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Abstract

We propose a simple and efficient way of forecasting the term structure of swap

rates and we demonstrate how an investor might benefit from (i) the variance swap

as an asset; and (ii) from the implied information present on the swap rate. We show

that the Nelson-Siegel model is enough to capture the dynamics of the swap rate term-

structure and that the three factors may be interpreted as the level, slope and curvature

of the curve. Further, we show that the expected change in the swap rate predicts the

one-month forward market return with an OOS R2 of 2.9%. An investment strategy

in both the variance swap and the underlying yields out-of-sample annualized Sharpe

ratios around 1.89 which are robust across several different portfolios.
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1 Introduction

Variance as an asset has gained importance over the past decade with trading volume on

VIX futures increasing 113% on average per year since 2008 (according to the Chicago Board

of Options Exchange). This volume is likely to increase exponentially during the next couple

of years, as variance swaps start being traded on regulated exchanges (such as the CBOE)

in addition to the over-the-counter markets.1 Volatility is indeed interesting as an asset class

for an investor because it tends to increase when uncertainty and risk increase, it is mean

reverting (Schwert (1989)), and it is negatively correlated with the stock or index level (e.g.

Ang et al. (2006); Carr and Wu (2009)), providing an effective hedge against market crashes.

Carr and Madan (1998) propose three ways for an investor to trade realized volatility: either

through a static position in a straddle, hedging through options the price risk, or investing

directly on an over-the-counter (OTC) variance swap which pays the difference between the

realized variance and the swap rate. Clearly, the first alternative suffers from significant

price exposure if the underlying moves away from its value when the position was opened

(one way to avoid this would be to engage in a costly delta-hedge) and the second option

suffers from having a price dependent path profit/loss. The variance swap, in its turn, only

has pure volatility exposure and might be valued through an option replicating portfolio

without relying on the restrictive assumptions of the Black-Scholes model (Britten-Jones

and Neuberger (2000); Jiang and Tian (2005)).

The average profit or loss for one dollar investment in a variance swap is given by the

difference between the realized variance and the swap rate. This difference, also called the

variance risk premium, has been thoroughly documented to be negative for aggregate stock

indexes (e.g. Carr and Wu (2009); Han and Zhou (2012)) and there is a mixed evidence

on individual stocks as some researchers document a negative variance risk premium (e.g.

Carr and Wu (2009)) and others a slightly positive (e.g Driessen et al. (2009); Han and

Zhou (2012)). We find that for the S&P 100 the variance-risk premium is negative for all

maturities (ranging from one month to twenty-four months), and slightly positive for the

1http://www.bloomberg.com/article/2012-10-01/amkZBt2qVqYM.html .
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average individual stocks in the index. This asymmetry, led Driessen et al. (2009) to argue

that correlation risk is priced in the market. Carr and Wu (2009) showed that the index and

firm specific variance risk-premium cannot be explained by the standard risk-factors such

as the CAPM and the Fama and French (1993) factors implying that either there is some

inefficiency in the market for variance or that the variance risk is another risk factor heavily

priced by the market.

We find that a simple curve-fitting model (the Nelson-Siegel exponential components)

is enough to model the term-structure of the variance swap rates with good in-sample fit

and good out-of-sample (OOS) forecasts of the next period’s term-structure. This result is

robust for both the index and the individual stocks. Our approach clearly contrasts with the

popular approaches to variance swap rates term-structure modeling (e.g. Aı̈t-Sahalia et al.

(2012), Egloff et al. (2010), Buehler (2006)) which belong to the affine class of term-structure

modeling. We show that our three-parameter model evolving dynamically (which imposes a

structure on factor loadings) is able to capture with high computational efficiency the term-

structure of swap rates and that each parameter may be interpreted as the level, slope and

curvature of the term-structure.

Our research is also related to the return predictability strand of literature. We propose

a new predictor and find that expected changes in the swap rate (which may be interpreted

as expected changes in the market volatility or as a proxy for the expected variance swap

return) predict the monthly S&P 100 returns with an OOS R2 of 2.9% (as defined in Goyal

and Welch (2008)). Other authors use market variance related variables to predict the stock

market return, the most prominent example being Pollet and Wilson (2010) who find that

correlation predicts the stock market monthly return with an OOS R2 of 1.26% but that the

average variance has no forecasting power whatsoever.

The final strand of literature to which our dissertation relates is the asset allocation. We

show that investing in both the market index and the one-month variance swap yields large

Sharpe ratios and certain equivalents even during a period in which the market Sharpe ratio

was negative. Our thesis does not fit on the pure stock asset allocation strategies (such as
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DeMiguel et al. (2009)) nor on the pure variance swap allocation strategies (Madan (2009)),

as we allow the investor to allocate on both the stocks and the variance derivative. Egloff

et al. (2010) uses a term-structure affine model to find the optimal weights on the S&P 500

index and the two and twenty-four month variance swaps, whereas Hafner and Wallmeier

(2008) use a mean-variance analysis to allocate between both the DAX index and the ESX

index and the corresponding 45 days variance swap. We use a mean-variance framework to

allocate between the stocks and variance swaps because it has the advantage over Egloff et al.

(2010) model of allowing the optimal weights to evolve dynamically over time.

We find that it is optimal for the investor to short the shorter maturity S&P 100 variance

swap due to the high negative variance risk premium. Investing on both the index, its swap

and the risk-free allows the investor to achieve a Sharpe ratio of 1.89 and certain equivalent

of 37.38%. Yet, we find that the investment performance can be enhanced by sorting stocks

of the S&P 100 on portfolios based on their previous month variance risk premium. In fact,

our deciles approach clearly show that for individual stocks it is optimal to be long (short) on

the variance swap if the variance risk premium has been positive (negative) on the previous

month. The extreme portfolios Sharpe ratios (i.e. the ones built based on stocks with the

highest or lowest variance risk premium) achieve annualized Sharpe ratios around 2.48 (0.21)

and certain equivalents around 84.86% (3.37%) for the bottom (top) variance risk premium

sorted portfolios.

