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ABSTRACT 

In the last decades, health monitoring systems have gained an increasing importance in 

our society. The main purpose of these systems is to support the engineers to get more insight 

into the behavior of structures under service conditions, so they can optimize and improve 

maintenance programs and, hopefully, to avoid structural failures or disasters. It is possible to 

integrate these systems in any type of civil or mechanical infrastructure. However, in this 

dissertation, the preferential targets are the civil infrastructures with major strategically 

importance in the social environment, such as bridges and viaducts. 

Therefore, the goal of this dissertation is (i) to review the most recent bridge collapses 

in order to unveil the main causes and challenges posed by those catastrophic events; (ii) to 

review the concept and need of Structural Health Monitoring (SHM) of bridges as well as its 

associated potential for significant life-safety and economic benefits; and (iii) to study the 

applicability of the SHM concepts. Due to recent promising research developments, the SHM 

process is posed in the context of the Statistical Pattern Recognition (SPR) paradigm, which 

tries to implement a damage identification strategy based on the comparison of different state 

conditions. 

The applicability of the SHM-SPR paradigm is studied by applying its concepts in two 

separate cases: firstly on data sets from a base-excited three-story frame structure, created and 

tested in a laboratory environment at Los Alamos National Laboratory; secondly, on data sets 

from a real-world bridge, namely the Z24 Bridge in Switzerland.  

The major contributions of this dissertation are the extension of previous results 

obtained by Figueiredo et al. from the three-story frame structure and the development and 

application of an algorithm that uses a Gaussian mixture model as a way of improving the 

feature classification performance under varying operational and environmental conditions. 

Keywords: Damage Detection; Bridge Failures; Statistical Pattern Recognition 

Paradigm; Structural Health Monitoring. 
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RESUMO 

Nas últimas décadas, os sistemas de monitorização estrutural ganharam uma crescente 

importância na nossa sociedade. O principal objetivo destes sistemas é de ajudar os engenheiros 

a aprofundar o conhecimento relativo ao comportamento das estruturas sob condições de serviço 

para que possam otimizar e melhorar os programas de manutenção e, em último caso, evitar 

desastres ou falhas estruturais. É possível integrar estes sistemas em qualquer tipo de infra-

estrutura civil ou mecânica. No entanto, nesta dissertação, os alvos preferenciais são as infra-

estruturas com elevada importância estratégica no seio da engenharia civil, tais como as pontes 

e os viadutos. 

Portanto, o objetivo desta dissertação é (i) rever os recentes colapsos de pontes, de 

forma a desvendar as causas que os originaram assim como os desafios colocados por estes 

eventos; (ii) rever o conceito e a necessidade de sistemas de monitorização da integridade 

estrutural (SHM) de pontes, bem como o seu potencial associado aos benefícios ao nível da 

segurança e do ponto de vista económico; e (iii) estudar a aplicabilidade dos conceitos da SHM. 

Devido a recentes desenvolvimentos promissores, o processo de SHM pode ser colocado no 

contexto de um paradigma de reconhecimento de padrões (SPR), o qual tenta implementar uma 

estratégia de identificação de dano com base na comparação de diferentes estados de condição 

da estrutura. 

A aplicabilidade do paradigma SHM-SPR é estudada através da aplicação dos seus 

conceitos em dois casos distintos: em primeiro lugar, em conjuntos de dados recolhidos de uma 

estrutura de três pisos, criada e testada em ambiente laboratorial no Los Alamos National 

Laboratory; em segundo lugar, em conjuntos de dados de uma ponte real, mais especificamente, 

a Ponte Z24, na Suíça. 

As contribuições originais desta dissertação são a extensão dos resultados anteriormente 

obtidos por Figueiredo et al. relativos à estrutura de três pisos, e o desenvolvimento e aplicação 

de um algoritmo, que utiliza como base um modelo de mistura Gaussiana, de forma a melhorar 

o desempenho da classificação de características sob condições operacionais e ambientais 

variáveis. 

Palavras-Chave: Deteção de Dano, Desastres de Pontes; Paradigma de 

Reconhecimento de Padrões; Monitorização da Integridade Estrutural. 
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1. INTRODUCTION 

Throughout the history, the civil engineering has had a key role in our society. It is 

nearly impossible to imagine the modern society without bridges, railways, dams, tunnels, 

roads, nuclear stations, power plants, hospitals, or even schools. Unfortunately during their 

service period, that can go from decades to over hundred years, this infrastructure ages and 

deteriorates. These aging and deteriorating processes can often lead to the loss of material 

properties, which can compromise the ability of the infrastructure to perform its main purpose, 

or ultimately it can lead to structure failures. Therefore, it is crucial for the owner/operator of 

the infrastructure to have valid and reliable information regarding the extent of the 

damage/deterioration and how it will affect the remaining service-life and capacity of the 

structures, so that a well-informed decision can be made regarding its repair. In the last decades, 

intelligent health monitoring systems have increasingly become an important technology that 

attempts to provide knowledge about the actual condition of a structure, allowing an optimal use 

of the structural members, drastically changes in the organization of maintenance services, 

minimized downtime for maintenance, and the avoidance of catastrophic failures. The ability to 

permanently determine the condition of the structure allows decisions to be made in real time 

instead of being planned years ahead by following the empirical manuals. Thus, those systems 

have the potential to allow the maintenance plans to evolve from a time-based schedule to 

condition-based maintenance. Therefore, in the particular case of the bridges and in order to 

understand the need of monitoring systems, Chapter 2 is concerned with the description of the 

most recent bridge collapses to unveil the main causes, the lessons learnt from them, the 

measures taken to prevent future disasters, and the challenges and the developments posed by 

those catastrophic events. 

Despite all the developments on the Bridge Management Systems (BMSs) and the 

visual-inspections-based tools, the need for better structural condition assessment 

methodologies has pushed the scientific community to the implementation of a damage 

identification strategy, which is referred to as Structural Health Monitoring (SHM) [1]. 

Generally, the SHM process requires the definition of potential damage scenarios of a system, 

the observation of that system for a given period of time using periodically spaced 

measurements, extraction of damage-sensitive features from those measurements, and analysis 

of those features in order to determine the current structural state condition. In long term, the 

output of this process is periodically updated information concerning the ability of the structure 

to perform its function by taking into account its aging and degradation resulting from 

operational environments. Currently, the feature analysis can be done in two different but 
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complementary approaches. The first one is to use physics-based models, where the structure is 

modeled using a traditional finite element model (FEM). Then, the model is periodically 

updated based on information from the measured data. This procedure is also known as inverse 

problem. The second one, and extensively demonstrated in this dissertation, is to use the so-

called data-based models, where statistical models (such as machine learning algorithms) are 

developed to learn the normal condition of the structures from the measured data. This approach 

intends to eschew complex FEM models and, therefore, pave the way for data-based models 

applicable to systems of arbitrary complexity. In the end, some sort of pattern recognition may 

be used to detect the presence of damage in the structures. Therefore, in Chapter 3, the SHM 

process is posed in the context of a Statistical Pattern Recognition (SPR) paradigm, which can 

be broken down into a four-stage process: (1) Operational Evaluation, (2) Data Acquisition (3) 

Feature Extraction, and (4) Statistical Modeling for Feature Classification. Additionally, this 

chapter points out the economic and safety considerations of this concept as well as several 

limitations and challenges for implementing an effective SHM system. Especially, the influence 

of the operational and environmental variability is highlighted. Actually, the separation of 

changes in sensor readings caused by damage from those caused by changing operational and 

environmental conditions is one of the biggest challenges for transitioning SHM technology 

from research to practice [2]. 

Finally, in order to demonstrate the applicability of the SPR paradigm, Chapter 4 tests 

and applies the described statistical procedures on standard data sets from a base-excited three-

story frame structure under simulated operational and environmental conditions. To the extent 

possible, all SHM technology should be validated using data from real-world structures. Thus, 

in Chapter 5 the SPR paradigm is applied on vibration data from the Z24 Bridge, in 

Switzerland. The real-world data sets are unique in the sense that they combine one-year 

monitoring with realistic damage scenarios (such as settlements, spalling of concrete, failure of 

a concrete hinge, failure of anchor heads, and failure of tendon wires) and effects of the 

operational and environmental variability [3]. 

1.1. Objective and Original Contributions of this Dissertation 

The objective of this dissertation is to review the concept and need of SHM of bridges 

and its potential for significant life-safety and economic benefits. Additional, it intends to test 

the applicability of several SPR techniques for damage detection and localization on data sets 

from a laboratory structure and for damage detection on data sets from a real-world bridge - the 

Z24 Bridge. 
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While the data sets from the laboratory structure has been extensively used for damage 

detection [2,4], in this dissertation those data sets are used to step forward in the hierarchy of 

damage identification [5], namely for damage localization, which stands as a significant 

contribution to the SHM field. Additionally, the applicability of the SPR paradigm on the data 

sets from the Z24 Bridge permitted to develop and apply Gaussian mixture models (GMM) for 

damage detection under varying operational and environmental conditions. Actually, these 

models demonstrated to be useful for real-world applications, as it permits to separate nonlinear 

changes in the sensors readings caused by environmental conditions from changes caused by 

real-world damage scenarios. 
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2. FROM BRIDGE FAILURES TO SHM APPLICATIONS 

Among all civil engineering infrastructures, bridges attract the greatest attention within 

the engineering community due to their small safety margins and their great exposure to the 

public. For centuries the mankind has relied on the transportation systems, even ancient 

civilizations such as the Romans or the Incas used bridges as the backbone of their empires. For 

instance, in the city of Chaves, northern Portugal, the Roman Bridge, built in the first century 

AD, still carries normal traffic (Figure 2-1) [6]. 

 Nowadays the quality and efficiency of transportation infrastructure is an important 

component in the country’s economy. For instance, by 2012, a Portuguese road concessionary, 

Estradas de Portugal S.A. (EP), has in its inventory system, approximately, 5000 bridges [7]. 

Apart from their utility, bridges are also landmarks admired for their great esthetic impact [8] 

such as the Golden Gate Bridge, in San Francisco, California, and the 25 de Abril Bridge, in 

Lisbon, Portugal. 

 

Figure 2-1: Roman Bridge in Chaves, Portugal. 

This chapter intends to summarize the main causes of bridge failures in the recent 

decades, the main SHM real applications on bridges, in order to understand how these systems 

are prepared to avoid future failures. 

2.1. Typical Causes of Bridge Failures 

It is well-known that learning from the past, helps to understand the present and create 

the future. Therefore, the study and analysis of past failures is an important task to understand 

the conditions that brought about these failures and finding ways to avoid them is a crucial step 
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in order to minimize future life losses. If interpreted correctly, failures can produce a fair 

amount of information that can, for instance, help to better understand the bridge performance, 

trigger the development of a particular bridge concept, increase knowledge regarding certain 

phenomenon or material strengths, which can ultimately lead to the development of more 

efficient design codes. Actually, it is always better to avoid failures through an appropriate 

design rather than to rely on a SHM system. 

Bridge failures can be a result of a great number of factors. Even though it is not 

possible to create a complete and accurate list of all bridge failures throughout history, as some 

are not well documented, the majority of those cases have been reported as a result of natural 

events, human errors, and deterioration caused by aging.  

There are a vast number of cases caused by natural events. It has been estimated that 

more than half of all bridge failures are a result of hydraulic-related causes, such as floods and 

scour. Scour can be defined as the removal of bank material from around the bridge abutment or 

pier foundations due to flowing water. Actually, it has been reported as the most common cause 

of bridge failures in the United States of America (USA) [8]. This process reduces the capacity 

of existing foundations, compromising the integrity of the structure and, when not monitored, it 

can lead to its collapse. The Hintze Ribeiro Bridge, in Portugal, stands as one of the most 

famous cases of bridge collapses due to scour as will be later on discussed in Subsection 2.2. 

Another major cause of bridge failures, mainly because of its devastation rather than its 

high level of occurrence, is the earthquake event. During these events, which usually last for 

more than a few seconds, considered damage can occur with bridge structures when they are not 

prepared to undertake the seismic actions. Nowadays almost every civil engineering 

infrastructure has to be built taking into account seismic activity. The I-10 Freeway, in Los 

Angeles, is one out of many examples of earthquake-related damage in bridges, which suffered 

severe damage during the 1994 earthquake in Northridge, California. 

Failures due to wind are also a main natural cause of bridge collapses. Wind plays a 

very important role when designing a bridge because it evokes a dynamic response from 

structures exposed to it. This dynamic response comes in the form of vibration actions in 

resonance with bridge’s natural frequencies of vibration. High-speed winds, such as tornados, 

can also be a cause for bridge disasters. The Takoma Narrows suspension bridge, that used to 

link the Olympic Peninsula with the rest of the state of Washington, still stands as the most 

renowned bridge collapse due to wind action. 
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In some countries there is a chance of floating ice damage. Depending on the size of the 

river, the speed of the current, and the size of the ice blocks, their collision with the bridge piers 

can produce the same effect as an impact from a moving vehicle. In these cases, timber fenders 

should be built in order to shield the piers. 

Human errors also play a major part when it comes to bridge failures. Failures due to 

human error represent some of the biggest disasters through history, with a variety of causes 

that can go from design and/or construction deficiency, lack of maintenance, fire, terrorist 

attacks, and collisions [9]. The collisions are related to vehicle, train, or vessel impacts. Vehicle 

impacts occur mainly because many older bridges do not have the minimum clearance required 

by the current codes, resulting in heavy truck collisions that can cause serious damage to the 

bridge. Vehicle collisions can also be linked to fire damage, as a consequence of overturning 

trucks that may leak gasoline and catch fire [9]. Even though vehicle collisions have a high 

occurrence frequency, vessel collisions have a higher mortality rate. Two of the most famous 

disasters regarding vessel impacts were the Sunshine Skyway Disaster (Figure 2-2) in Florida 

and the I-40 Bridge Disaster (Figure 2-2) in Oklahoma, in the USA [10, 11]. The first happened 

in 1980 when a freighter collided with a pier during a storm, taking down over 350m of bridge. 

The collision caused ten cars and a bus to fall in the water, killing 35 people. The second 

happened in 2002 when a tugboat collided with a bridge support causing the fall of a section of 

the bridge. This accident caused the death of 14 people. Design deficiencies often happen when 

assumptions made during the designing process do not represent the behavior of the 

superstructure in the field. The I-35W Bridge, Minneapolis, is one recent failure caused by 

design deficiencies (more details in Subsection 2.2). 

 

Figure 2-2: Sunshine Skyway disaster, Florida, USA (on the left); I-40 Bridge disaster, 

Oklahoma, USA (on the right). 
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Bridge failures are encountered not only on the field but also on construction sites.  The 

construction stage of a bridge is its most vulnerable stage. It is during construction that, 

sometimes, critical items are overlooked leading to failure. Some examples of failures during 

construction are: under-designed temporary support elements, inadequate scaffolding, executed 

construction sequence different from the one planned, or even use of wrong bolts. The lack of 

maintenance is, unfortunately, also responsible for bridge failures. The constant increase of 

traffic with more and heavier trucks on our highways, increasing the rates of deterioration of 

bridges and pavements, combined with the fact that some older bridges were not designed 

accordingly to the design criterion of today, makes periodic inspections an essential task in 

order to prevent bridge failures [9]. 

Finally, the natural aging and deterioration of the bridges is a factor that needs to be 

taken into account within the main causes of bridge failures. Bridges, like all civil 

infrastructures, have a service-life as a result of the deterioration that the bridge materials will 

suffer along the years. Although bridge aging alone is not the main cause of bridge failures, 

mainly because of the periodically visual inspections throughout its service-life, it is not an 

aspect that can be taken lightly or overlooked when talking about bridge failures. Most failures 

due to aging and deterioration are associated with lack of maintenance and neglect but they can 

also be a result of new codes and regulations that the structure cannot meet, most likely 

regarding capacity loads. 

