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Resumo

A Escherichia coli é o microorganismo mais usado como hospedeiro para a producdo de
produtos recombinantes, tais como plasmideos usados para terapia génica e vacinacdo de ADN.
Desta forma, torna-se importante compreender as relacfes metabdlicas complexas e a
bioproducéo de plasmideo, que ocorre em ambientes de cultura dindmicos, a fim de controlar e
optimizar o desempenho do sistema de expressdo recombinante. O objectivo principal deste
trabalho consiste em avaliar a potencialidade da espectroscopia FT-IR para monitorizar e
caracterizar a producdo do plasmideo pVAX-LacZ em culturas recombinantes de E. coli,
nomeadamente para extrair informacdo relacionada com as variaveis criticas (biomassa,
plasmideo, fontes de carbono e acetato) e informagdo metabdlica da célula hospedeira E. coli.
Para tal, culturas de E. coli com diferentes concentragdes de glucose e glicerol e diferentes
estratégias de cultivo (batch e fed-batch) foram monitorizadas por espectroscopia de
infravermelho perto (NIR) e de infravermelho médio (MIR).

Tanto a espectroscopia NIR com a MIR permitiram extrair informacdo sobre as variaveis
criticas do bioprocesso, através da construcdo de modelos de regressao por minimos quadrados
parciais, que resultaram em elevados coeficientes de regressdo e baixos erros de previsdo. A
abordagem NIR apresenta a vantagem de aquisicdo em tempo real das variaveis do bioprocesso,
ja a abordagem MIR permite a leitura simultanea de centenas de amostras de varias culturas ao
mesmo tempo através do uso multi-microplacas, sendo muito vantajosa nos casos de micro-
bioreactores usados para optimiza¢do. Para além disso, como os espectros MIR apresentam mais
informacdo do que os espectros NIR, uma vez que representam 0s modos de vibracéo
fundamentais das biomoléculas, enquanto que os espectros NIR representam sobreposicdes e
combinagdes de vibragbes, os dados espectrais MIR também permitiram a aquisicdo de
informacdo bioquimica ao longo das culturas de E. coli a partir da analise das componentes
principais (PCA) bem como do estudo das caracteristicas bioguimicas, tais como as reservas de
glicogénio e os niveis de transcricdo aparente.

Portanto, a espectroscopia FT-IR apresenta assim caracteristicas relevantes para a
compreensdo e monitorizacdo do processo de producdo de culturas recombinantes, sendo, de
acordo com Quality-by-Design e Process Analytical Technology, muito importante para fins de

controlo e optimizagao.

Palavras-chave: Escherichia coli, espectroscopia MIR, espectroscopia NIR, caraterizacdo

metabdlica, monitorizacdo de bioprocessos.






Abstract

Escherichia coli is the most used microorganism as host for the production of recombinant
products, such as plasmids used for gene therapy and DNA vaccination. Therefore, it is important
to understand the complex metabolic relationships and the plasmid bioproduction process
occurring in dynamic culture environments, in order to control and optimize the performance of
the recombinant expression system. The main goal of this work is to evaluate the potential of
Fourier Transform Infrared (FT-IR) spectroscopy to monitor and characterize recombinant E. coli
cultures producing the plasmid model pVAX-LacZ, namely to extract information concerning the
critical variables (biomass, plasmid, carbon sources and the by-product acetate) and metabolic
information regarding the host E. coli. To achieve that cultures of E. coli conducted with different
mixture of glucose and glycerol and different cultivation strategies (batch and fed-batch) were
monitored in-situ by a fiber optic probe in near- infrared (NIR) and of the cell pellets in at-line in
high-throughput mode by mid-infrared (MIR) spectroscopy.

Both NIR and MIR spectroscopy setup enabled to extract information regarding the critical
variables of the bioprocess by the implementation of partial least square regression models that
result in high regression coefficients and low prediction errors. The NIR setup presents the
advantage of acquiring in real time the knowledge of the bioprocess variables, where the at-line
measurements with the MIR setup presents more advantageous in cases of micro-bioreactors used
in optimization protocols, enabling the simultaneously information acquisition of hundreds
samples by using multi-microplates. Furthermore, as the MIR spectra presents more information
than the NIR spectra, since it represents the fundamental vibration modes of biomolecules while
the NIR spectra represents overtones and combinations of vibrations, the MIR data also enabled
to acquire biochemical information along the E. coli cultures as pointed out in an principal
component analysis and by the estimation of biochemical features as glycogen reserves and
apparent transcriptional levels.

Therefore, FT-IR spectroscopy presents relevant features towards the understanding and
monitoring of the production process of recombinant cultures for control and optimization

purposes, in according to the Quality-by-Design and the Process Analytical Technology.

Keywords: Escherichia coli, MIR spectroscopy, NIR spectroscopy, metabolic profiling,

bioprocess monitoring.
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Chapter |

Thesis Overview

I.1. Objectives

The main goal of the present work was to evaluate the potential of Fourier Transform Infrared
(FT-IR) spectroscopy to monitor and characterize recombinant Escherichia coli cultures during
the production of biopharmaceuticals, namely the production of a plasmid model used for the
construction of DNA vaccines. For that, i) first, the critical variables of the bioprocesses studied
(e.g., host cell growth, plasmid production, carbon sources consumption and the by-product
acetate production and consumption) were monitored based on infrared (IR) spectral data
acquired along the cultivation time based on mid-infrared (MIR) spectroscopy of the cell pellets
in high-throughput analysis using multi-microplates, and on near-infrared (NIR) spectroscopy by
the cultivation in-situ analysis using a fiber optic probe; ii) second, metabolic information
regarding, e.g., lipids, proteins, nucleic acids, glicids and other chemical species present in cells,
was extracted from the MIR spectra for metabolic profiling of the host cell, as the MIR spectra

represents the fundamental vibration modes of biomolecules.

1.2. Thesis Outline

The thesis is divided into 5 chapters. A general introduction is presented in chapter 11, which
contains a brief introduction to the E. coli systems and bioprocesses” monitoring, an overview on
IR spectroscopy and a short introduction to chemometrics and spectral analysis. The following
two chapters, chapters 111 and IV, describe the experimental work developed. Chapter 111 presents
a comparative study of MIR and NIR spectroscopies for monitoring the critical variables involved
in the production of a biopharmaceutical (e.g., the host cell growth, the production of plasmid,
the carbon sources consumption (glucose and glycerol) and the by-product acetate production and
consumption) by different recombinant E. coli cultures producing the plasmid pVAX-LacZ.
Chapter 1V describes the potential of FT-IR spectroscopy for estimating the metabolic profiles of,
e.g., lipids, proteins, nucleic acids, glicids, and other biochemical information from the host cell
along the cultures. The last chapter, chapter V, comprises the main conclusions of the previous

chapters and presents new research directions for future work.






Chapter 11

General Introduction

11.1. E. coli recombinant systems and bioprocesses monitoring

The growing interest in biopharmaceutical products calls for a need for developing
reproducible, reliable and cost-effective production processes. An example of such products are
plasmids, which can be used as vectors for gene therapy and DNA vaccination, as an alternative
to viral based vectors [Carnes, 2005; Prather et al., 2003].

Recombinant E. coli is the most used microorganism for plasmid production, given its capacity
to growth under a wide range of conditions, from rich complex organic media to salt-based
chemically defined media, as well as it is ease manipulation by genetic engineering [Moen et al.,
2009; Prather et al., 2003; Scholz et al., 2012; Yang, 1999]. As a consequence of the current
growing interest on plasmids, their production has to meet the market requirements, i.e., the
optimization and efficiency of plasmid production are required, as well as the monitoring of the
bioproduction process. Generally, the main goals for an optimization procedure for recombinant
E. coli cultures are (Figure 11.1) [Carnes, 2005; Voss et al., 2003]:

e Maximize the plasmid production in the supercoiled conformation, the most efficient
conformation in relation to circular and linear conformations for therapeutic applications,
according to Food and Drug Administration (FDA) and European Medicines Agency Home
(EMA);

e Maximize the plasmid concentration;

o Maximize the productivity;

e Maximize the biomass per carbon source yield, to make the best use of nutritional
media;

o Maximize the specific yield, i.e., the quantity of plasmid produced per cell, in order to

simplify the purification processes.



Nevertheless, differences in the cultivation strategies adopted (e.g., batch and fed-batch) and
environmental conditions and medium composition with respect to the carbon source (glucose or
glycerol) influence the stability and expression of the cloned gene product, and consequently the
optimization of the plasmid production processes [O’Kennedy et al., 2003; Ow et al., 2007; Ow
et al., 2009]. Furthermore, the characteristics of the plasmid and host cell are critical factors that
should be carefully evaluated [McNeil and Harvey, 1990].

Therefore, to control and optimize the performance of recombinant systems, the complex
interrelationships between these factors and its effects must be well understood towards a more
economic and robust process that ensures reproducibility and quality of the final product, in
accordance to the Process Analytical Technology (PAT) initiative launched in 2004 by FDA. The
PAT initiative encourages biopharmaceutical companies to adopt modern bioprocess monitoring
tools based on at-line or in-situ analyses of critical parameters along the manufacturing processes,
thus enabling the formulation of mathematical models through of the complex datasets acquired
along of all process stages, towards more robust control and optimization processes [FDA, 2004].
IR spectroscopy is an example of a powerful tool for bioprocesses’ monitoring, which perfectly

matches the PAT initiative and presents promising capabilities to serve the above purposes, as

BIO-REACTOR
INPUTS

Process parameters optimization
- Dissolved 0;
-pH
-Temperature

- Nutrient feeding

described next.

OUTPUTS

Plasmid design
- Replicon choice
-Temperature induction

Direct metabolism
toward plasmid

Improved volumetric yield
synthesis Improved specific yield
- Choice of ingredients

Figure 11.1: Important factors in the monitoring and control of plasmid production, in bioreactors.

(adapted from Prather et al., 2003)




11.2. Infrared Spectroscopy
11.2.1. Theory of the Infrared Spectroscopy

Originally, spectroscopy was defined the study of the interaction between electromagnetic
radiation and matter as a function of wavelength. Afterwards, the concept was expanded to
include the measurement of any property, as a function of wavelength or frequency [Lourenco et
al., 2012]. All electromagnetic spectroscopic techniques work on the same principle, i.e., under
certain conditions, the materials interacting with the radiation, absorb or emit energy. However,
some materials can also reflect and/or disperse/diffract radiation. Absorption spectroscopy is
based on the measurement of the radiation that is emitted by the light source but attenuated by the
sample, while emission spectroscopy is based on the measurement of the radiation that is
produced by the sample on excitation. The reflection and diffraction of the radiation essentially
depends on the materials’ surface and composition, shape and microstructure of the sample,
respectively [Nicolai et al., 2007].

IR spectroscopy is a spectroscopic technique that uses the infrared region of the
electromagnetic spectrum. The IR region ranges from 14000 to 4 cm™ (0.7 to 250 pm) and is
surrounded by the visible and microwave regions, as shown in the figure 11.2. The IR region is
further subdivided in the near infrared (NIR), the mid infrared (MIR) and the far infrared (far-IR)
regions. MIR represents the region of the IR spectrum between 4000 and 400 cm™, whereas the
NIR region is between 14000 and 4000 cm™ (Figure 11.2). Both regions will be discussed along
this work, as they represent the IR radiation that are most used in several applications of
spectroscopy [Landgrebe et al., 2010; Smith, 2011].

im 1mm 1um 1nm
tm 10" 107 10* 1w0* 1w0® 1w0® 107 10®  10® 10" 10" 10 10"
radio microwaves infrared visible ultra- X rays gamma rays
waves light violet
’ ‘\
/\/ 4 \ W\/
4 \
/
long wavelength 7 ‘\ short wavelength
low frequency 7 \ high frequency
’
’ \
Far-IR MIR NIR

Figure 11.2: Electromagnetic spectrum with IR region highlighted.



Photon energies associated with the infrared region of the electromagnetic spectrum are not
large enough to excite electrons, rather they induce vibrational excitation of covalently bonded
molecules. At temperatures above absolute zero, all atoms in molecules are in continuous
vibration with respect to each other. Therefore, in IR spectroscopy, when a sample is irradiated
by IR light, the absorption of this radiation results in changes in the vibrational modes of the
molecules, which are sensible to the IR light and are presented in the sample. However, the
absorption of IR only occurs when the radiant energy matches the energy of the specific molecular
vibration, and the covalent bond of a molecule must undergo a net change in dipolar moment, as
a consequence of its vibrational motion. The changes in the vibrational modes of the molecules
produce the bands seen in the IR spectrum, with each band being characterized by a frequency
and an amplitude [Babrah, 2009; Duygu, 2009].

Considering the changes in the vibrational modes of the molecules, there are essentially two
types of vibrations, which can be classified depending on changes on the bond length or angle:
stretching and bending vibrations (Figure 11.3). The stretching is a symmetric or antisymmetric
rhythmical movement along the bond length. The bending vibration occurs when there is a change

of the angle between two atoms or a group of atoms [Babrah, 2009].

