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ABSTRACT 

 Fourier Transform Infrared (FTIR) spectroscopy is a high sensitive technique, 

which is able to detect vibrational modes of biomolecules, with a consequent world of 

applications. In the present work, the potential of this technique, working in the mid-

infrared region (MIR), was explored for studying three distinct mammalian cells’ 

processes, working in a rapid, reagent free and in a high-throughput mode. 

 FT-MIR spectroscopy was applied to monitor the expansion of human 

mesenchymal stem cells (hMSCs) in microcarriers and cultured in spinner flasks. It was 

possible to develop partial least squares (PLS) regression models to quantify, directly 

from the spectral data, key analytes, e.g., glucose, lactate and ammonia. Also, information 

about the cellular growth stage was possible to be extracted by the development of 

principal component analysis (PCA) models. 

 Additionally, were developed PLS regression models for estimating the 

transfection efficiency in a cell population without the need for a reporter gene. The model 

is valid for two distinct cell lines, the adherent cell line AGS and the semi-adherent cell 

line HEK, both transfected with pVAX containing the GFP gene. Besides an accurate 

estimation of the transfection efficiency, it was also possible to extract some meaningful 

information about the biochemical cellular effect of the transfection reagent on cells and 

the transfection event itself, proving the sensitiveness of the technique.  

 Finally, AGS cells infected with ten different Helicobacter pylori strains were 

analyzed based on FT-MIR spectral data. The different H. pylori strains presented 

different CagA/VacA genotypes, and were isolated from patients with different gastric 

pathologies (non-ulcer dyspepsia, peptide ulcer disease and gastric cancer). It was 

possible to differentiate cell samples according to the strain causing the infection, through 

PCA and cluster analysis.  

 

 

Key words: Infrared spectroscopy, high-throughput analysis, mammalian cells, 

chemometrics, transfection, mesenchymal stem cells, Helicobacter pylori 
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RESUMO   

A espectroscopia de infravermelho é uma técnica extremamente sensível, com a 

capacidade de detetar modos vibracionais de biomoléculas, tendo, consequentemente, um 

mundo de aplicações. No presente trabalho esta técnica foi usada para estudar vários 

processos com recurso a células animais. 

A espectroscopia FT-MIR (do inglês Fourier transform mid-infrared region) foi 

utilizada para estudar a expansão de células mesenquimais estaminais (hMSCs) em 

microcarriers. Foi possível estimar a concentração de metabolitos chave para o 

crescimento celular, como a glucose, o lactato e a amónia, diretamente a partir de dados 

espectrais. Foi ainda possível inferir informação relativa ao ciclo celular das células em 

crescimento, através do desenvolvimento de modelos PCA (do inglês principal 

component analysis).  

Adicionalmente, desenvolveram-se modelos de regressão PLS (do inglês partial 

least squares) com o objetivo de estimar a eficiência de transfeção numa população de 

células. Trabalhou-se com duas linhas celulares distintas, uma linha aderente, AGS, e 

uma linha semiaderente, HEK, ambas transfetadas com o plasmídeo pVAX contendo o 

gene da GFP (do inglês green fluorescent protein). Para além de ter sido possível 

determinar, com elevada precisão, a eficiência de transfeção, independentemente do tipo 

de célula, foi ainda possível extrair informação extremamente relevante sobre o estado 

celular, nomeadamente o efeito da exposição ao reagente de transfeção e ainda alterações 

metabólicas resultantes do próprio evento de transfeção celular, provando a elevada 

sensibilidade da técnica.  

Por fim, estudou-se o efeito da infeção por Helicobacter pylori em células 

gástricas humanas, AGS. As células foram infetadas com dez estirpes diferentes de H. 

pylori, incluindo estirpes com diferentes genótipos CagA/VacA e isoladas de pacientes 

com diferentes patologias gástricas, como gastrite, úlcera e cancro gástrico. Foi ainda 

possível distinguir as células infetadas de acordo com a estirpe responsável pela infeção, 

quer através de modelos PCA, e ainda com recurso a algoritmos de agrupamento. 

Palavras-chave: Espectroscopia de infravermelhos, quimiometria, células animais, 

transfeção, células mesenquimais estaminais, Helicobacter pylori  
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I. THESIS OVERVIEW 

I.1 Objectives 
 

The main goal of the present work was to evaluate the application of Fourier 

Transform Infrared (FTIR) spectroscopy, using the mid-infrared radiation (MIR) and 

working in a high-throughput mode, for studying several processes and mechanisms 

involving mammalian cells, namely, monitoring the expansion of human mesenchymal 

stem cells (hMSCs) in microcarriers, estimating and studying transfection events without 

using any reporter gene and studying infection by Helicobacter pylori in an 

adenocarcinoma gastric (AGS) cell line. The potential of the technique for detecting 

minor molecular alterations in cells, was also evaluated.  

It was also aimed to optimize the procedures related to the acquisition and 

interpretation of infrared (IR) data and, by this way, to promote the use of the technique 

in a near future, not only for monitoring cellular processes, but also for other applications.  

 

I.2 Thesis Outline 
 

The present work is organized essentially in three sections. The first section 

includes a description of IR spectroscopy, where some theoretical explanations about the 

technique are presented. In a second section, chemometrics and spectral analysis are 

introduced, including the mathematical treatments applied to IR data in this work. The 

last section of this work concerns the experimental work realized for this thesis. Three 

different works using IR spectroscopy were conducted, and are separated in different 

subchapters, as they differ slightly from each other. For each work conducted, i.e., 

monitoring the expansion of hMSCs cells, estimating the transfection efficiency on a cell 

population, and studying AGS infection by H. pylori, four sections are presented: an 

introduction, an experimental section, a section dedicated to the results and discussion 

and, finally, the conclusions. At the end of this thesis a general conclusion is presented, 

encompassing the results achieved during all the work for this Master’s thesis.  
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II. INFRARED SPECTROSCOPY  

I.1 Theory of Infrared Spectroscopy 
  

Originally spectroscopy was defined as the study of the interaction of 

electromagnetic radiation with matter, in function of wavelength. The concept was then 

extended to include any property that is function of wavelength or frequency of that 

radiation. Every spectroscopic technique is based on the same principle that, is given 

certain conditions, when the materials interact with radiation they emit or absorb energy. 

Some materials also reflect radiation and/or disperse/diffract radiation. Absorption occurs 

when the emitted radiation is attenuated by the sample and emission takes place when 

radiation is produced by the sample due to excitation by a light source. The reflection of 

radiation depends essentially of the material’s surface and diffraction is mainly related to 

the composition, shape and microstructure of the sample (Nicolaï et al., 2007) 

IR spectroscopy uses the infrared region of the electromagnetic spectrum. The IR 

region is limited in the electromagnetic spectrum by the visible red light and the 

microwaves and ranges from 14000 to 4 𝑐𝑚−1 (0.7 to 250µm). There are three main 

regions of IR radiation: far-infrared (far-IR), mid-infrared (MIR) and near-infrared (NIR). 

Far-IR ranges from 400 to 4 𝑐𝑚−1  in the IR spectrum and will not be discussed in the 

present work. MIR represents the region of the IR spectrum between 4000 and 400 𝑐𝑚−1  

and NIR the region between 14000 and 4000 𝑐𝑚−1 (Figure II.1). Both MIR and NIR 

radiation will be discussed later in this work since they represent the type of IR radiation 

that is most used in diverse applications of spectroscopy (Smith, 2011). 
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In IR spectroscopy the sample is irradiated with IR light and the absorption of this 

radiation by the molecules in the sample stimulates its molecular vibration. At 

temperatures above absolute zero the atoms in a molecule are in continuous vibration with 

respect to each other. When a molecule is exposed to IR radiation it only absorbs the 

frequencies corresponding to its own vibration frequency. These changes in the vibration 

mode of molecules, or in case of gases excitation of molecular rotational levels as well, 

due to interaction with radiation, produce the bands in the IR spectrum. Each band is 

characterized by a frequency and amplitude (Duygu, 2009). 

 Almost any molecule that possesses covalent bounds absorbs IR radiation, with 

exception of monoatomic molecules (𝐻𝑒 𝑜𝑟 𝑁𝑒 ) and homopolar diatomic molecules 

(𝐻2, 𝑂2 …). Monoatomic molecules are formed by only one atom so they don’t have a 

dipolar moment. Homopolar diatomic molecules are formed by only one type of atoms 

so they don’t have a dipolar moment as well, since the electronic filed of atoms is the 

same (Griffiths, 2002). All the other type of molecules will have a dipolar moment so 

they will absorb IR radiation and can be quantified or qualified by IR spectroscopy.  

NIR 

 

MIR FAR 

Figure II. 1 - Electromagnetic spectrum with IR radiations highlighted. (Adapted from: 

http://jasonbachand.blogspot.pt/2012/01/introduction-to-black-holes-via-black.html) 
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As mentioned before, the interaction of IR light, that possesses a specific 

wavelength or frequency, with a molecule with dipolar moment causes an alteration of its 

vibrational mode. The vibrational modes of a molecule that are infrared active are 

essentially stretching and bending (Figure II.2). The stretching can be symmetric or 

antisymmetric and results from an alteration of the molecular bound’s length. The 

bending corresponds to a change of the angle between two atoms or two groups of atoms 

in a molecule (Babrah, 2009). 

 

 

 

 

 

 

 

 

 

Figure II. 2 – Molecular vibrational modes (Babrah, 2009) 

 

The IR spectrum is characteristic of each type of molecule, since it depends mainly 

of the mass of the atoms, their geometric arrangement and the bound forces between them. 

Given that, since there are no two different molecules that possess these three same 

characteristics, each molecule will have, in theory, a distinct spectrum. Extending that 

concept two different samples, with distinct molecular composition, they will also have 

different spectra. This principle is the foundation of IR spectroscopy and it makes possible 

to distinguish, qualify or quantify virtually any type of sample (Smith, 2011). 

Since certain regions of the spectrum were already attributed to certain molecular 

bounds and combination of atoms, and we know the composition of every biomolecules, 

it is easy to extrapolate these results and to associate these biomolecules to certain regions 

of the IR absorption spectrum, especially in MIR region. This was the basis of application 

of spectroscopy in the biological field. The regions of MIR spectrum corresponding to 
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each group of biomolecules are nowadays well characterized, namely regions associated 

with proteins, lipids and amino acids and even lactate, urea or glucose absorption (Figure 

II.3).  

 

  

 Despite of the complex composition of biological samples, like cells and tissues, 

it can be observe that the most strong vibrational frequencies correspond to macro-

biomolecules such as proteins, nuclei acids, lipids or glicids (Smith, 2011), due to its high 

concentration in the cell in relation to other biomolecules. The fact that different 

biological samples have different molecular compositions is reflected on their different 

absorption spectra. 

 

II.1.1 Mid-Infrared (MIR) Spectroscopy 

 

Mid-infrared spectroscopy uses the IR region of the electromagnetic spectrum that 

ranges from 4000 to 400𝑐𝑚−1 . In MIR region the IR bands arise essentially from 

fundamental vibrational modes so they can be more easily attributed to specific molecular 

groups, which makes this technique more sensitive, allowing to extract more information 

of the spectra, comparing to NIR spectroscopy (Smith, 2011).  

Figure II. 3 - MIR absorption spectrum with bands associated to molecular bounds of biomolecules highlighted 

(Graça et al. 2013). 



7 
 

On the other hand, water absorbs much more radiation in the MIR region than in 

NIR region, which can be a problem when we are analyzing aqueous samples, being 

usually necessary an extra step by which the sample is dehydrated before spectral 

acquisition (Landgrebe et al., 2010). In alternative, attenuated total reflectance (ATR) can 

be applied, as described in subchapter II.4.2.   

Furthermore, MIR radiation has a shorter wavelength than NIR radiation and 

consequently less energy, so the ability of this kind of radiation to penetrate the sample 

is reduced. Also MIR radiation is more difficult to transport so it is more difficult to 

achieve remote measures. 

MIR spectroscopy, like NIR spectroscopy, allows a rapid acquisition of spectra, 

no sample preparation is necessary, beside the dehydration step for aqueous samples, and 

it is a non-invasive method (Lourenço et al., 2012), which is extremely useful when we 

are dealing with samples we want to preserve.  Moreover, spectra can be altered due to 

fluctuations in the equipment’s environment and sometimes it is necessary to resort to 

chemometric methods due to the complexity of spectra, though rich in information, or 

when aiming quantitative analysis.   

 

 

II.1.2 Near-Infrared (NIR) Spectroscopy  

 

Near-infrared radiation ranges from 14000 to 4000 𝑐𝑚−1 in the electromagnetic 

spectrum and covers the transition from the visible light to the mid-infrared region (Smith, 

2011).  

The absorption spectrum that one can obtain applying NIR spectroscopy is usually 

very complex, mainly when this technique is used to analyze biological samples or 

monitoring bioreactors, since it results from a combination and overlap of vibrations from 

different chemical elements and functional groups. This is the main disadvantage of 

applying NIR spectroscopy and the main reason why NIR spectroscopy is less sensitive 

than MIR spectroscopy. Due to these complex spectra, usually NIR spectroscopy shows 

a great dependence on chemometric methods.  
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On the other hand generally the NIR radiation is less absorbed by samples than 

MIR radiation, which results in a great penetration power. Moreover, NIR radiation can 

be easily transported by optical fibers, then it is possible a remote acquisition of spectra 

(Lourenço et al., 2012). 

Sometimes NIR spectroscopy is preferred versus MIR spectroscopy since the 

water does not absorb so strongly NIR radiation, so the bands of water will not mask any 

information in the sample’s spectrum. This is an important factor when we are dealing 

with biological samples where water is one of the main components.  

Just like in MIR spectroscopy, NIR spectroscopy allows a fast acquisition of 

spectra, especially after the development of Fourier Transform Infrared (FTIR) 

spectroscopy, it is not necessary an extensive or any preparation of the sample, it is 

possible to measure several sample’s properties at once, different kind of samples can be 

evaluated, it is a non-destructive technique and no reagents are necessary, which make 

each procedure less expensive (Smith, 2011). 

 Some typical applications of NIR spectroscopy are in the pharmaceutical industry 

as a tool for identification of compounds, test purity, structural investigation, quantitative 

measures, monitoring drug production or to verify drug’s identity, as review by Kalinkova 

(1999). Other emerging applications include diagnosis (Kondepati et al., 2008) or 

bioreactor monitoring essentially in biotechnology processes as reviewed by Lourenço et 

al. (2012). 
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II.2 Instrumentation 
 

The instrument used in IR spectroscopy is called infrared spectrometer or 

spectrophotometer and consists mainly in a beam source, a monochromator or an 

interferometer, depending on the type of spectrometer, a sample holder or sample 

presentation interface and a detector that will detect the radiation that is transmitted or 

reflect by the sample (Reich, 2005). 

 The beam source may consist on an inert solid thermally heated (Hsu, 1997) or in 

an incandescent filament like tungsten or quartz/halogen lamps, for NIR region, and 

carbon-silicon bars, for MIR radiation (Christian, 1994).  

There are two types of detectors: thermal detectors and photon detectors. Thermal 

detectors measures the heat produced by IR radiation when in contact with the sample 

and photon detectors are based on the interaction of IR radiation with semiconductor 

materials where excitation of electron occurs and it is generated a small electrical current 

that can be quantified (Hsu, 1997). 

The way that light is modulated, by a monochromator on by an interferometer, 

defines the type of spectrophotometer. There are essentially two types of 

spectrophotometer: Dispersive Infrared Spectrometers and Fourier-Transform Infrared 

Spectrometers. In both configurations the beam source, detectors and sample holders used 

are essentially the same. 

Dispersive Infrared Spectrometers were the first kind of spectrophotometers to be 

developed. In this configuration a monochromator is used. A monochromator is a device 

used to separate a range of radiations in a certain range of wavelengths or frequencies and 

the most common kinds include prism and gratings coupled with systems of mirror and 

filters (Stuart, 2004). 

Fourier-Transform Infrared (FTIR) spectrometers appeared later and basically the 

monochromator is substituted by an interferometer. The interferometer, the heart of every 

FTIR spectrometer, basically measures the interference pattern between two light beams. 

The IR radiation, after entering in the interferometer, is dived in two beams that will travel 

different paths (D1 and D2 in Figure II.4).  After each beam travel its path, the two beams 

are reunited in a single beam again, leaving the interferometer. Michelson interferometer 

was perhaps the first spectrometer invented (Figure II.5), but the basically operation is 



10 
 

common to all interferometers. Briefly, a collimating mirror receives the IR light from 

the source, and makes its beam parallel to each other, while directing them to the beam 

splitter. The beam splitter separates the radiation in two beams, redirecting one beam to 

the fixed mirror and the other to the moving mirror. These two beams, after traveling its 

path, return to the beam splitter, where they are combined in a single beam again, and 

send on to the sample (Figure II.5). The resulting spectrum is called an interferogram (a 

spectrum consisting on intensity versus acquisition time) that is later traduce to the final 

IR spectrum (intensity versus frequencies or wavelengths) by the mathematical operation 

called Fourier-Transform (Smith, 2011; Stuart, 2004).  

 

 

 

 

 

 

Figure II. 4 – Simplified illustration of an interferometer (Smith, 2011). 

 

 

Figure II. 5 – Scheme of the Michelson interferometer (Smith, 2011). 
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FTIR spectrometers substituted the dispersive systems since they are faster, all the 

frequencies are examined at the same time, and essentially they have a higher signal-to-

noise ratio (SNR) (Hsu, 1997; Pistorius, 1995). The amount of signal in a spectrum is 

highly dependent on the amount of light that reaches the detector. For the dispersive 

spectrometers, the beam need to travel through prisms, slits and gratings, before reaching 

the sample. Thus, the final beam that is detected have a much lower intensity, comparing 

to the beam that leaves the beam source and, consequently, the final spectrum has a lower 

SNR. Probably the big advantage of achieving a high SNR, is that it allows more sensitive 

measurements. For instance, in a less noisy spectrum even the smaller peaks became more 

evident. For FTIR spectrometers the SNR can be 10-100 higher than for the dispersive 

spectrometers (Smith, 2011).  
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II.3 Acquisition Modes 
 

 Depending on the samples properties the spectral data can be acquired essentially 

by two different modes: Transmission and Reflection.  

