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Resumo 

 

A Escherichia coli é o microorganismo mais usado como hospedeiro para a produção de 

produtos recombinantes, tais como plasmídeos usados para terapia génica e vacinação de ADN. 

Desta forma, torna-se importante compreender as relações metabólicas complexas e a 

bioprodução de plasmídeo, que ocorre em ambientes de cultura dinâmicos, a fim de controlar e 

optimizar o desempenho do sistema de expressão recombinante. O objectivo principal deste 

trabalho consiste em avaliar a potencialidade da espectroscopia FT-IR para monitorizar e 

caracterizar a produção do plasmídeo pVAX-LacZ em culturas recombinantes de E. coli, 

nomeadamente para extrair informação relacionada com as variáveis críticas (biomassa, 

plasmídeo, fontes de carbono e acetato) e informação metabólica da célula hospedeira E. coli. 

Para tal, culturas de E. coli com diferentes concentrações de glucose e glicerol e diferentes 

estratégias de cultivo (batch e fed-batch) foram monitorizadas por espectroscopia de 

infravermelho perto (NIR) e de infravermelho médio (MIR).  

Tanto a espectroscopia NIR com a MIR permitiram extrair informação sobre as variáveis 

críticas do bioprocesso, através da construção de modelos de regressão por mínimos quadrados 

parciais, que resultaram em elevados coeficientes de regressão e baixos erros de previsão. A 

abordagem NIR apresenta a vantagem de aquisição em tempo real das variáveis do bioprocesso, 

já a abordagem MIR permite a leitura simultânea de centenas de amostras de várias culturas ao 

mesmo tempo através do uso multi-microplacas, sendo muito vantajosa nos casos de micro-

bioreactores usados para optimização. Para além disso, como os espectros MIR apresentam mais 

informação do que os espectros NIR, uma vez que representam os modos de vibração 

fundamentais das biomoléculas, enquanto que os espectros NIR representam sobreposições e 

combinações de vibrações, os dados espectrais MIR também permitiram a aquisição de 

informação bioquímica ao longo das culturas de E. coli a partir da análise das componentes 

principais (PCA) bem como do estudo das características bioquímicas, tais como as reservas de 

glicogénio e os níveis de transcrição aparente.  

Portanto, a espectroscopia FT-IR apresenta assim características relevantes para a 

compreensão e monitorização do processo de produção de culturas recombinantes, sendo, de 

acordo com Quality-by-Design e Process Analytical Technology, muito importante para fins de 

controlo e optimização. 

 

Palavras-chave: Escherichia coli, espectroscopia MIR, espectroscopia NIR, caraterização 

metabólica, monitorização de bioprocessos. 
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Abstract 

 

Escherichia coli is the most used microorganism as host for the production of recombinant 

products, such as plasmids used for gene therapy and DNA vaccination. Therefore, it is important 

to understand the complex metabolic relationships and the plasmid bioproduction process 

occurring in dynamic culture environments, in order to control and optimize the performance of 

the recombinant expression system. The main goal of this work is to evaluate the potential of 

Fourier Transform Infrared (FT-IR) spectroscopy to monitor and characterize recombinant E. coli 

cultures producing the plasmid model pVAX-LacZ, namely to extract information concerning the 

critical variables (biomass, plasmid, carbon sources and the by-product acetate) and  metabolic 

information regarding the host E. coli. To achieve that cultures of E. coli conducted with different 

mixture of glucose and glycerol and different cultivation strategies (batch and fed-batch) were 

monitored in-situ by a fiber optic probe in near- infrared (NIR) and of the cell pellets in at-line in 

high-throughput mode by mid-infrared (MIR) spectroscopy. 

Both NIR and MIR spectroscopy setup enabled to extract information regarding the critical 

variables of the bioprocess by the implementation of partial least square regression models that 

result in high regression coefficients and low prediction errors. The NIR setup presents the 

advantage of acquiring in real time the knowledge of the bioprocess variables, where the at-line 

measurements with the MIR setup presents more advantageous in cases of micro-bioreactors used 

in optimization protocols, enabling the simultaneously information acquisition of hundreds 

samples by using multi-microplates. Furthermore, as the MIR spectra presents more information 

than the NIR spectra, since it represents the fundamental vibration modes of biomolecules while 

the NIR spectra represents overtones and combinations of vibrations, the MIR data also enabled 

to acquire biochemical information along the E. coli cultures as pointed out in an principal 

component analysis and by the estimation of biochemical features as glycogen reserves and 

apparent transcriptional levels.  

Therefore, FT-IR spectroscopy presents relevant features towards the understanding and 

monitoring of the production process of recombinant cultures for control and optimization 

purposes, in according to the Quality-by-Design and the Process Analytical Technology.  

 

Keywords: Escherichia coli, MIR spectroscopy, NIR spectroscopy, metabolic profiling, 

bioprocess monitoring. 
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Chapter I 

Thesis Overview 

  

I.1. Objectives 

The main goal of the present work was to evaluate the potential of Fourier Transform Infrared 

(FT-IR) spectroscopy to monitor and characterize recombinant Escherichia coli cultures during 

the production of biopharmaceuticals, namely the production of a plasmid model used for the 

construction of DNA vaccines. For that, i) first, the critical variables of the bioprocesses studied 

(e.g., host cell growth, plasmid production, carbon sources consumption and the by-product 

acetate production and consumption) were monitored based on infrared (IR) spectral data 

acquired along the cultivation time based on mid-infrared (MIR) spectroscopy of the cell pellets 

in high-throughput analysis using multi-microplates, and on near-infrared (NIR) spectroscopy by 

the cultivation in-situ analysis using a fiber optic probe; ii) second, metabolic information 

regarding, e.g., lipids, proteins, nucleic acids, glicids and other chemical species present in cells, 

was extracted from the MIR spectra for metabolic profiling of the host cell, as the MIR spectra 

represents the fundamental vibration modes of biomolecules. 

  

I.2. Thesis Outline 

The thesis is divided into 5 chapters. A general introduction is presented in chapter II, which 

contains a brief introduction to the E. coli systems and bioprocesses’ monitoring, an overview on 

IR spectroscopy and a short introduction to chemometrics and spectral analysis. The following 

two chapters, chapters III and IV, describe the experimental work developed. Chapter III presents 

a comparative study of MIR and NIR spectroscopies for monitoring the critical variables involved 

in the production of a biopharmaceutical (e.g., the host cell growth, the production of plasmid, 

the carbon sources consumption (glucose and glycerol) and the by-product acetate production and 

consumption) by different recombinant E. coli cultures producing the plasmid pVAX-LacZ. 

Chapter IV describes the potential of FT-IR spectroscopy for estimating the metabolic profiles of, 

e.g., lipids, proteins, nucleic acids, glicids, and other biochemical information from the host cell 

along the cultures. The last chapter, chapter V, comprises the main conclusions of the previous 

chapters and presents new research directions for future work.  
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Chapter II 

General Introduction  

 

II.1. E. coli recombinant systems and bioprocesses monitoring 

The growing interest in biopharmaceutical products calls for a need for developing 

reproducible, reliable and cost-effective production processes. An example of such products are 

plasmids, which can be used as vectors for gene therapy and DNA vaccination, as an alternative 

to viral based vectors [Carnes, 2005; Prather et al., 2003]. 

Recombinant E. coli is the most used microorganism for plasmid production, given its capacity 

to growth under a wide range of conditions, from rich complex organic media to salt-based 

chemically defined media, as well as it is ease manipulation by genetic engineering [Moen et al., 

2009; Prather et al., 2003; Scholz et al., 2012; Yang, 1999]. As a consequence of the current 

growing interest on plasmids, their production has to meet the market requirements, i.e., the 

optimization and efficiency of plasmid production are required, as well as the monitoring of the 

bioproduction process. Generally, the main goals for an optimization procedure for recombinant 

E. coli cultures are (Figure II.1) [Carnes, 2005; Voss et al., 2003]: 

 Maximize the plasmid production in the supercoiled conformation, the most efficient 

conformation in relation to circular and linear conformations for therapeutic applications, 

according to Food and Drug Administration (FDA) and European Medicines Agency Home 

(EMA); 

 Maximize the plasmid concentration; 

 Maximize the productivity; 

 Maximize the biomass per carbon source yield, to make the best use of nutritional 

media; 

 Maximize the specific yield, i.e., the quantity of plasmid produced per cell, in order to 

simplify the purification processes.     

  



 

 

 

4 

 

 

Nevertheless, differences in the cultivation strategies adopted (e.g., batch and fed-batch) and 

environmental conditions and medium composition with respect to the carbon source (glucose or 

glycerol) influence the stability and expression of the cloned gene product, and consequently the 

optimization of the plasmid production processes [O’Kennedy et al., 2003; Ow et al., 2007; Ow 

et al., 2009]. Furthermore, the characteristics of the plasmid and host cell are critical factors that 

should be carefully evaluated [McNeil and Harvey, 1990]. 

Therefore, to control and optimize the performance of recombinant systems, the complex 

interrelationships between these factors and its effects must be well understood towards a more 

economic and robust process that ensures reproducibility and quality of the final product, in 

accordance to the Process Analytical Technology (PAT) initiative launched in 2004 by FDA. The 

PAT initiative encourages biopharmaceutical companies to adopt modern bioprocess monitoring 

tools based on at-line or in-situ analyses of critical parameters along the manufacturing processes, 

thus enabling the formulation of mathematical models through of the complex datasets acquired 

along of all process stages, towards more robust control and optimization processes [FDA, 2004]. 

IR spectroscopy is an example of a powerful tool for bioprocesses’ monitoring, which perfectly 

matches the PAT initiative and presents promising capabilities to serve the above purposes, as 

described next. 

 

 

 

Figure II.1: Important factors in the monitoring and control of plasmid production, in bioreactors. 

(adapted from Prather et al., 2003) 
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II.2. Infrared Spectroscopy 

II.2.1. Theory of the Infrared Spectroscopy   

 Originally, spectroscopy was defined the study of the interaction between electromagnetic 

radiation and matter as a function of wavelength. Afterwards, the concept was expanded to 

include the measurement of any property, as a function of wavelength or frequency [Lourenço et 

al., 2012]. All electromagnetic spectroscopic techniques work on the same principle, i.e., under 

certain conditions, the materials interacting with the radiation, absorb or emit energy. However, 

some materials can also reflect and/or disperse/diffract radiation. Absorption spectroscopy is 

based on the measurement of the radiation that is emitted by the light source but attenuated by the 

sample, while emission spectroscopy is based on the measurement of the radiation that is 

produced by the sample on excitation. The reflection and diffraction of the radiation essentially 

depends on the materials’ surface and composition, shape and microstructure of the sample, 

respectively [Nicolaï et al., 2007]. 

 IR spectroscopy is a spectroscopic technique that uses the infrared region of the 

electromagnetic spectrum. The IR region ranges from 14000 to 4 cm-1 (0.7 to 250 µm) and is 

surrounded by the visible and microwave regions, as shown in the figure II.2. The IR region is 

further subdivided in the near infrared (NIR), the mid infrared (MIR) and the far infrared (far-IR) 

regions. MIR represents the region of the IR spectrum between 4000 and 400 cm-1, whereas the 

NIR region is between 14000 and 4000 cm-1 (Figure II.2). Both regions will be discussed along 

this work, as they represent the IR radiation that are most used in several applications of 

spectroscopy [Landgrebe et al., 2010; Smith, 2011].  

 

Figure II.2: Electromagnetic spectrum with IR region highlighted. 
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 Photon energies associated with the infrared region of the electromagnetic spectrum are not 

large enough to excite electrons, rather they induce vibrational excitation of covalently bonded 

molecules. At temperatures above absolute zero, all atoms in molecules are in continuous 

vibration with respect to each other. Therefore, in IR spectroscopy, when a sample is irradiated 

by IR light, the absorption of this radiation results in changes in the vibrational modes of the 

molecules, which are sensible to the IR light and are presented in the sample. However, the 

absorption of IR only occurs when the radiant energy matches the energy of the specific molecular 

vibration, and the covalent bond of a molecule must undergo a net change in dipolar moment, as 

a consequence of its vibrational motion. The changes in the vibrational modes of the molecules 

produce the bands seen in the IR spectrum, with each band being characterized by a frequency 

and an amplitude [Babrah, 2009; Duygu, 2009]. 

  Considering the changes in the vibrational modes of the molecules, there are essentially two 

types of vibrations, which can be classified depending on changes on the bond length or angle: 

stretching and bending vibrations (Figure II.3). The stretching is a symmetric or antisymmetric 

rhythmical movement along the bond length. The bending vibration occurs when there is a change 

of the angle between two atoms or a group of atoms [Babrah, 2009]. 

  

  

Figure II.3: Main molecular vibrational modes [Babrah, 2009] 
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 Therefore, an IR spectrum is characteristic of each kind of molecule, since it depends mainly 

on the mass of the atoms, their geometric arrangement and the bound forces between them. 

Consequently, each molecule presents a distinct IR spectrum, since there are no different 

molecules that have the same three characteristics previously presented. When that concept is 

extended two different samples, which have distinct molecular composition, different spectra will 

also be obtained, thus enabling to distinguish, qualify or quantify virtually any type of sample 

[Smith, 2011].   

 The application of the IR spectroscopy in the biological field is possible, because certain 

regions of the IR spectrum have been attributed to certain molecular bonds and combinations of 

atoms, and the composition of every biomolecules is known, thus being possible to associate the 

biomolecules to certain IR region, especially in MIR region. Despite of the complex composition 

of biological samples and the presence of several biomolecules in the samples, it can be observed 

that the strongest vibrational frequencies correspond to macro-biomolecules, such as proteins, 

lipids, carbohydrates and nucleic acids [Smith, 2011], due to its high concentration in the cell, 

when compared to other biomolecules.   