Stretching

O—O Asymmetric O—O
— —
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Figure 11.3: Main molecular vibrational modes [Babrah, 2009]



Therefore, an IR spectrum is characteristic of each kind of molecule, since it depends mainly
on the mass of the atoms, their geometric arrangement and the bound forces between them.
Consequently, each molecule presents a distinct IR spectrum, since there are no different
molecules that have the same three characteristics previously presented. When that concept is
extended two different samples, which have distinct molecular composition, different spectra will
also be obtained, thus enabling to distinguish, qualify or quantify virtually any type of sample
[Smith, 2011].

The application of the IR spectroscopy in the biological field is possible, because certain
regions of the IR spectrum have been attributed to certain molecular bonds and combinations of
atoms, and the composition of every biomolecules is known, thus being possible to associate the
biomolecules to certain IR region, especially in MIR region. Despite of the complex composition
of biological samples and the presence of several biomolecules in the samples, it can be observed
that the strongest vibrational frequencies correspond to macro-biomolecules, such as proteins,
lipids, carbohydrates and nucleic acids [Smith, 2011], due to its high concentration in the cell,

when compared to other biomolecules.

11.2.2. Instrumentation

The instrument used in IR spectroscopy is called infrared spectrometer or, more precisely,
spectrophotometer, and consists mainly in a beam source, a monochromator or an interferometer,
depending on the type of spectrometer, a sample holder or sample presentation interface and a
detector, which detects the radiation that is transmitted or reflected by the sample [Reich, 2005].

Considering the beam source, it may consist on an inert solid thermally heated [Hsu, 1997] or
in an incandescent filament, like tungsten or quartz/halogen lamps, for the NIR region, and
carbon-silicon bars, for the MIR region [Christian, 1994].

The existing detectors are essentially of two types: thermal detectors, which measures the heat
produced by the IR radiation when in contact with the sample, and photon detectors that are based
on the interaction of IR light with semiconductor materials, allowing the excitation of electrons
and the generation of a small quantifiable electrical current [Hsu, 1997].

Another important component of the spectrometer is the monochromator or the interferometer,
which enables the light modulation and defines the type of spectrophotometer. There are mainly
two types of spectrometers: Dispersive Infrared Spectrometers and Fourier Transform Infrared
Spectrometers. In both configurations the beam source, detectors and sample holders used are
essentially the same.

The Dispersive Infrared Spectrometers were the first kind of spectrophotometers developed,

using a monochromator in its configurations. A monochromator is a device used to separate a



range of radiations in a certain range of wavelengths or frequencies. The most common
monochromator are prism and gratings coupled with systems of mirror and filters [Stuart, 2004].

The introduction of interferometry brought significant improvements to IR spectroscopy and
the monochromator has been substituted by the interferometer. An interferometer measures the
interference pattern between two light beams. After entering in the interferometer, the IR radiation
is divided in two beams that will travel by different paths. Before leaving the interferometer, these
two beams will be merged in a single beam again. The development of interferometers opened
the window to the Fourier Transform Infrared (FT-IR) spectrometers.

The first spectrometer with interferometer to be developed was a Michelson interferometer
and the current interferometers are based on the same principle. The Michelson interferometer
consists of four active components: a collimating mirror, a moving mirror, a fixed mirror oriented
perpendicularly and a beamsplitter (Figure 11.4). The collimating mirror collects the IR light from
the source and makes its rays parallel to each other, while directing them to the beamsplitter. The
beamsplitter splits the radiation from collimating mirror in two beams, with half the IR beam
being transmitted to the fixed mirror and the other half reflected to the moving mirror. These
beams recombine at the beamsplitter, but the difference in paths lengths creates constructive and
destructive interference: an interferogram. The recombined beam passes through the sample,
which absorbs all the different wavelengths characteristic of its spectrum, and this subtracts
specific wavelengths from the interferogram. A mathematical operation, known as a Fourier
transformation, converts the interferogram (a time domain spectrum displaying intensity versus
time within the mirror scan) to the final IR spectrum, which is the frequency domain spectrum

showing intensity versus frequency [Smith, 2011; Stuart, 2004].
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Figure 11.4: Scheme of the Michelson interferometer [Smith, 2011].



When compared to dispersive systems, the development of FT-IR spectrometers and their
implementation contributed to high reproducibility and low sampling noise, while making
sample analysis faster [Hsu, 1997; Pistorius, 1995]. The low sampling noise is maybe the mains
contribution of the FT-IR spectrometer, since it allows more sensitive measurements and,
consequently, less noisy spectra with smaller peaks becoming evident.

As the amount of signal in a spectrum is highly dependent on the amount of light that reaches
the detector, the signal-to-noise ratio (SNR) in FT-IR spectrometers is higher than in the
dispersive spectrometers. This is due to the fact that in the dispersive spectrometers the beam
needs to travel through prisms, slits and gratings, before reaching the sample and,
consequently, the final beam that is detected have a much lower intensity, compared to the
beam that leaves the source and, consequently, the final spectrum has a lower SNR [Smith,
2011].

11.2.3. Types of acquisition

Depending on the sample properties, the spectral data can be acquired essentially by two
different modes: transmission and reflection.

In transmission mode, IR radiation passes through the sample and the decrease in the
radiation intensity due to absorption or scattering by the sample is measured. Therefore, the
spectrum obtained is the result of the radiation that passes through the sample (that is
proportional to the radiation absorbed by the sample) as function of wavelength, and depends
of the radiation’s pathlength [Hsu, 1997].

In reflectance mode, the ratio of the intensity of the radiation reflected by a sample to the
radiation reflected by a background reflective surface is measured. This acquisition mode is
useful when the sample absorbs too much or too less energy, as well as in cases where samples
reflect the majority of the incident radiation.

Though transmission and reflectance are the main acquisition modes, transflection has
been increasingly being used in NIR spectroscopy applications. It combines the transmittance
and reflectance measurements, i.e., the IR radiation is transmitted through a sample and the
unabsorbed radiation is reflected back from a mirror or a diffuse reflectance surface placed

at the end of the probe [Lourenco et al., 2012].



11.2.4. Mid-Infrared Spectroscopy

MIR spectroscopy is an extremely reliable and widely recognized fingerprinting technique.
Many compounds can be characterized, identified and quantified by this method, since it is in the
MIR region, between 4000 cm™ and 400 cm™, where most of the fundamental structural
information is produced, therefore presenting enhanced sensitivity and selectivity and more
distinctive spectral features, when compared to NIR spectroscopy [Smith, 2011]. Another
important particularity of MIR spectroscopy is that it can be applied in an automatable way with
high-throughput instruments [Scholz et al., 2012].

Nevertheless, an important disadvantage of the use of MIR spectroscopy is related to the fact
that MIR region presents higher interference by water than NIR region, being usually necessary
to dehydrate the samples before spectral acquisition [Landgrebe et al., 2010]. Furthermore, MIR
radiation has a shorter wavelength than NIR radiation and consequently less energy, so the ability
of this kind of radiation to penetrate the sample is reduced. The difficulty of transport and to
obtain remote measures is also a disadvantage of the MIR radiation.

MIR spectroscopy allows a rapid acquisition of spectra, no sample preparation is necessary,
beside the dehydration step for aqueous samples, and it is a non-invasive method, which is
extremely useful when the sample preservation is required. However, spectra can be changed due
to fluctuations in the equipment’s environment and sometimes chemometric methods are

necessary, in order to extract all information contained in a spectrum.

11.2.5. Near-Infrared Spectroscopy

NIR spectroscopy is a spectroscopic method that uses the NIR region of the electromagnetic
spectrum from 14000 to 4000 cm™ [Smith, 2011]. This technique is usually applied for aqueous
in-situ analyses, given the low adsorption coefficient of NIR radiation and the low interference of
water in this IR region, when compared with MIR region. NIR spectroscopy allows the direct
analysis of samples that are highly absorbing or strongly light scattering without dilution or
extensive preparation. Nevertheless, most bands in NIR region are consequence of overtones and
combinations of vibrations from different chemical elements and functional group, which makes
NIR spectroscopy less sensitive and informative than MIR spectroscopy. Since NIR spectroscopy
is less sensitive and its spectra are visually poor, it is often necessary to apply chemometric
methods to extract meaningful information from the data [Hall et al., 1996; Lourenco et al., 2012;
Shenk et al., 2001].
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Given the low interference of water in the NIR region, NIR spectroscopy can be used non-
destructively for monitoring bioprocesses, by placing of a fiber optic probe inside the bioreactor.
Other particularities of this technique are the fact that the NIR radiation presents a greater
penetration power, since it is little absorbed by sample, and can be easily transported by optical
fibers, which makes possible a remote acquisition of spectra [Lourenco et al., 2012].

In sum, NIR spectroscopy is a non-destructive fast technique, it does not need any sample’s
preparation and it can measure several samples’ properties at once [Smith, 2011].

11.3. Chemometrics

Chemometrics is the application of statistical, mathematical and computational methods to
analyze chemical data and to extract information from certain chemical systems. These methods
allow the extraction of the relevant information concerning the analytes of interest, which
otherwise would be very difficult [Lourenco et al., 2012; McGovern et al., 2002]. Chemometrics
was first introduced in the chemical field, although today is a widely used tool in several other
areas such as spectroscopy [Geladi, 2003].

The successful implementation of the spectroscopic techniques, essentially NIR spectroscopy,
which produces broad and overlapping spectral bands, was only possible due to the development
of chemometric methods. Beside NIR spectroscopy, MIR spectroscopy, normally producing well
defined spectral bands, also rely on chemometric methods for easy of interpretation and handling
of large data sets, as well as to reduce the noise that is often present in spectra.

The most widely chemometric methods used for spectral data analysis in spectroscopy are
mathematical pre-processing techniques and multivariate data analysis, which are mainly divided
into qualitative and quantitative methods.

In the present work some pre-processing techniques are reviewed, namely those studied along
the work: multiplicative scatter correction (MSC), standard normal variate (SNV), baseline
correction, normalization and derivatives. Principal component analysis (PCA) and partial
least squares (PLS) regression are the choice for multivariate data analysis of spectral data

acquired during this work, and will be presented next.
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11.3.1. Mathematical Pre-Processing Techniques

The application of pre-processing techniques is a very important step in the analysis of spectral
data, since they enable the elimination of physical phenomena due to undesired variations, such
as noise, differences along the sample thickness, differences in the number cells across the sample
and scattering events [Rinnan et al., 2009; Sharaf et al., 1986]. This procedure has as goal of

minimizing the irrelevant information present in the final spectra.

Multiplicative Scatter Correction (MSC)

MSC is a pre-processing method used to eliminate the effect of physical phenomena like the
light scattering effect of particles of different sizes and shapes [Helland et al., 1995]. The goal is
to find the “ideal” spectrum of the group. For that, it is necessary a reference spectrum, which is
usually the mean spectrum of all available spectra or the mean spectrum of replicate spectra. MSC
works by fitting each spectrum to the average spectrum, which is supposed to be the ideal,
performing a transformation where the spectral data x; is converted into new values z;, where i =
1, ..., p, with p being the wavelengths [Fearn et al., 2009]. The following equation describes the

transformation from x; to z;:

where a represents the intercept and b the slope of a least squares regression of x; on the values r;

coming from the reference spectra.

Standard Normal Variate (SNV)

The SNV transformation centers each spectrum and then scales it by its own standard
deviation. The resulting spectra have always zero mean and variance equal to one, and are thus
independent of original absorbance values. Dhanoa et al. (1994) and Helland et al. (1995)
observed that MSC and SNV transformed spectra are closely related and that the difference in

prediction ability between these methods is very small.
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Hence, SNV eliminates the interference of scatter events by individually transforming the
spectral data x; into new values zj, where i =1, ..., p (p are the wavelengths), according to the
following equation:

where m corresponds to the mean and s to the standard deviation of x; values in the original
spectrum [Fearn et al., 2009].

Baseline Correction

Since the obtained spectra are not always grounded at zero, methods for baseline correction
are usually necessary to remove both baseline offset and slope from a spectrum. The type of
algorithm used depends on the baseline correction needed. Spectra which are dislocated from zero
by a constant value are the simpler cases and, consequently, subtracting the value in question from
the spectrum is usually enough. However, there are cases where the baseline presents a slope or
even spectra with curvatures, which makes baseline correction more difficult. In these cases, an
algorithm generating a function, a linear or polynomial function, can bring the spectrum to zero
[Otto, 1999; Smith, 2011].

Baseline correction has a limited utility as a spectral pre-processing, since it is difficult to find
a function that exactly adjusts to the spectrum curvature. Although there are algorithms that
automatically determine the best parallel function, they do not always work properly and may add
variance to the data. Furthermore, the slope and curvature along the spectrum is not always the
same, so a unique function will hardly correctly adjust to the entire spectrum.