 

II.3.1 Transmission  

 

In transmission mode IR radiation passes through the sample and it is evaluated 

the decrease in the incident beam (Figure II.6). The obtain spectrum is the result of 

radiation that passes through the sample (that is proportional to the radiation absorbed by 

the sample) in function of wavelength, and depends of the radiation’s pathlength (Hsu, 

1997). 

  

 

 

 

 

 

 

Beer-Lambert law allows us to deduce concentrations of certain compounds in a 

sample through the IR radiation that is absorbed via the following equation: 

 

𝐴 =  ԑ × 𝐿 × 𝐶 =  𝑙𝑜𝑔10(
1

𝑇
),                               (Equation II.1) 

 

where 𝐴 is the absorbance, ԑ the coefficient of absorptivity, 𝐿 is the pathlength, 𝐶  the 

concentration and 𝑇 the transmittance.  

Figure II. 6 - Scheme of IR transmission mode (L represents the pathlength, by that means the thickness of the 

sample) (Smith, 2011) 
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Absorption or transmission measures are universal, minimal preparation of the 

sample is necessary and usually it is possible to obtain spectra with good signal to noise 

ratio. In case of samples absorbing too much or too less radiation it is necessary to explore 

other modes, as reflectance (Smith, 2011). 

 

 

II.3.2 Reflectance 

  

 In reflectance mode the IR radiation detected is the radiation reflected by the 

sample’s surface, as is useful when the sample absorbs too much or too less energy or in 

case of samples that reflect the majority of the incident radiation (Figure II.7). 

  

 

 

 

 

 

 

There are essentially three types of reflectance measures: Specular Reflectance, 

Diffuse Reflectance and Attenuated Total Reflectance (ATR). In Specular Reflectance 

the angle of the incident beam (Ѳ𝑖) is the same of the reflected beam (Ѳ𝑟) (Figure II.7). 

In Diffuse Reflectance the angle of the incidence beam and the angle of reflected beam 

are different (Figure II.8) and this usually happens in samples with rough surfaces (Smith, 

2011). In Attenuated Total Reflectance (ATR) an IR beam travels through a crystal that 

is in close contact with the sample (Hsu, 1997).  

Figure II. 7 - Scheme of an IR beam reflected by the sample’s surface. Ѳ𝒊 is the incident angle of the incident 

beam and Ѳ𝒓 is the angle of the reflected beam (Smith, 2011). 
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Figure II. 8 - Scheme of Diffuse Reflectance. Ѳ𝒊 is the angle of the incident beam (Smith, 2011). 

 

ATR was created by Harrick and Fahrenfort and is based on the transmission of 

IR radiation through a crystal which is in contact with the sample, Figure II.9 

(Roychoudhury et al., 2006). This method is becoming highly relevant for the study of 

living cells and biological tissues, since it is possible to reduce the water’s interference in 

MIR spectroscopy. 

 

 

An ATR accessory is a combination of IR radiation with reflection techniques and 

essentially operates by measuring the total reflection of an evanescent wave, which 

penetrates the sample in contact with a crystal. Briefly, an IR beam is reflected through 

the crystal and its intensity changes as the beam travels across it, if the sample absorbs 

MIR radiation, due to the interactions with sample. It is important that the sample is in 

close contact with ATR crystal (Khoshhesab, 2012). There are a few crystals that can be 

used in ATR, mainly zinc selenide (ZnS), silicon and diamond. It is important that the 

Figure II. 9 - Alternative configurations of ATR system (Roychoudhury et al., 2006 and Adapted from Roth et al., 

2012). 
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crystal have a high refraction index and do not absorb MIR radiation. ZnS is one of the 

most attractive materials, although it is damaged by acids and oxidant agents, so its 

performance decreases over time. Diamond is more resistant to chemical attacks but the 

C-C bounds absorb MIR radiation, so part of the sample’s spectrum can be lost and also 

this is an expensive material (Landgrebe et al., 2010). 

ATR is a technique that makes possible to obtain rich spectra, since it works with 

MIR radiation, and it is also solved the problem of water absorption in the MIR region, 

as IR beam penetrates less in the sample the amount of water that is sampled is reduced. 

Another advantage of using an ATR system is that differences in sample’s thickness, that 

causes alterations in conventional IR absorption spectra, do not affect ATR spectra 

because the penetration of the evanescent beam in the sample is determined by the 

sample’s refraction index (Timlin et al., 2009). Due to these characteristics ATR is an 

interesting technique to monitoring bioprocesses, to evaluate living cells or to analyze 

other biological samples, since the water is no longer a problem (Landgrebe et al., 2010). 

Probably the main disadvantage of this technique is that it is not yet possible to perform 

high-throughput analysis, each sample needs to be evaluated independently.   
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III. THE BASICS OF CHEMOMETRICS 

Chemometrics is the field that combines mathematical, statistics and 

computational methods in order to process data and to solve problems in chemistry, 

biochemistry or chemical engineering (Roggo et al., 2007). It is therefore possible to 

extract relevant information from the data which otherwise would be very difficult. 

Chemometrics was first introduced in the chemical field, although today is a widely used 

tool in several other areas such as spectroscopy (Geladi, 2003). 

The successful implementation of the spectroscopic techniques, essentially NIR 

spectroscopy producing broad and overlapping spectral bands, was only possible due to 

the development of chemometric methods. Even for MIR spectroscopy, where spectral 

bands are normally well defined, chemometrics may also play an important role, by 

making easier the interpretation and handling of large data sets, as well as by reducing 

the noise that is often present in spectra. 

 Chemometrics in spectroscopy can be divided into three main categories, 

mathematical pre-processing techniques, qualitative and quantitative methods. 

Mathematical pre-processing techniques include methods that work by eliminating 

spectral noise or effects of radiation scattering, i.e., the spectrum is “edited” so that only 

important information is kept. Qualitative methods on the other hand group samples 

according to their similarities, i.e., each member of a given group are more similar to the 

samples in its own group than to samples of other group. Quantitative methods usually 

resort to regression methods and are applied to predict samples’ properties that can be 

quantified (Roggo et al., 2007). 

 In the present work a few pre-processing techniques are review, including 

multiplicative scatter correction (MSC), baseline correction, normalization, smoothing 

and derivatives. Concerning quantitative and qualitative methods, only cluster analysis, 

principal component analysis (PCA) and partial least squares (PLS) regression will be 

discussed, since were the main techniques applied later for the data analysis. 
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III.1 Spectral pre-processing techniques 
 

Spectral pre-treatments are essential for eliminating spectral alterations due to 

undesired variations, such as noise, differences along the sample thickness, differences in 

the number of cells across the sample and scattering events. The goal is that the final 

spectra possess the minimum irrelevant information as possible. The pre-processing 

techniques applied to IR data in the present work are described next, and that includes: 

multiplicative scatter correction (MSC), baseline correction, normalization smoothing, 

and derivatives. 

 

III.1.1 Multiplicative Scatter Correction (MSC)  

 

Multiplicative Scatter Correction (MSC) was first developed for NIR 

spectroscopy and it is used to eliminate changes in spectra due to radiation scattering. 

This transformation works on the influence of scattered radiation in a group of spectra 

from different samples. The goal is to find the “ideal” spectrum of the group. For this 

method a reference spectrum is necessary, which is usually the mean spectrum of all 

available spectra. MSC works by fitting each spectrum to the average spectrum, which is 

thought to be the ideal, performing a transformation where the spectral data (𝑥1 , 𝑥2 , 

…, 𝑥𝑝) is converted into new values (𝑧1, 𝑧2, …, 𝑧𝑝), where 𝑝 corresponds to wavelengths 

(Fearn et al., 2009). The following equation describes the transformation from 𝑥 to 𝑧 

𝑧𝑖 =
𝑥𝑖−𝑎 

𝑏
,                                          (Equation III.1) 

where 𝑎 represents the intercept and 𝑏 the slope of a least-squares regression of 𝑥1, 𝑥2, 

…, 𝑥𝑝 on the values 𝑟1, 𝑟2, …, 𝑟𝑝 coming from the reference spectra.  

 

III.1.2 Baseline correction 

 

Not always the obtained spectra are grounded at zero. First and second derivatives 

can be used to solve this problem, as well as other methods of baseline correction. The 

type of algorithm used depends on the baseline correction needed.  Those spectra which 

are dislocated from zero by a constant value are the simpler cases, since subtracting the 
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value in question from the spectrum is usually enough. Though there are more difficult 

cases, for instance cases in which the baseline presents a slope, or even spectra with 

curvatures. In these cases an algorithm generating a function, a linear or polynomial 

function, can bring the spectrum to zero (Otto, 1999; Smith, 2011). 

There are probably two main disadvantages of using baseline correction 

algorithms. First, it is difficult to find a function that adjusts properly to the spectrum 

‘curvature, although there are already some good algorithms. Besides that, the curvature 

along the spectrum is not always equal, so a unique function will hardly adjusts correctly 

to the entire spectrum. In that way, sometimes it is preferred to apply derivatives for offset 

correction. The problem of applied derivatives is that the resulting spectra will be noisier 

than the raw one. In cases where there is a low SNR, baseline correction must be applied 

instead (Smith, 2011).  

 

III.1.3 Normalization 

 

The goal of normalization is pre-processing the data in order to minimize 

differences between the samples that are related with factors, such as differences in the 

samples’ number of cells, and not with the property of interest. Of course a careful design 

of the experience is still a critical factor that must be always taken into account before 

pre-processing the data. There are several methods for normalizing spectral data, and a 

great review on this topic may be found at Randolph (2006). In the present work, all 

spectra were normalized using the Amide I band, at 1650 𝑐𝑚−1. Basically, all spectra 

were divided by a previously determined constant, so all the spectra ended up having the 

same intensity at 1650 𝑐𝑚−1. 

 

III.1.4 Smoothing  

 

Smoothing is used to treat spectra which have a low SNR, or before applying 

derivatives as they highlight the spectral noise. In these cases it is also important to try to 

solve this problem by other means before, such as using a higher number of scans or 

optimizing the sample preparation. If SNR is not improved in this way than pre-
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processing methods like smoothing should be applied. Smoothing makes possible to 

reduce the noise in the data so that bands can be better distinguished (Smith, 2011).  

There are several kinds of filters or smoothing algorithms, being that the most 

commonly used are the ones based on average values. The method works by creating a 

“smoothing window” in the data. In this “window” the average of 𝑦’s values (intensity or 

absorption) is calculated. This average is then associated to the 𝑝 middle value of the 

smoothing window (wavenumber or frequency). The spectra are truncated at the end since 

the final frequencies will never represent the center of a smoothing window (Smith, 

2011). The choice of the window size its close related to the noise reduction, the higher 

the window size greater the reduction of the noise. However, if smoothing is too strong, 

the window is too big, neighbor bands can be merged with each other and also important 

information in data can be lost and, so must be a tradeoff between loss of information and 

noise elimination 

 

III.1.5 Spectral Derivatives  

 

Spectral derivatives are normally employed to remove baseline offsets and for 

highlighting spectral information, through the resolution of overlapping bands. Applying 

the first derivate is extremely useful in cases where the offset is constant, since de first 

derivate of a constant is zero. The second derivative can also be applied and the result 

will be not only the removal of the baseline offset but also the resolution of overlapping 

bands. This is the reason why the second derivative is commonly applied to NIR spectra 

(Otto, 1999). 

 First and second derivatives can be also useful to highlight subtle differences 

between spectra, allowing extract more information from spectral data. However, before 

applying derivatives, it is important to have in mind that the derivative spectra will have 

more noise than the initial one, so first and second derivatives must be applied in spectral 

data with high SNR. If not the case, it is necessary to apply a smoothing algorithm first, 

otherwise derivatives will only enhance the existing noise. Savitzky-Golay is an 

algorithm commonly used with this purpose, since it applies a filter before derivation.  
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III.2 Cluster Analysis (CA) 
 

Clustering is a non-supervised classification method that groups data in clusters 

according to their semblance, usually determined by pattern recognition algorithms that 

rely on distance measures. The shorter the distance between two objects or samples, the 

closer they are. 

 A cluster describes a group where the samples are more similar to each other than 

to those outside the group. Two types of clusters can be created, hierarchically and non-

hierarchically (Otto, 1999).  

In Hierarchical Cluster Analysis the objects or samples under study are combined 

according to their similarity or distance, as mentioned before. Commonly this method 

starts with a single sample and then other samples are added to create a cluster. Deciding 

the number of clusters can be a problem, although generally this number is known.  

In Nonhierarchical Cluster Analysis samples are not grouped hierarchically. 

Generally a first division of the samples into clusters is first performed and then the 

cluster’s centroid is calculated. If that the case samples are then allocated to another 

cluster wherewith they have more similarity or lower distances with the other samples in 

the new cluster (Otto, 1999). 

Cluster analysis is also very useful in a way that it allows summarizing the 

information and gives an easier graphical output to analyze since the samples are grouped 

by classes. Cluster Analysis is less useful when the data is too similar, since only one 

cluster may be created, as well as when data are too heterogeneous allowing too many 

clusters to be created.  
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III.3 Principal Component Analysis (PCA) 
 

Principle Component Analysis (PCA) is a data reduction algorithm that is very 

useful when we are dealing with high dimensional data as spectral data. It also allows 

performing qualitative analysis, while no information about the components of interest is 

necessary (unsupervised method). New variables retaining the maximum variance of the 

initial data are created through linear combinations of the spectral data, called principal 

components (PCs) (Jollife, 2002). Once the source of variance in data is identified, it is 

possible to visualize the major tendencies in data (Lourenço, 2012). PCs are ordered in 

terms of variance in the data set explained, with the first PCs representing the major 

variance in the data. Sometimes the variance in data can be distributed by more PCs, so 

it may be more difficult to select those which are relevant to extract some useful 

information (Jollife, 2002). The initial data matrix is decomposed as following: 

𝑋 = 𝑇𝑃𝑇  + 𝐸,                              (Equation III.2) 

where 𝑛 is the number of samples in 𝑋, 𝑝 is the number of variables in 𝑋, 𝑔 is the number 

of chosen factors,  𝑋 (𝑛 × 𝑝) is the descriptor data matrix, 𝑇 (𝑛 × 𝑔) is the score matrix, 

𝑃 (𝑝 × 𝑔) represents the loading matrix and 𝐸 (𝑛 × 𝑝) is the error matrix for the 𝑋-data 

matrix. In that way a PC is described as a combination of loadings and scores, where 

loadings represent the contribution of each wavenumber to the PC and scores results from 

linear combinations of the initial data in X. Therefore each spectrum can be described as 

a combination of principle components (Kidder et al., 2002).  

Data evaluation and qualification can be generally achieved by plotting different 

combinations of PC’s scores, since it is easier to visualize the samples in a smaller 

dimensional space and consequently evaluate their semblance. Since the fraction of 

variance can be covered by one, two or three PCs, it is possible to visualize almost the 

entire data by plotting these PCs against each other (Otto, 1999). In theory the samples 

with closer scores will be more similar to each other. 
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III.4 Partial Least Squares (PLS) Regression 
 

 Partial Least Squares (PLS) is a data reduction and quantitative method  developed 

by Herman Wold, in 1960s, with the goal of overcoming the tough decision of choosing 

the components of the model that are represent the best the variable(s) of interest, as for 

PCA. The PLS model find new components, factors or latent variables (LVs) and each 

component is obtained through the maximization of the covariance between the reference 

data (y-data) and all the linear combinations for the spectral data (X-data). So, in theory, 

the new variables obtained would be more related with the variance in the y-data than the 

components obtained through PCA. There are two variants of the PLS algorithm, PLS-1 

and PLS-2. For PLS-1 a separate set of scores and loadings are calculated for each 

variable in the y-data and for PLS-2 a unique set of loadings and scores are calculated for 

all the y variables. PLS-1 is more accurate than PLS-2, since the scores and loadings are 

adjusted for each property of interest. There are a few methods for PLS development, 

being that the NIPALS and SIMPLS methods are the most commonly used. A more 

detailed information about the different PLS methods can be seen elsewhere (Hammond 

and Clarke, 2002; Yeniay and Göktȿ, 2002, Naes et al., 2002).  

The X-data and y-data are decomposed as following: 

                               𝑋 = 𝑇. 𝑃𝑇 + 𝐸                             (Equation III.3) 

𝑦 = 𝑇. 𝑞 + 𝑓,                               (Equation III.4) 

where 𝑛 is the number of samples in 𝑋 and 𝑦, 𝑚 is the number of variables in 𝑦, 𝑝 is the 

number of variables in 𝑋, 𝑔 is the number of chosen factors, 𝑋 (𝑛 × 𝑝) is the descriptor 

data matrix, 𝑦 (𝑛 × 1) is the vector of reference data (usually concentrations), 𝑇 (𝑛 × 𝑔) 

is the latent variables score matrix, 𝑞 (𝑚 × 1)  and  𝑃 (𝑝 × 𝑔)  represent the loading 

matrix, from 𝑋 and 𝑦 respectively, and 𝐸 (𝑛 × 𝑝) and 𝑓 (𝑛 × 1) are the residual matrixes 

that contains irrelevant data from 𝑋 and 𝑦, respectively. The scores in T will result from 

linear combinations of initial variables in 𝑋 . In that way a LV is described as a 

combination of loadings and scores, where loadings represent the contribution of each 

wavenumber to the latent variable and scores results from linear combinations of the 

initial data in 𝑋, where the covariance with 𝑦 is maximized. Therefore each spectrum can 

be described as a combination of these new variables that are created (Naes et al., 2002). 
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The PLS regression coefficients �̂� are given by: 

�̂� = 𝑊(𝑃𝑇𝑊)−1(𝑇𝑇𝑇)−1𝑇𝑦,                        (Equation III.5) 

where 𝑊 (𝑝 × 𝑔) is the PLS weights matrix. Once the regression coefficients, �̂� , are 

determined they can be used to obtain the predictions: 

�̂� = 𝑋�̂�,                                      (Equation III.6) 
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IV. NEW APPROACHES TO STUDY 

MAMMALIAN CELLS’ PROCESSES  BY 

INFRARED SPECTROSCOPY 

IV.1 Monitoring Mesenchymal Stem Cells expansion in xeno-

free microcarrier-based reactor systems using FTIR 

spectroscopy 
 

IV.1.1 Introduction 

Stem cells are characterized by its self-renewal ability and the capability to give rise 

to at least one type of mature cells. Although mesenchymal stems cells (MSCs) do not 

fulfill these requirements, as they have limited in vitro proliferation, maybe related to 

culture and harvest conditions not yet optimized, they are often considered as truly stem 

cells (Le Blanc and Ringdén, 2005). MSCs can be found in the human adipose tissue, 

bone marrow, lung and umbilical cord, and are able to differentiate in different types of 

cells, such as osteoblasts, chondrocytes, adipocytes and stromal cells (Pittenger et al., 

1999). 