2.2. Analysis of Recent Bridge Failures 

Over recent decades, more attention has been given to the condition assessment of 

bridges. In the USA, the first need came up in 1967 with the collapse of the Silver Bridge that 

used to connect the states of West Virginia and Ohio (Figure 2-3) [12]. On December 15, at 

approximately 5pm, the bridge suddenly collapsed into the Ohio River during the rush hour, 

resulting in the deaths of 46 people. After investigating the wreckage, conclusions pointed out 

that the cause of the collapse was the failure of an eyebar as a result of a small defect, which 

caused very high tensile stress. Additionally, the location of the defective bar was not accessible 

by visual inspection. At the time of construction (1928), planners were still inexperienced in the 

effects of conditions known as stress corrosion and stress fatigue. However, the types of 

structural corrosion, which caused the cracks and subsequent collapse of the Silver Bridge, 

would be undetectable even with the means at our disposal today. Only by disassembling the 

joint itself would be possible to notice the flaw, which is not realistic once the bridge is 

completed [12, 13].  
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Figure 2-3: Silver Bridge collapsed, Ohio, USA. 

This tragic collapse sparked a national interest in the safety inspection and maintenance 

of older bridges, which led, in 1971, the Federal Highway Administration (FHWA) to create the 

National Bridge Inspection Standards (NBIS). The NBIS established national policy regarding 

inspection procedures, frequency of inspections, and qualifications of personnel among others. 

Bridges were required to be inspected every five years, with the exception of important 

structures that were to be inspected within a two-year interval.  

Despite the nationwide inspection procedures brought about by the Silver Bridge 

Disaster, aging infrastructures were still a problem in the USA. In 1983, a section of the Mianus 

River Bridge in Greenwich, Connecticut, collapsed completely separating from the bridge and 

falling into the river. This incident resulted in three deaths and three serious injuries. After an 

investigation, performed by the National Safety and Transportation Board (NSTB), the cause of 

the collapse was pointed as a result of corrosion due to inadequate drainage. However, it was 

also indicated that the inspection progress was not thorough enough. The number of inspectors 

in the state was significantly low when compared to the amount of bridges used daily. 

Furthermore, there was no equipment available to check major stress points on the bridge and, 

to make matters worse, some inspectors even signed off without performing an inspection. After 

this incident more inspectors were hired and new inspection procedures were established, 

however accidents due to lack of maintenance or neglect and design deficiency continued to 

happen [14].  

With the collapse of the I-90 at Schoharie Creek, in New York, in April 1987, attention 

was turned to underwater inspection. This disaster, which took the lives of ten people, occurred 

during the spring flood when two spans of the bridge fell into the river after a pier, which 

supported the spans, collapsed due to scour damaged. Shortly after the first collapse, the waters 
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brought down another pier and span. This second collapse was a result of the first one, which 

had blocked the stream flow diverting the flooding waters towards the second pier, who toppled 

due to the increased velocity and amount of water [15]. In Figure 2-4 is possible to visualize the 

result of scour damage in one of the piers [16].  

 

Figure 2-4: Scour at I-90 West Pier.  

The NTSB concluded that the bridge footings were susceptible to scour as a result of 

poor riprap around the base of the piers and a shallow foundation. This collapse brought 

attention to the vulnerability of bridges failures due to scour, since approximately 86% of the 

593,000 bridges in the National Bridge Inventory (NBI) were over waterways. As a result, the 

FHWA introduced revisions on design, maintenance, and inspection to their guidelines [17]. 

In 2007, the collapse of the I-35W Bridge (Figure 2-5) over the Mississippi River in 

Minneapolis, Minnesota, brought once again bridge safety to the forefront of the public [18]. 

The disaster occurred during evening rush hour causing 13 deaths and 145 injuries. The bridge 

had been inspected annually since 1993 and, before that, used to be inspected every two years, 

as mandated by the NBIS. Furthermore, in the years previous to the collapse, the bridge was 

rated as “structurally deficient”, due to the load paths in the structure being non-redundant, 

meaning that a failure of any one of a number of structural elements in the bridge would result 

in a complete collapse of the entire bridge [19].  

http://en.wikipedia.org/wiki/Minneapolis_bridge_disaster
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Figure 2-5:  I-35W Bridge collapsed, Minnesota, USA. 

The NSTB report concluded that the problem behind the collapse was a design error 

that resulted in some gusset plates being undersized and not able to carry the load that was 

placed on the bridge. The renovations taking place at the time of the collapse made matters 

worse. The increased concrete deck (from 6.5 inches to 8.5 inches), center median and outside 

barrier walls, and the fact that all machinery and paving materials were being parked and 

stockpiled on the center span added considerably to the overall weight of the structure. The 

undersized gusset plates combined with the additional load of the renovations and the rush hour 

traffic caused the bridge to collapse into the Mississippi River [9].  

In China, a wide range of bridge failures can also be pointed as a motivation for the 

developments in codes and regulations, as well as the maintenance programs updates for this 

kind of infrastructure. One of the most famous failures was the Qijiang Rainbow Bridge, a 

pedestrian bridge that in 1999 collapsed after a short three-year service period, resulting in 40 

deaths and 14 injuries. Further investigation concluded that the collapse was a result of the 

inferior quality steel used in its construction that led to the early development of rust, as well as 

weak concrete and poor welding [20]. Other cases like the 2006 Liaoning Yingkou Xiongyue 

Brigde failure due to scour damage in the piers [21] or the recent collapse of a bridge in 

Changchun [22] where the bridge concrete slab simply collapsed under a passing truck, still 

shine light on the importance of developing SHM systems in order to prevent these types of 

disasters. 

In Portugal, it was only after the Hintze Ribeiro Bridge disaster (Figure 2-6) that 

authorities became more concerned about the aging of bridges [23]. This disaster occurred on 

March 4
th
, 2001, when one of the bridge piers collapsed killing 59 people, as occupants of a bus 

and three cars crossing the bridge at the time. The illegal sand extraction, which compromised 
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the stability of the bridge’s piers (as well as disregard from the responsible officials despite of 

the warnings of divers and technicians), was pointed out as the main cause of the collapse. A 

global campaign of bridge inspections was set into motion, with a total of almost 350 

inspections, as a reaction to the incident. In consequence, and as a result of those inspections, 

three bridges were immediately closed and in 56 bridges were imposed loadings and velocity 

restrictions [24]. Currently, EP have adopted a multi-year routine-inspection plan. This plan 

consists of main underwater inspections performed every four years in, approximately, 150 

bridges with foundations permanently under water. Additionally, these inspections are carried 

out in a two-year cycle for flagged cases [7]. 

 

Figure 2-6: Hintze Ribeiro Bridge disaster, Portugal. 

Note that although this incident alerted authorities to the importance of bridge 

inspection and maintenance, SHM systems had already started being used a couple of years 

back with the construction, for instance, of the Vasco da Gama Bridge (more details in 

Subsection 2.3). 

In the rest of the world, similar disasters have taken place over the years. On October 

21
st
, 1994, with the collapse of the Seongsu Bridge, Seoul, South Korea, 32 people died and 17 

people were injured. Joints of trusses supporting the bridge slab, which were not completely 

welded, caused the failure. The welding thickness, which should be approximately 10 

millimeters, was only 8 millimeters. Additionally, the connecting pins for steel bolts were of 

poor quality. After the incident the bridge was closed for repair, however, due to its poor 

construction it had to be completely redesigned and rebuilt [25]. In Spain, on November 7
th
, 

2005, due to a design error, three of the piers of the Motorway Bridge at Almuñecar, Granada, 

collapsed, causing a 60 meter section of the bridge to fall from a height of 80 meters onto 

workers below causing 6 deaths and 3 injuries [26]. In India, on August 28
th
, 2003, a bridge in 
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Daman collapsed as a consequence of severe damage caused by violent rainstorm. Over 25 

people were killed, including over 20 children who were on their way back home from school. 

The lack of maintenance and repair were appointed as a contributing cause of the disaster [26]. 

Three years later, another disaster took place in India, when a 150-year-old footbridge, in Bihar, 

suddenly collapsed over a train passing beneath it, killing 33 people. At the time of collapse the 

bridge was being dismantled [26]. 

2.3. Bridge Management Systems 

In a response to the many bridge disasters, most bridge owners around the world have 

adopted the so-called BMSs to build inventories and inspection history databases. These 

systems are essentially visual-inspection-based decision-support tools developed to analyze 

engineering and economic factors and to assist the authorities in determining how and when to 

make decisions regarding maintenance, repair, and rehabilitation of structures in a systematic 

way [2]. In the early 1990s several software packages were developed to assist in managing 

bridges, such as PONTIS and BRIDGIT in the USA, DANBRO in Denmark [27], and GOA in 

Portugal [28].To date, the structural condition assessment of these systems essentially relies on 

weighted indices based on visual inspections and/or preliminary Non-destructive Testing (NDT) 

technologies. More details about these systems can be found in the references [29]. 

2.4. SHM Applications 

The current practice of visual inspection associated with the BMS has been identified as 

a shortcoming in condition assessment. At the 50
th
 anniversary of the Interstate Highway 

System, Walther and Chase [30] stated that despite the advances in BMS modeling, the 

condition assessment activities associated with NBIS and BMS still rely heavily on visual 

inspections, which inherently produces widely variable results. The same authors stressed that 

the challenge would be to develop better assessment methodologies that can generate better 

prediction models to support the owners’ decisions regarding bridge safety assessment and 

maintenance. 

After several developments of BMS modeling, the failures mentioned in the Subsection 

2.2 were the stepping-stone to a better awareness in terms of structural condition assessment. 

Therefore, these disasters, along with the limitations posed by the visual inspections, brought 

forward the motivation for the real-world field SHM applications. In the USA, after de collapse 

of the I-35W Bridge, a new bridge was built in its place. The new I-35W Saint Anthony Falls 

Bridge is an excellent example of a truly integrated SHM system, combining different sensing 
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technologies in order to monitor the bridge performance and aging behavior. The rebuilt I-35W 

demonstrated that a high level of safety can be attained not only during construction, but also 

throughout the estimated 100-year life-span of the bridge. The system implemented includes a 

range of sensors capable of measuring various parameters to enable the bridges behavior to be 

monitored. Local static strains, curvatures, concrete creep, and shrinkage are measured by strain 

gauges; ambient temperature, temperature gradient, and thermal strain are measured by 

thermistors; and joint movements are measured by linear potentiometers. Accelerometers were 

placed at the mid-spans in order to measure traffic-induced vibrations and modal frequencies. 

There were also installed corrosion sensors to measure the concrete resistivity and corrosion, as 

well as SOFO (French acronym of Surveillance d’Ouvrages par Fibres Optiques) long-gauge 

fiber optic sensors, which measure a wide range of parameters, such as strain distribution along 

the main span, average strains, average curvature, dynamic strains, dynamic deformed shape, 

vertical mode shapes and dynamic damping [2, 31]. Figure 2-7 presents some of the different 

sensors and data acquisition systems (DAQ) that were installed in the I-35W Bridge [31]. This 

bridge can be considered one of the first “smart” bridges to be built in the USA.  

 

Figure 2-7: Sensors installed in the I-35W Bridge. 
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The previous mentioned failures also drove authorities to implement monitoring 

systems in important bridges throughout the country. One of the many examples is the 

Manhattan Bridge that crosses the East River in New York City. In 2007 this bridge was 

installed with a SHM system composed of two optical inclinometers, two optical extensometers, 

a temperature sensor, a monitoring station, SOFO sensors of 6 meters on one main cable and 

two Bragg grating strain sensors compensated in temperature placed at the anchors on 

individual strands [32]. Another example is the Huey P. Long Bridge over the Mississippi 

River, in New Orleans. In this case, the bridge was embedded with a monitoring system 

composed of an array of 777 vibrating wire strain gauges and 50 electrical resistance strain 

gauges intended to quantify axial and bending load effects on the truss structure, as well as 

several tiltmeters and temperature sensors [2, 33]. 

In China, sophisticated SHM systems have been implemented in bridges, buildings, 

tunnels and high-speed railways. Some of the infrastructures incorporated with health 

monitoring systems are the Xihoumen Bridge and the Nanjing 3
rd

 Bridge. The Xihoumen 

Bridge, located in Eastern China, is currently China’s longest suspension bridge with a main 

span of 1650m. The SHM system implemented into this bridge consists of seven temperature 

and humidity integrated sensors, seven displacement transducers, ten anemoscopes, 14 Global 

Positioning System (GPS) devices, 16 inclinators, 24 accelerometers, 46 temperature sensors, 

123 wind pressure sensors and weigh-in-motion sensors placed in each lane. The Nanjing 3
rd

 

Bridge is a cable-stayed bridge with a main span of approximately 650m that crosses over the 

Yangzi River. This bridge has an operational SHM system that regularly monitors vehicle loads, 

wind, temperature, tension in stay cables, deformation and vibration of the deck. This system 

was put to the test during the earthquake of March 11, 2011, which, after measured, indicated 

that the stress of the deck or tension in the cable was not that different from any given day, 

implying that the bridge did not suffer any damage during the earthquake.  

In Portugal, there are also some bridges with integrated SHM systems, such as the 

Vasco de Gama Bridge and the Lezíria Bridge. The Vasco da Gama Bridge was built in 1998 

and connects Montijo to Lisbon over the Rio Tejo in Lisbon, Portugal (Figure 2-8) [34]. Being 

an important infrastructure in the access to the city of Lisbon, the Vasco da Gama Bridge was 

incorporated with a monitoring program composed of electrical sensors for measurement of 

joint movements, temperature variations, wind velocity and direction, strains, and accelerations. 

The monitoring system continuously collects new measurements and compares them to a zero 

state condition which corresponds to the initial measurements performed after the bridge was 

constructed. There were also set up several warning levels, which correspond to the different 
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levels of intervention that may be needed, e.g., closing the bridge to traffic, conducting visual 

inspections, or developing particular retrofit actions. Curious to know that until now no 

threshold has been attained demanding unexpected correction measures [34].  

 

Figure 2-8: Ponte Vasco da Gama, Lisbon, Portugal. 

The Lezíria Bridge, in Carregado, is also an example with a SHM application. This 

monitoring system was the result of a joint development between the Portuguese company 

BRISA Auto-estradas de Portugal S.A. and the Faculty of Engineering of the University of 

Porto. Accelerometers were installed in critical sections of the superstructure, and in the 

foundations at different depths, in order to characterize the seismic action on the structure. This 

monitoring system is also composed of interconnected optical and electrical sensors distributed 

along the bridge and a central observation post, connected through a network of fiber optic 

cables. To prevent another disaster such as the Hintze Ribeiro Bridge, sonars were also 

incorporated to monitor the streambed around the two piers [35].  

Other examples of bridge SHM systems in Portugal are the overpasses of Metro do 

Porto railway system and the Bridge over Rio Sorraia in Santarém owned by BRISA Auto-

estradas de Portugal S.A.. 

2.5. Summary and Conclusions 

Even though tragic, each of the failure cases reviewed in this chapter has given its 

unique contribution to the general knowledge of bridge construction, inspection, and 

maintenance. The Tacoma Narrows Bridge failure alerted engineers to the dangers of resonance; 

the Silver Bridge failure focused attention on the lack of maintenance and material corrosion 

issues. The Schoharie Creek Bridge and the Hintze Ribeiro Bridge failures highlighted the 

dangers of bridge scour, and finally, the I-35W Bridge and Seongsu Bridge failures underlined 
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the importance of the construction stage, so that problems are not built-in into the bridge. The 

investigation of each of these failures and the knowledge gained from understanding the 

conditions on which they occurred help engineers to find ways to ensure that similar failures can 

be prevented in the future.  

Furthermore, the current practice of visual inspections has been identified as a 

shortcoming in bridge condition assessment, which gives indications that the BMSs should be 

upgraded with some more quantitative information regarding the structural condition of the 

bridges. A review of bridge events performed by McLinn [36] also strongly suggests that 

inspections may need to be improved, and that inspection alone is not sufficient to guarantee 

bridge reliability, because it does not include all time-dependent failure modes and causes. 

Therefore, improvements in damage detection and quantitative measures are needed to optimize 

BMS [30]. It is the author’s belief that any proposal for bridge safety and maintenance should 

be based on results from long-term monitoring as well as visual inspections along with NDT. 

This approach will contribute to a much more reliable condition assessment and, therefore, 

engineers and/or owners will be provided with more quantitative information to support their 

decisions. 

