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Abstract 
In this study we perform a comparison between the Dow Jones Industrial Average and the FTSE 

100 indexes concerning their estimated risk aversions. Risk neutral densities are calculated for 

both indexes using a polynomial-lognormal, a GB2 and a mixture of two lognormal distributions; 

we show that the best fit to observed data is obtained using the latter. For the method of best fit, 

and assuming a power utility function, the risk aversion of investors is calculated using a 

maximum likelihood method and a likelihood ratio. The FTSE 100 presents the highest value of 

risk aversion of the two indexes, as well as the lowest volatility. A negative correlation is found 

between risk aversion estimates and the volatility of the underlying index. 

 

Keywords: Lognormal Mixture; Generalised beta; Hermite Polynomials; Risk Neutral Densities; 
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1 - Introduction 
 

In finance, knowing future density forecasts of stock prices, commodity prices, exchange rates 

or interest rates has a critical importance to many economic agents and decision-makers. 

Recently, with the spread of option markets, new methodologies have been advanced that 

allow the forecast of price densities as well as estimations of the market's level of risk 

aversion by using the information contained in option prices. Option forecasts are often 

demonstrated to provide added accuracy compared to historical analysis in the calculation of 

both volatility and probability density functions (Liu, et al., 2007). Most contributions in these 

areas are concerned with testing the methods and their ability to create good forecasts. This 

study, however, will focus more on the conclusions that can be drawn from the market by 

using the methodology, namely a comparison between risk aversions in two different 

markets. 

More than just an expected value and a volatility measurement, densities provide 

probabilities for each level of future prices and allow further measurements such as skewness 

and kurtosis. One of the main consumers of this kind of information are central banks. As 

major regulatory institutions, central banks are interested in the density predictions of 

interest rates, exchange rates, commodity price levels and stock indexes. This allows them to 

know more about the economic expectations of investors, the confidence in the markets, the 

expected corporate earnings reflected in the index levels, as well as how to best establish the 

short-term interest rates in the money market (European Central Bank, 2011) (Shackleton, et 

al., 2010). 

Learning about the expectations of investors is a two step process that will be covered in this 

dissertation. First, using the option prices, we will estimate the risk neutral density, a 

probability distribution  that assumes the risk neutrality of investors. Out of all the parametric 

and non parametric methods that can be used, we will test three well known parametric 

methods to determine which one best follows the information present in the option prices. 

Next we will use two different methods to calculate an estimation of the risk aversion of 

investors. Using this estimation and assuming a power utility function, it is possible to 

transform the risk neutral density into a real world density that corresponds to the actual 

expectations of investors. 

The purpose of this dissertation is to estimate the risk aversion in the U.S. market and 

compare it to the risk aversion estimated for the U.K. market in the period before the financial 

crisis of 2008 to capture the estimates of risk aversion under normal market conditions. To do 

so, the two-step process just described will be performed in parallel for option data coming 
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from options on the Dow Jones Industrial Average index and on the FTSE 100 index between 

October 2006 and June 2007. 

We find that both methods to estimate risk aversion suggest higher values for the FTSE 100 

than for the Dow Jones Industrial Average. In an attempt to explain these results, we conclude 

that the risk aversion estimate presents a negative correlation to the market volatility; 

findings that are in line with the paper by Bliss and Panigirtzoglou (2004). Furthermore, the 

volatility defined as the coefficient of variation of the Down Jones Industrial Average is higher 

than that of the FTSE 100 for the period analysed, which may be behind the lower risk 

aversion estimate found for the American index. 

Section 2 of this dissertation will cover the most common methods to estimate the risk neutral 

densities and the real world densities, referring to publications of high academic worth. 

Section 3 describes in more detail the methodology used in this dissertation; section 4 

presents the results along with some explanations and section 5 summarises the findings.  

 

2 - Literature Review 
 

2.1 - Historical methods 
One way to estimate the density functions is through the analysis of past returns. In that case, 

a time series of the prices of the asset being studied is collected, returns are calculated and 

usually a model is chosen to try and explain the observed data. There are several models that 

can be used, some of the most common ones belonging to the ARCH family which has 

applications for all the different classes of assets.  ARCH models are defined by conditional 

densities, i.e. distributions of returns for a given time are conditional on previous returns. 

More notably, the conditional variance of the model recognises the existence of volatility 

clustering and reflects this heteroskedasticity on the estimation of return distributions. These 

models will have a set of parameters which are estimated through the maximisation of a 

likelihood function. This means that the parameters will ensure the best fit of the model to the 

historical data collected. The likelihood analysis itself is also an important part of determining 

the best model for a particular set of data. (Taylor, 2005) 

2.2 - Option-based methods 
Another alternative to learn about densities of future prices of a given asset is to analyse the 

prices of options that have that asset underlying. It is a valid source of information since the 

price at which options are being transacted has a "forward-looking nature" and contains clues 

regarding the perceptions of the market for the price of the asset in the future (Bahra, 1997). 

For many years the inexistence of a sufficient number of exchange traded options limited the 

information that could be extracted from option prices, and so the empirical research that has 

been done on the subject is quite recent (Jackwerth, 1999) (Jackwerth, 2004). Approaching 

the end of the century, however, the spread of option trading led to the availability of several 
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option prices for all kinds of assets, for different maturities and different exercise prices. This 

availability of different contracts made option prices a major source of information in finance. 

According to Bliss and Panigirtzoglou (2004), one big advantage of distributions extracted 

from option prices over those extracted from time series is that the information comes from 

one single point in time, and the fact that the distribution doesn't depend on the past 

information makes it more responsive to changes in the market. Furthermore, the authors 

support that the existence of a predetermined expiration date, as well as the different 

investment horizons for which option prices are available permit the study of both specific 

horizons and multiple horizons.  

2.3 - Risk Neutral Densities 
To extract a density from the prices of options it is possible to use merely the prices of call 

options. This happens because of the put-call parity. Since there is a link between the prices of 

the two types of options, the utilisation of a second type of options would be unnecessary 

(Taylor, 2005). 

The density that is extracted directly from the prices of options without any kind of risk 

transformations is called a Risk Neutral Density (RND). This means that the density obtained 

is the real density only for risk neutral investors. Since it is commonly assumed that investors 

have some degree of risk aversion, further calculations will have to be performed at a later 

stage to ensure a credible real density function. 

The techniques used to extract RNDs from option prices trace back to the studies of Breeden 

and Litzenberger (1978). They show that the prices of primitive securities1 can be obtained 

from the prices of call options and, since the prices of primitive securities are related to the 

probability of the underlying assuming a given state, there is a direct link to calculating the 

RND. The authors build a primitive security from four call options with exercise prices spaced 

by ∆M forming a butterfly spread centred in M. They then demonstrate that the limit of the 

pricing function of this security is  
   

    whenever ∆M tends to zero, where C is the price of the 

call option and with the strike price X equal to the state M. This result tells us that the second 

derivative of an option pricing formula with respect to its exercise price X gives the 

discounted density of the underlying asset. 