The remainder of the study is organized as follows. Section 2 describes the methodology

used to estimate the variance swap rates and the variance risk premiums. Section 3 describes

the data used. Section 4 investigates the variance swap rates term structure. Section 5 inves-

tigates market returns prediction using swap rates. Section 6 presents two asset allocation

strategies that allow the investor to profit from the variance swap as an asset. Section 7

concludes.
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2 The term Structure of Variance Swap Contracts

A variance swap contract is an over-the-counter (OTC) instrument which allows investors

to trade future variance of an asset. At maturity T , the payoff of an investor who is long on

a variance swap is given by:

(RVt,T − SWt,T )× n (1)

where RVt,T is the annualized realized variance over the life of the contract and SWt,T is the

swap rate defined at t, and n is the amount invested. In absence of arbitrage, the variance

swap rate must equal the risk neutral expected value of the realized variance under some risk

neutral measure Q:

SWt,T = EQ
t [RVt,T ] (2)

Our methodology to approximate the variance swap rate follows closely the model-free

estimate proposed by Demeterfi et al. (1999) and Carr and Madan (1998) who show that

if one owns a portfolio of options across all strikes inversely weighted by the squared strike

then one gets a variance exposure that does not depend on the price, which is exactly what is

needed to trade variance. We assume that the stock price path evolves continuously, though

the approximation error induced by jumps is negligible (Carr and Wu (2009)). The variance

swap rate is approximated by:

SWt,T =
2

B(t, T )(T − t)

(ˆ St

0

P (t, T,K)

K2
dK +

ˆ ∞
St

C(t, T,K)

K2
dK

)
(3)

where B(t, T ) is a zero-coupon bond expiring in T , and P (t, T,K) and C(t, T,K) are re-

spectively the prices of a put and call options with maturity T and strike K. In practice, a

continuum of option strikes does not exist, so one needs to interpolate and extrapolate strikes

and implied volatilities for the remaining moneyness levels. Using the same approximation

as Trolle and Schwartz (2010), we truncate the first integral at Kmin = F (t, T )e−d×σ
√
T−t and

the second at Kmax = F (t, T )ed×σ
√
T−t where σ is the implied volatility of the option closest

to be at-the-money (ATM) and d is approximately the number of standard deviations that
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the log strike is away from the log future price. In a lognormal setting:

d =
log(X/F (t, T ))

σ
√
T − t

(4)

We fix d = 10 (Trolle and Schwartz (2010)) and create a fine grid of 1.000 strikes (in-

tegration points). We then interpolate and extrapolate implied volatilities for each strike:

for moneyness levels above (below) the highest (lowest) available strike we use the implied

volatility of the highest (lowest) strike. However, unlike Trolle and Schwartz (2010) and

Carr and Wu (2009) who linearly interpolate implied volatilities for the remaining strikes,

we instead fit smooth cubic splines to the volatility smile (the results are not much sensitive

to this assumption). The differences may be seen on Figure 1.

Throughout the analysis we define the variance risk premium as the difference between

the realized variance, RVt,T , over the life of the contract and the swap rate defined at the

inception where:

RVt,T =
252

T − t

T∑
i=1

(
Ft+i,t+T − Ft+i−1,t+T

Ft+i−1,t+T

)2

(5)

The daily future prices are synthetically computed through no-arbitrage conditions. There

is no standard way of computing realized volatility for a variance swap as term sheets from

different brokers vary on whether to use log or simple returns and on whether to use the

365/day or the 252/day annualisation convention. Notwithstanding, we find no evidence on

the finance industry on the use of intraday data to compute realized volatility.

3 Data

We use data from both equity options and stock markets on all stocks included on the

S&P 100 and the index itself.2 The options data is from OptionMetrics and the sample

period starts on January of 1996 and ends in December of 2011. We start by using the

2Except for the following stocks Accenture, Metlife, Monsanto Co and Visa in which we found inconsis-
tencies on the OptionMetrics data (options data started earlier than the IPO).
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raw data on options from OptionMetrics, but after filtering the data, and excluding all

observations with bid prices equal to zero or higher than ask prices, excluding observations

with no implied volatilities we are left with several days with less than 3 strikes for one of the

maturities thus creating several gaps on the series. To overcome this problem we use instead

the OptionMetrics implied volatility surface file, which contains a smoothed volatility surface

for a range of maturities and strikes. Using this surface also has the advantage of making

this study more easily replicable by other researchers.

All options on individual stocks are American so OptionMetrics employs a binomial tree

approach that adjusts the implied volatilities for the early exercise premium. Everyday we

only keep out of the money calls and puts which are more liquid instruments, and option

dates that match the underlying trading days. So we were left with about 13 observations

per day per stock at 6 different maturities (1, 2, 3, 6, 12 and 24 months).

The stock data is from Bloomberg and we retrieve two price sets for each stock: the raw

prices to determine which options are out of the money and prices adjusted for dividends

and stock splits to compute returns. Finally, the risk-free rate is the one-month T-bill rate

from Ibbotson available on the Kenneth French’s data library.3

Our dataset consists, on average, of 4,027 estimated daily variance swap rates (191

monthly rates) for each of the 6 maturities under analysis (for each stock).4 The term-

structure of variance swap rates can have several shapes ranging from upward sloping to

downward sloping, humped, and even some intermediate shapes (Panel A of Figure 2). For

most of the sample the term-structure is upward sloping for both the S&P 100 and the in-

dividual stocks. Usually the short-term variance swap rates spike during crisis periods (e.g.

2009) which implies that the term-structure gets downward sloping. Taking a glance at Panel

B of Figure 2 it may be seen that swap rates share some of the variance stylized facts (Schwert

(1989)), such as clustering and mean-reversion.

Taking a look at Panel A from Table 1, we can see that the swap rates term structure

for S&P 100 was on average almost flat for maturities higher than 60 days between 1996

3The data library is available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
4The stocks that started trading after 1996 have fewer quotes.
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and 2011. Further, glancing at Panel C from Table 1 we can conclude that, in line with

most literature on variance swaps, the one-month variance risk premium on the S&P 100 is

statistically negative and on average equal to -1.3% between 1996 and 2011 (Carr and Wu

(2009), Driessen et al. (2009) and Han and Zhou (2012)). As a robustness check we compare

our S&P 100 one-month variance risk premium estimate between 1996 and 2003 with the

one estimated by Driessen et al. (2009) (who used the OptionMetrics raw options data) and

we obtain the same estimate. Not only the one-month variance risk premium for the index

is significantly negative but for the remaining maturities as well.

On the other hand, for the individual stocks the average swap rate was much higher

and clearly decreasing in maturity (Panel B from Table 1) and the variance risk premium

statistically higher than zero for all maturities. This positiveness for the individual stocks

variance risk premium is in accordance with the findings from Han and Zhou (2012) and

Driessen et al. (2009) but not with those from Carr and Wu (2009) who find a statistically

significant negative variance risk premium for individual stocks. Further, as one should

expect individual stocks swap rates show much higher standard deviation and autocorrelation

than the index swap rates. Finally, both swap rates and variance risk premiums show large

persistence even after twelve months as shown by the large Ljung-Box statistic.

