum concentrations and breakpoints, which can compromise the 

comparison of results from different laboratories (Hombach, Bloemberg, & Bottger, 2012; 

Rodriguez-Martinez et al., 2011). 

Meanwhile, there are other alternative tests to evaluate susceptibility to FQs in vitro, 

such as the agar diffusion test, the commercial method Etest
®

 (AB BIODISK, Solna, Sweden) 

and Vitek2
®

 (bioMérieux, Marcy l’Étoile, France). The agar diffusion method uses discs 

impregnated with the antimicrobials, allows a qualitative measurement and it’s relatively 

inexpensive and simple to perform. Etest
® 

is based upon a concentration gradient of the 

antimicrobial and is a quantitative test as it can provide MIC values. On the other hand, it is 

an expensive test and sometimes has a weak correlation between the drugs and the reference 

method. Vitek2
® 

is also a quantitative colorimetric method, simple to perform and 

reproducible. 

All of these current techniques provide results only after a period of 24 to 48 hours, 

since they are based upon microbial growth. They do not consider heterogeneity of the 

bacterial population or mechanisms of resistance (Alvarez-Barrientos, Arroyo, Canton, 

Nombela, & Sanchez-Perez, 2000). 

 

1.5.Flow cytometry 

 

 Flow cytometry (FC) is a very useful technique with important applications in Biology 

and Medicine. In the field of Microbiology, this technique has proven its potential namely in 

the study of susceptibility phenotypes both in bacteria and yeasts (Faria-Ramos et al., 2013; 

Pina-Vaz & Rodrigues, 2010; Wickens, Pinney, Mason, & Gant, 2000). FC allows to count, 

analyze and classify cells in a suspension. Simultaneously, this technique performs a 

multiparametric analysis of the physical and chemical characteristics of each cell, using 

optical and/or electronic detection devices (Bergquist, Hardiman, Ferrari, & Winsley, 2009). 

 There are two types of flow cytometers, depending on the illumination source: laser 

light source or an arc lamp light source. Arc lamp flow cytometers are more adequate for 

Microbiology applications due to their increased versatility and better light scattering 

resolution making them ideal for the accurate study of microorganisms (Alvarez-Barrientos et 

al., 2000). 

 Summarily, the FC process is based on the circulation of large number of 

particles (about 50 000) on a hydrodynamically-focused stream (constant velocity), one by 

one, through an excitation source and the measuring of the magnitude of the impulse  

http://en.wikipedia.org/wiki/Hydrodynamic_focusing
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generated by the deviation of that light, using the appropriate filters and detectors (Figure 

1.5.1).When the cell is intercepted by the light beam, the transmitted light is composed of 

scattered and fluorescent light (if fluorescence probe is added) that is received by lenses or 

mirrors that transfer that light to a detector - photomultiplier tube. The number of detectors 

varies according to the machine and each photomultiplier collects light at different 

wavelengths. The scattered light collected in the same direction as the incident light (forward-

scatter) is related to cell size, as the scattered light collected at a 90º degree angle from the 

light source (side-scatter) gives information about cell complexity. Size and complexity are 

considered intrinsic parameters since they can be obtained without fluorescent staining. Later 

the photomultiplier amplifies and converts the signal received that is later electronically 

evaluated and computerized. Such analysis allows quantifying cells with identical 

characteristics (size and complexity) by creating a histogram of the analyzed population; 

additionally it is also possible to deduce its heterogeneity (Alvarez-Barrientos et al., 2000; 

Bergquist et al., 2009). 

 

 

 

Figure 1.5.1 – Schematic overview of a typical flow cytometer setup. Scheme of optic systems of a flow cytometer with 6 

parameters detected: cell size by forward-scatter (FSC), complexity by side-scatter (SSC) and dye fluorescence by 4 different 

photomultipliers tubes (PMT). Reprinted from (Bio-Rad, 2013). 

 

 Certain cells may be metabolically active and able to replicate, while others present 

metabolic action with intact membranes but are not able to replicate. The ability to distinguish 

different cellular stages is crucial in the assessment of survival of pathogenic microorganisms 

(Czechowska, Johnson, & van der Meer, 2008; Wickens et al., 2000). FC proved to be a 
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useful tool on the redefinition of the concept of bacterial viability, broadening the horizons in 

classical Microbiology. 

 Using FC and fluorescent labels it is possible to measure biological parameters such as 

the nucleic acid content, breathing rate, intracellular enzymatic activity, integrity of 

cytoplasmic membrane or cell wall, evaluate different viability stages, amongst others, 

analysing many cells in a few minutes (Czechowska et al., 2008). 

 Some cytometers, called cell sorters, are able to physically separate cells, based on 

their characteristics that are previously defined (Davey, 2002). 

 In addition to being an automated technique, it has the additional advantage to provide 

results in real time that are of the out most importance in clinical Microbiology. Several 

studies have presented FC as a fast, accurate and reproducible technique in the evaluation of 

the susceptibility to antimicrobials (Alvarez-Barrientos et al., 2000; Faria-Ramos et al., 2012; 

Faria-Ramos et al., 2013; Pina-Vaz, Costa-de-Oliveira, & Rodrigues, 2005; Silva, Lourenco, 

Queiroz, & Domingues, 2011). 
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2. AIMS OF THIS WORK 

 

The aim of this study was to develop a fast and simple in vitro susceptibility test for 

Enterobacteriaceae to FQs based upon FC; additionally it was pretended to understand the 

role of efflux pumps on such resistance, also using FC. 
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3. MATERIALS AND METHODS 

 

3.1.Bacterial strains 

 

Sixty two strains of E. coli and K. pneumoniae were tested for Cipro and fifty three 

strains for Levo with different susceptibility phenotypes, according to Vitek2
®

 System panel 

Antibiotic Susceptibility Test (AST)-192 card. 

Two reference strains from the American Type Culture Collection (ATCC) 

(Escherichia coli ATCC 25922 and Klebsiella pneumoniae ATCC 700603) were used, as 

recommended by the CLSI for susceptibility evaluation (CLSI, 2013). 

For the efflux study, the control strains were E. coli K-12 AG100 wild-type (argE3 

thi-l rpsLxylmtl Δ (gal-uvrB) supE44) that contains the AcrAB-TolC efflux system functional, 

E. coli AG100A (ΔacrAB::Tn903Kan
r
) that has the AcrAB-TolC efflux system inactivated 

due to the insertion of the transposon Tn903 in the acrAB operon and E. coli AG100TET which 

is an AG100 progeny with an induced resistance to tetracycline, that over-expresses the 

acrAB efflux pump amongst other efflux systems. These strains were gratefully provided by 

Miguel Viveiros (Universidade Nova de Lisboa, Lisboa, Portugal).  

All the bacterial isolates were frozen at -80 ºC and prior to every experiment they were 

subcultured twice in Müeller-Hinton (MH) broth to assure purity and the efflux control strains 

were also subcultured in MH supplemented with the respective selective antibiotic. 

 

3.2.Antimicrobial drugs and reagents 

 

Cipro and Levo were purchased from Sigma-Aldrich (St. Louis, Missouri, United 

States of America (USA)) as powder and stock solutions (1mg/ml) were diluted in a 0.1 M 

HCl solution for solubility. MH in powder was acquired from Liofilchem (Abruzzo, Italy) 

used to prepare agar and broth medium. 

 SYBR-Green I (SGI) was also purchased from Sigma-Aldrich and stock solution was 

prepared in a Tris-EDTA buffer for stability at a concentration of 1/1000 (v/v) (commercial 

concentration not available).  

Phosphate Buffered Solution (PBS), chlorpromazine (CPZ), kanamycin, tetracycline 

and ethidium bromide (EtBr) were also acquired from Sigma-Aldrich. Kanamycin stock 

solution was prepared with distilled water and filtered with 0.22 µm syringe and tetracycline 

stock solution was prepared in methanol.  
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All working solutions were prepared with distilled water. Luria Bertani (LB) used to 

prepare broth and glucose were also purchased from Liofilchem. 

 

3.3.Susceptibility evaluation using flow cytometry 

 

3.3.1. Growth and antibiotic exposure 

Prior to every experiment, bacteria were plated in a MH Petri dish overnight at 37ºC. One 

bacterial colony was transferred to filtered MH and was grown using shaking bottles at 37ºC 

and 180 rpm until early exponential phase was reached (OD600nm=0.1).  