The next step is to find a way to describe the observed prices of options using a formula that 

can be derived twice with respect to the strike price. Given that the construction of an RND 

would require a continuous set of option prices and that the market only provides option 

prices for discrete values of X and for a limited range of X, it is necessary to both interpolate 

between the strike prices for which there are observations and to extrapolate out of the range 

of available strike prices to obtain information about the tails of the distribution (Bahra, 

1997). The methods to do so can initially be divided into parametric and non-parametric. 

These two groups will be discussed in more detail in the next sections.  

                                                             

1 Also called Arrow-Debreu securities or elementary claims, these are derivatives that pay 1 in the case 
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2.3.1 - Parametric Methods 

Parametric methods, as indicated by the name use functions of price that are shaped by only a 

few parameters that are optimised to make the call prices calculated by the formula fit the 

prices observed in the market. The maximisation of the fitness is usually achieved by the 

minimisation of the sum of the squared errors between the prices given by the formula and 

the observed prices (Taylor, 2005). According to Jackwerth (1999), parametric methods can 

be divided into three categories: expansion methods, generalised distribution methods and 

mixture methods. Expansion methods start from a simple density shape, such as the 

lognormal and introduce extra flexibility by adding a correction term. A common example of 

such a distribution would be a lognormal-polynomial density like the one used by Corrado 

and Su (1997). The authors analyse S&P 500 index option prices and criticise Black and 

Scholes's (1973) assumption of lognormality in stock price distributions. Their suggestion is 

an expanded version of the model, which allows flexibility in the values of skewness and 

kurtosis and which effectively manages to flatten the volatility smile2, thus showing improved 

accuracy. This method, however, is known for sometimes providing negative values for the 

RND making it important to carefully evaluate its results (Jackwerth, 1999).  

Generalised distribution methods use models that incorporate more parameters than a 

lognormal distribution, thus displaying more flexibility and a better fit to the data. Bookstaber 

and McDonald (1987) introduced generalised beta functions of the second kind (GB2), a four 

parameter function, "as a descriptive tool rather than as a definitive distribution" (Bookstaber 

and McDonald, 1987, p. 419). This distribution embeds other distributions such as the 

lognormal, the log-t and the log-Cauchy as limiting cases or special cases and has the 

advantage of being extremely flexible. Taylor (2005),  defends that the distribution is easy to 

calculate and doesn't tend to return negative values for the density like a lognormal-

polynomial, its biggest problem being the interpretation of some of its parameters.  

Lastly, mixture methods have as typical example the mixture of lognormal density functions. 

These simply make a distribution from a weighted average of two or more lognormal 

distributions. The final distribution will have two parameters for each lognormal used (mean 

and variance) as well as one or more parameters for the weights. The number of parameters 

will be 3n-1, with n being the number of lognormal densities used. This leads us to the 

method's drawback of easily accumulating a large number of parameters when the amount of 

lognormal densities increase. A mixture of more than two lognormals can also incur in the 

problem of overfitting the data (Jackwerth, 1999). Generally, however, this model is quite 

flexible and is especially suited for cases where there are two possible distinct states in the 

economy, which can even lead to a bimodal distribution (Bahra, 1997). Ritchey (1990) 

                                                             

2 The volatility smile consists of the representation of implied volatilities (volatilities calculated by 
reversing a given option pricing formula so that it provides a volatility when an observed price is 
inputted) at different strike prices. As the volatility refers to the underlying asset, it should be constant 
regardless of the strike price of the option contracts associated. However, the wrong assumption of 
lognormality in the future prices of the underlying asset leads to an implied volatility representation 
that is higher for very in the money and out of the money exercise prices; an illustration that resembles 
a smile and which earned it the name. 
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suggests using a mixed lognormal rather than the regular Black-Scholes model, claiming that 

the latter was mispricing options especially in out of the money near expiration options with 

high kurtosis and high positive skewness of underlying returns. Using a sum of weighted 

Black-Scholes solutions is a more accurate alternative. 

2.3.2 - Non-Parametric Methods 

Non-parametric models are different from the ones discussed above in the way that they 

make no assumptions and impose no parametric restrictions regarding the form of the 

density, the pricing formula or the process of the returns (Bahra, 1997). Instead, they try to fit 

the option prices in a more general way by presenting no rules regarding the possible shape 

of the density, which usually makes them very flexible. They sometimes also incur the 

problem of overfitting the data, meaning that they respond too quickly and are too sensitive to 

individual observations. This can prove to be a problem when there is noise in the 

observations or mispricing in one of the securities because the overall pricing function 

estimated can become compromised. The non-parametric methods can again be divided into 

three other groups: kernel methods, maximum entropy methods and curve fitting methods 

(Jackwerth, 1999). Kernel methods assume that each observed data point is in the centre of a 

distribution and that the likelihood of having the real function pass through a given point 

depends on the distance between that point and the observed data point (Jackwerth, 1999). 

Aït-Sahalia and Lo (1998), for example, use a kernel-type method and argue that, while 

parametric methods are simpler and less data-intensive, non-parametric ones are not 

restricted by assumptions that may not hold true. This, according to the authors, makes them 

more robust.  

Maximum entropy solutions are those that minimise the commitment to unknown 

information. They can incorporate many constraints into the distribution and assume 

maximum uncertainty for the information that is missing. Buchen and Kelly (1996) use the 

principle of maximum entropy to extract the distribution of an asset from option prices. The 

authors support that, from a statistical inference standpoint, this is the best method since it 

complies with all the restrictions inputted, such as the observed prices of options, and 

provides the least prejudiced density in the sense that it assumes as little as possible.  

The curve fitting group encompasses a broad number of methods from polynomials to splines. 

Jackwerth and Rubinstein (1996) fit a curve to observed S&P 500 option prices to extract a 

risk neutral distribution. They use a new technique that maximises the smoothness of the 

distribution while still meeting the points of the observed option prices. They also report a 

difference in the skewness and kurtosis of the RND of the index before and after the 1987 

market crash. 

2.3.3 - Implied Volatility Methods 

The methods covered above all aim at fitting the pricing function to the observed prices. An 

alternative technique can be used by specifying the implied volatilities' curve instead of the 

curve of option prices. To do so both parametric and non-parametric methods can be used. 

Shimko (1993) applied a parametric method using quadratic polynomials to fit the curve of 

implied volatilities. The author could then use the resulting volatility function to calculate the 
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option pricing function and obtain the RND. It is, however, difficult to extrapolate the implied 

volatility function to obtain values outside the defined strike price range, and so Shimko had 

to use the tails of lognormal distributions and attach them to his calculated density. Malz 

(1997) also used quadratic polynomials but he chose to fit that formula not to volatilities in a 

scale of strike prices but in a scale of option deltas, which proves useful in defining the tails of 

the distribution but complicates the translation of the scale back to strike prices (Taylor, 

2005) (Jackwerth, 2004). 

