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Abstract 

 

 

 

 

The present work describes the development of a sequential injection system for the 

determination of alkaline phosphatase activity, after solid phase extraction/preconcentration and also 

the determination of phosphate in natural waters and plant roots. 

The determination of alkaline phosphatase activity was based on the sepctrophotometric 

detection of a colored product (p-nitrophenol), resulting from the catalysis of a non colored substrate 

(p-nitrophenyl phosphate). Due to the low levels of alkaline phosphatase in waters, it was 

preconcentrated in a NTA Superflow resin charged with Zn2+ ions. This was possible due to the 

enzyme necessity for metals in its active site. 

The phosphate determination was based on the spectrophotometric determination of a colored 

complex (molybdenum blue), resulting from the formation of the complex of orthophosphate with 

molybdate, followed by its reduction with ascorbic acid. 

The proposed methodology allowed the determination of alkaline phosphatase activity within a 

range between 0.044 – 0.441 unit cm-3 and 19 – 280 µmol dm-3 pNP. A determination rate of 17 h-1 

and detection limits of 0.025 unit cm-3 and 1.9 µmol dm-3 pNP were obtained. 

Phosphate determination was also possible to perform within a range between 0.98 – 49.9 µmol 

dm-3 H2PO4
-, and with a detection limit of 0.29 µmol dm-3 H2PO4

-. A determination rate of 32 h-1 was 

obtained. 



ii 

 

 

 

 

 

 

 

Resumo 

 

 

 

 

No âmbito desta dissertação, desenvolveu-se uma metodologia de análise por injecção 

sequencial para a determinação da actividade da enzima fosfatase alcalina após pré-concentração e 

de fosfato em diferentes amostras de águas e raízes. 

A determinação da actividade da enzima fosfatase alcalina foi realizada com base na detecção 

espectrofotométrica do produto formado (p-nitrofenol) após degradação enzimática do substrato p-

nitrofenil fosfato. Devido aos seus baixos valores em águas, a enzima foi pré-concentrada numa 

resina (NTA Superflow) previamente carregada com iões Zn2+. Esta imobilização foi conseguida 

através do facto de a enzima ser uma metaloproteína. 

A determinação de fosfato foi realizada através da detecção espectrofotométrica do complexo 

azul de molibdénio. A reacção do azul de molibdénio ocorre pela formação de um complexo entre o 

fosfato inorgânico e o molibdato, seguida da redução pelo ácido ascórbico. 

O sistema desenvolvido permitiu a determinação da actividade da enzima fosfatase alcalina num 

intervalo de concentrações compreendido entre 0.044 – 0.441 unit cm-3 e 19 – 280 µmol dm-3 pNP. 

Obtiveram-se os limites de detecção de 0.025 unit cm-3 e 1.9 µmol dm-3 pNP com um ritmo de 

determinação de 17 h-1. 

A determinação do anião fosfato foi também possível num intervalo de concentração de 0.98 – 

49.9 µmol dm-3 H2PO4
-, com um limite de detecção de 0.29 µmol dm-3 H2PO4

-. O ritmo de 

determinação de fosfato foi de 32 h-1. 
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1.1. Phosphorus in the environment 

Phosphorus (P) is an important nutrient required by every organism since it is part of nucleic 

acids (DNA and RNA) and phospholipids located in the membranes. It has an essential role in energy 

metabolism due to its presence in ATP, ADP, AMP, and PPi (pyrophosphate) (Koch et al., 2009; 

Sebastián et al., 2004). In soils, P is the most limiting nutrient that controls living processes in plants. It 

is required in large amounts and so it is considered a macronutrient. 

P is present in natural waters and soils as two soluble sources, orthophosphates (H2PO4
- and 

HPO4
2-), which are named dissolved inorganic phosphate, and organic phosphorus compounds. The 

first one is readily available for assimilation by organisms such as bacteria, algae and plants, while the 

second one needs to be mineralized in order to be part of the soluble orthophosphate pool (Rees et 

al., 2009; Gambin et al., 1999). Orthophosphates are usually present at lower concentrations because 

of the limited solubility of various minerals containing phosphorus. The photosynthesis process also 

lowers the concentration because of the biological uptakes of phosphate. The occurrence of organic 

phosphates may be due to the breakdown of organic pesticides that contain this species in their 

composition (Gambin et al., 1999; Mhamdi et al., 2007). Organic phosphorus compounds (phosphate 

esters) include nucleic acids, phospholipids, inositol phosphates, phosphoamides, phosphoproteins, 

sugar phosphates, phosphorus containing pesticides and organic condensed phosphates (Yaqoob et 

al., 2005). 

In agriculture, the utilization of fertilizers containing phosphate causes its increase in soils and 

consequently the increase of the amount that leaches to surface and interstitial waters. Elevated 

concentrations in waters can lead to eutrophication since phosphorus promotes a massive growth of 

algae and plants which will deplete the dissolved oxygen and kill fishes and other aquatic life. 

Phosphorus levels in aquatic systems are influenced by mineralization of algae and the 

dissolution of phosphate minerals from anthropogenic point source changes of sewage and industrial 

effluents and from the inputs from agricultural land. In the end, total phosphorus concentrations in 

water varies from approximately 0.01 mg/L to 1.0 mg/L in polluted rivers (Yaqoob et al., 2005). 
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1.2. Alkaline phosphatase in the environment 

 

1.2.1. Alkaline phosphatase in water 

When the dissolved inorganic phosphate content in waters is depleted if compared to other 

nutrients, phytoplankton and bacteria have the ability to obtain P from dissolved organic phosphorus. 