The culture was then diluted in new filtered MH until an OD600nm=0.06, corresponding 

approximately to 5x10
6 

cells/ml (Walberg, Gaustad, & Steen, 1997). Aliquots of 1 ml were 

transferred into shaking bottles with 10 ml of new MH supplemented with the antibiotics 

added at concentrations corresponding to the breakpoints (1, 2 and 4 µg/ml for Cipro and 2, 4 

and 8 µg/ml for Levo) stipulated by the CLSI, following incubation for 1 hour at 37ºC and 

180 rpm. This protocol was also tested in cultures directly from the plate (stationary phase). 

 

3.3.2. Bacterial fixation and staining 

After incubation with the antibiotics, 1ml aliquots were pelleted (10 minutes, 10000 rpm 

at room temperature) and were immediately fixed with 70% ethanol for 10 minutes, followed 

by 5 minutes of centrifugation (10000 rpm at room temperature). Finally, the samples are 

loaded with 1ml of SGI working solution 1/100000 (v/v), for 1 hour at 37ºC in the dark. 1 ml 

aliquots were taken for flow cytometric analysis. 

 

3.3.3. Flow Cytometric analysis 

After staining, bacterial cells were analyzed in a BD FACSCalibur
TM

 (BD Biosciences, 

Sidney, Australia) flow cytometer with an argon arc lamp as light source. SGI is excited at 

290, 380 and 497 nm, and its emission is at 520 nm, detected in FL1 channel (green 

fluorescence). Data was collected for 20000 events/sample.  

For each strain, a suspension of non-stained and non-treated cells was also analyzed with 

the purpose to determine the cell´s autofluorescence and define the acquisition settings. Then, 

non-treated and treated cells stained with SGI were analysed and compared. The data 

generated by FC was analyzed by Cell Quest Pro software (version 4.0.2, BD Biosciences). 

The percentage of treated cells was quantified based upon gated population and the area under 

the obtained curve, which is automatically normalized by the cytometer software. 
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3.3.4. Cytometric susceptibility phenotype and Cipro/Levo Index 

In order to assess the effect of such drugs on the isolates, an Index was calculated for each 

drug, Cipro Index for ciprofloxacin and Levo Index for levofloxacin, as the ratio between the 

percentage of treated cells (exposed to the breakpoints of each drug) versus the percentage of 

non-treated cells (absence of drug treatment). 

Based on the results of the Index obtained for each bacterial strain, a cut-off value was set 

with the objective of classify them as susceptible or resistant.  

 

3.3.5. Viability studies 

The number of viable cells in the treated and non-treated cellular suspensions was 

determined by the count of the number of Colony Forming Units (CFU)/ml in MH agar 

plates. For every sample 1:10 serial dilutions were performed until 10
-3

, followed by 100 µl 

inoculation of the plates for each suspension. The counting was performed after 24 hours 

incubation at 37ºC. Every assay was executed in triplicate.  

 

3.3.6. Statistical Analysis 

To study the agreement between FC and the classic method resulting in categorical 

variables (Susceptible versus Resistant), two complementary parameters were calculated: 

agreement proportion and the kappa value. 

To evaluate the accuracy of FC as a suitable diagnostic method for detecting the 

susceptibility phenotype of the tested bacteria different parameters were calculated: area 

under Receiver Operating Characteristic (ROC) curve, sensitivity, specificity, positive and 

negative predictive values and overall accuracy.  

All the parameters were calculated using the classical method Vitek2
® 

as the reference 

method with a 95% confidence interval (P<0.001). 

Statistical analysis was performed with Statistical Package for the Social Sciences (SPSS) 

software version 21.0. 

 

3.4.Efflux detection by flow cytometry 

 

3.4.1. Efflux control strains 

The efflux control strains were grown in 10 ml of aerated LB using shaking bottles at 

37ºC and 220 rpm until mid-log phase (OD600nm=0.6). One ml aliquots were collected and 

centrifuged for 3 minutes at 13000 rpm and the supernatant discarded. The pellet was washed 
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twice with PBS (13000 rpm for 3 minutes), the supernatant discarded and diluted in PBS 

supplemented with 0.4% (v/v) of glucose.  

EtBr working solution was added at a final concentration of 1 μg/ml followed by 

incubation at 37ºC for 60 minutes in the dark. 

 

3.4.2. Efflux assessment in clinical strains 

The clinical strains were grown in 10 ml of aerated LB using shaking bottles at 37ºC and 

220 rpm until mid-log phase (OD600nm=0.6). 1 ml aliquots were recultured in the same 

previous conditions in 10 ml of fresh LB supplemented with Cipro: 4 μg/ml for resistant 

strains and ½ MIC for susceptible strains (CLSI, 2013). 

After adjusting the OD600nm=0.3 for each sample with LB, 1 ml aliquots were collected 

and centrifuged for 3 minutes at 13000 rpm and the supernatant discarded. The pellet was 

washed twice with PBS (13000 rpm for 3 minutes), the supernatant discarded and diluted in 

PBS supplemented with 0.4% (v/v) of glucose.  

EtBr working solution was added at a final concentration of 1 μg/ml. In parallel, to the 

same strains, 1 μg/ml of EtBr was added simultaneously with CPZ (efflux inhibitor) at a final 

concentration of 20 μg/ml, followed by incubation at 37ºC for 60 minutes in the dark. 

 

3.4.3. Flow cytometric analysis 

After staining, 0.5 ml aliquots were collected for fluorescence measurements in both 

control and clinical strains. The samples were analyzed in a BD FACSCalibur
TM

. EtBr is 

excited at 530 nm and its emission is at 600 nm, detected in FL3 channel (red fluorescence).  
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4. RESULTS 

 

4.1.Optimization of FC protocol for susceptibility evaluation 

 

When a flow cytometric susceptibility protocol is being designed from scratch it is 

necessary to optimize some parameters such as inoculum, treatment and fluorochrome 

concentrations, as well as incubation times. There were few papers regarding susceptibility by 

FC that provided leads for the optimal bacterial concentration and there was also no published 

work at the time using SGI as a susceptibility probe for Enterobacteriaceae. Therefore, four 

different concentrations of SGI were tested in order to assess the optimal fluorochrome 

concentration. Figure 4.1.1 presents the histogram overlay of non-treated cells incubated with 

several fluorochrome concentrations, where A (blue) was the sample with the lowest 

concentration of SGI and D (purple) was the most concentrated. Samples B (red) and C 

(black) show the best results since peak D had too much FI and A did not have enough 

discriminating FI. SGI 1/100000 (v/v) (B) was considered the optimal concentration of 

fluorochrome since it was the lowest concentration with the best results. 

 

         

 

 

 

 

 

 

 

 

 

Figure 4.1.1 – Histogram of the 

susceptible strain E. coli U54218 

analysed in FL1 (520 nm) after staining 

for 1 hour with different concentrations 

of SGI with no antimicrobial treatment. 

A – 1/1000000 (v/v) SGI; B – 1/100000 

(v/v) SGI; C – 1/10000 (v/v) SGI; D – 

1/1000 (v/v) SGI.  

Figure 4.1.2 – Histogram of the 

susceptible strain E. coli U40354 

analysed in FL1 (520 nm) after 

treatment with Cipro for 30 minutes 

and 1 hour and staining for 1 hour 

with 1/100000 (v/v) SGI. G – no Cipro 

treatment; F – 1 µg/ml Cipro for 30 

minutes; E – 1 µg/ml Cipro for 1 hour. 
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Regarding optimal incubation time with antimicrobial to observe differences between 

non-treated and treated cells it was experimented 30 minutes and 1 hour of Cipro incubation 

followed by 1 hour staining with SGI. In Figure 4.1.2, the blue peak E (1 hour incubation with 

Cipro) demonstrated better discrimination from the control peak G (purple) then F peak, 

although with 30 minutes incubation it was already possible to observe difference between 

peaks G and F. Since Cipro and Levo have similar mechanisms of action, the same protocol 

conditions were considered for both drugs. 