 

  II.2.2. Instrumentation 

 The instrument used in IR spectroscopy is called infrared spectrometer or, more precisely, 

spectrophotometer, and consists mainly in a beam source, a monochromator or an interferometer, 

depending on the type of spectrometer, a sample holder or sample presentation interface and a 

detector, which detects the radiation that is transmitted or reflected by the sample [Reich, 2005].  

 Considering the beam source, it may consist on an inert solid thermally heated [Hsu, 1997] or 

in an incandescent filament, like tungsten or quartz/halogen lamps, for the NIR region, and 

carbon-silicon bars, for the MIR region [Christian, 1994].  

 The existing detectors are essentially of two types: thermal detectors, which measures the heat 

produced by the IR radiation when in contact with the sample, and photon detectors that are based 

on the interaction of IR light with semiconductor materials, allowing the excitation of electrons 

and the generation of a small quantifiable electrical current [Hsu, 1997]. 

 Another important component of the spectrometer is the monochromator or the interferometer, 

which enables the light modulation and defines the type of spectrophotometer. There are mainly 

two types of spectrometers: Dispersive Infrared Spectrometers and Fourier Transform Infrared 

Spectrometers. In both configurations the beam source, detectors and sample holders used are 

essentially the same. 

 The Dispersive Infrared Spectrometers were the first kind of spectrophotometers developed, 

using a monochromator in its configurations. A monochromator is a device used to separate a 



 

 

 

8 

 

 

range of radiations in a certain range of wavelengths or frequencies. The most common 

monochromator are prism and gratings coupled with systems of mirror and filters [Stuart, 2004]. 

 The introduction of interferometry brought significant improvements to IR spectroscopy and 

the monochromator has been substituted by the interferometer. An interferometer measures the 

interference pattern between two light beams. After entering in the interferometer, the IR radiation 

is divided in two beams that will travel by different paths. Before leaving the interferometer, these 

two beams will be merged in a single beam again. The development of interferometers opened 

the window to the Fourier Transform Infrared (FT-IR) spectrometers.  

 The first spectrometer with interferometer to be developed was a Michelson interferometer 

and the current interferometers are based on the same principle. The Michelson interferometer 

consists of four active components: a collimating mirror, a moving mirror, a fixed mirror oriented 

perpendicularly and a beamsplitter (Figure II.4). The collimating mirror collects the IR light from 

the source and makes its rays parallel to each other, while directing them to the beamsplitter. The 

beamsplitter splits the radiation from collimating mirror in two beams, with half the IR beam 

being transmitted to the fixed mirror and the other half reflected to the moving mirror. These 

beams recombine at the beamsplitter, but the difference in paths lengths creates constructive and 

destructive interference: an interferogram. The recombined beam passes through the sample, 

which absorbs all the different wavelengths characteristic of its spectrum, and this subtracts 

specific wavelengths from the interferogram. A mathematical operation, known as a Fourier 

transformation, converts the interferogram (a time domain spectrum displaying intensity versus 

time within the mirror scan) to the final IR spectrum, which is the frequency domain spectrum 

showing intensity versus frequency [Smith, 2011; Stuart, 2004].      

Figure II.4: Scheme of the Michelson interferometer [Smith, 2011]. 
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  When compared to dispersive systems, the development of FT-IR spectrometers and their 

implementation contributed to high reproducibility and low sampling noise, while making  

sample analysis faster [Hsu, 1997; Pistorius, 1995]. The low sampling noise is maybe the mains 

contribution of the FT-IR spectrometer, since it allows more sensitive measurements and, 

consequently, less noisy spectra with smaller peaks becoming evident.   

 As the amount of signal in a spectrum is highly dependent on the amount of light that reaches 

the detector, the signal-to-noise ratio (SNR) in FT-IR spectrometers is higher than in the 

dispersive spectrometers. This is due to the fact that in the dispersive spectrometers the beam 

needs to travel through prisms, slits and gratings, before reaching the sample and, 

consequently, the final beam that is detected have a much lower intensity, compared to the 

beam that leaves the source and, consequently, the final spectrum has a lower SNR [Smith, 

2011]. 

 

II.2.3. Types of acquisition 

 Depending on the sample properties, the spectral data can be acquired essentially by two 

different modes: transmission and reflection. 

 In transmission mode, IR radiation passes through the sample and the decrease in the 

radiation intensity due to absorption or scattering by the sample is measured. Therefore, the 

spectrum obtained is the result of the radiation that passes through the sample (that is 

proportional to the radiation absorbed by the sample) as function of wavelength, and depends 

of the radiation’s pathlength [Hsu, 1997]. 

 In reflectance mode, the ratio of the intensity of the radiation reflected by a sample to the 

radiation reflected by a background reflective surface is measured. This acquisition mode is 

useful when the sample absorbs too much or too less energy, as well as in cases where samples 

reflect the majority of the incident radiation. 

 Though transmission and reflectance are the main acquisition modes, transflection has 

been increasingly being used in NIR spectroscopy applications. It combines the transmittance 

and reflectance measurements, i.e., the IR radiation is transmitted through a sample and the 

unabsorbed radiation is reflected back from a mirror or a diffuse reflectance surface placed 

at the end of the probe [Lourenço et al., 2012]. 
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II.2.4. Mid-Infrared Spectroscopy 

 MIR spectroscopy is an extremely reliable and widely recognized fingerprinting technique. 

Many compounds can be characterized, identified and quantified by this method, since it is in the 

MIR region, between 4000 cm-1 and 400 cm-1, where most of the fundamental structural 

information is produced, therefore presenting enhanced sensitivity and selectivity and more 

distinctive spectral features, when compared to NIR spectroscopy [Smith, 2011]. Another 

important particularity of MIR spectroscopy is that it can be applied in an automatable way with 

high-throughput instruments [Scholz et al., 2012]. 

Nevertheless, an important disadvantage of the use of MIR spectroscopy is related to the fact 

that MIR region presents higher interference by water than NIR region, being usually necessary 

to dehydrate the samples before spectral acquisition [Landgrebe et al., 2010]. Furthermore, MIR 

radiation has a shorter wavelength than NIR radiation and consequently less energy, so the ability 

of this kind of radiation to penetrate the sample is reduced. The difficulty of transport and to 

obtain remote measures is also a disadvantage of the MIR radiation. 

MIR spectroscopy allows a rapid acquisition of spectra, no sample preparation is necessary, 

beside the dehydration step for aqueous samples, and it is a non-invasive method, which is 

extremely useful when the sample preservation is required. However, spectra can be changed due 

to fluctuations in the equipment’s environment and sometimes chemometric methods are 

necessary, in order to extract all information contained in a spectrum. 

 

II.2.5. Near-Infrared Spectroscopy 

 NIR spectroscopy is a spectroscopic method that uses the NIR region of the electromagnetic 

spectrum from 14000 to 4000 cm-1 [Smith, 2011]. This technique is usually applied for aqueous 

in-situ analyses, given the low adsorption coefficient of NIR radiation and the low interference of 

water in this IR region, when compared with MIR region. NIR spectroscopy allows the direct 

analysis of samples that are highly absorbing or strongly light scattering without dilution or 

extensive preparation. Nevertheless, most bands in NIR region are consequence of overtones and 

combinations of vibrations from different chemical elements and functional group, which makes 

NIR spectroscopy less sensitive and informative than MIR spectroscopy. Since NIR spectroscopy 

is less sensitive and its spectra are visually poor, it is often necessary to apply chemometric 

methods to extract meaningful information from the data [Hall et al., 1996; Lourenço et al., 2012; 

Shenk et al., 2001].   
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 Given the low interference of water in the NIR region, NIR spectroscopy can be used non-

destructively for monitoring bioprocesses, by placing of a fiber optic probe inside the bioreactor. 

Other particularities of this technique are the fact that the NIR radiation presents a greater 

penetration power, since it is little absorbed by sample, and can be easily transported by optical 

fibers, which makes possible a remote acquisition of spectra [Lourenço et al., 2012].  

 In sum, NIR spectroscopy is a non-destructive fast technique, it does not need any sample’s 

preparation and it can measure several samples’ properties at once [Smith, 2011]. 

   

 

II.3. Chemometrics 

Chemometrics is the application of statistical, mathematical and computational methods to 

analyze chemical data and to extract information from certain chemical systems. These methods 

allow the extraction of the relevant information concerning the analytes of interest, which 

otherwise would be very difficult [Lourenço et al., 2012; McGovern et al., 2002]. Chemometrics 

was first introduced in the chemical field, although today is a widely used tool in several other 

areas such as spectroscopy [Geladi, 2003].  

 The successful implementation of the spectroscopic techniques, essentially NIR spectroscopy, 

which produces broad and overlapping spectral bands, was only possible due to the development 

of chemometric methods. Beside NIR spectroscopy, MIR spectroscopy, normally producing well 

defined spectral bands, also rely on chemometric methods for easy of interpretation and handling 

of large data sets, as well as to reduce the noise that is often present in spectra.  

The most widely chemometric methods used for spectral data analysis in spectroscopy are 

mathematical pre-processing techniques and multivariate data analysis, which are mainly divided 

into qualitative and quantitative methods. 

In the present work some pre-processing techniques are reviewed, namely those studied along 

the work: multiplicative scatter correction (MSC), standard normal variate (SNV), baseline 

correction, normalization and derivatives. Principal component analysis (PCA) and partial 

least squares (PLS) regression are the choice for multivariate data analysis of spectral data 

acquired during this work, and will be presented next. 
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II.3.1. Mathematical Pre-Processing Techniques 

The application of pre-processing techniques is a very important step in the analysis of spectral 

data, since they enable the elimination of physical phenomena due to undesired variations, such 

as noise, differences along the sample thickness, differences in the number cells across the sample 

and scattering events [Rinnan et al., 2009; Sharaf et al., 1986]. This procedure has as goal of 

minimizing the irrelevant information present in the final spectra.  

 

Multiplicative Scatter Correction (MSC) 

MSC is a pre-processing method used to eliminate the effect of physical phenomena like the 

light scattering effect of particles of different sizes and shapes [Helland et al., 1995]. The goal is 

to find the “ideal” spectrum of the group. For that, it is necessary a reference spectrum, which is 

usually the mean spectrum of all available spectra or the mean spectrum of replicate spectra. MSC 

works by fitting each spectrum to the average spectrum, which is supposed to be the ideal, 

performing a transformation where the spectral data xi is converted into new values zi, where i = 

1, …, p, with p being the wavelengths [Fearn et al., 2009]. The following equation describes the 

transformation from xi to zi: 

𝑧𝑖 =
𝑥𝑖 − 𝑎

𝑏
, 

where a represents the intercept and b the slope of a least squares regression of xi on the values ri 

coming from the reference spectra. 

 

Standard Normal Variate (SNV) 

The SNV transformation centers each spectrum and then scales it by its own standard 

deviation. The resulting spectra have always zero mean and variance equal to one, and are thus 

independent of original absorbance values. Dhanoa et al. (1994) and Helland et al. (1995) 

observed that MSC and SNV transformed spectra are closely related and that the difference in 

prediction ability between these methods is very small. 
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Hence, SNV eliminates the interference of scatter events by individually transforming the 

spectral data xi into new values zi, where i = 1, …, p (p are the wavelengths), according to the 

following equation: 

𝑧𝑖 =
𝑥𝑖 −𝑚

𝑠
, 

where m corresponds to the mean and s to the standard deviation of xi values in the original 

spectrum [Fearn et al., 2009]. 

 

Baseline Correction 

Since the obtained spectra are not always grounded at zero, methods for baseline correction 

are usually necessary to remove both baseline offset and slope from a spectrum.   The type of 

algorithm used depends on the baseline correction needed. Spectra which are dislocated from zero 

by a constant value are the simpler cases and, consequently, subtracting the value in question from 

the spectrum is usually enough. However, there are cases where the baseline presents a slope or 

even spectra with curvatures, which makes baseline correction more difficult. In these cases, an 

algorithm generating a function, a linear or polynomial function, can bring the spectrum to zero 

[Otto, 1999; Smith, 2011].  

Baseline correction has a limited utility as a spectral pre-processing, since it is difficult to find 

a function that exactly adjusts to the spectrum curvature. Although there are algorithms that 

automatically determine the best parallel function, they do not always work properly and may add 

variance to the data. Furthermore, the slope and curvature along the spectrum is not always the 

same, so a unique function will hardly correctly adjust to the entire spectrum.  

Considering the disadvantages related to baseline correction methods, derivatives for offset 

correction may be preferred. But the problem of derivatives’ application is that the resulting 

spectra will be noisier than the raw one. In cases where there is a low SNR, baseline correction 

must be applied instead [Smith, 2011]. 
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Normalization 

There are many possible ways to normalize the data. Normalization involves multiplying all 

spectra by a different scaling factor for each wavenumber. The goal is to remove differences 

between the samples that are related with factors, such as differences in the samples’ number of 

cells, and not with the property of interest. It should be noted that a careful design of the 

experience is still a critical factor that must be always taken into account before pre-processing 

the data. There are several methods for normalizing spectral data and a full review on this topic 

may be found at Randolph (2006).  

 

Spectral Derivatives 

Spectral derivatives can be used to eliminate offset and background slope variations among 

spectra. The first derivative removes baseline offset variations in spectral profiles and the second 

derivative removes both baseline offset differences and differences in baseline slopes between 

spectra [Otto, 1999].  