Considering the disadvantages related to baseline correction methods, derivatives for offset
correction may be preferred. But the problem of derivatives’ application is that the resulting
spectra will be noisier than the raw one. In cases where there is a low SNR, baseline correction
must be applied instead [Smith, 2011].
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Normalization

There are many possible ways to normalize the data. Normalization involves multiplying all
spectra by a different scaling factor for each wavenumber. The goal is to remove differences
between the samples that are related with factors, such as differences in the samples’ number of
cells, and not with the property of interest. It should be noted that a careful design of the
experience is still a critical factor that must be always taken into account before pre-processing
the data. There are several methods for normalizing spectral data and a full review on this topic
may be found at Randolph (2006).

Spectral Derivatives

Spectral derivatives can be used to eliminate offset and background slope variations among
spectra. The first derivative removes baseline offset variations in spectral profiles and the second
derivative removes both baseline offset differences and differences in baseline slopes between
spectra [Otto, 1999].

First and second derivatives also enable the resolution of overlapping peaks, being the second
derivative the most used for this purpose. However, before applying derivatives, it is important to
have in mind that the derivative spectra will have more noise than the initial spectra and,
consequently, a decrease in the SNR will be observed. In order to avoid the SNR decreasing, the
smoothing has to be incorporated when applying derivative. The Savitzky-Golay smoothing is
the most common algorithm used to avoid the decrease of the SNR. Its principle is the same of
an average filter, i.e., each point of the dataset is replaced by the average of itself and n points
before and after [Lourenco et al., 2012; Scholz et al., 2012].

[1.3.2. Multivariate data analysis

The most widely used chemometric techniques are principal component analysis (PCA) and

partial least-squares (PLS) regression.
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Principal Component Analysis (PCA)

The PCA is a data-reduction method extensively used for qualitative spectral analysis that
works by reducing the dimension of a dataset to a simpler representation in the space of the new
variables, called principal components (PCs). PCs are ordered in terms of variance explained in
the data set, with the first PCs representing the major variance in the data. Sometimes the variance
in data can be distributed by more PCs, so it may be more difficult to select those which are
relevant to extract some useful information [Jollife, 2002]. This kind of method is a very useful
tool for chemometricians, not only for data compression but also information extraction, allowing
the identification of major trends in the data [Naes et al., 2002].

The PCA model can be described in matrix notation as:

X=TPT+E

where X is the spectral data matrix, T is the matrix containing the scores of the PCs, P the matrix
containing the loadings and E the matrix that contains the model residuals and represents the noise
or irrelevant variability in X. The scores in T are linear combinations of the original variables of
X (wavelengths). The loadings in P are estimated by regressing X on to T and the residual matrix
E is calculated by subtracting the estimated TPT from X [Naes et al., 2002].

Data evaluation and qualification can be generally achieved by plotting different combinations
of PC’s scores, since it is easier to visualize and evaluate the samples in a smaller dimensional
space. As the fraction of variance can be covered by one, two or three PCs, it is possible to
visualize almost the entire data by plotting these PCs against each other [Otto, 1999]. In theory

the samples with closer scores will be more similar to each other.
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Partial Least Squares (PLS) regression

The PLS regression is a quantitative method that establishes a relationship between spectra
and the quantifiable properties of samples. It works by determining a small number of latent
variables (lv) that allow predicting the sample properties by using the spectral data as efficiently
as possible [Naes et al., 2002].

Let X be the mean-centered n x p matrix composed of the n sample vectors x;, i =
1, ..., p containing the spectral measurements at p wavelengths and let y be the mean-
centred vector containing the reference values for the variable of interest. With this
information, PLS finds new variables t;, i = 1, ..., p, which will be used to estimate the
Iv, and determines the loadings matrix P and y-loadings vector g by maximizing the

correlation between those variables t; found, as described below:
X=TPT+E

y=Tq" +f,

where E and f are the X and y residuals, which are the difference between the observed
and the modelled variable [Naes et al., 2002].

The PLS regression coefficients £ are given by:
B =wEPW)(TTT)'Ty,
where W is the PLS weights matrix and can be used to obtain the predictions:
y=Xp

In order to evaluate the performance of the developed models to predict the samples’
properties, the root mean squared error (RMSE) was used, which is based on the squared

differences between real and predicted y-values. The RMSE is given by:

N

1 ; 2
RMSE = ;Z(yipredlcted — yireal) )

i=1

where s is the number of spectra. Besides RMSE, the coefficient of determination (R?)

was also calculated in order to evaluate the robustness of the PLS models.
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The validation of the developed PLS models is usually performed using two different
approaches: external validation, where a set of external samples not used for calibration
was used for validating the model developed; and the leave-one-out (LOO) cross-
validation, where the calibration and validation are done by successively excluding a
sample from the calibration set and using it as validation set, until all samples have been
used for calibration and validation. Generally, the choice of the approach to be used is

dependent on the number of samples available.
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Chapter 111

In-situ near-infrared (NIR) versus high-throughput mid-infrared

(MIR) spectroscopies to monitor biopharmaceuticals bioproduction

Abstract

The process development for biopharmaceuticals presents a number of relevant constraints,
being the major one the fact that they are synthesized by living cells with inherent variability,
further enhanced by sensitivity to the manufacturing environment. To monitor and consequently
control the cultivation processes it is therefore relevant to develop at-line and/or in-situ
monitoring techniques. The versatility presented by FT-IR spectroscopy, both in the near (NIR)
and mid infrared (MIR) regions, makes it a relevant tool towards this goal as it enables an
economic, rapid, sensitive and simultaneous measurement of all critical variables of the
bioprocess. In the present work the high-throughput at-line MIR spectral analysis from
dehydrated cell pellets and the in-situ analysis of the whole culture broth using a NIR fiber optic
were compared for monitoring the same cultures of recombinant E. coli DH5a producing a
plasmid model, conducted over different media compositions and on different cultivation modes
(batch and fed-batch). For that, several Partial Least Square (PLS) regression models for MIR and
NIR spectra data were built to estimate the host cell growth, the production of plasmid, the carbon
sources consumption (glucose and glycerol) and the by-product acetate production and
consumption. Robust calibration PLS models were developed, that are valid through different
cultivation processes, presenting a range of final biomass concentrations between 5.6 to 12.1 g
DCWI/L, of final plasmid concentrations between 14 to 142 mg/L and of plasmid productions per
biomass from 1.8 to 12.4 mg/g DCW. The PLS models developed are valid for control purposes
in cases of possible industrial environment fluctuations and for optimizations purposes. The PLS
models developed, both for MIR and NIR regions, presented very high and similar correlation
coefficients and low predictive errors. The predictive errors for models based on MIR data, were
0.71, 8.55, 0.29, 0.4 and 0.4 concerning biomass, plasmid, glucose, glycerol and acetate,
respectively. For NIR data, the predictive errors were 0.39, 7.86, 0.3, 0.23 and 0.41, respectively.
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NIR spectral data is in general less informative as it results from combinations and overtones
of the fundamental vibrations. Therefore, the slightly better PLS models based on NIR spectra
could result from the fact that in the NIR setup an in-situ probe was used, whereas in the MIR
setup it was necessary to extract the pellet sample from the bioreactor and subsequently dehydrate
it, which could input an error associated to the biomass acquisition. Moreover, the concentration
of glucose, glycerol and acetate were directly analyzed from the culture broth in the NIR setup
while in the MIR setup this information was indirectly estimated obtained from the biomass.

In conclusion, NIR and MIR spectroscopy represents valuable approaches for bioprocess
monitoring. The use of a NIR fiber optic probe enables to extract in-situ, i.e, in real time,
information concerning the critical variables of the bioprocess. In cases of cultivation
optimization, where multi-bioreactors of small size are used, the use of a NIR fiber optic probe
may not be possible, or due to economic limitations of having a large number of these probes.
The MIR setup can therefore represent an efficient alternative, as it can be conducted in high-
throughput mode by using multi-microplates that enable the simultaneously reading of hundreds

of samples from several cultures at once.

Keywords: Biopharmaceuticals, Bioprocess monitoring, Cultivation, MIR spectroscopy, NIR
spectroscopy, PAT, PLS models, QbD
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I11.1. Introduction

The biopharmaceuticals products like plasmids have becoming more appealing due it is
potential for advanced medical therapies (e.g. DNA vaccines and gene therapy), being the
bacterium Escherichia coli the most used host microorganism for their production, since it
presents capacity to grow under a wide range of conditions, from rich complex organic media to
salt-based chemically defined media, as well as ease of manipulation by genetic engineering
[Carnes, 2005; Coban et al., 2013; Coban et al., 2011; Kalams et al., 2013; Moen et al., 2009;
Prather et al., 2003; Scholz et al., 2012; Shibui et al., 2013; Yang, 1999].

However, the process development for biopharmaceuticals presents a number of relevant
constraints, being the major one the fact that they are synthesized by living cells with inherent
variability, further enhanced by sensitivity to the manufacturing environment. To monitor and
consequently control the cultivation processes it is therefore relevant to develop monitoring
techniques.

Currently, online information about a bioprocess concerning its critical variables (e.g.,
biomass, products, nutrients and metabolites) is possible mainly through offline analyses, which
are labor-intensive and time-consuming, and imply removing samples from the bioreactor.
However, in order to better understanding the bioprocesses, and to reach a more economic and
robust process regarding reproducibility, and consequently quality of the final product, the
adoption of modern bioprocess monitoring tools based on in-situ analyses is essential, in
accordance to the Process Analytical Technology (PAT) initiative, introduced by the Food and
Drug Administration (FDA), in 2004 [FDA, 2004]. This is especially relevant in heterologous
products used as medicines, i.e. in the case of biopharmaceuticals.

The introduction of the PAT initiative in the biopharmaceutical industry opened the window
to the implementation of spectroscopic techniques, namely Fourier transform infrared (FT-IR)
spectroscopy, to monitor bioprocesses. FT-IR spectroscopy is a physicochemical method that
measures vibrations of the functional groups of molecules, providing therefore information about
the biochemical composition of a biological sample. It is rapid, requires minimal sample
preparation or no preparation at all and is multi-parametric, i.e., it enables the determination of
the concentration of multiple compounds at once, from a single spectroscopic measurement
[Huang et al., 2006; McGovern et al., 2002; Schenk et al., 2006].

The versatility presented by FT-IR spectroscopy, both in the near (NIR) and mid infrared
(MIR) regions, makes it a potential tool in many applications, either in the laboratory or in
industrial plants. Nevertheless, it is in the domain of monitoring and optimization of bioprocesses
that this technique has increasingly been applied, as it enables a rapid, sensitive and simultaneous

measurement of all critical variables of the bioprocess, namely, the host cell growth, the
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production of the heterologous product, the carbon sources consumption and by-products (e.g.,
acetate and ethanol) production and consumption [Di Egidio et al., 2010; Roychoudhury et al.,
2006; Scholz et al., 2012]. Depending on the infrared (IR) region used, MIR or NIR, IR
spectroscopy presents specific characteristics, and therefore specific advantageous and
limitations, that at the end may complement each other.

While MIR spectroscopy reflects the fundamental vibrations of the molecular bonds, NIR
spectroscopy reflects overtones and combinations of vibrations, which makes MIR spectra more
informative concerning the samples’ biomolecular composition. However, due to the high
absorption of water in the MIR region, it is usually necessary to take the samples from the
bioreactor and subsequently dehydrate the samples, which increases the risk of bioreactor
contamination and inputs a time delay in the analysis [Arnold et al., 2002; Cimander and
Mandenius, 2002; Guillen and Cabo, 1997; Tamburini et al., 2003]. An advantageous of MIR-
spectroscopy is that it is possible to at-line conduct the MIR spectral acquisition in a high-
throughput mode, using micro-plates, which is particularly important if hundreds of samples are
to be analyzed in a short period of time, as is the case of bioprocess optimization protocols [Scholz
etal., 2012].

In spite of being theoretically less informative, NIR spectroscopy is not so affected by the
water present, and combined with chemometric techniques, also allows the construction of
calibration models for the prediction of the critical variables of the bioprocess. Moreover, NIR
fiber optic probes, that can be immersed directly in the culture broth and steam sterilized with it,
enable the acquisition of information in-situ, i.e., in real time [Arnold et al., 2002; Cimander and
Mandenius, 2002; Lopes et al., 2013; Navratil et al., 2005; Shenk et al., 2001; Tamburini et al.,
2003; Tosi et al., 2003]. Nevertheless, the use of this kind of probes in optimization protocols in
microbioreactors may be impaired, due to space constraints and low biomass concentrations.