In the last years MSCs started to be seen as a very promising candidate to cell therapy, 

due to its ability to differentiate in several types of mature cells. Some clinical 

applications include delivery of anticancer agents (Dai et al. 2003), immunological 

regulators in patients with auto-immune diseases, treatment of the Graft-versus-Host 

(GVH) disease, preventing organ or cell rejection by patients who went through an organ 

or cell transplantation (Le Blanc and Ringdén, 2005; Friedman et al., 2007) and as a 

system for gene delivery system (Madeira et al., 2012). 

Despite of the great potential of MSCs, they are considerably rare in human organism 

(0.001-0.01%), being the average of cells needed for therapy per patient 1 − 5 ×

106 𝑐𝑒𝑙𝑙𝑠 𝐾𝑔⁄  . Therefore, to make possible the therapeutic application of MSCs, the 

expansion of these cells represents a critical step. Furthermore, cells’ expansion is 

dependent of several factors, like the age and condition of the donor, the isolation 

techniques chosen and the cells’ source (Le Blanc and Ringdén, 2005). When it concerns 

to expand cells for future therapeutic applications, it is crucial to achieve a high cell 
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number but also a reproducible process with the lower costs associated. For that, a 

rigorous real-time monitoring and control of the critical variables of the expansion 

processes is essential, as a small variation in the process can cause serious changes in the 

final product.   Some of the variables in mammalian cells’ cultures that are commonly 

monitored include pH, temperature, dissolved oxygen concentration (DOC) and key 

analytes such as glucose, glutamine lactate, ammonia or amino acids (Rhiel et al., 2010). 

Sensors for on-line monitoring of temperature, pH and DOC are well established. 

However, the monitoring of the remaining critical variables of the bioprocess are usually 

based on time-consuming off-line analysis, such as enzymatic assays, high- performance 

liquid chromatography (HPLC) and immuno-assays (ELISA) (Harthun et al., 1998).  

Aiming at a rigorous monitoring of bioprocesses, the Food and drugs Administration 

(FDA) introduced the Process Analytical Technologies (PAT) Initiative with the goal of 

ensuring the quality of the final product, while achieving a high-knowledge of the process 

and preserving its reproducibility (Hakemeyer et al., 2012). Fourier transform infrared 

(FTIR) spectroscopy, a technique that detects with a high sensitivity the vibrational 

modes of biomolecules, represents very promising candidate to achieve these goals. FTIR 

spectroscopy, combined with multivariate data analysis, allows the rapid quantification 

of several analytes from a single spectra, with no use of reagents, which make each 

measurement, besides highly sensitive and rapid, very economic. Additionally, it is a long 

stable method, which can perform high-throughput measurements, and high resolution 

chemical analysis even when the compounds of interest are present in very low 

concentrations (Scholz et al., 2012; Card et al., 2008). A close follow up of the bioprocess 

using spectroscopic methods allows not only the quantification of key analytes, but also 

makes possible the detection of undesirable events, like cell death or contaminations. 

Therefore, FTIR spectroscopy meets the PAT’s initiative goals and it has been used in 

several pharmaceutical applications (as reviewed by Roggo et al., 2007) and for 

monitoring bacterial cultivations (as reviewed by Landgrebe et al., 2007). The interest of 

using spectroscopic methods for monitoring mammalian cell’s processes, however, 

started later and it is now on its early stages.   

FTIR spectroscopy can be operated in the mid-infrared (MIR) and near-infrared (NIR) 

regions of the spectra. A MIR spectrum can be more informative than a NIR spectrum, 

since a MIR spectrum results from fundamental vibrations of molecules, so a higher 

sensibility it is expected for MIR spectroscopy. MIR spectroscopy also allows performing 
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at-line high-throughput measurements. However, as water absorbs strongly in MIR 

region, it is necessary to use an ATR probe or to dehydrate the sample before spectral 

acquisition (Rhiel et al., 2010).  On the other hand, NIR spectroscopy is preferable for in-

situ analysis of bioprocesses, since this spectral region is less prone to water interference. 

However, NIR spectroscopy is not ideal for analyzing microencapsulated cells or cell 

grown in diluted media, due to its lower sensitivity, which can be a problem when 

monitoring mammalian cell’s cultures, since one of the concerns is to maintain low levels 

of glucose and glutamine and to avoid accumulation of lactate and ammonia (Teixeira et 

al., 2009). For all these reasons the two techniques, at-line and in-situ, are complementary 

tools for bioprocess monitoring, with the goal of obtaining the largest amount of 

information about the bioprocess, for a correct and accurate process monitoring and 

optimization. 

Few studies have been published on monitoring mammalian cell’s cultures using IR 

spectroscopy. Harthun et al. (1998) used NIR spectroscopy to quantify a recombinant 

product, antithrombin III (rhATIII), as well as some key analytes such as glucose, lactate, 

glutamine, glutamate and ammonia, in a Chinese Hamster Ovary (CHO) culture. Partial 

Least Squares (PLS) models were built for predicting all components mentioned, with 

poor results since for the overall models a high number of latent variables were used, 

which have a risk of overfitting. Also Sandor et al. (2013) developed a comparative study 

using NIR and MIR-ATR spectroscopy for on-line monitoring of 8 CHO cell cultures, 

with different feeding regimes. PLS models were developed for several variables of the 

bioprocess, namely glucose, lactate, glutamine, glutamate, ammonia, cell viability and 

total cell concentration. The best PLS models were achieved using MIR-ATR 

spectroscopy especially for glucose, lactate, ammonia and cell viability, with a low 

number of latent variables (4/5) and high correlation coefficients between the real and 

predicted values. Card et al. (2008) had similar results using a HEK 293 cell line, proving 

that the technique is cell type independent. Hakemeyer et al. (2012) besides developing 

PLS models to quantify key analytes in a CHO cell culture, developed principal 

component analysis (PCA) models for monitoring bioprocesses with the purpose of 

ensuring a rigorous quality control. This is a very useful approach, as it allows detecting 

subtle undesirable events during the culture run in a rapid way, without quantifying any 

analytes. To date, no work was published using FTIR spectroscopy to monitor hMSCs 

expansion in microcarriers and only one study used FTIR spectroscopy for monitoring 
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mammalian cells cultured in microcarriers. Petiot et al. (2012) used NIR spectroscopy for 

in-situ measurements of a Vero cell line (kidney epithelial cells extracted from an African 

green monkey) cultured in microcarriers, with the goal of predicting glucose and lactate 

concentrations. 

The present work aims to apply MIR spectroscopy to monitor the expansion process 

of hMSCs, coming from living donors, cultured in different microcarriers and using 

different feeding regimes. MIR spectroscopy was preferred instead of NIR spectroscopy, 

in order not only to develop robust partial least squares (PLS) regression models for 

predicting key analytes as glucose, lactate and ammonia, but also aiming to acquire 

information concerning cellular events, as the follow-up of the cellular growth stages or 

the detection of undesirable events during the culture run.  

All the experimental work associated with the expansion of hMSCs was conducted 

by Joana Carmelo, under the supervision of Professor Cláudia Lobato da Silva and 

Professor Joaquim Sampaio Cabral, from the Stem Cell BioEngineering and Regenerative 

Medicine Laboratory, Instituto Superior Técnico, Universidade de Lisboa, as described 

in Carmelo (2013). 

 

  

IV.1.2 Materials and Methods 

 

Samples 

Human mesenchymal stem cells (hMSCs) derived from bone marrow samples 

were used in this study. BM samples were obtained from healthy donors after informed 

consent at Instituto Português de Oncologia Francisco Gentil, Lisbon, Portugal. hMSCs 

were recovered from cryopreservation and cultured in culture flasks with Iscove’s 

Modified Dulbecco Medium (IMDM), xeno-free medium, supplemented with Penicillin 

(at a concentration of 0.025 U/mL) and Streptomycin (at a concentration of 0.025 µg/mL) 

(PenStrep, Gibco) and with GlutaMAX™-I CTS™ (Gibco) as a glutamine substitute. 

Cells were plated in T-flaks (BD Falcon™) at an initial cell density between 3000-6000 

𝑐𝑒𝑙𝑙𝑠/𝑐𝑚2  and incubated at 37°C, 5% 𝐶𝑂2, in a humidified atmosphere. The culture 

medium was renewed every 3 or 4 days. When cells reached about 70 or 80% confluence 

were detached with TrypLE™ Select (10X) (Gibco), and diluted in PBS. Cells were then 

http://en.wikipedia.org/wiki/Kidney
http://en.wikipedia.org/wiki/Epithelial
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seeded on a microcarrier culture and expanded on the microcarriers under dynamic 

conditions in spinner flask cultures, using Bellco® spinner flasks (Bellco Glass, Inc.) with 

a working volume of 80 mL, equipped with 90º paddles (normal paddles) and a magnetic 

stir bar. 

For monitoring the consumption of nutrients and the production of metabolites, 

supernatant from the three culture runs were analyzed every day and glucose, lactate and 

ammonia concentrations were determined using an automatic analyzer YSI7100MBS 

(Yellow Springs Instruments). For cell counting the microcarrier cell cultures were 

harvested and incubated with TrypLE solution in the Thermomixter for 7 or 8 minutes at 

37ºC and 750rpm. Then, IMDM with 10% of fetal bovine serum (FBS) in a proportion of 

1:3 was added. The cells were separated from the microcarriers through filtration with a 

Cell Strainer (100μm) (BD Falcon™). Cell number and viability was determined by 

Trypan Blue exclusion method. 

All steps of manipulation of the hMSCs were performed by Joana Carmelo, from 

IST, under her Master’s Thesis, so for more detailed information on hMSCs culture’s 

conditions see Carmelo (2013). 

Three different hMSCs expansion processes were tested using FT-MIR 

spectroscopy: 

  Culture S - hMSCs derived from bone marrow cultured on plastic microcarriers 

(Solohill Engineering, Inc.) previously coated with CELLstart™CTS™ (Gibco). 

From the 3rd day on, 25% of the medium was renewed every day. 

  Culture A1 - hMSCs derived from bone marrow cultured on A microcarriers from 

the X Company. From the 3rd day on, 25% of the medium was renewed every day.  

Culture A2 - hMSCs derived from bone marrow cultured on A microcarriers from   

the X Company. From the 3rd day on, 25% of the medium was renewed every 2 

days.  

 

 For all the cultures, cells were culture in spinner flasks during 13 days and a 

medium sample was collected everyday (with an exception of day 2), with the samples 

being classified as before and after, if taken before or after the medium renewal, 

respectively. The conventional quantification of glucose, lactate and ammonia of these 
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three cell cultures was performed, using an automatic analyzer YSI7100MBS (Yellow 

Springs Instruments). For detail information on the protocol see Carmelo (2013). At the 

time of the conventional measurements about 1 mL of the medium samples was preserved 

(-20°C), for further FTIR analysis.   

 

Spectral acquisition 

The supernatant samples, preserved at -80°C, were thawed at room temperature 

and then triplicates of 25 µL of each sample was transferred for a 96-wells KBr plate for 

the FT-MIR high-throughput measurements. Before spectral acquisition the samples were 

dehydrated for about 2 and a half hours in a desiccator under vacuum. The spectral data 

were collected using a FTIR spectrometer (Burker, HTS-XT) equipped with an HTS 

accessory. Forty scans, with a 4 𝑐𝑚−1 resolution, in transmission mode, were collected 

in the wavenumber region between 500 and 4000𝑐𝑚−1. Each spectrum was baseline 

corrected with the OPUS software (Bruker, Germany) prior to data analysis.  

 

Spectral data analysis 

Data pre-processing, including multiplicative scatter correction (MSC), 1st and 2nd 

derivatives, and PCA and PLS regression models were carried out using Matlab R2012b 

(Matworks, Natick, MA, USA). Derivatives were computed using Savitzky-Golay 

algorithm, with a filter window of 15 data points and a 2nd order polynomial. Baseline 

correction were carried out using OPUS software (Bruker, Germany). The performance 

of the PLS models was accessed through the evaluation of root mean square error of 

calibration (RMSEC), root mean square error of cross-validation (RMSECV), root mean 

square error of prediction (RMSEP), the correlation coefficient (𝑅2) and the error as 

percentage of the concentration range (ER%), given by: 

𝐸𝑟𝑟𝑜𝑟 𝑎𝑠 % 𝑜𝑓 𝑟𝑎𝑛𝑔𝑒 =
𝑅𝑀𝑆𝐸𝑃

𝑟𝑎𝑛𝑔𝑒 𝑜𝑓 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛
× 100%     (Equation IV.1) 

 

 The best pre-processing techniques were chosen based on the closeness of 

replicates in the PCA score plots and on lower RMSEC, RMSECV, RMSEP, ER% and 
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higher 𝑅2  in PLS models. The PLS regression vector and the percentage of variance 

explained versus the number of latent variables were also considered.  

 

 

IV.1.3 Results and Discussion 

 Expansion of hMSCs requires not only the optimization of the culture’s conditions 

but also the development of new methods that can offer real-time monitoring of the 

bioreactor. The main goals of the present work were to monitoring the cell’s expansion 

and evaluate critical events concerning the consumption of key analytes, as glucose, the 

production of by-products that can be harmful to the cells (e.g., lactate or ammonia), while 

evaluating the reproducibility of the process in function of input perturbation, such as 

different microcarriers or feeding regimes. Furthermore, hMSCs culture conditions are 

not well optimized yet and the process of expansion and differentiation of these cells is 

not truly understood, FTIR spectroscopy can be a very useful tool to increase the 

knowledge about the bioprocess itself. For these purposes, three different expansion 

cultures, using different microcarriers and different feeding regimes, were analyzed. 

Several distinct analyses were performed based on the spectral data acquired for the 

medium samples of the three independent cultures. First, PCA models were able to find 

a relationship between spectral data and cellular events, like the cell’s growth stages or 

toxic effects due to excessive concentrations of products such as ammonia and lactate, 

and also provided increased bioprocess knowledge. On the other hand, PLS regression 

models allowed the quantification of three principal components present in the media that 

are essential for cellular growth: glucose, one of the main energy sources to the cells, 

lactate and ammonia, metabolic waste by-products that, in excessive concentrations, may 

inhibit cell’s growth, and therefore must be rigorously controlled (Rodrigues et al., 2011) 

 

Conventional analysis for metabolite determination 

In order to monitor the consumption of nutrients and the production of 

metabolites, supernatant from the three culture runs were analyzed every day and glucose, 

lactate and ammonia concentrations were determined using an automatic analyzer 

YSI7100MBS (Yellow Springs Instruments) (Figure IV.1). In general, for the cultures in 
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which the medium was renewed every day, i.e., cultures S and A1, (Figure IV.1) exhibited 

similar glucose, lactate and ammonia profiles, where slightly higher ammonia levels were 

reached for the culture A1 (Figure IV.1). On day 9, an ammonia concentration of 2.5 mM 

was reached, which can be considered as growth inhibitory. For culture A2 (Figure IV.1) 

the concentrations of the three metabolites showed slightly different profiles. As 

expected, by the less frequent medium renewal, culture A2 experiment reached lower 

concentrations for glucose and higher concentrations for lactate and ammonia.    
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Figure IV. 1 - Concentrations profiles for glucose, lactate and ammonia during hMSCs expansion in Solohill microcarriers (culture 

S), A microcarriers with the media renewed every day (culture A1) and A microcarriers with the media renewed every 2 days 

(culture A2). 
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Conventional analysis for the evaluation of hMSCs proliferation 

The three independent cultures presented a similar lag growth phase, which last 

until day 5 of the culture run, and a similar exponential growth phase, since day 5 to day 

8 (Figure IV.2). Cultures S and A1, with a daily medium renewal, showed more similar 

profiles and by the end of day 13 the same cell density was reached, i.e. 2.5 × 105 

cells/mL. However, a slower expansion was observed for the culture A1, even with a 

similar final cell density (Figure IV.2). For culture A2, the cell density along the culture 

and at the end of the culture was lower, which may be due to the accumulation of by-

products or lower levels of glucose. Also, since day 9, cell-microcarriers aggregates could 

be seen and becoming larger with time, even if no cell detachment from the microcarriers 

was observed. However, the cell-microcarrier aggregates can difficult the assessment of 

cell viability and the sampling process (For more detailed information about the cultures 

see Carmelo (2013)). 
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Figure IV. 2 – Cells’ concentration for hMSC cultured on Solohill microcarriers (culture S), A microcarriers with the medium 

renewed every day (culture A1) and every 2 days (culture A2).  



35 
 

Principal Component Analysis (PCA)  

Principal component analysis (PCA) is a data reduction method often used in 

spectral data analysis that decompose the spectral data into new variables, called  

principal components (PCs), that capture the most variance in data (Jollife, 2002). PCA 

models were developed with the goal of finding meaningful relationships between the 

spectral data and cellular events, such as different phases of the cell’s cycle, and to 

evaluate differences due to the medium composition After building an appropriate and 

robust PCA model able to monitoring hMSCs cultures, it will be possible to apply such 

model for new coming cultures and evaluate if the culture conditions are the desired ones 

for hMSCs expansion and, more important, if none of the key metabolites under study 

have reached critical values. Moreover, PCA provides increased understanding about the 

culture itself and allows detecting undesirable events during the culture run, such as 

contaminations, only currently detected at the end of the culture run with conventional 

methods.  

Different pre-processing techniques were applied to the spectral data of each 

culture before developing the PCA models. The best PCA results were obtained using the 

data pre-processed with baseline correction, MSC, 1st and 2nd derivatives, allowing the 

replicates to be aggregated and showing tendencies in data that were not visible before 

pre-processing.  

Figure IV.3 shows the PCA score plot of the A1 experiment, with PC1 and PC2 

representing 94.9% and 1.9% of the variance explained in the data, respectively, after 

applying baseline correction and MSC to the data. Grouping of the samples according to 

the cellular stage (Figure IV.4) can be clearly observed: A first group consisting of 

samples from the early culture days (from day 1 to day 3), representing a period of 

adaptation of the cells to the culture conditions - the lag phase of cell’s growth (according 

to Figure IV.4); a second group consisting of samples reflecting the exponential phase of 

cellular growth (from day 3 to day 8), where an exponential proliferation happens 

(according to Figure IV.4); a third group, consisting of samples representing the 

plateau/decline phase (from day 8 to day 13), where there is no increase in the cell number 

and cellular death start to occur (according to Figure IV.4). 
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Interestingly, samples from day 8 seem to be isolated from the other groups. The 

reason why this happen is not clear and more experiments shall be carried out to explain 

this behavior.  