First and second derivatives also enable the resolution of overlapping peaks, being the second 

derivative the most used for this purpose. However, before applying derivatives, it is important to 

have in mind that the derivative spectra will have more noise than the initial spectra and, 

consequently, a decrease in the SNR will be observed. In order to avoid the SNR decreasing, the 

smoothing has to be incorporated when applying derivative. The Savitzky-Golay smoothing is 

the most common algorithm used to avoid the decrease of the SNR. Its principle is the same of 

an average filter, i.e., each point of the dataset is replaced by the average of itself and n points 

before and after [Lourenço et al., 2012; Scholz et al., 2012]. 

 

II.3.2. Multivariate data analysis 

The most widely used chemometric techniques are principal component analysis (PCA) and 

partial least-squares (PLS) regression.  
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Principal Component Analysis (PCA)     

The PCA is a data-reduction method extensively used for qualitative spectral analysis that 

works by reducing the dimension of a dataset to a simpler representation in the space of the new 

variables, called principal components (PCs). PCs are ordered in terms of variance explained in 

the data set, with the first PCs representing the major variance in the data. Sometimes the variance 

in data can be distributed by more PCs, so it may be more difficult to select those which are 

relevant to extract some useful information [Jollife, 2002]. This kind of method is a very useful 

tool for chemometricians, not only for data compression but also information extraction, allowing 

the identification of major trends in the data [Naes et al., 2002]. 

The PCA model can be described in matrix notation as: 

𝑋 = 𝑇𝑃𝑇 + 𝐸 

where 𝑋 is the spectral data matrix, 𝑇 is the matrix containing the scores of the PCs, 𝑃 the matrix 

containing the loadings and 𝐸 the matrix that contains the model residuals and represents the noise 

or irrelevant variability in 𝑋. The scores in 𝑇 are linear combinations of the original variables of 

𝑋 (wavelengths). The loadings in 𝑃 are estimated by regressing 𝑋 on to 𝑇 and the residual matrix 

𝐸 is calculated by subtracting the estimated 𝑇𝑃𝑇 from 𝑋 [Naes et al., 2002]. 

 Data evaluation and qualification can be generally achieved by plotting different combinations 

of PC’s scores, since it is easier to visualize and evaluate the samples in a smaller dimensional 

space. As the fraction of variance can be covered by one, two or three PCs, it is possible to 

visualize almost the entire data by plotting these PCs against each other [Otto, 1999]. In theory 

the samples with closer scores will be more similar to each other. 
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Partial Least Squares (PLS) regression 

The PLS regression is a quantitative method that establishes a relationship between spectra 

and the quantifiable properties of samples. It works by determining a small number of latent 

variables (lv) that allow predicting the sample properties by using the spectral data as efficiently 

as possible [Naes et al., 2002]. 

Let X be the mean-centered 𝑛 × 𝑝 matrix composed of the 𝑛 sample vectors 𝑥𝑖, 𝑖 =

1, … , 𝑝 containing the spectral measurements at 𝑝 wavelengths and let 𝑦 be the mean-

centred vector containing the reference values for the variable of interest. With this 

information, PLS finds new variables 𝑡𝑖, 𝑖 = 1,… , 𝑝, which will be used to estimate the 

lv, and determines the loadings matrix 𝑃 and y-loadings vector 𝑞 by maximizing the 

correlation between those variables 𝑡𝑖 found, as described below:       

𝑋 = 𝑇𝑃𝑇 + 𝐸 

𝑦 = 𝑇𝑞𝑇 + 𝑓, 

where 𝐸 and 𝑓 are the 𝑋 and 𝑦 residuals, which are the difference between the observed 

and the modelled variable [Naes et al., 2002]. 

The PLS regression coefficients  are given by: 

𝛽 = 𝑊(𝑃𝑇𝑊)−1(𝑇𝑇𝑇)−1𝑇𝑦, 

where W is the PLS weights matrix and can be used to obtain the predictions: 

�̂� = 𝑋𝛽 

In order to evaluate the performance of the developed models to predict the samples’ 

properties, the root mean squared error (RMSE) was used, which is based on the squared 

differences between real and predicted y-values. The RMSE is given by:  

RMSE = √
1

𝑠
∑(𝑦𝑖

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑦𝑖𝑟𝑒𝑎𝑙)
2

𝑠

𝑖=1

, 

where 𝑠 is the number of spectra. Besides RMSE, the coefficient of determination (R2) 

was also calculated in order to evaluate the robustness of the PLS models. 
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The validation of the developed PLS models is usually performed using two different 

approaches: external validation, where a set of external samples not used for calibration 

was used for validating the model developed; and the leave-one-out (LOO) cross-

validation, where the calibration and validation are done by successively excluding a 

sample from the calibration set and using it as validation set, until all samples have been 

used for calibration and validation. Generally, the choice of the approach to be used is 

dependent on the number of samples available. 
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Chapter III 

In-situ near-infrared (NIR) versus high-throughput mid-infrared 

(MIR) spectroscopies to monitor biopharmaceuticals bioproduction 

 

Abstract 

The process development for biopharmaceuticals presents a number of relevant constraints, 

being the major one the fact that they are synthesized by living cells with inherent variability, 

further enhanced by sensitivity to the manufacturing environment. To monitor and consequently 

control the cultivation processes it is therefore relevant to develop at-line and/or in-situ 

monitoring techniques.  The versatility presented by FT-IR spectroscopy, both in the near (NIR) 

and mid infrared (MIR) regions, makes it a relevant tool towards this goal as it enables an 

economic, rapid, sensitive and simultaneous measurement of all critical variables of the 

bioprocess. In the present work the high-throughput at-line MIR spectral analysis from 

dehydrated cell pellets and the in-situ analysis of the whole culture broth using a NIR fiber optic 

were compared for monitoring the same cultures of recombinant E. coli DH5 producing a 

plasmid model, conducted over different media compositions and on different cultivation modes 

(batch and fed-batch). For that, several Partial Least Square (PLS) regression models for MIR and 

NIR spectra data were built to estimate the host cell growth, the production of plasmid, the carbon 

sources consumption (glucose and glycerol) and the by-product acetate production and 

consumption. Robust calibration PLS models were developed, that are valid through different 

cultivation processes, presenting a range of final biomass concentrations between 5.6 to 12.1 g 

DCW/L, of final plasmid concentrations between 14 to 142 mg/L and of plasmid productions per 

biomass from 1.8 to 12.4 mg/g DCW. The PLS models developed are valid for control purposes 

in cases of possible industrial environment fluctuations and for optimizations purposes. The PLS 

models developed, both for MIR and NIR regions, presented very high and similar correlation 

coefficients and low predictive errors. The predictive errors for models based on MIR data, were 

0.71, 8.55, 0.29, 0.4 and 0.4 concerning biomass, plasmid, glucose, glycerol and acetate, 

respectively. For NIR data, the predictive errors were 0.39, 7.86, 0.3, 0.23 and 0.41, respectively. 
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NIR spectral data is in general less informative as it results from combinations and overtones 

of the fundamental vibrations. Therefore, the slightly better PLS models based on NIR spectra 

could result from the fact that in the NIR setup an in-situ probe was used, whereas in the MIR 

setup it was necessary to extract the pellet sample from the bioreactor and subsequently dehydrate 

it, which could input an error associated to the biomass acquisition. Moreover, the concentration 

of glucose, glycerol and acetate were directly analyzed from the culture broth in the NIR setup 

while in the MIR setup this information was indirectly estimated obtained from the biomass.  

In conclusion, NIR and MIR spectroscopy represents valuable approaches for bioprocess 

monitoring. The use of a NIR fiber optic probe enables to extract in-situ, i.e, in real time, 

information concerning the critical variables of the bioprocess. In cases of cultivation 

optimization, where multi-bioreactors of small size are used, the use of a NIR fiber optic probe 

may not be possible, or due to economic limitations of having a large number of these probes. 

The MIR setup can therefore represent an efficient alternative, as it can be conducted in high-

throughput mode by using multi-microplates that enable the simultaneously reading of hundreds 

of samples from several cultures at once.  

 

Keywords: Biopharmaceuticals, Bioprocess monitoring, Cultivation, MIR spectroscopy, NIR 

spectroscopy, PAT, PLS models, QbD 
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III.1. Introduction 

The biopharmaceuticals products like plasmids have becoming more appealing due it is 

potential for advanced medical therapies (e.g. DNA vaccines and gene therapy), being the 

bacterium Escherichia coli the most used host microorganism for their production, since it 

presents capacity to grow under a wide range of conditions, from rich complex organic media to 

salt-based chemically defined media, as well as ease of manipulation by genetic engineering 

[Carnes, 2005; Coban et al., 2013; Coban et al., 2011; Kalams et al., 2013; Moen et al., 2009; 

Prather et al., 2003; Scholz et al., 2012; Shibui et al., 2013; Yang, 1999]. 

However, the process development for biopharmaceuticals presents a number of relevant 

constraints, being the major one the fact that they are synthesized by living cells with inherent 

variability, further enhanced by sensitivity to the manufacturing environment. To monitor and 

consequently control the cultivation processes it is therefore relevant to develop monitoring 

techniques.    

Currently, online information about a bioprocess concerning its critical variables (e.g., 

biomass, products, nutrients and metabolites) is possible mainly through offline analyses, which 

are labor-intensive and time-consuming, and imply removing samples from the bioreactor. 

However, in order to better understanding the bioprocesses, and to reach a more economic and 

robust process regarding reproducibility, and consequently quality of the final product, the 

adoption of modern bioprocess monitoring tools based on in-situ analyses is essential, in 

accordance to the Process Analytical Technology (PAT) initiative, introduced by the Food and 

Drug Administration (FDA), in 2004 [FDA, 2004]. This is especially relevant in heterologous 

products used as medicines, i.e. in the case of biopharmaceuticals. 

The introduction of the PAT initiative in the biopharmaceutical industry opened the window 

to the implementation of spectroscopic techniques, namely Fourier transform infrared (FT-IR) 

spectroscopy, to monitor bioprocesses. FT-IR spectroscopy is a physicochemical method that 

measures vibrations of the functional groups of molecules, providing therefore information about 

the biochemical composition of a biological sample. It is rapid, requires minimal sample 

preparation or no preparation at all and is multi-parametric, i.e., it enables the determination of 

the concentration of multiple compounds at once, from a single spectroscopic measurement 

[Huang et al., 2006; McGovern et al., 2002; Schenk et al., 2006].  

The versatility presented by FT-IR spectroscopy, both in the near (NIR) and mid infrared 

(MIR) regions, makes it a potential tool in many applications, either in the laboratory or in 

industrial plants. Nevertheless, it is in the domain of monitoring and optimization of bioprocesses 

that this technique has increasingly been applied, as it enables a rapid, sensitive and simultaneous 

measurement of all critical variables of the bioprocess, namely, the host cell growth, the 
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production of the heterologous product, the carbon sources consumption and by-products (e.g., 

acetate and ethanol) production and consumption [Di Egidio et al., 2010; Roychoudhury et al., 

2006; Scholz et al., 2012]. Depending on the infrared (IR) region used, MIR or NIR, IR 

spectroscopy presents specific characteristics, and therefore specific advantageous and 

limitations, that at the end may complement each other. 

While MIR spectroscopy reflects the fundamental vibrations of the molecular bonds, NIR 

spectroscopy reflects overtones and combinations of vibrations, which makes MIR spectra more 

informative concerning the samples’ biomolecular composition. However, due to the high 

absorption of water in the MIR region, it is usually necessary to take the samples from the 

bioreactor and subsequently dehydrate the samples, which increases the risk of bioreactor 

contamination and inputs a time delay in the analysis [Arnold et al., 2002; Cimander and 

Mandenius, 2002; Guillen and Cabo, 1997; Tamburini et al., 2003]. An advantageous of MIR-

spectroscopy is that it is possible to at-line conduct the MIR spectral acquisition in a high-

throughput mode, using micro-plates, which is particularly important if hundreds of samples are 

to be analyzed in a short period of time, as is the case of bioprocess optimization protocols [Scholz 

et al., 2012].  

In spite of being theoretically less informative, NIR spectroscopy is not so affected by the 

water present, and combined with chemometric techniques, also allows the construction of 

calibration models for the prediction of the critical variables of the bioprocess. Moreover, NIR 

fiber optic probes, that can be immersed directly in the culture broth and steam sterilized with it, 

enable the acquisition of information in-situ, i.e., in real time [Arnold et al., 2002; Cimander and 

Mandenius, 2002; Lopes et al., 2013; Navrátil et al., 2005; Shenk et al., 2001; Tamburini et al., 

2003; Tosi et al., 2003]. Nevertheless, the use of this kind of probes in optimization protocols in 

microbioreactors may be impaired, due to space constraints and low biomass concentrations.  

The use of chemometric techniques is crucial in IR spectroscopy, as it allows extracting 

quantitative information from the IR spectra [Huang et al., 2006; McGovern et al., 2002; Moen 

et al., 2009]. Chemometrics is the application of statistical or mathematical methods to analyze 

chemical data and to extract information from certain chemical systems. These methods allow the 

extraction of the relevant information concerning the analytes of interest enclosed in the spectral 

data [Lourenço et al., 2012; McGovern et al., 2002]. The application of pre-processing techniques 

is also a very important step in the analysis of spectral data, since they enable the elimination of 

physical phenomena, thus improving the subsequent multivariate analysis [Rinnan et al., 2009; 

Sharaf et al., 1986]. The classical spectrum pre-processing methods include multiplicative scatter 

correction (MSC), standard normal variate (SNV) and derivatives. 
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When scatter effects are the dominating sources of spectral variability, a MSC or a SNV 

transformation can be used to remove those effects. MSC is a pre-processing method eliminates 

the light scattering effect due to  particles of different sizes and shapes [Helland et al., 1995], by 

calculating a reference spectrum, which is usually given by the mean of all samples, and each 

spectrum is then fitted to this reference spectrum. With this method, each spectrum is corrected 

and all samples appear to have the same scatter level as the ideal. On the other hand, the SNV 

transformation centers each spectrum and then scales it by its own standard deviation. The 

resulting spectra have always zero mean and variance equal to one, and are thus independent of 

the original absorbance values. Dhanoa et al. (1994) and Helland et al. (1995) observed that MSC 

and SNV transformed spectra are closely related and the difference in models predictive ability 

using these pre-processing techniques is very small. Derivatives can be used to eliminate offset 

and background slope variations among spectra. The first derivative removes baseline offset 

variations in spectral profiles, whereas the second derivative removes both baseline offset 

differences and differences in baseline slopes between spectra.  