Currently, there are several companies with the single purpose of developing and 

implementing SHM technology, such as SMARTEC S.A., in Switzerland. SMARTEC was 

founded in 1996 and it is currently part of the Roctest Group, a manufacturer of instrumentation 

for civil engineering, geotechnical, and industrial applications. This company has already 

developed more than 500 monitoring projects worldwide, including the I-35W and the 

Manhattan Bridges. Several national and international associations have also been founded 

regarding safety and maintenance of bridges. Some examples are the Portuguese association 

ASCP (Associação Portuguesa para a Segurança e Conservação de Pontes) which represents 

Portugal in the international association IABMAS (International Association for Bridge 

Maintenance and Safety).  
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3. STRUCTURAL HEALTH MONITORING PROCESS 

3.1. Introduction 

SHM of bridges is a research field that became known in the late 1980s. The term 

“health”, which is familiar to us in terms of medicine, is herein applied for structural 

engineering, implying that the same principals applied by medicine in regard of the human body 

are also applied by engineers regarding infrastructures. When a person is unhealthy, the nervous 

system detects an anomaly and it transmits the information to the brain. The person addresses a 

doctor in order to prevent further growth of the illness and, after undergoing detailed 

examinations, the doctor establishes a diagnosis and proposes a cure. The same principle can be 

applied to civil infrastructures. The main goal of SHM is to, just like the human nervous system, 

detect unusual behaviors within the structure. When this happens, the condition is detected and 

a detailed inspection (examination) takes place in order to find a diagnosis and to repair the 

anomaly. A comparison between the two processes is presented in Figure 3-1 [37, 38]. 

 

Figure 3-1: Comparison between human body and civil infrastructures. 

SHM is currently defined as the process of implementing a damage detection strategy 

for engineering infrastructures that aims to provide, at any moment during the life of a structure, 

a diagnosis of its current state. This purpose can only be achieved by observing the system over 

time and by periodically extracting its dynamic response from an array of sensors, which is used 

to extract damage-sensitive features and create statistical models upon them. By carrying out 

this process continuously during the service-life of a structure, SHM systems can provide 

periodical information regarding the ability of the structure to perform its function, by taking 

into account the aging and the degradation of the structure as a result of operational and 

environmental conditions. SHM systems have also the potential to be helpful after extreme 
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events, such as earthquakes, where quick checks can be performed, providing the user, in near 

real time, with trustworthy information about the integrity of the structure [39]. 

3.2. Economic and Safety Considerations 

The main purpose of SHM is promote safety and ultimately to prevent catastrophic 

failures. However, associated with the life safety benefits of this technology, there are also 

strong economic factors. SHM systems are, after all, an investment and, as any investment, they 

must prove their effectiveness not only in improving bridge safety but also in reducing the 

overall life-cycle-cost of bridges. Well-designed and integrated SHM system can prove to be 

cost effective for both newly built structures and for existing ones. The benefits of installing a 

SHM system on a bridge depend on the specific application. Nevertheless, there are general 

benefits common to all applications, such as [31]: 

i) Reducing uncertainty: when making decisions regarding the structure, bridge 

owners always have to consider the worst case scenario as information about the 

actual condition of the materials, the real load actions or even the structure aging 

are unknown factors; SHM systems help to reduce such uncertainties allowing the 

owner to make well-informed decisions based on quantitative data; monitoring 

systems can also help decreasing insurance costs by reducing the uncertainty 

associated with the insured risk; 

ii) Discovering damage in time:  very often damage or deficiencies occur in such a 

way that cannot be identified by standard inspections; appropriate SHM systems 

can provide real time information about these issues making it possible to take 

appropriate actions in advance; early detection of a structural malfunction allows 

prompt intervention with lower maintenance costs; well-maintained structures have 

an improved durability, which decreases the direct economic losses (repair, 

maintenance, reconstruction) and helps to increase the safety of the structure and of 

its users; 

iii) Discovering unknown structural reserves: SHM systems have the potential to 

uncover structural reserves that were not taken into account during the designing 

process, allowing a better exploitation of the materials and an increasing in the 

safety margins and lifetime of the structure without any intervention being needed;  

iv) Allowing structural management: current system maintenance is usually done in a 

time-based mode; SHM technology, being a sensing system that monitors the 

structure’s response and notifies the operator that damage has been detected, can 

optimize those systems by turning them into condition-based maintenance; 
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maintenance, repair or replacements will only the executed if necessary, resulting in 

a decrease of the total maintenance costs; 

v) Monitoring increases knowledge: learning how materials and structures perform in 

real conditions can improve the designing process for future structures, leading to 

cheaper and safer structures with increased reliability and performance; often 

making a small investment at the start of a project can bring about savings later in 

the project by optimizing the design and uncovering weaknesses in time. 

For new bridges, the initial investment of a SHM system can vary between 0.5 % and 

3% of the total bridge construction cost. This cost includes the hardware, the installation and the 

configuration of the monitoring system. In addition, every year the management of the 

monitoring system plus the data analysis usually adds 5% to 20% of the SHM system cost. As a 

result, over the first ten years of an average-size bridge, having a SHM system installed will 

require and investment between 2% and 5% of the total construction cost [2, 31].  

Assuming that a percentage of newly constructed bridges possess some type of 

construction defect and that the repair and the indirect costs associated increase considerably 

alongside the lifetime of the bridge, it is highly beneficial to have a SHM system that detects 

these errors early, when they are easier and cheaper to correct or preferentially when the bridge 

is still within the warranty period, typically two to five years. During construction, SHM 

systems can also be useful to detect and immediately correct mistakes such as non-working 

bearings, lack of post-tension or wrong thickness of load-bearing elements and defects to water 

barriers. Observing the bridge behavior during the first ten years can also provide an excellent 

baseline to compare and assess its future performance or reduction thereof. 

Old bridges are often classified as deficient and are repaired or replaced without a 

quantitative evaluation of their actual condition and load-bearing capacity. Although it is an 

acceptable procedure from a safety point of view, it is inefficient from an economic perspective. 

SHM systems can bring some balance to this equation favoring the interest of both safety and 

economic viewpoints. Supposing that an SHM system is installed on any bridge that is 

scheduled for replacement, the cost of the SHM system plus data analysis would typically cost 

3% of the rebuild cost
1
, with the potential to indicate if the bridge needs to be replaced, if it can 

                                                      

1
 As it was mentioned before, the initial investment of a SHM system can vary between 0.5 % 

and 3% of the total bridge construction cost. Therefore, the cost of implementing a SHM system in a 

bridge that is going to be rebuilt is the also between 0.5% and 3% of the rebuild cost. 
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be simply repaired or if it can continuously operate without any type of repair. Assuming that 

not every bridge needs to be replaced or repaired, and that the costs of the bridges that only need 

to be repaired are far less than the cost of replacement, economically speaking, the end result 

would always favor the installment of an SHM system [31]. 

It is important note that while SHM systems are a mechanism of warning of failure, thus 

enhancing safety. However, they are not a black box and so they cannot alone ensure a higher 

level of safety, or even a better method of maintenance. SHM systems alone cannot ensure a 

decrease in the level of maintenance or even an increase in the periods between maintenance. If 

properly designed, however, they can reduce the amount of unnecessary inspections and ensure 

that degradation is tracked, providing the owner with consistent and updated estimates of 

deterioration (quantity and general location), capacity, and remaining service life. 

3.3. Statistical Pattern Recognition Paradigm 

There are various ways by which the discussion of SHM can be organized. Herein, the 

SHM process is broken down into the four-stage SPR paradigm as illustrated in Figure 3-2 [2]. 

This process includes: (i) Operational Evaluation (ii) Data acquisition (iii) Feature Extraction 

(iv) Statistical Modeling for Feature Classification. 

 

Figure 3-2: SPR paradigm. 

3.3.1.  Operation Evaluation Stage 

Operational evaluation attempts to set up a global view of the whole SHM process by 

establishing the benefits of implementing a SHM system, defining the damage that needs to be 

detected and setting limitations on what will be monitored and how the monitoring will be 
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performed. For the most part, this process attempts to answer four questions concerning the 

implementation of a SHM system: 

i) What are the life-safety and/or economic justification for performing SHM? 

ii) How is damage defined for the system being monitored and, in case of multiple 

damage possibilities, which are of the most critical cases? 

iii) What are the operational and environmental conditions under which the system 

to be monitored will function? 

iv) What are the limitations on acquiring data in the operational environment? 

3.3.1.1. Economic and/or Life-Safety Issues 

Economic and life-safety issues are the main driving forces behind the implementation 

and development of SHM technology. Nowadays every industry wants to detect damage in their 

infrastructures in the earliest stage possible. For such a thing to happen, it is necessary for these 

industries to implement some form of SHM. This technology offers a potential life-safety and 

economic impact, nevertheless, the economic viability of its implementation should be taken 

into account. For example, when considering the implementation of SHM technology on a 

bridge, some questions need to be raised, such as: are the direct costs of carrying out 

preventative inspections, plus the indirect costs associated with interrupted service, high enough 

so that implementing a SHM system would prove to be a more viable solution? Is it possible to 

perform a thorough inspection when some parts are inaccessible without dismantling the 

bridge? In most cases, on long-term, SHM technology offers a more economical approach, as 

well as enhanced safety for users [1]. 

Many of the infrastructures used today are either approaching or exceeding their initial 

service-life. However, due to economic issues these infrastructures are still being used 

regardless of their aging. The FHWA estimates that up to 35% of the bridges currently being 

used in the USA are either functionally or structurally deficient. Furthermore, the repairing cost 

of these structures can reach a billion dollars. This cost could be drastically reduced by effective 

SHM methods. Furthermore, in the future, SHM could provide the technology to evaluate the 

structural condition of the bridges after extreme events, such as earthquakes, by determining if 

bridges are or not safe for operation [1, 40]. 

It is important to keep in mind that the life-safety and economic benefits brought by 

SHM technology can only be accomplished if the monitoring system provides sufficient 

warning so that counteractive actions can be taken before the damage evolves to a failure level.  
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3.3.1.2. Definition of Damage 

There are many ways by which damage can be defined. The most common one among 

SHM researchers is to define damage as changes to the material and/or geometric properties of a 

system, including changes to the boundary conditions and system connectivity. The existence of 

damage does not imply the total loss of system functionality, but rather that the current or future 

performance of the system has been compromised and it no longer operates in its optimal 

manner. Normally, damage progressively attains higher proportions until it reaches a point 

commonly known as failure. At this point, the damage is so severe that it affects the system 

operation, making it no longer acceptable to the user. Note that in this definition, the collapse is 

the extreme situation of failure. Damage can be induced to a system under various means, 

namely, it can accumulate over long periods of time such as in fatigue or corrosion damage, it 

can be a result of scheduled events, e.g. vibrations caused by subways, or even unscheduled 

events such as vehicle impacts or earthquakes. Implicit in the definition of damage is the 

concept that damage is meaningless without a comparison between two different states of a 

system. Therefore, it is essential to have data regarding the initial state of the system so that the 

existence of damage can be verified [1]. 

There have been several examples of damage detection in structures using finite element 

models, test bed structures in laboratory environment [4] and real-world test bed structures [3]. 

Some authors choose to intentionally introduce damage into a structure in the attempt to 

simulate damage without having to wait for it to occur. Other authors simply postulate a 

damage-sensitive feature and then create an experiment in an effort to demonstrate the 

effectiveness of this feature. In these particular cases there is no need to define damage. Nearly 

all laboratory investigations fall into this class [40]. However, when a SHM system is deployed 

into the field, it is essential that the damage, or damage scenarios, are clearly defined, because it 

permits to optimize the sensing capabilities and to increase the likelihood of damage detection 

with sufficient warning.  

3.3.1.3. Environmental and/or Operational Constraints  

Environmental and operational effects also have an influence on the measured dynamics 

response of a structure [41]. These variations can sometimes hide little changes in the system’s 

vibration signal that are actually caused by damage. Since damage detection is based on the 

premise that damage in the structure will cause changes in the materials hereby causing changes 

in measured vibration data, it is essential to consider the effects of changing environmental and 

operational conditions. Operational conditions include ambient loading conditions, mass loading 
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and operational speed while environmental conditions include temperature, wind, and humidity, 

rainfall and snow. 

The effects of temperature variability such as thermal expansion can not only produce 

changes in the material stiffness but can also alter the boundary conditions of a system. If the 

structure is unable to expand or contract, the stress arising from it can produce similar or even 

greater changes in resonant frequencies than damage. Variations in the structure’s surroundings 

or boundary conditions can often produce more significant changes in dynamic responses than 

damage. In his research, Alampalli [42] reported that, for a 6.76 by 5.26 m bridge span, the 

natural frequency variations due to the freezing of the bridge supports were far greater than the 

variations caused by an artificial cut across the bottom flanges of both girders. For 

completeness, several other situations have been described in the references [41]. 

Operational variations can also cause severe changes in bridge dynamics. While 

studying the effects introduced by vehicle mass on dynamic characteristics of bridges, Kim et 

al. [43] concluded that while for middle and long-span bridges the changes were barely 

noticeable, for short-span bridges, whose mass is comparatively small when compared to traffic 

mass, changes become quite noticeable. A simple supported plate girder bridge with a mid-span 

of 46 m, with the mass ratio of heavy traffic to the superstructure of 3.8%, experienced changes 

in its natural frequencies of up to 5.4%. 

Therefore, field deployment of these SHM systems need to be accompanied by robust 

techniques to take into account these environmental and operational constrains/conditions in 

order for its practical applications to be accepted. 

3.3.1.4. Data Management 

Field deployment of SHM has to be accompanied by careful data management 

considerations. Sensors and data storage systems need to be protected from both environmental 

conditions and human interference. The latter often is overlooked when implementing a SHM 

system even though thefts are an important factor that must be taken into account. Depending 

on the environmental conditions that the system is faced with, the sensors and the DAQ and 

storage unit may need to be sheltered in an attempt to delay their eventual deterioration and 

subsequent replacement. There is also the possibility of power failures, in which case either the 

system needs to be programmed to automatically restart or an alternative source of energy must 

be installed. The DAQ and storage unit also needs to have sufficient RAM memory and Hard 

Disk Drive space to accumulate the measured data. 
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3.3.2.  Data Acquisition Stage 

The data acquisition stage is composed of three features: data acquisition, data 

normalization and data cleansing. The data acquisition portion refers all the decisions and 

challenges regarding data collection, especially to the DAQ system and sensing technology. An 

important concept regarding data sensing technology is that these systems do not measure 

damage. Rather, they measure the response of a system to its environmental and operational 

loading or to inputs from actuators implemented with the sensing system. Depending on the 

type of damage to be identified and the sensing technology installed, the sensors readings may 

be more or less related to the actual presence of damage [2].  

3.3.2.1. Data Acquisition 

The data acquisition portion involves the selection of the excitation methods, the types 

and quantity of sensors used, the sensors’ locations, the selection of the DAQ, storage and 

transmittal hardware and also the interval at which the data will be collected. These decisions 

are heavily influenced by economic factors, since the type and number of instruments used as 

well as the frequency of which the measurements will be taken are directly related to the total 

cost of the SHM system. 

In recent years, wireless monitoring, as opposed to wired monitoring, has emerged as a 

promising technology that could deeply impact the field of SHM. Wired monitoring systems, as 

the name suggests, are monitoring systems with instrumentation points wire-connected to the 

centralized DAQ system through cables (Figure 3-3) [8]. Sensors are distributed at key locations 

through the structure outputting analog signals to the DAQ system where data is later sampled 

and digitized in order to be used in signal processing systems. Data collected may be analyzed 

on-site or may be transferred to a control center where experts or computers perform structural 

diagnosis and prognosis. The length of the cables connecting the sensors to the centralized 

storage unit can go up to 300 meters. However, the longer the signal travels, the higher the 

chances of signal degradation due to noise surrounding the cable. After reaching the centralized 

DAQ system, the analog signals are put through an analog-to-digital converter that discretizes 

the analog waveforms so relevant engineering quantities (e.g. modal properties and global 

displacements) can be derived from the raw digitized data. 