 

 

 

  

 

 

 

 

 

 

Figure IV. 3 - PCA analysis (after applying MSC to the replicates) of the hMSCs cultured microcarriers A from 

Company X, with a medium renewal every day (Culture A1). Three groups can be observed: samples from day 

1 (D1) and day 3 (D3) before the medium renewal (bef); samples from day 3 (D3) to day 7 (D7) after the medium 

renewal (aft); samples from day 8 after the medium renewal (D8 aft) to day 13 (D13)  

 

 

 

 

 

 

 

 

 

 

Figure IV. 4 – Cells’ concentration for hMSC cultured on A microcarriers, with the medium renewed 

every day (Culture A1). 
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The same approach was conducted for culture A2 (Figure IV.5). In the PCA scores 

plot, with PC1 and PC3 representing 70.9% and 5.9% of the variance explained in the in 

data, respectively, the grouping of samples was not as clear as for culture A1, however 

there was a separation of the samples before day 7 from the samples after day 7. 

According to the data of the cellular growth, cells stopped growing after day 7 (Figure 

IV.6), which may explain the separation of the samples in the PCA score plot.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure IV. 5 - PCA analysis (after applying MSC to the replicates and first derivative) of the hMSCs cultured 

microcarriers A from Company X, with the medium renewed every 2 days (culture A2). BEF – before the media 

renewal; AFT – After the media renewal; D – day; the numbers correspond to the day of the culture run, from 

day 1 to day 13.  
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Interestingly, it was only possible to visualize grouping of the samples according 

to the cellular growth stage in the PCA score plots for the culture where hMSCs were 

cultured in microcarriers A from the X Company (cultures A1 and A2). For the hMSCs 

cultured on the Solohill microcarriers (culture S) there was no grouping according to the 

cellular stage, even after trying different pre-processing techniques (Figure IV.7).  

 

 

 

 

 

 

 

 

 

Figure IV. 6 – Cells’ concentration for hMSC cultured on A microcarriers, with the medium renewed 

every 2 days (Culture A2). 

0,0E+00

5,0E+04

1,0E+05

1,5E+05

2,0E+05

2,5E+05

3,0E+05

3,5E+05

4,0E+05

0 2 4 6 8 10 12 14

C
el

ls
/m

L

Time (days)

Microcarriers A - medium renewal every 2 days

Figure IV. 7 - PCA analysis (after applying MSC to the replicates and first derivative) of the hMSCs cultured microcarriers Solohill 

microcarriers (Culture S), with the medium renewed every day (culture S). BEF – before the media renewal; AFT – After the media renewal; 

D – day; the numbers correspond to the day of the culture run, from day 1 to day 13. 
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Sandor et al. (2013) did a similar approach, they used MIR and NIR spectral data 

acquired along several CHO culture runs, for the development of PCA models. The PCA 

score plot obtained by these authors showed the same progression of samples along all 

the culture runs. They suggested that the trajectory in the 1st PC was related to the cell 

growth, while the 2nd PC was related with lactate, glutamate and ammonia concentrations. 

In spite of grouping of the scores according to the cell grown, the above trajectories were 

not observed in this work, probably due to the fact that a different cell type was used. 

Also, on the contrary of the work conducted by Sandor et al. (2013), hMSCs were grown 

in microcarriers.  

The PCA scores plots for the cultures studied provided valuable information, 

indicating that FTIR spectroscopy could be used to monitoring hMSCs expansion. More 

culture runs should be followed using FTIR spectroscopy, not only to retain as much 

information as possible through this technology, but also to develop robust models than 

can later predict the behavior of a given culture, thus providing a valuable help in the 

optimization of the conditions of bioreactors.  

 

Partial Least Squares (PLS) regression models 

For the development of the PLS models two distinct approaches were carried out, 

using a leaving-one-out (LOO) cross-validation (CV) methodology and using a 

calibration and a test set validation approach. PLS models based on LOO cross-validation 

were developed for each culture independently, since there were fewer samples available 

(up to 68 for each culture, including the three replicates for each sample). For the 

construction of the PLS models using all the 176 samples (including the replicates), from 

the three cultivations, samples were divided in two sets: a calibration set for the model 

development, 120 samples randomly chosen from the three cultures, and a test set used 

for external validation, consisting on 56 samples randomly chosen from the three culture 

runs. The models were built for the three components under study: glucose, lactate and 

ammonia.  

A very important factor to have into consideration when building a PLS model, 

especially when dealing with mammalian cell cultures that are very complex, is that as 

much variance as possible should be introduced during the model construction, i.e., the 

model must be based on experiments with different culture conditions (Petiot et al., 2010): 
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different feeding regimes and different types of microcarriers can improve PLS model 

performance.  

To enhance the predictive ability of the PLS models, different pre-processing 

techniques were applied to the spectral data, namely MSC and derivatives. MSC was 

applied to the data in order to eliminate the effect of physical phenomena like the light 

scattering effect of particles of different sizes and shapes (Helland et al., 1995), highly 

relevant in case of dehydrated films. During the dehydration process an irregular surface 

may be formed, which introduces a certain degree of error when we are analyzing 

replicates, due to effects of light scattering. The main goal of applying derivatives to the 

spectral data is to enhance the information in data, while eliminating physical 

interferences that can compromise the relationship between the data and the biological 

samples.  

The number of latent variables (LVs) must be carefully chosen when building a 

PLS model, as too many variables can lead to overfitting and a very specific model, which 

means that the prediction ability outside these conditions is reduced. On the other hand, 

a very low number of latent variables can lead to underfitting. The ideal is to select the 

number of new variables that allows covering the complexity of the data, while avoiding 

overfitting. The number of latent variables always depends on the model, but in general 

models with a lower number of LVs are more robust. However, they may fail if not 

enough variance is covered in the construction of the model (Haaland et al., 1988; 

Teixeira et al., 2009). 

The best models, with an optimum number of LVs, and the highest predictive 

ability were chosen based on: the highest 𝑅2, the lowest RMSEP and/or RMSECV and a 

high percentage of variance explained in data (~ 98%). Based on the above measures of 

performance, the best models were obtained using the data prior pre-processed with MSC 

and first derivative (Table IV.1).  
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Table IV. 1 – PLS regression models, with data pre-processed differently, for glucose prediction of hMSCs 

cultured on Solohill microcarriers with the media renewed every day (Culture S). MSC – multiplicative scatter 

correction 

 
Without pre-

processing 
MSC 

MSC + 1st 

derivative 

MSC + 2nd 

derivative 

LV R² RMSECV R² RMSECV R² RMSECV R² RMSECV 

2 0,79 0,70 0,81 0,66 0,95 0,34 0,95 0,34 

3 0,92 0,43 0,94 0,37 0,97 0,26 0,96 0,31 

4 0,944 0,36 0,95 0,32 0,98 0,22 0,98 0,23 

5 0,96 0,32 0,96 0,32 0,99 0,18 0,98 0,19 

6 0,96 0,29 0,97 0,25 0,99 0,18 0,99 0,18 

7 0,97 0,28 0,98 0,23 0,99 0,17 0,99 0,15 

 

 

The best PLS models obtained for culture S (Table IV.2), using LOO CV, were 

based on 4 LVs for glucose and lactate and 5 LVs for ammonia prediction. The PLS 

model for glucose explained about 98% of the variance in data, with a 𝑅2 of 0.98 and a 

RMSECV of 0.22 (mM), corresponding to an error as percentage of range of 4.7%. About 

98% of the variance in the data was explained by the lactate model, with a 𝑅2 of 0.98, a 

RMSECV of 0.36 (mM) (error as percentage of the range of 4.4%). The RMSECV 

obtained was higher for the lactate than for the glucose model, with an error as percentage 

of the range similar to the glucose model, given the concentration range of the lactate was 

higher. For ammonia the best model yielded a 𝑅2 of 0.95, a RMSECV of 0.06 (error as 

percentage of the range of 5.7%) and explaining about 95% of the variance in data. 

Very similar models for glucose, lactate and ammonia were obtained for culture 

A1, where the hMSCs were cultured on A microcarriers from the X Company (Table 

IV.2). 

The PLS models developed for the culture A2, where hMSCs were cultured in A 

microcarriers from X Company with a medium renewal every 2 days (Table IV.2), 

provided the best results for glucose and lactate predictions, using less LVs than the 

previous models. The lower error as percentage of the concentration range achieved for 

glucose and lactate are the result of the lower RMSECV and also the larger concentration 

range, since the medium was changed every 2 days so these cellular products achieved 

higher concentrations when comparing with the first two cultures, where the medium was 

renewed every day since day 3. A slight decrease in the predictive ability for ammonia 
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was observed, however, yielding a 𝑅2 0.94 of and a RMSECV of 0.09 (representing 5.7% 

of the concentration range). 

 

 

 

In general, the ammonia models yielded higher errors, compared to glucose and 

lactate predictions, probably because the range of concentrations tested was lower and 

because it was present in the samples in a lower concentration that the other analytes 

evaluated. 

Similar results were obtained by Card et al. (2008) for glucose, lactate and 

ammonia prediction for HEK cells cultured in bioreactors, using on-line NIR 

spectroscopy for the development of PLS models using selected spectral regions. Also 

Harthburn et al. (1998) performed on-line NIR monitoring of a CHO cell line and, 

regarding glucose, lactate and ammonia concentrations, using the entire spectral window. 

Poor results were obtained by these authors, compared to our study, especially for 

Table IV. 2 – PLS models for glucose, lactate and ammonia prediction for hMSCs cultured on Solohill 

microcarriers (culture S), A microcarriers with daily media renewal (culture A1) and hMSCs cultured on A 

microcarriers with the medium renewed every 2 days (culture A2).  

Culture Analytes LV R² 
RMSECV 

(mM) 

Concentration 

range (mM) 

Error as % of the 

concentration range 

 Glucose 4 0.98 0.22 0.01 – 4.61 4.7 

S Lactate 4 0.98 0.36 1.39 – 9.65 4.4 

 Ammonia 5 0.95 0.06 1.29 – 2.33 5.7 

 Glucose 4 0.98 0.23 0.00 – 5.54 4.2 

A1 Lactate 5 0.98 0.39 0.02 – 9.24 4.3 

 Ammonia 5 0.94 0.06 1.09 – 2.27 5.4 

 Glucose 3 0.99 0.17 0.01 – 5.54 3.16 

A2 Lactate 3 0.99 0.25 0.02 – 9.68 2.54 

 Ammonia 4 0.94 0.09 1.09 – 2.67 5.68 
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ammonia for which a correlation coefficient between measured and predicted values of 

0.76 was obtained. Petiot et al. (2010) used on-line NIR spectroscopy for the 

quantification of glucose and lactate for Vero cells grown in microcarriers. The results 

were significantly worse than the ones obtained here and by other authors, namely a 

correlation coefficient of 0.86 and 0.88 for glucose and lactate, respectively. Actually, 

Petiot et al. observed that the presence of the microcarriers caused an increase of intensity 

of the spectra, due to an increase of the pathlength. It is probably necessary to optimize 

the culture conditions when using NIR spectroscopy for on-line measurements, such as 

the size and concentration of the microcarriers, or alternatively, to consider if MIR at-line 

analysis as the best solution for these cases. Sandor et al. (2013) did a comparative study 

between NIR and MIR spectroscopy for monitoring mammalian cell cultures. In generally 

NIR spectra performed better for the development of PCA models and MIR spectra 

yielded more accurate PLS models. It would be interesting to see more comparative 

studies between the two techniques, essentially as they can be complementary.  

One factor that must be taken into account when evaluating PLS models for 

different parameters while studying a cell culture, is that some of these parameters are 

highly correlated with each other (for instance lactate is a product of glucose 

consumption, as mentioned earlier). The different feeding conditions applied to the 

culture runs can be very useful to break these correlations between the compounds under 

study (Sandor et al., 2013). Also some useful information can be obtained through the 

regression vector, as it provides information about the spectral regions that were used for 

the model construction, allowing to ensure that  one component is not being predicted 

based on others.  

The regression vectors obtained for glucose and lactate (Figures IV.8 to IV.10) 

are more similar as expected, since the two have similar molecular composition, so they 

absorb in similar regions and those regions will contribute more for the PLS regression 

model. Nevertheless, within those regions, both analytes show distinct intensities which, 

along the different feeding regimens, allows discarding the hypotheses of predicting one 

component from the other 
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Figure IV. 8 - Regression vector from the best PLS models build for glucose, lactate and ammonia, with medium 

samples from hMSCs cultured in Plastic Solohill microcarriers coated with CELLstart (Culture S). 

 

 

Figure IV. 9 - Regression vector from the best PLS models build for glucose, lactate and ammonia, with medium 

samples from hMSCs cultured in A microcarriers from X Company, with a daily medium renewal (Culture A1). 
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Figure IV. 10 - Regression vector from the best PLS models build for glucose, lactate and ammonia, with medium 

samples from hMSCs cultured in A microcarriers from X Company, with a medium renewal every 2 days 

(Culture A2). 

 

    

An additional PLS model was developed using all samples available from the 

three independent cultures (176 samples with replicates), divided in a calibration and a 

test set. All the cultures were performed in different conditions, as concerning the 

microcarriers where the cells were expanded (Solohill or X microcarriers) and the 

frequency of the medium renewal (every day or every two days). When choosing the 

calibration and the test sets two important “rules” were followed: First, the calibration 

and test sets consisted of samples randomly chosen from the three cultures with the range 

of the variables measured for the validation samples being represented in the calibration 

set; Second the calibration set must contain about 2/3 of the available samples and the 

test set about 1/3. The calibration set contained 120 samples and the test set 56 samples.  

When comparing the PLS models using all samples available with the models 

developed using only one culture, a slightly decrease in the predictive ability was 

observed, as expected, since the three cultures were performed in different conditions and 

the number of the total samples available was considerably low. Nevertheless, the models 

for glucose and lactate estimation showed very good prediction ability.  

A glucose model based on 5 LVs was chosen (Figure IV.11), as for 6 LVs an 

increase of the RMSEC was observed, which may indicate overfitting. A RMSEC of 0.33 
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and a RMSEP of 0.32, with a 𝑅2 of calibration of 0.95 and a 𝑅2of validation of 0.97 were 

obtained. Compared to the previous models, a considerable increase in the RMSEC (about 

58% more than the mean of the previous RMSECV) and a RMSEP slightly higher than 

the RMSECV obtained earlier. The RMSEP obtained correspond to an error of 5.7% as 

percentage of the concentration range. The correlation coefficients obtained also indicate 

a god fit. 

For the lactate prediction (Figure IV.12), 5 LVs produced an increase of about 

69.5% for RMSEC, compared to the mean RMSECV obtained for the previous models. 

Again the RMSEP here is also higher than the mean RMSECV previously obtained, 

representing an error of 5.5% as percentage of the concentration range which is again not 

very high. Also a correlation coefficient of 0.97 for the validation samples indicates a 

good predictive performance of the model.  
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Figure IV. 11 - Glucose concentration measured and predicted (5 LVs), using the entire spectral region and the 

spectral data from the three independent cultures, divided in a calibration and test sets. 
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Figure IV. 12 - Lactate concentration measured and predicted (5 LVs), using the entire spectral regions and the 

spectral data from the three independent cultures, divided in a calibration and test sets. 

 

 

The PLS model obtained for ammonia, using all samples, divided in two sets as 

described earlier, yielded considerably worse predictions when compared to the PLS 

models for each individually cultures. As an attempt to improve the model’s predictive 

performance, two models with selected spectral regions were built: First, using the 

spectral region between 500 and 1900 𝑐𝑚−1 , as by the regression vector this region 

showed a high contribution for model development (darker gray - Figure IV.13); second, 

eliminating the spectral regions 3500-4000𝑐𝑚−1  and 1872-2700𝑐𝑚−1, showing to have 

a lower contribution for the model development (lighter gray - Figure IV.13). 

The model using the spectral region between 500 and 1900 𝑐𝑚−1  showed no 

improvements, which may indicate that even showing a lower contribution to the model, 

these regions still provide meaningful information. For the second model, for which two 

spectral regions were eliminated, the prediction results slightly improved. For the 

ammonia prediction (Figure IV.14), 5 LVs were selected and a RMSEC of 0.09 (mM) 

was obtained, representing an increase of about 31% when comparing with the mean of 

the results obtained for the previous models, and a RMSEP of 0.14 (mM), representing 

an error of 11.6% as percentage of the concentration range, twice the errors previously 

obtained. The correlation coefficient also decreased, with a 𝑅2 of calibration of 0.86 and 
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a 𝑅2 of validation of 0.79. Again, ammonia is present in very low concentrations and also 

the concentration range is very limited, which can explain the poorer predictions 

compared to the other analytes.  
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Figure IV. 13 – Regression vector from the ammonia PLS model (5LVs), using the entire spectral region and the spectral data from the 
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Figure IV. 14 – Ammonia concentration measured and predicted (5 LVs), eliminating selected spectral regions 

and using the spectral data from the three independent cultures, divided in a calibration and test sets.  
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IV.1.4 Conclusions 
 

Human mesenchymal stem cells have received considerable attention in the past 

years, as they are very promising candidates for cellular therapy, due to its high 

differentiation and immunomodulatory abilities. Being present in the human body at a 

very low number, its expansion in bioreactors is still a critical step. It is necessary not 

only to obtain the high number of hMSCs needed for therapy, but at the same time to 

ensure safety and reproducibility of the process.  

Parameters that are normally monitored on-line during bioprocesses include pH, 

dissolved oxygen concentration and dissolved carbon dioxide concentration. Glucose, 

lactate and ammonia are also currently monitored, however, through off-line methods. 

Normally HPLC or an automatic analyzer as the one applied here for the conventional 

analysis are used. These conventional methods are usually time-consuming, do not allow 

to quantify all the desired components, require reagents or standard solutions and a high 

sample’s volume is usually necessary. On the other hand, FTIR spectroscopy allows to 

rapidly evaluate several components at a time, from a single spectrum, the sample’s 

volume necessary is very low (25μL or lower) and with no need of reagents. 