2.4 - Real World Densities 
Especially for equity densities, one shouldn't rely on the RND without any kind of risk 

transformation since the neutral densities ignore the effects of risk aversion which, for this 

asset type, can be quite significant (Shackleton, et al., 2010). It has been suggested in a 

number of studies that a density directly extracted from option prices is a poor predictor of 

the future distribution of the underlying asset. If it is to be assumed that investors are 

rational, the difference between the RND and the real density must be explained by risk 

aversion and thus, by comparing the two densities, it would be possible make conclusions 

about the risk preferences of the general market. This assumption is widely supported by a 

number of studies that point towards the existence of a risk premium particularly evident in 

equity prices (Mehra and Prescott, 1985) (Bliss and Panigirtzoglou, 2004). 

The estimated RND and the real density are related by a given utility function. According to 

Bliss and Panigirtzoglou (2004), if we take the RND, q(ST), the real world distribution, p(ST), 

and the utility function, U(ST), the following condition holds: 

 
     

     
  

      

      
 

 
(1) 
 

 

where St is the price of the asset at observation, ST is the price of the asset at expiration,   is a 

constant and the right side of the equation is equivalent to the pricing kernel. As such, both 

densities and the utility function are related in such a way that, knowing two of them makes it 

possible to calculate the third. Two commonly assumed utility functions are the exponential 

utility defined as               which presents a constant absolute risk aversion and the 

power utility function that follows 

 
     

    

   
 

 

(2) 
 

 

which has a constant relative risk aversion (CRRA). 
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Some authors like Aït-Sahalia and Lo (2000), after estimation of the RND, choose to obtain the 

objective density function3 from a historical analysis of the underlying assets' time series and 

then use these two densities to calculate the utility function. This presents a strong 

assumption that there is stationarity in the real distributions. Other authors even extend this 

assumption of stationarity to the risk neutral density. Bliss and Panigirtzoglou (2004) don't 

agree with these assumptions and claim that they produce risk aversion functions that are 

inconsistent with theory. To them, the assumption to be made is that of a stationary utility 

function for the duration of the sample. Bliss and Panigirtzoglou then test the ability of an 

estimated density to forecast the true density. They use a variable ST which is the price 

realisation of the underlying asset at the maturity of each option observation and claim that, 

assuming that ST are independent and that the estimated density      is equal to the true 

density, the variable    such that 

              

  

  

 

 

(3) 
 

is independent and identically distributed (i.i.d.) following a standard uniform distribution. 

Confirmation of these assumptions would mean the estimated density is in fact the true 

density. The authors then use the methodology proposed in Berkowitz (2001) as a joint test to 

check whether these assumptions hold. Berkowitz defines a new variable    such that 

 
           

 
(4) 

 
 

where     represents the inverse of the standard normal cumulative distribution and states 

that    is i.i.d. and follows a standard normal distribution whenever the estimated density is 

the same as the true density. The model 

 
                  

 
(5) 

 
 

is created to test               and     (mean of zero and variance of one as required 

by the standard normal as well as no correlation to ensure independence). The model's 

parameters are estimated by maximising the log-likelihood function: 

                                                             

3 The objective density is considered to be the real distribution followed by the price realisations. This 
distribution is closely approximated on average by the real expectations of investors, assuming they are 
rational. 
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From this likelihood it is possible to test the independence with 

 
                            

 
(7) 
 

following a chi-square with one degree of freedom and to jointly test independence and 

standard normal distribution using 

 
                           

 
(8) 
 

which follows a chi-square with three degrees of freedom. The value of the risk aversion that 

leads to the minimum     should be selected, since it reduces the chances of rejection of the 

null hypothesis. In other words, it maximises the possibility of    being an i.i.d variable 

following a standard normal, which only happens when the estimated density is the real one. 

The     becomes important to understand a possible     joint test rejection. When that 

happens, a rejected     suggests that there is a problem with the independence of the 

variables (as may happen if the periods under analysis are overlapping) which makes the     

test inconclusive. 

Liu, et al. (2007) disagree with this method and claim that, while there is important diagnostic 

value in the LR3 method, they have no knowledge of the method being superior to a maximum 

likelihood estimate of the risk aversion as far as accuracy is concerned. The authors use a 

power utility function with a CRRA of   and a marginal utility of    . The RND is defined as   

and the real world density as   . The real world transformation is thus performed by using: 

       
      

         
 

 

 
 

(9) 
 

 

where the integral is a constant adjustment factor used to ensure that the transformed density 

still integrates to one. The variable y is chosen to make sure that   is not present in the 

denominator, which would keep it from being constant. 

A different way to estimate the real density than assuming a utility function is by using a 

recalibration function. Liu, et al. (2007) give preference to a calibration method followed by 

Fackler and King (1990) which uses a beta transformation. The calibration function for this 

method is the cumulative distribution function for a beta distribution: 

                
 

      
               
 

 

 
 

(10) 
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where j and k are the calibration parameters. Defining      as the cumulative distribution 

function of a risk neutral density, the link between the real world density and the RND comes 

from 

       
                  

      
      

 
(11) 

 
 

To estimate the transformation parameters    (either   or (j,k)), the log-likelihood function 

 
                          

                       
   

 

   

 

 

(12) 
 

 

should be maximised. 

Literature about this topic presents a very diverse set of values for  . For a power utility 

function, Bliss and Panigirtzoglou (2004) estimate the parameter for different maturities of 

the option contracts and for different volatilities. Their results range from just under 1 for 6-

week expiring options with high volatility to above 12 for options expiring in one week and 

low volatility. Liu, et al. (2007) estimate a lower value of 1.85 when using a mix lognormal 

method, but claim that their result is lower than expected due to a market decline taking place 

during the time of their analysis. Others authors like Cochrane and Hansen (1992) suggest 

that   may be in excess of 40. 

 

3 - Empirical Methods 

 

3.1 - Data 
Data have been extracted from Wharton Research Data Services (WRDS) for the call prices of 

the Dow Jones Industrial Average representing the American market and of the FTSE 100 

representing the UK. The option prices were recorded for the 5th of October 2006 with a 

maturity of 11 trading days (21st of October 2006). Within these dates, 33 observations were 

collected across the range of strike prices for the Dow Jones Industrial Average and 19 were 

found for the FTSE 100. For  the purpose of estimating the risk aversion, 8 extra densities 

representing each month until June of 2007 were extracted from WRDS. This database was 

also used to obtain the closing prices and the dividend yield of both indexes at the option's 
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observation date. The risk-free rate considered was the three-month Eurocurrency interest 

rate4. The option prices considered for analysis are an arithmetic average of the bid and ask 

prices for each day. 

In order to calculate the RND implied by the observed call prices, parametric methods shall be 

used since, as previously seen, they are less data-intensive and provide a more independent 

view of the curve by not overfitting the data. It is important, at this stage, to compare some of 

the methods from the different categories discussed before. 