For spectral data analysis, the most widely used chemometric techniques are principal 

component analysis (PCA) and partial least-squares (PLS) regression. The PCA is a data-

reduction method extensively used for qualitative spectral analysis that reduces the dimension of 

a dataset to a simpler representation by creating new variables, called principal components. This 

kind of method is a very useful tool for chemometricians, not only for data compression but also 

for information extraction, allowing the identification of major trends in the data [Naes et al., 

2002]. However, for quantification purposes the most used multivariate data analysis is the PLS 

regression, used to establish a relationship between the spectra and the quantifiable properties of 

samples, by determining a small number of latent variables that allow predicting sample 

properties, using the spectral data as efficiently as possible [Naes et al., 2002]. When a calibration 

model is developed from the full spectra, the prediction results can be affected by wavelengths 

that do not provide relevant information about the metabolite of interest. Wavelength selection is 

therefore very useful, as it allows eliminating the uninformative wavelengths [Triadaphillou et 

al., 2007]. 

It is intended in the present work to compare the MIR and NIR spectroscopy in monitoring in 

high-throughput and in-situ mode, respectively, a heterologous product production over a 

recombinant culture. As expression system model, a recombinant Escherichia coli DH5 

producing the plasmid pVAX-LacZ (Invitrogen, USA) was chosen, since E. coli is the most 

widely used expression host, and the production of plasmids has also gained considerable 

attention as a safer vector for gene therapy and DNA vaccination. The use of FT-IR spectroscopy 

for plasmid production monitoring has previously been studied for example, Lopes et al. (2013) 
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used in-situ NIR spectroscopy and Scholz et al. (2012) a high-throughput at-line MIR 

spectroscopy to monitor a plasmid bioproduction process in Escherichia coli cultures. However, 

the efficiency of the two techniques for monitoring plasmid bioprocesses, provided by these two 

studies, cannot be compared, as different cultures conditions were used, and in the case of the 

MIR spectroscopy monitoring few samples were used for model building that could have impaired 

the model prediction capability.  In this regard, in the present work the high-throughput at-line 

MIR spectral analysis and the in-situ analysis using a NIR fiber optic were compared for 

monitoring the same cultures of recombinant E. coli DH5 producing pVAX-LacZ. For that, 

several PLS regression models for MIR and NIR data were built to estimate the critical variables 

of the bioprocess, such as the host cell growth, the production of plasmid, the carbon sources 

consumption (glucose and glycerol) and the by-product acetate production and consumption. As 

it was also intended to compare the robustness of the predicting models over different cultivation 

conditions, several PLS were also built based on cultures conducted over different media 

conditions and on different cultivation modes (batch and fed-batch).  

 

III.2. Materials and Methods 

III.2.1. Cultivation 

Escherichia coli DH5-α containing the plasmid model pVAX-LacZ (Invitrogen, USA) was 

used. The stock cultures, grown on 2% (w/v) Luria-broth (Sigma, UK) and 30 µg/ml kanamycin 

(Sigma-Aldrich, Germany), were maintained in 40% (v/v) glycerol solution (Panreac Quimica 

SA, Spain) with 10 mM Tris-HCl (Sigma-Aldrich, Germany) buffer pH 8.0 at -80 °C. An aliquot 

of 10 µl of stock culture was inoculated into 1 L shake flask containing 300 mL with 20 g/L 

bactotryptone (BD, USA), 10 g/L yeast extract (Difco, USA), 10 g/L sodium chloride (Merck, 

Germany) and 30 µg/mL kanamycin), grown to mid-exponential phase, and then used to inoculate 

a batch culture to an initial optical density at 600 nm (OD600) of approximately 0.5. 

The cultivation was performed in a 2 L bioreactor (Biostat MD, B. Braun, Germany) with a 

1.8 L working volume, in absence of antibiotic. Cultivation was maintained at pH 7.0  0.1 by 

automatic control through 1 M NaOH (Fluka, Switzerland) or 1 M HCl (Sigma-Aldrich, 

Germany) addition, and at 37  0.1 °C with a minimal dissolved oxygen concentration (DOC) of 

30  5% of air saturation, by automatic adjustment of the agitation rate, while adjusting the air 

flow rate range between 1.0 and 1.5 vvm (volume of air/volume of medium/minute). The initial 

batch cultivation media of the three cultures studied contained 10 g/L of yeast extract (Difco, 

USA), 20 g/L bactotryptone (BD, UK) and 7 g/L of glycerol (culture A), 7 g/L of glucose (culture 
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B), and 6 g/L of glycerol and 8 g/L of glucose (culture C). An exponential feeding phase was 

started on cultures B and C with a feeding of 0.3 L medium, containing 22.5 g yeast extract, 22.5 

g bactotryptone and 45 g glucose, and considering a maximum specific growth rate of 0.18 h-1 

and a constant yield of biomass per glucose of 0.6 g/g. Samples were taken from the bioreactor 

along the culture, and subsequently used for offline reference analysis of biomass, glucose, 

glycerol, acetate and plasmid.  

III.2.2. Reference analyses 

Biomass in units of dry cell weight (DCW) per volume of culture medium (g/L) was 

determined by centrifuging the cultivation samples, washing the pellet with 0.9% (w/v) sodium 

chloride and drying at 80 oC until constant weight. The bacterial cell pellet and the supernatant 

obtained from sample centrifugation (Hermle Z160M, Germany) were frozen at -20 oC. Glucose, 

glycerol and acetate were determined by HPLC with a L-6200 Intelligent Pump (Merck-Hitachi, 

UK), a L-7490 LaCrom-Ri-detector (Merck, Germany), a D-2500 Chromato-integrator (Merck-

Hitachi, Germany) and an Aminex® Fermentation Monitor HPLC column (Bio-Rad, USA) 

maintained at 50 °C, and by using H2SO4 at 0.6 mL/min as eluent. Plasmids were extracted from 

the bacteria cell by the alkaline cell lysis method, and subsequent plasmid concentration and 

purity degree were determined by hydrophobic interaction HPLC, as described in Scholz et al. 

(2012). 

III.2.3. MIR spectroscopy 

The cell pellet obtained from the centrifugation of each 1 mL sample taken from the bioreactor 

was resuspended with NaCl 0.9% (w/v), so that an equivalent optical density of 6.0 (at 600 nm) 

in all samples was achieved. Triplicates of 25 µL of this suspension were placed on IR-transparent 

ZnSe microtiter plates with 96 wells (Bruker Optics, Germany) and subsequently dehydrated for 

2.5 h in a vacuum desiccator (ME2, Vaccubrand, Germany). The MIR spectra were recorded in 

transmission mode by a HTS-XT associated to Vertex-70 spectrometer (Bruker Optics), using a 

spectral resolution of 4 cm-1 and 40 scans per sample.  

III.2.4. NIR spectroscopy 

NIR spectra were obtained using an NIR transflection fiber optic probe IN-271P (Bruker 

Optics, Germany), with a pathlength of 2 mm, coupled to a Vertex-70 spectrometer (Bruker 

Optics, Germany) with a TE-InGaAs detector. The fiber optic probe was submerged in the 

bioreactor and stem sterilized simultaneously with the cultivation medium. NIR spectra were 
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collected every 2 minutes in the 12500-5400 cm-1 (800-1851 nm) range, consisting of 32 coadded 

scans with 8 cm-1 resolution (2 nm steps). The scanner velocity was set to 20 kHz and the aperture 

setting defined was 6 mm.  

III.2.5. Chemometric Methods 

MIR data consisted of mean spectra of triplicates in each well of the ZnSe plate, while NIR 

data consisted of the spectra correspondent to the samples taken from the bioreactor and analyzed 

by offline reference methods.  

Pre-processing 

The following data pre-processing methods were studied: constant offset elimination, straight 

line subtraction, first and second derivatives, multiplicative scatter correction (MSC) and standard 

normal variate (SNV), and a combination between them.     

While constant offset elimination shifts the spectra in order to set the y-minimum to zero 

through the subtraction of the spectra by a certain constant, straight line subtraction fits a straight 

line to the spectra and subtracts it, enabling the shift of the spectra to zero [Otto, 1999; Smith, 

2011]. Spectral first and second derivatives were also employed to remove baseline offsets. As 

derivatives usually broaden spectra noise, a Savitzky-Golay smoothing was applied, where each 

point of the dataset is replaced by the average of itself and n points before and after.  

SNV eliminates the interference of scatter events by individually transforming the spectral 

data xi into new values zi, where i = 1, …, p (p are the wavelengths), according to the following 

equation: 

𝑧𝑖 =
𝑥𝑖 −𝑚

𝑠
, 

where m corresponds to the mean and s to the standard deviation of xi values in the original 

spectrum [Fearn et al., 2009]. 

MSC was  also used to eliminate changes in spectra due to radiation scattering, by determined 

the mean spectrum of  replicate spectra, by performing a transformation where the spectral data 

xi is converted into new values zi, where i = 1, …, p, with p being the wavelengths [Fearn et al., 

2009]. The following equation describes the transformation from xi to zi: 

𝑧𝑖 =
𝑥𝑖 − 𝑎

𝑏
, 

where a represents the intercept and b the slope of a least squares regression of xi on the values ri 

coming from the reference spectra. 
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Multivariate data analysis 

For multivariate calibration the PLS method, also known as projection to latent structures, was 

applied, by determining  a small number of latent variables (lv) that can predict sample properties 

by using the spectral data.  

Let X be the mean-centered 𝑛 × 𝑝 matrix composed of the 𝑛 sample vectors 𝑥𝑖, 𝑖 = 1,… , 𝑝 

containing the spectral measurements at 𝑝 wavelengths and let 𝑦 be the mean-centred vector 

containing the reference values for the variable of interest. With this information, PLS finds new 

variables 𝑡𝑖, 𝑖 = 1,… , 𝑝, which will be used to estimate the lv, and determines the loadings matrix 

𝑃 and y-loadings vector 𝑞 by maximizing the correlation between those variables 𝑡𝑖 found, as 

described below:       

𝑋 = 𝑇𝑃𝑇 + 𝐸 

𝑦 = 𝑇𝑞𝑇 + 𝑓, 

where 𝐸 and 𝑓 are the 𝑋 and 𝑦 residuals, which are the difference between the observed and the 

modelled variable [Naes et al., 2002]. 

The PLS regression coefficients  are given by: 

𝛽 = 𝑊(𝑃𝑇𝑊)−1(𝑇𝑇𝑇)−1𝑇𝑦, 

where W is the PLS weights matrix and can be used to obtain the predictions: 

�̂� = 𝑋𝛽 

In order to evaluate the performance of the developed models to predict the samples’ 

properties, the root mean squared error (RMSE) was used, which is based on the squared 

differences between real and predicted y-values. The RMSE is given by:  

RMSE = √
1

𝑠
∑(𝑦𝑖

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
− 𝑦𝑖

𝑟𝑒𝑎𝑙)
2

𝑠

𝑖=1

, 

where 𝑠 is the number of spectra. Besides RMSE, the coefficient of determination (R2) was also 

calculated in order to evaluate the robustness of the PLS models. 

The validation of the developed PLS models was performed using two different approaches: 

external validation, where a set of external samples not used for calibration was used for 

validating the model developed; and the leave-one-out (LOO) cross-validation, where the 
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calibration and validation are done by successively excluding a sample from the calibration set 

and using it as validation set, until all samples have been used for calibration and validation. The 

choice of the technique to be used is dependent on the number of samples available. 

Wavelength selection 

The wavelength selection was performed by dividing the spectral region into 10 equal 

subregions and finding the best combination of spectral regions providing the best predictive 

performance. The calculation starts with one subregion and after the best subregion has been 

found the next subregions will be individually added after the best combination of regions has 

been found. This procedure was repeated for data pre-processed using the techniques described 

above. The best PLS model was assessed by picking the wavelength regions and pre-processing 

technique providing the smallest RMSE. Both wavelength selection and PLS model building were 

performed using software OPUS Ver. 7.2 (Bruker, Germany).   

 

III.3. Results and Discussion 

One of the major challenges associated to the production of biopharmaceuticals is the 

development of methods to at-line or in-situ monitoring the production of the recombinant 

product, this way promoting process control to ensure high quality products and optimization 

towards a more economical bioprocess. As a biopharmaceutical product, plasmids have become 

appealing due to its potential for advanced medical therapies like DNA vaccines and gene therapy 

[Carnes, 2005; Coban et al., 2013; Coban et al., 2011; Kalams et al., 2013; Prather et al., 2003; 

Shibui et al., 2013]. Plasmids are usually produced in recombinant E. coli cultures, which as living 

cells present inherent variability that is further enhanced by the cell sensitivity to the 

manufacturing environment. Therefore, it is crucial the development of in-situ bioprocess 

monitoring tools along the culture time so that the plasmid bioproduction could be controlled in 

real-time, as described in the present work by using a NIR fiber-optic spectroscopy probe stem 

sterilized with the bioreactor. In cases where the fiber-optic probe cannot be used, due to 

limitations of bioreactor dimensions as in the case of optimization protocols using 

microbioreactors, the use of high-throughput analysis using microplates based in MIR 

spectroscopy could represent a solution. In both cases (in NIR and in MIR spectroscopy) the ideal 

calibration models developed should be valid for a wide range of cultivation conditions, that will 

cover perturbations of the cultivations conditions naturally occurring at industrial scale, or that 

will cover the cultivation conditions evaluated under optimization protocols. 
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To develop robust PLS models, enabling to predict the key variables of the plasmid 

bioproduction from a IR-spectrum, three E. coli cultures conducted under different mixtures of 

glucose and glycerol as carbon sources on the batch phase and over different cultivation strategies 

(batch and fed-batch) were prepared. The batch phase of cultivation A to C were conducted with 

glycerol (Culture A), with glucose (Culture B) and with a mixture of glucose and glycerol (Culture 

C). After the batch phase, a feeding phase with glucose was started on cultures B and C. The three 

cultures were monitored by high-throughput mode in MIR spectroscopy and in-situ NIR 

spectroscopy.  