The potential of MIR spectroscopy to monitoring hMSCs’ expansion in 

bioreactors was studied in the present work, testing three independent hMSCs 

experiments, where the cells were grown in microcarriers. Qualitative and quantitative 

analysis were carried out, PCA and PLS regression models, respectively, in order to 

characterize the cultures. While PCA allowed to understand the processes, media 

composition and the cell’s growth, PLS allowed estimating glucose, lactate and ammonia 

concentrations.  

Through PCA models were possible to observe the grouping of the samples 

according to the cellular growth. This approach can be extremely useful when analyzing 

hMSCs expansion. An interesting experiment would be contaminating purposely the cells 

during the culture run and trying to detect that contamination through PCA analysis. Also, 

very accurate results were obtained through the PLS models development, concerning all 

variables, specially glucose and lactate. Were achieved correlation coefficients between 

measured and predicted values of 0.99 for both glucose and lactate. For ammonia the 

results were slightly poorest, probably as the concentrations of ammonia in the media 
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were very low and also the concentration range was much reduced, when comparing with 

the other metabolites studied.  

In the present work FTIR spectroscopy, combined with multivariate data analysis, 

proved to be an ideal tool to monitoring cell bioreactors, since it allows increasing the 

knowledge of the process itself in a rapid and simple way, and to estimate the 

concentration of several parameters in one step, instead of performing a high number of 

expensive and time-consuming analyses. In that way, the parameters can also be 

optimized to ensure the quality of the process and that the necessary cell’s number is 

achieved.  
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IV.2 Estimating the transfection efficiency on a cell 

population by FTIR spectroscopy without the need for 

reporter genes 

 

IV.2.1 Introduction 

 

Reporter gene is a common term for describing genes with measurable 

characteristics, which allow them to be easily distinguished from other endogenous 

proteins (Naylor, 1999). Reporter genes are routinely used in every molecular and cellular 

biology laboratory for numerous applications, such as cytotoxic assays (Parekh et al., 

2012), drug discovery (Stadel et al., 1997), for studying gene expression as the roll of 

particular promoters (Jeyaseelan et al., 2001), for monitoring transcriptional activities 

(Yang et al., 1997) or the production of recombinant proteins (Durocher et al., 2001), 

understanding cell communication, cellular development, regulation of cell’s growth and 

proliferation, protein-protein interactions, protein sub-cellular location or even studying 

transfection events (Jiang, 2008).   

Examples of reporter genes commonly used include chloramphenicol 

acetyltransferase (CAT), alkaline phosphatase (AP), β-galactosidase (β-gal), green 

fluorescent protein (GFP) and luciferase. The choice of the ideal reporter gene is 

motivated by the type of the cell used, as it is important to ensure that no endogenous 

activity exists, and the adaptability of the experiment to the detection assays. 

CAT is a bacterial enzyme that catalyzes the transference of acetyl groups from 

acetyl CoA to chloramphenicol, prior labeled with a radioisotope. In a tin liquid 

chromatography (TLC) the acetylated forms of chloramphenicol will migrate faster, as 

compared with the non-acetylated forms. The amount of acetylation is proportional to the 

expression of the CAT reporter gene. CAT has the great advantage of not detecting 

endogenous activity when dealing with mammalian cells, however the assay involves 

cells disruption and the need for radioisotopes, which limits its in vivo application (Jiang 

et al., 2008). Furthermore it was observed by Zhang et al. (2013) a decrease in gene 

expression, when using CAT for promoter activity qualification and quantification 

analysis in HepG2 transfected cells, which suggests that this reporter gene has a silencer 

activity. Two explanations for CAT silencer activity were suggested by the authors. 

Promoters or regulatory elements, both crucial elements for gene expression, exist in the 
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context of the overall gene structure and chromatin conformation. Adding extra 

nucleotide sequences without specific structural elements can compromise this harmony, 

the promoter regulation, and, consequently, change the gene expression. Another 

hypotheses, according to the authors, is that CAT reporter gene can actually possess 

structural elements that negatively affect gene expression. 

AP assays involve a substrate that is hydrolyzed by the AP, with, the resulting 

absorbance changes being detected by a chemiluminescent or fluorescent assay. Probably 

the main disadvantage of using AP, apart from requiring the use of substrates, is the 

background activity, as mammalian cells also express endogenous AP, which will limit 

the sensitivity of the technique. Secreted alkaline phosphatase (SEAP) are also available, 

with the AP being secreted by the cells, thus facilitating the sampling procedures as cell 

disruption is no longer necessary. The background activity is also reduced for SEAP 

(Jiang et al., 2008; Yang et al., 1997).  

Similar to CAT, the E. coli β-gal, is a bacterial enzyme, which can be detected by 

hydrolysis of a substrate, usually o-nitrophenyl β-D-galactopyranoside (ONPG). β-gal 

also presents no endogenous activity, however, besides requiring substrate and cell lysis 

the assay has a narrow dynamic range and a very poor sensitivity.  

GFP gene, isolated from the bioluminescent jellyfish Aequorea, is probably the 

most frequently used reporter gene for studying biological systems. The great advantages 

of GFP include the fact that it is an autofluorescent protein, thus not dependent of any 

substrate, making possible the study of intracellular events without disrupting the cells, 

and no endogenous activity is detected in mammalian or even bacterial cells.  Also, 

several mutants of GFP gene are available nowadays, with improved fluorescence. 

However, GFP gene has a considerably size, so precious plasmid space can be lost, and 

GFP protein is very sensitive to changes in temperature and oxygen concentrations (Jiang 

et al., 2008). 

Luciferase is a generic term for describing bioluminescent proteins that catalyzes 

the oxidation of a substrate, emitting light. No endogenous activity is detected in 

mammalian cells and luciferase assays are sensitive. Additionally, luciferases have a large 

emission broad, and emits light at wavelengths capable of penetrating cells and tissues, 

so the detection does not involve cell lysis. However, bacterial luciferases, often used as 

reporter genes, have limited applications as they are unable to continuously produce light, 
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it has limited cellular permeability and limited contrast. Belancio et al. (2011) reported 

artifacts in the luciferase activity, when comparing a wild type protein and the same 

protein with a point mutation, and obtained the same luciferase activity. Since luciferase 

activity is an indirect method to evaluate protein expression, it may happen that mutations 

in the target gene may be overlooked.  

As pointed, reporter genes represent a generalized tool in cell and molecular 

biology based work, with a high diversity of applications. However, reporter genes 

present serious limitations, most of the times not considered, and that may impair the final 

work’s goals. The main drawbacks are the possible background activity, usually the 

assays involve cell disruption and have low sensitivity. Also the silencer effect described 

for CAT and the misleading results provided by luciferase represent serious 

disadvantages. Therefore, the ideal reporter gene is still to be discovered as it should have 

none or reduced background activity, meaning that the gene should not be naturally 

expressed by the host cell, the detection should not involve cell disruption and the assay 

must be sensitive, reproducible and not time-consuming (Jiang et al., 2008). The 

development of alternative techniques that can bypass the need for reporter genes is thus 

highly desired. 

Fourier transform infrared (FTIR) spectroscopy can be a promising candidate to 

bypass the need for reporter genes. Besides allowing quantitative analysis, FTIR 

spectroscopy also enables the extraction of meaningful information about biochemical 

cellular events. Particularly in the mid infrared region (MIR), the fundamental vibration 

modes of biomolecules can be measured, with the resulting FT-MIR spectra of a cell 

reflecting its specific metabolic status, such as the general gene expression. For example, 

FTIR spectroscopy has been used to detect cell cycle events (Pacifico et al., 2003), stem 

cells differentiation (Ami et al., 2008) and carcinogenic processes (Gazi et al., 2006). 

FTIR spectroscopy has also been used for monitoring cell cultures, allowing the 

estimation, from a single spectrum, of several variables such as the concentration of 

biomass (cells), carbon sources, by-products (e.g., ethanol and acetate), plasmid (Lopes 

et al., 2013) and recombinant proteins (Ami et al., 1999; Arnold et al., 2003; Harthun et 

al., 1998, McGovern et al., 1999; Rhiel et al., 2010; Sandor et al., 2013). 

The present work aims to evaluate the application of FTIR spectroscopy to detect, 

in a mammalian cell populations, the percentage of cells expressing the target gene, 

without the need for detecting the reporter gene phenotype, in a simple, rapid and cheap 
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way. Also, the measurements were conducted in a high-throughput mode, without 

needing for cell disruption or using any other reagents. FT-MIR spectra were collected 

from dehydrated cell pellets and using a 96-microwells plate. Partial least squares (PLS) 

models were developed for quantitative analysis, based on the spectral data acquired. 

Also, FTIR spectra was analyzed directly, were studied the 1st derivatives spectra and 

some bands’ ratios between some crucial bands, e.g., DNA, RNA, protein and lipid bands, 

with the goal of extracting biochemical cellular information related not only with the 

transfection event itself, but also related with the exposure to the transfection reagent, 

highlighting the sensitivity of the technique. For these purposes, a semi-adherent cell line 

(Human Embryonic Kidney 293 cells, HEK) and adherent cell line (Human gastric 

carcinoma, AGS), and the plasmid pVAX-GFP were used as model systems. 

 

 

IV.2.2 Materials and Methods 
 

Cell culture 

HEK and AGS cells were preserved at -80°C. The cells were grown in an 𝐶𝑂2 

incubator (Blinder CB150, Tuttlingen, Germany) at 37˚C, 5% 𝐶𝑂2 and 99% of humidity.  

HEK cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM) (Thermo 

Scientific) and AGS cells were cultured in Roswell Park Memorial Institute Medium 

(RPMI) (Thermo Scientific), both supplemented with 10% (v/v) of bovine fetal serum 

(BFS) (Thermo Scientific),  previously inactivated by heat (30 minutes at 56˚C), and with 

1% (v/v) of penicillin/streptomycin and 15% (v/v) of L-glutamine (Thermo Scientific), 

in 75 𝑐𝑚2  T-flasks. Cells were cultured until they had reached about 80-90% of 

confluence. For releasing the AGS cells between passages trypsin was used (for 15 

minutes at 37˚C). HEK cells are semi-adherent cells, no trypsin was necessary to release 

the cells between passages, as well as for further spectral analysis. For the transfection 

procedures, about 500000 cells were transferred to each well of a 6-wells plate. 

 

Plasmid  

Both AGS and HEK cells were transfected with pVAX plasmid (Invitrogen), 

containing the GFP gene. 
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Transfection 

Several mixes were prepared for transfection, according to the manufacture’s 

recommendations. A first mix, Mix A, consisting on 15µL of DNA (pVAX with GFP 

gene), 900 µL of DMEM0 (DMEM medium without FBS) (Thermo Scientific) and 9µL 

of Plus reagent (Invitrogen) was incubated for 10 minutes at room temperature. A second 

mix, Mix B, similar to Mix A but with no DNA, was also incubated for 10 minutes at 

room temperature. Two falcons containing Mix C, consisting on 900µL of DMEM0 

(Thermo Scientific) and 10µL of Lipofectamine (Invitrogen). Mix A was added to Mix 

C, called from now on transfection reagent, and incubated for 30 minutes at room 

temperature. Mix B was also added to the other falcon containing Mix C for the control 

cells, called from now on transfection reagent without DNA.  

Three types of controls were carried out: one control consisting exclusively of 

HEK or AGS cells not exposed to any reagent; HEK or AGS cells exposed to 10µL and 

200µL of the transfection reagent without DNA. The two last controls were chosen since 

the volumes represented the minimum and maximum of transfection reagent volume used 

for transfection.  

Different volumes of the transfection reagent were prepared, with the purpose of 

producing cell populations with growing transfection efficiencies: 10µL, 15µL, 25µL, 

50µL, 75µL, 100µL, 120µL, 160µL and 200 µL.  

 Just before the transfection experiments, the medium was removed and 500µL of 

fresh DMEM0 or RPMI0 (DMEM or RMPI without FBS) was added to each well. Then, 

the different volumes of the transfection reagent, with and without DNA, were added and 

4 hours later 2mL of DMEM10 was also added to each plate. The fluorescent imaging 

and FTIR analysis were carried out the day after. 

 

 Fluorescent imaging and conventional quantification  

The GFP fluorescence in HEK and AGS cells was observed, after 24h of cells 

being transfected, using a Axiovert 40CFL microscope (Zeiss, Germany) and the images 

were recorded using a digital high resolution camera (Axiocam Mrc5 (Zeiss)) and the 

Axiovision Rel. 4.6.3. software (Zeiss). The transfection rate for each sample, 



56 
 

corresponding to different volumes of the transfection reagent added, was determined as 

follow: 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑟𝑒𝑒𝑛 𝑓𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑡 𝑐𝑒𝑙𝑙𝑠

𝑇𝑜𝑡𝑎𝑙 𝑐𝑒𝑙𝑙 𝑛𝑢𝑚𝑏𝑒𝑟
 × 100%,            (Equation IV.2) 

where the number of green fluorescent cells as well as the total number of cells in each 

well was assumed as being the mean of several fields.  

 

FTIR measurements  

Twenty-four hours after the transfection procedures, samples were collected from 

the wells, centrifuged (5 minutes at 1500 rpm) and resuspended in 500µl of PBS. From 

each sample, 25µl were placed on IR-transparent Zn-Se-microliter plates (Bruker, 

Germany) and dehydrated for about 2h50 hours, in a desiccator under vacuum. The 

spectra were collected using a FTIR spectrometer (Burker, Germany) equipped with an 

HTS-XT accessory (Bruker, Germany). In order to achieve a high signal-to-noise-ratio 

(SNR), 64 scans, with a 2 𝑐𝑚−1 resolution, in the wavenumber region between 400 and 

4000 𝑐𝑚−1 , were collected. The FTIR spectra were acquired in triplicate and 

quintuplicate, for the HEK and AGS cells, respectively. 

 

Data Analysis 

Spectral pre-processing, namely multiple scattering correction (MSC) and 

derivatives, was carried out using Matlab R2012b (Matworks, Natick, MA, USA) and the 

OPUS software (Bruker, Germany), for baseline correction. Partial Least Squares (PLS) 

regression were carried out also using Matlab R2012b (Matworks, Natick, MA, USA), 

for the quantitative analysis. The performance of the PLS models was evaluated based on 

the root mean square error of cross-validation (RMSECV), the correlation coefficient 

(𝑅2) and the percentage of error according to the transfection efficiency range, as follows: 

𝐸𝑟𝑟𝑜𝑟 𝑎𝑠 % 𝑜𝑓 𝑟𝑎𝑛𝑔𝑒 =
𝑅𝑀𝑆𝐸𝑃

𝑟𝑎𝑛𝑔𝑒 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑐𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦
× 100%    (Equation IV.3) 

The percentage of variance in data explained versus the number of latent variables 

was also considered for model evaluation. The best pre-processing method leading to the 

best PLS models was selecting as the one providing the lowest RMSECV, a low error as 
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percentage of the transfection efficiency range and a high 𝑅2, while explaining a high 

percentage of variance in data and using a reduced number of latent variables.  

 

 

IV.2.3 Results and Discussion 

 

Transfection analysis based on GFP expression 

The conventional method chosen to estimate the percentage of transfected cells in a 

cell population, or sample, was based on the microscope observation of the expression of 

the reporter gene GFP (Figure IV.15), one of the reporter genes most used for non-

invasive monitoring. Two different cell lines were used, HEK and AGS cell lines, 

representing two types of cells, semi-adherent and adherent cells, respectively. The 

transfection of the cell lines, analyzed by microscopic observation of the GFP 

fluorescence, implied counting different fields of observation. The transfection efficiency 

is known to be cell-dependent. Indeed, for the same transfection protocol, AGS had a 

lower transfection efficiency in relation to HEK cells (Figure IV.16).   

 

  

 

 

 

 

 

Figure IV. 15 – Microscopic observation of the green fluorescence emitted by the expression of GFP in HEK cells. 
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Spectral pre-processing and data analysis  

In order to evaluate if FT-MIR spectroscopy could be used for estimating the 

transfection efficiency, 3 or 5 replicates of dehydrated cell pellets, HEK and AGS cells, 

respectively, were analyzed. While possessing a huge amount of information concerning 

the sample being measured, a FT-MIR spectrum also has some undesirable noise 

associated, especially when dealing with dehydrated samples, which are subjected to 

physical interferences, such as light scattering resulting from irregularities on the 

samples’ surface or particles with different sizes and shapes. It is thus necessary to pre-

process the spectral data in order to minimize unwanted spectral interferences, while 

highlighting important information about the sample (Geladi, 2003). Baseline correction, 

multiplicative scatter correction (MSC), normalization and derivatives are probably the 

most commonly pre-processing techniques applied to spectral data. Baseline correction 

is used for removing spectral offsets (Figure IV.17 - A). MSC is often used to eliminate 

changes in spectra due to radiation scattering. MSC minimizes the differences between 
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Figure IV. 16 – Transfection efficiency for HEK and AGS cells, as determined by fluorescence detection of the 

reporter gene expression, GFP. 



59 
 

replicates, by the elimination of those undesirable physical phenomena (Figure IV.17 - 

B). Normalizing the spectra is also very important, since sometimes there are differences 

in the spectra’s intensities that are not related to the property of interested, but are a result 

of differences in the cells’ number instead. In the present work spectra were pre-processed 

using the Amide I band, at 1650 𝑐𝑚−1 (Figure IV.17- C) (Naes et al., 2002). 

The main goal of applying derivatives to the spectral data is to enhance 

information in data, as it is possible to resolve overlapping bands and eliminating physical 

differences, as differences in cell number, which can compromise the relationship 

between the data and the biological sample. First derivative is helpful for resolution 

enhancement of overlapping bands and for offset correction, as the 1st derivative of a 

constant is zero (Fearn et al., 2009; Otto, 1999; Smith, 2011). Fist derivative spectra were 

obtained using the Savitzky-Golay algorithm, that applies a filter/smoothing before 

derivatives to avoid noise amplification. When applying smoothing to the data, there is a 

risk of losing information while eliminating noise, so it is important to choose the 

appropriate number of data points of the window and also the appropriate polynomial 

order. In the present work a window of 15 points and a 2nd order polynomial was used, 

since it eliminates the noise, while maintaining the peaks in the spectra, meaning no 

information regarding the samples is lost (data not shown). First derivative spectra and 

the information that was possible to extract, concerning cells exposed to the transfection 

reagent and transfected cells, are discussed later in this work. 

By pre-processing the data with the methods mentioned above, it is possible to 

highlight relevant information in data, while the undesirable noise is removed.  