3.2 - Risk Neutral Densities 

3.2.1 - Expansion method 

For this category, a lognormal-polynomial density using normalised hermite polynomials will 

be applied. As previously seen in the literature review, this method assumes a lognormal 

distribution to which is multiplied a polynomial that brings flexibility to the distribution and 

contributes to the definition of the skewness and kurtosis which are not accounted for with 

the simple lognormal. The normalised hermite polynomials that are multiplied in the density 

function follow the denomination      , with the first order polynomials being:  

 

                            
 

   
                 

 

   
        

      
 

   
           

(13) 
 

 

These polynomials have the orthogonality property, which means that the integral 

               
 

  
   will be 1 whenever     and zero otherwise. The density distribution 

of Z, a random variable with mean of zero and standard deviation of one comes from: 

 
                 

 

   

 

 

(14) 
 

where 

   
   

  
      

 
  

   

   
 

(15) 
 

 

and    are the parameters to be estimated. Additionally, it is known from theory that    is 1 

and both    and    are zero. It will also be assumed that the values of    with an index higher 

                                                             

4 Interest rate earned by deposits made by governments and corporations in foreign banks. The three-
month rate is the most liquid one and, as such, considered a good approximation of the risk free 
interest rate. 
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than 4 are equal to zero. These values will be needed to calculate the pricing function of the 

options, as: 

 
                       

 

   

   

 

(16) 
 

where    comes from calculating 
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The formulae for    and    need not be calculated since their multiplication with the null 

values of    and    will eliminate them in the product. We then have the optimisation of the 

parameter vector               done by minimisation of the sum of square errors 

                            
 

 

   

 
 

(19) 
 

 

which compares the option prices obtained using the model (       ) with the ones observed 

in the market (           ) and where   is the number of strike prices for which there are 

observable prices. The lowest value of      happens for parameter values that best fit the 

model to observed data. Finally, the density function of the future stock prices    is linked to 

the density of   (defined in Equation (15)) by the expression: 

        
 

    
       

 
(20) 

 
 

3.2.2 - Generalised distribution method 

The method being used here will be one of the most common ones, the GB2 originally used by 

Bookstaber and McDonald (1987). This distribution has four parameters defined as 

            to ensure flexibility and description of values of skewness and kurtosis. It is 

however useful to define parameter b as a function of the other three parameters to force a 

risk neutrality condition for the final distribution. The fact that these parameters are difficult 

to interpret is one of the drawbacks of this method. The probability density function is defined 

as: 

                 
 

         

     

    
 
 
 
 
 
    

 
(21) 

 
 

where the beta distribution        is defined by 
        

      
, with the gamma function   being 

easily calculated by a Microsoft Excel formula. The parameter b, as previously said, comes 

from a function of the other parameters as 

   
              

    
 
    

 
  
   (22) 

 

 

Before writing the option pricing function, it is necessary to define the cumulative distribution 

function of the beta distribution 
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(23) 
 

 

where the function u is a result of  

          
 
 
 
 
 

   
 
 
 
    

(24) 
 

 

The pricing formula is then: 

                            
 

 
   

 

 
                              

 
(25) 
 

 

3.2.3 - Mixture method 

A simple but effective method in this category is the mixture of two lognormal distributions. 

As previously discussed, this method allows a higher degree of flexibility than the simple 

lognormal, permitting the description of several measures of kurtosis and skewness. It can 

even account for bimodal distributions, a useful feature when there is a marked doubt 

between two possible states in the market. Each lognormal density must have one parameter 

for the mean and another one for the volatility. A fifth parameter is the weighting of the 

lognormal distributions in the final RND. Therefore,                      . Since the equality 

              must hold5, only four parameters need to be optimised. The density for 

each of the lognormals follows: 

                
         

 

      
 

(26) 
 

 

with        and d2 coming from Black and Scholes (1973): 

 
   

   
 
        

  

   

   
   

 
(27) 
 

 

The RND, being a weighted average, is: 

 
                                                           

 
(28) 
 

                                                             

5   here represents the price of the index at the time of the observation. 
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and the pricing formula is the weighted average of two pricing formulae equal to the one 

found in Black and Scholes (1973): 

           
                                

                       
 
(29) 
 

where          . 

3.3 - Risk Transformation 

3.3.1 - Maximum Likelihood 

As stated before, given the common assumption of risk aversion in the market, an RND is close 

to useless when it comes to forecasting the future prices of an underlying asset. As such, it is 

now necessary to perform a risk transformation to obtain a real world density. Since it can be 

seen in the results' section that the mixture of lognormals method seem to best explain the 

pricing of options for both indexes, we shall use the RNDs calculated with it to perform the 

risk transformation.  For this risk transformation, it will be assumed that the risk neutral 

densities are linked to the real world densities by a power utility function, which implies a 

constant relative risk aversion  . Additionally, following Liu, et al. (2007) where they claim 

that the LR3 method is not known by them to produce a more accurate estimation of the risk 

aversion factor  , the maximum likelihood shall be used as the main estimation method. To 

increase the accuracy of the method, nine sets of option prices have been collected, with the 

first set having its option prices observed at October 5th 2006 and expiry date at October 21st 

2006 (the same set used to calculate the RNDs). The remaining data sets are all concerning 

options with the duration of two weeks and the observation dates are in the beginning of each 

of the months following October until June.  For each of these data sets, densities are 

calculated the same way as described in the RND section above. Then, using the 

transformation shown in Equation (9), the transformed parameters are calculated as: 

 

  
     

   
    and 

 

   
 

  
   
  

  
  
 
 

      
       

    
   

   

 
 

(30) 
 

 

where   
  are the set of transformed means for each of the lognormal densities and    is the 

transformed weight. 

Creating a probability density function the same way as done before, but now using the 

transformation parameters will result in a real world density, the purpose of this exercise. 

However for the transformation to be possible, one more parameter must be estimated. That 

parameter is the risk aversion measurement   that is present in the above formulae of the 

transformed density parameters   
  and    and that also defines the assumed power utility 
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function      
    

   
  To estimate the parameter   it is necessary to maximise the log-

likelihood function of the observed prices at the end of each of the nine periods given the 

transformation parameters which depend on the risk aversion parameter. In other words, a 

value of   must be chosen in such a way that the probability of the observed end-of-period 

index levels coming from the transformed parameters is maximal. In practical terms, this can 

be done simply by maximising the sum of the logarithms of the transformed density function 

at each of the end-of-period index prices. Mathematically:                    
   

   .  

3.3.2 - LR3 

To reinforce the conclusions regarding the risk aversion for the two indexes under analysis, 

we will now use the LR3 method proposed by Berkowitz (2001). For the same nine real world 

densities previously estimated by the maximum likelihood method, a close approximation of 

their integral was performed by dividing the strike price range into multiple sections. Each of 

these sections is represented by a density value and, by multiplying these values by the width 

of the section and summing the resulting products we obtain the area beneath the density 

curve; in other words, the integral. The integration from minus infinity until ST as can be seen 

in Equation (3) returns a variable    that follows an i.i.d.        distribution if the estimated 

density is the same as the true density and  ST are independent. Application of the Equation 

(4) to variable    originates variable    which should be i.i.d. and follow a standard normal 

distribution. This procedure is performed for both indexes being analysed and two sets of 

nine values of    are obtained. Maximising the log-likelihood displayed in Equation (6) 

produces estimates for the parameter vector          obtaining the remaining information 

needed to perform the calculation of     and     (Equations (7) and (8)). A value for the risk 

aversion   must now be chosen in such a way that it results in the lowest possible    . Doing 

so will maximise the chances of    being independent and defined by a standard normal and 

so, having a correctly specified real world density.  