This is due to the production of extracellular enzymes such as alkaline phosphatase (AP) that 

hydrolyze phosphate monoesters liberating inorganic phosphate and organic matter (Gambin et al., 

1999; Ivančić et al., 2010; Boge et al., 2006). Alkaline phosphatase mineralizes organic phosphorus in 

order to recycle P and make it available for assimilation. In that order, AP is regulated by inorganic 

phosphate concentrations and internal P levels, which makes this enzyme an excellent indicator of P 

status (Chròst and Overbeck, 1987; Sebastián et al., 2004; Koch et al., 2009; Koike and Nagata, 

1997; Labry et al., 2005). 

 

1.2.2. Alkaline phosphatase in plants 

As it has been previously mentioned, phosphorus is an essential nutrient. It is essential for plants 

and because of that it limits agricultural production. Many plants have developed several mechanisms 

to acquire phosphorus from soil, in order to adapt to P-deficiency. These mechanisms include 

modifications in root structure, formation of symbioses with mycorrhizae and production of root 

exsudates such as organic anions and enzymes (George et al., 2008). Since P is only available when 

present as orthophosphate, in P-depleted soils, plants and microbes have the ability to hydrolyze 

organic P compounds by the production of enzymes such as phosphatases. According to previous 

studies (Tarafdar and Jungk, 1987), this enzyme has been determined in the three components of the 

rhizosphere (soil, microorganisms and plant roots). 

It has also been demonstrated that, when P is present at low levels, increased activity of 

phosphatase in plant roots and in rhizosphere is observed, along with a decline in organic phosphorus 

in soils. This gives evidence of a relationship between the enzyme phosphatase and soil and plant P-

levels (Tarafdar and Jungk, 1987). 
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1.2.3. Alkaline phosphatase as a metalloprotein 

Metals are usually present in nature as part of complexes with biomacromolecules. Complexes 

between metals and proteins (metalloproteins) have been studied and are known to perform a 

diversity of functions in biochemical processes such as catalytic, regulatory and others (Szpunar and 

Lobinski, 1999). 

Alkaline phosphatase (EC 3.1.3.1), schematically represented in Fig. 1.1, is an homodimeric 

metalloprotein, containing one Mg2+ and two Zn2+ ions in the active site. Magnesium is an important 

structural stabilizer of the enzyme, while zinc ions are directly involved in catalysis. One of the two zinc 

ions is necessary for catalysis and is important in binding both the substrate and phosphate (Bortolato 

et al., 1999). 

 
Figure 1.1. E. coli alkaline phosphatase active site. Functional groups unique to AP are shown in blue and 

conserved functional groups are shown in black (Zalatan et al., 2008). 

 

1.2.4. Determination of alkaline phosphatase activity 

The determination of alkaline phosphatase activity is typically achieved by incubating the enzyme 

with its substrate and measuring the final product. This procedure is usually time consuming due to 

long periods of incubation and requires sample pretreatment that is a laborious process. 

In that way, flow analysis appears as an interesting alternative for routine analysis since it is 

possible to automate the analytical procedure. In this way, faster analysis is possible and also the 

determination is less susceptible to human errors. 
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1.3. Flow analysis 

In the late fifties, a new concept of flow analysis emerged with the aim of automating chemical 

analysis. This concept has been exploited along the years and presents significant advantages for 

routine analysis. When compared to conventional batch analysis, flow systems allow a faster, real-

time and automatic determination. It also diminishes sample and reagent consumption with low 

effluent production. 

 

1.3.1. Brief history 

Flow analysis started with segmented flow analysis (SFA), which consists in the use of an air flow 

to create air bubbles between reagent and sample plugs in order to promote the mixture (Skeggs, 

1957). With this flow system, the reaction between sample and reagent (chemical equilibrium) is 

complete as well as the mixture between them (physical equilibrium). In the middle seventies, a new 

flow analysis concept, flow injection analysis (FIA) was proposed by Růžička and Hansen (1975) and 

is presented in Fig. 1.2. 

 

 

 
Figure 1.2. Manifold of a flow injection analysis system (Růžička, 2009). 

 

 

This technique, compared to the previous one, is based on a non-segmented flow stream where 

the sample is injected into the flow stream by means of an injection valve. Chemical and physical 

equilibrium are not usually achieved, and because of that a transient signal is obtained. These 

characteristics in flow analysis have advantages such as speed of analysis (since it is not necessary 

to wait for the chemical and physical equilibrium), easy implementation and low cost. In spite of these 

advantages, the relatively high reagent consumption and effluent production are two main limitations 

of FIA. 
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1.3.2. Sequential injection systems 

In 1990, sequential injection analysis (SIA), proposed by Růžička and Marshal (1990), emerged 

as an alternative to FIA in order to overcome its disadvantages. The common SIA manifold is 

presented in Fig. 1.3. This flow technique consists of the sequential aspiration of sample and reagents 

through a selection valve towards a holding coil, which by flow reversal are directed to the detector. In 

this concept, the mixture is obtained by a change in flow direction, while in FIA the mixture is promoted 

by the use of confluences. 

 

 

 
Figure 1.3. Manifold of a sequential injection analysis system (adapted from Růžička, 2009). 