4 Forecasting the term-structure of variance swaps

Few models have been proposed to forecast the term-structure of variance swaps. One

exception is the two affine factor model from Egloff et al. (2010) whose out of sample (OOS)

forecasts for mid-term maturities are fairly accurate. However, Egloff et al. (2010) only try to

forecast the market variance swap curve providing no evidence on their model performance on

individual swap rates. On the contrary, we try to model not only the market term structure

but the individual stock variance swap term structure as well. Our model is much simpler

than the one proposed by Egloff et al. (2010) as it relies on only 3 parameters. Following

Diebold and Li (2006) we use the Nelson-Siegel (NS) exponential components to forecast the

variance swaps term-structure as it imposes a structure on factor loadings thus reducing the
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estimation error. Each month we fit the following curve to the observed swap rates:

SWt,T = β0,t + β1,te
−T/θ + β2,t

T

θ
e−T/θ (6)

Here the parameters are easy to interpret, for long-term maturities swap rates approach

asymptotically β0; then β1 represents the deviation from the asymptote; β2 determines the

hump that happens at time T. The parameter θ governs the decay, so a high (low) value

of θ allows for a better fit for short (long) maturities (following Diebold and Li (2006) we

fix θ = 0.25 to maximize the loading of the medium term factor at three months which

is when the hump occurs on average). Panel A from Figure 3 depicts the factor loadings

which illustrates the wide variety of shapes that the fitted curve may have, thus being able

to capture the swap rate term structure. We find that for most months one hump is enough

to completely model the swap rate curve. However, for robustness we also fit a Svensson

model to the S&P 100 swap rates, which allows the curve to have one more hump. We find

that the Svensson model (not reported) in spite of having a better in-sample fit the OOS

forecast of the yield curve is worse.

Let us define our performance measures (root mean squared error and mean absolute

error) as:

RMSE =

√√√√ 1

n

n∑
t=1

(ŜW t,T − SWt,T )2 and MAE =
1

n

n∑
t=1

|ŜW t,T − SWt,T | (7)

where ŜW t,T is the fitted swap rate at time t with maturity T and SWt,T is the actual

swap rate. Panel A of Table 2 reports the residual statistics from in-sample estimation of

Equation (6) for the S&P 100. Notice that the average error is constant and fairly low for

all maturities, implying that indeed our model succeeds to fit the entire swap rate curve

for all maturities. Further, the error seems to be persistent from one month to the next,

but it vanishes through time, making it not worthwhile to include that information on the

next periods fit. This error persistence might be due to the lack of liquidity of this sort of

instruments, or to some estimation bias in our risk-neutral approach to approximate swap
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rates. Panel B from Table 2 reports the same but as an average for all individual stocks

in our sample. The model still performs quite well for individual stocks, with an average

of root mean squared error slightly higher than the ones from the S&P 100. As the shape

of the term structure of individual stocks changes more often than the one from the index,

the short-term correlation of the errors is lower and not statistically significant (for shorter

maturities).

Further, we may interpret the β coefficients as the level, slope and curvature. Define the

level, β0, as the long-term swap rate (SWt,t+24); the slope, β1, as the difference between the

twenty-four-month swap rate and the one-month swap rate (SWt,t+24 − SWt,t+1); and the

curvature, β2, as the difference between twice the three-month swap rate and the sum of the

one-month swap rate with the twenty-four-month swap rate (2×SWt,t+3−SWt,t+1−SWt,t+24);

we show in Figure 4 that the empirical levels of level, slope and curvature closely track our

estimated coefficients.

Finally, we try to use the Nelson-Siegel model to forecast the term-structure of variance

swap rates one-month ahead. As on a Nelson-Siegel framework the variance swap curve only

depends on {β0, β1, β2} , forecasting the swap rates is equivalent to forecasting the coefficients.

Therefore, we estimate the model coefficients βi, i = 0, 1, 2 for the next month using a simple

AR(1) regression framework:

β̂i,t = α + ψβ̂i,t−1 + et (8)

We choose an AR(1) to forecast the coefficients for two reasons: first, because an AR(1) is

one of the most simple predictive frameworks available and second, because the coefficients

show some persistence. Our one-month ahead forecast of the NS coefficients is given by:̂̂
βi,t+1 = α̂ + ψ̂β̂i,t where the double-hat beta denotes the forecasted beta from the AR(1)

process using past betas estimated using the Nelson-Siegel framework. We use both rolling

and expanding window estimates but decide to keep the expanding window as it minimizes

the forecasting errors. We use as our initial estimation period the period starting in January

of 1996 and ending in December of 1998 and start the term-structure forecast in January of

1999.
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The estimated swap-rate one month ahead is:

ŜW t+1,T+1 =
̂̂
β0,t+1 +

̂̂
β1,t+1e

−(T+1)/θ +
̂̂
β2,t+1

T + 1

θ
e−(T+1)/θ (9)

Table 3 reports the OOS performance of the Nelson-Siegel model both for the S&P 100

index and the individual stocks compared with a standard benchmark (naive) model under

which the swap rate at period t+1 is equal to the swap rate at period t: ŜW t+1,T+1 = SWt,T .

The use of a naive benchmark to race a model against is common practice in the literature

and several authors on different applications have done so (e.g. Goyal and Welch (2008)

on predicting market returns, Diebold and Li (2006) on predicting interest rates, Hansen

and Lunde (2005) on predicting volatility and DeMiguel et al. (2009) on benchmarking asset

allocation models). We define the forecast error as (ŜW t+1,T+1 − SWt+1,T+1), and measure

the forecasting performance of the model using the root mean squared error (RMSE) and

the mean squared error (MAE). We find that the Nelson-Siegel model clearly outperforms

our naive benchmark in predicting next period swap rates both for individual stocks and

the S&P 100 index. In spite of outperforming the naive model across all maturities, the

NS out-performance is more pronounced for shorter maturities. This might be due to the

higher short-term swap rate volatility as it may be seen on Table 1. Finally, the forecasting

error is persistent, but trying to include this persistence into our forecast would not decrease

our out of sample forecasting error. Table 4 reports the forecasting performance for two

different sub-samples: the first from January of 1996 to December of 2003 and the second

from January of 2004 to December of 2011. We find that the model is robust through time

as our predictive model beats the naive forecast on both sub-samples.