The down-side of this system is the installation of all instrumentations. Since data 

cables require high fidelity, their unit price as well as its installation are quite expensive. In 

existing structures cables are very difficult to install due to thick walls and floors, consequently 

sensing systems are only able to provide data from limited locations on a structure. The cost of 



27 

 

installation can go up to 25% of the total cost of the monitoring system and the installation itself 

can take up 75% of the total testing time for large-scale structures [40]. Another setback of this 

monitoring system is related to maintenance issues. The constant changes in temperature and 

humidity, as well as exposure to weather conditions, can quickly deteriorate the cables and 

sensors, which can compromise the economical viability of the monitoring system. 

 

Figure 3-3: Schematic representation of a wired SHM system.  

Wireless monitoring arose to overcome the cabling problems of the conventional wired 

monitoring systems. The use of a wireless transmission eliminates several problems such as 

extensive cabling, signal deterioration over long transmission distances and damage to 

instrumentation or computing equipment as a result of the surrounding environment. A 

schematic representation of a wireless sensor network can be seen in Figure 3-4 [8].  

 

Figure 3-4: Schematics for wireless SHM system.  
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By overcoming some of the problems regarding wire-monitoring, a higher density 

network can be established. Each wireless sensing unit can be composed of a microcontroller, a 

wireless transmitter, DAQ circuitry, actuators and sensors, making it possible for each unit to 

either individually acquire data and process it locally or communicate with the central 

processing unit [8, 40]. By doing that, the data acquisition and a part of data processing can be 

moved toward the sensors, making a clear distinction between this system and the traditional 

configuration.  

Wireless networks also offer a distributed computing environment, which makes it 

possible to extend analysis capabilities at the sensing nodes allowing multi-tiered diagnostic and 

prognostic decision making. Therefore, sensing nodes can perform damage diagnosis and 

prognosis using individual sensors, and then fuse the extracted information with the information 

provided by the multiple sensors at each node. This information is then combined with the 

information from other sensing nodes. After the data are collected and fused, a diagnosis takes 

place and the results are assembled at the system level. In Figure 3-5 is a representation of the 

multi-tiered decision analysis paradigm [8]. 

 

Figure 3-5: Multi-tiered decision analysis paradigm. 

 Additionally, some of the sensing technology, currently used in data acquisition, will 

be described. 

 Accelerometers 

Accelerometers are used to measure accelerations, shocks or vibrations and are the most 

common type of sensor used in SHM. These devices are very useful in monitoring mainly 
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because by measuring the accelerations it is possible to determine the angle of the device (which 

can determine if the structure is tilted) or even the way that the device is moving (which can 

determine the structure’s movement). Accelerometers can be found in many modern devices, 

like cell phones or digital cameras. In these cases, accelerometers allow screens to change their 

orientation according to the angle at which the device is held. In the field of engineering there 

are several types of accelerometers, such as piezoelectric accelerometers and capacitive 

accelerometers. 

Piezoelectric accelerometers are composed of a piezoelectric crystal element and an 

associated mass that is fixed to a supporting base. The piezoelectric crystal has the ability of 

emitting a change when subjected to movement. Therefore, when the base moves, the mass 

compresses the crystal element, which in turn emits a signal. By obeying the second Law of 

Newton (force is equal to mass times acceleration), the signal’s charge is proportional to the 

applied force, which is proportional to the acceleration. Piezoelectric accelerometers are usually 

contained inside a protecting box, which shields the sensor from environmental conditions [38, 

44]. Figure 3-6 shows a schematic representation of a piezoelectric accelerometer [45]. 

 

Figure 3-6: Schematics of a piezoelectric accelerometer.  

Capacitive accelerometers are able to measure both static and dynamic acceleration 

forces. This type of accelerometer measures accelerations in a similar way to the piezoelectric. 

In this case the sensor consists of two plate capacitors, parallel to each other and both charged 

with an electric current. If a moving mass alters the distance between the metal plates, the 

electrical capacity of the system will change. By measuring this change it is possible to 

determine the force in action, which in turn will determine the acceleration (once again resorting 

to Newton’s Second Law of motion) [38, 44]. 
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 Fiber Optic Sensors 

In recent years, the use of fiber optic sensors (FOSs) has increased considerably. These 

sensors are mainly used in SHM applications to measure variations in strain or temperature and 

they offer distinct advantages when compared to the conventional strain gauges sensors, such 

as: being able to withstand harsh environmental conditions; since they are non-conductive, these 

sensors are unaffected by electromagnetic or radio interferences which allows a noise free 

transmission of data; their small size and weight make the installation of them into any 

structure; and since they are not affected by corrosion, FOSs are ideal sensing technology for 

long-term monitoring [44]. 

Optical fibers are usually made of silica glass with a core region and cladding 

surrounding the core to guide the light. Additionally there is also a layer of plastic surrounding 

the silica glass, which prevents it from breaking and adds flexibility to the fiber. Light travels by 

being reflected continuously between the cladding (Figure 3-7 shows a schematics of this 

process). Often it is necessary to further coat the cables so they can withstand environmental 

conditions [44]. 

 

Figure 3-7: Schematic of an optical cable. 

The principle behind fiber optic sensing technology is that depending on the condition 

of the cable, the light patterns of waves transmitted through the optical cable will change. A 

light beam is first sent through the cable to the sensor. The sensor receives the beam and sends 

back an optical signal to a measuring device. Finally the measuring device analyses the received 

information comparing it to the signal that was initially sent. The end result is the measurement 

that represents the amount of strain on the structure where the sensor is located. 

 GPS 

The GPS technology has proven to be a great solution in terms of measuring 

infrastructure deflections. GPS systems use radio waves and GPS satellites to determine the 
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exact position of the device. Radio signals are broadcasted from GPS satellites with their 

position and time. A GPS device receives this information and, knowing the exact location of 

the satellite, determines
2
 its own location. Therefore, GPS systems can be used to accurately 

measure relatively large displacements, such as lateral displacements at the top of tall buildings 

and bridges towers, and horizontal movements of expansion joints in bridges. Depending on the 

situation, errors in measurements can be expected, e.g., the presence of particles in the 

atmosphere can sometimes delay the signal wave causing miscalculations. 

 LVDT 

The Linear Variable Differential Transducers (LVDTs) are used to measure 

displacements, which are obtained through induced current variation in a solenoid by 

displacement of a magnetic core in its interior. 

As shown schematically in Figure 3-8, transducers consist of a core, which moves freely 

along the axis of measurement, and three transformer windings: a primary winding and two 

secondary windings, one on either side of the primary winding [38, 44, 46].  

 

Figure 3-8: Schematics of a LVDT sensor. 

The outputs of the secondary windings are wired together so that the voltages induced 

in each are staggered. When the primary winding is powered with an AC alternating voltage, it 

generates an inductance current in each of the secondary windings. The core’s position 

determines the magnetic connection between the primary winding and the secondary windings. 

When the core is at the same distance from both secondary windings, no voltage appears at the 

secondary outputs (since the voltage induced in both secondary windings are equal). When the 

                                                      
2
 Based on the fact that radio waves approximately travel at the speed of light, the GPS 

determines the time it took for the signal to get from the satellite to the device. For precision purposes 

usually this operation isn’t limited to only one satellite. The receiver calculates the distances for a number 

of satellites and verifies if they all converge in one point. 
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core moves, the inductances in the secondary windings change. The magnitude of the output 

voltage has a linear correlation with the position of the core. Figure 3-9 shows an actual LVDT 

[38, 44, 47]. 

 

Figure 3-9: LVDT sensor. 

 Strain Gauges 

Strain gauges work based on the principle that the resistance of an electric conductor 

varies with the force applied to it. When the strain gauge is stretched, its resistance increases 

and when it is compressed its resistance decreases. The changes in resistance are always 

proportional to the deformations. Due to its characteristics, strain gauges are usually attached to 

the surface of the structural components being monitored [44]. 

Ideally changes in resistance should only happen due to superficial deformations of the 

material the sensor is glued to. However, in real-world applications, misleading readings can 

occur as a result of the glue that connects the gauge to the material and due to temperature 

variability. 

 Tiltmeters 

This sensor is used to measure slight changes in the inclination of a structure or its 

members. Generally, it can measure inclinations in either one direction (uniaxial) or two 

directions (biaxial), depending on the application [38]. Tiltmeters can improve safety both in the 

construction stage and the service-life of a structure. During construction it can be used to 

monitor structural or foundation movements and alert engineers if the allowed limits are being 

exceeded. During the service-life they can be used to closely monitor the structure’s movement. 

In many applications, especially on bridge decks, the tiltmeters can be used to estimate 

curvatures. 
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3.3.2.2. Data Normalization 

The normalization of the data measured under varying conditions is vital to the damage 

identification process. For example, the measurements taken from the Alamosa Canyon Bridge 

in New Mexico showed that the fundamental frequency of the bridge had a 5% variation during 

a 24-hour test period. This variation was caused by a large temperature gradient between the 

east and west sides of the bridge deck during the day [40]. If that variability is not remove from 

the data, it can be taken as a false-positive indication of damage. 

Therefore, data normalization is a procedure of separating the changes in sensor 

readings, so that signal changes caused by operational and environmental variations can be 

separated from structural changes caused by actual damage. One of the most frequent 

procedures is to normalize the measured responses (outputs) by measured inputs. When there 

are a lot of changes regarding the environmental or operational conditions, a common practice is 

to normalize the data in a temporal fashion in order to make easier the comparison between data 

measured at similar times of an environmental or operational cycle. Figure 3-10 and Figure 3-11 

illustrate situations where measures of operational or environmental parameters need or do not 

need to be included into the normalization procedure [48]. In Figure 3-10 damage introduces 

changes in the feature distribution that are similar to those introduced by an environmental 

variability, which indicates that operational or/and environmental parameters will need to be 

measured so that they can be incorporated into the normalization process. On the other hand, in 

Figure 3-11 damage introduces changes in the feature distribution different to those caused by 

operational or/and environmental effects. In this case, there is no need to establish an 

environmental parameter [48]. 
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Figure 3-10: Damage introduces changes similar to environmental variability.  

 

Figure 3-11: Damage introduces changes different from environmental variability. 

It is also possible to normalize the data by measuring directly the varying environmental 

or operational parameters. Identifying and minimizing the causes of these variability’s is a 

crucial step toward a good SHM system, and even though it is practically impossible to 

eliminate all sources of variability, by making the appropriate measurements it is possible to 

statistically quantify them. Variability can result from changes in environmental (e.g. 
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temperature and wind) and test condition, changes in the data reduction process and unit-to-unit 

inconsistencies [1, 40]. 

3.3.2.3. Data Cleansing 

Data cleansing is the process of detecting and removing the corrupt or inaccurate data 

from the raw data. This step is generally executed according to the knowledge of those directly 

involved with the data acquisition process. For instance,  an inspection of the test set-up might 

reveal that a sensor was loose. As a result that set of data or the data from that sensor may be 

selectively deleted from the feature selection process, depending on the judgment of the persons 

performing the measurement. Signal processing techniques like re-sampling and filtering can 

also be considered data cleansing procedures [1, 39].  

3.3.3.  Feature Extraction Stage 

Feature extraction is the area of the SHM process that receives the most attention in 

terms of technical literature [1]. A feature is a characteristic of the measured response that is 

extracted via parameter estimation, signal processing, or other signal inspection technique. 

Ideally, a feature should have characteristics regarding sensitivity, dimensionality and 

computational requirements. It should be very sensitive to damage and, for the most part, 

insensitive to everything else, have the lowest dimension possible and also be computable with 

minimal assumptions and CPU (central processing unit) cycles. Preferably, the best damage-

sensitive feature would be the simplest feature possible that could distinguish between the 

damaged and undamaged system. 

The feature extraction process can be defined has the identification of features that 

allows one to distinguish between the damaged and undamaged system. In most cases, feature 

extraction procedures inherent a form of data compression (or condensation) and data fusion. 

The condensation of data is necessary and beneficial, especially in long term monitoring where 

sets of data needed for comparison become increasingly abundant. Since data can be acquired 

from a structure over a long period of time and in an operational environment, data-compression 

techniques must keep sensitivity of the chosen features to the structural changes of interest in 

the presence of operational and environmental variability. 

There are numerous methods that can be employed in order to identify features for 

damage detection. A basic method for feature selection is based on past experience, especially if 

damaging events have been formerly observed for that system. Another mean of identifying 

features is to apply engineered flaws, similar to ones that are expected during actual operating 
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conditions, to laboratory specimens and develop a preliminary understanding of the parameters 

that are sensitive to the expected damage. The flawed system can also be used to verify if the 

diagnostic measurements are sensitive enough to differentiate between features identified from 

the damaged and undamaged system [1, 2]. The employment of analytical tools like FEM can 

be a great asset in this process. Appropriate features can also be identified by performing 

damage accumulation tests where structural components of the system under study are subjected 

to realistic loading conditions. This process can involve fatigue testing, induced-damage testing, 

temperature cycling or corrosion growth in order to gather certain types of damage in an 

accelerated manner. The types of analytical and experimental studies described above can give 

an insight into the features better suited for a SHM system. Usually the most appropriate feature 

is a result of information gained from a combination of these sources. This subsection will give 

a brief overview of some damage-sensitive feature extraction techniques, with special attention 

being given to AR models and modal parameters. 

3.3.3.1. Autoregressive Model 

The autoregressive (AR) model is a linear prediction formula that attempts to predict an 

output of a system based on the previous outputs. For a time series  nsss ,...,2,1s , the AR 

model with   autoregressive parameters, AR ( ), can be written as,  
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where is  is the measured signal and    is the residual error at the     signal value. The unknown 

AR parameters,   , can be estimated by using either the least squares or the Yule-Walker 

equations [49]. 

In SHM, the AR model can be used as a damage-sensitive feature extractor based on 

two approaches: (1) using the AR parameters,    ; and (2) using the residual errors,   . The first 

approach consists of fitting AR models upon data from the damaged and undamaged structure, 

and then the AR parameters,   , are used directly as damage-sensitive features. The second 

approach consists of fitting an AR model upon data from the baseline condition, and then it is 

used to predict the response data obtained from a potentially damaged structure.  The residual 

error, which is the difference between the predicted and measured signal, is calculated at time   

using the equation 
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where iŝ is the predicted     signal value and is  the measured value. This approach is based on 

the theory that the presence of damage will introduce either a linear variation from the baseline 

condition or nonlinear effects in the signal and, since the linear model was developed based on 

the data from the baseline condition, it will no longer be able to accurately predict the response 

of the system once it is damaged. Note that for a fitted AR ( ) model, the residual errors can 

only be computed for     time points [2]. 

The main issue with AR models is generally that the order is an unknown value. A high-

order model may be a perfect match for the data, but it will be harder to process and it will 

consume many CPU cycles. Additionally, a higher order model might not generalize well to 

other data sets from the same system. On the other hand, a low-order model may not be enough 

to capture the system’s physical response. In order to determine the most appropriate model 

order, several techniques can be used. In this case, it is used the Akaike’s information criterion 

(AIC) [50]. The AIC provides a mean for model selection and can be written as 
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where   is the number of data points,     is the residual sum of squares and   is the number of 

parameters in the model. The     is a measure of discrepancy between the data and the 

estimation model. The     can be written as 
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The AIC assumes a tradeoff between the fit of the model and the model’s complexity. 

The first term of the Equation (3.3) is related to how well the model fits the data, i.e., if the 

model is too simple its predictions will not be accurate and the residual errors increase. On the 

other hand, the second term is a penalty factor related to the complexity of the model, which 

increases with the number parameters used in the model. The AIC methodology attempts to find 

the model that best explains the data with the minimum parameters, therefore the ideal model is 

the one with the minimum AIC value. 
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3.3.3.2. Modal Properties 

In bridge monitoring, dynamic or vibration analysis is a subset of structural analysis that 

is concerned with the behavior of structures under dynamic loading, such as traffic, people, 

wind, and earthquakes. Dynamic analysis can be carried out to perform modal analysis and to 

obtain dynamic displacement time series records. 

Modal analysis techniques have been widely used in bridge monitoring. Modes are 

natural properties of a structure, and are determined by its material properties such as mass, 

damping, and stiffness and by its boundary conditions. Each mode is defined by its modal 

properties: natural frequency, mode shape, and damping ratio. When boundary conditions or 

material properties of a structure are altered, its modes will also suffer alterations. For example, 

if mass is removed from a structure, it will have a different vibration response.  