The use of chemometric techniques is crucial in IR spectroscopy, as it allows extracting
guantitative information from the IR spectra [Huang et al., 2006; McGovern et al., 2002; Moen
et al., 2009]. Chemometrics is the application of statistical or mathematical methods to analyze
chemical data and to extract information from certain chemical systems. These methods allow the
extraction of the relevant information concerning the analytes of interest enclosed in the spectral
data [Lourenco et al., 2012; McGovern et al., 2002]. The application of pre-processing techniques
is also a very important step in the analysis of spectral data, since they enable the elimination of
physical phenomena, thus improving the subsequent multivariate analysis [Rinnan et al., 2009;
Sharaf et al., 1986]. The classical spectrum pre-processing methods include multiplicative scatter

correction (MSC), standard normal variate (SNV) and derivatives.
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When scatter effects are the dominating sources of spectral variability, a MSC or a SNV
transformation can be used to remove those effects. MSC is a pre-processing method eliminates
the light scattering effect due to particles of different sizes and shapes [Helland et al., 1995], by
calculating a reference spectrum, which is usually given by the mean of all samples, and each
spectrum is then fitted to this reference spectrum. With this method, each spectrum is corrected
and all samples appear to have the same scatter level as the ideal. On the other hand, the SNV
transformation centers each spectrum and then scales it by its own standard deviation. The
resulting spectra have always zero mean and variance equal to one, and are thus independent of
the original absorbance values. Dhanoa et al. (1994) and Helland et al. (1995) observed that MSC
and SNV transformed spectra are closely related and the difference in models predictive ability
using these pre-processing techniques is very small. Derivatives can be used to eliminate offset
and background slope variations among spectra. The first derivative removes baseline offset
variations in spectral profiles, whereas the second derivative removes both baseline offset
differences and differences in baseline slopes between spectra.

For spectral data analysis, the most widely used chemometric techniques are principal
component analysis (PCA) and partial least-squares (PLS) regression. The PCA is a data-
reduction method extensively used for qualitative spectral analysis that reduces the dimension of
a dataset to a simpler representation by creating new variables, called principal components. This
kind of method is a very useful tool for chemometricians, not only for data compression but also
for information extraction, allowing the identification of major trends in the data [Naes et al.,
2002]. However, for quantification purposes the most used multivariate data analysis is the PLS
regression, used to establish a relationship between the spectra and the quantifiable properties of
samples, by determining a small number of latent variables that allow predicting sample
properties, using the spectral data as efficiently as possible [Naes et al., 2002]. When a calibration
model is developed from the full spectra, the prediction results can be affected by wavelengths
that do not provide relevant information about the metabolite of interest. Wavelength selection is
therefore very useful, as it allows eliminating the uninformative wavelengths [Triadaphillou et
al., 2007].

It is intended in the present work to compare the MIR and NIR spectroscopy in monitoring in
high-throughput and in-situ mode, respectively, a heterologous product production over a
recombinant culture. As expression system model, a recombinant Escherichia coli DH5a
producing the plasmid pVAX-LacZ (Invitrogen, USA) was chosen, since E. coli is the most
widely used expression host, and the production of plasmids has also gained considerable
attention as a safer vector for gene therapy and DNA vaccination. The use of FT-IR spectroscopy

for plasmid production monitoring has previously been studied for example, Lopes et al. (2013)
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used in-situ NIR spectroscopy and Scholz et al. (2012) a high-throughput at-line MIR
spectroscopy to monitor a plasmid bioproduction process in Escherichia coli cultures. However,
the efficiency of the two techniques for monitoring plasmid bioprocesses, provided by these two
studies, cannot be compared, as different cultures conditions were used, and in the case of the
MIR spectroscopy monitoring few samples were used for model building that could have impaired
the model prediction capability. In this regard, in the present work the high-throughput at-line
MIR spectral analysis and the in-situ analysis using a NIR fiber optic were compared for
monitoring the same cultures of recombinant E. coli DH5a producing pVAX-LacZ. For that,
several PLS regression models for MIR and NIR data were built to estimate the critical variables
of the bioprocess, such as the host cell growth, the production of plasmid, the carbon sources
consumption (glucose and glycerol) and the by-product acetate production and consumption. As
it was also intended to compare the robustness of the predicting models over different cultivation
conditions, several PLS were also built based on cultures conducted over different media

conditions and on different cultivation modes (batch and fed-batch).

111.2. Materials and Methods

I11.2.1. Cultivation

Escherichia coli DH5-a containing the plasmid model pVAX-LacZ (Invitrogen, USA) was
used. The stock cultures, grown on 2% (w/v) Luria-broth (Sigma, UK) and 30 pg/ml kanamycin
(Sigma-Aldrich, Germany), were maintained in 40% (v/v) glycerol solution (Panreac Quimica
SA, Spain) with 10 mM Tris-HCI (Sigma-Aldrich, Germany) buffer pH 8.0 at -80 °C. An aliquot
of 10 ul of stock culture was inoculated into 1 L shake flask containing 300 mL with 20 g/L
bactotryptone (BD, USA), 10 g/L yeast extract (Difco, USA), 10 g/L sodium chloride (Merck,
Germany) and 30 pg/mL kanamycin), grown to mid-exponential phase, and then used to inoculate
a batch culture to an initial optical density at 600 nm (ODsoo) of approximately 0.5.

The cultivation was performed in a 2 L bioreactor (Biostat MD, B. Braun, Germany) with a
1.8 L working volume, in absence of antibiotic. Cultivation was maintained at pH 7.0 £ 0.1 by
automatic control through 1 M NaOH (Fluka, Switzerland) or 1 M HCI (Sigma-Aldrich,
Germany) addition, and at 37 + 0.1 °C with a minimal dissolved oxygen concentration (DOC) of
30 + 5% of air saturation, by automatic adjustment of the agitation rate, while adjusting the air
flow rate range between 1.0 and 1.5 vvm (volume of air/volume of medium/minute). The initial
batch cultivation media of the three cultures studied contained 10 g/L of yeast extract (Difco,
USA), 20 g/L bactotryptone (BD, UK) and 7 g/L of glycerol (culture A), 7 g/L of glucose (culture
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B), and 6 g/L of glycerol and 8 g/L of glucose (culture C). An exponential feeding phase was
started on cultures B and C with a feeding of 0.3 L medium, containing 22.5 g yeast extract, 22.5
g bactotryptone and 45 g glucose, and considering a maximum specific growth rate of 0.18 h*
and a constant yield of biomass per glucose of 0.6 g/g. Samples were taken from the bioreactor
along the culture, and subsequently used for offline reference analysis of biomass, glucose,
glycerol, acetate and plasmid.

[11.2.2. Reference analyses

Biomass in units of dry cell weight (DCW) per volume of culture medium (g/L) was
determined by centrifuging the cultivation samples, washing the pellet with 0.9% (w/v) sodium
chloride and drying at 80 °C until constant weight. The bacterial cell pellet and the supernatant
obtained from sample centrifugation (Hermle Z160M, Germany) were frozen at -20 °C. Glucose,
glycerol and acetate were determined by HPLC with a L-6200 Intelligent Pump (Merck-Hitachi,
UK), a L-7490 LaCrom-Ri-detector (Merck, Germany), a D-2500 Chromato-integrator (Merck-
Hitachi, Germany) and an Aminex® Fermentation Monitor HPLC column (Bio-Rad, USA)
maintained at 50 °C, and by using H.SO, at 0.6 mL/min as eluent. Plasmids were extracted from
the bacteria cell by the alkaline cell lysis method, and subsequent plasmid concentration and
purity degree were determined by hydrophobic interaction HPLC, as described in Scholz et al.
(2012).

111.2.3. MIR spectroscopy

The cell pellet obtained from the centrifugation of each 1 mL sample taken from the bioreactor
was resuspended with NaCl 0.9% (w/v), so that an equivalent optical density of 6.0 (at 600 nm)
in all samples was achieved. Triplicates of 25 pL of this suspension were placed on IR-transparent
ZnSe microtiter plates with 96 wells (Bruker Optics, Germany) and subsequently dehydrated for
2.5 h in a vacuum desiccator (ME2, Vaccubrand, Germany). The MIR spectra were recorded in
transmission mode by a HTS-XT associated to Vertex-70 spectrometer (Bruker Optics), using a

spectral resolution of 4 cm™ and 40 scans per sample.
[11.2.4. NIR spectroscopy

NIR spectra were obtained using an NIR transflection fiber optic probe IN-271P (Bruker
Optics, Germany), with a pathlength of 2 mm, coupled to a Vertex-70 spectrometer (Bruker
Optics, Germany) with a TE-InGaAs detector. The fiber optic probe was submerged in the

bioreactor and stem sterilized simultaneously with the cultivation medium. NIR spectra were
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collected every 2 minutes in the 12500-5400 cm™ (800-1851 nm) range, consisting of 32 coadded
scans with 8 cm™ resolution (2 nm steps). The scanner velocity was set to 20 kHz and the aperture
setting defined was 6 mm.

111.2.5. Chemometric Methods

MIR data consisted of mean spectra of triplicates in each well of the ZnSe plate, while NIR
data consisted of the spectra correspondent to the samples taken from the bioreactor and analyzed

by offline reference methods.

Pre-processing

The following data pre-processing methods were studied: constant offset elimination, straight
line subtraction, first and second derivatives, multiplicative scatter correction (MSC) and standard
normal variate (SNV), and a combination between them.

While constant offset elimination shifts the spectra in order to set the y-minimum to zero
through the subtraction of the spectra by a certain constant, straight line subtraction fits a straight
line to the spectra and subtracts it, enabling the shift of the spectra to zero [Otto, 1999; Smith,
2011]. Spectral first and second derivatives were also employed to remove baseline offsets. As
derivatives usually broaden spectra noise, a Savitzky-Golay smoothing was applied, where each
point of the dataset is replaced by the average of itself and n points before and after.

SNV eliminates the interference of scatter events by individually transforming the spectral
data x; into new values z;, where i = 1, ..., p (p are the wavelengths), according to the following

equation:

where m corresponds to the mean and s to the standard deviation of x; values in the original
spectrum [Fearn et al., 2009].

MSC was also used to eliminate changes in spectra due to radiation scattering, by determined
the mean spectrum of replicate spectra, by performing a transformation where the spectral data
Xi is converted into new values z;, where i = 1, ..., p, with p being the wavelengths [Fearn et al.,
2009]. The following equation describes the transformation from xi to zi:

X —a
b )

Zi =

where a represents the intercept and b the slope of a least squares regression of x; on the values r;

coming from the reference spectra.
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Multivariate data analysis

For multivariate calibration the PLS method, also known as projection to latent structures, was
applied, by determining a small number of latent variables (lv) that can predict sample properties
by using the spectral data.

Let X be the mean-centered n X p matrix composed of the n sample vectors x;, i =1, ...,p
containing the spectral measurements at p wavelengths and let y be the mean-centred vector
containing the reference values for the variable of interest. With this information, PLS finds new
variables t;, i = 1, ..., p, which will be used to estimate the lv, and determines the loadings matrix
P and y-loadings vector g by maximizing the correlation between those variables t; found, as

described below:
X=TPT+E

y=Tq" +f,

where E and f are the X and y residuals, which are the difference between the observed and the
modelled variable [Naes et al., 2002].

The PLS regression coefficients /5 are given by:
g =WEPTW)"L(TTT) 1Ty,
where W is the PLS weights matrix and can be used to obtain the predictions:
9 =Xp

In order to evaluate the performance of the developed models to predict the samples’
properties, the root mean squared error (RMSE) was used, which is based on the squared

differences between real and predicted y-values. The RMSE is given by:

s

1 Z ; 2

RMSE = E (yipredlcted _ yirea’) ’
i=1

where s is the number of spectra. Besides RMSE, the coefficient of determination (R?) was also
calculated in order to evaluate the robustness of the PLS models.

The validation of the developed PLS models was performed using two different approaches:
external validation, where a set of external samples not used for calibration was used for

validating the model developed; and the leave-one-out (LOO) cross-validation, where the
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calibration and validation are done by successively excluding a sample from the calibration set
and using it as validation set, until all samples have been used for calibration and validation. The
choice of the technique to be used is dependent on the number of samples available.

Wavelength selection

The wavelength selection was performed by dividing the spectral region into 10 equal
subregions and finding the best combination of spectral regions providing the best predictive
performance. The calculation starts with one subregion and after the best subregion has been
found the next subregions will be individually added after the best combination of regions has
been found. This procedure was repeated for data pre-processed using the techniques described
above. The best PLS model was assessed by picking the wavelength regions and pre-processing
technique providing the smallest RMSE. Both wavelength selection and PLS model building were

performed using software OPUS Ver. 7.2 (Bruker, Germany).