 

4.2.Susceptibility evaluation by means of FC 

The typical results obtained for FI distribution are depicted in Figure 4.2.1. The cells 

intrinsic autofluorescence was always detected in the first decade of the logarithmic scale (not 

represented), not affecting the assessment of nucleic acid content by SGI since intrinsic cell 

autofluorescence intensity was very low.  

 

                   

                        

Figure 4.2.1 – Flow Cytometric analysis of two clinical strains treated for 1 hour with Cipro and stained with 

SGI. E. coli U54218 represents the susceptible strain (A, B ) and E. coli M806998 is a resistant example (C,D). A and 

C: scattergram overlay of cell size (FSC-H) versus fluorescence (FL1-H at 520 nm) where are represented two distinct cell 

populations. M1 (blue) represents the subpopulation treated with 4 µg/ml Cipro and M2 (black) corresponds to the non-

treated subpopulation. B and D: histogram overlay representing the different cell populations. NT (black) represents the non-

treated cells. C1 stands for the cells treated with Cipro 1 µg/ml, C2 to the cells treated with Cipro 2 µg/ml and C4 to the cells 

treated with Cipro 4 µg/ml. 

Susceptible strain E. coli U54218 Resistant strain E. coli M806998 



27 

 

In Figure 4.2.1A, the Cipro susceptible strain presented two different subpopulations. M2 

corresponded to the non-treated cells, displaying a higher FI than M1. On the other hand, M1 

represented the susceptible subpopulation treated with Cipro 4 µg/ml for 1 hour displaying a 

lower FI. In terms of cell size there were no significant alterations once M1 and M2 

subpopulations were approximately in the same decade of FSC-H (ordinate axis). 

The resistant strain (Figure 4.2.1C) was exposed to the same conditions, but contrarily to 

the susceptible strain, it showed the two subpopulations M1 and M2 superimposed, which 

translates in little alterations in cell size and FI. Analysing the histogram of the susceptible 

strain (Figure 4.2.1B), there were four distinct fluorescence peaks where NT corresponded to 

the non-treated subpopulation, C1 C2 and C4 peaks corresponded to the FI after treatment 

with CLSI breakpoints 1 µg/ml, 2 µg/ml and 4 µg/ml respectively. 

 

                  

                     

 

Figure 4.2.2 – Flow Cytometric analysis of two clinical strains treated for 1 hour with Levo and stained with SGI. 

E. coli U54218 represents the susceptible strains (A, B ) and E. coli M806998 is a resistant example (C,D). A and C: 

scattergram overlay of cell size (FSC-H) versus fluorescence (FL1-H at 520 nm) where are represented two distinct cell 

populations. M1 (blue) represents the subpopulation treated with 8 µg/ml Levo and M2 (black) corresponds to the non-

treated subpopulation. B and D: histogram overlay representing the different cell populations. NT (black) represents the non-

treated cells. L2 stands for the cells treated with Levo 2 µg/ml, L4 to the cells treated with Levo 4 µg/ml and L8 to the cells 

treated with Levo 8 µg/ml. 

 

Susceptible strain E. coli U54218 Resistant strain E. coli M806998 
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As in Figure 4.2.1B, NT peak showed higher FI corresponding to the M2 subpopulation. 

C1, C2 and C4 had lower FI in a dose-dependent manner, translating into a displacement of 

the peaks to the left in the histogram, where C4 corresponded to M1 subpopulation. The 

histogram of the resistant strain (Figure 4.2.1D) showed an overlay of the NT, C1, C2 and C4 

peaks in the same logarithmic decade corresponding to high FI just like M1 and M2 

subpopulations. Since the susceptibility protocol for Levo is the same as for Cipro, similar 

results were expected. Resemblant to Figure 4.2.1, the susceptible strain dotplot also 

presented two different subpopulations M1 with low FI and M2 with high FI, as well as the 

resistant strain showed M1 and M2 overlaid in the high FI decade (Figure 4.2.2A and 4.2.2C). 

In addition, the susceptible strain histogram (Figure 4.2.2B) also exhibited four distinct peaks 

where the NT (control) presented the highest FI and the L2, L4 and L8 peaks treated with the 

CLSI breakpoints 2 µg/ml, 4 µg/ml and 8 µg/ml respectively, showed lower FI in a dose-

dependent fashion. Finally, the histogram displayed in Figure 4.2.2D also presented, as 

expected, a superimposition of the four peaks NT, L2, L4 and L8 indicating that, besides 

treatment with Levo, the strain maintained a similar FI profile. 

The action of Cipro and Levo was tested not only in late log phase (broth culture) but also 

in stationary phase (plate culture), without satisfactory results. 

The results of the susceptibility evaluation of the clinical strains by means of FC, using 

SGI are presented in Table 4.2.3 and Table 4.2.4. The susceptibility phenotype of the strains 

used in this assay (n = 62 for Cipro and n=53 for Levo) was previously determined by 

Vitek2
®

 using the AST-192 card. The Cipro and Levo Index were calculated for each 

breakpoint as the ratio between the percentage of treated cells in M2 population versus the 

percentage of non-treated cells also in M2 population (see Figures 4.2.1A and 4.2.2A). Since 

treatment with the lowest concentration of each antibiotic demonstrated visible alterations in 

nucleic acid content, enough to discriminate susceptible from resistant bacteria, the Cipro and 

Levo Index used for the classification was the correspondent to the first breakpoint 

concentration. 

The phenotype classification by FC was determined using the cut-offs from Table 4.3.1. If 

Cipro and Levo Index are equal or inferior to the cut-off the strain is considered susceptible 

and if Cipro and Levo Index are superior to the cut-off the strain is resistant. 

Based on this principle and regarding Cipro-treated bacteria (n=62), phenotype 

classification using FC agreed with the classic method in all cases except in three 
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Table 4.2.3 – Characterization of the tested isolates according to the susceptibility phenotype and FC analysis after 

Cipro treatment with the CLSI breakpoints and SGI staining. 

Strain ID SP Vitek2
®
 Cipro Index 1 μg/ml Cipro Index 2 μg/ml Cipro Index 4 μg/ml SP FC 