Due to their nature and how they react to changes undergone by the structure, natural 

frequencies, modes shapes or other properties derived from modes are commonly used as 

features for damage detection.  

3.3.4. Statistical Modeling for Feature Classification Stage 

Development of statistical models is the portion of the SHM process that has received 

the least attention in terms of technical literature. This final stage in the SHM process attempts 

to implement algorithms that analyze the distribution of the extracted features in order to 

determine if the structure is damaged. The algorithms used in statistical model development 

typically fall into three categories: (i) Group classification, (ii) Regression analysis, and (iii) 

Outlier detection. Both group classification and regression analysis are supervised learning 

algorithms while outlier detection is an unsupervised learning algorithm. Supervised learning is 

the given classification of algorithms that are applied when data are available from both the 

undamaged and damaged structures. On the other hand, unsupervised learning refers to 

algorithms that are applied when there are only data from the undamaged structure [1, 2].  

Group classification attempts to, in a statistically quantifiable approach, discriminate 

features into “damaged” or “undamaged” categories. By using the experience from prior 

damaged and undamaged systems and the feature changes associated with previously observed 

damaged cases, it is possible to deduce the presence, type, and level of damage.  

Regression analysis is the process of correlating data features with locations or extents 

of damage. Rather than being categorized as “damaged” or “undamaged” like in group 

classification, in regression analysis features are mapped to a continuous parameter, e.g., a 



39 

 

remaining-useful-life temporal parameter. This analysis requires the availability of features 

from both the undamaged structure and the structure at different damage levels [51]. 

Outlier detection attempts to answer the following question: when data from a damaged 

structure are unavailable for comparison, do the observed features point out a significant change 

from the previously observed features that cannot be explained by extrapolation of the feature 

distribution? This type of analysis is mainly based on multivariate probability density function 

(PDF) estimation. The main problem when performing an outlier analysis is that as the 

dimension of feature vectors increases, large amounts of data are needed to define the density 

function [51]. Actually, this category has been preferentially used in the civil engineering sector 

due to the scale of civil structures, i.e. it is not feasible to introduce damage into the structure in 

order to collect data from the undamaged and damaged structure. 

The damage identification in a system can be described in a hierarchical structure 

(Figure 3-12) that attempts to answer the following questions [2]: 

i) Is there damage in the system? (Existence) 

ii) Where is the damage in the system? (Location) 

iii) What kind of damage is present? (Type) 

iv) How severe is the damage? (Extent) 

v) How much useful life remains? (Prognosis) 

 

Figure 3-12: Hierarchical structure of damage identification. 
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Answers to these questions can only be made in the same specific order as the questions 

are presented, e.g., knowing the location of the damage can only be answered after knowing 

about its existence. Statistical models are used to answer these questions in definite and 

quantifiable manner and, by doing so, they will provide knowledge about the damage state of 

the system. When applied in an unsupervised learning mode, statistical models are generally 

used to answer the first two questions, regarding the existence and location of damage. In order 

to identify the type of damage, data from structures with the specific types of damage would be 

needed so a correlation with the measured features could be made. When applied in a supervised 

learning mode and joined with analytical models, the statistical procedures can be used to 

determine the type and extent of damage and remaining useful life of the structure [1, 2].  

Statistical models can also be used to minimize false indications of damage. False 

indications of damage fall into two categories: (i) false-positive (the monitoring system 

indicates damage when there is none) and (ii) false-negative (the monitoring system gives no 

indication of damage when damage is present). Although the second category is at first glance 

the most negative to the damage detection process, since safety issues are at stake, false-positive 

readings also erode confidence in the damage detection process, as it causes unnecessary 

downtime and consequent loss of revenue. During the operation evaluation stage it can de 

decided to allow pattern recognition algorithms to weigh one type of error above the other. 

3.3.4.1. Outlier Detection based on the Mahalanobis Squared Distance 

The Mahalanobis distance, proposed by Mahalanobis in 1936, is a distance measure 

used to determine the similarities between sample sets. This procedure is commonly used in 

cluster analysis and classification techniques. It diverges from the traditional Euclidean distance 

because it takes into account the correlation between the variables and it is scale-invariant (does 

not depend on the observations scale). Considering a data set with a mean vector μ  and 

covariance matrix,Σ , the Mahalanobis distance between that data set and a new one x  is 

defined as 
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In the context of SHM for feature classification under operational and environmental 

variability, the mean vector, μ , and the covariance matrix, Σ , represent the baseline condition 

(i.e. all state conditions available when the structure is thought to be undamaged) and x

represents a potential damaged state condition. Herein, the author uses the Mahalanobis squared 
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distance (MSD), or also designated as damage indicator (DI), as a distance measure for 

multivariate statistics’ outlier detection. In these cases, the equation above should be written as 

follows: 
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where z  is the potential outlier vector belonging to the test matrix  TzzzZ ,...,, 21  and the 

mean vector, μ , and covariance matrix, Σ , are estimated from the training matrix 

 MxxxX ,...,, 21  [52]. If the feature vector z
 
has been extracted from the same multivariate 

normal distribution as the training matrix X , the test statistic )(zDI  will be Chi-squared 

distributed with m  DOF,  

 ,~ 2
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where  m  is equal to the length of the feature vector. This allows an outlier to be defined as a 

feature vector with large DI. The assumption of a Chi-squared distribution is key for outlier 

detection because it allows the definition of a threshold value, c , for a level of significance,  , 

as follows, 
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where 2
m

invF


is the cumulative distribution function of the Chi-squared distribution. As a result, 

a feature vector is considered to be an outlier when its DI is equal or greater than c [2, 55].

  

3.3.4.2. Outlier Detection based on Gaussian Mixture Models 

The underlying density distribution of the acquired data is very important to the 

statistical modeling for feature classification stage. The MSD-based algorithm described above 

is suitable for outlier detection when the training data is multivariate Gaussian distributed. 

However, it is not possible to ensure that the MSD-based algorithm will work properly in cases 

where the data are not Gaussian distributed. Therefore, the GMM stands as a useful alternative 

to overcome those limitations. The GMM is a parametric PDF represented as a weighted sum of 

multivariate normal density components [53]: 
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where x  is the feature vector, Kkkw ,...,1,    are the mixture weights, and ),|( kkg Σμx   are the 

component Gaussian densities. Each component density is a m -variate Gaussian function given 

by: 
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where kμ  is the mean vector and kΣ  the covariance matrix of the k component. The sum of all 

mixture weights must be equal to unity.  

These types of models are frequently used for probability density estimations in a wide 

range of pattern recognition and machine learning systems. The parameters of the GMM are 

generally estimated using the Expectation-Maximization (EM) algorithm, an iterative procedure 

for finding the Maximum Likelihood (ML) estimate in the presence of hidden or missing data. 

Alternatively, the parameters can be estimated using a Bayesian approach based on a Markov-

Chain Monte Carlo method as described in [54]. These parameters can all be represented in the 

following notation: 

   .,...1,,, Kkw kkkk  Σμ  
(3.11) 

In the context of the SHM for damage detection, under operational and environmental 

variability, the GHM is used as follows: (1) determine the number, K, of normal components 

contained in the training data using the AIC, (2) identify the parameters k of each normal 

component k  (mean vector, covariance matrix, and weight factor), (3) construct a MSD-based 

algorithm for each normal component k , and finally (4) for each observation, determine the 

minimum DI, i.e. DI = min(DIk)k=1,.,K. 

3.4. Shortcomings and Limitations 

SHM is based on the principle that the presence of damage will considerably alter the 

properties of a system (stiffness, mass, and energy dissipation), which in turn will alter the 

system measured dynamic response [1]. Even though this principle seems to be quite intuitive, 
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the reality is that its application is not straightforward. The first challenge resides in the fact that 

damage is usually a local phenomenon and its presence may not even influence the dynamic 

response of the system in a way that can be perceptible to the sensing system. 

Another challenge is the influence of operational and environmental variations when 

deploying a monitoring system in the field. As already mentioned in Subsection 3.3.1.3, these 

variations can cause significant changes in the dynamics of a structure, which in turn can mask 

changes caused by actual damage such as concrete cracking, material deterioration due to aging, 

or even yielding of steel elements. However, in long-term monitoring, these variations affect not 

only the structure but also the monitoring system, thus raising the possibility of sensor damage. 

When sensors are bonded or otherwise placed on surfaces, they may be subjected to extremes of 

temperatures, large temperature variations (both daily and seasonal), humidity, precipitation, 

actual immersion (due to possible flash floods which can cause overtopping of bridges), and UV 

radiation. Therefore, it may be necessary to monitor the sensors themselves. This can be 

accomplished by either developing appropriate self-validating sensors or by using the sensors to 

communicate with each other and report their condition. Sensor networks also ought to be “fail-

safe”, meaning that if a sensor is about to fail, the system should be able to adapt to the new 

network. Sensor failure does not necessarily mean that a sensor does not work at all, it can also 

mean that it does not work properly and, therefore, it might transmit false data and, 

consequently, raising the possibility of false alarms. All these aspects must be carefully 

considered in order to ensure the long-term reliability of data. 

There are also other non-technical challenges that must be addressed before SHM 

technology can make the transition from a research topic to actual practice. The construction 

sector is very conservative and the implementation of new technologies needs a clear 

requirement and motivation in order to be accepted by bridge owners. SHM technology needs to 

convince owners that it provides an economic benefit over their existing maintenance 

approaches and regulatory agencies that this technology provides a significant life-safety 

benefit. Only after the requirements and motivation have been clearly understood, and argued 

against potential clients, can SHM hope to achieve a breakthrough in its implementation. 

Unfortunately, the biggest challenge is that without significant planning and 

deliberation, most SHM systems end up of being elaborate measures of gathering data, rather 

than providing means for its efficient management and interpretation. It is vital that the system 

provides the means not just for recording and displaying responses, but also of analyzing the 

response so an assessment of the critical aspects of capacity and service-life can be made. 
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3.5. Summary and Conclusions 

The SHM has the potential to improve the BMS. Its potential for economic and life-

safety benefits is a strong motivation for this field to evolve and to mature over the years. The 

SHM main goal is to identify damage in the structure in its early stages. In order to achieve it, 

some sort of pattern recognition needs to be implemented. Therefore, herein the SHM process is 

posed in the context of the SPR paradigm. This paradigm can be broken down into four stages: 

(1) Operational Evaluation, (2) Data Acquisition, (3) Feature Extraction, and (4) Statistical 

Modeling for Feature Classification. Operation Evaluation attempts to give a global view of the 

whole SHM process by establishing the benefits of implementing a SHM system, defining the 

damage that is to be detected, and setting limitations on what will be monitored and how the 

monitoring will be performed. Data Acquisition defines the type of sensing hardware that is 

going to be used and which data are going to be selected for the feature extraction process. 

Additionally, some sort of data normalization and cleansing might be performed for feature 

enhancement. Feature Extraction is the process of identifying features and performing 

information condensation. Finally, the Statistical Modeling for Feature Classification attempts 

to develop statistical models to discriminate damage-sensitive features into, for instance, 

undamaged and damaged conditions. 

Among all the stages of the paradigm, the data acquisition is the one that has showed 

the most remarkable development in the last years. New smart materials/sensors such as FOS 

have proven to be a new development with vast potential for the SHM field. The evolution of 

data transmission technology, such as wireless communication, has also given a tremendous 

step in creating better monitoring networks. As most civil engineering structures are usually 

very large, common wired networks are very expensive and hard to implement.  

Nevertheless some aspects of this paradigm still need to be improved. One of the main 

challenges is still to differentiate changes in the structural response caused by damage from 

changes caused by operational and environmental conditions. For instance, changes in the 

natural frequencies of a bridge are more likely to be a result of temperature variations than 

actual damage. It is important to identify all the operational and environmental state conditions 

so that wrong assumptions are not made regarding the existing of damage and resources are not 

wasted. 
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4. APPLICABILITY OF THE SPR PARADIGM: LABORATORY 3-

STORY STRUCTURE 

4.1. Introduction 

This chapter aims to study the applicability of the concepts described in the previous 

chapter on data sets from a laboratory structure. To that purpose, standard data sets were 

acquired from a base-excited three-story frame structure, created and tested in a laboratory 

environment at Los Alamos National Laboratory (LANL) [2]. The data sets are composed of 

force and acceleration time series measured under various structural state conditions. In order to 

simulate damage, a bumper mechanism was placed between floors. This mechanism attempts to 

simulate the fatigue cracks that open and close under operational and environmental loading 

conditions. The operational and environmental effects were simulated by using different mass 

and stiffness conditions (non-damage related events). As stated previously in Chapter 3, 

operational and environmental effects include changes in both the loading conditions and in the 

material stiffness of the structure. In this case, the changes added to the structure were designed 

to introduce variability in the fundamental natural frequency up to 7% from the baseline 

condition, which is a value within the normal range observed in real-world structures [2, 52]. 

In the context of the hierarchical structure of damage identification, this chapter will be 

focused on determining the existence and, to the best extent, the location of damage in the 

structure as an extension to the previous results obtained by Figueiredo et. al [2, 4, 41, 52, 55]. 

Even thought determining the type and severity are important steps in the damage identification 

process, robust and reliable damage detection and localization methods must precede those 

steps, so that the process can be built on solid foundations. To achieve that goal, this chapter 

will be focused on the application of feature extraction and statistical modeling for feature 

classification techniques, mainly based on the AR models, the modal parameters, and the 

Mahalanobis distance. 

4.2. Structure Description and Data Acquisition 

The three-story building structure (Figure 4-1) consists of aluminum plates and columns 

assembled using bolted joints which slides on rails only allowing movement in the x-direction. 

The different leveled plates (30.5 × 30.5 × 2.5 cm
3
) are connected by four aluminum columns 

(17.7 × 2.5 × 0.6 cm
3
) at each floor, forming a four degree-of-freedom (DOF) system. In 

addition, a center column (15.0 × 2.5 × 2.5 cm
3
) is attached to the top floor. The purpose of this 

column is to simulate damage by inducing nonlinear behavior when it makes contact with a 
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bumper mounted on the floor below (Figure 4-1). The gap between the bumper and the column 

can be adjusted to vary the extent of impacting that occurs during a particular excitation level. 

In Figure 4-2 it is possible to see a schematic representation of the test structure [2, 52]. 

The structure is connected at the base to an electrodynamic shaker, which provides a 

lateral excitation along the center line of the structure. Both the structure and the shaker are 

fixed on and aluminum baseplate (76.2 × 30.5 × 2.5 cm
3
), and the entire system rests on rigid 

foam, which minimizes extraneous sources of unmeasured excitation from being introduced 

through the base of the system. A load cell (Sensor 1) with a nominal sensitivity of 2.2 mV/N 

was placed at the end of a stinger to measure the input force from the shaker to the structure. 

Four accelerometers (Sensor 2-5) with nominal sensitivities of 1,000 mV/g were placed at the 

center line of each floor on the opposite side from the excitation source in order to measure the 

system’s response. Since the accelerometers are located at the center line of each floor they are 

insensitive to torsion. Additionally, the location of the shaker and the linear bearings minimize 

the torsional excitation of the system [2, 51]. 

 

 

Figure 4-1: Three-story building structure and shaker (on the left); Adjustable bumper and the 

suspended column (on the right). 
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Figure 4-2: Dimensions (in centimeters) of the three-story building structure. 

The DAQ system is composed of a Dactron Spectrabook, which was used to collect and 

process the data. The output channel of this system is connected to a Techron 5530 Power 

Supply Amplifier that drives the shaker. The location of the five sensors (Sensors 1–5) used in 

these tests can be found in Figure 4-2. The analog sensor signals were discretized with 8,192 

data points sampled at 3.125 ms intervals matching a sampling frequency of 320 Hz. These 

sampling parameters yield time histories of 25.6 seconds in duration. A band-limited random 

excitation ranging from 20 to 150 Hz was used to excite the structure. This excitation signal was 

chosen with the intention of avoiding the rigid body modes of the structure that are often present 

below 20 Hz. The excitation level was set to 2.6 V RMS in the Dactron system, which 

corresponds to 20 N RMS measured at Sensor 1. 
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Force and acceleration time series for various structural state conditions were collected, 

as shown in Table 1, along with information describing the different states. For example, the 

state condition labeled “State #6” is described as “87.5% stiffness reduction in column 2BD,” 

which means that there was a 87.5% stiffness reduction in the column located between the first 

and second floors at the intersection of plane B and D as defined in Figure 4-2. 