111.3. Results and Discussion

One of the major challenges associated to the production of biopharmaceuticals is the
development of methods to at-line or in-situ monitoring the production of the recombinant
product, this way promoting process control to ensure high quality products and optimization
towards a more economical bioprocess. As a biopharmaceutical product, plasmids have become
appealing due to its potential for advanced medical therapies like DNA vaccines and gene therapy
[Carnes, 2005; Coban et al., 2013; Coban et al., 2011; Kalams et al., 2013; Prather et al., 2003;
Shibui et al., 2013]. Plasmids are usually produced in recombinant E. coli cultures, which as living
cells present inherent variability that is further enhanced by the cell sensitivity to the
manufacturing environment. Therefore, it is crucial the development of in-situ bioprocess
monitoring tools along the culture time so that the plasmid bioproduction could be controlled in
real-time, as described in the present work by using a NIR fiber-optic spectroscopy probe stem
sterilized with the bioreactor. In cases where the fiber-optic probe cannot be used, due to
limitations of bioreactor dimensions as in the case of optimization protocols using
microbioreactors, the use of high-throughput analysis using microplates based in MIR
spectroscopy could represent a solution. In both cases (in NIR and in MIR spectroscopy) the ideal
calibration models developed should be valid for a wide range of cultivation conditions, that will
cover perturbations of the cultivations conditions naturally occurring at industrial scale, or that

will cover the cultivation conditions evaluated under optimization protocols.
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To develop robust PLS models, enabling to predict the key variables of the plasmid
bioproduction from a IR-spectrum, three E. coli cultures conducted under different mixtures of
glucose and glycerol as carbon sources on the batch phase and over different cultivation strategies
(batch and fed-batch) were prepared. The batch phase of cultivation A to C were conducted with
glycerol (Culture A), with glucose (Culture B) and with a mixture of glucose and glycerol (Culture
C). After the batch phase, a feeding phase with glucose was started on cultures B and C. The three
cultures were monitored by high-throughput mode in MIR spectroscopy and in-situ NIR
spectroscopy.

Considering the batch phases of cultures A and B, it was possible to observe that culture A
(conducted only on glycerol) produced 2 times more plasmid than culture B (conducted only on
glucose), most probably as a result of the lower specific growth rate and lower acetate
productions, that however resulted in an also lower volumetric productivity. Indeed, glycerol has
being used as an alternative C-source in relation to glucose, in order to minimize overflow
metabolism, due to a lower glycerol transport to the cell, that consequently will increase the
energetic metabolism efficiency while reducing the acetate production [Korz et al., 1995; Hansen
and Eriksen, 2007; Scholz et al., 2012]. The acetate production, besides its direct consequence of
decrease biomass yield, may also reduce product yield per biomass [Smirnova and Oktyabrskii,
1985]. Therefore, the use of glycerol instead of glucose will implies a lower specific growth rate
and consequently a lower plasmid productivity, that however results in a lower acetate production
and consequently on a slight higher biomass and a much higher plasmid production per biomass,
and consequently on a much higher final plasmid concentration in relation to the culture
conducted on glucose. Since the goal of the biopharmaceutical companies is to obtain
simultaneously maximum plasmid final concentration, plasmid yield per biomass and plasmid
productivity, a mixture of glucose and glycerol as carbon source should be therefore used (Table
Figure 111.5, 111.1) [Scholz et al., 2012]. Indeed, it was observed that the batch culture C,
conducted with a mixture of glucose and glycerol, presented the highest plasmid productivity of
4.4 mg/L/h, plasmid concentration of 42 mg/L and plasmid production per biomass of 7.23 mg/g

(Table I11.1), when compared with the other two batches phases.
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Figure 111.5: Evolution along the time of the biomass, glucose, glycerol, acetate and plasmid concentrations for the three cultures (A to
C), conducted with a C-source composition on the batch phase of glycerol (culture A), glucose (culture B) and glucose and glycerol (culture
C). After all acetate produced during the batch phase was consumed on culture B and C an exponential feeding phase with glucose was
started considering a u=0.18h"%, Yx/s=0.6 and S=150g/L. The feeding phase is represented in the graph by the grey area.
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Table 111.1: Description of the three batches cultures conducted with mixtures of glucose and glycerol as carbon source.
The following parameters are relative to the time at which the maximum plasmid production was achieved: time,
biomass, maximum plasmid and final plasmid productivity.

Culture A Culture B Culture C
[glucose] (g/L) - 7.0 8.0
[glycerol] (g/L) 7.0 - 6.0
maximum [acetate] (g/L) 3.3 5 5.4
time (h) 22 7 9.5
[biomass] (g/L] 5.9 5.6 9.4
maximum [plasmid] (mg/L) 34 144 42
plasmid/biomass (mg/g) 4.8 1.8 7.2
final plasmid productivity (mg/L/h) 15 21 44
specific growth rate in glucose (h) - 0.78 0.59
specific growth rate in glycerol (h) 0.66 - 0.31

Comparing the two fed-batch cultures, culture C produced about 2 times more plasmid in
relation to the culture B, and an increase of approximately 60% in the final plasmid productivity
(Table 111.2). The high plasmid productivities observed in the fed-batch phase of culture C can
be related to its batch phase, which was conducted with mixtures of glucose and glycerol as carbon
source, which might have contributed to maximize plasmid concentrations, plasmid yield per

biomass and plasmid productivities.

Table 111.2: Description of the two fed-batches cultures conducted with mixtures of glucose and glycerol as carbon
source. The following parameters are relative to time where the maximum plasmid production was achieved: time,
biomass, maximum plasmid and final plasmid productivity.

Culture B Culture C
time (h) 25 325
maximum [biomass] (g/L] 8.6 12.1
maximum [plasmid] (mg/L) 66 142
plasmid/biomass (mg/g) 8.7 124
final plasmid productivity (mg/L/h) 2.6 44
maximum [acetate] during feeding (g/L) 41 7.2
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These data clearly show that slight differences concerning types and concentrations of carbon
sources, as well as the cultivation strategy, have a relevant impact on the culture performance,
therefore announcing the need to monitor the bioprocess towards more reproducible processes
and to understand how the above factors affect the entire production process. For that, MIR and
NIR spectral data (Figure 111.6) from the cultures described above (three batches phase and two
fed-batches phases) were used to build PLS models for predicting the variables of interest in the
plasmid bioprocess, namely, glucose, glycerol, acetate, biomass and plasmid concentrations, as

for optimization purposes it is very important that PLS models cover a wide range of cultivation

conditions.
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Figure 111.6: Examples of MIR (A) and NIR (B) spectra acquired during bioprocess monitoring.

[11.3.1. PLS modeling of MIR spectra

PLS models using the MIR spectral data from the three cultures (A to C) were built for
biomass, plasmid, glucose, glycerol and acetate, and subsequently evaluated concerning its
accuracy and robustness. It should be noted that the prediction of the concentration of the glucose,
glycerol and acetate in the culture broth was possible based on metabolism-induced correlations
between the spectra and the concentration of the nutrients and metabolites in the extracellular
medium.

Several PLS models were built, presenting combinations of the following pre-processing
techniques: constant offset elimination, straight line subtraction, multiplicative scatter correction
(MSC), standard normal variate (SNV) and first and second derivatives. The PLS models were
also optimized using a strategy for wavenumber selection for identifying the spectral regions that
best relate with the metabolite, as the prediction results can be improved by excluding spectral
regions that do not contain metabolite specific information (Kansiz et al., 2001). The best PLS
model was assessed by picking the wavelength regions and several pre-processing technique

providing the smallest RMSE. For the biomass, plasmid and acetate models, the RMSE was
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Table 111

(*LOO cr

calculated based on an independent test validation set due to the larger number of samples
available. For the glucose and glycerol models, the RMSE was obtained by LOO cross-validation,
as fewer samples were available, provided by the batch consumption phase. The acetate model
was also built based on samples from the batch consumption phase.

High accurate PLS regression models were obtained for biomass, plasmid and glucose
concentrations, with a R? of 0.97 and a RMSE of 0.71, 8.55 and 0.29, respectively, that
represented perceptual errors in relation to the range of units of the variables of 4.8, 6.0 and 3.2%,
respectively (Table 111.3; Figure 111.7). All models produced better results concerning accuracy
and prediction errors when compared to the results obtained by Scholz et al. (2012), who predict
the metabolites concentration of five batch cultures with different initial medium compositions.
These five cultures presented a distinct culture behavior, with maximum biomass concentrations
between 6.7 and 12.8 g/L and maximum amounts of plasmid produced between 11 and 95 mg/L.
Despite the large variability present in the present cultures, being even higher concerning the
plasmid range, a great improvement in model performance was seen in these study, which may
be partially explained by the use of a larger number of samples that were taken along the time of

the bioprocess considered for PLS model building.

.3: Best MIR PLS regression models for biomass, plasmid, glucose, glycerol and acetate concentrations concerning the R?, the
RMSE, the number of latent variables (lv) used, the pre-processing technique and the selected spectral regions for culture A, B and C

0ss-validation).

At-line monitoring by MIR spectroscopy

R? \% RMSE Percentage No. calibration ~ No. validation Pre-processing Wavelength selection
of error (%) samples samples
Biomass 0.97 7 0.71 4.8 116 27 Second Derivative 3299,8 - 2946,9 ; 1199,6 - 499,5
(g/L)
Plasmid 0.97 8 8.55 6.0 116 27 First Derivative +  3299,8 - 2597,8 ; 2248,7 - 1897,7
(mg/L) MSC
Glucose 0.97 8 0.29 3.2 28 - First Derivative 3998 - 3297,9 ; 2948,8 - 2597,8 ;
(g/L)* 2248,7 - 1897,7
Glycerol  0.92 8 0.40 52 24 - Second Derivative 3998 - 3647 ; 2948,8 - 1897,7 ;
(g/L)* 850,5 - 499,5
Acetate 0.91 7 0.40 74 43 12 Straight line 2948,8 - 2597,8 ; 2248,7 - 1897,7
(9/L) subtraction
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Figure 111.7: True and predicted biomass, glucose and plasmid concentrations obtained by the PLS regression model based on the MIR spectra,
considering data from three different cultures (A, B and C).

Regarding the plasmid model, the high RMSE achieved can be explained by the wide range
of plasmid concentration, thus making the plasmid prediction fairly acceptable (6.0% of the
maximum plasmid concentration). Moreover, the experimental errors in the determination of
plasmid concentration (Figure 111.5), may also influence the prediction error, as this analysis is
based on plasmid HPLC analysis after plasmid cell extraction by cell alkaline lysis. The cell
plasmid extraction step presents serious concerns, as during plasmid extraction, cells at different
metabolic states may present different contents in nucleases, and consequently the efficiency of
the plasmid extraction will widely vary, leading to analytical errors between 5 and 8%.

Less accurate models were obtained for glycerol and acetate, with the acetate model providing
the highest percentage of prediction error. This error, however, might still be considered
reasonable, when compared to the errors provided by the conventional methods for the
determination of acetate, as the most used method for HPLC analysis is based on a non-specific
HPLC column that presents a broad range of applicability but lower specificity and sensitivity.
On the other hand, the good result for the glycerol model regarding the prediction error may be
due to a very specific model built based on few samples within a narrow concentration range.

Figure 111.8 summarizes the regression coefficients of the PLS models developed for all
metabolites. It can be seen that for each variable studied specific spectral windows were selected
for model building. Although some overlapping might be expected, each model was developed
based on specific spectral regions, with distinct intensities observed, which ensure that one

metabolite is not being predicted by another.
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Figure 111.8: PLS regression vectors obtained from MIR models for A) glucose, B) glycerol, C) acetate, D) biomass and E)

plasmid concentrations.
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[11.3.2. PLS modeling of NIR spectra

PLS models were built for glucose, glycerol, acetate, biomass and plasmid concentrations
using NIR data from the three cultures studied. For the biomass, plasmid and acetate models, the
RMSE was calculated based on an independent test validation set, given the larger number of
samples available. For the glucose and glycerol models, the RMSE was obtained by LOO cross-
validation, as fewer samples were available, provided by batch consumption phase. The acetate
model was also built based on samples from the batch consumption phase. As for the PLS models
based on MIR data, the best PLS model was assessed by picking the wavelength regions and
several pre-processing technique providing the smallest RMSE. The PLS regression vectors
(Figure 111.9) of all PLS models, layout the models specificity for each variable, as different
spectra regions contribute to each model building. As expected the calibration models based on
NIR presents more overlapping spectra regions among each other, as NIR spectroscopy reflects
overtones and combinations of vibrations, where MIR spectroscopy reflects fundamental
vibrations modes. It was observed that good PLS models were achieved for all variables studied
(Table 111.4). High accurate PLS regression models were achieved for biomass and glucose, with
a R?>0.98 and a low RMSE of 0.39 and 0.30, respectively (Table I11.4; Figure 111.10). The
biomass model yielded a similar R? compared to previous reports on E. coli cultures [Arnold et
al., 2002; Cimander and Mandenius, 2002], but lower prediction errors. Accurate PLS models
were also obtained for plasmid (Table I11.4; Figure 111.10), yielding a R? of 0.96 and a RMSE
of 7.86. Although the RMSE of plasmid model seems high, when compared to the error associated
to the prediction of the other metabolites, it is indeed a low RMSE (5.6% of the maximum plasmid
concentration), if taken into account the range of plasmid concentrations, between 0 and 42 mg/L.