 

 

This technique overcomes some limitations presented by FIA allowing reagent saving and low 

effluent production. There is no need of physical reconfiguration for multiparametric determinations. In 

FIA, to perform several determinations it is usually necessary to change the physical configuration 

while in SIA it is possible to place different reagents on the port of the selection valve. Because of that, 

this system is also versatile since it is possible to perform several determinations using the same 

manifold. With SIA it is also possible to couple several devices that perform in-line sample 

pretreatments such as dialysis units (separation/dilution), resins (separation/preconcentration) and 

others (Mesquita and Rangel, 2009). 
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A new related technique was subsequently developed to further improve and optimize the SIA 

concept. The micro sequential injection lab-on-valve (SI-LOV) proposed by Růžička (2000) allowed to 

compact the SIA system. This new technique is based on the sequential injection concept but it 

incorporates the detection system in the selection valve which allows the use of volumes in the micro 

scale. This down scale makes possible to have even lower values of reagent and sample consumption 

and effluent production. 

 

1.3.3. Other flow techniques 

After flow injection analysis, several other techniques have been developed. These techniques, 

with the same concept of flow injection, vary mainly in terms of equipment. This different equipment 

brings new ways for inserting sample and reagents and for sending to the detector. 

Multi commuted flow injection analysis (or sometimes named multi commutation), firstly described 

by Malcolme-Lawes et al. (1987), uses solenoid valves (with two positions) in place of the injection 

valve. These solenoid valves can introduce the reagent and sample independently (one valve each) or 

can introduce both sample and reagent with the same valve. 

Multi syringe flow injection analysis (MSFIA) described by Cerdà et al. (1999) couples solenoid 

valves with syringe pumps, moved by a common piston. The equipment of propulsion in multi syringe 

increases the robustness of the methodology when compared to flow injection and multi commutation. 

In multi pumping flow systems (MPFS), described by Lapa et al. (2002), solenoid micro pumps do 

both the propulsion and insertion of sample and reagents, with no need for valves. Since micro 

solenoid pumps perform the propulsion, a down scale of the system is achieved and because of that it 

is possible to have a portable system. In spite of that, due to its small size, the system has a lack of 

robustness. Also, the necessity of a solenoid pump for every reagent and sample makes necessary 

the existence of a manifold per determination. 
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1.3.3.1. Liquid-solid extraction: solid phase extraction 

Solid phase extraction (SPE) is characterized by the separation of an analyte from its matrix due 

to its affinity to a solid support (Matsuoka and Yoshimura, 2010). 

The application of SPE techniques to FIA, SIA, and SI-LOV allows to perform sample-

pretreatment processes such as sample clean-up, analyte preconcentration, and removal of matrices 

and/or interfering substances. SPE together with flow analysis systems improves its simplicity, 

accuracy, reproducibility, being easier to automate. Flow analysis techniques coupled with SPE have 

many advantages when compared to similar conventional batch determinations such as higher sample 

throughput, reduced reagent consumption and waste production, reduced sample contamination, 

lower LOD and/ or LOQ, automation by programmed control, and hyphenation with many kinds of 

detectors. The application of SPE also eliminates the need for laborious and time consuming sample 

pretreatment (Motomizu and Sakai, 2008). 

In this work, a Nitrilotriacetic Acid (NTA) Superflow resin was used. NTA is an 

aminopolycarboxylic acid that can sequester all metal ions when present in the fully deprotonated form 

(Anderegg, 1982). Because of that, this resin is known by its application in metals preconcentration 

(Lohan et al., 2005). Since AP is a metalloprotein that needs metal ions (Zn2+ and Mg2+) in its active 

site, this resin was used for the enzyme immobilization by previously complex zinc ions to the NTA 

resin. 
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1.4. Flow analysis techniques and phosphorus environmental analysis 

An option was made to describe phosphorus analysis previously to alkaline phosphatase activity 

analysis due to its importance and influence in the enzyme activity. Firstly, it is necessary to determine 

the water phosphate pool in order to relate with alkaline phosphatase activity. 

Water analysis is very important, being complex for phosphorus determination since it is present 

in many different forms of different organic and inorganic compounds. As it was previously explained, 

orthophosphate, the dominant species, when present in excess, is responsible for water 

eutrophication. Because of that, orthophosphate monitoring is of great importance as an indicator of 

contamination, in order to understand the causes and to develop a better water management. Total 

phosphorus determination is also of great interest since it represents the maximum amount of 

bioavailable phosphorus (Spivakov et al., 1999). 

Phosphorus in waters can be part of organic and inorganic compounds that can be present as 

dissolved, colloidal or particulate fraction and further characterization is presented in Fig. 1.4 

(Worsfold et al., 2005). 

Phosphorus can also be divided in filterable, when it passes through a 0.22 µm filter, and non 

filterable (particulate phosphorus), when it does not pass through a 0.22 µm filter (Spivakov et al., 

1999). 

 

 

 
Figure 1.4. Analytical scheme for phosphorus species determination in water (adapted from Worsfold et al., 

2005). 
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Many works have already been developed for phosphate determination in different samples using 

flow analysis. Furthermore, several reviews (Motomizu and Li, 2005; Morais et al., 2005; Maher and 

Woo, 1998) about orthophosphates determination in waters have been reported, clearly indicating the 

importance of phosphate monitoring in water samples. A review of the works developed for phosphate 

determination using flow analysis was done and is presented in Table 1.1. This review only considered 

the studies performed since year 2005 because the review from Motomizu and Li (2005) already 

describes the ones developed until that year. 
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As it is possible to observe in Table 1.1, most methods use spectrophotometric detection based on 

the reaction of orthophosphate with molybdate in acidic medium. After formation of the complex 

between phosphate and molybdate (molybdenum yellow) its reduction is performed by a reducing 

agent such as vanadate, ascorbic acid, stannous chloride, and malachite green resulting in a product 

that has its maximum absorption wavelength between 650 – 850 nm, depending on the agent used 

(Motomizu and Li, 2005; O’Toole et al., 2007). 