The structural state conditions can be classified into four main groups. The first group is 

the baseline condition, which is the reference structural state (State #1). The bumper and the 

suspended column are included in the baseline condition, however the space between the 

bumper and the column ensures that there were no impacts during the excitation. The second 

group includes the states when the mass and stiffness of the columns were changed to match the 

operational and environmental variability of real-world structures (States #2–#9). The 

operational variations were simulated by adding a mass, m, of 1.2 kg (nearly 19% of the total 

mass of each floor) to the base and to the first floor, as shown in Figure 3. The environmental 

variations were simulated by reducing one or more columns’ stiffness by 87.5%. This process 

was done by replacing the respective column with another one with half the cross-section 

thickness in the direction of shaking. The third group includes damaged state conditions 

simulated by introducing nonlinearities into the structure using a bumper and a suspended 

column, with different gaps between them, as shown in Figure 4-3. The gap between the 

bumper and the suspended column was varied (0.20, 0.15, 0.13, 0.10, and 0.05 mm) with the 

purpose of introducing different levels of nonlinearities (States #10–#14). Finally, the fourth 

group includes the state conditions with damage and operational and environmental changes 

(States #15–#17). For each of the seventeen state conditions, ten tests were performed so that 

the variability in the data could be taken into account. Therefore, for each of the five 

transducers, a total of ten time histories were considered in each state condition [2, 52]. 

 

Figure 4-3: Structural details. 
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Table 1: Data labels of the structural state conditions. 

Label State Condition Description 

State #1 Undamaged Baseline Condition 

State #2 Undamaged Mass = 1.2 kg at the base 

State #3 Undamaged Mass = 1.2 kg at the 1
st 

floor 

State #4 Undamaged 87.5% stiffness reduction in column 1 BD 

State #5 Undamaged 87.5% stiffness reduction in column 1 BD and 1 AD 

State #6 Undamaged 87.5% stiffness reduction in column 2 BD 

State #7 Undamaged 87.5% stiffness reduction in column 2 BD and 2 AD 

State #8 Undamaged 87.5% stiffness reduction in column 3 BD 

State #9 Undamaged 87.5% stiffness reduction in column 3 BD and 3 AD 

State #10 Damaged Gap = 0.20 mm 

State #11 Damaged Gap = 0.15 mm 

State #12 Damaged Gap = 0.13 mm 

State #13 Damaged Gap = 0.10 mm 

State #14 Damaged Gap = 0.05 mm 

State #15 Damaged Gap = 0.20 mm and mass = 1.2 kg at the base 

State #16 Damaged Gap = 0.20 mm and mass = 1.2 kg at the 1
st 

floor 

State #17 Damaged Gap = 0.10 mm and mass = 1.2 kg at the 1
st 

floor 

 

4.3. Feature Extraction 

As mentioned before, the feature extraction process can be defined as the selection of 

features that allows one to distinguish between the damaged and the undamaged systems. The 

ideal approach for feature selection is to choose features that are very sensitive to damage and, 

for the most part, insensitive to other sort of effects, have the lowest dimension possible and 

also be extracted with minimal computational efforts. There are numerous methods to be 

employed in order to identify features for damage identification. In this section, an AR model 

will be used to extract features from the measured data as well as to determine the existence and 

location of damage in the test structure. Basically, this section will be a continuation of 

Figueiredo’s work [2], where he attempted to determine the existence of damage using only data 

from Sensor 5. In this case, by using data from all accelerometers (Sensor 2-5), the author will 

attempt to determine the presence and location of damage. 
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The first step, to successfully apply AR models, is to identify the optimal number of 

parameters needed to fit the data. To that purpose, the AIC, as described in Chapter 3, will be 

applied to data from all the four accelerometers. Figure 4-4 shows the averaged AIC functions 

obtained using the data from the ten tests of the first nine state conditions (undamaged 

conditions, State #1-9) of each sensor. Note that, in theory, the optimal number is given by the 

minimization of the AIC function. 

 

Figure 4-4: AIC functions of Sensors 2 to 5. 

Even though it is not possible to establish a single solution for all accelerometers, the 

results suggest that, for the most part, the AIC functions start to converge for model orders 

between 20 and 40, which is an indication that the optimal common model order might be 

within that range. Based on this analysis, an AR(25) model will be used throughout this section. 

Note that it is not advisable to generalize model orders because each data set has its own 

internal structure and complexity. However, by doing so it will be possible to study the 

influence of model order on the damage detection.  

After the selection of the AR model order, the AR parameters are estimated by fitting 

the AR(25) model to the time histories from Sensors 2 to 5, for all state conditions, using the 
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least-squares technique available in the SHMTools – software developed by the Engineering 

Institute from the LANL [56]. Figure 4-5 shows the AR parameters set into two main groups: 

the ones that correspond to the undamaged condition (State#1-9) and the ones that correspond to 

the damaged condition (State#10-17). The results show that the AR parameters themselves can 

be used directly as damage-sensitive features. When comparing the two groups, both figures 

suggest that upon the presence of damage, the AR parameters tend to decrease in amplitude. 

Furthermore, the results obtained from Sensor 4 show a clear distinction between the damaged 

and the undamaged states, which can mean that this sensor is more sensitive to the presence of 

damage than the other ones, as it is located close to the source of damage. However, one should 

note that Sensor 3 has opposed changes, which might be a result of the internal structure of the 

data. 

 

Figure 4-5: AR parameters Sensors 2 to 5. 

Before the statistical modeling for feature classification stage and, in order to have a 

better insight on the data, a normality test was performed. Normality tests are used to determine 

if a data set can be modeled by a normal distribution. By performing a Q-Q Plot (using 

MATLAB Statistics Toolbox), sample quantiles from the AR parameters were compared with 

theoretical quantiles from a normal distribution (Figure 4-6). Since the parameters from the 
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baseline condition are grouped into a 90x25 matrix, plotting all 25 columns would not be 

appropriate. Therefore only a few columns were selected for these plots, more precisely the first 

columns of each quarter of the total number of parameters (columns 1, 7, 13 and 19). The figure 

indicates that the data have an underlying normal distribution, as the plots are close to linear, 

with insignificant changes in the tails. 

Note that the importance of performing this test resides on the fact that non-Gaussian 

distributed features might cause some false alarms during the damage detection stage, as the 

MSD-based algorithm used to determine DIs assumes that the training data have an underlying 

multivariate normal distribution.  

 

Figure 4-6: Q-Q plots from Sensors 2 to 5. 

4.4. Statistical Modeling for Feature Classification 

After the feature extraction process, the MSD-based algorithm was used to estimate 

DIs. As explained in the previous chapter, the MSD measures similarities between known and 

unknown sample sets. As the damaged and the undamaged states were known a priori, in the 

learning process, the mean vector and covariance matrix of the undamaged/reference condition 

were computed using data from the training matrix X. The training matrix is composed of all 
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data sets from the undamaged condition (State #1-9). Afterwards, the DIs were estimated based 

on the MSD-based algorithm, using the test matrix Z composed of all the data (State#1-17). For 

outlier detection, a threshold value was established based on a Chi-squared distribution (    
  ) 

with 25 DOF and for a level of significance equal to 5%. Note that from a statistical point of 

view, it represents the boundary between the undamaged and the damaged conditions. Figure 

4-7 plots the DIs for all four accelerometers (Sensor 2-5) along with the thresholds. 

 

Figure 4-7: DIs for Sensors 2 to 5 using an AR(25) parameters as features. 

From a general perspective, the results clearly show a difference in behavior upon 

reaching observations from State #10, which is when damage is introduced to the structure (by 

reducing the gap between the suspended column and the bumper), giving some indications that 

the attempt to determine the presence of damage was successful. Nonetheless, both Sensor 4 

and Sensor 5 reveal a better classification performance, as most of the DIs from 91-180 are 

beyond the thresholds. 

By carrying out a sensitivity analysis, the thresholds can also be used to determine the 

location of damage. By counting the number of DIs beyond the threshold, it is possible to 

estimate which sensor is closer to the source of damage. In Figure 4-8, one observes that the 



54 

 

number of outliers per sensor points out the location of the source of damage somewhere 

between Sensors 4 and 5, i.e. between the 2
nd

 and 3
rd

 floor, with a slitter tendency to Sensor 4, 

which is where the suspended column and bumper are actually located. 

 

Figure 4-8: Number of outliers per sensor. 

As mentioned previously in Chapter 3, false alarms of damage fall into two categories: 

(i) false-positive or Error Type I (the SHM system indicates damage when there is no damage) 

and (ii) false-negative or Error Type II (the SHM system gives no indication of damage when 

damage is present). In this study, as shown in Table 2, it was possible to determine the number 

and the type of errors associated with the feature classification technique used.  

Table 2: Classification performance based on the number of false alarms. 

Sensor  
Error Type I 

(false-positive) 

Error Type II 

(false-negative) 

5 0 0 

4 4 0 

3 1 17 

2 4 28 

 

The high number of false alarms in Sensors 2 and 3 might be a direct result of an 

unsuitable model order (besides the fact that they are located far away from the source of 

damage). In order to point out the influence of the model order, a new AR model, AR(45), was 

used for these two sensors. The new model order was selected based on Figure 4-4, where it is 

possible to visualize that both AIC functions clearly converge at 45. Figure 4-9 plots the new 
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DIs for Sensors 2 and 3 by using the test matrix. These results clearly show a higher precision 

level when compared to the previous ones in Figure 4-7.  

 

Figure 4-9: DIs for Sensors 2 and 3 using the AR(45) parameters as features. 

The number of false alarms was significantly reduced, especially Error Type II showing 

improvements in the range of 70-86% for Sensors 3 and 2 respectively, as shown in Table 3. 

Table 3: Classification performance based on the number of false alarms. 

Sensor  
Error Type I 

(false-positive) 

Error Type II 

(false-negative) 

3 3 5 

2 0 4 

 

In order to gain insight about the influence of the AR model order on the classification 

performance, Figure 4-10 plots, for both Sensors 2 and 3, the variation of the two types of errors 

as the model order increases from one to 60. The Error Type I (false-positive) show small and 

inconsistent variations as the model order increases, until it reaches a value (model order of 42) 

where no more errors of this type occur. For the Error Type II (false-negative), the lowest model 

order, AR(1), represents the maximum number of possible errors, 80, which is the total number 

of tests from the damaged states. The bottom line is that for low model orders, there are too few 

parameters to properly define the data and, as a result, the AR parameters are too wide and 

unable to detect damage. As the model order increases, the AR models are better adjusted to the 

data and they can more easily distinguish the damaged from the undamaged state conditions. 

Actually, these results also justified the optimal model order (45) suggested by the AIC. 
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Figure 4-10: Error evaluation from Sensors 2 and 3. 

Regardless of the AR model order differentiation for Sensors 2 and 3, the number of 

outliers still points out, although not as clearly as before, that the source of damage is located 

between Sensors 4 and 5, i.e. between the 2
nd

 and the 3
rd

 floor, as shown in Figure 4-11. This 

result suggests that if one uses the optimal AR model order, for each sensor, as suggested by the 

AIC, then it is possible to locate damage in the structure by performing some sort of sensitivity 

analysis. 

 

Figure 4-11: Number of outliers per sensor with AR(25) models for Sensors 4 and 5, and AR(45) 

for Sensors 2 and 3. 

4.5. Conclusions 

The objective of this chapter was to apply the SPR paradigm for SHM on data sets 

acquired from a base-excited three-story frame structure, created and tested in a laboratory 

environment at LANL. In the context of the hierarchical structure of damage identification, this 
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chapter was focused on determining the existence and, to the best extent, the location of damage 

in the structure. To that purpose, several statistical procedures were used to perform feature 

extraction and statistical modeling for feature classification. 

In the feature extraction process, AR models were used to extract features from the 

measured data in the attempt to determine the presence of damage in the test structure. The 

estimated parameters of the AR models were directly used as damage-sensitive features. It was 

found that as damage was introduced to the test structure, in general the amplitudes of the AR 

parameters decreased, showing that these parameters are very sensitive to the presence of 

damage.  

The statistical modeling for feature classification was carried out by using the MSD-

based algorithm to estimate DIs and classify the damage-sensitive features. Even though the 

damaged and the undamaged states were known a priori, the algorithm was implemented using 

an unsupervised learning approach by using the undamaged states to train the algorithm and 

then applying all the data sets to test it. A threshold value was established using a Chi-squared 

distribution with a 95% confidence interval, in order to separate the DIs into damaged and 

undamaged conditions. In general, and probably due to the reduced size of the structure, the 

results showed that one could detect the presence of damage using only data from one sensor. In 

addition, the results showed that if one uses the optimal AR model order, for each sensor, as 

suggested by the AIC, then it is possible to locate damage in the structure by performing some 

sort of sensitivity analysis at the sensors’ level. Basically, by counting the number of outliers 

beyond the thresholds in each sensor, one might set up a correlation between the number of 

outliers and sensors’ location in the structure, to identify the localization of the source of 

damage.  
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5. APPLICABILITY OF THE SPR PARADIGM: Z24 BRIDGE 

5.1. Introduction 

In this chapter, the applicability of the techniques described in Chapter 3, and already 

applied in Chapter 4, to extract damage-sensitive features from the raw data, to remove the 

operational and environmental variability from those features, and to classify them into damage 

and undamaged conditions, will be tested on data from a real-world bridge, namely the Z24 

Bridge in Switzerland. This bridge is part of a worldwide known project, which has been 

studied by some of the top researchers in the SHM field, in order to prove the feasibility of 

vibration-based health monitoring in civil engineering infrastructures. For almost one year, the 

Z24 Bridge was closely monitored before it was artificially damaged and later demolished. 

During that period, the influence of the environmental conditions, such as air humidity, wind 

and, most importantly, temperature, on the bridge’s eigenfrequencies and mode-shapes was 

studied [57, 58]. The aim of the progressive damage tests, following the one-year long 

monitoring, was to recreate realistic and relevant damage scenarios in order to prove the 

hypothesis that damage can be detected, localized and even quantified by taking into 

consideration changes in the dynamics of the structures, especially based on damage-sensitive 

features such as eigenfrequencies and mode-shapes. 

5.2. Structural Description and Data Acquisition 

The Z24 Bridge, built between 1961 and 1963, was an overpass of the national highway 

A1 that linked Bern and Zurich, Switzerland. It was a post-tensioned concrete box girder bridge 

with a main span of 30 meters and two side-spans of 14 meters that crossed the A1 at a slight 

oblique angle (Figure 5-1) [57]. The two central supports were concrete piers connected to the 

girder, while both abutments were triple concrete columns connected via concrete hinges to the 

girder. Although it had no structural problems the bridge was demolished at the end of 1998 due 

to a new railway, adjacent to the highway, which required a larger side span [3, 34, 59].  
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Figure 5-1: The Z24 Bridge cross section and top view. 

Before its complete demolition, the bridge was subjected to three types of testing: (1) a 

long-term continuous monitoring test, which took place during the year before demolition and 

aimed to quantify the effects of the environmental variability on the bridge dynamics, (2) short-

term intermittent monitoring tests, which were used to compare results from different excitation 

types and system identification methods, and (3) progressive damage tests, which took place a 

month before demolition and aimed to study the influence of realistic damage scenarios on the 

bridge dynamic properties. This project was unique in the sense that it allowed long-term 

continuous monitoring tests combined with realistic short-term progressive damage tests [3, 34, 

57, 59]. 

5.2.1. Excitation Sources 

Vibration-based damage detection methods are widely used among SHM researchers. 

This technique uses changes in the dynamic characteristics of a structure (i.e., eigenfrequencies, 

mode shapes, and damping properties) as indicators of damage. Since the dynamic 

characteristics of a structure are directly related to its physical properties, measured changes can 

be used to detect damage. In order to achieve this, various sources of dynamic excitation can be 

used, including forced excitation using a shaker and impact excitation by a falling weight or by 

using an impact hammer. There are other types of impact excitation referred to as free vibration 

testing. Some of these methods can be quite original, for example, in order to vertically excite 
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the Vasco da Gama Bridge in Lisbon, Portugal, Cunha et al. used a sudden release of a 

suspended boat beneath the bridges deck [34, 57].  