In the case of glycerol, an accurate PLS model with a R? of 0.96 and a RMSE of 0.23 was
obtained, however, as for the PLS model for glycerol based on MIR data, a low number of samples
was used, which might have produced a very specific model. A less accurate PLS model was also
obtained for the acetate production, compared to the previous models, and as previously observed
in the MIR region, which can be related to the distinct level of production of acetate achieved in
cultures A and B, therefore contributing to greater complexity and consequently influencing the
acetate prediction.

Considering that PLS models were developed based on cultures accounting for a high
variability concerning the cultivation conditions and strategies, along with wide concentration
ranges of the metabolites, in-situ monitoring of the main variables of the plasmid bioprocess, with

a high predictive ability, was possible through NIR spectroscopy.
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Figure 111.9: PLS regression vectors obtained from NIR models for A) glucose, B) glycerol, C) acetate, D) biomass and E) plasmid
concentrations.
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Predicted biomass (g/L)

Table 111.4: Best NIR PLS regression models for biomass, plasmid, glucose, glycerol and acetate concentrations concerning the R?,
the RMSE, the number of latent variables (Iv) used, the pre-processing technique and the selected spectral regions for culture A, B and

C (*LOO cross-validation).

In-situ monitoring by NIR spectroscopy

Percentage No. calibration No. validation . Wavelength
R? v RMSE Pre-processing .
of error (%) samples samples selection
Biomass Constant offset 11077,7 - 9654,4 ;
0.99 7 0.39 2.6 116 27 L
(g/L) elimination 8948,5 - 7525,3
Plasmid 103368 - 89447 ;
0.96 7 7.86 5.6 116 27 SNV
(mg/L) 6109,7 - 5400
Glucose 10368 - 8235 ;
0.98 6 0.30 34 27 - None
(g/L)* 6819,4 - 5400
Glycerol 8238,8 - 7525,5;
0.96 7 0.23 33 23 - None
(g/L)* 6109,7 - 5400
Acetate Constant offset
4 0.41 7.6 44 15 . 8948,5 - 7525,3
(g/L) elimination
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Figure 111.10: True and predicted biomass, glucose and plasmid concentrations obtained by the PLS regression model based on the NIR spectra,
considering data from three different cultures (A, B and C).
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111.3.3. MIR versus NIR models

Generally, PLS models with MIR spectra present better results than models with NIR spectra,
as shown by previous studies [Sandor et al., 2013; Sivakesava et al., 2001], as MIR spectroscopy
reflects the fundamental vibration of the molecular bonds, therefore becoming more informative,
in relation to NIR spectroscopy that reflects overtones and combinations vibration modes.
However, using exactly the same data from 3 batch cultures and 2 feeding phases, very similar
PLS regression models were obtained to predict the critical variables of the bioprocess as the
concentrations of biomass, plasmid, glucose, glycerol and acetate. If it is taken into account the
final prediction errors, most PLS models built based on NIR spectra are even slightly better than
those built on MIR data. A possible reason for this result might be the use of a different NIR probe
in this study that works in transflectance mode and presents a mirror with a conical shape that
avoids the accumulation of solids and air bubbles in the pathlength, therefore improving the final
results for NIR spectra. Furthermore, the transflectance mode most probably presents a wider
range of applicability from low to high biomass concentrations. Indeed, comparing MIR and NIR
data pre-processing for models’ construction, PLS models built on NIR data did not require the
use of derivatives as pre-processing, as reported by other authors using in-situ NIR probes [Arnold
et al., 2002; Cimander and Mandenius, 2002; Lopes et al., 2013; Lourenco et al., 2012; Navrdtil
etal., 2005; Shenk et al., 2001; Tamburini et al., 2003; Tosi et al., 2003]. For example, for glucose
and glycerol models, no pre-processing was necessary, and only a constant offset elimination was
applied for biomass and acetate models. The best PLS models for MIR data required data pre-
processing using derivatives for most variables studied, except for the acetate model, for which a
straight line subtraction was applied to the spectral data.

The results achieved for NIR and MIR data clearly show that both NIR and MIR
spectroscopies represent valuable approaches for bioprocess monitoring, however, they must be
chosen regarding the final purpose. For example, if the goal is to monitor the bioprocess along
time, NIR spectroscopy may be chosen, since a NIR fiber-optic probe (stem sterilized with the
bioreactor vessel) can be placed inside the bioreactor and extract information in real time. On the
other hand, if several hundred of samples from several cultures are to be analyzed for optimizing
cultures’ conditions and strategies, high-throughput MIR spectroscopy could be the choice.
Nevertheless, taking into account the necessary sample dehydration for MIR analysis, in-situ NIR
spectroscopy, when available and there is not a minimum bioreactor volume, is still more
promising, as spectral data acquired online, with no sample extraction/preparation, can be directly

used also for optimization purposes.
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Therefore, for bioprocess monitoring of biopharmaceutics, as plasmid production in
recombinant E. coli hosts, MIR and NIR spectroscopies are techniques that present specific
characteristics and therefore advantageous and limitations associated, were can be seen as
complementary and together represent a powerful tool for bioprocess monitoring.
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Chapter IV

Metabolic profiling of recombinant cell cultivations based on high-

throughput FT-IR spectroscopy analysis

Abstract

The increasing interest in biopharmaceuticals products like plasmids that have becoming more
appealing due it is potential for advanced medical therapies (e.g. DNA vaccines and gene
therapy), calls for the need of developing economic ways for their production. However, genetic,
physiological and environmental factors influence the expression of the cloned gene product with
a high degree of complexity. Therefore, in order to control and optimize the performance of
recombinant expression systems, it is very important to understand the complexity of the
interrelationships between cultivation conditions and the genetic and physiological characteristics
of the expression system. For that, the metabolic profile of two recombinant E. coli cultures
producing plasmid pVAX-lacZ were evaluated based on FT-IR spectra collected in a high-
throughput mode along the cultivation time.

The principal component analysis (PCA) method enabled to capture the metabolic state of the
cell in both cultivations, as identifying the different C-sources consumption phases. It was also
possible by direct analysis of the FT-IR spectra to acquire biochemical and metabolic information
along the cultivation process: it was observed a decreasing of glycogen levels at high specific
growth rate, namely during the carbon sources consumption; it was also possible to observe the
RNA concentrations and transcriptional levels increase before the beginning of a new carbon
sources consumption, most probably due to the need of new genes transcription, to enable the
new carbon source metabolism; it was also observed an increase of the translational level
(estimated as the ratio between the amide 1l spectral bands and the nucleic acids total) during the
consumption of the carbon source, most probably as a result from a higher protein expression; it
was also possible to identify protein conformational changes in the cell proteome.

In summary, FT-IR spectroscopy enables to acquire along the cultivation process of
recombinant E. coli several features of the biochemical and the metabolic status of the cell, which
could strong contribute to understand the complex interrelationships between the recombinant
cell metabolism and the bioprocess towards the design of more economic and robust processes

according to the PAT initiative.

Keywords: Bioprocess monitoring, FT-IR spectroscopy, Metabolic Profiling, PCA
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1VV.1. Introduction

The bacterium Escherichia coli is the most used host microorganism for the production of
recombinant products, such as heterologous proteins and plasmids. The main reason for that is its
capacity to grow under a wide range of conditions, from rich complex organic media to salt-based
chemically defined media, as well as its ease manipulation by genetic engineering [Moen et al.,
2009; Prather et al., 2003; Scholz et al., 2012; Yang, 1999]. However, differences in the
cultivation strategies (e.g., batch and fed-batch), environmental conditions and medium
composition, are known to affect the stability and expression of the cloned gene product
[O’Kennedy et al., 2003; Ow et al., 2007; Ow et al., 2009]. The characteristics of the plasmid and
the host cell, i.e., the cell expression system, are also important factors that should be carefully
evaluated [McNeil and Harvey, 1990]. The combination of the above genetic, physiological and
environmental factors influence the expression of the cloned gene product with a high degree of
complexity. Therefore, in order to control and optimize the performance of recombinant systems,
the effects of these factors and their interrelationships must be well understood.

To help understanding the complex relationships between the media composition, cultivation
strategy and condition, and the characteristics of the cell expression system, the effect of these
variables on recombinant cultures must be studied. This can be done by simply following the
evolution along the time of critical variables of the process, namely, biomass, recombinant
product, carbon source and acetic acid [Xiong et al., 2008]. To further understand the complexity
of the interrelationships between cultivation general conditions and the genetic and physiological
characteristics of the expression system, other metabolic information from the host recombinant
cell along the culture would be also highly useful. Understanding the complex interrelationships
between cultivation conditions and the expression system characteristics would therefore bring
valuable insight on the bioprocess, thus promoting control and optimization protocols towards a
more economic and robust process regarding reproducibility and consequently quality, in
accordance to the Process Analytical Technology (PAT) initiative launched in 2004 by the Food
and Drug Administration (FDA) [FDA, 2004].

Currently, the extraction of metabolic information from the host recombinant cell along the
bioprocess is performed by conventional cellular and molecular biology methods, which are
limited, time-consuming and labor-intensive. Alternative techniques, like Fourier Transform
Infrared (FT-IR) spectroscopy, a promising tool in the biomedical and pharmaceutical sciences,
have emerged in the last decade and shown to be a powerful tool to obtain information about all
stages of production’s process in a simpler, rapid and high-throughput mode [Card et al., 2008;
Orsini et al., 2000; Scholz et al., 2012].
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As a physicochemical method measuring vibrations of the functional groups of molecules, FT-
IR spectroscopy is able to provide information about the structural and biochemical composition
of a biological sample [Huang et al., 2006; McGovern et al., 2002; Schenk et al., 2006; Scholz et
al., 2012]. Examples of biomedical and pharmaceutical applications of FT-IR spectroscopy
include biodiagnostics (e.g., to detect inflammatory and precancerous cell states) [Gaigneaux et
al., 2004; Gazi et al., 2006; Lee et al., 2009; Lewis et al., 2010; Maziak et al., 2007] and screening
the “mode of action” of new drugs [Gasper et al., 2009]. FT-IR spectroscopy has also become
important for bioprocess monitoring and control [Gasper et al., 2009].

Generally, direct information can be obtained from a given IR spectrum, however,
chemometric techniques enable further extraction of qualitative and quantitative information. The
most common methods for these purposes are principal component analysis (PCA) and partial
least squares (PLS) regression models [Huang et al., 2006; McGovern et al., 2002; Moen et al.,
2009]. The application of spectral pre-processing techniques is also an important step in
multivariate spectral analysis, since they enable the elimination of physical phenomena, thus
improving the extraction of quantitative and qualitative information [Rinnan et al., 2009; Sharaf
et al., 1986].

The studies on bioprocess monitoring by FT-IR spectroscopy generally apply PLS regression
methods to estimate from the FT-IR spectra critical variables of the bioprocess, i.e., biomass
growth, the consumption of the main carbon sources as glucose and glycerol, the production and
consumption of by-products as acetate and ethanol, and the recombinant product production as
proteins and plasmids [Arnold et al., 2002; Cimander and Mandenius, 2002; Lopes et al., 2013;
Navrétil et al., 2005; Scholz et al., 2012; Shenk et al., 2001; Tamburini et al., 2003; Tosi et al.,
2003]. However, besides this kind of information, it would be highly useful to extract from the
FT-IR spectra other information that enables the biochemical and metabolic profiling of the host
cell, e.g. the energetic level (i.e. the glycogen contents), total quantities of nucleic acids, proteins
and lipids as well the apparent transcription and translation rate, as conducted by other authors in
human cells and in carcinogenic studies [Baran et al., 2013; Gaigneaux et al., 2007; Gazi et al.,
2003; Maziak et al., 2007; Lewis et al., 2010].

Thus, the main goal of the present work is to evaluate the potential of FT-IR spectroscopy to
characterize the biochemical and metabolic status of recombinant E. coli DH5-a cultures
producing the plasmid model pVAX-lacZ (Invitrogen). Due to the relevance of using glucose as
the main carbon-source to promote the bacterial growth and glycerol to minimize the production
of acetate, two E coli cultures were conducted with different mixtures of glucose and glycerol and
different cultivation strategies (batch and fed-batch). A PCA of the spectral data was first

performed in order to evaluate the ability of FT-IR spectroscopy to reveal relationships between
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spectral data and cellular events. The biochemical and metabolic profiling of the cell host along
the cultivation process was evaluated by estimating from the spectral data for example lipids,
proteins, nucleic acids and glicids and translational level.

IV.1l. Materials and Methods
IV.2.1. Cultivation

Escherichia coli DH5-a containing the plasmid model pVAX-LacZ (Invitrogen, USA) was
used. The stock cultures, grown on 2% (w/v) Luria-broth (Sigma, UK) and 30 pg/ml kanamycin
(Sigma-Aldrich, Germany), were maintained in 40% (v/v) glycerol solution (Panreac Quimica
SA, Spain) with 10 mM Tris-HCI (Sigma-Aldrich, Germany) buffer pH 8.0 at -80 °C. An aliquot
of 10 pl of stock culture was inoculated into 1 L shake flask containing 300 mL with 20 g/L
bactotryptone (BD, USA), 10 g/L yeast extract (Difco, USA), 10 g/L sodium chloride (Merck,
Germany) and 30 pg/mL kanamycin (Sigma-Aldrich, Germany), and grown to mid-exponential
phase (resulting in an optical density at 600 nm of 0.5).