Considering the batch phases of cultures A and B, it was possible to observe that culture A 

(conducted only on glycerol) produced 2 times more plasmid than culture B (conducted only on 

glucose), most probably as a result of the lower specific growth rate and lower acetate 

productions, that however resulted in an also lower volumetric productivity. Indeed, glycerol has 

being used as an alternative C-source in relation to glucose, in order to minimize overflow 

metabolism, due to a lower glycerol transport to the cell, that consequently will increase the 

energetic metabolism efficiency while reducing the acetate production [Korz et al., 1995; Hansen 

and Eriksen, 2007; Scholz et al., 2012]. The acetate production, besides its direct consequence of 

decrease biomass yield, may also reduce product yield per biomass [Smirnova and Oktyabrskii, 

1985]. Therefore, the use of glycerol instead of glucose will implies a lower specific growth rate 

and consequently a lower plasmid productivity, that however results in a lower acetate production 

and consequently on a slight higher biomass and a much higher plasmid production per biomass, 

and consequently on a much higher final plasmid concentration in relation to the culture 

conducted on glucose. Since the goal of the biopharmaceutical companies is to obtain 

simultaneously maximum plasmid final concentration, plasmid yield per biomass and plasmid 

productivity, a mixture of glucose and glycerol as carbon source should be therefore used (Table 

Figure III.5, III.1) [Scholz et al., 2012]. Indeed, it was observed that the batch culture C, 

conducted with a mixture of glucose and glycerol, presented the highest plasmid productivity of 

4.4 mg/L/h, plasmid concentration of 42 mg/L and plasmid production per biomass of 7.23 mg/g 

(Table III.1), when compared with the other two batches phases.  
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 Figure III.5: Evolution along the time of the biomass, glucose, glycerol, acetate and plasmid concentrations for the three cultures (A to 

C), conducted with a C-source composition on the batch phase of glycerol (culture A), glucose (culture B) and glucose and glycerol (culture 

C). After all acetate produced during the batch phase was consumed on culture B and C an exponential feeding phase with glucose was 

started considering a =0.18h-1, YX/S=0.6 and S=150g/L. The feeding phase is represented in the graph by the grey area. 
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Table III.1: Description of the three batches cultures conducted with mixtures of glucose and glycerol as carbon source. 

The following parameters are relative to the time at which the maximum plasmid production was achieved: time, 

biomass, maximum plasmid and final plasmid productivity. 

 

Culture A Culture B Culture C 

[glucose] (g/L) - 7.0 8.0 

[glycerol] (g/L) 7.0 - 6.0 

maximum [acetate] (g/L) 3.3 5 5.4 

time (h) 22 7 9.5 

[biomass] (g/L] 5.9 5.6 9.4 

maximum [plasmid] (mg/L) 34 14.4 42 

plasmid/biomass (mg/g) 4.8 1.8 7.2 

final plasmid productivity (mg/L/h) 1.5 2.1 4.4 

specific growth rate in glucose (h-1) - 0.78 0.59 

specific growth rate in glycerol (h-1) 0.66 - 0.31 

 

Comparing the two fed-batch cultures, culture C produced about 2 times more plasmid in 

relation to the culture B, and an increase of approximately 60% in the final plasmid productivity 

(Table III.2). The high plasmid productivities observed in the fed-batch phase of culture C can 

be related to its batch phase, which was conducted with mixtures of glucose and glycerol as carbon 

source, which might have contributed to maximize plasmid concentrations, plasmid yield per 

biomass and plasmid productivities.   

 

Table III.2: Description of the two fed-batches cultures conducted with mixtures of glucose and glycerol as carbon 

source. The following parameters are relative to time where the maximum plasmid production was achieved: time, 

biomass, maximum plasmid and final plasmid productivity. 

 Culture B Culture C 

time (h) 25 32.5 

maximum [biomass] (g/L] 8.6 12.1 

maximum [plasmid] (mg/L) 66 142 

plasmid/biomass (mg/g) 8.7 12.4 

final plasmid productivity (mg/L/h) 2.6 4.4 

maximum [acetate] during feeding (g/L) 4.1 7.2 
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These data clearly show that slight differences concerning types and concentrations of carbon 

sources, as well as the cultivation strategy, have a relevant impact on the culture performance, 

therefore announcing the need to monitor the bioprocess towards more reproducible processes 

and to understand how the above factors affect the entire production process. For that, MIR and 

NIR spectral data (Figure III.6) from the cultures described above (three batches phase and two 

fed-batches phases) were used to build PLS models for predicting the variables of interest in the 

plasmid bioprocess, namely, glucose, glycerol, acetate, biomass and plasmid concentrations, as 

for optimization purposes it is very important that PLS models cover a wide range of cultivation 

conditions.  

 

 

III.3.1. PLS modeling of MIR spectra 

PLS models using the MIR spectral data from the three cultures (A to C) were built for 

biomass, plasmid, glucose, glycerol and acetate, and subsequently evaluated concerning its 

accuracy and robustness. It should be noted that the prediction of the concentration of the glucose, 

glycerol and acetate in the culture broth was possible based on metabolism-induced correlations 

between the spectra and the concentration of the nutrients and metabolites in the extracellular 

medium. 

Several PLS models were built, presenting combinations of the following pre-processing 

techniques: constant offset elimination, straight line subtraction, multiplicative scatter correction 

(MSC), standard normal variate (SNV) and first and second derivatives. The PLS models were 

also optimized using a strategy for wavenumber selection for identifying the spectral regions that 

best relate with the metabolite, as the prediction results can be improved by excluding spectral 

regions that do not contain metabolite specific information (Kansiz et al., 2001). The best PLS 

model was assessed by picking the wavelength regions and several pre-processing technique 

providing the smallest RMSE. For the biomass, plasmid and acetate models, the RMSE was 

Figure III.6: Examples of MIR (A) and NIR (B) spectra acquired during bioprocess monitoring. 
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calculated based on an independent test validation set due to the larger number of samples 

available. For the glucose and glycerol models, the RMSE was obtained by LOO cross-validation, 

as fewer samples were available, provided by the batch consumption phase. The acetate model 

was also built based on samples from the batch consumption phase. 

High accurate PLS regression models were obtained for biomass, plasmid and glucose 

concentrations, with a R2 of 0.97 and a RMSE of 0.71, 8.55 and 0.29, respectively, that 

represented perceptual errors in relation to the range of units of the variables of 4.8, 6.0 and 3.2%, 

respectively (Table III.3; Figure III.7). All models produced better results concerning accuracy 

and prediction errors when compared to the results obtained by Scholz et al. (2012), who predict 

the metabolites concentration of five batch cultures with different initial medium compositions. 

These five cultures presented a distinct culture behavior, with maximum biomass concentrations 

between 6.7 and 12.8 g/L and maximum amounts of plasmid produced between 11 and 95 mg/L. 

Despite the large variability present in the present cultures, being even higher concerning the 

plasmid range, a great improvement in model performance was seen in these study, which may 

be partially explained by the use of a larger number of samples that were taken along the time of 

the bioprocess considered for PLS model building.  

 

 

Table III.3: Best MIR PLS regression models for biomass, plasmid, glucose, glycerol and acetate concentrations concerning the R2, the 

RMSE, the number of latent variables (lv) used, the pre-processing technique and the selected spectral regions for culture A, B and C 

(*LOO cross-validation).  

 

 At-line monitoring by MIR spectroscopy 

 R2 lv RMSE Percentage 

of error (%) 

No. calibration 

samples 

No. validation 

samples 

Pre-processing Wavelength selection 

Biomass 

(g/L) 

0.97 7 0.71 4.8 116 27 Second Derivative 3299,8 - 2946,9 ; 1199,6 - 499,5 

Plasmid 

(mg/L) 

0.97 8 8.55 6.0 116 27 First Derivative + 

MSC 

3299,8 - 2597,8 ; 2248,7 - 1897,7 

Glucose 

(g/L)* 

0.97 8 0.29 3.2 28 - First Derivative 3998 - 3297,9 ; 2948,8 - 2597,8 ; 

2248,7 - 1897,7 

Glycerol 

(g/L)* 

0.92 8 0.40 5.2 24 - Second Derivative 3998 - 3647 ; 2948,8 - 1897,7 ; 

850,5 - 499,5 

Acetate 

(g/L) 

0.91 7 0.40 7.4 43 12 Straight line 

subtraction 

2948,8 - 2597,8 ; 2248,7 - 1897,7 
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Regarding the plasmid model, the high RMSE achieved can be explained by the wide range 

of plasmid concentration, thus making the plasmid prediction fairly acceptable (6.0% of the 

maximum plasmid concentration). Moreover, the experimental errors in the determination of 

plasmid concentration (Figure III.5), may also influence the prediction error, as this analysis is 

based on plasmid HPLC analysis after plasmid cell extraction by cell alkaline lysis. The cell 

plasmid extraction step presents serious concerns, as during plasmid extraction, cells at different 

metabolic states may present different contents in nucleases, and consequently the efficiency of 

the plasmid extraction will widely vary, leading to analytical errors between 5 and 8%. 

Less accurate models were obtained for glycerol and acetate, with the acetate model providing 

the highest percentage of prediction error. This error, however, might still be considered 

reasonable, when compared to the errors provided by the conventional methods for the 

determination of acetate, as the most used method for HPLC analysis is based on a non-specific 

HPLC column that presents a broad range of applicability but lower specificity and sensitivity. 

On the other hand, the good result for the glycerol model regarding the prediction error may be 

due to a very specific model built based on few samples within a narrow concentration range. 

Figure III.8 summarizes the regression coefficients of the PLS models developed for all 

metabolites. It can be seen that for each variable studied specific spectral windows were selected 

for model building. Although some overlapping might be expected, each model was developed 

based on specific spectral regions, with distinct intensities observed, which ensure that one 

metabolite is not being predicted by another. 

 

 

Figure III.7: True and predicted biomass, glucose and plasmid concentrations obtained by the PLS regression model based on the MIR spectra, 

considering data from three different cultures (A, B and C). 
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Figure III.8: PLS regression vectors obtained from MIR models for A) glucose, B) glycerol, C) acetate, D) biomass and E) 

plasmid concentrations. 
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III.3.2. PLS modeling of NIR spectra  

PLS models were built for glucose, glycerol, acetate, biomass and plasmid concentrations 

using NIR data from the three cultures studied. For the biomass, plasmid and acetate models, the 

RMSE was calculated based on an independent test validation set, given the larger number of 

samples available. For the glucose and glycerol models, the RMSE was obtained by LOO cross-

validation, as fewer samples were available, provided by batch consumption phase. The acetate 

model was also built based on samples from the batch consumption phase. As for the PLS models 

based on MIR data, the best PLS model was assessed by picking the wavelength regions and 

several pre-processing technique providing the smallest RMSE. The PLS regression vectors 

(Figure III.9) of all PLS models, layout the models specificity for each variable, as different 

spectra regions contribute to each model building. As expected the calibration models based on 

NIR presents more overlapping spectra regions among each other, as NIR spectroscopy reflects 

overtones and combinations of vibrations, where MIR spectroscopy reflects fundamental 

vibrations modes.  It was observed that good PLS models were achieved for all variables studied 

(Table III.4). High accurate PLS regression models were achieved for biomass and glucose, with 

a R2  0.98 and a low RMSE of 0.39 and 0.30, respectively (Table III.4; Figure III.10). The 

biomass model yielded a similar R2 compared to previous reports on E. coli cultures [Arnold et 

al., 2002; Cimander and Mandenius, 2002], but lower prediction errors. Accurate PLS models 

were also obtained for plasmid (Table III.4; Figure III.10), yielding a R2 of 0.96 and a RMSE 

of 7.86. Although the RMSE of plasmid model seems high, when compared to the error associated 

to the prediction of the other metabolites, it is indeed a low RMSE (5.6% of the maximum plasmid 

concentration), if taken into account the range of plasmid concentrations, between 0 and 42 mg/L.  

In the case of glycerol, an accurate PLS model with a R2 of 0.96 and a RMSE of 0.23 was 

obtained, however, as for the PLS model for glycerol based on MIR data, a low number of samples 

was used, which might have produced a very specific model. A less accurate PLS model was also 

obtained for the acetate production, compared to the previous models, and as previously observed 

in the MIR region, which can be related to the distinct level of production of acetate achieved in 

cultures A and B, therefore contributing to greater complexity and consequently influencing the 

acetate prediction. 