In the last couple of years more attention has been given to ambient excitation, which is 

the structural response to the bridges to natural sources, such as traffic, wind or river flow 

among others. There are clear benefits of using these sources, such as being easily accessible, 

free, and being more representative of the actual excitation to which the bridge is subjected 

during its lifetime. However, due to the nature of the force itself, the input that these sources 

provide is very difficult to quantify, which introduces a certain level of uncertainty into the 

identification of the vibration mode parameters. 

The excitation sources used on the Z24 Bridge tests can be divided into two parts. The 

first part took place the year before demolition and was mainly based on ambient excitation. 

During this time the bridge remained open to traffic so the ambient sources acting on the bridge 

were highway traffic, wind, and pedestrians. The second part occurred in the month before 

demolition. Since several damage scenarios were going to be applied, for safety reasons the 

bridge was closed to traffic. After the application of a damage scenario, an ambient and a shaker 

tests were performed. For the shaker tests, two shakers were used, one located at a sidespan, and 

the other at the mid-span. After damage scenario 8, in addition to the test already being made, a 

drop weight, located at mid-span, was also used to excite the bridge (details regarding the 

damage scenarios can be seen in Subsection 5.2.3). Figure 5-2 exemplifies the excitation 

sources used on the Z24-Bridge [34, 57]. 

 

Figure 5-2: Excitation Sources of the Z24 Bridge: on the left the highway traffic, in the middle the 

installation of a mass shaker and on the right the drop weight system. 
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5.2.2. Long-term Continuous Monitoring Test 

The aim of the long-term continuous monitoring test, which was held from 11 

November 1997 to 11 September 1998, was to quantify the environmental variability of the 

bridge dynamics. To that purpose all environmental variables that influenced the bridge 

dynamics had to be monitored. Therefore, sensors to measure air temperature, humidity, wind 

speed, wind direction and rain were installed at the bridge. 

It is known that temperature variations have an influence on the dynamic behavior of a 

structure, as mention in Chapter 3. In addition, as the Z24’s girder was a continuous beam, 

thermal variations may have lead to constraints which in turn could influence the Z24's dynamic 

behavior
3
. Therefore, a strategically distribution of temperature sensors was made over the 

girder to monitor the bridge’s thermal state at three different locations: one in the main span and 

two in the side spans. The measurements were taken by eight thermocouples located at the 

center of the north (TWN), central (TWC) and south (TWS) web; below the north (TSWN) and 

south (TSWS) sidewalk; at the top (TDT) and soffit (TDS) of the deck, and at the soffit (TS) of 

the girder (Figure 5-3) [34, 57, 58].  

 

Figure 5-3: Cross section of the girder, showing the location where the temperature was monitored 

While drilling access holes for the installation of the temperature sensors, it was 

discovered a cover of 16-18 cm of asphalt layer instead of 5 cm as indicated by the original 

blueprints. As a result, the temperature of the pavement (TP) was also measured at the middle of 

the three spans (Figure 5-3). 

                                                      
3
 Generally, when an object is subjected to a temperature variation (is heated or cooled) its length 

suffers a variation proportional to its original length. This phenomenon is called linear thermal expansion. 

If the object is not free to expand or contract its change in length can cause stress large enough to damage 

the object or to cause a change in its boundary conditions. In the Z24 bridge case, since the bridge girder 

was a continuous beam these problems could easily surface which would affect the bridges dynamic 

behavior. 
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Changes of dynamic soil stiffness can also result in variations of dynamics properties. 

Consequently, the soil temperature near each column was monitored, as well as near the north, 

central, and south parts of the intermediate piers resulting in a total of 12 sensors. To monitor 

dynamic behavior of the bridge, 16 accelerometers were placed across the structure at different 

locations and in different directions. 

During the long-term continuous monitoring test data were acquired at hourly intervals. 

Every hour parameters such as air temperature, humidity, bridge expansion, wind 

characteristics, and soil and bridge temperatures were collected. In addition, every hour for 11 

min, a group of the 16 accelerometers captured the vibrations of the bridge. All this information 

was later stored to a hard disk after compression. Due to the construction works at the new 

bridge, six temperature sensors were loss and one accelerometer was damaged. Even though the 

type of accelerometers used was specially designed for long-term monitoring, some revealed a 

considerable deterioration and some even failed during operation [34, 57, 58]. 

5.2.3. Progressive Damage Tests 

The purpose of the progressive damage tests was to study how certain damage scenarios 

influenced the bridge dynamics. To achieve that, the selected damage scenarios had certain 

common characteristics: (i) be relevant for the safety of the bridge, i.e. if damage were to occur 

and went untreated it would endangered the bridges bearing capacity, (ii) the simulated damage 

occurred frequently and accordingly to the literature and experience of Swiss bridge owners, 

and (iii) be applicable to the Z24 bridge. With that in mind, a first selection of valid damage 

scenarios was made, some of which were later discarded based on limited time issues and safety 

requirements. The window time available for applying the damage scenarios was limited by the 

opening of the new bridge and the complete demolition of the Z24 Bridge. Since the A1 

highway, which crossed the Z24 Bridge from underneath, was never closed to traffic some of 

the initial damage scenarios could not be applied without risking the safety of the traffic, which 

was considered of vital importance. For the same reason during these tests the traffic on the Z24 

Bridge was diverted to another highway. Table 4 summarizes all progressive damage tests. 

Some of these tests are illustrated in Figure 5-4 [34, 57]. 

The first step prior to the implementation of the damage scenarios was to perform a 

reference measurement. Afterwards, and after each damage scenario, the bridge was subjected 

to an ambient and a forced vibration test. The ambient tests were performed during rush hour in 

the A1 highway, which crossed the Z24 Bridge from underneath, in order to increase the 

number of ambient excitation sources acting of the bridge. The other sources were wind and 



64 

 

walking of test crew. The forced vibration tests followed the ambient tests. For this test, two 

vertical shakers of EMPA Federal Laboratories, Switzerland, were used, namely one in a side-

span and the other at mid-span. The input signals generated by the shaker were calculated using 

an inverse fast Fourier transform algorithm and ranged between 3-30 Hz. Due to the limited 

number of accelerometers and acquisition channels, the structure was measured in nine setups 

using five reference channels. After damage scenario 8, a drop weight test was included in the 

test. In the end, a total of 65 536 samples were collected at a sampling rate of 100 Hz [34, 57]. 

Table 4: Progressive damage tests. 

No. Data (1998) Scenario 
Description/simulation of 

real damage case 

1 04.08 First reference measurement Healthy structure 

2 09.08 Second reference measurement 
After installation of 

lowering system 

3 10.08 Lowering of pier, 20 mm 

Settlement of subsoil, 

erosion 

4 12.08 Lowering of pier, 40 mm 

5 17.08 Lowering of pier, 80 mm 

6 18.08 Lowering of pier, 95 mm 

7 19.08 Tilt of foundation 
Settlement of subsoil, 

erosion 

8 20.08 Third reference measurement 
After lifting of the bridge 

to its initial position 

9 25.08 Spalling of concrete, 24 m
2 

Vehicle impact, 

carbonization, and 

subsequent corrosion of 

reinforcement 
10 26.08 Spalling of concrete, 12 m

2
 

11 27.08 Landslide of abutment Heavy rainfall, erosion 

12 31.08 Failure of concrete hinge Chloride attack, corrosion 

13 02.09 Failure of anchor heads I 
Corrosion, overstress 

14 03.09 Failure of anchor heads II 

15 07.09 Rupture of tendons I 
Erroneous or forgotten 

injection of tendon tubes, 

chloride influence 

16 08.09 Rupture of tendons II 

17 09.09 Rupture of tendons III 
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Figure 5-4: Photographs illustrating the applied damage scenarios. From left to right and from top to bottom: 

(1) cutting of a pier to install the settlement system, (2) settlement system, (3) spalling of concrete, (4) failure of 

a concrete hinge, (5) failure of anchor heads, (6) failure of tendon wires. 
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5.3. Feature Extraction 

For this study, a total of 235 observations were taken into account, which correspond to 

daily feature vectors composed of the first three natural frequencies estimated at 5am (because 

of the lower differential temperature on the bridge). These feature vectors were extracted by 

Figueiredo et al. using an automatic modal analysis procedure based on the frequency domain 

decomposition [60, 61]. (Note that this procedure was only capable of estimating with high 

reliability the first three frequencies.) During the extraction process, it was noticed that the first 

and the third natural frequencies were strongly correlated (with a correlation coefficient of 

nearly 0.94 as summarized in Table 5), which allows one to perform, if necessary, dimension 

reduction of the extracted feature vectors from three to two. From the 235 observations, the first 

197 ones correspond to the healthy state of the bridge (baseline condition) which, 

chronologically, lasts from 11
th
 of November 1997 to 3

rd
 of August 1998 while the remaining 38 

ones correspond to the progressive damage testing period, lasting from 4
th
 of August to 10

th
 of 

September 1998. Although the main goal was to monitor a whole year, the monitoring system 

was, occasionally, not operational during short periods. Therefore, only 235 measurements were 

successfully extracted. Figure 5-5 illustrates the first three natural frequencies and the ambient 

temperature as a function of time. Several frequency oscillations are visible as well as a distinct 

frequency increase during a period of time between observations 50 and 100. As it was 

referenced before, during this period damage had not been yet introduced in the structure. Thus, 

this phenomenon can only be explained by structural changes caused by operational and/or 

environmental effects, most likely by temperature variations. From the observation of the 

figures, it is also clear when the progressive damage testing starts as indicated by a tendency to 

drop down in the magnitude of each frequency. It is important to note that these tests were 

carried out in a sequence manner, resulting in an accumulative degradation of the bridge. 

Table 5: Correlation matrix of the natural frequencies. 

 f1 f2 f3 

f1 1 0.77 0.94 

f2 0.77 1 0.78 

f3 0.94 0.78 1 
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Figure 5-5: First three natural frequencies and ambient temperature. 

As it is well known, temperature changes affect the Young’s modulus of both concrete 

and asphalt, which will consequently affect the natural frequencies of the bridge. To better 

understand this relation, frequency-temperature graphics were developed. Figure 5-6 plots the 

1
st
 natural frequency versus the temperature of the deck soffit (TDS2) along with the 2

nd
 natural 

frequency versus the temperature of the wearing surface (TP1). (Note that both temperature-

sensor locations can be seen in Figure 5-3.) Upon analyzing both graphics, the relation between 

frequency and temperature can nearly be described as bilinear, as suggested by two imaginary 

straight lines converging around 0°C. During cold periods (temperatures below 0°C) the bridge 

stiffness changes significantly from the bridge stiffness in normal periods (temperatures above 

0°C). (Note that this bilinear behavior is present itself in all combinations of frequency vs. 

temperature.) Peeters & De Roeck [3] claimed that those variations are mainly introduced by the 

asphalt layer. Basically, during cold periods, the asphalt layer considerably increases the 

stiffness of the structure, which in turn causes a variation of the natural frequencies. 
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Figure 5-6: Natural frequencies versus temperatures. 

In order to have a better insight on the data sets, a normality test was performed. By 

performing a Q-Q Plot, the sample quantiles of the different natural frequencies are compared 

with theoretical quantiles from a normal distribution. The main assumption is that if a natural 

frequency follows a normal distribution, the plot should be close to linear. Therefore, from 

Figure 5-7, one observes significant deviations on the tails of the distributions, which is an 

indication that the natural frequencies do not follow individual normal distributions. 

 

Figure 5-7: Q-Q Plot of the three natural frequencies. 

As the gathered natural frequencies do not follow normal distributions, one can estimate 

the PDF of those using the ksdensity function available in MATLAB. Figure 5-8 shows several 

bumps in the individual PDFs, which suggest that the natural frequencies might follow a 

mixture of multivariate normal distributions rather than a unique standard multivariate normal 
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distribution. Note that the non-Gaussian distributed features might cause some false alarms 

during the damage detection stage, especially when classifiers make assumptions of normality, 

as will be shown later on. 

 

Figure 5-8: Individual probability density estimates of the three natural frequencies. 

5.4. Statistical Modeling for Feature Classification 

5.4.1. Outlier Detection based on a Multivariate Gaussian Distribution 

The damage detection strategy was carried out similarly to the one in Chapter 4: the 

extracted feature vectors (or observations), in this case the first three natural frequencies, were 

divided into a training matrix X, composed of the entire undamaged observations, and a test 

matrix Z, composed of all observations available, i.e. both the undamaged and the damaged 

ones; afterwards, the classification is performed using the MSD-based algorithm, which 

assumes that the training data follow a multivariate normal distribution. 

Basically, in the learning stage, the mean vector and covariance matrix of the 

baseline/reference condition were computed using the training matrix X. Afterwards, the DIs 

were estimated based on the MSD-based algorithm using the test matrix Z. A threshold value 

was also established using a Chi-squared distribution (   
  ) with three DOF and for a level of 

significance of 5%, in an attempt to differentiate the states from the damaged and the 

undamaged conditions.  
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Figure 5-9 plots the DIs derived from the test matrix. As one can visualize in the figure, 

the MSD-based algorithm triggers several non-random false alarms between observations 50 

and 100, meaning that the algorithm indicates the presence of damage when in fact there is 

none. This fact highlights that the algorithm cannot get rid of the environmental effects. 

Moreover, Table 6 summarizes the total number of misclassifications (27) as well as of the 

number of Error Type I (false-positive) and Error Type II (false-negative). The high number of 

Errors Type I (19), which is higher than the tolerance (10) given by level of significance, might 

be related to the multimodality of the data, as a result of the bilinear behavior caused by the 

temperature variability. (Actually, this fact was predictable as mentioned in Subsection 5.3.) 

Note that the MSD-based algorithm assumes that the training data follow a multivariate normal 

distribution, which implies that it might not work properly when the training data assumes an 

underlying GMM. 

 

Figure 5-9: DIs derived from the MSD-based algorithm. 

Table 6: Misclassifications derived from the MSD-based algorithm. 

 Error Type I 

(false-positive) 

Error Type II 

(false-negative) 

Total number of 

False Indications 

Multivariate Normal 

Distribution 
19 8 27 

 

5.4.2. Outlier Detection based on a Gaussian Mixture Model 

With the aim of improving the feature classification performance, an algorithm based on 

a GMM was developed. This algorithm aims to: (1) determine the number, K, of normal 

components contained in the training data, (2) identify the parameters of each normal 
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component k (mean vector, covariance matrix, and weight factor), (3) construct a MSD-based 

algorithm for each normal component, and finally (4) for each observation, i, one must 

determine the minimum DIi, i.e. DIi = min(DII,k)k=1,.,K.  

The backbone of this algorithm was the MATLAB’s Gaussian mixture model 

gmdistribution.fit function, which can be found in MATLAB’s Statistics Toolbox. This function 

uses an EM algorithm to produce maximum likelihood estimates of the various parameters in a 

GMM with K components. Basically, the idea is to input data from the Z24 Bridge, more 

specifically the training matrix X (composed solely of feature vectors from the undamaged 

condition), and determine the mean vector and the covariance matrix of each normal component 

that defines the mixture model. In order to achieve that, the number of components K must be 

determined prior to the data input. 

Amongst its several properties, the gmdistribution.fit function possesses an AIC output 

variable. Therefore, it is possible to estimate the number of components that best fits the 

training data simply by analyzing the AIC values. Figure 5-10 plots the AIC function ranging 

from one to five components. It is important to note that every time the gmdistribution.fit 

function is run, the EM algorithm starts its process of iterations at a random point and, from 

there, it converges to the nearest local maximum of the likelihood. As a result, it is possible that 

the acquired point of convergence is a local maximum instead of the global maximum. In order 

to overcome this problem the gmdistribution.fit function was run several times in the attempt to 

converge to the global maximum. The values plotted in Figure 5-10 were determined using this 

process. 

 

Figure 5-10: AIC function for mixture models ranging from one to five normal components and 

assuming first three natural frequencies. 
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Even though the AIC function is not minimized in that range, it is assumed that the 

appropriate number of components is in the range between two and four, because the AIC 

values start converging around those points. Nevertheless, with the purpose of studying the 

influence of the number of components on the classification performance, four different values 

were considered. Table 7 summarizes some parameters estimated as a function of the number of 

components. 