5 Predictive Regressions

Asset predictability has been one of the main finance research concerns during the past

decade (Goyal and Welch (2008); Campbell and Thompson (2008); Lettau and Nieuwerburgh

(2008); Drechsler and Yaron (2011); Ferreira and Santa-Clara (2011)). We propose a new
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predictor of the stock market return which relies on the empirical fact than changes in the

market implied one-month volatility (i.e. rSWt,T
= SWt,T/SWt−1,T−1− 1) are contemporane-

ously strongly negatively correlated with the market return (e.g. Ang et al. (2006)). Given

our estimate of the swap rate next period we may indeed try to exploit this correlation by

making the following regression:

rt,T = α + βEt
[
rSWt+1,T+1

]
+ et (10)

where rt,T is the return between month t and T , Et
[
rSWt+1,T+1

]
= Et(SWt+1,T+1)/SWt,T − 1

and we replace Et(SWt+1,T+1) by our Nelson-Siegel estimate ŜW t+1,T+1. To conduct this

exercise we need to proceed in several steps: first we fit a Nelson-Siegel model to the swap

rates; then we use an AR(1) model to forecast the term-structure of swap rates; finally, given

the estimated swap rates, we run Equation (10) to predict market returns. To carry this

analysis we need two estimation periods: the first from March of 1996 until December of

1998 which is used as the initial estimation period for the AR(1), the second from January

of 1999 until December of 2000 which is used as the initial estimation period for Equation

(10) (then we use an expanding window).

The results are reported in Table 5. The one-month return prediction out-of-sample R2

defined as R2 = 1−MSEA/MSEN (where MSEA is the average squared prediction error of our

forecast and MSEN is the mean squared error of the naive forecast (historical average)) is

positive and around 3% therefore passing the test proposed by Goyal and Welch (2008). The

average β coefficients are also significant and have the expected negative sign, meaning that

expected changes in the market one-month implied volatility can indeed predict stock market

returns. We also find that common used predictors in the literature such as earnings-price

ratio do not increase our out-of-sample R2 (not reported). Figure 5 represents the cumulative

sum of the differences between our model forecasting error and the naive model forecasting

error (for the one-month prediction). Whenever the line increases the prediction error of

our model is lower than the prediction error of the naive model. Therefore, whenever the

line increases our model predicts better and whenever the line decreases the naive model
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predicts better. Although the graph units have no interpretation, it provides a valuable tool

to evaluate our model performance through time (the grey bands represent US recessions

as defined by the National Bureau of Economic Research - NBER). Notice that our model

clearly beats the naive model during recessions periods, which implies that expected changes

in volatility influence expected returns during turmoil periods. The opposite is true during

normal periods, in which the naive model is a better predictor of the S&P 100 returns. For

robustness, we also try to predict longer horizon returns (two and three month returns) using

longer maturities swap rates. As expected, the OOS R2 are higher: 4.61% for the two-month

prediction and 7.87% for the three-month prediction (we use overlapping returns).

6 Asset allocation

Another way to exploit the negative correlation between the stock return and its variance

return is by investing on both the stock and the variance swap (which serves as an hedge for

the stock). The profit (loss) on a variance swap is its variance risk premium as defined on

Equation (1).

We test a simple mean-variance strategy which allocates on both stocks and its variance

swaps, and evaluate their OOS return, Sharpe ratio and certain equivalent. We make this

for eleven portfolios: the index (S&P 100) and ten equally weighted portfolios. Each month

we sort stocks in ten equally weighted portfolios according to their one-month variance risk

premium and keep the portfolios next month variance swap return for the six maturities

and the stocks return. For the variance swaps with maturity higher than one month we

approximate its one-month profit (loss) using the following (Egloff et al. (2010)):

n× (ωRVt,T1 + (1− ω)SW T1,T2 − SWt,T2) (11)

where n is the amount invested, ω = (T1 − t)/(T2 − t) denotes the time passed since the

inception of the swap rate contract, RVt,T1 is the realized variance between T1 and t, and

SWT1,T2 is the swap rate of a contract which starts at T1 and ends at T2.
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As an example, if we compute the one-month profit (loss) of a twelve-month variance swap

contract, one month after its inception, then its profit (loss) comes from two sources (Egloff

et al. (2010)): the realization of the return variance over the past month and the new variance

swap rate at the same expiry date. So, in our example, RVt,T1 is the realized variance over that

month, SWT1,T2 is a swap rate of a contract starting at T1 = 1 with eleven months remaining

until maturity (T2 = 12) and SWt,T2 is the original twelve-month swap rate. In order to

compute Equation (11) the only unknown value is SWT1,T2 (the eleven-month swap rate in

our example above) which we approximate using a linear, in total variance, interpolation:

SWT1,T2 =
1

T2 − T1

[
SWt,T3(T3 − T1)(T4 − T1) + SWt,T4(T4 − t)(T1 − T3)

T4 − T3

]
(12)

we used T3 equal to 1-month and T4 equal to 12-month to interpolate the 11-month swap

rate.

Each month we maximize the utility of a mean-variance investor and allow him to allocate

between two sets of assets: (1) the stock return, its one-month variance swap and the risk-free

asset; (2) the stock return, its one- and twelve-month variance swap and the risk-free. The

problem of the investor is to choose the weights, ωi i = 1, 2, 3 that maximizes the following

equation:

Max
ω

ωTt µ−
γ

2
ωTt Σωt (13)

where ω is a vector of weights, µ is a vector of expected returns and Σ is the variance-

covariance matrix. We set the degree of risk aversion, γ, relatively high and equal to 10 to

compensate for the high variance risk premium - this is just a shrinking factor that does

not alter our conclusions (in fact Rosenberg and Engle (2002) estimate a coefficient of risk

aversion between 2.26 and 12.55 for S&P 500 options between 1991 and 1995 (average of

7.36)). We use the period between March of 1996 until December of 2000 as our initial

estimation period (then we use an expanding window), and the period starting in January of

2001 and ending December of 2011 as our performance evaluation period. Our benchmark

is the S&P 100 index which during the period achieved an average monthly return of -0.24%
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with an annualized Sharpe ratio of -0.29 and an annualized certain equivalent of -24.60%.