 

4 - Results 

 

4.1 - Risk Neutral Densities 

4.1.1 - Polynomial-Lognormal  

Performing the optimisation of the pricing function parameters by minimisation of      

defined in Equation(19) was done using solver in Microsoft Office Excel. The parameter vector 

for the Dow Jones Industrial Average is                                              

resulting in             and the optimum for the FTSE 100 comes at 

                                        . The shapes of the RNDs are as follows. 
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We observe that the peaks are at around 119.2 for the Dow Jones Industrial average and at 

604 for the FTSE 100, slightly above the respective current index levels since the time to 

maturity is close to 2 weeks and a high appreciation of the index would be unlikely. Given that 

this method can sometimes originate distributions with negative probabilities for some values 

of the strike price, there has also been a verification regarding the sign of the density function 

which, for the Dow Jones Industrial Average, appears to be positive across the range of 

considered exercise prices. However, it should be noted that the positive density restriction is 

not met by this model in the case of the FTSE 100 index. This means that the lognormal-

polynomial is not adequately estimating the risk neutral density for this index. It can also be 

noted that the left tail of both distributions is much more significant than the right one, 

hinting at the higher expectations for a negative outcome than for a positive one. This trait of 

the probability density is usually not captured by a simple lognormal distribution, which can 

lead us to conclude that the inclusion of hermite polynomials added flexibility to the 

distribution and allowed it to display a negative skewness that is typical of stock markets. 

However, it is important to bear in mind that these curves are simple RNDs and no significant 

conclusions regarding the expectations of investors can be made until a suitable risk 

transformation is applied.  

  

Figure 1 - Risk Neutral Densities for the Dow Jones Industrial Average and the FTSE 100 at October 5, 2006 using 
the Lognormal-Polynomial expansion method. 

-0,005 

0 

0,005 

0,01 

0,015 

0,02 

0,025 

0,03 

0,035 

4
8

0
 

4
9

0
 

5
0

0
 

5
1

0
 

5
2

0
 

5
3

0
 

5
4

0
 

5
5

0
 

5
6

0
 

5
7

0
 

5
8

0
 

5
9

0
 

6
0

0
 

6
1

0
 

6
2

0
 

6
3

0
 

6
4

0
 



17 
 

0 

0,05 

0,1 

0,15 

0,2 

0,25 

0,3 

1
0

0
 

1
0

2
 

1
0

4
 

1
0

6
 

1
0

8
 

1
1

0
 

1
1

2
 

1
1

4
 

1
1

6
 

1
1

8
 

1
2

0
 

1
2

2
 

1
2

4
 

1
2

6
 

1
2

8
 

1
3

0
 

4.1.2 - GB2 

Once again, the parameters are estimated by minimising the error measurement      

(Equation (19)) using solver in Excel, which gives an optimal result of 

                                          for the Dow Jones Industrial Average and 

                                          for the FTSE 100. The RNDs plotted against 

exercise prices can be seen below. 

 

These distributions present high peak around prices 119.9 and 612 that could imply a higher 

expectation for the future prices of the underlying assets assuming those values as if the 

investors were risk neutral. To both sides of the peak, the curves are smooth, descending 

more slowly on the left side. Also for this method can negative skewness be observed. 

4.1.3 - Mixture of Lognormals 

Again, by minimisation of the error measurement     , the parameters are estimated, with 

                                                            resulting in a measure of error 

of 0.0153 for the distribution of the future levels of the Dow Jones Industrial Average. The 

same calculations applied to the FTSE 100 index produce 

                                                     For these parameters, both 

lognormal curves and the RNDs assume the following shapes: 
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Figure 2 - Risk Neutral Densities for the Dow Jones Industrial Average and the FTSE 100 at October 5, 2006 using 
the GB2 method. 
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We can clearly observe the two lognormal distributions that give origin to the final RND. The 

first lognormal expects a significantly lower distribution of the underlying index level but, as 

can be understood by the values of p under 4% and by the weighted distributions, an 

hypothetical event that would lead to these distributions is extremely unlikely. In fact, these 

low values of p raise doubt on whether there is really a two-state expectation for the future or 

if the lognormal 1 is formed merely to create a fatter left tail in the RND. It is common to come 

across RND shapes for this method with a similar appearance. In Liu, et al. (2007), the 

exemplified density created with a mixture of lognormals presents no indications of 

bimodality, which implies a low weight for one of the lognormal densities or a small difference 

between    and   . 

What also jumps to attention by analysing Table 1 and Table 2 is the fact that this method 

achieved the best fit to observed prices of all the three methods tested. If we compare the Dow 

Jones Industrial Average option prices observed in the market with the ones obtained from 

the calculated pricing formula using the mixture of lognormals, the following plot can be 

drawn. 
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Figure 3 - Risk Neutral Densities for the Dow Jones Industrial Average and the FTSE 100 at October 5, 2006 using 
the Mixture of Lognormals method. Both lognormal distributions that comprise the RND are represented in a 
dotted line and their weighted average is the solid line named fQ. 



19 
 

0 

5 

10 

15 

20 

25 

30 

35 

40 

8
4

 

8
6

 

8
8

 

9
0

 

9
2

 

9
4

 

9
6

 

9
8

 

1
0

0
 

1
0

2
 

1
0

4
 

1
0

6
 

1
0

8
 

1
1

0
 

1
1

2
 

1
1

4
 

1
1

6
 

1
1

8
 

1
2

0
 

1
2

2
 

1
2

4
 

1
2

6
 

1
2

8
 

1
3

0
 

O
p

ti
o

n
 P

ri
ce

 

Observed 

Mix LN 

 

 

 

In Figure 4 we can observe how the function is tracking the observed prices and how the 

interpolation fills in the spaces between the existing observed data. 

Placing all three distributions in the same graph to facilitate comparison and analysis results, 

for the Dow Jones Industrial Average distributions, in the chart below. 

Figure 4 - A pricing formula using a Mixture of Lognormals represented with observed call prices against exercise 
prices at October 5, 2006 for the Dow Jones Industrial Average. 
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It is immediately evident the pronounced peak displayed by the GB2 method as well as an 

apparent stronger negative skewness. The polynomial-lognormal shows a bimodal 

distribution by featuring a second peak on the left slope. It is to be noted, nevertheless, how 

similar the three densities are on the right slope, all seeming to converge. The first four 

moments of the distributions and their fit to observed prices can be summarised as follows. 

 

  Mix LN GB2 Poly-LN 

Mean 

 

118.64 118.80 118.81 

Standard Deviation 

 

2.70 2.63 2.48 

Kurtosis 

 

4.94 3.26 1.79 

Skewness 

 

-1.50 -1.13 -0.74 

G(θ)   0.015 0.019 0.021 

Table 1 - Comparison of the characteristics of Risk Neutral Densities obtained with each of the three methods 
analysed at October 5, 2006 for the Dow Jones Industrial Average. 