In Figures IV.17 (C) and IV.18 are represented the normalized spectra, using 

Amide I band, from AGS and HEK cells, respectively. By normalizing the spectra it is 

possible to see interesting differences. Interestingly, the FTIR spectra capture in a highly 

sensitive way not only the effect of the transfection itself, but also the effect of the 

transfection reagent on the cell’s metabolism. The spectra from AGS cell exposed to the 

transfection reagent without DNA are apart from all the other cell’s spectra. It is not clear 

the reason why the control cells (cells not exposed to the transfection reagent) are so close 

to the transfected cells, representing a transfection efficiency of 10.8%. However, even 

being the spectra from the control cells closer to the spectra from the transfected cells, 

they are different from each other, reflecting, in this way, the transfection event (Figure 
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IV.17-C). For HEK cells, interestingly, can be clearly observed the impact of the 

transfection reagent used (Figure IV.18). The spectra from HEK cells not exposed to the 

transfection reagent are apart from the spectra of HEK cells exposed to the transfection 

reagent, with our without DNA. The transfection reagent used, Lipofectamine, had a great 

impact on cells, as expected, and this was reflected in the spectral data. The results 

showed to be dependent on the cell-type, as expected.  

Even sometimes the spectra can be informative after pre-processed, as shown, it 

is always important to develop other analysis based on  spectral data, especially when the 

goal is to estimate any parameter, as it will be discussed along this work. To better 

evaluate the application of FT-MIR spectroscopy for the estimation of transfection 

efficiency, the subsequent spectra analysis was conducted: 

- Quantitative model for the estimation of the transfection efficiency, based on 

partial least squares (PLS) regression 

- Direct biochemical interpretation, exploring the first derivative spectra and a 

some statistical significant bands’ ratios, associated with the absorption of key 

cellular biomolecules  
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Partial least squares (PLS) regression models 

PLS regression models were developed with the goal of predicting the transfection 

efficiency for HEK and AGS cells from FTIR spectral data 

Different pre-processing techniques were applied to data, in order to obtain the 

best predictive performance. The best PLS models concerning the RMSECV, R² and error 

as percentage of the transfection efficiency range were obtained for data pre-processed 

with MSC and 1st or 2nd derivatives (Table IV.3). As an example, Table IV.3 presents the 

correlation coefficient (R²) and the RMSECV of the PLS regression models from the 

transfection experiment using the HEK cell line, were is observed that different pre-

processing techniques significantly affect the model’s performance 
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Figure IV. 18 - FT-MIR spectra of HEK cells not exposed to the transfection reagent (gray lines), non-transfected 

HEK cells, meaning cells that were exposed to the transfection reagent without DNA (black bold line), and 

transfected HEK cells, representing a transfection efficiency of 17.5% (black dashed line). The spectra were 

normalized with Amide I band and acquired in the 500-4000 𝒄𝒎−𝟏 spectral region, with 64 co-added scans and a 

resolution of 2 𝒄𝒎−𝟏. 
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Table IV. 3 - Correlation coefficients (R²) and RMSECV for the PLS models (5 latent variables) were the data 

is pre-processed with different techniques (data from the transfection experiment with the HEK cell) 

 

 𝑹𝟐 RMSECV Error as % of the range 

Baseline correction 0.63 3.64 20.8 

Baseline correction + MSC 0.69 3.34 19.1 

1st derivative 0.91 1.77 10.11 

MSC + 1st derivative 0.93 1.57 8.9 

MSC + 2nd derivative 0.92 1.67 9.5 

 

 

For the experiment using the HEK cell line the best PLS model for quantifying 

the transfection efficiency was built on data pre-processed with MSC and 1st derivative 

and using 5 LVs explaining about 92% of the variance in data, yielding a correlation 

coefficient between real and predicted values of 0.93, which indicates a good fit (Figure 

IV.19). The RMSECV was 1.57 (%), representing 8.34% of the range of transfection 

efficiency.  
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Figure IV. 19 - Predicted (5LVs) and measured values for the transfection efficiency of the 

HEK cells, using the spectral region between 400 and 4000 𝒄𝒎−𝟏 and data pre-processed with 

MSC and 1st derivative. 
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The best PLS model for quantifying the transfection efficiency using the AGS cell 

line was built on data pre-processed with MSC and 2nd derivative and using 5 LVs 

explaining about 95% of the variance in data, achieving a R² between the true and the 

predicted transfection efficiency of 0.95 and a RMSECV of 0.71 (%), representing 6.64% 

of the transfection range (Figure IV.20). By pre-treating the data with MSC and 1st 

derivative, as for the model above using HEK cells, the results were significantly worse, 

using 5LVs the model yielded a R² of 0.78 and a RMSECV of 1.55, representing about 

14.4% of the transfection efficiency range.  

Both models performed very well, proving that PLS models based on spectral data 

are cell line-independent and can be used as an accurate tool for estimating the 

transfection rate or monitoring the production of heterologous proteins without the need 

of using any reporter gene.  

 

 

Figure IV. 20 – Predicted (5LVs) and measured values for the transfection efficiency of the AGS cells, using the 

spectral region between 400 and 4000 𝒄𝒎−𝟏 and data pre-processed with MSC and 2nd derivative. 

 

 

Besides trying different pre-processing techniques to improve the performance of the 

PLS models, for both HEK and AGS transfection experiments, the selection of different 

spectral regions, according to the regression vector obtained from the PLS model built on 

the entire spectral region (Figures IV.21 and 22), was also evaluated. In terms of 

comparison, it was considered for both AGS and HEK cells the regression vector of the 

models build based on the 1st derivative spectra and after pre-processing the data with 
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MSC, as the regression model build from the 2nd derivative spectra presents, as expected, 

a higher noise. Interestingly, for both cell lines, it seems that the spectral regions 

contributing more for the PLS models are very similar (Figures IV.21 and IV.22). The 

following regions, contributing to the PLS models with the highest coefficients were 

selected, after applying MSC and 1st derivative to the spectral data of HEK and AGS 

transfection experiments: 

- Protein region: 1800 - 1480 𝑐𝑚−1; 

- DNA and RNA region: 1425 - 900 𝑐𝑚−1; 

- Protein and DNA region: 1000 - 1700𝑐𝑚−1; 

- Region between 3400  𝑐𝑚−1and 700 𝑐𝑚−1, in an attempt to eliminate the noise.  

Curiously, none of the models built on specific spectral regions performed better than 

the ones using the entire spectral window (Table IV.4). Although some spectral regions 

seem to poorly contribute for the PLS model, they also contain important information that 

improves the model’s predictive performance.  
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Figure IV. 21 - Regression vector from the PLS model for the HEK transfection experiment using 5 LVs with data pre-processed with MSC 

and 1st derivative and considering the entire spectral window. 
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Table IV. 4 - PLS regression models (5 LVs) using different spectral regions and data pre-processed with MSC 

and 1st derivative for the HEK cells and MSC and 2nd derivative for the AGS cells 

 

  
All 

spectral 

region 

Protein 

Region 

(1800-

1480 

𝒄𝒎−𝟏) 

DNA and 

RNA 

region 

(1425-900 

𝒄𝒎−𝟏 ) 

DNA and 

Protein 

region 

(1000-700 

𝒄𝒎−𝟏) 

Region 

between 

3400-700 

𝒄𝒎−𝟏 

HEK cells 

𝑹𝟐 

 
0.93 0.87 0.91 0.89 0.91 

RMSECV 

(%) 

 

1.57 2.16 1.78 2.04 1.83 

Error as 

% of the 

range 

 

8.34 12.36 10.17 11.64 10.48 

AGS cells 

𝑹𝟐 

 
0.95 0.71 0.94 0.82 0.91 

RMSECV 

(%) 

 

0.72 1.76 0.84 1.42 1.02 

Error as 

% of the 

range 

6.64 16.30 7.80 13.15 9.44 

 

Figure IV. 22 - Regression vector from the PLS model for the AGS transfection experiment, using 5 LVs, with data pre-processed with 

MSC and 1st derivative, considering the entire spectral window.  
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An additional PLS regression model based on LOO cross-validation was built, 

considering simultaneously data from the transfection of AGS and HEL cell lines and 

after data being pre-processed with MSC and 2nd derivative (Figure IV.23). This model, 

obtained using 5LVs, yielded a R² between measured and predicted values of 0.93 and a 

RMSEV of 1.45 (%), representing about 8.3% of the transfection efficiency range. Even 

when introducing more variability in the model, namely different cell lines grown in 

media with different compositions, it is still possible to achieved good estimates of the 

transfection efficiency. These results are very promising, and they suggest that it is 

possible to develop good PLS models for the prediction of the transfection efficiency, 

independently of the cell line or the cells’ growing medium.  

 

 

 

 

 

 

 

 

 

 

 

Analysis of the first derivative spectra  

First derivative spectra can highlight crucial biochemical information about the 

samples that sometimes is hidden in the initial spectra. In the present work, differences in 

the 1st derivative spectra that could be after used as biomarkers for identifying transfected 

cells or a reflection of the exposure to the transfection reagent were selected. Aiming at 

finding differences between cell samples due to the maintenance of heterologous genetic 
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Figure IV. 23 – Predicted (5LVs) and measured values for the transfection efficiency of the AGS and HEK cells, 

using the spectral region between 400 and 4000 𝒄𝒎−𝟏 and data pre-processed with MSC and 2nd derivative. 
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material and the production of an heterologous protein, 1st derivative spectra of HEK and 

AGS cells with the maximum transfection efficiency (17.5% and 10.8%, respectively), 

were compared to the 1st derivative spectra of the cells exposed to the same volume of the 

transfection reagent without DNA, assumed as non-transfected cells. For identifying 

changed bands associated with the exposition to the transfection reagent, 1st derivative 

spectra of HEK and AGS cells not exposed to the transfection reagent, were compared 

with the 1st derivative spectra of cells exposed to the maximum volume of the transfection 

reagent used, 200 mL, called before non-transfected cells. 

For the HEK cells the main differences between transfected and non-transfected 

cells were found in the region between 2700 and 3800 𝑐𝑚−1, attributed to proteins with 

some influence of lipids (Lamberti et al., 2010), proving that FTIR spectroscopy has the 

ability to detect the production of new proteins by the cell, even when they are in much 

lower concentrations when comparing to the host proteins. The first derivative bands that 

showed the greater differences were at 3645 𝑐𝑚−1, 3629 𝑐𝑚−1, 3625 𝑐𝑚−1, 3609 𝑐𝑚−1, 

3584 𝑐𝑚−1 and 3563 𝑐𝑚−1 (A-F in Figure IV.24). These bands, mainly attributed to 

proteins and amino acids (Graça et al., 2013), have a very low intensity in non-transfected 

cells and greatly increase their intensity in transfected cells. Also, the region between 

1500 and 1600 𝑐𝑚−1, Amide II band region (Lamberti et al., 2010), is markedly different 

for transfected cells (G in Figure IV.24).  Additionally, bands corresponding to DNA 

absorption appear slightly different, namely a peak displacement of the band at 1000𝑐𝑚−1 

for transfected cells, attributed mainly to 𝑃𝑂2
− symmetric stretching (Liu et al., 2005) 

(marked as H in Figure IV.24).  
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By analyzing the first derivative spectra of HEK cells exposed and not exposed to 

the transfection reagent (without DNA), the main differences could be observed in bands 
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Figure IV. 24 - First derivative spectra of transfected (dashed line) and non-transfected (bold line) HEK cells, between 3750-

3550𝒄𝒎−𝟏, 1800-1600 𝒄𝒎−𝟏, 1600-1300 𝒄𝒎−𝟏 regions, with selected bands and regions highlighted. 
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associated with lipid absorption (Figure IV.25), in agreement with the reagent chosen for 

the transfection experiments, Lipofectamine. As the transfection event was based on the 

fusion of liposomes with the cellular membrane. Therefore, the cellular membrane 

structure will be affected, in accordance with the 1st derivative spectra.  

 

 

 

The same analysis based on the 1st derivative spectra was performed for the 

transfection experiment using the AGS cell line. As for HEK cells, the spectral regions 

with the major differences between transfected and non-transfected cells are located at 

1800 - 810 𝑐𝑚−1 (Figure IV.26), a region mainly attributed to protein absorption (Walsh 

et al., 2009). In this region the changes between transfected and non-transfected cells 

were concerning some strong bands corresponding to amide I, II and III, located at 1750 

– 1600 𝑐𝑚−1, 1600 – 1480 𝑐𝑚−1, and 1300 – 1180 𝑐𝑚−1, respectively (Lamberti et al., 

2010). For both transfection experiments, using AGS and HEK cell lines, the major 

differences regarding the protein spectral region show the ability of MIR spectroscopy 

for detecting the production of a heterologous protein, even when the protein is present 

in a very lower concentration compared to the other host proteins. As for the HEK cell 

line, a displacement of the band located at 1000𝑐𝑚−1 and attributed to DNA absorption 

(Liu et al., 2005) (Figure IV.26 – B), could also be observed.  

When comparing AGS cells exposed and not exposed to the transfection reagent 

(without DNA) the greater changes were also in bands related to lipid absorption (Figure 
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Figure IV. 25 - First derivative spectra of HEK cells not exposed to the transfection reagent (bold line) and HEK cells 

exposed to the transfection reagent without DNA (dashed line), between 3000-2800 𝒄𝒎−𝟏
. 
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IV.27), as observed for HEK cells and in agreement with the transfection reagent used, 

Lipofectamine.  
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By comparing the 1st derivative spectra from the different cell lines, common 

differences were found, with bands’ changes due the transfection event and even changes 

related to the exposure to the transfection reagent. It was observed that were specific 

regions that were changed for both cell lines, namely the 3000-2800 𝑐𝑚−1 region, which 

changed as a result of the exposition to the transfection reagent, and the 810-1800 𝑐𝑚−1 

region, that changed for both cell lines as a result of the transfection event.  

 

Bands’ ratios  

With the goal of extracting additional information on transfected cells and on the 

effect of the transfection reagent, the ratio between some relevant bands in the spectra, 

e.g. bands attributed to DNA, proteins and lipids absorptions, were also evaluated. IR 

normalization, has conducted at the beginning of the chapter, can minimize the effect of 

differences in the cells’ number. However, to normalize the spectra it is necessary to 

choose a spectra region as constant, as the Amide I band, that however can be different 

in case of the expression of an heterologous gene or due to stress response.   

FTIR spectroscopy is based on the absorption of radiation by a sample, therefore 

the pathlength is a critical variable to take into account. However, the pathlength of the 

sample is irreproducible, as it is impossible to have two different samples with the same 

thickness or the same number of cells. Calculating the ratios between important spectral 
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Figure IV. 27 - First derivative spectra of AGS cells not exposed to the transfection reagent (bold line) and AGS cells exposed to 

the transfection reagent without DNA (dashed line), between 3000-2800𝒄𝒎−𝟏. 



74 
 

bands can thus be very useful, as it allows to eliminating these physical interferences 

while comparing different samples.  

The band’s ratios of some important spectral bands were determined for three 

groups of samples: transfected cells with the higher transfection efficiency (17.5% for the 

HEK cells and 10.8% for the AGS); cells exposed to the transfection reagent without 

DNA, called non-transfected cells; and cells that were never exposed to the transfection 

reagent (control). The spectral data were pre-processed with baseline correction and MSC 

and the differences in the bands’ ratios were considered statistically significant for a p-

value lower than 0.05.   

The effect of the transfection reagent was studied based on the ratios between 

bands resulting from lipid absorption, for both HEK and AGS cells exposed and not 

exposed to the transfection reagent. For both cell lines the ratio between the spectral bands 

2925𝑐𝑚−1 and 2960𝑐𝑚−1, associated to the asymmetric stretching of 𝐶𝐻2 and 𝐶𝐻3 end-

groups of membrane lipids, respectively (Liu et al., 2005), increased for cells exposed to 

the transfection reagent (Figure IV.28). These results are in agreement with the ones 

obtained through the analysis of the 1st derivative spectra (shown before), as well as with 

the transfection reagent used, Lipofectamine.  
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By comparing the ratios of spectral bands from transfected and non-transfected 

HEK cells the following differences were found: 

1) The 𝐴1121 𝐴1020⁄  ratio, associated with the RNA and DNA absorption (Walsh 

et al., 2009), respectively, increased for transfected cells, indicating a higher 

transcriptional activity (Figure IV.29); 

2) The 𝐴1121 𝐴2852⁄  ratio, associated with the RNA and lipid absorption (Walsh 

et al., 2009; Liu et al., 2005), respectively increased for transfected HEK cells, 

also indicating a higher transcriptional activity (Figure IV.29). 

Both of these bands’ ratios shown for HEK cells shown a higher transcriptional 

activity for transfected cells. So these results are in accordance with each other and with 

the transfection event, proving again the sensitivity of the technique.  

For AGS cells, differences in bands’ ratios were also observed, that might be 

attributed to the transfection event, however changes were not consistent with the ones 

observed for HEK cells and also revealed to be less informative. For instance the 

𝐴1087 𝐴1570⁄  ratio, associated to the DNA and Amide II absorptions, respectively, is often 

used to detect changes in the DNA and protein content (Liu et al., 2005; Walsh et al., 

2009). This ratio decreased for transfected AGS cells and may be related with the increase 

in the protein content. However, when relying on ratios using DNA absorption bands, 

some caution must be taken, as those bands are highly influenced by the cell’s stage due 

to different chromatin conformations. Depending on the chromatin conformation the 

absorption of infrared radiation can be different (Figure IV.30). 
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Figure IV. 30 - Ratio between the bands at 1087𝒄𝒎−𝟏  and 1570 𝒄𝒎−𝟏
 (associated with DNA and Amide II 

absorptions, respectively) for AGS cell lines (p value < 0.05). The triangles represent transfected AGS cells and 

the circles the non-transfected AGS cells. 

 

 

 

Figure IV. 29 - Ratio between the bands at 1121𝒄𝒎−𝟏  and 1020 𝒄𝒎−𝟏   (associated with RNA and lipids absorption, 

respectively), and between 1121 𝒄𝒎−𝟏 and 2852 𝒄𝒎−𝟏 (associated with RNA and lipid absorption, respectively) for HEK cell 

lines (p value < 0.05). The triangles represent transfected HEK cells and the circles the non-transfected HEK cells. 