The analytical method based on the formation of the molybdenum yellow prior to its reduction is 

based on the following reactions: 

H3PO4 + 12 H2Mo12O4 → H3P(Mo12O40) + 12 H2O 

Mo(VI)                                        Mo(V)  (van Staden and Taljaard, 1998) 

Other methods based on the chemiluminescence, fluorimetric and amperometric detection are 

also used. 

Sixty percent of the works presented use flow injection systems for phosphate determination and 

water is the most analysed sample. 

 

1.4.1. Schlieren effect in flow systems 

Schlieren effect (SE) results from the deflection of the light beam which alters the intensity of the 

transmitted light beam. The SE is usually caused by the concentration gradient if refractive indices (RI) 

of carrier, sample and reagents are significantly different. The interface between these solutions can 

produce optical lenses and so a signal resulting of light deflection is registered, schlieren effect. If this 

signal is concomitant with the one to be measured at the same wavelength, erratic results are 

obtained, with more evident effects at low analyte concentrations. This problem is of great importance 

in SIA systems since no confluence points are used to improve the mixing (Dias et al., 2006). 

In FIA and SIA photometric detection, the schlieren effect can affect the accuracy, precision and 

limit of detection. Two types of schlieren effect that can occur in flow analysis systems have been 

previously identified by Dias et al. (2006). The first effect, which is reproducible, occurs when RI of an 

injected liquid differs from that of the recipient liquid. Depending on the relative magnitudes of the 

sample and carrier refractive indices, this has the effect of dispersing or focusing light rays from the 

source either towards or away from the detector, giving rise to artifact or schlieren peaks. The second 

effect is due to variations in the refractive indices of elements of sample and carrier/reagents that 

present differences in temperature, viscosity and concentration. This effect can also be influenced by 

pump pulsation and incomplete mixing of the plugs. 

In order to prevent or minimize the schlieren effect, detector optics have been designed that are 

capable of tolerating changes in the refractive index. Alternatively, carrier and reagent streams can be 

matched by adjusting viscosity, salinity as well as improving the mixing between plugs. In spite of that, 

Reducing agent 
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for samples with a highly variable matrix like estuarine waters, this improvement is not enough. New 

ways of reducing schlieren effect have to be used. A more efficient alternative is to direct the light 

transversely across the stream of the flowing liquid. The use of dual-wavelength detection is also an 

alternative. This approach is done by using a detection wavelength at the maximum absorbance of the 

chromophore and a second where only the schlieren signal occurs. This allows to select the correct 

wavelength according to optimum schlieren compensation capabilities. 

Liquid-core waveguide cells allow the use of increased optical pathlength since light is 

propagated by total internal refraction. These type of cells tend to exhibit high sensitivity due to the 

increased physical length. After that, multi-reflection cells described by Ellis et al. (2009) are a good 

compromise between enhanced sensitivity and schlieren effect tolerance. This is due to the 

introduction of light across the flow. The light is introduced across the flow, and the angle of incidence 

of the light beams introduced in this manner is much more acute (Frenzel and Mckelvie, 2008). 

In this work a multi-reflection cell was used to minimize the Schlieren effect in the phosphate 

determination. 
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1.5. Flow analysis techniques and alkaline phosphatase activity determination 

The use of enzymatic reactions in flow analysis systems has been employed in order to facilitate 

routine biochemical analyses and applications in biocatalysis. The application of FIA and SIA to 

perform enzymatic assays is an excellent option since these techniques allow a low sample and 

reagent consumption and so reduced analysis costs, ease of operation and fast analysis are possible, 

which are all requirements for bioassays and usually difficult to obtain with traditional techniques 

(Silvestre et al., 2011). 

Several articles already described the alkaline phosphatase activity (APA) determination (Koch et 

al., 2009; Hartwell et al., 2007; Lespilette et al., 2007; Koncki, et al., 2006; Ivančić et al., 2010; Boge et 

al., 2006; Koike and Nagata, 1997; Martinez and Azam, 1993; Hoppe, 1983; Perry, 1972). APA can be 

determined using substrates specific for this enzyme such as methyl-umbelliferyl phosphate, MUF-P, 

p-nitrophenyl phosphate, pNPP and monofluorophosphate, MFP, that originate products possible to 

measure with different detection methods (fluorescence, spectrophotometric, potentiometric and 

amperometric). The traditional techniques employed are laborious and time consuming since they 

include a step of incubation that varies a lot, ranging from a minimum of 30 minutes to a maximum of 

28 hours (Koike and Nagata, 1997; Hartwell et al., 2007; Ivančić et al., 2010; Boge et al., 2006; 

Martinez and Azam, 1993; Hoppe, 1983; Perry, 1972; Estela and Cerdà, 2005; Tzanavaras and 

Themelis, 2002; Chichester et al., 2008). 

Flow analysis appears as an interesting solution to traditional techniques for alkaline phosphatase 

activity determination. As it was explained, it is possible to decrease the reagent and sample 

consumption and the assay time. 