 

The mean values for the three methods seem to converge presenting a very low difference 

between them. It is also made obvious the negative skewness of all densities, which succeed in 

capturing the larger relevance of the probability in the left tail of the distribution that is 

common for equity densities. The higher peak of the GB2 distribution, however is not 

Figure 5 - A comparison of Risk Neutral Densities calculated with each of the three methods analysed at October 5, 
2006 for the Dow Jones Industrial Average. 
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confirmed by the kurtosis measurements where the generalised method trails the mixture of 

lognormals' produced density. 

However informative each of the distributions may be, preference shall be given to those with 

a higher fit to observed option prices, by other words, the methods with the lowest     . In 

this case, the mixture of lognormals and the GB2 seem to be superior to the polynomial-

lognormal, with values of 0.0153 and 0.0191 against 0.0214 respectively.  

Performing the same analysis for the FTSE 100, we get: 

 

Figure 6 - A comparison of Risk Neutral Densities calculated with each of the three methods analysed at October 5, 
2006 for the FTSE 100. 

 

    Mix LN GB2 Poly-LN 

Mean 

 

601.22 601.04 600.32 

Standard Deviation 

 

19.41 18.67 17.57 

Kurtosis 

 

16.43 109.76 3.34 

Skewness 

 

-2.95 -4.57 -1.68 

G(θ)   0.361 2.901 2.967 

Table 2 - Comparison of the characteristics of Risk Neutral Densities obtained with each of the three methods 
analysed at October 5, 2006 for the FTSE 100. 
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For this index, it seems that each of the distributions retains some of their distinctive features, 

while at the same time magnifying them. It is still observed a higher peak for the GB2 

confirmed by its higher kurtosis and now, its negative skewness is even more pronounced 

when compared with the other distributions. The polynomial-lognormal is still characterised 

by its bimodal appearance, which is now exacerbated so that the probability distribution 

assumes negative values for some exercise prices. There seems to be an agreement 

concerning the means of the distributions as their differences are lower than one. Both of 

these distributions have worsened significantly the error measurement      in comparison to 

the ones obtained for the Dow Jones Industrial Average estimations. Additionally we can see 

that now there seems to be some more discrepancies regarding the shapes produced by the 

different methods. This result may come from the fact that data found for the FTSE 100 index 

was significantly less extensive regarding the number of exercise prices available for 

transaction. 

Unlike what was seen for the Dow Jones Industrial Average where there seems to be a small 

difference in the error measurement for the three methods used, for the FTSE 100 it is clear 

that the Mixture of Lognormals’s method outperforms the other two by providing a superior 

fit.  

4.2 - Real World Densities 

4.2.1 - Maximum Likelihood 

The optimisation process applied to the data collected for the Dow Jones Industrial Average 

index results in a   value of 9.39, a positive value that suggests the presence of risk aversion 

and risk premium. The utilisation of this parameter on the transformation procedure 

specified in Equation (30) results in an increase of the log-likelihood of 0.772 and has the 

following effect on the RND shape previously considered for the options expiring in October of 

2006:  

Figure 7 - The Risk Neutral Density f(x) and its transformed density f (x) assuming risk aversion at October 5, 2006 
for the Dow Jones Industrial Average. 
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A slight transformation can be observed, its most distinctive trait being the shifting of the 

whole density to the right towards higher values. Additionally, the weight allocated to the 

lognormal density that represents the worst case scenario is reduced, decreasing the 

significance of the results in the left side tail of the distribution. This is a common result when 

in presence of risk aversion, with the RND displaying a more pessimistic forecast of the index 

values. The fact that the market is acting as if the probability density were more negative than 

actually expected reflects the conservative behaviour of a risk averse investor. 

Performing the same procedure with the distribution of the FTSE 100 index increases the log-

likelihood by 1.218 for a value of   equal to 21.28. Again, for the density of options expiring in 

October 2006, this risk transformation has the following impact: 

 

Figure 8 - The Risk Neutral Density f(x) and its transformed density f (x) assuming risk aversion at October 5, 2006 
for the FTSE 100. 

 

The same observations as for the Dow Jones Industrial Average can be made, with the right 

handed shift of the curve being even more pronounced on account of a higher measure of risk 

aversion. As obvious as this mean-shift may be, it is important to be aware that there are also 

changes taking place in the shape of the distribution and therefore the method used to 

perform the transformation is also relevant (Anagnou, et al., 2002). 

Given the increase (measured as the difference between before and after) of the log-likelihood 

measurement achieved by performing the transformation, it is possible to test the null 

hypothesis of     . For this test, the double of the improvement log-likelihood measurement 

follows a chi-square distribution with one degree of freedom. For increases of 0.772 and 1.218 

for the Dow Jones Industrial Average and the FTSE 100 respectively, the testing statistics are 
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1.544 and 2.437, both of which fail to reject the null hypothesis at a 10% significance level. 

This means that these values of   do not provide strong evidence to support the existence of 

risk premia in the market (Liu, et al., 2007). 

Comparing the   values for the two indexes under analysis could lead to the conclusion that 

risk aversion is stronger for the English index. However, bearing in mind conclusions from 

Bliss and Panigirtzoglou(2004), estimations of the risk aversion tend to decrease with longer 

maturities and during periods of high volatility. The discrepancy between the values found 

could be explained by different volatilities felt in each market at the time of the analysed 

periods. Performing the optimisation of the risk aversion factor for each of the 9 periods 

individually brings to attention the extraordinary fluctuation existing between the values of   

across the different periods. While witnessing values going as low as -8 (which would suggest 

the existence of a risk-seeking behaviour during certain periods), it is important to bear in 

mind that the risk transformation procedure is merely trying to reconcile the differences 

between the risk neutral expectations of investors and the actual observed index levels at the 

end of the maturity. If   is to be seen as such a reconciling factor, then its greatness 

encompasses both a measure of risk aversion theorectically assumed to be positive and a 

measure of an unexpected behaviour by the index level. If, for example, the index price has an 

unforeseen increment by the time of the options' maturity, the measure   correcting the RND 

is accounting both for the existing risk aversion and the mistake in the expectations of 

investors. If the opposite occurs and the index price goes under the expectations, then   may 

become negative if the negative adjustment from the unexpected fall is superior to the 

positive adjustment required by the risk aversion. In light of this short-term instability, and 

assuming that risk aversion could remain constant across long periods, a long term analysis 

would be necessary to more accurately estimate the risk aversion. Such a long term analysis 

would encompass a great number of periods and effectively average out the unexpected 

fluctuations of markets, leaving the   estimate as a clean measurement of risk aversion. 

Furthermore, the lenght of the analysis would make sure that the estimation of risk aversion 

would not be influenced by any particular economy states or volatility trends which, as we 

have seen, have an impact on the   estimate.  