K. pneumoniae U96072 R 1.003 1.014 0.961 R 

E. coli M804966 R 1.004 1.003 0.950 R 

E. coli M826482 R 1.004 0.998 1.001 R 

E. coli U23674 R 0.994 0.984 0.966 R 

E. coli U42274 R 1.030 0.988 0.964 R 

E. coli U50189 R 1.009 1.002 0.999 R 

K. pneumoniae M805349 R 0.870 0.920 0.909 R 

K. pneumoniae U54098 R 1.011 1.027 0.977 R 

E. coli M950444 R 1.063 1.054 0.933 R 

E. coli M949814 R 0.961 0.966 0.974 R 

E. coli M950520 R 0.969 0.958 0.977 R 

E. coli M950214 R 0.978 1.040 1.017 R 

K. pneumoniae M959357 R 0.975 0.913 0.848 R 

K. pneumoniae M959517 R 1.030 0.992 0.909 R 

K. pneumoniae M962998 R 1.002 1.016 1.036 R 

E. coli M964188 R 1.019 1.018 0.990 R 

K. pneumoniae M964900 R 1.025 0.992 0.999 R 

E. coli M965063 R 0.984 1.014 0.993 R 

E. coli M966234 R 0.985 0.989 1.003 R 

E. coli U721289 R 1.000 1.037 1.022 R 

E. coli U720234 R 1.026 1.037 1.012 R 

E. coli U559684 R 0.964 0.975 0.909 R 

K. pneumoniae M973171 R 0.876 0.844 0.889 R 

E. coli M933974 R 1.010 0.995 0.977 R 

E. coli M933838 R 1.020 1.023 1.021 R 

E. coli M977747 R 0.947 1.023 1.001 R 

E. coli U659159 R 1,001 0.995 1.003 R 

K. pneumoniae M960363 R 0.869 0.868 0.882 R 

K. pneumoniae U96073 R 1.082 1.140 1.053 R 

E. coli M806998 R 1.023 1.040 1.116 R 

K. pneumoniae M117014 R 0.922 0.843 0.870 R 

E. coli U54218 S 0.521 0.330 0.240 S 

E. coli U54220 S 0.697 0.655 0.374 S 

E. coli U36850 S 0.130 0.209 0.249 S 

E. coli M804190 S 0.593 0.317 0.448 S 

E. coli U40350 S 0.634 0.243 0.253 S 

E. coli M826482 S 0.252 0.511 0.408 S 

E. coli M824163 S 0.347 0.546 0.087 S 

E. coli M950471 S 0.857 0.841 0.829 S 

E. coli M950556 S 0.781 0.766 0.680 S 

K. pneumoniae M959335 S 0.662 0.760 0.856 S 

E. coli M964022 S 0.737 0.540 0.527 S 

K. pneumoniae M964159 S 0.786 0.718 0.820 S 

K. pneumoniae U16125 S 1.010 1.020 0.997 R 

E. coli M973472 S 0.753 0.716 0.609 S 

E. coli M804959 S 0.768 0.688 0.667 S 

E. coli U15662 S 0.722 0.670 0.609 S 

E. coli U38786 S 0.781 0.571 0.674 S 

E. coli U46883 S 0.869 0.808 0.725 R 

E. coli U45787 S 0.691 0.535 0.530 S 

K. pneumoniae M806673 S 0.673 0.608 0.561 S 

E. coli U20358 S 0.846 0.721 0.633 S 

E. coli M934084 S 0.687 0.533 0.506 S 

E. coli U40354 S 0.654 0.341 0.360 S 

E. coli M824162 S 0.654 0.385 0.436 S 

E. coli M937535 S 0.928 0.713 0.243 R 

K. pneumoniae M934352 S 0.385 0.270 0.235 S 

E. coli U655836 S 0.698 0.506 0.389 S 

E. coli U655837 S 0.751 0.478 0.381 S 

K. pneumoniae M973472 S 0.521 0.369 0.351 S 

E. coli M934091 S 0.675 0.585 0.572 S 

E. coli M936862 S 0.600 0.531 0.504 S 

Strain ID – Strain identification; SP Vitek2®– Susceptibility profile determined using Vitek2® automated system; SP FC – Susceptibility profile determined 

using FC based on the first breakpoint; S – Susceptible; R – Resistant. 
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Table 4.2.4 – Characterization of the tested isolates according to the susceptibility phenotype and FC analysis after 

Levo treatment with the CLSI breakpoints and SGI staining. 

Strain ID SP Vitek2
®
 Levo Index 2 μg/ml Levo Index 4 μg/ml Levo Index 8 μg/ml SP FC 

E. coli M804966 R 1.004 1.001 1.003 R 

E. coli U42274 R 0.968 0.954 0.821 R 

E. coli U50189 R 1.011 0.985 0.794 R 

K. pneumoniae U54098 R 0.813 0.884 0.895 S 

E. coli M950444 R 1.035 1.005 1.035 R 

E. coli M949814 R 0.994 0.854 0.896 R 

E. coli M950520 R 0.885 0.969 0.960 S 

E. coli M950214 R 1.049 1.023 1.003 R 

K. pneumoniae M959357 R 0.959 0.890 0.832 R 

K. pneumoniae M959517 R 1.017 0.986 0.952 R 

K. pneumoniae M962998 R 1.040 1.029 1.021 R 

E. coli M964188 R 1.014 0.986 0.986 R 

K. pneumoniae M964900 R 1.005 1.006 1.000 R 

E. coli M965063 R 0.998 0.994 0.986 R 

E. coli M966234 R 0.992 0.992 0.980 R 

E. coli U721289 R 1.018 0.988 0.933 R 

E. coli U720234 R 0.968 1.025 0.929 R 

E. coli U559684 R 0.969 0.855 0.826 R 

K. pneumoniae M973171 R 0.883 0.838 0.818 R 

E. coli M933974 R 1.003 0.903 0.791 R 

E. coli M933838 R 1.006 1.015 1.016 R 

E. coli M977747 R 1.010 1.011 0.930 R 

E. coli U659159 R 1.000 0.981 0.816 R 

K. pneumoniae M960363 R 1.019 0.992 0.830 R 

K. pneumoniae U96072 R 1.106 1.176 1.111 R 

E. coli M806998 R 1.106 1.014 0.998 R 

K. pneumoniae M117014 R 0.862 0.819 0.872 R 

E. coli U54218 S 0.775 0.455 0.569 S 

E. coli M804190 S 0.849 0.729 0.456 S 

E. coli M950471 S 0.670 0.708 m S 

E. coli M950556 S 0.750 0.626 0.768 S 

K. pneumoniae M959335 S 0.604 0.886 0.871 S 

E. coli M964022 S 0.659 0.609 0.572 S 

K. pneumoniae M964159 S 0.790 0.544 0.553 S 

K. pneumoniae U16125 S 1.014 0.988 0.977 R 

E. coli M973472 S 0.647 0.571 0.571 S 

E. coli M804959 S 0.667 0.611 0.607 S 

E. coli U15662 S 0.659 0.666 0.600 S 

E. coli U38786 S 0.724 0.768 0.708 S 

E. coli U46883 S 0.821 0.764 0.667 S 

E. coli U45787 S 0.787 0.653 0.559 S 

K. pneumoniae M806673 S 0.780 0.698 0.638 S 

E. coli U20358 S 0.789 0.690 0.652 S 

E. coli M934084 S 0.673 0.552 0.444 S 

E. coli U40354 S 0.681 0.528 0.323 S 

E. coli M824162 S 0.703 0.581 0.440 S 

E. coli M937535 S 0.912 0.728 0.622 R 

K. pneumoniae M934352 S 0.434 0.429 0.352 S 

E. coli U655836 S 0.696 0.342 0.274 S 

E. coli U655837 S 0.616 0.414 0.337 S 

K. pneumoniae M973472 S 0.489 0.458 0.428 S 

E. coli M934091 S 0.566 0.571 0.535 S 

E. coli M936862 S 0.529 0.444 0.372 S 

Strain ID – Strain identification; SP Vitek2®– Susceptibility profile determined using Vitek2® automated system; SP FC – Susceptibility profile determined 

using FC based on the first breakpoint; S – Susceptible; R – Resistant; m – missing value. 
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isolates (K. pneumoniae U16125, E. coli U46883 and E. coli M937535) that were 

misevaluated as resistant(Table 4.2.3). In susceptible isolates the Cipro Index may vary 

between strains, but in most cases diminishes within the same strain in a dose-dependent 

manner as the drug concentration increases. In the resistant isolates Cipro Index also varies 

amongst strains but with values close to one for all three breakpoints. 

Regarding Levo treatment, the clinical strains analyzed (n=53) displayed a similar 

behavior as portrayed in Table 4.2.4. The resistant strains also presented Index values close to 

one and the susceptible strains also had lower Index values as the breakpoint concentration 

increased, in a dose-dependent fashion. FC method agreed in all cases with the classic routine 

method except in three isolates (K. pneumoniae U54098, K. pneumoniae U16125 and E. coli 

M937535) as one false negative and two false positives, correspondingly.  

 

 

Figure 4.2.5 – Number of CFU/ml of a representative example of a Cipro and Levo susceptible strain (E. coli U54218) 

and a Cipro and Levo resistant strain (E. coli M806998) after 60 minutes exposure to Cipro (1, 2, 4 µg/ml) and Levo 

(2,4, 8 µg/ml). 

 

 The results obtained by FC are supported by the viability assay as demonstrated in 

Figure 4.2.5. A dose-dependent decrease in the CFU/ml is observed for the representative 

susceptible strain for both drugs and the values are very proximate for the representative 

resistant strain, after 1 hour incubation with the drugs. 

 

4.3. Agreement between classic and FC methods 

To evaluate the agreement between the routine susceptibility approach and the FC method 

the agreement proportion and kappa value were calculated, as well as the accuracy measures 

of sensitivity, specificity, positive and negative predictive values and overall accuracy. All the 

parameters were calculated with a 95% confidence interval (P<0.001). 
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Table 4.3.1 summarizes the statistical analysis performed. Both agreement and accuracy 

measures presented values close to one demonstrating excellent results for the validation of 

FC as a susceptibility determining tool. The cut-offs were calculated, for each breakpoint of 

both drugs using the ROC curve model, and the values obtained allowed to discriminate 

weather a strain was susceptible or resistant comparing these values with the Cipro and Levo 

Index. 

 

Table 4.3.1 – Statistical parameters of agreement and accuracy to validate FC as a suitable methology as well as the 

cut-offs to determine the susceptibility phenotype. 