The works developed until year 2011 for alkaline phosphatase activity determination using flow 

analysis techniques are presented on Table 1.2. 
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As it is possible to see in Table 1.2, all the works employed flow injection analysis. This is 

probably due to the easy operation of a FIA manifold. 

Additionally, many of the works (Fanjul-Bolado et al., 2006; Díaz-González et al., 2002; Ruan and 

Li, 2001; Másson et al., 1999; Jackson et al., 1993) used flow analysis only for the final product 

measurement, and not for the whole process. In fact, the assay for APA determination, the incubation 

of the enzyme with its substrate, is done off-line, and the product formed is then determined by means 

of the flow system. In that way, in those works a long period of incubation is used and flow analysis 

does not bring many advantages for the APA conventional measurement. 

In that way, SIA could be an interesting alternative to FIA for the enzyme activity determination 

since it is possible to downscale the enzymatic procedure and lower reagent and sample consumption 

and the assay time. Also, according to Mesquita and Rangel (2009), SIA presents a set of 

characteristics that are advantageous for water analysis. 

It was also possible to see that few works use the spectrophotometric determination of the 

colored product p-nitrophenol. Most of them used the amperometric detection. In spite of that, 

spectrophotometry has been the most used for quantitative analysis of chemical components and it is 

interesting due to its simple and easy operation systems (Matsuoka and Yoshimura, 2010). 

In this work the alkaline phosphatase activity was determined spectrophotometrically by 

measuring the colored product (p-nitrophenol), resultant from the catalysis of a non colored substrate 

(p-nitrophenyl phosphate) according to the following equation: 

 

p-Nitrophenyl phosphate + H2O                                         p-Nitrophenol + Inorganic phosphate. 
Alkaline phosphatase 
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1.6. Objectives 

The main objective of this thesis was to develop a sequential injection methodology for the 

determination of alkaline phosphatase activity in natural waters. Also the scope was extended to plant 

roots. 

The activity of alkaline phosphatase was determined in different water samples with varied 

concentration ranges and matrices. The idea was to make this determination with no sample off-line 

prior treatments. Due to the AP low levels in waters and due to the complexity of sample matrices, a 

separation process would have to be implemented. Therefore, one of the objectives was to implement 

an in-line enzyme preconcentration system. This would be a significant contribution in this area, not 

extensively exploited in the literature. Another objective was to gain experience in the problematic of 

enzymatic analysis. 

Another objective was to optimize a previous SIA methodology developed for the phosphate 

determination. In this context, a multi-reflective cell (MRC), especially designed to minimize the 

schlieren effect in high salinity samples, coupled to a light emission diode (LED) as light source was 

used as detection system. 

The final purpose was to relate phosphate concentrations with alkaline phosphatase activity. 
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2.1. Reagents and solutions  

Solutions were prepared with analytical grade chemicals and boiled deionized water (specific 

conductance less than 0.1 µS cm-1). 

A 1.0 mmol dm-3 diethanolamine buffer was daily prepared: 0.0026 g of magnesium chloride 

hexahydrate was dissolved in water and, after dissolution, 2.4 cm3 of diethanolamine was added and, 

following homogenization, water was added to 25 cm3. The pH was adjusted to 9.8 using a 4 mol dm-3 

HCl solution. This solution was diluted 5 times.  

The substrate, p-nitrophenyl phosphate, DiTris salt (30 mmol dm-3) was also daily prepared for 

alkaline phosphatase activity determination by dissolving 0.0277 g in 2 cm3 of deionized water. 

Alkaline phosphatase (EC 3.1.3.1) from bovine intestinal mucosa was purchased from Sigma 

Aldrich. Enzyme dilutions (179.3 and 0.441 unit cm-3) were prepared in 10 mmol dm-3 Tris HCl, pH 8.0, 

2.5 mmol dm-3 MgCl2.6H2O, and 0.15 mmol dm-3 ZnCl2 solution. Glycerol at 50% was included for long 

term storage at 2 – 8 ºC. Alkaline phosphatase working solution was a 0.2 unit cm-3 prepared in 

diethanolamine buffer. 

AP standards (0.022 – 0.441 unit cm-3) were prepared by appropriate dilution of the 0.441 unit 

cm-3 enzyme solution. 

For the elution of the enzyme in denaturing conditions, buffer E (Ni-NTA Superflow Cartridge 

Handbook, 2007) was prepared by dissolution of 24 g of urea, 0.69 g of KH2PO4, and 0.79 g of Tris-

HCl, in deionized water. After that, water was added to complete a volume of 50 cm3. The pH was 

adjusted to 4.5 using a 4 mol dm-3 HCl solution. The final concentrations were of 8 mol dm-3 urea, 100 

mmol dm-3 of KH2PO4 and 100 mmol dm-3 of Tris-HCl. 

Buffer NPI-250 (Ni-NTA Superflow Cartridge Handbook, 2007) was used for preliminary studies. 

This buffer was prepared by dissolving 0.136 g of KH2PO4, 0.351 g of NaCl and 0.340 g of imidazole 

in deionized water. The volume was completed to 20 cm3 with water. The pH was adjusted to 8.0 

using NaOH. The final concentrations obtained were of 50 mmol dm-3 KH2PO4, 300 mmol dm-3 of NaCl 

and 250 mmol dm-3 of imidazole. 