On the other hand, a mean-variance strategy on both the index and a one-month variance

swap yields an average monthly return of 6.09% with an annualized Sharpe ratio of 1.89

and a certain equivalent of 37% (Table 6). The average position on the S&P 100 one-month

variance swap is V S1Month=-21% and does not change much from one period to the next. The

inclusion of a third asset on our strategy (a twelve-month variance swap) actually worsens

the Sharpe ratio. Figure 6 shows the return and cumulative return of an investment on the

index, the one-month variance swap and the two together. An investor who had invested on

the S&P 100 and the risk-free at the beginning of 2001 would have had a return close to 5%

at the end of 2011 (or 0.06% per month). On the contrary, if he had invested on the variance

swap as well he would have ended with ten times his investment.

We also analyse the performance of our mean-variance strategy on portfolios sorted by

variance risk premiums. The results are reported on Table 7. As expected, as the variance risk

premiums show some persistence, our mean-variance investor prefers to short the variance

swap on the portfolio with lowest variance risk premium and be long on the variance swap on

the portfolios with higher variance risk premium. The top (bottom) portfolios have Sharpe

ratios around 2.40 (0.32) and certain equivalents of 82.32% (1.68%). As it happened with

the index, including the 12-month variance swap did not change much the investor’s Sharpe

ratio, thus it is not worthwhile to include it as an asset on the portfolio. Figure 7 shows the

returns and cumulative returns of an investing in either the top or the bottom decile. An

investor who had invested his money on the stocks and its variance swaps from the bottom

decile would have ended up with a large sum (a return of 11% per month). The two large

drops that occurred on October 2008 and August 2011 were due to investors fear. On October

2008 the variance swap market almost dried up as a result of large moves on stocks prices

that made dealers exposed to much more vega than a hedging strategy would permit.5 On

August 2011 the market participants were caught of guard by a sudden peak in volatility

that led to several positions being closed (according to Reuters).

On Table 8 we report the performance of the bottom and top deciles against a mean-

5Carr and Lee (2008).
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variance strategy on the index and the risk-free during recession periods. It is indeed remark-

able that on both during the recession of 2001 and 2007-2009 our variance swap strategy

performs quite well always having, on average, positive returns and Sharpe ratios above 0.3.

Finally, for robustness we sort portfolios on the 24-month variance risk premium instead

of the one-month and check whether that would change our allocation. We find that this

change has slight impact on the portfolios weights and consequently no impact on the final

return and Sharpe ratio and certain equivalent of the investor (not reported).

7 Conclusion

In this dissertation we model the term-structure of variance swap rates and propose two

ways of profiting from the variance swap.

We show that the Nelson-Siegel model is enough to estimate with a good in-sample fit

the term-structure of variance swap rates and that the three factors evolving dynamically

may be interpreted as level, slope and curvature of the term-structure. Further, we find that

the next month term structure can be estimated OOS with accuracy just by forecasting the

Nelson-Siegel parameters under an AR(1) regression framework. We then use our swap rate

forecast to estimate the expected change in the swap rate, and show that it predicts OOS

market returns with accuracy.

We also find that investors may indeed benefit from investing in variance through a

variance swap. We show that during a period in which the market Sharpe ratio was -

0.29 investing in both the market and the one-month variance swap under a mean-variance

optimization allows the investor to achieve a Sharpe ratio of 1.89. This result is robust across

several portfolios sorted by the variance risk premium.
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Table 1: Descriptive Statistics Variance Swaps and Variance Risk Premiums

This table presents summary statistics for swap rates (panel A and panel B) and variance
risk premiums (panel C and panel D) as defined on the first section. Panel A and C show the
statistics for the S&P 100 and panel B and C the statistics as an average for the stocks in
the index. Kurtosis is the excess kurtosis. ρ1 is the first-order correlation coefficient and Q12

is the Ljung-Box statistics with 12 lags. The symbols ***, ** and * denote the statistical
significance of the coefficient at 1%, 5% and 10% significance level respectively. The sample
period starts in January of 1996 and ends in December of 2011.

Panel A: S&P 100 Swap Rates Panel B: Individual Stocks Swap Rates

T Mean St Dev Skew Kurt ρ1 Q12 Mean St Dev Skew Kurt ρ1 Q12

1M 5.08% 4.71% 3.98 24.25 0.75*** 264.1*** 14.27% 12.66% 2.80 13.08 0.78*** 489.0***

2M 5.14% 4.30% 3.53 20.09 0.78*** 308.1*** 14.14% 12.10% 2.68 11.99 0.81*** 539.2***

3M 5.15% 3.93% 3.16 16.65 0.81*** 364.2*** 13.64% 10.77% 2.41 9.56 0.85*** 627.2***

6M 5.13% 3.35% 2.39 9.69 0.85*** 471.0*** 13.01% 9.51% 2.21 8.12 0.88*** 712.5***

12M 5.13% 2.88% 1.56 3.92 0.87*** 566.2*** 12.67% 8.38% 1.88 5.70 0.91*** 815.6***

24M 5.16% 2.62% 1.09 1.59 0.87*** 629.4*** 12.43% 7.43% 1.54 3.57 0.92*** 924.9***

Panel C: S&P 100 Var. Risk Premium Panel D: Individual Stocks Var. Risk Premium

T Mean St Dev Skew Kurt ρ1 Q12 Mean St Dev Skew Kurt ρ1 Q12

1M -1.29%*** 4.98% 2.98 37.50 0.31*** 29.6*** 0.59%** 17.19% 3.94 35.46 0.18*** 36.3***

2M -1.33%*** 5.05% 3.70 33.94 0.53*** 64.9*** 0.68%*** 15.29% 3.30 23.93 0.51*** 78.3***

3M -1.39%*** 4.80% 3.47 27.14 0.64*** 94.4*** 1.12%*** 14.45% 3.13 18.78 0.66*** 125.0***

6M -1.34%*** 4.40% 2.42 11.37 0.82*** 239.8*** 1.71%*** 13.36% 2.15 8.73 0.83*** 276.9***

12M -1.29%*** 3.95% 1.05 3.57 0.90*** 406.0*** 2.08%*** 12.63% 0.98 3.31 0.91*** 508.5***

24M -1.10%*** 3.67% 0.21 0.66 0.92*** 637.5*** 2.63%*** 11.66% 0.16 0.59 0.94*** 804.5***
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Table 2: Nelson-Siegel In-Sample Performance

This table presents the in-sample performance of the Nelson-Siegel model in fitting the swap
rate term-structure. Each month we fit Equation (6) to the observed swap rates. Panel A
reports the residual statistics for the S&P 100 fit and Panel B reports the residual statistics
for the S&P 100 stocks as an average across stocks. The residual at time t for the swap
rate with maturity T is defined as: êt,T = ŜW t,T − SWt,T . The first two columns present
the average residuals for each maturity and their standard deviation. The MAE and RMSE
are the performance measures as defined on Equation (7). ρ1 and ρ12 are the order one and
twelve auto-correlation coefficients respectively.