 

  

Agreement measures Accuracy measures 

Cut-off 
  

Agreement 

Proportion 

kappa 

Value 
Sensitivity Specificity 

Positive 

Predictive 

Value 

Negative 

Predictive 

Value 

Overall 

Accuracy 
    

1 BP 
Cipro 0.9500 0.9300 1.0000 0.9032 0.9118 1.0000 0.9516 0.8630 

Levo 0.9400 0.9200 0.9630 0.9231 0.9286 0.9600 0.9434 0.8555 

2BP 
Cipro 0.9800 0.9700 1.0000 0.9677 0.9688 1.0000 0.9839 0.8420 

Levo 0.9600 0.9500 1.0000 0.9231 0.9310 1.0000 0.9623 0.7935 

3BP 
Cipro 0.9700 0.9600 1.0000 0.9355 0.9394 1.0000 0.9677 0.8385 

Levo 0.9600 0.9500 1.0000 0.9231 0.9310 1.0000 0.9623 0.7795 
1 BP – First breakpoint (1 µg/ml for Cipro and 2 µg/ml for Levo); 2 BP – Second breakpoint (2 µg/ml for Cipro and 4 µg/ml for Levo); 3 BP – Third breakpoint 

(4 µg/ml for Cipro and 8 µg/ml for Levo). 

 

 

 

4.4.Efflux detection by FC 
 

Efflux is a major contributor for clinical resistance to FQs in Enterobacteriaceae, 

particularly the efflux pump AcrAB-TolC. In order to assess if there was probable over-

expression of this pump as a resistance mechanism in any of the studied strains, control cells 

were analysed. Figure 4.4.1 presents the three FI peaks corresponding to the three control 

strains used. IE clearly corresponded to the population with inactivated AcrAB-TolC system 

since it has the highest FI resulting from the retention of EtBr within the cell. OE (blue) 

represents the control population with over-expressing AcrAB-TolC efflux pump once it had 

FI values very low due to the extrusion of the fluorochrome. Finally, WT (black) refers to the 

wild-type control that showed inferior FI comparing with IE, but still much higher FI values 

than OE. 
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 After studying the well characterized controls, clinical strains were analysed. Figure 

4.4.2 is a typical example of a resistant strain with low efflux rate. EB (red) peak corresponds 

to the population exposed to Cipro (stress) and later stained with EtBr. The EB+CPZ (green) 

is the control peak exposed to the same conditions, except there was AcrAB-TolC complex 

inhibition by CPZ action, translating into maximum EtBr accumulation within the cell.  

  

                 

 

 

 

 

 

 

 

Figure 4.4.1 – EtBr efflux by the E. coli AG100 control strains analysed in FL3 (600 nm) in a 0.4% (v/v) 

glucose medium. OE – E. coli AG100TET with over-expressing AcrAB-TolC efflux; WT – E. coli K-12 AG100 

wild-type; IE – E. coli AG100A with inactivated AcrAB-TolC efflux. 

 

Figure 4.4.2 – Histogram of the 

resistant strain E. coli M826482 

analysed in FL3 (600 nm), after 1 

hour efflux stimulation with Cipro 

followed by 1 hour EtBr staining. AF 

- Autofluorescence; EB – stained with 

1 µg/ml EtBr; EB+CPZ – treated with 

20 µg/ml of CPZ and simultaneously 

stained with 1 µg/ml EtBr. 

Figure 4.4.3 – Histogram of the 

resistant strain E. coli U23674 

analysed in FL3 (600 nm), after 1 

hour efflux stimulation with Cipro 

followed by 1 hour EtBr staining. AF 

- Autofluorescence; EB – stained with 1 

µg/ml EtBr; EB+CPZ – treated with 20 

µg/ml of CPZ and simultaneously 

stained with 1 µg/ml EtBr.  
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 Comparing the two, there is closely an overlay of the peaks in the same decade of FI 

as the IE peak in Figure 4.4.1, leading to the idea that this particular strain must not have 

efflux as a major clinical resistance contributor. Moreover it is important to observe the 

presence of a second small peak of the EB population in the first decade of fluorescence, 

meaning that a small percentage of the cells extruded EtBr. 

  

Table 4.4.4 – Efflux evaluation of the clinical strains (n=30) using FC after 1 hour staining with EtBr. 

    EtBr EtBr+CPZ 

Strain ID 
SP 

Vitek2® P1 % Gated P2 % Gated P1 % Gated P2 % Gated 

E. coli U40354 S 15.38 66.27 

 

99.12 

E. coli U54218 S 64.26 30.45 

 

97.71 

E. coli M950471 S 77.31 16.72 

 

85.51 

E. coli M950556 S 27.85 65.07 

 

89.95 

E. coli U42274 R 83.97 

  

98.33 

E. coli M806998 R 70.52 14.79 

 

97.38 

E. coli M950444 R 86.87 

  

86.23 

E. coli M950520 R 35.39 50.79 

 

87.15 

E. coli M94814 R 79.49 8.390 

 

91.89 

E. coli M950214 R 85.16 

  

95.53 

K. pneumoniae M959357 R 82.25 

 

21.29 75.00 

K. pneumoniae M959517 R 84.08 

  

82.29 

E. coli M959232 R 55.89 37.67 30.74 65.01 

K. pneumoniae M962998 R 49.18 31.49 

 

82.04 

E. coli M964188 R 83.79 10.51 

 

76.71 

K. pneumoniae M964900 R 33.30 61.54 

 

90.22 

E. coli M965063 R 89.78 

  

87.70 

E. coli M966234 R 73.18 10.30 

 

87.82 

E. coli U721289 R 67.09 15.60 

 

93.72 

E. coli U720234 R 73.99 11.64 

 

89.90 

K. pneumoniae M973171 R 85.33 

  

96.73 

K. pneumoniae U54098 R 82.44 

  

89.99 

E. coli U50189 R 85.23 

  

96.79 

E. coli M804966 R 90.07 

  

98.75 

E. coli M826482 R 34.01 65.17 

 

98.33 

E. coli U50194 R 68.34 29.62 

 

95.05 

E. coli U559684B R 83.45 

  

97.90 

E. coli M933974 R 87.84 

  

85.28 

E. coli M933838 R 85.50 

  

95.68 

E. coli U23674 R 90.75     97.29 

EtBr – Samples treated only with EtBr; EtBr+CPZ – Samples treated simultaneously with EtBr and CPZ; Strain ID – Strain identification; SP Vitek2®– 

Susceptibility profile determined using Vitek2® automated system; P1 % Gated – percentage of gated population in Peak 1; P2 % Gated – percentage of gated 

population in Peak 2; S – Susceptible; R – Resistant. 

 

 On the other hand, in Figure 4.4.3 a different resistant strain depicted the two peaks 

clearly apart: EB+CPZ peak is situated in the same decade the IE peak (see Figure 4.4.1) and 

EB peak showed much lower FI, meaning that this strain extruded practically all of the EtBr 

that entered the cell. Thereby, it is very probable that in this particular inoculum efflux over-

expression must be a major contributor for clinical resistance. 
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The results obtained in all clinical strains analysed (n=30) are presented in Table 4.4.4. 

In both EtBr and EtBr+CPZ columns, corresponding to the EB and EB+CPZ population 

respectively (Figures 4.4.2 and 4.4.3), in certain bacteria, two distinct peaks were obtained: 

P1 (Peak 1) and P2 (Peak 2). P1 corresponds to a subpopulation with low FI (EtBr extrusion 

from the cell), usually portrayed in first decade of fluorescence (almost autofluoresce) and P2 

is the subpopulation with high FI values (EtBr remained inside the cell). The strains analysed 

may present only P1, P2 or both simultaneously, meaning there were two different 

populations in that sample. One clear example is clinical strain E. coli U50194 where 29.62% 

of the population was in P2 and 68.34% of the population was in P1 – most of the cell 

population extruded the EtBr. 

Within the resistant strains analysed (n=26) there were three different efflux profiles 

obtained: those that had a higher percentage of cells that extruded EtBr from the cell (higher 

P1 % gated values), the ones who kept most of the EtBr (higher P2 % gated values) and 

finally those that had approximate values in P1 and P2. In the susceptible strains (n=4) only 

two efflux profiles were present: higher percentage values in P1 or P2. 