A stock solution of 560 µmol dm-3 p-nitrophenol, pNP, was prepared by dissolving 0.0156 g of the 

solid (p-nitrophenol) in 200 cm3 of deionized water. Working standards (19 – 280 µmol dm-3) were 

prepared by proper dilution of the stock solution. 

The molybdate reagent was daily prepared by dissolving 0.32 g of ammonium heptamolybdate-

tetra-hydrate (16 g dm-3), 0.0020 g of potassium antimony (III) oxide tartrate hemihydrate (0.1 g dm-3) 

and 0.15 g of tartaric acid (7.5 g dm-3) in 3.9 cm3 of 4 mol dm-3 sulphuric acid (0.78 mol dm-3) and 

deionized water. After homogenization, water was added to 20.0 cm3. 

The 30 g dm-3 ascorbic acid solution was prepared by dissolving 0.60 g of ascorbic acid in 20.0 

cm3 of deionized water. 
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A phosphate stock solution (71.6 mg dm-3) was prepared by dissolving 0.050 g of sodium 

dihydrogen phosphate monohydrate (NaH2PO4.H2O) in 500 cm3 of deionized water and stored in a 

refrigerator. A phosphate solution (10 mg dm-3) was prepared by appropriate dilution of the stock 

solution. Working standards (5.54 – 49.9 µmol dm-3) were prepared by appropriate dilution of the 10 

mg dm-3 solution and stored in the refrigerator when not in use. 

In order to prevent the deposition of the molybdenum blue in the reactor and in the flow cell walls, 

a 1 mol dm-3 NH4Cl/NH3 washing solution was used (Lima et al., 1997; Morais et al., 2003). This 

solution was prepared by dissolving 0.17 g of ammonium chloride in 0.75 cm3 of commercial ammonia 

solution (d = 0.91, 25%). After homogenization, deionized water was added to 20.0 cm3. 

A 0.03 mmol dm-3 bromothymol blue (BTB) dye in a 0.01 mol dm-3 sodium tetraborate solution 

was used in preliminary studies. 

 

2.2. Sample collection and preparation 

Different water samples were collected and analyzed for the alkaline phosphatase activity and 

inorganic phosphate determination: pore waters, estuarine waters, river waters, well waters and sea 

waters. Water samples were directly introduced in the system. 

Root samples (Fig. 2.1) were obtained from different plants for the alkaline phosphatase activity 

determination. 

The root sample preparation was similar to the one described by George et al. (2008). Plant roots 

were ground in liquid nitrogen and, previously to its use, triturated (Fig. 2.2) and suspended in 5 

volumes of homogenizing buffer (15 mmol dm-3 MES pH 5.5, 5 mmol dm-3 cysteine). The suspension 

obtained was centrifuged (14,000 rpm, 15 min). The supernatant was used for APA measurements. 

MES (2-(N-morpholino)ethanesulfonic acid) was used in the buffer since it is usually applied as a 

buffering agent in biochemistry. 
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Figure 2.1. Photography of plant roots. Plant source: A) Agapanthus africanus, B) Petroselinum crispum, C) 

Melissa officinalis. 

 

  

 

 

 

 

 

Figure 2.2. Photography of plant roots after being triturated. Plant source: A) Agapanthus africanus, B) 

Petroselinum crispum, C) Melissa officinalis. 

 

2.3. Apparatus 

Solutions were propelled by a Gilson Minipuls 3 peristaltic pump with a PVC pumping tube, 

connected to the central channel of an eight-port electrically actuated selection valve (Valco VICI 

51652-E8). All tubing connecting the different components of the sequential injection system were 

made of Teflon from Omnifit, with 0.8 mm id.  

A Hitachi 100-40 UV-VIS spectrophotometer with a Hellma 178.711-QS flow cell (10 mm light 

path, 30 mm3 inner volume) was used as detection system (λ at 405 nm) for the determination of 

alkaline phosphatase activity. For phosphate determination, an especially designed multi-reflective 

flow cell (MRC) (Ellis et al., 2009), equipped with a red LED (λ max at 660 nm) light source connected 

to a 12 V power supply regulated to 5 V using a multimeter was used. This cell was kindly supplied by 

Professor Ian McKelvie (Melbourne University, Australia). The output voltage was set to zero V while 

the LED was on and using deionized water. Analytical signals were recorded using a Kipp & Zonnen 

BD 111 chart recorder. 

A B C 

A B C 
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A personal computer (Samsung SD 700) equipped with a PCL818L interface card, running with a 

homemade software written in Quickbasic 4.5, controlled the selection valve position and the pump 

rotation sense and speed.  

2.4. Preparation of the NTA column 

An acrylic column (3 mm i.d. and 20 mm length) used for bead packing was coupled to the SIA 

system and is represented in Fig. 2.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. Photography (A) and schematic representation (B) of the acrylic column used for bead packing. 

 

Nitrilotriacetic Acid Superflow resin (highly cross-linked 6% agarose, 60 – 160 mm of bead 

diameter, 50% suspension in 30% ethanol, 30510, Qiagen) was introduced in the acrylic column by 

means of a Gilson micropipette. 

The resin was daily charged with 2% Zn2+ (obtained from the solid ZnCl2), according to QIAGEN 

product information. 