Panel A: Nelson-Siegel IS Performance (S&P 100)

T Average St Dev Max Min MAE RMSE ρ1 ρ12

1M 0.000 0.001 0.044 -0.021 0.001 0.001 0.61 0.09

2M -0.000 0.001 0.049 -0.020 0.001 0.001 0.55 0.12

3M -0.000 0.002 0.048 -0.021 0.001 0.001 0.45 0.05

6M 0.000 0.003 0.049 -0.022 0.001 0.001 0.52 0.07

12M 0.000 0.003 0.049 -0.020 0.001 0.001 0.53 0.02

24M -0.000 0.003 0.048 -0.021 0.001 0.001 0.73 0.04

Panel B: Nelson-Siegel IS Performance (average for S&P 100 stocks)

T Average St. Dev Max Min MAE RMSE ρ1 ρ12

1M 0.000 0.005 0.025 -0.040 0.002 0.005 -0.01 0.08

2M -0.001 0.009 0.033 -0.076 0.004 0.009 -0.08 0.11

3M 0.001 0.009 0.068 -0.030 0.004 0.009 0.00 0.11

6M 0.000 0.006 0.030 -0.035 0.003 0.006 0.18 0.08

12M -0.001 0.006 0.023 -0.040 0.002 0.006 0.28 0.07

24M 0.000 0.005 0.031 -0.022 0.002 0.005 0.22 0.07
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Table 3: Nelson-Siegel Out-of-Sample Performance

This table presents the out-of-sample performance of the Nelson-Siegel model (Panel A and
Panel C) and of a naive model (Panel B and Panel D) in forecasting variance swap rates.
Panel A reports the residual statistics for the S&P 100 Nelson-Siegel forecast (using the
methodology described in the text) and Panel B reports the residual statistics for the S&P

100 naive forecast (ŜW t+1,T+1 = SWt.T ). Panel C and D report the same but for as an
average for the individual stocks of the S&P 100. The residual at time t+1 for the swap rate
with maturity T + 1 is defined as: êt+1,T+1 = ŜW t+1,T+1−SWt+1,T+1. The first two columns
present the average residuals for each maturity and their standard deviation. The MAE and
RMSE are the performance measures as defined on Equation (7). ρ1 and ρ12 are the order
one and twelve auto-correlation coefficients respectively.

Panel A: Nelson-Siegel (S&P 100) residuals Panel B: Naive forecast (S&P 100) residuals

T Average St. Dev MAE RMSE ρ1 ρ12 Average St. Dev MAE RMSE ρ1 ρ12

1M 0.001 0.038 0.017 0.038 0.02 0.02 0.000 0.048 0.023 0.048 0.35 -0.01

2M 0.001 0.033 0.016 0.033 0.03 -0.02 0.000 0.042 0.020 0.042 0.38 -0.02

3M 0.001 0.028 0.014 0.028 0.04 0.02 0.000 0.036 0.018 0.036 0.40 -0.03

6M 0.001 0.020 0.011 0.020 0.16 0.05 0.000 0.028 0.015 0.027 0.43 -0.01

12M 0.001 0.014 0.009 0.014 0.23 0.08 0.000 0.021 0.012 0.021 0.46 0.00

24M 0.000 0.012 0.008 0.013 0.18 0.08 0.000 0.017 0.011 0.017 0.49 -0.02

Panel C: Nelson-Siegel (stocks) residuals Panel D: Naive forecast (stocks) residuals

T Average St. Dev MAE RMSE ρ1 ρ12 Average St. Dev MAE RMSE ρ1 ρ12

1M -0.012 0.106 0.054 0.108 0.37 0.05 0.150 0.028 0.153 0.156 0.86 0.62

2M -0.005 0.094 0.048 0.095 0.38 0.05 0.160 0.109 0.165 0.201 0.41 0.09

3M 0.001 0.077 0.042 0.078 0.40 0.07 0.147 0.097 0.152 0.182 0.42 0.09

6M 0.003 0.061 0.035 0.063 0.41 0.08 0.133 0.080 0.137 0.161 0.43 0.11

12M 0.000 0.048 0.027 0.048 0.33 0.10 0.127 0.065 0.131 0.147 0.45 0.13

24M 0.002 0.039 0.022 0.040 0.18 0.08 0.127 0.053 0.131 0.143 0.39 0.17
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Table 4: Nelson-Siegel Out-of-Sample Performance (sub-samples)

This table presents the out-of-sample performance of the Nelson-Siegel (Panels A and Panels
C) and a naive model (Panels B and Panels D) in forecasting variance swap rates. Panels A
and C report respectively for the S&P 100 and the individual stocks the residual statistics
of the Nelson-Siegel forecast (using the methodology described in the text). Panels B and
D report respectively for the S&P 100 and the individual stocks the residual statistics of
naive forecast model (ŜW t+1,T+1 = SWt.T ). The residual at time t + 1 for the swap rate

at maturity T + 1 is defined as: êt+1,T+1 = ŜW t+1,T+1 − SWt+1,T+1. The first two columns
present the average residuals for each maturity and their standard deviation. The MAE and
RMSE are the performance measures as defined on Equation (7). ρ1 and ρ12 are the order
one and twelve auto-correlation coefficients respectively. Panels A1, B1, C1 and D1 statistics
correspond to the sub-sample ranging from January of 1996 until December of 2003 whereas
panel A2, B2, C2 and D2 correspond to the subsample ranging from January of 2004 until
December of 2011.