The EtBr+CPZ column corresponds to the control population with efflux inhibited by 

CPZ. As expected, the strains presented FI only in P2 with values close to 100% of the 

population, since the EtBr was arrested inside the cell. Only two strains did not follow this 

pattern (K. pneumoniae M959357 and E. coli M959232) but still with higher percentage 

values in P2. 
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5. DISCUSSION 

 

The problematic increase of resistance to FQs demands an update in susceptibility 

detection and treatment. The current routine methods available are time-consuming 

procedures that take too long to provide results and a rapid diagnostic is important to 

prescribe the right antibiotherapy. In response to this problem, a novel susceptibility assay 

based on FC was developed. This new assay allows an accurate and rapid assessment of the 

susceptibility phenotype and provides a multiparameter cell-by-cell analysis. The 

susceptibility profile of all of the clinical isolates used in this assay was previously 

determined by Vitek2
®

, used as a comparative method. 

Cipro and Levo were chosen as FQ representatives since they are some of the most 

prescribed drugs of the Quinolone family and because Cipro is more active against gram 

negative bacteria and Levo more active towards gram positives. E. coli and K. pneumoniae 

were used in this assay since they are the most prevalent microorganisms, particularly in 

minor infections treated with FQ. 

When selecting a fluorescent probe for a susceptibility assay, the drug’s mechanism of 

action is the main parameter to take into account. In this particular case, since FQs cause the 

fragmentation of the DNA molecule it would be wise to choose a fluorochrome that binds to 

nucleic acids, specially to dsDNA in order to detect alterations in DNA conformation due to 

molecule breakdown (Cabral et al., 1997; Heddle & Maxwell, 2002; Lupala et al., 2012; 

Mason et al., 1995). 

Although there are several DNA-binding probes available, SGI seemed to be a suitable 

candidate (Barbesti et al., 2000; Gregori, Denis, Seorbati, & Citterio, 2003). This 

fluorochrome has a wide spectrum of applications in molecular biology, fluorescence imaging 

and also in FC due to its excellent properties. These include favourable photophysical 

properties, temperature stability, selectivity for dsDNA, even in the presence of ribonucleic 

acid (RNA) and single-stranded DNA (ssDNA), and high sensitivity. This probe is a 

membrane-permeant dye that binds to nucleic acids mainly by external binding (minor groove 

binding) (Zipper, Brunner, Bernhagen, & Vitzthum, 2004). Its commercial concentration is 

not available. 

When a susceptibility assay by means of FC is developed, it is necessary to optimize the 

protocol’s parameters such as incubation times, bacteria and dye concentration. After 

choosing SGI as a suitable probe, several different concentrations were tested in order to 

determine the most appropriate. In a fixed inoculum around 5x10
6 

cells/ml often a high 
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concentration of fluorochrome can cause unspecific staining, hence the importance to do a 

titration with different concentrations of dye in order to achieve optimal signalling/results 

(Gregori et al., 2003). The bacterial concentration used was based on the work developed by 

Faria-Ramos et al, later published in 2013 (Faria-Ramos et al., 2013). 

Experiments with other probes were conducted, such as with Bis-(1,3-dibutylbarbituric 

acid) (DiBAC4(3)) that enters cells with depolarized membranes and Propidium Iodide that 

binds to nucleic acids after cell-membrane compromise. No satisfactory results were obtained 

after 1 hour treatment with FQs (data not shown). Probably it would be required more 

incubation time with the antimicrobials since the primary cell lesion is DNA fragmentation 

(FQ mechanism of action). Also, in 2000 Mortimer et al. suggested to rethink the use of 

nucleic acid binding dyes that are non-membrane-permeant in antimicrobial susceptibility 

testing, such as Propidium Iodide, TO-PRO-1 and SYTOX green, since the drug’s mechanism 

of action influences fluorochrome uptake by damaged cells (Mortimer, Mason, & Gant, 

2000). 

As depicted in Figure 4.1.1, peak B, that corresponds to 1/100000 (v/v), demonstrated to 

be the best SGI concentration. Peak C also showed a suitable result but cost-wise, it is better 

to use the lowest concentration possible. Peak D had FI values too high (off-scale) and in 

peak A seemed to have occurred nonspecific binding resulting from the low concentration of 

SGI: dye concentration is not high enough and probably starts binding to other cellular 

components, explaining the small peak that was forming on the left side of peak A. 

Drug incubation time was also tested with Cipro for 30 minutes and 1 hour, based on the 

review work of Walberg et al in 1997 and Álvares-Barrientos et al  in 2000, to keep the 

protocol as brief as possible (Figure 4.1.2) (Alvarez-Barrientos et al., 2000; Walberg et al., 

1997). The results were satisfactory for both incubation times, although peak E (1 hour) 

displayed even better discrimination power from the non-treated cells in  peak G then F, 

probably because in 1 hour there is more DNA damage then in 30 minutes. Since both drugs 

have similar mechanisms of action, the same conditions were also applied for Levo treatment. 

In this assay, FI is a direct measure of intact DNA content and the distribution of light 

scattering translates alterations in cell’s complexity and size. For susceptible strains exposed 

to breakpoints of Cipro and Levo according to CLSI (CLSI, 2013), the FI values decrease 

compared to the NT controls (Figure 4.2.1B and 4.2.2B). Since SGI is believed to bind to the 

minor groove of the helical structure, fragmentation of DNA causes a loss in FI since there 

are limited biding sites for the dye due to the presence of intermediate sized fragments 

(Mortimer et al., 2000; Walberg et al., 1997). This descent in DNA content is dose-dependent 
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and results were observed after just 1 hour incubation with the drugs; this study aims for 

detection of primary cell lesions in order to be rapid, so cell disintegration wasn’t observed. 

Although SGI is cell permeable, 70% (v/v) ethanol fixation after antimicrobial treatment 

is very important to arrest cell cycle and replication, especially in resistant strains where there 

might be continued replication without cell division, still maintaining cell conformation and 

DNA content (Mortimer et al., 2000). 

After close observation, in Figure 4.2.1B the Cipro treatment peaks (C1, C2 and C4) are 

more separated from the control NT peak than in Figure 4.2.2B (L2, L4 and L8) after Levo 

treatment. Since Levo is more active against gram positive microorganisms, targeting 

preferentially topoisomerase IV than gyrase, the Levo MIC is consequently higher than Cipro 

MIC, explaining the shorter distance between the NT and treatment peaks in Figure 4.2.2B 

(still in a dose-dependent manner). In fact, this phenomenon may lead to the conclusion that 

the shorter the distance between the NT and treatment peaks, the higher will be the MIC to 

that antimicrobial. 

Concerning light scattering, in Figures 4.2.1A and 4.2.2A, the cells are in about the same 

decade of FSC-H in the dotplot, which denotes no significant changes in cell size. Wickens et 

al stated that only 3 hours of drug incubation could allow to observe light-scattering 

alterations such as cell filamentation (Wickens et al., 2000).  

The abscissa axis, that concerns FI (FL1-520 nm), M1 (treated) subpopulation has lower 

FI than M2 (non-treated), confirming the results obtained in the histograms. In addition, it is 

also verified the occurrence of the same phenomenon described above: the Levo dotplot also 

displayed a smaller distance between M1 and M2 subpopulations than the Cipro-treated, due 

to being a gram negative organism and consequently having a higher MIC to Levo.  

On the other hand, in resistant isolates, the FI revealed approximate values, both in 

controls and treated cells, meaning the DNA molecules synthesized were in their normal 

conformation, without fragmentation, presenting the binding-sites for SGI to fluoresce 

(Mortimer et al., 2000). Such is observed by the superimposition of the NT and treated peaks 

in the histograms (Figures 4.2.1D and 4.2.2D) as well as M1 and M2 subpopulations in the 

dotplots (Figures 4.2.1C and 4.2.2D). 

This susceptibility protocol was also tested in late log phase (broth culture) and in 

stationary phase (plate culture) yet with no satisfactory results probably due to the drug’s 

mechanism of action. Since FQs act in DNA synthesis, which happens during bacterial 

growth, if cells are in stationary phase with no growth or even in late log phase, where 

nutrient availability is decreasing rapidly as well as bacterial growth, there are not optimal 
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conditions for DNA replication. Such is backed by the research of Lebaron et al. in 1998, 

where they concluded that SYTOX green, another nucleic acid dye, wasn´t suitable to assess 

the viability of starved cultures due to degradation or alteration of  fluorochrome binding-sites 

(Lebaron, Catala, & Parthuisot, 1998).  