To test the aplicability of the conclusions of Bliss and Panigirtzoglou (2004) (lower 

estimations of risk aversion for longer maturities and for periods with high volatility) to our 

data, realised volatility calculations6 for periods of 14 calendar days have been extracted for 

each day from WRDS for both indexes from October 2006 to June 2007. The average of the 

volatilities was taken for each of the nine periods considered in this analysis and this set of 

averages was matched to the corresponding period's estimate of the risk aversion. The 

correlation between the two sets of data was then calculated with the following results: 

 

                                                             

6 The volatilities are calculated by WRDS using a simple standard deviation of logarithmic daily returns 
and are annualised for 252 trading days. 
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Dow Jones Industrial Average FTSE 100 

 

Realised 

Volatility 
γ 

Realised 

Volatility 
γ 

Oct-2006 0.062 28.305 0.081 40.337 

Nov-2006 0.072 34.829 0.077 13.728 

Dec-2006 0.079 8.439 0.090 34.606 

Jan-2007 0.060 14.464 0.125 -8.352 

Feb-2007 0.069 25.882 0.094 26.379 

Mar-2007 0.172 -8.300 0.184 2.894 

Apr-2007 0.075 147.152 0.071 18.666 

May-2007 0.077 80.438 0.101 26.937 

Jun-2007 0.110 -0.631 0.110 33.412 

Correlation -0.375 -0.553 

Table 3 - Comparison between realised volatilities and estimates of risk aversion for each period. 

 

As would be expected from reading Bliss and Panigirtzoglou (2004), both sets of data present 

a negative correlation, which suggests that the   estimate is indeed lower whenever the 

volatility is higher. Applying this knowledge to the obtained values of   for the two indexes 

may lead to the conclusion that the American market was suffering from higher volatility 

during the period being analysed. To check this conclusion, the standard deviation of the daily 

index prices for the period under analysis has been calculated for both indexes. However, to 

compare the dispersion of the prices, it is necessary to use a normalised measure of 

dispersion since the levels of the two indexes are very different in terms of scale. As such, the 

coefficient of variation was used by dividing the standard deviations by the average price of 

each index. The results were 3.86% and 2.77% for the Dow Jones Industrial Average and the 

FTSE 100 respectively. These results give strength to the theory that the high estimation of 

risk aversion calculated for the FTSE 100 may be partly caused by a lower volatility felt in that 

market during the analysed period. 

If we were to consider the risk aversion factor to be a representative of the risk premium and 

the volatility as an indicator of the market risk, we would delve into a topic that has produced 

puzzling and divergent conclusions: the relationship between risk and risk premium. 

Following the Capital Asset Pricing Model, there would be a direct positive relation between 

the risk premium and the systematic risk. Even though there have been numerous studies 
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supporting this positive relation, others have reported inconclusive results or even the 

existence of a negative relation. Han (2002) tries to solve this question by stating the 

importance of the concept of volatility risk7 and shows in his study that the risk premium is 

not only positively related to the volatility in the market but also negatively related to the 

volatility risk. The existence of this second relation can result in unexpected conclusions when 

it comes to relating market risk (volatility) and risk premium. The conclusions of Han (2002) 

may help explain the findings of Bliss and Panigirtzoglou (2004) as well as the results from 

this study. 

4.2.2 - LR3 

The following table exhibits the different values of     and     for different levels of risk 

aversion for the Dow Jones Industrial Average and the FTSE 100.  

Dow Jones Industrial Average FTSE 100 

γ LR1 LR3 γ LR1 LR3 

0 0.6705 4.7820 0 15.0019 13.4970 

6 0.5927 3.5253 25 6.7138 9.6563 

7 0.5837 3.3414 26 4.9596 8.3375 

8 0.5780 3.1627 27 2.7976 6.2586 

9 0.5860 2.9809 28 1.3251 4.2265 

10 0.6611 2.7414 29 0.6470 2.9131 

11 0.8726 2.0662 30 0.3624 2.3966 

12 0.8487 1.0243 30.2 0.3286 2.3774 

12.15 0.8273 0.9889 30.25 0.3209 2.3765 

12.2 0.8200 0.9877 30.3 0.3135 2.3772 

12.25 0.8127 0.9920 30.5 0.2865 2.3951 

12.5 0.7770 1.0931 31 0.2339 2.5396 

13 0.7130 1.6723 32 0.1692 3.2078 

14 0.6174 4.0855 33 0.1335 4.3125 

Table 4 - Values of the likelihood ratios LR1 and LR3 for each value of the risk aversion estimate γ for both 
indexes. In bold are the optimum values of γ that minimise LR3. 

 

                                                             

7 The risk of a change in the volatility measure. 
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With these likelihood ratios we can observe how accurately the densities are forecasting the 

future levels of prices. It is apparent that the real world densities that are the most accurate 

are those that were transformed with an assumed risk aversion of 12.2 and 30.25 for the Dow 

Jones Industrial Average and the FTSE 100 respectively. These values are superior to the 9.39 

and 21.28 estimated with the method of maximum likelihood, however, they reinforce the 

idea that the optimal risk aversion values for the period under estimation are high and that 

the FTSE 100 displays an even higher risk aversion than the American index. Additionally, it 

can be observed that there is a marked improvement of the forecasting abilities of the 

transformed densities over the risk neutral density represented with a   value of zero. 

Because the     test statistic follows a chi-square distribution with three degrees of freedom, 

we can test if, for the optimal value of risk aversion, the  variable    is i.i.d. and follows a 

standard normal. We conclude that the p-values for the American and the English indexes are 

0.804 and 0.498 respectively, which excludes the rejection of the null hypothesis for the most 

common levels of significance. 

In all, even though the risk aversion comparison between the two indexes carried out in this 

analysis suggests that investors in the FTSE 100 have a higher aversion to risk than those 

investing in the Dow Jones Industrial Average, the results may prove inconclusive regardless 

of a wide difference between the two estimates of  . As was seen, risk aversion is very 

sensitive to the volatility in the market and estimates prove to be unstable during short 

periods of analysis. A more definitive conclusion would be achieved by extending the period 

of study across several years in order to eliminate the effects of temporary peaks in volatility, 

as well as to average out the unexpected rises and drops of the markets that have a big 

influence on the   values. 

5 - Conclusions 
The methods analysed in this study use option data to give valuable insight into the 

expectations of market participants as well as their risk preferences. Using three different 

methods to calculate the RND, we were able to conclude that, in this example, the mixture of 

lognormal distributions presents a good flexibility, the best fit to the observed information 

and was therefore chosen. For this method, the weights assigned to one of the lognormal 

distributions were low for both indexes, which leads to the conclusion that there is no 

expectation of a two-state economy. The existence of a second lognormal is then merely used 

to increase the density's flexibility concerning skewness and kurtosis, thus allowing it to 

display some of the empirically-found characteristics of equity price distributions. Although 

mostly satisfactory, the GB2 and the polynomial-lognormal methods have proved to be 

inferior when analysing the FTSE 100. 