1,46

1,48

1,5

1,52

1,54

1,56

1,58

A
1

1
2

1
/A

1
0

2
0

Non-transfected

HEK cells

Transfected HEK

cells

1,35

1,4

1,45

1,5

1,55

1,6

1,65

1,7

A
1

1
2

1
/A

2
8

5
2

Non-transfected

HEK cells

Transfected HEK

cells

0

0,5

1

1,5

2

2,5

3

0 1 2 3 4

A
1

0
8

7
/A

1
5

7
0

Non-transfected AGS

cells

Transfected AGS cells



77 
 

The ratios determined earlier, although cell-type dependent, can be very 

informative and can be used as biomarkers for the analysis of transfected cells, once again 

proving the potential of FTIR spectroscopy to detect transfected cells without using any 

gene probes. Moreover, important information about the effect of the transfection reagent 

could be extracted.  

 

 

IV.2.4 Conclusions 

 

Reporter genes, are routinely used in molecular and cellular biology laboratories 

for several applications, with fully characterized and broadly implemented procedures. 

However, reporter genes present serious disadvantages, as many of them have 

background activity, the assays involve very time-consuming procedures and have poor 

sensitivity, and cell disruption is sometimes needed for the detection assays. Other 

drawbacks have also been reported, such as a silencer effect as described for CAT (Zhang 

et al., 2013) or misleading results as described for luciferase (Belancio et al., 2011). 

In the present work FT-MIR spectroscopy was evaluated as a substitute for 

reporter genes for estimating the transfection efficiency in a cell population, as it is a very 

sensitive technique, it requires minimal sample preparation and no reagents are necessary, 

and it can be operated in a high-throughput mode. Two different cell lines, HEK and 

AGS, transfected with pVAX plasmid containing the GFP gene, were studied as model 

system in an attempt of evaluating the suitability of this approach. 

Accurate PLS regression models were built to predict the transfection efficiency, 

in HEK and AGS cell lines. For HEK cells, a PLS model built on data pre-processed with 

MSC and 1st derivative, yielded a 𝑅2 between the real and the predicted values of 0.93 

and a RMSECV of 1.57 (%), representing about 8% of the transfection efficiency rate 

range. For the AGS cells, a slightly better model was obtained for spectral data pre-

processed with MSC and 2nd derivative,  yielded slightly better results, with data being 

prior pre-processed with MSC and 2nd derivative, yielding a 𝑅2 of 0.95 and a RMSECV 

of 0.72 (%), representing about 6.6% of the transfection efficiency range. It was also 

possible to build a robust PLS regression model using both cell lines (HEK and AGS cell 
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lines), a 𝑅2 between measured and predicted values of 0.93 and a RMSECV of 1.45 (%), 

representing 8.3% of the transfection efficiency range. 

Besides allowing to estimate the transfection efficiency, FTIR spectroscopy 

shown the ability to simultaneously provide information about the cells’ biochemical 

status. Through the study of the first derivative spectral and a few relevant bands’ ratios, 

was possible to detect statistically significant changes in cells resulting from the 

transfection event as well as the exposition to the transfection reagent.  

 For both HEK and AGS cell lines, it was observed that the spectral regions that 

reflected the greater differences between transfected and non-transfected cells were 

associated with proteins, as expected. Additionally, bands associated with lipid 

absorption reflected the cells’ exposition to the transfection reagent, also as expected.  

Very interesting results were also achieved when studying some relevant bands’ 

ratios. The RNA/DNA (𝐴1121 𝐴1020⁄ ) and RNA/Lipids (𝐴1121 𝐴2852⁄ ) ratios, increased 

for transfected HEK cells, probably indicating a higher transcription activity, in 

accordance with the transfection event. For both HEK and AGS cells, changes were 

detected in ratios of bands associated with lipid absorption, 𝐴3010 𝐴2960⁄ and 

𝐴2925 𝐴2960⁄ , due to the cell exposition to the transfection reagent, again, in accordance 

with the results provided by the first derivative spectra and in accordance to the 

transfection reagent used, Lipofectamine.   

 In resume, all the above approaches for post-transfection analysis yielded very 

good results, proving the potential of the technique not only to accurately estimating the 

transfection efficiency but also to provide valuable information about cells’ biochemical 

events, related not only with the transfection event, but with the effect of the transfection 

reagent in cells, particular the cell membrane.  
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IV.3 Study of Helicobacter pilory infection of AGS cells using 

FTIR spectroscopy 

IV.3.1 Introduction 

 

Helicobacter pylori is a gram negative bacterium that has the ability of infecting 

the human stomach, being estimated that approximately 50% of the world population is 

infected. The infection by H. pylori can lead to several pathologies, namely chronic 

gastritis, asymptomatic or a late non-ulcer dyspepsia (NUD), peptide ulcer disease (PUD), 

gastric or duodenal, or even gastric cancer (GC), adenocarcinoma or gastric mucosa 

associated lymphoid tissue (MALT) lymphoma (Kusters et al., 2006). It is estimated that 

10 to 20% of the individuals infected with H. pylori develop PUD and 1 to 2% develop 

GC, the two most aggressive pathologies caused by H. pylori infection. Moreover, H. 

pylori infection is responsible for 75% of the GC cases worldwide (Azevedo et al., 2007). 

Infection by H. pylori triggers an acute immunity response, though not efficient 

in eradicating the bacterium. The growing resistance to antibiotics, the lack of a 

mechanism to avoid H. pylori infection and an efficient treatment to irradiate the 

bacterium, makes H. pylori infection a serious health problem worldwide.  

The different pathologies mentioned above are a result of different factors, such 

as the virulence of H. pylori strains and their interaction with the host’s immune system, 

as well as environmental factors, such as smoking, alcoholism, wrong eating habits or the 

use of anti-inflammatory drugs. The contribution of each factor mentioned above for the 

development of the disease (NUD, PUD or GC) is still poorly understood (Kusters et al., 

2006; Amieva e El-Omar, 2008). It is thought that the virulence factors modulate the 

interaction between the bacteria and the gastric epithelial cells and also the interaction 

with the immunity system (Akhter et al., 2007).  

Cag A (cytotoxin-associated antigen A) and VacA (vacuolating cytotoxin A) are 

probably the most relevant virulence factors of H. pylori. Cag A protein, delivered from 

the bacteria towards the human cells, is a cytotoxin that interact with several cellular 

proteins, causing alterations in the host’s signaling pathways and, consequently, leads to 

modifications in the cellular morphology, can compromises cell-cell adhesion, cell 

polarity and promotes cell proliferation (Hatakeyama and Higashi. 2005). Not all H. 
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pylori express CagA, but in general the most virulent strains, usually associated to the 

most severe gastric diseases, express this cytotoxin. VacA is also a cytotoxin that can 

induce vacuolation in the host’s cells when internalized by endocytosis. Additionally, it 

has been suggested that VacA can lead to cellular apoptosis, it creates pores in the cellular 

membrane and has an immunomodulatory effect (Isomoto et al., 2010). All identified H. 

pylori strains possesses the VacA gene, however, there are diverse VacA genotypes, 

classified in function of the gene variability present at the signal sequence, at the mid-

region and at the intermediate region of the gene, designated by s-, m- and i-regions 

respectively. Most of H. pylori associated with serious gastric diseases present a s1 

genotype, in relation to the two distinct genotypes of the s-region.  The exact way how 

CagA, VacA and other virulence factors are related to the development of each pathology 

is still not well understood. However, it looks that these two virulence factors act as 

functional antagonists, as for examples, it was observed that VacA, that promotes cellular 

apoptosis, may inhibit the morphologic alterations and mitogenic effect induced by CagA. 

In the same way, it has being suggested that CagA can inhibit apoptosis induced by VacA. 

Interestingly, the most virulent strains usually express the CagA protein as well as have 

the most severe VacA genotype, s2. One possible explanation for the presence of these 

antagonist virulence factors on the most virulent strains is to able the bacteria to take 

control of the host cell, but without causing gross cellular damage. The final effect of 

VacA and CagA is dependent of several factors, such as the quantity of each cytotoxin 

expressed (Palframan et al., 2012).   

From the, exposed above, increasing the knowledge about the effect of H. pylori 

infection on human gastric cells is of paramount importance, and especially how the main 

virulence factors affect the infection process. The main goal of the present work was to 

evaluate if Fourier transform infrared (FTIR) spectroscopy could be used for analyzing 

H. pylori infection in vitro, using AGS (human gastric carcinoma) cell lines. FTIR 

spectroscopy in the middle region of the spectra (MIR) represents the fundamental 

vibrations modes of chemical bonds, and, therefore, can theoretically capture the general 

cellular metabolic status as well the specific biomolecular composition and conformation 

of a cell at a specific state. Furthermore, the FTIR spectra could be acquired from a 

cellular population, after a simple dehydration step, and in a high-throughput mode. If 

FTIR-spectroscopy reveals as a very useful technique to analyze and monitor the infection 

process, it could be applied in high-throughput mode, to further promoting the evaluation 
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of interrelationships, for example, between different virulent factors on the infection 

process. 

The present work aims to evaluate, based on spectral data, the effect of different 

H. pylori strains, with different CagA/VacA genotypes, and associated with different 

pathologies (NUD, PUD and GC), on the general metabolism of AGS cells. With that 

goal, FT-MIR spectra of AGS cells infected with different H. pylori strains were acquired, 

and the following spectral analysis were conducted: 

i) Principal component analysis (PCA) to visualize tendencies in the 

samples’ distribution in the space of the principal components explaining 

the most variance in data, that might be related to the H. pylori strain 

causing the infection, namely its virulence and disease;  

ii) Clustering analysis, using the k-means algorithm  to classify samples into 

groups based on spectral data, that can be related, again, to the infection, 

H. pylori  virulence and related disease;  

iii) Analysis of samples’ first derivative spectra  with the goal of not only 

finding spectral changes associated to infection, to be used as biomarkers, 

but also spectral changes that can be related with CagA/VacA genotypes 

 

 

IV.3.2 Materials and Methods 

Cells and culture conditions 

AGS cells were grown in an 𝐶𝑂2  incubator (Blinder CB150, Tuttlingen, 

Germany) at 37˚C, 5% 𝐶𝑂2 and 99% of humidity.  Cells were cultured in Roswell Park 

Memorial Institute Medium (RPMI) (Thermo Scientific), supplemented with 10% (v/v) 

of bovine fetal serum (BFS) (Thermo Scientific),  previously inactivated by heat (30 

minutes at 56˚C), 1% (v/v) of penicillin/streptomycin and 15% (v/v) of L-glutamine 

(Thermo Scientific), in 75 𝑐𝑚2 T-flasks. Cells were cultured until they had reached about 

80-90% of confluence.  After 1 passage, cells were released with trypsin (incubated for 

15 minutes at 37˚C) and about 1 × 106 cells were transferred to each well of a 6-wells 
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plate for the infection procedures, which took place the day after the cells were plated 

into the wells.  

For the infection experiments 10 strains of Helicobacter pylori were used (Table 

IV.5). H. pylori was grown in Columbia agar (Thermo Scientific), supplemented with 

horse blood (Thermo Scientific), for 36h, under microaerophilic conditions.  

 

 

Table IV. 5 – Strains used for the infection experiments, characterized according the pathology associated and 

the expression (+) or not (-) of the CagA gene and the presence of the genotype s1 (+) or s2 (-) of the VacA gene, 

respectively. All H. pylori were isolated from Portuguese patients, with the exception of J99, isolated from an 

American patient. GC – Gastric cancer, PUD – Peptide ulcer disease, NUD – Non-ulcer dyspepsia. 

 

Strains CagA/VacA Pathology 

JP1 -/- GC 

P3/92 -/- GC 

JP26 -/+ GC 

JP22 +/+ GC 

J99 +/+ PUD 

1152 +/+ PUD 

93/00 +/+ PUD 

147 -/+ PUD 

173 -/- NUD 

228 -/- NUD 

 

 

Infection 

Before infection, the AGS cells were washed 2 times with PBS and the media was 

replaced by RMPI, supplemented with FBS (10% v/v) and L-glutamine (15% v/v), but 

without antibiotics. Bacteria were harvested with this same media and the estimation of 

the desired number of bacteria was obtained by optical density, at 600nm, using the 

following relation (Zhang et al., 2007): 

1𝑂𝐷600𝑛𝑚 = 106 𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎/𝑚𝐿                 (Equation IV.4) 

AGS cells were infected with different H. pylori strains with a MOI of 100 (100 

bacteria for each AGS cell). The plates were kept in an 𝐶𝑂2 incubator (Blinder CB150, 



83 
 

Tuttlingen, Germany) at 37˚C, 5% 𝐶𝑂2 and 99% of humidity, to ensure the viability of 

gastric cells. After 24h FTIR analysis were performed. 

 

Spectral acquisition 

For FTIR spectral measurements the sample cells were released with trypsin 

(infected AGS cells and control), centrifuged 15 minutes at 1500 RPM and resuspended 

in 200μL of PBS. Then, 25 µL of each sample was transferred for a 96-wells KBr plate 

for the FT-MIR high-throughput measurements. The samples were dehydrated for about 

2 and a half hours, in a desiccator under vacuum, before spectral acquisition. The spectral 

data were collected using a FTIR spectrometer (Burker, HTS-XT) equipped with an HTS 

accessory. Each spectra represent sixty-four scans, with a 2 𝑐𝑚−1 resolution, and were 

collected in transmission mode, in the wavenumber region between 400 and 4000𝑐𝑚−1. 

Five replicates were conducted to ensure the reproducibility of spectral information.  

 

Spectral data analysis 

Data pre-processing, including multiplicative scatter correction (MSC), 1st and 2nd 

derivatives, principal component analysis (PCA) and cluster analysis were carried out 

using Matlab R2012b (Matworks, Natick, MA, USA). Derivatives were computing using 

Savitzky-Golay algorithm, with a filter window of 15 data points and a 2nd order 

polynomial. Baseline correction was carried out using OPUS software (Bruker, 

Germany). The PCA models where the replicates are closer together and it was possible 

for extracting meaningful information about the infection event, were considered as being 

the ones with the best performance. For clustering, the performance of the models built 

was evaluated based on the mean silhouette value. Silhouette value is a measure of how 

similar a sample is to the rest of the samples in its own cluster, providing, in this way, 

information about the strength of the clusters (Lopes and Wolff, 2009).  
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IV.3.3 Results and Discussion 

 

In order to evaluate if FTIR spectroscopy could be applied for studying the effect of 

H. pylori infection in AGS cell lines, the following spectral analysis were conducted 

- Principal Component Analysis (PCA) models; 

- Clustering analysis using the k-means algorithm; 

- Analysis of the first derivative spectra. 

These analyses were performed with the goal of correlating the spectral data with the 

virulence factors, VacA and CagA, as well as the gastric pathology from which the strains 

were isolated. 

 

Principal Component Analysis (PCA)  

Principal Component Analysis (PCA) is a data reduction method often used in 

spectral data analysis that decompose the spectral data into new variables, called  

principal components (PCs), that capture most variance in the data (Jollife, 2002).  

PCA models were performed with the goal of finding meaningful relationships 

between the spectral data and the effect of H. pylori infection in AGS cells, e.g., the effect 

of the strains’ virulence or the pathology associated to each strain. Prior to PCA, data 

were pre-processed with different methods, namely, baseline correction, multiplicative 

scattering correction (MSC), normalization and 1st and 2nd derivatives. MSC is often 

applied when working with dehydrated samples, as it helps eliminating spectral 

alterations that are not related with the property of interest but with undesirable light 

scattering events. Normalizing the spectra is also very useful, as it is virtually impossible 

to ensure that all samples have the same number of cells. Differences in the cell number 

can change the spectral intensity and lead to misleading results. First and second 

derivatives resolve overlapped bands and eliminate spectral offsets, providing valuable 

information that sometimes cannot be observed in the raw initial spectra (Otto, 1999). 

Also, PCA performed on selected spectral regions, as regions associated with protein and 

DNA absorptions, was evaluated, with the goal of capturing the most relevant information 

associated with H. pylori infection.  
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Figure IV.31 shows the PCA scores plot from data pre-processed with MSC, 

applied to the replicates using as the reference spectrum the mean spectrum of all 

replicates, and 2nd derivative. Four groups of samples can be observed, that are related to 

the day/week at which the experiments were conducted. The infection experiments were 

developed in four different sets, being that AGS cells were infected with different H. 

pylori strains each set: in the first set, cells were infected with J99 and JP1 strains; 1152, 

P3/92 and 93/00 strains were used in the second set; 147, JP26 and JP22 strains were used 

in the third set; and 228 and 173 strains were used in the last set. This grouping of the 

samples according to the date of the experiments is probably related to the metabolic 

status of the AGS cells, accounting for most variability in data. In fact, it has been reported 

that the cell state can be reflected in spectral data (Boydston-White et al., 2009) and it is 

not possible to ensure that the cells are in the same cell stage in all experiments, even 

when the procedures are the same. For this reason, control cells are not close together in 

the space of principal components, as expected, but rather grouped with the corresponding 

infected cells in the same experiment. For evaluating the effect of the day of the 

experiment, it would be interesting to perform an additional infection experiments, in two 

different days, but using the same H. pylori strain. However, within the same group 

corresponding to each experiment set, control cells are still apart from the corresponding 

infected cells. In the second PC, in the PC1 versus PC2 scores plot, (Figure IV.31), two 

groups of samples can also be seen, one composed of cells infected with 173 and 228 

strains, which are CagA-/VacA- associated to non-ulcer dyspepsia (NUD), and the other 

composed by the remaining samples. 

In order to be able to visualize tendencies in the PCA scores plots related with H. 

pylori infection, the data were pre-processed in a different way. MSC was applied to the 

replicates of each strain, as for the above PCA, and applied to all the control samples, 

being the reference spectrum the one resulting from the mean of all spectra from control 

cell samples, with the goal of eliminating differences between cells that can be related 

with the cellular stage, as consequence of the experiments being conducted in different 

days. Clear grouping of samples according to the infection and the H. pylori strains 

responsible for the infection could then be observed (Figure IV.32). The control samples 

became all aligned in the first PC, explaining 78.6% of the variance in data, separated 

from the infected cells. Also, the samples infected with different strains were more clearly 

separated from each other. Interestingly, the cells infected with H. pylori strains 
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associated with non-ulcer dyspepsia (NUD) and CagA-/VacA-, 228 and 173 strains, were 

closer to the controls than the samples infected with other strains associated with peptide 

ulcer disease (PUD) and gastric cancer (GC). Additionally, all the associated with PUD 

and having a CagA+/VacA+ genotype (1152, 93/00 and J99), were closer together, with 

all the strains with a CagA-/VacA- genotype, associated to GC (P3/92 and JP1). The 

remaining samples in the right side of the PC1 axis, accounted for more variability with 

respect to the associated disease (GC or PUD) or the genotypes concerning CagA and 

VacA, and were strains from GC with VacA+ and a strain from PUD, with CagA-. 