In order to assess the effect of the studied drugs on the clinical isolates, an Index was 

calculated for each drug, Cipro Index and Levo Index, as the ratio between the percentage of 

treated cells gated in M2 (population with non-damaged DNA) versus the percentage of non-

treated cells also gated in M2 population (See Figures 4.2.1A and 4.2.2A). The Index values 

vary among isolates. 

The cut-offs to determine whether a strain is susceptible or resistant to each antibiotic 

were calculated using the ROC curve which is a graphical plot that illustrates the performance 

of a binary classifier system (Susceptible vs. Resistant) (Zou, O'Malley, & Mauri, 2007). In 

more detail, they were calculated by the evaluation of the curve´s coordinates that presented 

simultaneously the highest sensitivity value as well as the best sensitivity/specificity 

equilibrium. Due to the limited sample size, it was observed a data extrapolation for the curve 

construction and therefore it was analysed if the values around the proposed coordinate could 

present more accurate values and selected the ones where such occurred. 

In practice, the technician will compare the Cipro or Levo Index, obtained after the FC 

protocol has been applied, with the cut-off calculated in the statistical analysis. If the Cipro or 

Levo Index are equal or inferior to the respective cut-off the bacterial strain is considered 

susceptible, on the other hand, if the Index is superior to the respective cut-off the strain is 

considered resistant. 

Once it was possible to observe significant differences between the control population and 

treated population in terms of nucleic acid content, already with the lowest drug concentration 

applied, the cut-offs used to determine the susceptibility phenotype were the ones calculated 

for the first breakpoint. Therefore, the classification was made comparing Cipro Index with 

0.8630 and Levo Index with 0.8555 (see Table 4.3.1). 

Tables 4.2.3 and 4.2.4 display the susceptibility phenotype previously determined by 

Vitek2
®

 and the classification obtained with FC after comparing the Cipro/Levo Index with 

the cut-offs of the first breakpoint (1BP). 

Particularly in Table 4.2.3 after Cipro treatment, there was agreement between both 

methods in the majority of the cases except in three isolates wrongly classified by FC as 

resistant (false positives). 

http://en.wikipedia.org/wiki/Graph_of_a_function
http://en.wikipedia.org/wiki/Binary_classifier
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After Levo treatment, as depicted in Table 4.2.4, there was agreement as well between FC 

and Vitek2
® 

phenotype, except in three strains mistakenly classified by FC. Curiously, two of 

the isolates were the same wrongly classified by FC after Cipro treatment. 

The strains that showed no agreement between FC and Vitek2
®

 were tested with an 

alternative susceptibility method to confirm their phenotype to both drugs, given by the 

reference method. 

To confirm the action of the tested antibiotics, a viability assay was performed for each 

isolate after incubation with every drug breakpoint during the susceptibility protocol. 

Representative susceptible and resistant isolates are depicted in Figure 4.2.5 to example the 

typical results obtained. As expected, the susceptible strain portrayed a dose-dependent 

decrease in the CFU/ml for both drugs, although the Levo-treated cells showed slightly 

superior values due to the usual higher MICs to this drug. Also as expected, the representative 

resistant strain exhibited very approximate values for all drug concentrations, thus 

corroborating the results obtained by FC. 

The evaluation of agreement between FC and the classic method, resulting in categorical 

variables, is better characterized using the complementary measures of agreement proportion 

and kappa value (Petrie & Sabin, 2009). The agreement proportion analyses the proportion of 

cases where both techniques agree relative to the total amount of case studies. This measure 

varies between 0 and 1, where 0 represents total disagreement and 1 total agreement (Petrie & 

Sabin, 2009). The results obtained (Table 4.3.1) indicate an excellent agreement, with values 

close to 1 ranging from 0.9500 to 0.9800 for Cipro and 0.9400 to 0.9600 for Levo.  

The kappa value corresponds to the agreement proportion with correction of chance and 

varies between -1 and 1, where -1 corresponds to total disagreement, 1 is total agreement and 

0 corresponds to the agreement expected if the classifications where made by chance (Petrie 

& Sabin, 2009). Landis and Koch suggest that a kappa value under 0.40 is poor, between 0.40 

and 0.75 is intermediary/good and over 0.75 is excellent (this classification is merely 

orientative since prevalence can affect the kappa value) (Gordis, 2011). According to these 

authors, the classification obtained for both antibiotics to the three breakpoints is excellent 

ranging from 0.9300 and 0.9700 for Cipro and 0.9200 and 0.9500 for Levo. 

The accuracy of a diagnostic test translates into its ability to distinguish resistant (with 

disease) from susceptible (no disease) subjects (Gordis, 2011). To study the accuracy of FC as 

a diagnostic method in detecting the susceptibility phenotype different parameters were 

calculated such as sensitivity, specificity, positive and negative predictive values, overall 

accuracy and area under ROC curve (Kramer & Mausner, 2007; Zou et al., 2007). 
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According to Table 4.3.1, the results show that FC is highly sensitive, with values equal to 

1 in all cases except in the first breakpoint for Levo (0.9630), and specific since the values 

obtained are close to 1. The positive predictive values are also very high, for example, 0.9118 

for Cipro and 0.9286 for Levo (first breakpoint). On the other hand, the negative predictive 

value also has excellent results being 1.0000 for all cases, except for the Levo first breakpoint 

(0.9600) which is also very good, meaning that true positives and true negatives are 

adequately diagnosed (Kramer & Mausner, 2007). Regarding the overall accuracy, there were 

also obtained values close to 1, where the lowest value is 0.9434 and the highest is 0.9839. 

This means, for example for Levo (first breakpoint), that 94.34 % of the strains analysed will 

have the same outcome (Kramer & Mausner, 2007). 

Both the agreement and accuracy parameters were calculated using a 95% confidence 

interval and a margin of error of 5%. 

The estimated costs of reagents and consumables per sample used in this new assay are 

fairly low, without considering the FC equipment and technician, even though nowadays such 

equipment is often found in most hematology and immunology laboratories.  

Based on existing research, there are important clinical and financial benefits in 

developing rapid bacterial identification and susceptibility tests, such as a decrease in 

turnaround time, mortality, morbidity and patient-stay as well as a reduction in hospital total 

and variable costs. A prompter susceptibility test will allow physicians to have access to 

crucial information earlier and enable them to prescribe the appropriate antimicrobial therapy 

or to change to a more suitable antibiotic sooner and subsequently avoiding an empirical 

prescription (Barenfanger et al., 1999; Doern, Vautour, Gaudet, & Levy, 1994). 

Besides the accuracy, simplicity and cost-effectiveness of this method, it also reduces the 

waiting time of the results. Despite the necessary incubation time to reach early exponential 

phase (an average of 1,5 hours), by using this susceptibility protocol results can be obtained in 

2,5 hours, much faster than the bacterial growth based routine methods that usually give 

results in 24 to 48 hours (Alvarez-Barrientos et al., 2000), bringing a very important 

advantage. 

Since the resistance rate of Enterobacteriaceae is increasing dramatically throughout the 

years and the availability of new antibiotics is diminishing, it seems pertinent to find which 

are the resistance mechanisms and address them in order to overcome this limitation (Paixao 

et al., 2009; Piddock, 2012). If such would be possible, the joint administration of antibiotics 

associated with a resistance mechanism inhibitor the bacterial MICs could potentially be 
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lowered with no need to develop that many new drugs to bridge this resistance problematic 

(Marquez, 2005; Piddock, 2012). 

Taking this into account, and also that efflux is a major contributor for clinical FQ 

resistance in Enterobacteriaceae, a FC protocol was developed based on the research of 

Paixão et al in 2009 in order to indirectly detect over-expression of the efflux pump AcrAB-

TolC (main FQ efflux system in E. coli and K. pneumoniae), in vivo and in real-time, that 

translates into different degrees of efflux amongst the studied strains. Since this protocol 

evaluates overall efflux and is not specific for one particular efflux system, mutant control 

strains for AcrAB-TolC were previously analysed (Paixao et al., 2009).  