The cultivation was performed in a 2 L bioreactor (Biostat MD, B. Braun, Germany) with a
1.8 L working volume, in absence of antibiotic. Cultivation was maintained at pH 7.0 £ 0.1 by
automatic control through 1 M NaOH (Fluka, Switzerland) or addition of 1 M HCI (Sigma-
Aldrich, Germany), and at 37 + 0.1 °C with a minimal dissolved oxygen concentration (DOC) of
30 + 5% of air saturation, by automatic adjustment of the agitation rate and the air flow rate range
between 1.0 and 1.5 vwvm (volume of air/volume of medium/minute). The initial batch
cultivation media of the two cultures studied contained 10 g/L of yeast extract (Difco,
USA), 20 g/L bactotryptone (BD, UK) and 7 g/L of glycerol (culture A) and 6 g/L of
glycerol and 8 g/L of glucose (culture B).

After the batch phase of the culture B, an exponential feeding phase was started with
0.3 L medium, containing 22.5 g yeast extract, 22.5 g bactotryptone and 45 g glucose,
and considering a maximum specific growth rate of 0.18 h* and a constant yield of
biomass per glucose of 0.6 g/g. Samples were taken from the bioreactor along the culture, and
subsequently used for offline reference analysis of biomass, glucose, glycerol, acetate and

plasmid.
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IV.2.2. Reference analyses

Biomass in units of dry cell weight (DCW) per volume of culture medium (g/L) was
determined by centrifuging the cultivation samples, washing the pellet with 0.9% (w/v) sodium
chloride and drying at 80 °C until constant weight. The bacterial cell pellet and the supernatant
obtained from sample centrifugation (Hermle Z160M, Germany) were frozen at -20 °C. Glucose,
glycerol and acetate were determined by HPLC with a L-6200 Intelligent Pump (Merck-Hitachi,
UK), a L-7490 LaCrom-Ri-detector (Merck, Germany), a D-2500 Chromato-integrator (Merck-
Hitachi, Germany) and an Aminex® Fermentation Monitor HPLC column (Bio-Rad, USA)
maintained at 50 °C, and by using H.SO. at 0.6 mL/min as eluent. Plasmids were extracted from
the bacteria cell by the alkaline cell lysis method, and subsequent plasmid concentration and
purity degree were determined by hydrophobic interaction HPLC, as described in Scholz et al.
(2012).

IV.2.3. FT-IR spectroscopy

The cell pellet obtained from the centrifugation of each 1 mL sample taken from the bioreactor
was resuspended with NaCl 0.9% (w/v), so that an equivalent optical density of 6.0 (at 600 hm)
in all samples was achieved. Triplicates of 25 pL of this suspension were placed on IR-transparent
ZnSe microtiter plates with 96 wells (Bruker Optics, Germany) and subsequently dehydrated for
2.5 h in a vacuum desiccator (ME2, Vaccubrand, Germany). The FT-IR spectra were recorded in
transmission mode by a HTS-XT associated to Vertex-70 spectrometer (Bruker Optics), using a

spectral resolution of 4 cm™ and 40 scans per sample.
IV.2.4. Chemometric Methods
Pre-processing

Different data pre-processing methods were studied, namely baseline correction, first and
second derivatives and multiplicative scatter correction (MSC), and a combination between them.

The baseline correction was performed in OPUS Ver. 7.2 (Bruker, Germany) and it allows to
subtract baselines from spectra by getting spectra with band edges of up to theoretical baseline,
i.e.,, 0. The remaining pre-processing and processing techniques were performed in MATLAB
7.8.0 (MathWorks, USA).

While first derivative allowed offset elimination, as the offset represents a constant value
added to the entire spectrum and the derivative of a constant is zero, second derivative, besides

offset elimination, enabled removing the slope from the spectral data set. As derivatives usually
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broaden spectral noise, a Savitzky-Golay smoothing was applied, with each point of the dataset
being replaced by the average of itself and 15 points before and after.

MSC was also used to eliminate changes in spectra due to radiation scattering, by determined
the mean spectrum of replicate spectra, and performing a transformation where the spectral data
Xi is converted into new values z;, where i = 1, ..., p, with p being the wavelengths [Fearn et al.,

2009]. The following equation describes the transformation from xi to zi:

X;—a
b )

Zi =

where a represents the intercept and b the slope of a least squares regression of x; on the values r;
coming from the reference spectra.

In the present work, the MSC was applied to each group of replicates.
Spectral deconvolution

The software OriginPro Ver. 7.0 (OriginLab, USA) was used for the deconvolution of specific
spectral bands. The goal of this operation is to resolve the underlying and overlapping peaks
present in an IR spectrum.

Before spectral deconvolution, baseline correction, MSC and the normalization to the amide
Il peak (at wavenumber 1550 cm™?) were applied. The normalization strategy becomes important,
since it enables highlighting differences in the spectra, which are not related to biomass. For that,
spectra are divided by a constant value, which was chosen as the maximum height of the amide

Il peak [Maquelin et al., 2002], as it is proportional to the cell quantities present in the sample.
Multivariate data analysis

PCA is a data-reduction method extensively used for qualitative spectral analysis that reduces
the dimension of a dataset to a simpler representation by creating new variables, called principal
components (PCs). This kind of method is very useful tool for chemometricians not only for data
compression but also for information extraction, allowing the identification of major trends in the
data [Naes et al., 2002].
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The PCA model can be described in matrix notation as:
X=TPT+E

where X is the spectral data matrix, T is the matrix containing the scores of the PCs, P the matrix
containing the loadings and E the matrix that contains the model residuals and represents the noise
or irrelevant variability in X. The scores in T are linear combinations of the original variables of
X (wavelengths). The loadings in P are estimated by regressing X on to T and the residual matrix

E is calculated by subtracting the estimated TPT from X [Naes et al., 2002].

1VV.3. Results and Discussion

To help understanding the complexity of the interrelationships between cultivation general
conditions and the genetic and physiological characteristics of the expression system, the
metabolic profiling of the host recombinant cell along the bioprocess becomes therefore very
important [Cash, 2014; Guernec et al., 2013; Lenahan et al., 2013; McQuillan et al., 2014; Moen
et al., 2009; Trauchessec et al., 2014]. One useful and potential technique that enables the
screening of changes in the total biomolecular composition is FT-IR spectroscopy, namely
between 1800 and 800 cm™. This spectral region corresponds to the fundamentals vibration of
molecules and presents therefore biological distinctive spectral features, which would allow
extracting more detailed information about the biochemical composition of the cell, namely lipids,
glicids, proteins, nucleic acids and other chemical species. Considering these purposes, two
recombinant E. coli cultures producing plasmid were evaluated based on FT-IR spectra collected
in high-throughput mode along the cultivation time.

Culture A was conducted on glycerol and culture B was conducted on a mixture of glycerol
and glucose. Glucose is usually the main carbon source used to promote the bacterial growth.
However, in recombinant E. coli cultivation high glucose concentrations lead to the production
of acetate , which reduces the cellular energetic yield and can inhibit growth, while decreasing
the recombinant product yield [Johnston et al., 2003; Luli and Strhol, 1990; MacDonald and
Neway, 1990; Xu et al., 2005]. The production of acetate arises from two different mechanisms:
when the maximum oxygen transfer capacity of the reactor is reached, anaerobiosis occurs,
leading to mixed-acid fermentation; when acetate is formed aerobically in the presence of high
concentrations of the primary carbon source that leads to the uptake of the carbon substrate greater
than a critical value. This latter process is known as the overflow metabolism and it has been

associated either to the saturation of tricarboxylic acid cycle [Fox et al., 1986], or the electron

47



transport phosphorylation process, or both [EI-Masi and Holms, 1989; Majewski and Domaach,
1990].

Since the use of glucose as carbon source leads to high levels of acetate production, glycerol
can be used as an alternative, as it usually results in a lower acetate production. Furthermore, the
use of glycerol presents the advantage that it does not have to be heat sterilized apart from other
media components, as opposed to glucose, which simplifies the preparation of the bioreactor in
large-scale operations. Nevertheless, there is evidence of a high production of acetate from
glycerol, which can be related to the high product yields per biomass observed [Scholz et al.,
2012; Silva et al., 2009].

Besides the carbon sources, economic media based on complex nitrogen sources (as yeast
extract and bactotryptone) were also used in both cultures. Rich and complex media, such as
media containing yeast extract and/or hydrolyzed proteins, are often chosen over defined media
because they are relatively simple to prepare and generally lead to higher biomass yields and high
specific growth rates [Durland and Eastman, 1998]. Therefore, complex and rich nitrogen source
constitutes a good choice to ensure an economic recombinant product production process in large
scale [Danquah and Forde, 2007; Durland and Eastman, 1998].

Comparing the batch phases of cultures A and B, it was possible to observe that in the presence
of glucose and glycerol, glucose is the first carbon source to be consumed, followed by glycerol
(Figure 1V.11). In both cultures, acetate was produced during the consumption of the carbon
sources consumption, achieving its highest concentration (5.4 g/L) in culture B (Table 1V.5).

Considering the production plasmid efficiency on these batch phases, the batch culture B,
conducted on a mixture of glucose and glycerol, presented the highest plasmid productivity of 4.4
mg/L/h, plasmid concentration of 42 mg/L and plasmid production per biomass of 7.2 mg/g
(Table 1V.5), when compared with the batch culture A, conducted on glycerol. These data clearly
show the advantages the using a mixture of glucose and glycerol, since glucose promotes high
productivities, due to the high specific growth rate on glucose, and the glycerol contribute to high
plasmid yields, associated to its lower specific growth rates. To further improve the plasmid
production, after the batch phase of cultivation B, a feeding phase with glucose was conducted,
resulting in 3.4 fold higher plasmid concentration and 1.7 fold higher plasmid yield per biomass,

while maintaining the plasmid high productivity in relation to the batch phase.
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Figure 1V.11: Evolution along the time of the biomass, glucose, glycerol, acetate and plasmid concentrations for the two cultures (A
to B), conducted with a C-source composition on the batch phase of glycerol (culture A) [A] and glucose and glycerol (culture B) [C].
After all acetate produced during the batch phase was consumed on culture B an exponential feeding phase with glucose was started
considering a p=0.18h", Yx/s=0.6 and S=150g/L. The feeding phase is represented in the graph by the grey area. The plots B and D
represent the evolution along the time of the online parameters: base, acid, pH and DOC, for the cultures A and B, respectively.
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Table 1V.5: Description of the two batches cultures conducted with mixtures of glucose and glycerol as carbon source.
The following parameters are relative to the time at which the maximum plasmid production was achieved: time,
biomass, maximum plasmid and final plasmid productivity.

Culture A Culture B
[glucose] (g/L) - 8.0
[glycerol] (g/L) 7.0 6.0
maximum [acetate] (g/L) 3.3 5.4
time (h) 22 9.5
[biomass] (g/L] 5.9 9.4
maximum [plasmid] (mg/L) 34 42
plasmid/biomass (mg/g) 4.8 7.2
final plasmid productivity (mg/L/h) 15 4.4
specific growth rate in glucose (h) - 0.68
specific growth rate in glycerol (h') 0.75 0.31

In order to direct extract information from the FT-IR spectra, the following pre-processing
techniques were applied with goal of reducing data noise, while highlighting spectral features:
baseline correction, i.e., all spectra have the same baseline; MSC, which was applied to reduce
the physical interferences, such as light scattering resulting from irregularities on the samples’
surface or particles with different sizes and shapes; and normalization, applied in order to

minimize the effect of the biomass concentration, as pointed out in figure 1V.12.
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Figure 1V.12: IR spectra from different samples in different stages of the bioprocess: without pre-processing (A); with baseline
correction and MSC (B); and with baseline correction, MSC and normalization to amide Il band (C).