Although the grouping of sample in the PCA scores plot revealed interesting 

tendencies, it is not possible to affirm that the grouping of the infected AGS cells observed 

was only related with the CagA/VacA genotype or the pathology associated. Indeed, the 

development of a pathology associated with H. pylori infection is dependent on several 

factors, such as, the host immune response and the host environment (Kusters et al., 2006; 

Amieva e El-Omar, 2008). To further explore the tendencies in data would be necessary 

to use a higher number of H. pylori strains. 

Although some important factors were not mimicked in the present study, the 

results presented are very promising, as shown by the ability of FTIR spectroscopy to 

identify infected cells and infection according to the H. pylori strain responsible.  

 

 

Figure IV. 31 - PCA of data from the infection experiment. AGS cells were infected with different H. pylori strains (MOI=100): 1152, P3/92, 

93/00, JP1, J99, JP22, 147, JP26, 228 and 173. For each infection experiment using a single strain, a control was used (CTL), corresponding to 

AGS cells not infected. The data was pre-processed with MSC and 2nd derivative and the entire spectral window was considered. 
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Cluster analysis  

Clustering analysis was evaluated in the present work in an attempt of classifying 

AGS cells, according to the strain used. Although, PCA allowed a visualization of some 

grouping in data, PCA is not a truly a classification method, as it does not provide a clear 

cut-structure that allow a real classification of the samples, therefore being somehow 

subjective.   

Clustering is a non-supervised classification method and it is a tool that groups 

data into clusters according to their semblance, usually determined by pattern recognition 

algorithms that rely on distance measures. The shorter the distance between two objects 

or samples, the closer they are. A cluster describes a group where the samples are more 

similar to each other than to those outside the group (Otto, 1999). In this work, cluster 

analysis was performed using the k-means algorithm. With this algorithm, each cluster is 

defined by its elements and its centroid, the point for which the sum of squares of the 

distances of all cluster’s elements is minimum. Thus, the objects are arranged between 

the groups or clusters in a way that the distance to the cluster’s centroid is minimized 

(Seber, 1984). 

Figure IV. 32 - PCA of data from the infection experiment. AGS cells were infected with different H. pylori strains (MOI=100): 1152, P3/92, 

93/00, JP1, J99, JP22, 147, JP26, 228 and 173. For each infection experiment using a single strain, a control was considered (CTL). MSC was 

applied to all the control samples and to the replicates of each strain. 
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To date, some authors have already applied clustering with classification 

purposes. Some examples include the discrimination of counterfeit drugs (Lopes and 

Wolff, 2009), study of bacteria isolated from sputum samples from cystic fibrosis patients 

(Bosch et al., 2008) and pre-screening of childhood acute leukemia (Zelig et al., 2011). 

The results of cluster analysis are represented in Figure IV.33 with data pre-

processed with MSC, applied to all the control cells and to each replicate of the infected 

cells. The optimal number of clusters was assessed by the combinations of a high mean 

silhouette value, and a non-partition of control samples in different groups, meaning that 

the variability within the control cells (not infected AGS cells), a result of different 

cellular stages, was not being considered for grouping purposes. The data was 

fractionated in four groups, as it was found that for a higher number of groups the control 

group became fragmented. A high mean silhouette was obtained (0.712), indicating that 

a strong grouping structure was found (Lopes and Wolff, 2009). It was found that the 228 

and 173 strains were in the same group as the control cells (Cluster 1 – Figure IV.32). 

Actually, for the PCA results (shown before) the cells infected with these strains, 

associated with NUD, were also closer to the control than to the other infected 

populations. A strong second cluster can also be seen in Figure IV.31, with all strains 

with a CagA+/VacA+ genotype, and associated to PUD, and all the strains CagA-/VacA-

, and associated with GC, grouped in this cluster (Cluster 4 – Figure IV.33). Although 

closer to the neighbor samples in group 4, cells infected with JP1 are the most different 

samples in group 4. The only difference observed during the experimental work was that 

JP1 was the strain that always presented the faster grown in vitro. Also, other factors 

related with H. pylori infection and the variability among the different strains were not 

considered.  

As mentioned for PCA results, it is dangerous to associate these results 

exclusively with the CagA/VacA genotype and with the pathology associated to each 

strain. However, the groups produced by cluster analysis are not yet subjective, so if 

strains are grouped together they must have a similar effect on AGS cells. Overall, the 

PCA and the clustering analysis yielded similar results and an interesting grouping of 

some H. pylori strains, essentially those with a CagA+/VacA+ genotype associated to 

PUD and a CagA-/VacA- associated with GC.  
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G cells not infected 

Analysis of the first derivative spectra  

First derivative spectra were also considered for the analysis of the impact of the 

infection according with the H. pylori strain. First derivative spectra can offer valuable 

information that sometimes can’t be accessed through the analysis of the initial spectra, 

by increasing the spectra resolution over overlapping bands (Otto, 1999). The goal was 

to find differences in the 1st derivative spectra related to the general infection and with 

the strain causing the infection. The spectra of control cells, AGS cells not infected with 

H. pylori, were compared with the spectra of AGS cells infected with different H. pylori 

strains, namely: 1152, P3/92, 93/00, JP1, J99, JP22, 147, JP26, 228 and 173.  

Consistent differences between infected and non-infected cells were found. The 

changes in the 1st derivative spectra caused by the infection with H. pylori, were mainly 

in Amide I band at 1687 𝑐𝑚−1 (Walsh et al., 2009), a protein absorption band, and also a 

band associated with glicids absorption, at 1025  𝑐𝑚−1 (Wong et al., 1991). Alterations 

in bands associated with protein absorption, can be a result of the metabolic stress due to 

infection and/or due to the injection into the cell, by the bacteria, of CagA and VacA 

proteins. Due to H. pylori infection, cell will change its metabolic status, consuming more 

energy, depleting its energy reserves, as glicids. In Figure IV.34 is the first derivative 

spectra of control cells and cells infected with H. pylori 1152 (Figure 34 – A) and 228 

AGS cells not infected 

+ 

228 and 173 

1152,P3/92,93/00, 

J99, JP1 

JP22, 147 

 

JP26 

Figure IV. 33 – Silhouette plot of the 4 groups found with k-means analysis on all control cells and cells infected with different 

H. pylori strains, with 5 replicates each. Data were pre-processed with MSC, applied to all the control cells and applied to the 

replicates of each infected cell 
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(Figure 34 – B), with the bands mentioned above highlighted. These bands changed as a 

result of infection for all the 10 strains used (Figures IV.34 to IV.41). 

 

 

As expected, some differences, as the ones mentioned above, appeared in all the 

1st derivative spectra of cells infected with the different strains. However, specific regions 

of the 1st derivative spectra, related to each strain, were also found.  

H. pylori 93/00, presenting a CagA+/VacA+ genotype and isolated from a PUD 

patient, showed to be the strain with the strong impact on AGS cells, according to the 1st 

derivative spectra (Figure IV.35). Greater differences were observed in bands at 
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Figure IV. 34 - First derivative spectra of non-infected cells and cells infected with H. pylori 1152 (A) and 228 (B), with bands associated 

with protein and glicids absorptions highlighted. MSC was applied to the replicates and 1st derivative spectra was determined using 

the Savitzky-Golay algorithm, using a 15 points window and a 2nd order polynomial. 
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1648 𝑐𝑚−1and 1624 𝑐𝑚−1¹, associated to Amide I, and 1537 𝑐𝑚−1associated to Amide 

II, all bands associated with protein absorption (Walsh et al., 2009). Additional 

differences in the first derivative spectra can be seen in bands associated with DNA 

absorption at 1169 𝑐𝑚−1, 1080 𝑐𝑚−1 and 970 𝑐𝑚−1 (Walsh et al., 2009; Wong et al., 

1991; Liu et al., 2005 ). Another band associated with glicids, at 1169 𝑐𝑚−1 (Mordechai 

et al., 2003) also changed for cells infected with H. pylori 93/00. The reason of the 

changes observed for the cell’s proteins and glicids content had already been proposed 

here.  

For infection with H. pylori P3/92, presenting a CagA-/VacA- genotype and 

isolated from a GC patient, the main differences were observed for bands associated with 

glicids and DNA absorptions, with no so dramatic alterations in the protein absorption 

regions (Figure IV.36). For the strains 173, JP1 and JP26 (Figures IV.37, IV.38 and IV.39, 

respectively), form patients with gastritis and gastric cancer, respectively, the main 

differences in the 1st derivative spectra were in bands associated with protein absorption. 

For cells infected with H. pylori J99 smaller differences were observed in the 1st 

derivative spectra and all associated with protein absorption (Figure IV.40), that could be 

a result from the fact that this strain presents a higher number of passages through 

laboratories after its isolation from an american PUD patient. The other strains used in 

the present work were isolated recently from Portuguese patients. Interestingly, for cells 

infected with H. pylori 147 (isolated from a GC patient and presenting a CagA-/VacA+ 

genotype) and JP22 (isolated from a PUD patient and presenting a CagA+/VacA+ 

genotype, there are practically no changes in the first derivative spectra (Figures IV.41 

and IV.42, respectively). Probably 24h were not enough for seeing the effect of the 

infection.  

Also, some differences in the 1st derivative spectra of the control cells can also be 

observed. Cells were treated equality, however, as the experiments were developed in 

different days, the cells may had different metabolic status at the time and these 

differences eventually were reflected by the spectra.  

Overall, the results provided by the analysis of the 1st derivative spectra were very 

interesting. It was possible to see differences related with infection, independently of the 

strain used, mainly in bands associated with protein and glicids absorption.  Additionally, 

differences in the 1st derivative spectra related with the strains were also found, in regions 
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associated to proteins and DNA absorption. This approach can be very useful for studying 

the effect of H. pylori infection. It would be also interesting to evaluate infection in 

different time points and also evaluating different strains.  
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Figure IV. 35 - First derivative spectra of non-infected cells and cells infected with H. pylori 93/00, with bands associated with protein, DNA 

and glicids absorptions highlighted. MSC was applied to the replicates and 1st derivative spectra was determined using the Savitzky-Golay 

algorithm, using a 15 points window and a 2nd order polynomial. 
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Figure IV. 37 - First derivative spectra of non-infected cells and cells infected with H. pylori 173, with bands associated with protein, DNA and 

glicids absorptions highlighted. MSC was applied to the replicates and 1st derivative spectra was determined using the Savitzky-Golay 

algorithm, using a 15 points window and a 2nd order polynomial. 

Figure IV. 36 - First derivative spectra of non-infected cells and cells infected with H. pylori P3/92, with bands associated with protein, DNA 

and glicids absorptions highlighted. MSC was applied to the replicates and 1st derivative spectra was determined using the Savitzky-Golay 

algorithm, using a 15 points window and a 2nd order polynomial. 



94 
 

 

 

 

 

-4,00E-03

-2,00E-03

0,00E+00

2,00E-03

4,00E-03

6,00E-03

8,00E-03

1,00E-02

9001000110012001300140015001600170018001900

A
b

so
rb

a
n

ce

Wavenumber (cm¯¹)

JP1 JP1 CTL

Amide I 

Amide I

Glicids

Amide II

Figure IV. 38 - First derivative spectra of non-infected cells and cells infected with H. pylori JP1, with bands associated with protein, DNA and 

glicids absorptions highlighted. MSC was applied to the replicates and 1st derivative spectra was determined using the Savitzky-Golay 

algorithm, using a 15 points window and a 2nd order polynomial. 
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Figure IV. 39 - First derivative spectra of non-infected cells and cells infected with H. pylori JP26, with bands associated with protein, DNA 

and glicids absorptions highlighted. MSC was applied to the replicates and 1st derivative spectra was determined using the Savitzky-Golay 

algorithm, using a 15 points window and a 2nd order polynomial. 
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Figure IV. 40 - First derivative spectra of non-infected cells and cells infected with H. pylori J99, with bands associated with protein, DNA 

and glicids absorptions highlighted. MSC was applied to the replicates and 1st derivative spectra was determined using the Savitzky-Golay 

algorithm, using a 15 points window and a 2nd order polynomial. 

Figure IV. 41 - First derivative spectra of non-infected cells and cells infected with H. pylori 147, with bands associated with protein, DNA 

and glicids absorptions highlighted. MSC was applied to the replicates and 1st derivative spectra was determined using the Savitzky-Golay 

algorithm, using a 15 points window and a 2nd order polynomial. 



96 
 

 

 

 

IV.3.4 Conclusions 

 

The development of the different pathologies associated with H. pylori infection 

is dependent of several factors, such as the virulence of the strains, the immune response 

of the host and of environmental factors. The way the bacteria infects the human 

gastrointestinal tract and, more important, the mechanism by which it interacts with the 

host and leads to development of a variety of pathologies is not well understood yet. 

Additionally, there is no effective approach for eliminating H. pylori and to prevent the 

development of the disease (Kusters et al., 2006). Thus, it is opportune to study, using 

different approaches, not only the mechanism by which the infection leads to the disease, 

but also the impact of the infection in the host’s cells.  

In the present work the potential of FTIR spectroscopy for studying the impact of 

H. pylori infection on gastrointestinal cells, AGS cells, was evaluated. Different 

approaches were conducted, yielding very interesting results. Principal component 

analysis (PCA) was performed for trying to differentiate not only infected and non-

infected cells, but also the infection caused by different H. pylori strains. Cluster analysis 
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Figure IV. 42 - First derivative spectra of non-infected cells and cells infected with H. pylori JP22, with bands associated with protein, DNA 

and glicids absorptions highlighted. MSC was applied to the replicates and 1st derivative spectra was determined using the Savitzky-Golay 

algorithm, using a 15 points window and a 2nd order polynomial. 
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was also conducted with the same purpose of PCA, however clustering is a true 

classification tool that offers a measure of how strong the groups created are. Again, an 

interesting grouping of the samples was achieved, namely for the H. pylori strains with a 

CagA+/VacA+ genotype associated with the development of peptide ulcer disease (PUD) 

and with a CagA-/VacA- genotype associate with the development of gastric cancer (GC). 

Additionally, it was observed from the analysis of the 1st derivative spectra differences 

related with the infection by H. pylori and other specific differences related with the 

strains infecting the AGS cells. 

Overall, the results provided by the present work strongly suggest the high 

potential of FTIR spectroscopy for studying the infection by H. pylori. In the future it 

would be interesting to test the ability of FTIR spectroscopy to evaluate the infection by 

others H. pylori strains. Also, additional analysis on the effectiveness of H. pylori 

infection, such as the adherence of the bacteria to the AGS cells, and different infection 

times should also be evaluated.  
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V. GENERAL CONCLUSIONS  

In the last decade infrared (IR) spectroscopy started to be seen as a very powerful 

tool for several applications. The main reasons for that are the fact that this technique 

gives information about vibrational states of molecules in a highly sensitive and fast way, 

is reagent free, it allows high-throughput measurements, it measures several analytes at 

once from a single spectra with a lower human error compared to the conventional 

techniques, and it allows extracting relevant biochemical and physiological information 

(Shaw and Mantsch, 1999; Ellis and Goodacre, 2006).  

IR spectroscopy may use near-infrared (NIR) and mid-infrared (MIR) radiations. 

MIR spectroscopy provides more informative spectra, since the bands essentially arise 

from fundamental molecular vibrational states, making this method more sensitive, while 

allowing an easier interpretation of the spectral data. Since water strongly absorbs IR 

radiation in the MIR gion, it is usually necessary an extra step by which the sample is 

dehydrated or, alternatively, using an attenuated total reflection (ATR) accessory. On the 

other hand, MIR spectroscopy has the great advantage of working in a high-throughput 

mode, by using microplates with multi-wells. NIR-spectroscopy, is less informative as 

represents overtones and combinations of the fundamental vibrations, in spite of being 

less prone to water interference. Therefore, to achieve a high quality information 

concerning biological processes it is usually preferable to use MIR spectroscopy. One 

exception to that would be the in-situ monitoring of cultures of living cells inside 

bioreactors vessels, using fiber-optic probes working on the NIR region of the spectrum. 

But even on that case, NIR spectroscopy can have a low sensitivity, especially when 

monitoring mammalian cell cultures, where the concentration of key analytes, such as 

glucose or lactate, are usually very low (Smith, 2011; Lourenço et al, 2012).  

The importance of chemometrics was also a subject of discussion in the present 

work. Chemometrics is a field that combines mathematical, statistics and computational 

methods, that make possible to extract relevant information from the data, which 

otherwise would be very difficult. The pre-processing techniques applied to the spectral 

data acquired for this work are briefly reviewed, namely baseline correction, multiple 

scatter correction (MSC), normalization, smoothing and derivatives. These methods 

allow to reduce the noise in data and undesirable effects like differences in sample´s 
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thickness, differences in cell´s number or radiation scattering, while highlighting relevant 

information in data. Other chemometric methods applied to the data are also described, 

namely principal component analysis (PCA), clustering and partial least squares (PLS) 

regression.  

The second part of the present Thesis describes the experimental work conducted. 

The applications described in this work involved the evaluation of Fourier Transform 

Infrared (FTIR) spectroscopy for studying several mammalian cell associated processes, 

namely:  

 Monitoring the expansion process of human mesenchymal stem cells 

directly obtained from human donors, and conducted in spinner flasks with 

different microcarriers and feeding regimes, for estimating key analytes in 

cell culture, e.g., glucose, lactate and ammonia; 

 Estimating the transfection efficiency in a cell population using two 

distinct cell lines: an adherent cell line (AGS) and an semi-adherent cell 

line (HEK), and grown on two distinct media compositions; 

 Studying Helicobacter pylori infection, in vitro, using AGS cell lines, 

using different H. pylori strains, with different CagA and VacA genotypes 

and isolated from patients with different gastric pathologies. 

 

In general, analysis based on spectral data provided not only accurate quantitative 

models, classification models and qualitative biochemical information, as discussed in 

the conclusions sub-chapter of each main section, which will not be replicate in this Final 

Conclusions chapter.  

Very interesting results were achieved in the present work, showing the ability of 

the technique for monitoring mammalian cells’ processes, which therefore could strong 

promote the future use of the FTIR spectroscopy to evaluate biological processes. 
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