Panel A1: Nelson-Siegel (S&P 100) residuals Panel B1: Naive forecast (S&P 100) residuals

T Average St. Dev MAE RMSE ρ1 ρ12 Average St. Dev MAE RMSE ρ1 ρ12

1M -0.001 0.017 0.013 0.017 0.22 0.06 -0.001 0.025 0.019 0.025 0.45 0.03

2M -0.001 0.016 0.012 0.016 0.25 0.05 -0.001 0.024 0.018 0.023 0.47 0.04

3M -0.001 0.014 0.011 0.014 0.17 0.08 -0.001 0.021 0.016 0.021 0.46 0.05

6M 0.000 0.012 0.009 0.012 0.03 0.05 -0.001 0.017 0.013 0.017 0.44 0.00

12M 0.000 0.012 0.009 0.012 0.06 0.01 -0.001 0.017 0.013 0.017 0.44 -0.01

24M -0.001 0.012 0.009 0.012 0.07 0.02 -0.001 0.018 0.014 0.018 0.43 -0.01

Panel C1: Nelson-Siegel (stocks) residuals Panel D1: Naive forecast (stocks) residuals

T Average St. Dev MAE RMSE ρ1 ρ12 Average St. Dev MAE RMSE ρ1 ρ12

1M -0.017 0.081 0.058 0.086 0.28 0.09 0.170 0.020 0.172 0.174 0.98 0.59

2M -0.011 0.071 0.051 0.074 0.29 0.08 0.184 0.082 0.186 0.205 0.28 0.06

3M -0.003 0.058 0.043 0.061 0.29 0.08 0.169 0.071 0.172 0.187 0.30 0.05

6M 0.000 0.046 0.036 0.050 0.32 0.10 0.152 0.058 0.154 0.165 0.30 0.06

12M -0.003 0.035 0.027 0.038 0.25 0.10 0.143 0.047 0.146 0.153 0.33 0.09

24M -0.001 0.031 0.022 0.032 0.15 0.09 0.144 0.036 0.145 0.150 0.29 0.09
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Panel A2: Nelson-Siegel (S&P 100) residuals Panel B2: Naive forecast (S&P 100) residuals

T Average St. Dev MAE RMSE ρ1 ρ12 Average St. Dev MAE RMSE ρ1 ρ12

1M 0.002 0.047 0.021 0.046 0.00 0.02 0.001 0.058 0.026 0.058 0.34 -0.01

2M 0.003 0.040 0.018 0.040 0.00 0.01 0.001 0.050 0.022 0.050 0.37 -0.03

3M 0.002 0.034 0.016 0.034 0.02 0.01 0.001 0.043 0.020 0.043 0.39 -0.04

6M 0.001 0.024 0.012 0.024 0.18 0.05 0.001 0.033 0.016 0.033 0.42 -0.01

12M 0.001 0.015 0.009 0.015 0.29 0.11 0.001 0.023 0.012 0.022 0.46 0.01

24M 0.001 0.011 0.007 0.011 0.25 0.13 0.001 0.017 0.009 0.017 0.52 0.00

Panel C2: Nelson-Siegel (stocks) residuals Panel D2: Naive forecast (stocks) residuals

T Average St. Dev MAE RMSE ρ1 ρ12 Average St. Dev MAE RMSE ρ1 ρ12

1M -0.009 0.107 0.053 0.111 0.41 0.00 0.141 0.023 0.144 0.146 0.69 0.42

2M -0.002 0.097 0.047 0.099 0.41 0.00 0.149 0.109 0.155 0.194 0.41 0.02

3M 0.004 0.080 0.041 0.082 0.43 0.02 0.136 0.099 0.142 0.177 0.41 0.01

6M 0.005 0.064 0.035 0.066 0.42 0.03 0.124 0.082 0.130 0.156 0.43 0.03

12M 0.002 0.050 0.027 0.051 0.34 0.06 0.119 0.066 0.124 0.143 0.44 0.05

24M 0.003 0.040 0.023 0.041 0.19 0.06 0.120 0.053 0.125 0.138 0.38 0.09
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Table 5: Return predictive regressions

This table presents the average coefficients of the one, two and three month returns predictive
regressions (for the S&P 100 returns). The dependent variable is the one defined in Section
6 where E(rSWt+1,T+1

) is the expected return of a variance swap with maturity (T − t). The
second a third equations were estimated using overlapping returns. The R2 is the OOS
performance measure as defined in Goyal and Welch (2008). The first estimation period is
from March of 1996 to December of 1998 where we estimate the AR(1) as defined in Equation
8 and the second estimation period is from January of 1998 to January of 2001 where we
estimate Equation (10). The first estimation (Nelson-Siegel) is done on a period-by-period
basis whereas both the AR(1) and the predictive regression estimations are done using an
expanding window.

Predictive Regression

Return Horizon (months) constant E(rSWt+1,t+2) E(rSWt+1,t+3) E(rSWt+1,t+4) R2

rt,1 0.001 -0.004 2.82%

rt,2 -0.003 -0.012 4.61%

rt,3 -0.005 -0.060 7.87%
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Table 6: Investing on S&P 100 return and variance return

This table presents the OOS return, standard deviation and Sharpe ratios of a mean-variance
investor who may invest in 4 different portfolios (Pi). The initial estimation period ranges
from March of 1996 until December of 2000 (expanding window). The first portfolio (P1) is a
passive strategy on the S&P 100 index. On the second portfolio (P2) the investor is allowed
to invest on both the S&P 100 and the risk-free using a MV strategy. On the third portfolio
(P3) the investor also has access to the one-month variance swap. The fourth portfolio (P4)
also includes a the 12-month variance swap. γ is set to 10 to compensate the large VRP. CE
is the certainty equivalent. The average return and standard deviation are monthly figures.
The Sharpe ratio and certainty equivalent are annualized.

S&P 100 portfolios

P1 P2 P3 P4

Average (%) -0.24 0.06 6.09 1.84
St Dev (%) 4.88 0.68 10.89 3.72

SR -0.29 -0.56 1.89 1.56
CE (γ = 10) (%) -24.60 0.69 37.38 10.95

OEX (%) 100.00 8.68 -77.15 -15.73
V S1Month (%) -21.24 1.78
V S12Month (%) -73.56
Risk-free (%) 91.32 198.39 187.51
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Table 7: Mean-Variance Stock and Variance Swap Portfolios (sorted by VRP)

This table presents the OOS return, standard deviation and Sharpe ratios of a mean-variance
investor who may invest in 10 different portfolios (Pi). Each month we sort the S&P 100
stocks into 10 equally-weighted portfolios according to their one-month variance risk pre-
mium. We then keep the next month portfolio return and variance return. Given this each
month the investor chooses how much to allocate to the stocks and to the variance swaps.
The initial estimation period ranges from March of 1996 until December of 2000 (expanding
window). γ is set to 10 to compensate the large VRP. CE is the certainty equivalent. The
average return and standard deviation are monthly figures. The Sharpe ratio and CE are
annualized. Panel A reports the results when the investor may invest on both the stocks, the
one-month variance swap and a risk-free asset. Panel B reports the same but allowing the
investor to invest on the twelve-month swap as well.