Considering that PLS models were developed based on cultures accounting for a high 

variability concerning the cultivation conditions and strategies, along with wide concentration 

ranges of the metabolites, in-situ monitoring of the main variables of the plasmid bioprocess, with 

a high predictive ability, was possible through NIR spectroscopy. 
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Figure III.9: PLS regression vectors obtained from NIR models for A) glucose, B) glycerol, C) acetate, D) biomass and E) plasmid 

concentrations. 
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Table III.4: Best NIR PLS regression models for biomass, plasmid, glucose, glycerol and acetate concentrations concerning the R2, 

the RMSE, the number of latent variables (lv) used, the pre-processing technique and the selected spectral regions for culture A, B and 

C (*LOO cross-validation). 

 

 

 

 

 

 

 

 

 

 

In-situ monitoring by NIR spectroscopy 

 R2 lv RMSE 
Percentage 

of error (%) 

No. calibration 

samples 

No. validation 

samples 
Pre-processing 

Wavelength 

selection 

Biomass 

(g/L) 
0.99 7 0.39 2.6 116 27 

Constant offset 

elimination 

11077,7 - 9654,4 ; 

8948,5 - 7525,3 

Plasmid 

(mg/L) 
0.96 7 7.86 5.6 116 27 SNV 

103368 - 8944,7 ; 

6109,7 - 5400 

Glucose 

(g/L)* 
0.98 6 0.30 3.4 27 - None 

10368 - 8235 ; 

6819,4 - 5400 

Glycerol 

(g/L)* 
0.96 7 0.23 3.3 23 - None 

8238,8 - 7525,5 ; 

6109,7 - 5400 

Acetate 

(g/L) 
0.90 4 0.41 7.6 44 15 

Constant offset 

elimination 
8948,5 - 7525,3 

Figure III.10: True and predicted biomass, glucose and plasmid concentrations obtained by the PLS regression model based on the NIR spectra, 

considering data from three different cultures (A, B and C). 
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III.3.3. MIR versus NIR models 

Generally, PLS models with MIR spectra present better results than models with NIR spectra, 

as shown by previous studies [Sandor et al., 2013; Sivakesava et al., 2001], as MIR spectroscopy 

reflects the fundamental vibration of the molecular bonds, therefore becoming more informative, 

in relation to NIR spectroscopy that reflects overtones and combinations vibration modes. 

However, using exactly the same data from 3 batch cultures and 2 feeding phases, very similar 

PLS regression models were obtained to predict the critical variables of the bioprocess as the 

concentrations of biomass, plasmid, glucose, glycerol and acetate. If it is taken into account the 

final prediction errors, most PLS models built based on NIR spectra are even slightly better than 

those built on MIR data. A possible reason for this result might be the use of a different NIR probe 

in this study that works in transflectance mode and presents a mirror with a conical shape that 

avoids the accumulation of solids and air bubbles in the pathlength, therefore improving the final 

results for NIR spectra. Furthermore, the transflectance mode most probably presents a wider 

range of applicability from low to high biomass concentrations. Indeed, comparing MIR and NIR 

data pre-processing for models’ construction, PLS models built on NIR data did not require the 

use of derivatives as pre-processing, as reported by other authors using in-situ NIR probes [Arnold 

et al., 2002; Cimander and Mandenius, 2002; Lopes et al., 2013; Lourenço et al., 2012; Navrátil 

et al., 2005; Shenk et al., 2001; Tamburini et al., 2003; Tosi et al., 2003]. For example, for glucose 

and glycerol models, no pre-processing was necessary, and only a constant offset elimination was 

applied for biomass and acetate models. The best PLS models for MIR data required data pre-

processing using derivatives for most variables studied, except for the acetate model, for which a 

straight line subtraction was applied to the spectral data. 

The results achieved for NIR and MIR data clearly show that both NIR and MIR 

spectroscopies represent valuable approaches for bioprocess monitoring, however, they must be 

chosen regarding the final purpose. For example, if the goal is to monitor the bioprocess along 

time, NIR spectroscopy may be chosen, since a NIR fiber-optic probe (stem sterilized with the 

bioreactor vessel) can be placed inside the bioreactor and extract information in real time. On the 

other hand, if several hundred of samples from several cultures are to be analyzed for optimizing 

cultures’ conditions and strategies, high-throughput MIR spectroscopy could be the choice. 

Nevertheless, taking into account the necessary sample dehydration for MIR analysis, in-situ NIR 

spectroscopy, when available and there is not a minimum bioreactor volume, is still more 

promising, as spectral data acquired online, with no sample extraction/preparation, can be directly 

used also for optimization purposes. 
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Therefore, for bioprocess monitoring of biopharmaceutics, as plasmid production in 

recombinant E. coli hosts, MIR and NIR spectroscopies are techniques that present specific 

characteristics and therefore advantageous and limitations associated, were can be seen as 

complementary and together represent a powerful tool for bioprocess monitoring.  
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Chapter IV 

Metabolic profiling of recombinant cell cultivations based on high-

throughput FT-IR spectroscopy analysis 

 

Abstract 

The increasing interest in biopharmaceuticals products like plasmids that have becoming more 

appealing due it is potential for advanced medical therapies (e.g. DNA vaccines and gene 

therapy), calls for the need of developing economic ways for their production. However, genetic, 

physiological and environmental factors influence the expression of the cloned gene product with 

a high degree of complexity. Therefore, in order to control and optimize the performance of 

recombinant expression systems, it is very important to understand the complexity of the 

interrelationships between cultivation conditions and the genetic and physiological characteristics 

of the expression system. For that, the metabolic profile of two recombinant E. coli cultures 

producing plasmid pVAX-lacZ were evaluated based on FT-IR spectra collected in a high-

throughput mode along the cultivation time. 

The principal component analysis (PCA) method enabled to capture the metabolic state of the 

cell in both cultivations, as identifying the different C-sources consumption phases. It was also 

possible by direct analysis of the FT-IR spectra to acquire biochemical and metabolic information 

along the cultivation process: it was observed a decreasing of glycogen levels at high specific 

growth rate, namely during the carbon sources consumption; it was also possible to observe the 

RNA concentrations and transcriptional levels increase before the beginning of a new carbon 

sources consumption, most probably due to the need of new genes transcription, to enable the 

new carbon source metabolism; it was also observed an increase of the translational level 

(estimated as the ratio between the amide II spectral bands and the nucleic acids total) during the 

consumption of the carbon source, most probably as a result from a higher protein expression; it 

was also possible to identify protein conformational changes in the cell proteome.  

In summary, FT-IR spectroscopy enables to acquire along the cultivation process of 

recombinant E. coli several features of the biochemical and the metabolic status of the cell, which 

could strong contribute to understand the complex interrelationships between the recombinant 

cell metabolism and the bioprocess towards the design of more economic and robust processes 

according to the PAT initiative. 

Keywords: Bioprocess monitoring, FT-IR spectroscopy, Metabolic Profiling, PCA 
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IV.1. Introduction 

The bacterium Escherichia coli is the most used host microorganism for the production of 

recombinant products, such as heterologous proteins and plasmids. The main reason for that is its 

capacity to grow under a wide range of conditions, from rich complex organic media to salt-based 

chemically defined media, as well as its ease manipulation by genetic engineering [Moen et al., 

2009; Prather et al., 2003; Scholz et al., 2012; Yang, 1999]. However, differences in the 

cultivation strategies (e.g., batch and fed-batch), environmental conditions and medium 

composition, are known to affect the stability and expression of the cloned gene product 

[O’Kennedy et al., 2003; Ow et al., 2007; Ow et al., 2009]. The characteristics of the plasmid and 

the host cell, i.e., the cell expression system, are also important factors that should be carefully 

evaluated [McNeil and Harvey, 1990]. The combination of the above genetic, physiological and 

environmental factors influence the expression of the cloned gene product with a high degree of 

complexity. Therefore, in order to control and optimize the performance of recombinant systems, 

the effects of these factors and their interrelationships must be well understood.  

To help understanding the complex relationships between the media composition, cultivation 

strategy and condition, and the characteristics of the cell expression system, the effect of these 

variables on recombinant cultures must be studied. This can be done by simply following the 

evolution along the time of critical variables of the process, namely, biomass, recombinant 

product, carbon source and acetic acid [Xiong et al., 2008]. To further understand the complexity 

of the interrelationships between cultivation general conditions and the genetic and physiological 

characteristics of the expression system, other metabolic information from the host recombinant 

cell along the culture would be also highly useful. Understanding the complex interrelationships 

between cultivation conditions and the expression system characteristics would therefore bring 

valuable insight on the bioprocess, thus promoting control and optimization protocols towards a 

more economic and robust process regarding reproducibility and consequently quality, in 

accordance to the Process Analytical Technology (PAT) initiative launched in 2004 by the Food 

and Drug Administration (FDA) [FDA, 2004]. 

Currently, the extraction of metabolic information from the host recombinant cell along the 

bioprocess is performed by conventional cellular and molecular biology methods, which are 

limited, time-consuming and labor-intensive. Alternative techniques, like Fourier Transform 

Infrared (FT-IR) spectroscopy, a promising tool in the biomedical and pharmaceutical sciences, 

have emerged in the last decade and shown to be a powerful tool to obtain information about all 

stages of production’s process in a simpler, rapid and high-throughput mode [Card et al., 2008; 

Orsini et al., 2000; Scholz et al., 2012]. 
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As a physicochemical method measuring vibrations of the functional groups of molecules, FT-

IR spectroscopy is able to provide information about the structural and biochemical composition 

of a biological sample [Huang et al., 2006; McGovern et al., 2002; Schenk et al., 2006; Scholz et 

al., 2012]. Examples of biomedical and pharmaceutical applications of FT-IR spectroscopy 

include biodiagnostics (e.g., to detect inflammatory and precancerous cell states) [Gaigneaux et 

al., 2004; Gazi et al., 2006; Lee et al., 2009; Lewis et al., 2010; Maziak et al., 2007] and screening 

the “mode of action” of new drugs [Gasper et al., 2009]. FT-IR spectroscopy has also become 

important for bioprocess monitoring and control [Gasper et al., 2009].  

Generally, direct information can be obtained from a given IR spectrum, however, 

chemometric techniques enable further extraction of qualitative and quantitative information. The 

most common methods for these purposes are principal component analysis (PCA) and partial 

least squares (PLS) regression models [Huang et al., 2006; McGovern et al., 2002; Moen et al., 

2009]. The application of spectral pre-processing techniques is also an important step in 

multivariate spectral analysis, since they enable the elimination of physical phenomena, thus 

improving the extraction of quantitative and qualitative information [Rinnan et al., 2009; Sharaf 

et al., 1986].  

The studies on bioprocess monitoring by FT-IR spectroscopy generally apply PLS regression 

methods to estimate from the FT-IR spectra critical variables of the bioprocess, i.e., biomass 

growth, the consumption of the main carbon sources as glucose and glycerol, the production and 

consumption of by-products as acetate and ethanol, and the recombinant product production as 

proteins and plasmids [Arnold et al., 2002; Cimander and Mandenius, 2002; Lopes et al., 2013; 

Navrátil et al., 2005; Scholz et al., 2012; Shenk et al., 2001; Tamburini et al., 2003; Tosi et al., 

2003]. However, besides this kind of information, it would be highly useful to extract from the 

FT-IR spectra  other information that enables the biochemical and metabolic profiling of the host 

cell, e.g. the energetic level (i.e. the glycogen contents), total quantities of nucleic acids, proteins 

and lipids as well the apparent transcription and translation rate, as conducted by other authors in 

human cells and in carcinogenic studies [Baran et al., 2013; Gaigneaux et al., 2007; Gazi et al., 

2003; Maziak et al., 2007; Lewis et al., 2010]. 

Thus, the main goal of the present work is to evaluate the potential of FT-IR spectroscopy to 

characterize the biochemical and metabolic status of recombinant E. coli DH5-α cultures 

producing the plasmid model pVAX-lacZ (Invitrogen). Due to the relevance of using glucose as 

the main carbon-source to promote the bacterial growth and glycerol to minimize the production 

of acetate, two E coli cultures were conducted with different mixtures of glucose and glycerol and 

different cultivation strategies (batch and fed-batch). A PCA of the spectral data was first 

performed in order to evaluate the ability of FT-IR spectroscopy to reveal relationships between 
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spectral data and cellular events. The biochemical and metabolic profiling of the cell host along 

the cultivation process was evaluated by estimating from the spectral data for example lipids, 

proteins, nucleic acids and glicids and translational level.  

 

IV.II. Materials and Methods 

IV.2.1. Cultivation 

Escherichia coli DH5-α containing the plasmid model pVAX-LacZ (Invitrogen, USA) was 

used. The stock cultures, grown on 2% (w/v) Luria-broth (Sigma, UK) and 30 µg/ml kanamycin 

(Sigma-Aldrich, Germany), were maintained in 40% (v/v) glycerol solution (Panreac Quimica 

SA, Spain) with 10 mM Tris-HCl (Sigma-Aldrich, Germany) buffer pH 8.0 at -80 °C. An aliquot 

of 10 µl of stock culture was inoculated into 1 L shake flask containing 300 mL with 20 g/L 

bactotryptone (BD, USA), 10 g/L yeast extract (Difco, USA), 10 g/L sodium chloride (Merck, 

Germany) and 30 µg/mL kanamycin (Sigma-Aldrich, Germany), and grown to mid-exponential 

phase (resulting in an optical density at 600 nm of 0.5). 

The cultivation was performed in a 2 L bioreactor (Biostat MD, B. Braun, Germany) with a 

1.8 L working volume, in absence of antibiotic. Cultivation was maintained at pH 7.0  0.1 by 

automatic control through 1 M NaOH (Fluka, Switzerland) or addition of 1 M HCl (Sigma-

Aldrich, Germany), and at 37  0.1 °C with a minimal dissolved oxygen concentration (DOC) of 

30  5% of air saturation, by automatic adjustment of the agitation rate and the air flow rate range 

between 1.0 and 1.5 vvm (volume of air/volume of medium/minute). The initial batch 

cultivation media of the two cultures studied contained 10 g/L of yeast extract (Difco, 

USA), 20 g/L bactotryptone (BD, UK) and 7 g/L of glycerol (culture A) and 6 g/L of 

glycerol and 8 g/L of glucose (culture B).  