 

A B 
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2.5. Sequential injection manifold and procedures 

The sequential injection manifold used for the colorimetric determination of alkaline phosphatase 

activity and phosphate is depicted in Fig. 2.4 and the correspondent photography is shown in Fig. 2.5. 
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Figure 2.4. Sequential injection manifold for the spectrophotometric determination of alkaline phosphatase activity 

and phosphate: P, peristaltic pump; SV, eight-port selection valve; HC, 4.25 m holding coil; S, sample or 

standard; Col., column with NTA Superflow resin charged with Zn2+ ions; RAP, pNPP or pNP; Eb, eluting buffer; Db, 

diethanolamine buffer; RC1, 0.95 m reaction coil; λ, spectrophotometer (405 nm); RP, ascorbic acid solution; Mol., 

molybdate reagent; RC2, 1.82 m knitted reaction coil; LED, light-emitting diode at 660 nm; W, waste. 

 

 
Figure 2.5. Photography of the sequential injection manifold. 
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A sequential injection manifold was used for preliminary studies in alkaline phosphatase activity 

determination and is depicted in Fig. 2.6. 
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Figure 2.6. Sequential injection manifold for preliminary studies in the spectrophotometric determination of 

alkaline phosphatase activity: P, peristaltic pump; SV, eight-port selection valve; HC, 4.25 m holding coil; S, 

sample or standard; Col., column with NTA Superflow resin charged with Zn2+ ions; RAP, pNPP or pNP; Eb, eluting 

buffer; Db, diethanolamine buffer; RC, 0.95 m reaction coil; λ, spectrophotometer (405 nm); W, waste. 

 

The sequence of the steps and respective time and volumes for the determination of alkaline 

phosphatase activity is presented in Table 2.1 and the one for the determination of phosphate is given 

in Table 2.2. 
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Table 2.1. Sequential injection protocol for the determination of alkaline phosphatase activity 

Step SV position Time (s) 
Pump 

speed 

Pump 

direction 
Volume (mm3) Description 

A 3 8 40 a 501 
Aspiration of enzyme standarda/ 
waterb/ samplec 

B 4 16 20 b 501 Propelling to column 

C 4 20 20 a 627 
Aspiration for removal of excess 
(enzyme that did not adsorb) 

D 1 2.5 20 a 78 
Aspiration of substrate pNPPa,c/ 
standard pNPb 

E 4 2 20 b 63 
Propelling to column for enzyme 
catalysis 

F 8 12 40 b 752 
Propelling to waste to wash the 
holding coil 

G 4 2.1 20 a 66 Aspiration of the product pNP 

H 6 45 40 b 2820 
Propelling to the detector (λ = 
405 nm) 

I 5 2 40 a 125 Aspiration of eluting buffer 

J 4 4 20 b 125 
Propelling to column to remove 
the enzyme adsorbed 

L 4 7 20 a 219 Aspiration to wash the column 

M 8 4 40 b 251 Washing the holding coil 

a only aspirated to perform the enzyme calibration curve; 
b only aspirated to perform pNP calibration curve; 
c only aspirated to determine APA in samples. 
 

 

First the sample was aspirated and propelled to the column (steps A and B), where the AP is 

immobilized on the NTA Superflow resin charged with zinc ions. After that, the column was washed in 

order to remove the enzyme that was not retained, followed by the aspiration of substrate pNPP (steps 

C and D). In step E, the pNPP is propelled to the column to incubate with the immobilized enzyme. 

The holding coil is washed and the product formed was aspirated from the column and propelled to 

the detector (steps F, G and H). With the purpose to elute the enzyme from the resin between 

samples, an eluting buffer is aspirated and sent to the column (steps I and J). The solution is aspirated 

from the column, which remains filled with diethanolamine buffer, and propelled to waste (steps L and 

M). 
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Table 2.2. Sequential injection protocol for the determination of phosphate 

Step SV position Time (s) 
Pump 

speed 

Pump 

direction 

Volume 

(mm3) 
Description 

A 1 3 40 a 188 
Aspiration of ascorbic acid 

solution 

B 2 2 40 a 125 Aspiration of molybdate reagent 

C 3 8 40 a 501 Aspiration of standard/ sample 

D 7 70 40 b 3760 Propel to detector (λ = 660 nm) 

 

First the ascorbic acid solution and the molybdate reagent are aspirated (steps A and B), followed 

by the aspiration of sample (step C). The mixing is promoted by the reversion of the flow when 

propelling the plugs towards the detector. After aspiration of all solutions, the mixture is propelled to 

the detector (step D). 

To prevent the deposition of the molybdenum blue in the reaction coil and flow cell walls, a 1 mol 

dm-3 NH4Cl/NH3 washing solution was used at the end of a day work (Lima et al., 1997; Morais et al., 

2003). The solution was manually aspirated and propelled to the detector to wash the reactor coil and 

flow cell.  

 

2.6. Conventional batch determinations 

 

2.6.1. Alkaline phosphatase activity 

Alkaline phosphatase activity was measured using the substrate p-nitrophenyl phosphate (pNPP) 

according to the method proposed by Sigma, “Diethanolamine assay”. The reagents (buffer and 

pNPP) were pipetted to a cuvette and mixed by inversion. Alkaline phosphatase enzyme solution, 0.1 

– 0.2 unit cm-3, was added and mixed with reagents. Immediately after, the increase in absorbance at 

405 nm was recorded for approximately 5 minutes. 

2.6.2. Reference method for phosphate determination 

To evaluate the accuracy of the system for phosphate determination, the results obtained with the 

proposed SIA system were compared with those obtained by a reference method (APHA 4500-P E). 