However interesting, the RND does not give information regarding the true expectations of 

investors or their risk aversion. To estimate these, we have assumed that investor's 

preferences are consistent with a power utility function with a constant relative risk aversion 

equal to the parameter  . Using the method of maximum likelihood and a likelihood ratio 

introduced by Berkowitz (2001) resulted in different values of risk aversion for each index. 
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This apparent disparity can be explained by the relatively short number of periods considered 

in the analysis. Regardless of this shortcoming, both methods seem to support the fact that the 

risk aversion was high compared to that found in similar studies. In addition, they both 

suggest a higher risk aversion for the investors of the FTSE 100 index. Under the assumption 

that risk preferences are constant throughout long periods of time, it would be interesting to 

make the comparison of risk aversion between indexes using a longer time frame. The short 

time interval this study refers to may have impaired the conclusions drawn from the 

likelihood ratio test since it relies on a test of normality and independence. Also the method of 

maximum likelihood could benefit from a higher number of observed periods since we have 

witnessed a strong instability in the   estimates across different observations. Analysing this 

instability, we have found evidence of the negative correlation between risk aversion and 

market volatility also supported in Bliss and Panigirtzoglou (2004). Furthermore, the 

maximum likelihood method relies on the assumption that the expectations of investors are, 

on average, an approximation of the true real world densities. Whenever there is a mistake in 

the expectations of investors in individual observations, this error is captured by the risk 

aversion estimate and can result in unlikely values.  

 

 

 

 
  



29 
 

Bibliography 
Aït-Sahalia, Y. & Lo, A. W., 1998. Nonparametric Estimation of State-Price Densities Implicit in 

Financial Asset Prices. The Journal of Finance, 53(2), pp. 499-547. 

Aït-Sahalia, Y. & Lo, A. W., 2000. Nonparametric risk management and implied risk aversion. 

Journal of Econometrics, Issue 94, pp. 9-51. 

Anagnou, I., Bedendo, M., Hodges, S. D. & Tompkins, R., 2005. Forecasting Accuracy of Implied 

and GARCH-Based Probability Density Functions. University of Warwick and HBF Frankfurt. 

Anagnou, I., Bedendo, M., Hodges, S. D. & Tompkins, R. G., 2002. The Relation Between Implied 

and Realised Probability Density Functions, s.l.: Financial Options Research Centre, University 

of Warwick. 

Bahra, B., 1997. Implied Risk-neutral Probability Density Functions From Option Prices: 

Theory and Application. Bank of England Working Paper No 66 . 

Bates, D. S., 1991. The Crash of '87: Was It Expected? The Evidence from Options Markets. The 

Journal of Finance, 46(3), pp. 1009-1044. 

Berkowitz, J., 2001. Testing Density Forecasts, With Applications to Risk Management. Journal 

of Business & Economic Statistics, 19(4), pp. 465-474. 

Black, F. & Scholes, M., 1973. The Pricing of Options and Corporate Liabilities. The Journal of 

Political Economy, 81(3), pp. 637-654. 

Bliss, R. R. & Panigirtzoglou, N., 2004. Option-Implied Risk Aversion Estimates. Journal of 

Finance, Issue 59, pp. 407-446. 

Bookstaber, R. M. & McDonald, J. B., 1987. A General Distribution for Describing Security Price 

Returns. The Journal of Business, 60(3), pp. 401-424. 

Breeden, D. T. & Litzenberger, R. H., 1978. Prices of State-Contingent Claims Implicit in Option 

Prices. The Journal of Business, 51(4), pp. 621-651. 

Buchen, P. W. & Kelly, M., 1996. The Maximum Entropy Distribution of an Asset Inferred from 

Option Prices. Journal of Financial and Quantitative Analysis, 31(1), pp. 143-159. 

Bu, R. & Hadri, K., 2007. Estimating option implied risk-neutral densities using spline and 

hypergeometric functions. Econometrics Journal, Volume 10, pp. 216-244. 

Campa, J. M., Chang, P. K. & Reider, R. L., 1998. Implied Exchange Rate Distributions: Evidence 

From OTC Option Markets. Journal of International Money and Finance, 17(1), pp. 117-160. 

Cochrane, J. H. & Hansen, L. P., 1992. Asset Pricing Explorations for Macroeconomics. NBER 

Macroeconomics Annual, Volume 7, pp. 115-182. 



30 
 

Corrado, C. J. & Su, T., 1997. Implied Volatility Skews and Stock Index Skewness and Kurtosis 

Implied by S&P 500 Index Option Prices. The Journal of Derivatives, 4(4), pp. 8-19. 

European Central Bank, 2011. THE INFORMATION CONTENT OF OPTION PRICES. ECB 

Monthly Bulletin, February.  

Fackler, P. L. & King, R. P., 1990. Calibration of Option-Based Probability Assessments in 

Agricultural Commodity Markets. American Journal of Agricultural Economics, 72(1), pp. 73-

83. 

Han, Y., 2002. On the Relation between the Market Risk Premium and Market Volatility.  

Jackwerth, J. C., 1999. Option-Implied Risk-Neutral Distributions and Implied Binomial Trees: 

A Literature Review. Journal of Derivatives, 7(2), pp. 66-82. 

Jackwerth, J. C., 2004. Option-Implied Risk-Neutral Distributions and Risk Aversion. s.l.:The 

Research Foundation of AIMR™. 

Jackwerth, J. C. & Rubinstein, M., 1996. Recovering Probability Distributions from Option 

Prices. The Journal of Finance, 51(5), pp. 1611-1631. 

Jondeau, E. & Rockinger, M., 2000. Reading the smile: the message conveyed by methods 

which infer risk neutral densities. Journal of International Money and Finance, Issue 19, p. 

885–915. 

Liu, X., Shackleton, M. B., Taylor, S. J. & Xu, X., 2007. Closed-form transformations from risk-

neutral to real-world distributions. Journal of Banking & Finance, Issue 31, pp. 1501-1520. 

Madan, D. & Milne, F., 1994. Contingent Claims Valued and Hedged by Pricing and Investing in 

a Basis. Mathematical Finance, 4(3), pp. 223-245. 

Malz, A. M., 1997. Estimating the Probability Distribution of the Future Exchange Rate from 

Option Prices. The Journal of Derivatives, 5(2), pp. 18-36. 

Mehra, R. & Prescott, E. C., 1985. The Equity Premium: A Puzzle. Journal of Monetary 

Economics, Issue 15, pp. 145-161. 

Ritchey, R. J., 1990. Call Option Valuation for Discrete Normal Mixtures. Journal of Financial 

Research, 13(4), pp. 285-296. 

Rosenberg, J. V. & Engle, R. F., 2002. Empirical pricing kernels. Journal of Financial Economics, 

Issue 64, pp. 341-372. 

Shackleton, M. B., Taylor, S. J. & Yu, P., 2010. A multi-horizon comparison of density forecasts 

for the S&P 500 using index returns and option prices. Journal of Banking & Finance, Issue 34, 

pp. 2678-2693. 

Shimko, D. C., 1993. Bounds of Probability. Risk Magazine, 6(4), pp. 33-37. 



31 
 

Taylor, S. J., 2005. Asset Price Dynamics, Volatility, and Prediction. s.l.:Princeton University 

Press. 

 