After the batch phase of the culture B, an exponential feeding phase was started with 

0.3 L medium, containing 22.5 g yeast extract, 22.5 g bactotryptone and 45 g glucose, 

and considering a maximum specific growth rate of 0.18 h-1 and a constant yield of 

biomass per glucose of 0.6 g/g. Samples were taken from the bioreactor along the culture, and 

subsequently used for offline reference analysis of biomass, glucose, glycerol, acetate and 

plasmid.  
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IV.2.2. Reference analyses 

Biomass in units of dry cell weight (DCW) per volume of culture medium (g/L) was 

determined by centrifuging the cultivation samples, washing the pellet with 0.9% (w/v) sodium 

chloride and drying at 80 oC until constant weight. The bacterial cell pellet and the supernatant 

obtained from sample centrifugation (Hermle Z160M, Germany) were frozen at -20 oC. Glucose, 

glycerol and acetate were determined by HPLC with a L-6200 Intelligent Pump (Merck-Hitachi, 

UK), a L-7490 LaCrom-Ri-detector (Merck, Germany), a D-2500 Chromato-integrator (Merck-

Hitachi, Germany) and an Aminex® Fermentation Monitor HPLC column (Bio-Rad, USA) 

maintained at 50 °C, and by using H2SO4 at 0.6 mL/min as eluent. Plasmids were extracted from 

the bacteria cell by the alkaline cell lysis method, and subsequent plasmid concentration and 

purity degree were determined by hydrophobic interaction HPLC, as described in Scholz et al. 

(2012). 

IV.2.3. FT-IR spectroscopy 

The cell pellet obtained from the centrifugation of each 1 mL sample taken from the bioreactor 

was resuspended with NaCl 0.9% (w/v), so that an equivalent optical density of 6.0 (at 600 nm) 

in all samples was achieved. Triplicates of 25 µL of this suspension were placed on IR-transparent 

ZnSe microtiter plates with 96 wells (Bruker Optics, Germany) and subsequently dehydrated for 

2.5 h in a vacuum desiccator (ME2, Vaccubrand, Germany). The FT-IR spectra were recorded in 

transmission mode by a HTS-XT associated to Vertex-70 spectrometer (Bruker Optics), using a 

spectral resolution of 4 cm-1 and 40 scans per sample.  

IV.2.4. Chemometric Methods 

Pre-processing 

Different data pre-processing methods were studied, namely baseline correction, first and 

second derivatives and multiplicative scatter correction (MSC), and a combination between them.     

The baseline correction was performed in OPUS Ver. 7.2 (Bruker, Germany) and it allows to 

subtract baselines from spectra by getting spectra with band edges of up to theoretical baseline, 

i.e., 0.  The remaining pre-processing and processing techniques were performed in MATLAB 

7.8.0 (MathWorks, USA).  

While first derivative allowed offset elimination, as the offset represents a constant value 

added to the entire spectrum and the derivative of a constant is zero, second derivative, besides 

offset elimination, enabled removing the slope from the spectral data set. As derivatives usually 
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broaden spectral noise, a Savitzky-Golay smoothing was applied, with each point of the dataset 

being replaced by the average of itself and 15 points before and after.  

MSC was  also used to eliminate changes in spectra due to radiation scattering, by determined 

the mean spectrum of  replicate spectra, and performing a transformation where the spectral data 

xi is converted into new values zi, where i = 1, …, p, with p being the wavelengths [Fearn et al., 

2009]. The following equation describes the transformation from xi to zi: 

𝑧𝑖 =
𝑥𝑖 − 𝑎

𝑏
, 

where a represents the intercept and b the slope of a least squares regression of xi on the values ri 

coming from the reference spectra. 

 In the present work, the MSC was applied to each group of replicates. 

Spectral deconvolution 

 The software OriginPro Ver. 7.0 (OriginLab, USA) was used for the deconvolution of specific 

spectral bands. The goal of this operation is to resolve the underlying and overlapping peaks 

present in an IR spectrum.  

 Before spectral deconvolution, baseline correction, MSC and the normalization to the amide 

II peak (at wavenumber 1550 cm-1) were applied. The normalization strategy becomes important, 

since it enables highlighting differences in the spectra, which are not related to biomass. For that, 

spectra are divided by a constant value, which was chosen as the maximum height of the amide 

II peak [Maquelin et al., 2002], as it is proportional to the cell quantities present in the sample.   

Multivariate data analysis 

PCA is a data-reduction method extensively used for qualitative spectral analysis that reduces 

the dimension of a dataset to a simpler representation by creating new variables, called principal 

components (PCs). This kind of method is very useful tool for chemometricians not only for data 

compression but also for information extraction, allowing the identification of major trends in the 

data [Naes et al., 2002]. 
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The PCA model can be described in matrix notation as: 

𝑋 = 𝑇𝑃𝑇 + 𝐸 

where 𝑋 is the spectral data matrix, 𝑇 is the matrix containing the scores of the PCs, 𝑃 the matrix 

containing the loadings and 𝐸 the matrix that contains the model residuals and represents the noise 

or irrelevant variability in 𝑋. The scores in 𝑇 are linear combinations of the original variables of 

𝑋 (wavelengths). The loadings in 𝑃 are estimated by regressing 𝑋 on to 𝑇 and the residual matrix 

𝐸 is calculated by subtracting the estimated 𝑇𝑃𝑇 from 𝑋 [Naes et al., 2002]. 

 

IV.3. Results and Discussion 

To help understanding the complexity of the interrelationships between cultivation general 

conditions and the genetic and physiological characteristics of the expression system, the 

metabolic profiling of the host recombinant cell along the bioprocess becomes therefore very 

important [Cash, 2014; Guernec et al., 2013; Lenahan et al., 2013; McQuillan et al., 2014; Moen 

et al., 2009; Trauchessec et al., 2014]. One useful and potential technique that enables the 

screening of changes in the total biomolecular composition is FT-IR spectroscopy, namely 

between 1800 and 800 cm-1. This spectral region corresponds to the fundamentals vibration of 

molecules and presents therefore biological distinctive spectral features, which would allow 

extracting more detailed information about the biochemical composition of the cell, namely lipids, 

glicids, proteins, nucleic acids and other chemical species. Considering these purposes, two 

recombinant E. coli cultures producing plasmid were evaluated based on FT-IR spectra collected 

in high-throughput mode along the cultivation time.  

Culture A was conducted on glycerol and culture B was conducted on a mixture of glycerol 

and glucose. Glucose is usually the main carbon source used to promote the bacterial growth. 

However, in recombinant E. coli cultivation high glucose concentrations lead to the production 

of acetate , which reduces the cellular energetic yield and can inhibit growth, while decreasing 

the recombinant product yield [Johnston et al., 2003; Luli and Strhol, 1990; MacDonald and 

Neway, 1990; Xu et al., 2005]. The production of acetate arises from two different mechanisms:  

when the maximum oxygen transfer capacity of the reactor is reached, anaerobiosis occurs, 

leading to mixed-acid fermentation; when acetate is formed aerobically in the presence of high 

concentrations of the primary carbon source that leads to the uptake of the carbon substrate greater 

than a critical value. This latter process is known as the overflow metabolism and it has been 

associated either to the saturation of tricarboxylic acid cycle [Fox et al., 1986], or the electron 
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transport phosphorylation process, or both [El-Masi and Holms, 1989; Majewski and Domaach, 

1990].  

Since the use of glucose as carbon source leads to high levels of acetate production, glycerol 

can be used as an alternative, as it usually results in a lower acetate production. Furthermore, the 

use of glycerol presents the advantage that it does not have to be heat sterilized apart from other 

media components, as opposed to glucose, which simplifies the preparation of the bioreactor in 

large-scale operations. Nevertheless, there is evidence of a high production of acetate from 

glycerol, which can be related to the high product yields per biomass observed [Scholz et al., 

2012; Silva et al., 2009].    

Besides the carbon sources, economic media based on complex nitrogen sources (as yeast 

extract and bactotryptone) were also used in both cultures. Rich and complex media, such as 

media containing yeast extract and/or hydrolyzed proteins, are often chosen over defined media 

because they are relatively simple to prepare and generally lead to higher biomass yields and high 

specific growth rates [Durland and Eastman, 1998]. Therefore, complex and rich nitrogen source 

constitutes a good choice to ensure an economic recombinant product production process in large 

scale [Danquah and Forde, 2007; Durland and Eastman, 1998].  

Comparing the batch phases of cultures A and B, it was possible to observe that in the presence 

of glucose and glycerol, glucose is the first carbon source to be consumed, followed by glycerol 

(Figure IV.11). In both cultures, acetate was produced during the consumption of the carbon 

sources consumption, achieving its highest concentration (5.4 g/L) in culture B (Table IV.5).  

Considering the production plasmid efficiency on these batch phases, the batch culture B, 

conducted on a mixture of glucose and glycerol, presented the highest plasmid productivity of 4.4 

mg/L/h, plasmid concentration of 42 mg/L and plasmid production per biomass of 7.2 mg/g 

(Table IV.5), when compared with the batch culture A, conducted on glycerol. These data clearly 

show the advantages the using a mixture of glucose and glycerol, since glucose promotes high 

productivities, due to the high specific growth rate on glucose, and the glycerol contribute to high 

plasmid yields, associated to its lower specific growth rates. To further improve the plasmid 

production, after the batch phase of cultivation B, a feeding phase with glucose was conducted, 

resulting in 3.4 fold higher plasmid concentration and 1.7 fold higher plasmid yield per biomass, 

while maintaining the plasmid high productivity in relation to the batch phase. 
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Figure IV.11: Evolution along the time of the biomass, glucose, glycerol, acetate and plasmid concentrations for the two cultures (A 

to B), conducted with a C-source composition on the batch phase of glycerol (culture A) [A] and glucose and glycerol (culture B) [C]. 

After all acetate produced during the batch phase was consumed on culture B an exponential feeding phase with glucose was started 

considering a =0.18h-1, YX/S=0.6 and S=150g/L. The feeding phase is represented in the graph by the grey area. The plots B and D 

represent the evolution along the time of the online parameters: base, acid, pH and DOC, for the cultures A and B, respectively. 

A 

C 

B 
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Table IV.5: Description of the two batches cultures conducted with mixtures of glucose and glycerol as carbon source. 

The following parameters are relative to the time at which the maximum plasmid production was achieved: time, 

biomass, maximum plasmid and final plasmid productivity. 

 

Culture A Culture B 

[glucose] (g/L) - 8.0 

[glycerol] (g/L) 7.0 6.0 

maximum [acetate] (g/L) 3.3 5.4 

time (h) 22 9.5 

[biomass] (g/L] 5.9 9.4 

maximum [plasmid] (mg/L) 34 42 

plasmid/biomass (mg/g) 4.8 7.2 

final plasmid productivity (mg/L/h) 1.5 4.4 

specific growth rate in glucose (h-1) - 0.68 

specific growth rate in glycerol (h-1) 0.75 0.31 

 

In order to direct extract information from the FT-IR spectra, the following pre-processing 

techniques were applied with goal of reducing data noise, while highlighting spectral features: 

baseline correction, i.e., all spectra have the same baseline; MSC, which was applied to reduce 

the physical interferences, such as light scattering resulting from irregularities on the samples’ 

surface or particles with different sizes and shapes; and normalization, applied in order to 

minimize the effect of the biomass concentration, as pointed out in figure IV.12.  
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As previously described, principal component analysis (PCA) is a data reduction method often 

used for qualitative spectral data analysis that decompose the spectral data into new variables, 

called principal components (PCs), which capture most variance in data [Jollife, 2002]. 

Consequently, PCA models will enable to find meaningful relationships between the spectral data 

and cellular events, such as different consumption’s phases of the cell. Indeed, PCA applied to 

the spectral data obtained from cultures A and B, captured the metabolic state of the cell 

cultivation, as a separation of the samples in the score plots according to the C-source 

consumption phase could be observed. For example, in the batch phase of cultures A and B, 

samples at the stationary growth phase were separated from the remaining samples, as pointed 

out in figures IV.13A and B, where the samples mentioned are identified by the line 4. It was 

also observed that the PC2 scores increase as the first carbon source consumption occurs, as 

pointed by the line 1 presented in the score plots of figure IV.13A and B. Samples with a high 

acetate concentration trend to present  higher PC2 scores in both cultivations A and B. As acetate 

starts to be consumed, the PC2 values also decrease in both cultivations A and B (Figure IV.13A 

and B).  

Figure IV.12: IR spectra from different samples in different stages of the bioprocess: without pre-processing (A); with baseline 

correction and MSC (B); and with baseline correction, MSC and normalization to amide II band (C). 
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 Due to biochemical complexity of a living cell, the majority of the spectra peaks represents 

combinations of vibrations of different chemical bonds. To resolve these peaks in relation to 

individual contributions, several spectral regions were deconvoluted based on the second 

derivative, as represented in figure IV.14, where the negative part of the second derivative spectra 

corresponds to the peaks of the IR spectrum.   

Figure IV.14: IR spectrum of a sample of the culture A (black line) and the reversed second derivative spectrum of the same sample 

(grey line) (A), and an amplification of the spectral region between 1000 and 1185 cm-1 (B). 

A B 

Figure IV.13: Principal components analysis of the batches cultures A (A) and B (B). The legend presents the culture time of each sample 

and in each axis legend it is presented the PC and the respective explained variance. The spectra have been pre-processed with MSC and 

the first derivative using Savitzky-Golay smoothing. 