In short, cells are incubated with the fluorochrome EtBr (nucleic acid binding) in such a 

low concentration that it does not bind to nucleic acids. In fact, it has low FI in aqueous 

solution (cell exterior) and high FI when weakly-binded to celular components in the 

periplasm. This binding has to be weak in order to allow it’s extrusion from within the cell 

and use it as an efflux probe. EtBr uptake is through passive diffusion and its extrusion by 

active transport (Paixao et al., 2009), hence the use of glucose in the protocol as energy 

source for the efflux.  

Cells are also incubated with CPZ, an inhibitor of proton-motive force-dependent efflux 

pumps, such as AcrAB-TolC (Paixao et al., 2009). For efflux to occur, the hydrolysis of ATP 

is necessary and contributes for the activation of the AcrAB-TolC system. It is believed that 

CPZ is an inhibitor of calcium binding to proteins, such as ATPase, thus affecting the efflux 

of EtBr (Marquez, 2005; Martins et al., 2011). 

Figure 4.4.1 exhibits the histograms of the control strains: IE peak (inactivated efflux) 

shows the maximum FI from EtBr retention, OE (over-expressing efflux) has practically 

autofluorescence levels of FI from EtBr extrusion and WT (wild-type) has intermediate levels 

of FI amongst the first and the second decade in FL3 (600nm). 

Comparing the two given examples, that portray the typical efflux profile of the clinical 

resistant strains analysed with the controls, there is resistant isolate E. coli M826482 (Figure 

4.4.2) where the EB and EB+CPZ peaks are almost totally overlaid in the same FI decade as 

the IE control. This analysis means that this resistant isolate retains most of the EtBr within 

the cell, therefore this strain must have other mechanisms than efflux over-expression 

contributing for clinical resistance.  

By contrast, E. coli U23674 presented in Figure 4.4.3, reveals the EB and EB+CPZ peaks 

totally apart, where the EB+CPZ peak is also in the same decade as the IE population and EB 

peak has much lower FI (dislocation to left of the histogram). This means the given isolate 
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actively extruded most of the EtBr taken by the cell, leading to the conclusion that this strain 

probably has AcrAB-TolC over-expression as a major contributor for clinical resistance. 

The efflux profile of all the clinical isolates analysed (n=30) is displayed in Table 4.4.4, 

where P1 corresponds to the peak with low FI (extruded EtBr) and P2 corresponds to high FI 

(no EtBr efflux). The EtBr+CPZ column represents the control population with inhibited 

efflux by CPZ treatment, thus the high percentage of cells in P2. Within the resistant isolates 

(n=26) only two have not shown almost total efflux inhibition (K. pneumoniae M959357 and 

K. pneumoniae M959232) probably due to human error, deduced by the presence of cell 

percentage in P1, and consequently a lower percentage in P2.  

Most of the resistant strains in the EtBr column showed higher gated cell percentage in 

P1, leading to the conclusion that these isolates most likely have efflux over-expression, with 

a histogram similar to Figure 4.4.2 (red peaks). On the other hand, there were three resistant 

isolates that revealed low EtBr efflux rate (E. coli M950520, K. pneumoniae M964900 and E. 

coli M826482) by having higher cell percentage in P2. For example, strain E. coli M826482 

had 65.17% gated population that arrested EtBr and 34.01% extruded it – mechanisms other 

than efflux over-expression must be responsible for clinical resistance. 

There is also a third efflux profile verified in the resistant strains: those that present 

approximate gated cell percentage in P1 and P2. Both E. coli M959232 and K. pneumoniae 

M962998 display approximate percentages in P1 and P2, so probably they don’t possess 

efflux as a clinical resistance contributor. 

In sum, there were three different efflux profiles verified in the resistant clinical isolates: 

those with high efflux rates, where AcrAB-TolC seems to be over-expressed as a resistance 

mechanism, those with low efflux rates and lastly those who possess intermediate efflux. 

Four susceptible clinical isolates were also analysed using this protocol. E. coli U40354 

and E. coli M950556 demonstrated low efflux rates by having a high cell percentage in P2, 

which is expected in a susceptible strain. Contrarily to what would be expected, the other two 

susceptible strains E. coli U54218 and E. coli M950471 presented higher cell percentage in 

P1, so most EtBr was extruded from the cell, demonstrating the presence of efflux over-

expression even in susceptible strains. 

A possible strategy to surpass bacterial resistance would be the use of inhibitors of the 

resistance mechanisms that would allow to potentiate the activity of existing antimicrobials 

(Marquez, 2005; Piddock, 2012). 

Based on this principle, aiming to try to diminish the clinical resistance of the tested 

strains in the efflux assay, a microdilution protocol was developed, based on the CLSI 
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protocol for Cipro susceptibility determination (CLSI, 2013), where the isolates were 

incubated with sub-inhibitory concentrations of CPZ. In some isolates, it was possible to 

slightly lower the MIC, but not significantly enough. A reversion of the phenotype would be 

impossible since there are other mechanisms that confer resistance, namely, mutations in 

target enzyme. 

This protocol allows real-time monitoring of EtBr efflux and the information obtained can 

be of great importance in understanding resistance phenotypes and also in finding new ways 

to help overcome this problem by targeting resistance mechanisms. 
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6. CONCLUSION 

 

The problematic increase of resistance to FQs demands an update in susceptibility 

detection and treatment. The current routine methods available are time-consuming 

procedures that take too long to provide results and a rapid diagnostic is important to 

prescribe the right antibiotherapy. In response to this problem, a novel susceptibility assay 

using FC was developed based on the principles of the routine methods. This new assay 

developed allows an accurate and rapid assessment of the susceptibility phenotype. It also 

provides a multiparameter cell-by-cell analysis and presented an excellent agreement with 

Vitek2
®

, used as a comparative method. 

 Additionally, another rapid FC protocol was developed in order to obtain the bacterial 

efflux profile in order to understand the role of efflux pump over-expression as a contributor 

for clinical resistance. It also has the advantage to provide a real-time analysis and it can be 

used as a tool to study and develop efflux inhibitors to overcome this mechanism. 

In conclusion, the susceptibility protocol described is a promising method that proved to 

be an excellent alternative to the routine tests as well as the efflux assay that demonstrated to 

be a great tool to study and overcome bacterial resistance through efflux.   



46 

 

7. FUTURE WORK 

 

The results presented in this thesis may provide the way for future research. 

This work belongs to an international patent Ref. PPI 45744/12 - "KIT AND METHOD 

OF DETECTING THE RESISTANT MICROORGANISMS TO A THERAPEUTIC 

AGENT" - UNIVERSIDADE DO PORTO - Cidália Irene Azevedo (Pina Vaz et al.). 

Therefore, more susceptibility protocols must be developed for different bacterial strains and 

antimicrobial agents. There were some experiments performed with FQs and Pseudomonas 

aeruginosa and also with cocci using FC that showed similar results for both susceptible and 

resistant isolates (number of tested isolates not statistically significant), meaning that this 

protocol might also be suitable for these bacteria. 

Once this is a susceptibility test, this technique should be allied to a rapid isolate 

identification method such as the MALDI-TOF technology; these two methods are potential 

complementary techniques to be used in the clinical routine setting (Harris, Winney, 

Ashhurst-Smith, O'Brien, & Graves, 2012). 

Albeit being rapid and simple, in order to optimize the cost-benefit ratio, further 

automation is necessary. Flow cytometers need to be adapted to robotics for automatic sample 

handling and there’s the need to develop software to analyse the results. This kind of software 

is already available for Hematology, so an adaptation for Clinical Microbiology shouldn’t be 

difficult. The major step should be to create the need for the companies to invest and develop 

this kind of technology. 

Regarding the efflux study, although the results are strongly backed-up by the control 

strains, a genomic approach is required to corroborate these results. Also, further work should 

be done in finding new approaches to block efflux, for example, the study and development of 

efflux pump inhibitors that can be administered in association with the antimicrobial to 

potentiate its activity. 

Therefore, future studies that address these questions should have a positive impact on the 

diagnostic and treatment of Enterobacteriaceae infections as well as the understanding of the 

contribution of efflux as a resistance mechanism to FQ. 
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