Panel A: Stocks and 1-M Variance Swaps Strategy w/ risk-free

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Average (%) 9.91 0.50 0.30 0.29 0.23 0.19 0.11 0.01 0.18 0.46
St Dev (%) 14.09 2.75 2.58 2.79 2.49 2.24 2.86 1.48 3.33 3.12

SR 2.40 0.42 0.17 0.16 0.09 0.03 -0.07 -0.38 0.01 0.32
CE (γ = 10) (%) 82.32 2.26 -0.37 -1.02 -2.55 -1.00 -3.27 -1.32 -4.09 1.68

OEX (%) 6.92 42.44 53.27 54.92 55.42 36.07 49.79 19.62 36.53 2.47
V S1Month (%) -36.91 -2.43 -1.08 -1.30 1.58 2.17 1.03 1.66 5.98 3.69
Risk-free (%) 129.99 59.99 47.81 46.39 43.00 61.75 49.19 78.72 57.49 93.84

Panel B: Stocks, 1-M and 12-M Variance Swaps Strategy w/ risk-free

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Average (%) 11.35 -0.18 -0.45 -0.69 0.10 -0.24 -0.16 0.11 0.71 1.21
St Dev (%) 20.11 3.93 5.21 7.31 2.90 4.10 4.97 5.62 5.74 7.81

SR 1.93 -0.31 -0.41 -0.41 -0.08 -0.34 -0.23 -0.04 0.33 0.46
CE (γ = 10) (%) 63.38 -11.23 -14.66 -17.26 -5.27 -11.59 -17.83 -14.75 -11.62 -12.35

OEX (%) 23.29 58.72 70.32 62.17 57.54 51.70 73.38 40.01 69.17 38.21
V S1Month (%) -71.37 -15.31 -14.16 -15.72 1.26 -9.46 -26.84 -30.48 -21.99 -31.89
V S12Month (%) 370.76 167.97 160.01 175.22 18.98 155.33 296.92 353.13 301.77 401.56
Risk-free (%) -222.68 -111.38 -116.16 -121.67 22.22 -97.56 -243.46 -262.66 -248.95 -307.88
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Table 8: Mean-Variance Stock and Variance Swap Portfolios (sorted by VRP)

This table presents for robustness the OOS return, standard deviation and Sharpe ratios of
a mean-variance investor who may invest in the top/bottom deciles sorted by VRP across
two different sub-samples.

Full Sample Recession I Recession II
Jan-01/Dec-11 Mar-01/Nov-01 Dec-07/Jun-09

VRP Deciles Bottom Top P2 Bottom Top P2 Bottom Top P2
Average (%) 9.91 0.46 0.06 20.48 1.12 -0.14 2.66 1.71 -0.10
St Dev (%) 14.09 3.12 0.68 19.38 9.23 1.49 17.71 3.54 0.45

SR 2.40 0.32 -0.56 3.61 0.36 -0.72 0.49 1.52 -2.06
CE (γ = 10) (%) 82.32 1.68 0.69 436.70 5.45 -1.70 -23.94 21.36 -1.22

OEX (%) 6.92 2.47 8.61 22.97 5.54 23.07 -14.41 2.01 2.98
V S1Month (%) -36.91 3.69 -44.89 9.73 -37.07 2.18
Risk-free 129.99 93.84 90.63 121.91 84.73 76.93 151.48 95.81 97.02
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Figure 1: Implied Volatility Smile

This figure illustrates the difference between interpolating the implied volatility smile using
linear interpolation or by fitting smooth cubic splines to the available implied volatilities.
We use flat extrapolation for moneyness levels above (below) the highest (lowest) available
strike.
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Figure 2: The term-structure of swap rates and variance risk premiums

Panel A illustrates several shapes that the term-structure of the S&P 100 swap rates had at
3 different points in time. Panel B illustrates the S&P 100 one-month realized variance and
variance swap rates since 1996. The difference between the realized variance line and the
swap rate line is the variance risk premium.
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Figure 3: Factor Loadings and factor evolution for the S&P 100

Panel A depicts the factor loadings of the Nelson-Siegel model depending on maturity. Panels
B to D shows how the three estimated Nelson-Siegel factors (β0,β1, β2) for the S&P 100 evolved
through time.
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Figure 4: Level, Slope and Curvature of Term-Structure

This figure represents the model based level, slope and curvature (β0, β1 and β2) versus the
empirical level, slope and curvature for the S&P 100. We define the level β0 as the long-term
swap rate (SWt,t+24), the slope β1 as the difference between the two-year swap rate and the
one-month swap rate (SWt,t+24−SWt,t+1), and the curvature β2 as the difference between the
twice the three-month swap rate and the sum of the one-month swap rate and the two-year
swap rate (2× SWt,t+3 − SWt,t+1 − SWt,t+24)
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Figure 5: Predictive Regression (conditional mean versus unconditional mean)

This figure represents the OOS performance of the one-month predictive regression (for the
S&P 100 returns). Specifically, these are the cumulative squared prediction errors of the
model defined in Equation (10) minus the cumulative squared prediction error of the naive
model. Equation (10) forecasts the one-month market return using the expected change
on the one-month variance swap rate whereas the naive model assumes that the historical
average is the best forecast. When the line increases (decreases) the conditional (naive)
model predicted better. The grey bands are recessive periods as defined by the NBER.
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Figure 6: Returns from S&P 100 stock, S&P 100 1-month variance swap

This figure represents the returns and cumulative performance of several S&P 100 allocations
during the period January of 2001 until December of 2011. Panel A reports the return of
the S&P 100, Panel B reports the return of a mean-variance portfolio on the both the S&P
100 and the risk-free, Panel C shows the return of a mean-variance portfolio on the risk-
free, the S&P 100 and the one-month variance swap. Panels D to E show the cumulative
performance assuming an initial investment of 100. The returns are discrete returns rather
than continuous.
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Figure 7: Returns from top and bottom deciles sorted by VRP

This figure represents the returns of the main portfolios analysed during the period January
of 2001 until December of 2011.. Each month we sort the S&P 100 stocks into 10 equally-
weighted portfolios according to their one-month variance risk premium. We then keep the
next month portfolio return and variance return. Panel A and B show the returns of a
mean-variance strategy on the two extreme portfolios which include stocks, risk-free and a
one-month variance swap .Panels C and D show the cumulative performance assuming an
initial investment of 100. The returns are discrete returns rather than continuous.
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