1 

2 
3 

4 

A 

5 

6 
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Legend: 

1 – glycerol consumption and acetate production; 2 – starting acetate consumption; 3 – final phase of glycerol and acetate consumption; 4 – stationary growth 

phase; 5 – glucose consumption and acetate production; 6 – starting glycerol consumption and final phase of the glucose consumption; 7 – starting acetate 

consumption and final phase of glycerol consumption; 8 – final phase of the acetate consumption 

B 



 

 

 

53 

 

 

 The deconvolution also enables to estimate the absorbance contribute of each chemical 

species, as the sum of their areas corresponds to the total area of this spectrum region. Figure 

IV.15 presents examples of the deconvolution results of two distinct spectral regions. For 

example, the region between 1000 and 1195 cm-1, according to the second derivative spectra, 

presents at least five underlying bands. Consequently, the deconvolution of this spectral region 

accounted for five deconvoluted peaks, as highlighted in figure IV.15A. The only region that did 

not need deconvolution was the spectral region between 2800 and 3000 cm-1, due to a high peak 

definition.  

 

 

Table IV.6 presents the proposed meaning of the several spectral bands identified. This  

information was essentially obtained from studies related to early cancer diagnosis, where the 

authors try to find biochemical changes between carcinogenic cells and non-carcinogenic cells 

[Baran et al., 2013; Gaigneaux et al., 2007; Gazi et al., 2003; Maziak et al., 2007; Lewis et al., 

2010; Wang et al., 2010], studies in areas related to natural tissues and cell biology [Movasaghi 

et al., 2008] and studies related to the identification of bacteria [Garip et al., 2009; Maquelin et 

al., 2002].  

 

 

 

 

Figure IV.15: The reversed second derivative spectrum of a given sample with the presentation of the peaks identified, followed by IR 

spectrum of the same sample with the deconvoluted peaks, after the deconvolution process. This representation includes the following 

spectral regions: (A) 1000 – 1195 cm-1 and (B) 1360 – 1480 cm-1. 
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Table IV.6: The identified bands and its proposed assignment according to the literature. 

Wavenumber (cm-1) Assignment 

~ 1032 C–O str and C–O bend: glycogen 

~ 1057 C–O str deoxyribose: DNA 

~ 1082 PO2
- sym str: nucleic acids 

~ 1111 C–O str vibration of C–OH group of ribose: RNA  

~ 1168 C–O str: protein side chains  

~ 1240 PO2
- asym str: mainly nucleic acids with the little contribution from phospholipids 

~ 1255 Amida III 

~ 1304 - 

~ 1339 - 

~ 1400 COO– sym str: aminoacid side chains and fatty acids; CH3 sym bend: methyl groups of proteins 

~ 1450 CH2 bend: mainly lipids with little contribution of the proteins; CH3 asym bend: methyl groups of proteins 

~ 1468 - 

~ 1522 - 

~ 1550 Amide II: proteins, mainly N–H bend and C–N str 

~ 1638 Amide I: proteins 

~ 1655  

~ 1685  

~ 2850 CH2 sym str: mainly lipids with the little contribution from proteins, nucleic acids and carbohydrates 

~ 2870 CH3 sym str: protein side chains and some contribution from lipids, proteins and carbohydrates 

~ 2920 CH2 asym str: mainly lipids with the little contribution from proteins and carbohydrates 

~ 2960 CH3 asym str: mainly lipids and protein side chains, with the little contribution from proteins and carbohydrates 

~ 3070 Amide B: C–N and N–H str of proteins 

~ 3185 - 

~ 3300 Amide A: mainly N–H str of proteins 

~ 3442 - 

str=stretching ; bend=bending ; def=deformation ; sym=symmetric ; asym=antisymmetric 

 Considering the glycogen content, corresponding to the spectral band at 1032 cm-1, along both 

cultivations, a decrease in glycogen levels was observed, especially along the consumption of the 

C-sources of the batch phase (Figure IV.16), which can be related to the high specific growth 

rate of the host cell at the beginning of the cultures. This evidence is in accordance to several 

studies related to early cancer diagnosis, which state that cells with a higher cell division, as 

carcinogenic cells, present lower glycogen contents [Gazi et al., 2003; Yano et al., 1996]. It was 

observed that as the specific growth rate along the C-source consumption diminishes, the decrease 
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in glycogen is less accentuated (Table IV.7). Furthermore, a slight increase of the glycogen 

contents at the beginning of the C-source consumption was also observed, as in the case of acetate.  

 With the beginning of the feeding in the culture B, the glycogen levels increased, as opposed 

to the batch phase, as during the fed-batch phase the bacteria use the carbon source to produce 

plasmid instead of growing. Indeed, during the feeding phase a biomass per C-source yield of 

0.23 g/g and a plasmid production per biomass of 10.9 mg/g were achieved, against 0.83 g/g and 

4.4 g/g in the batch phase, respectively. The lower cell growth observed during the feeding phase 

can be associated to a nutritional limitation, which is advantageous in this case, since a greater 

plasmid production per biomass was obtained. 

Table IV.7: Specific growth rates in the different consumption phases of the cultures A and B. 

 

Culture A Culture B 

specific growth rate in glucose (h-1) - 0.68 

specific growth rate in glycerol (h-1) 0.75 - 

specific growth rate in glucose and glycerol (h-1) - 0.41 

specific growth rate in glycerol and acetate (h-1) 0.46 0.04 

specific growth rate in acetate (h-1) - 0.08 

 

 The RNA content in the host cell, which is mainly RNA messenger (mRNA) [Ciccolini et al., 

2002], was estimated by the spectral band at 1111 cm-1 (Figure IV.17). An increase of the RNA 

concentration in both cultures during the consumption of the first C-source in batch phase 

occurred. A slight increase was also observed in both cultures immediately before the beginning 

of other carbon source consumption, i.e. acetate, in culture A or glycerol in culture B. This initial 

Figure IV.16: Glycogen levels, corresponding to 1032 cm-1 band, along the cultivations A (A) and B (B). The feeding phase is represented 

in the graph by the grey area. 

A B 
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increase in the mRNA concentration is most probably related to increase gene expression due to 

cell adaptation to new environmental conditions as media composition. Some examples of 

enzymes genes needed to be induced to enable the acetate metabolizing is phosphotransacetylase 

(PTA) and acetate kinase (ACKA) genes, whose expression is induced by high acetate 

concentrations [Valgepea et al., 2010]. In the feeding  phase of culture B, there is an increasing 

of the mRNA, especially during the accumulation of glucose in the culture medium, which can 

be explained by the synthesis of proteins associated to the stress response, e.g. due to an 

overburden of the host cell metabolism [Dürrschmid et al., 2008]. 

 It is well established in literature [Maziak et al., 2007; Parker, 1971; Parker, 1983; Susi, 1969]  

that the peak maximum near 1650 cm-1 is correlated with the protein segments with α-helical 

structures. The component bands near 1688 and 1636 cm-1 are the amide I bands of the proteins 

segments with the β-sheet structure [Byler, 1986]. The changes in the relative intensities of the 

amide I bands described above have been widely used for monitoring the protein conformational 

changes in the cellular proteome [Baran et al., 2013; Maziak et al., 2007; Parker, 1971; Parker, 

1983; Susi, 1969]. In this work general protein conformational changes along the bioprocess 

cultivation on both cultures could also be observed (Figure IV.18).  

 Besides nucleic acids and proteins, lipids are also biomolecules with major presence in the 

cell, being represented by spectral bands near 2850, 2920 and 2960 cm-1 [Baran et al., 2013; 

Gaigneaux et al., 2007; Wang et al., 2010]. A higher lipid concentration in the phases either with 

high cell growth rates or at the end of the feeding phase was observed (Figure IV.19). According 

to Baran et al. (2013), this increase of the lipids levels, known as lipidation, is considered to be 

one of the general response of the cell to stress events.   

A B 

Figure IV.17: RNA concentration in the host cell, considering the 1111 cm-1 band, along the cultivation A (A) and B (B). The feeding 

phase is represented in the graph by the grey area. 
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A B 

1638 cm-1 

A B 

1655 cm-1 

A B 

1688 cm-1 

Figure IV.18: Intensities of the amide I bands (1638, 1655 and 1688 cm-1) along the cultivations A (A) and B (B). The feeding phase is 

represented in the graph by the grey area. 
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A B 

2850 cm-1 

A B 

2920 cm-1 

A B 

2960 cm-1 

Figure IV.19: Intensities of the lipids bands (2850, 2920 and 2960 cm-1) along the cultivations A (A) and B (B). The feeding phase is 

represented in the graph by the grey area. 
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 The intensity ratio between spectral bands at 1111 cm-1 (RNA band) and 1550 cm-1 (amide II 

band) was also considered in order to understand the transcriptional status of the host cell, as 

presented by Baran et al. (2013) in their carcinogenic studies.  During the batch phase, an increase 

of this intensity ratio in both cultures immediately before the beginning of the C-source 

consumption (Figure IV.20) was observed, meaning that the bacteria was transcribing the 

necessary gene to the carbon source metabolism. This trend is corroborated by the trends observed 

in the RNA concentrations along both cultivations.  

 After the beginning of the feeding phase of culture B, an increase of the intensity ratio 

happened, probably due to the transcription of genes that encode the proteins associated to the 

stress response [Dürrschmid et al., 2008]. 

 

 

  

 Complementary to the transcription levels, the protein expression status of the host cell, 

represented by the intensity ratio between 1550 cm-1 and 1082 cm-1 [Baran et al., 2013], was also 

studied. As expected, there was an increase of the intensity ratio during the C-source consumption, 

which is related to the need of the host cell to synthetize the proteins involved in metabolism of 

the carbon sources (Figure IV.21). After the feeding phase of culture B, the intensity ratio 

increased again, that is once more related to the increase of the protein expression, namely due to 

synthesis of proteins associated to the stress response [Dürrschmid et al., 2008]. 

Figure IV.20: Intensity ratio of the 1111 cm-1 and amide II along the cultivations A (A) and B (B). The feeding phase is represented 

in the graph by the grey area. 

A B 
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IV.4. Conclusions 

The present work shows the ability of FT-IR spectroscopy to extract metabolic information 

about the host cell, namely the identification of the general metabolic switches along the different 

phases of C-source consumption, by PCA, and the biomolecules’ concentrations or metabolic 

status like translational levels along the cell culture, by direct spectral analysis. Regarding specific 

biomolecules’ concentrations present in the cell, glycogen levels trended to decrease due to high 

cellular growth rates, namely during the carbon sources consumption. The RNA concentrations 

increased mainly before the beginning of the carbon sources consumption, due to the need of the 

bacteria to transcribe the genes the start new C-source metabolism. Protein structural changes in 

the cell proteome were also identified by FT-IR spectral analysis, considering the amide bands. 

The RNA/amide II ratio enabled to monitor the transcriptional status of the host cell, being higher 

immediately before the consumption of the carbon sources. A higher protein expression by the 

amide II/nucleic acids total ratio was observed immediately after the increase of the 

transcriptional level, i.e. during the carbon sources consumption. Therefore, FT-IR spectroscopy 

proved to be a highly promising tool for monitoring the structural and functional changes in host 

cell during the biopharmaceuticals production. 

 

 

A B 

Figure IV.21: Intensity ratio of the amide II and 1080 cm-1 along the cultivations A (A) and B (B). The feeding phase is represented 

in the graph by the grey area. 
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Chapter V 

General Conclusions 

 

Due to the relevance of Escherichia coli as a recombinant cell host to produce heterologous 

products, it is important to develop new techniques that enable in a fast, sensitive and in an in-

situ or high-throughput mode to estimate critical variables of the process culture and the metabolic 

characteristics of the cell in response to different cultivation conditions. The present work shows 

the potential of FT-IR spectroscopy to achieve that purposes. The application of chemometrics 

methods to the IR spectral data also showed to be very important, since they highly influence the 

output of data analysis, allowing extracting more detailed information that is often hidden in the 

raw IR spectra. Therefore, the strategies to be used for each dataset must be carefully chosen.  

The present thesis shows FT-IR spectroscopy combined with PLS regression as a powerful 

tool to quantify of critical variables of the bioprocess (as biomass growth, plasmid production, 

carbon source consumption and acetate production and consumption), either by in-situ NIR or at-

line high-throughput MIR spectroscopy. Furthermore, this work also shows how FT-IR 

spectroscopy can be used to monitor the metabolism of the bacteria cell host, considering proteins, 

nucleic acids, lipids and others biomolecules present in the cell, during a biopharmaceutical’s 

production, both by a direct spectral analysis and by PCA.  

In a future work, it will be interesting to: 

 Develop a deconvolution algorithm in a programming language, e.g. Matlab, based 

on the deconvolution methods described in scientific articles, like in Kauppinen et al. 

(1981) and Kochev et al. (2001). This need is related to the limitations of the software 

used in this work, since it works as a “black box”; 

 Conduct a more detailed characterization of the E. coli cultivation, by conventional 

methods, e.g., analyzing total nucleic acids, mRNA, genomic DNA, glycogen, total 

proteins and lipids, and other metabolites that would enable for example to 

characterize stress response metabolism; 

 Find the biochemical meaning of some spectral bands that present a specific profile 

along the bacteria cell cultivation process, based for example on a complement 

metabolic characterization of the E. coli cultivation process. 
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In sum, FT-IR spectroscopy was presented as a highly promising tool for bioprocess 

monitoring, as it enables the quantification of critical variables and the biochemical and metabolic 

characterization of the cell host. The present results may certainly contribute to the design of more 

economic and robust processes ensuring reproducibility and quality of the final product in 

accordance to the PAT initiative.  
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