Table 7: Estimated parameters varying the number of components, K=2-5. 

 Components Weight (%) Mean f1 

(Hz) 

Mean f2 

(Hz) 

Mean f3 

(Hz) 

K = 2 
#1 80.9 4.0 5.2 10.1 

#2 19.1 4.2 5.4 10.6 

K = 3 

#1 74.2 4.0 5.2 10.1 

#2 10.3 4.3 5.5 10.8 

#3 15.5 4.0 5.2 10.3 

K = 4 

#1 10.1 4.3 5.5 10.8 

#2 6.7 4.0 5.1 10.2 

#3 73.0 4.0 5.2 10.1 

#4 10.2 4.1 5.3 10.4 

K = 5 

#1 12.9 4.0 5.3 10.4 

#2 6.8 4.0 5.1 10.2 

#3 18 3.9 5.2 9.9 

#4 51.9 3.9 5.2 10.1 

#5 10.4 4.3 5.5 10.8 

 

After the extraction of all mean vectors and covariance matrices, MSD-based algorithms 

were used to estimate the DIs using the test matrix Z. Figure 5-11 plots the DIs for the four 

cases, along with a threshold established using a Chi-squared distribution (   
  ) with three DOF 

and for a level of significance of 5%, to differentiate the damaged from the undamaged 

observations. 
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Figure 5-11: DIs for the different number of components (K=2-5). 

Visually, and when comparing the results with the ones obtained assuming a unique 

multivariate normal distribution in the training process (Figure 5-9), the algorithm based on the 

GMM is more capable to differentiate changes caused by temperature variations from those 

changes caused by actual damage, as indicated by the apparently randomness of the DIs during 

the undamaged condition (1-197). Furthermore, Table 8 summarizes the classification 

performance (in terms of Error Type I and Error II) assuming a multivariate normal distribution 

(as shown in Table 6) and four independent GMMs with varying number of mixture normal 

components (K=2-5). 
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Table 8: Classification performance for different classifiers assuming three natural frequencies. 

 Error Type I 

(false-positive) 

Error Type II 

(false-negative) 

Total number of 

False Indications 

Multivariate Normal 

Distribution 
19 8 27 

Mixture of 

Normal 

Distributions 

K=2 11 2 13 

K=3 3 7 10 

K=4 5 3 8 

K=5 5 2 7 

 

The results obtained assuming a mixture of normal distributions show, in the worst case 

(K=2), a drop rate of more than 50% in terms of misclassifications when compared to the results 

assuming a multivariate normal distribution. Actually, the above classification results confirm 

the indications given by the AIC function as it converge for K=2. Even though the number of 

Type I and II errors appears to decrease in an unstable manner as a function of the number of 

components, it is clear that the total number of misclassifications is inversely proportional to the 

number of mixture components assumed in the GMM. However, one should note that high 

number of components might overfit the model, which is not convenient for generalization 

purposes. Actually, the model with K=2 seems to be appropriate as the number of Type I errors 

(11) is close to the tolerance (10) given by the level of significance. 

In the feature extraction stage of this chapter (Subsection 5.3), it was addressed that 

during the extraction process, the first and the third natural frequencies were strongly correlated, 

which allows one to perform some sort of dimensionality reduction of the extracted feature 

vectors from three to two. For comparison purposes, the same procedure for feature 

classification was carried out by taking into account only the first two natural frequencies. 

Figure 5-12, Figure 5-13, and Table 9 show the AIC function, the DIs for the different number 

of components of the mixture models, and their respective classification performance. 
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Figure 5-12: AIC function for mixture models ranging from one to five normal components and 

assuming only the first two natural frequencies. 

 

 

Figure 5-13: DI for the different number of components using only two natural frequencies. 
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Table 9: Classification performance for different classifiers assuming the first two natural frequencies. 

 Error Type I 

(false-positive) 

Error Type II 

(false-negative) 

Total number of 

False Indications 

Multivariate Normal 

Distribution 
19 8 27 

Mixture of 

Normal 

Distributions 

K=2 2 3 5 

K=3 2 3 5 

K=4 2 3 5 

K=5 1 2 3 

 

In terms of total number of misclassifications, the results obtained using only two 

frequencies were extremely good. Even for a low number of components, the numbers of false 

indications were far lower than the ones determined with three frequencies Furthermore, the 

results did not show any inconsistency over the increasing number of components, which is also 

indicated by a flat AIC function by K between two and five. After reaching five components, 

the algorithm became extremely accurate, as it has only three false indications of damage in a 

total of 235 observations (achieving a level of accuracy of 98.7%). Actually, this result 

highlights the importance to optimize the number and type of features used for feature 

classification. In the reality, high dimensional feature vectors might carry out more room to hide 

changes in the features caused by damage. However, it might be appropriate for generalization 

purposes as suggested the low number of Type I errors when compared to the tolerance given 

by the level of significance. 

5.5. Conclusions 

The goal of this chapter was to make the transition of the statistical pattern recognition 

paradigm for SHM from the laboratory environment to the field by applying it upon data sets 

acquired from a bridge in Switzerland – the Z24 Bridge. In the context of the hierarchical 

structure of damage identification, this chapter was mainly focused on determining the existence 

of damage by overcoming the problems imposed by the environmental and operational 

variations. To that purpose, a number of statistical procedures were tested to treat the acquired 

data. 

The feature extraction stage permitted to unveil the existence of unusual oscillations in 

first three natural frequencies. These oscillations were later correlated to cold periods, during 
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which temperatures reached levels below 0°C, causing a tremendous increase in the stiffness of 

the asphalt layer which, in turn, caused a variation of the natural frequencies. By plotting the 

different eigenfrequencies versus temperature, a bilinear behavior with slop change around 0°C 

was discovered. In light of this discovery, a normality test was performed to determine if the 

natural frequencies follow a normal distribution. The results suggested that the natural 

frequencies follow a mixture of multivariate normal distributions rather than a unique standard 

multivariate normal distribution. This fact became an issue in the statistical modeling for feature 

classification stage, which led to concerning high level of false alarms. As a consequence, a new 

approach had to be considered, namely the use of GMM. 

Actually, the effects of the environmental conditions on the Z24 Bridge reinforced the 

fact that field deployment of SHM systems needs to be accompanied by robust techniques to 

take them into account in the damage identification process. Environmental and operational 

effects often have a large influence on the measured dynamics response of a structure and, as it 

was explained before, damage detection is based on the premise that damage in the structure 

will cause changes in the materials and, consequently, causing changes in measured vibration 

data. Therefore, it is crucial to quantify the effects of changing environmental and operational 

conditions so that they cannot hide little changes in the system’s vibration signal caused by 

damage. 

Thus, with the aim of improving the feature classification performance, an algorithm 

based on a GMM was developed. This algorithm aims to: (1) determine the number, K, of 

normal components contained in the training data, (2) identify the parameters of each normal 

component k (mean vector, covariance matrix, and weight factor), (3) construct a MSD-based 

algorithm for each normal component, and finally (4) for each observation, i, one must 

determine the minimum DIi, i.e. DIi = min(DIi,k)k=1,…,K. In order to study the influence of the 

number of mixture normal components on the classification performance, four different models 

(with different number of components) were considered. 

Firstly, assuming feature vectors composed by three natural frequencies, the comparison 

of the results from the GMMs with the ones obtained assuming a unique multivariate normal 

distribution, proved that the models, in terms of misclassifications, and in the worst case (K=2), 

permits a drop rate of more than 50%, proving that the GMM was more capable to differentiate 

changes caused by temperature variations from those changes caused by actual damage. The 

number of mixture components assumed in the GMM proved to be inversely proportional to the 

total number of misclassifications. 
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Secondly, for comparison purposes, the same procedure for feature classification was 

carried out by taking into account only the first two natural frequencies. In terms of total 

number of misclassifications (both Error Type I and Error II), the results obtained were better 

than for the case of three natural frequencies, even for a low number of components (K=2). 

However, the percentage of Type I errors, significantly lower than the level of significance,, 

suggests than the model with two natural frequencies is overfitted, and so it is not appropriate 

for general purposes. 

In conclusion, and comparing the two algorithms for statistical modeling for feature 

classification used in this chapter, the one based on a GMM has shown to be more appropriate 

under severe changes caused by operational and environmental variability, especially when 

those changes impose a non-linear structure response. This chapter also permitted to conclude 

the applicability of this algorithm to detect local damage using global features extracted on 

vibration data. 
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6. SUMMARY, CONCLUSIONS AND FUTURE WORK 

The Silver Bridge failure, in 1967, was the first of many catastrophic bridge failures that 

brought about the need for BMSs. Some of these disasters occurred in the USA, however, 

similar cases can be found all over the world. Even though tragic, these failures have sparked a 

worldwide interest in bridge safety. The investigation of each of these failures, and the 

knowledge gained from understanding the conditions on which they occurred, have helped the 

engineers to find ways to ensure that similar failures can be prevented in the future. As a result, 

new codes and regulations have been implemented and the SHM concept has been created as a 

way of improving BMSs. However, the collapses of the Hintze Ribeiro Bridge, in 2001, and 

more recently, in 2007, the I-35W Bridge over the Mississippi River brought once again bridge 

safety to the forefront of the public. Therefore, due to its potential, the SHM technology has 

received considerable attention in the last years, which permitted it to evolve and mature to the 

point where few attempts of integrated SHM systems already exist.  

Herein, the SHM process is posed in the context of the SPR paradigm, which can be 

broken down into a four-stage process: (1) Operational Evaluation, (2) Data Acquisition, (3) 

Feature Extraction, and (4) Statistical Modeling for Feature Classification. Although addressing 

all aspects of the paradigm, this dissertation was mainly focused on feature extraction and on 

the development of models for feature classification stages.  

In Chapter 4, the applicability of the SHM-SPR paradigm for damage identification was 

tested on standard data sets acquired from a base-excited three-story frame structure. Several 

statistical procedures were used in order to perform feature extraction and statistical modeling 

for feature classification.  

In the feature extraction process, AR models were used to extract features from the 

measured data in the attempt to determine the presence and location of damage in the test 

structure. The estimated parameters of the AR models were directly used as damage-sensitive 

features. The AR model proved to be a useful feature extraction technique, as its parameters 

were shown to be very sensitive to the presence of damage.  

The statistical modeling for feature classification was carried out by using the MSD-

based algorithm to estimate DIs and classify the damage-sensitive features. Even though the 

damaged and the undamaged states were known a priori, the algorithm was implemented using 

an unsupervised learning approach by using the undamaged states to train the algorithm and 

then applying all the data sets to test it. A threshold value was established using a Chi-squared 
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distribution with a 95% confidence interval, in order to separate the DIs into damaged and 

undamaged conditions. In general, and probably due to the reduced size of the structure, the 

results showed that one could detect the presence of damage in the structure using only data 

from one sensor. In addition, the results showed that if one uses the optimal AR model order, 

for each sensor, as suggested by the AIC, then it is possible to locate damage in the structure by 

performing some sort of sensitivity analysis in each sensor. Basically, by counting the number 

of outliers beyond the thresholds in each sensor, one might set up a correlation, between the 

number of outliers and sensors’ location in the structure, to identify the localization of the 

source of damage. 

In Chapter 5, the SHM-SPR paradigm was tested on data from a real-world bridge, 

namely the Z24 Bridge, in Switzerland. In the context of the hierarchical structure of damage 

identification, this chapter was only focused on determining the existence of damage by 

overcoming the challenges imposed by the environmental and operational variations. 

In the feature extraction stage was detected the existence of unusual oscillations in the 

first three natural frequencies. These oscillations were found to be a result of the ambient 

temperature levels below 0°C, which caused a tremendous increase in the stiffness of the asphalt 

layer, resulting in large variations of the natural frequencies of the structure. By plotting the 

different natural frequencies versus temperature, a bilinear behavior with slop change around 

0°C was discovered. In light of this discovery, a normality test was performed, unveiling that 

the natural frequencies in fact did not follow a multivariate normal distribution, rather it gave 

suggestions that the natural frequencies could follow a mixture of normal distributions. In the 

statistical modeling for feature classification stage, that fact was pointed out by the MSD-based 

algorithm, especially due to the concerning high level of false alarms. As a result and, in order 

to improve the feature classification performance, an algorithm based on the GMM was 

proposed.  

In order to point out the influence of feature dimensionality for damage detection, two 

separate studies were performed by varying the dimension of the feature vectors. Firstly, 

assuming feature vectors composed by the three natural frequencies, the comparison of the 

results from the GMMs with the ones obtained assuming a unique multivariate normal 

distribution, showed a drop rate in terms of misclassifications of more than 50%, proving that 

the multivariate GMM was far more capable of differentiating changes caused by temperature 

variations from those changes caused by actual damage. Secondly, the same procedure was 

carried out by taking into account only the first two natural frequencies. In terms of total 

number of misclassifications, the results obtained were better than for the case of three natural 
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frequencies. However, the percentage of Type I errors, significantly lower than the assumed 

level of significance, suggested than the model with two natural frequencies was overfitted, and 

therefore not appropriate for general purposes.  

Finally, comparing the MSD- and GMM-based algorithms, it is possible to conclude 

that the one based on a GMM has shown to be more appropriate under severe changes caused 

by operational and environmental variability, especially when those changes impose a non-

linear structural response.  

By reviewing Chapters 4 and 5, the difficulties undergone when analyzing data from a 

real-world bridge opposed to a laboratory structure become clear. In fact, the effects of the 

environmental conditions on the Z24 Bridge reinforce the fact that field deployment of SHM 

systems needs to be accompanied by robust techniques to take them into account in the damage 

identification process. The environmental and operational effects often have a large influence on 

the measured dynamics response of a structure and, as it was explained before, damage 

detection is based on the premise that damage in the structure will cause changes in the 

materials and, consequently, causing changes in measured vibration data. Therefore, it is crucial 

to quantify the effects of changing environmental and operational conditions so that they cannot 

hide little changes in the system’s vibration signal caused by damage. Additionally, it important 

to create better and more reliable algorithms to extract damage-sensitive features, that are 

sensitive to damage and insensitive to operational and environmental changes, and to classify 

features despite the presence of operational and environmental changes. 

Despite all the present challenges and limitations, the SHM field has had remarkable 

progresses throughout the years. Monitoring systems are able to recognize that the “patient” is 

sick and, furthermore, isolate the location and reason of the “illness”. Monitoring systems have 

the ability to acquire, transmit and analyze data, and then to make decisions based on the 

relevant information derived from. The transition from time-based maintenance to a condition-

based, where maintenance is scheduled based on the current state of the structure, is also a 

noteworthy step, reducing the considerable downtime due to current maintenance measures 

resulting in tremendous efficiencies in terms of cost. In the near future, the use of proper SHM 

systems could also allow further understanding of a structure’s response through data analysis, 

which in turn could lead to better design methods. The SHM is a vast field and major 

breakthroughs are expected over the next few years due to recent investments and demands 

from bridge owners. 
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However, in order to transit SHM technology from research to practice, some issues still 

need to be addressed: 

 a big difference between the lifespan of a bridge and the lifespan of a data 

acquisition system still exists; these systems are often under the same 

environmental conditions as the bridge, however they are far more susceptible to 

damage and degradation than the bridge itself; it is important that, for long term 

monitoring, durable and reliable hardware can be developed and successfully 

implemented at lower costs; 

 

 the ability to detect damage on structures under varying operational and 

environmental conditions is still underdeveloped; better and more reliable 

algorithms are needed to extract damage-sensitive features that are sensitive to 

damage and insensitive to operational and environmental changes as well as to 

classify those features; 

 

 SHM systems need to be viewed like any integral part of a bridge and, therefore, be 

included since the design project; only by thinking of bridge and monitoring system 

as a whole can a SHM system be entirely implemented into a structure.  

Finally, in the years ahead, more real-world deployments should be carried out to 

further prove the applicability of the SHM technology to support the maintenance process. 

Nevertheless, the SHM is a vast field and major breakthroughs are expected over the next few 

years due to recent investments and demands from the bridge owners. 
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