As previously described, principal component analysis (PCA) is a data reduction method often
used for qualitative spectral data analysis that decompose the spectral data into new variables,
called principal components (PCs), which capture most variance in data [Jollife, 2002].
Consequently, PCA models will enable to find meaningful relationships between the spectral data
and cellular events, such as different consumption’s phases of the cell. Indeed, PCA applied to
the spectral data obtained from cultures A and B, captured the metabolic state of the cell
cultivation, as a separation of the samples in the score plots according to the C-source
consumption phase could be observed. For example, in the batch phase of cultures A and B,
samples at the stationary growth phase were separated from the remaining samples, as pointed
out in figures 1V.13A and B, where the samples mentioned are identified by the line 4. It was
also observed that the PC2 scores increase as the first carbon source consumption occurs, as
pointed by the line 1 presented in the score plots of figure 1V.13A and B. Samples with a high
acetate concentration trend to present higher PC2 scores in both cultivations A and B. As acetate
starts to be consumed, the PC2 values also decrease in both cultivations A and B (Figure 1V.13A
and B).
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Due to biochemical complexity of a living cell, the majority of the spectra peaks represents

combinations of vibrations of different chemical bonds. To resolve these peaks in relation to

individual contributions, several spectral regions were deconvoluted based on the second

derivative, as represented in figure 1V.14, where the negative part of the second derivative spectra

corresponds to the peaks of the IR spectrum.
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The deconvolution also enables to estimate the absorbance contribute of each chemical
species, as the sum of their areas corresponds to the total area of this spectrum region. Figure
IV.15 presents examples of the deconvolution results of two distinct spectral regions. For
example, the region between 1000 and 1195 cm™, according to the second derivative spectra,
presents at least five underlying bands. Consequently, the deconvolution of this spectral region
accounted for five deconvoluted peaks, as highlighted in figure IVV.15A. The only region that did
not need deconvolution was the spectral region between 2800 and 3000 cm™, due to a high peak
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Figure 1V.15: The reversed second derivative spectrum of a given sample with the presentation of the peaks identified, followed by IR
spectrum of the same sample with the deconvoluted peaks, after the deconvolution process. This representation includes the following
spectral regions: (A) 1000 — 1195 cm and (B) 1360 — 1480 cm™.

Table 1V.6 presents the proposed meaning of the several spectral bands identified. This
information was essentially obtained from studies related to early cancer diagnosis, where the
authors try to find biochemical changes between carcinogenic cells and non-carcinogenic cells
[Baran et al., 2013; Gaigneaux et al., 2007; Gazi et al., 2003; Maziak et al., 2007; Lewis et al.,
2010; Wang et al., 2010], studies in areas related to natural tissues and cell biology [Movasaghi
et al., 2008] and studies related to the identification of bacteria [Garip et al., 2009; Maquelin et
al., 2002].
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Table 1V.6: The identified bands and its proposed assignment according to the literature.

Wavenumber (cm™)

Assignment

~1032 C-O str and C-O bend: glycogen

~ 1057 C-O str deoxyribose: DNA

~1082 PO, sym str: nucleic acids

~1111 C-O str vibration of C-OH group of ribose: RNA

~1168 C-O str: protein side chains

~ 1240 PO, asym str: mainly nucleic acids with the little contribution from phospholipids

~ 1255 Amida Il

~ 1304 -

~ 1339 -

~ 1400 COO- sym str: aminoacid side chains and fatty acids; CH; sym bend: methyl groups of proteins
~ 1450 CH, bend: mainly lipids with little contribution of the proteins; CH; asym bend: methyl groups of proteins
~ 1468 -

~ 1522 -

~ 1550 Amide II: proteins, mainly N-H bend and C-N str

~ 1638 Amide I: proteins

~ 1655

~ 1685

~ 2850 CH, sym str: mainly lipids with the little contribution from proteins, nucleic acids and carbohydrates
~ 2870 CHj; sym str: protein side chains and some contribution from lipids, proteins and carbohydrates

~ 2920 CH, asym str: mainly lipids with the little contribution from proteins and carbohydrates

~ 2960 CHs; asym str: mainly lipids and protein side chains, with the little contribution from proteins and carbohydrates
~ 3070 Amide B: C-N and N-H str of proteins

~ 3185 -

~ 3300 Amide A: mainly N-H str of proteins

~ 3442 -

str=stretching ; bend=bending ; def=deformation ; sym=symmetric ; asym=antisymmetric

Considering the glycogen content, corresponding to the spectral band at 1032 cm™, along both

cultivations, a decrease in glycogen levels was observed, especially along the consumption of the

C-sources of the batch phase (Figure 1V.16), which can be related to the high specific growth

rate of the host cell at the beginning of the cultures. This evidence is in accordance to several

studies related to early cancer diagnosis, which state that cells with a higher cell division, as

carcinogenic cells, present lower glycogen contents [Gazi et al., 2003; Yano et al., 1996]. It was

observed that as the specific growth rate along the C-source consumption diminishes, the decrease

54



in glycogen is less accentuated (Table 1V.7). Furthermore, a slight increase of the glycogen
contents at the beginning of the C-source consumption was also observed, as in the case of acetate.

With the beginning of the feeding in the culture B, the glycogen levels increased, as opposed
to the batch phase, as during the fed-batch phase the bacteria use the carbon source to produce
plasmid instead of growing. Indeed, during the feeding phase a biomass per C-source yield of
0.23 g/g and a plasmid production per biomass of 10.9 mg/g were achieved, against 0.83 g/g and
4.4 g/g in the batch phase, respectively. The lower cell growth observed during the feeding phase

can be associated to a nutritional limitation, which is advantageous in this case, since a greater
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Figure 1V.16: Glycogen levels, corresponding to 1032 cm! band, along the cultivations A (A) and B (B). The feeding phase is represented
in the graph by the grey area.

Table 1V.7: Specific growth rates in the different consumption phases of the cultures A and B.

Culture A Culture B

specific growth rate in glucose (h™) - 0.68

specific growth rate in glycerol (h') 0.75 -
specific growth rate in glucose and glycerol (h'1) - 0.41
specific growth rate in glycerol and acetate (h™) 0.46 0.04

specific growth rate in acetate (h') - 0.08

The RNA content in the host cell, which is mainly RNA messenger (MRNA) [Ciccolini et al.,
2002], was estimated by the spectral band at 1111 cm™ (Figure 1V.17). An increase of the RNA
concentration in both cultures during the consumption of the first C-source in batch phase
occurred. A slight increase was also observed in both cultures immediately before the beginning

of other carbon source consumption, i.e. acetate, in culture A or glycerol in culture B. This initial
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increase in the mRNA concentration is most probably related to increase gene expression due to
cell adaptation to new environmental conditions as media composition. Some examples of
enzymes genes needed to be induced to enable the acetate metabolizing is phosphotransacetylase
(PTA) and acetate kinase (ACKA) genes, whose expression is induced by high acetate
concentrations [Valgepea et al., 2010]. In the feeding phase of culture B, there is an increasing
of the mRNA, especially during the accumulation of glucose in the culture medium, which can
be explained by the synthesis of proteins associated to the stress response, e.g. due to an

overburden of the host cell metabolism [Dirrschmid et al., 2008].
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Figure 1V.17: RNA concentration in the host cell, considering the 1111 cm™ band, along the cultivation A (A) and B (B). The feeding
phase is represented in the graph by the grey area.

It is well established in literature [Maziak et al., 2007; Parker, 1971; Parker, 1983; Susi, 1969]
that the peak maximum near 1650 cm™ is correlated with the protein segments with a-helical
structures. The component bands near 1688 and 1636 cm™* are the amide | bands of the proteins
segments with the B-sheet structure [Byler, 1986]. The changes in the relative intensities of the
amide | bands described above have been widely used for monitoring the protein conformational
changes in the cellular proteome [Baran et al., 2013; Maziak et al., 2007; Parker, 1971; Parker,
1983; Susi, 1969]. In this work general protein conformational changes along the bioprocess
cultivation on both cultures could also be observed (Figure 1V.18).

Besides nucleic acids and proteins, lipids are also biomolecules with major presence in the
cell, being represented by spectral bands near 2850, 2920 and 2960 cm™ [Baran et al., 2013;
Gaigneaux et al., 2007; Wang et al., 2010]. A higher lipid concentration in the phases either with
high cell growth rates or at the end of the feeding phase was observed (Figure 1V.19). According
to Baran et al. (2013), this increase of the lipids levels, known as lipidation, is considered to be

one of the general response of the cell to stress events.
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Figure 1V.18: Intensities of the amide I bands (1638, 1655 and 1688 cm™) along the cultivations A (A) and B (B). The feeding phase is

represented in the graph by the grey area.
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Figure 1V.19: Intensities of the lipids bands (2850, 2920 and 2960 cm'?) along the cultivations A (A) and B (B). The feeding phase is
represented in the graph by the grey area.
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The intensity ratio between spectral bands at 1111 cm™ (RNA band) and 1550 cm™* (amide I
band) was also considered in order to understand the transcriptional status of the host cell, as
presented by Baran et al. (2013) in their carcinogenic studies. During the batch phase, an increase
of this intensity ratio in both cultures immediately before the beginning of the C-source
consumption (Figure 1V.20) was observed, meaning that the bacteria was transcribing the
necessary gene to the carbon source metabolism. This trend is corroborated by the trends observed
in the RNA concentrations along both cultivations.

After the beginning of the feeding phase of culture B, an increase of the intensity ratio
happened, probably due to the transcription of genes that encode the proteins associated to the

stress response [Durrschmid et al., 2008].
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Figure 1V.20: Intensity ratio of the 1111 cm™* and amide 1 along the cultivations A (A) and B (B). The feeding phase is represented
in the graph by the grey area.

Complementary to the transcription levels, the protein expression status of the host cell,
represented by the intensity ratio between 1550 cm™ and 1082 cm™ [Baran et al., 2013], was also
studied. As expected, there was an increase of the intensity ratio during the C-source consumption,
which is related to the need of the host cell to synthetize the proteins involved in metabolism of
the carbon sources (Figure 1V.21). After the feeding phase of culture B, the intensity ratio
increased again, that is once more related to the increase of the protein expression, namely due to

synthesis of proteins associated to the stress response [Diirrschmid et al., 2008].
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Figure 1V.21: Intensity ratio of the amide Il and 1080 cm™* along the cultivations A (A) and B (B). The feeding phase is represented
in the graph by the grey area.

1VV.4. Conclusions

The present work shows the ability of FT-IR spectroscopy to extract metabolic information
about the host cell, namely the identification of the general metabolic switches along the different
phases of C-source consumption, by PCA, and the biomolecules’ concentrations or metabolic
status like translational levels along the cell culture, by direct spectral analysis. Regarding specific
biomolecules’ concentrations present in the cell, glycogen levels trended to decrease due to high
cellular growth rates, namely during the carbon sources consumption. The RNA concentrations
increased mainly before the beginning of the carbon sources consumption, due to the need of the
bacteria to transcribe the genes the start new C-source metabolism. Protein structural changes in
the cell proteome were also identified by FT-IR spectral analysis, considering the amide bands.
The RNA/amide Il ratio enabled to monitor the transcriptional status of the host cell, being higher
immediately before the consumption of the carbon sources. A higher protein expression by the
amide Il/nucleic acids total ratio was observed immediately after the increase of the
transcriptional level, i.e. during the carbon sources consumption. Therefore, FT-IR spectroscopy
proved to be a highly promising tool for monitoring the structural and functional changes in host

cell during the biopharmaceuticals production.
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Chapter V

General Conclusions

Due to the relevance of Escherichia coli as a recombinant cell host to produce heterologous
products, it is important to develop new techniques that enable in a fast, sensitive and in an in-
situ or high-throughput mode to estimate critical variables of the process culture and the metabolic
characteristics of the cell in response to different cultivation conditions. The present work shows
the potential of FT-IR spectroscopy to achieve that purposes. The application of chemometrics
methods to the IR spectral data also showed to be very important, since they highly influence the
output of data analysis, allowing extracting more detailed information that is often hidden in the
raw IR spectra. Therefore, the strategies to be used for each dataset must be carefully chosen.

The present thesis shows FT-IR spectroscopy combined with PLS regression as a powerful
tool to quantify of critical variables of the bioprocess (as biomass growth, plasmid production,
carbon source consumption and acetate production and consumption), either by in-situ NIR or at-
line high-throughput MIR spectroscopy. Furthermore, this work also shows how FT-IR
spectroscopy can be used to monitor the metabolism of the bacteria cell host, considering proteins,
nucleic acids, lipids and others biomolecules present in the cell, during a biopharmaceutical’s
production, both by a direct spectral analysis and by PCA.

In a future work, it will be interesting to:

o Develop a deconvolution algorithm in a programming language, e.g. Matlab, based
on the deconvolution methods described in scientific articles, like in Kauppinen et al.
(1981) and Kochev et al. (2001). This need is related to the limitations of the software
used in this work, since it works as a “black box”;

e Conduct a more detailed characterization of the E. coli cultivation, by conventional
methods, e.g., analyzing total nucleic acids, mMRNA, genomic DNA, glycogen, total
proteins and lipids, and other metabolites that would enable for example to
characterize stress response metabolism;

¢ Find the biochemical meaning of some spectral bands that present a specific profile
along the bacteria cell cultivation process, based for example on a complement

metabolic characterization of the E. coli cultivation process.
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In sum, FT-IR spectroscopy was presented as a highly promising tool for bioprocess
monitoring, as it enables the quantification of critical variables and the biochemical and metabolic
characterization of the cell host. The present results may certainly contribute to the design of more
economic and robust processes ensuring reproducibility and quality of the final product in
accordance to the PAT initiative.
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