 

2.7. Calculation of the enzyme activity 

The developed SIA system enabled the determination of alkaline phosphatase activity with two 

methods: direct, through the enzyme calibration curve or indirect, through a product (p-nitrophenol) 

calibration curve with subsequent interpolation in the correlation between the p-nitrophenol and 

enzyme standards. 
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2.7.1. Direct - enzyme calibration curve 

Alkaline phosphatase standards (0.022 – 0.441 unit cm-3) were prepared and the final 

absorbance was measured after incubation of the enzyme standard with the substrate (p-nitrophenyl 

phosphate). The calibration curve based on the established relationship A = f([AP]) was performed 

and samples were assessed directly by interpolating the absorbance value in the calibration curve. 

2.7.2. Indirect - product calibration curve 

The pNP standards (19 – 280 µmol dm-3) were prepared and a linear relationship was established 

(A = f ([pNP])). After that, the absorbance of the enzyme standards was measured and interpolated in 

the previously established linear relationship. With the concentration of pNP resulted from the 

interpolation, a new linear relationship was established (pNP = f([AP])). 

The samples were assessed as follows: the absorbance value obtained was interpolated in the 

product calibration curve to determine pNP concentration. After that, the pNP concentration obtained 

was interpolated in the second calibration curve to determine AP concentration. 

 

2.8. Ammonium, nitrate and nitrite determinations in water samples 

Ammonium, nitrate and nitrite determinations were performed for further characterization of the 

water samples, according to Segundo et al. (2011) and Mesquita et al. (2009). 
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3.1. Introduction 

As it was previously mentioned, alkaline phosphatase activity is dependent on phosphate levels, 

which makes this enzyme a good indicator of P-status. So, when phosphate availability is low, APA 

increases in order to breakdown organic compounds that include phosphate in their composition. By 

degrading these compounds, the release of inorganic phosphate is done which increases its 

bioavailability. In that way, it is important to first determine phosphate and consequently correlate its 

concentration with alkaline phosphatase activity. 

 

3.2. Phosphate determination 

The spectrophotometric determination of phosphate was already developed and previously 

described by Mesquita et al. (2011). In that scenario, the SIA manifold was assembled and some of 

the parameters were restudied, viewing a possible further economy of sample and reagents. 

The optimization of the colorimetric reaction was carried out using the MRC and a LED light 

source (660 nm). Preliminary studies were carried using a BTB solution. 

3.2.1. Optimization of the volume of reagent and sample using BTB 

The first parameter to be studied was the aspirated volumes. These preliminary studies were 

carried out using a bromothymol blue model solution (0.03 mmol dm-3). Using a borax solution (0.01 

mol dm-3) as carrier, the bromothymol blue solution was introduced sequentially in each port involved 

and the resulted peak profiles were recorded. This study was done by observing the overlap of signals 

that mimic the mixture that occurs when the plugs are sent to the detector. The volumes were chosen 

in order to promote the best mixture between sample and reagents. 

Volume optimization was performed for simulating two different aspiration sequences (“sample - 

molybdate reagent - ascorbic acid solution” and “ascorbic acid solution - molybdate reagent – 

sample”). 

The sample volume was studied ranging from 501 to 752 mm3. For the molybdate reagent, the 

range of study was 70.5 – 157 mm3. The ascorbic acid volume was also tested between 94 – 282 

mm3. For the aspiration sequence “sample – molybdate reagent – ascorbic acid solution”, the volumes 

that allowed a best mixture between the plugs, and for that reason were chosen, were 752, 157 and 

219 mm3 for the sample, molybdate reagent and ascorbic acid solution, respectively (Fig. 3.1A).  
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Figure 3.1. Signal output for a sequential injection run using BTB as reagents, sample and carrier (black line, 

sample; blue line, molybdate reagent; red line, ascorbic acid solution). A, aspiration sequence of “sample – 

molybdate reagent – ascorbic acid solution”; B, aspiration sequence of “ascorbic acid solution – molybdate 

reagent – sample”. 

 

For the inverted aspiration sequence, the volumes chosen were 188, 125 and 627 mm3 for the 

ascorbic acid solution, molybdate reagent and sample, respectively (Fig. 3.1B) since they produced a 

better overlap between signals and so a better mixture between sample and reagents. 

3.2.2. Aspiration sequence 

After the aspirated volumes were tested and set, the aspiration sequence was studied using the 

reagents of the colorimetric reaction. Two calibration curves were performed with the two different 

aspiration sequences in order to determine which presented better sensitivity. In that way, the 

aspiration sequence of “ascorbic acid solution – molybdate reagent – sample” was chosen, since it 

presented a better sensitivity when compared to the aspiration order of “sample – molybdate reagent – 

ascorbic acid solution”. 

3.2.3. Chemical parameters 

With the optimized volumes and aspiration sequence, a study of the concentration of both 

reagent solutions was studied. 

First, the molybdate reagent was optimized. Ammonium heptamolybdate-tetra-hydrate and 

sulfuric acid concentrations were studied simultaneously keeping the ratio 1:60 constant according to 

previous studies (Going and Eisenreich, 1974; Zhang et al., 1999; van Staden and Taljaard, 1998; 

Huang and Zhang, 2008) as it is presented in Fig. 3.2. The values of concentration varied between 8 – 

20 g dm-3 and 0.39 – 0.97 mol dm-3 for molybdate and sulfuric acid, respectively. 

 

 

 

A B 



3. Results and Discussion 

37 

 

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0.0 5.0 10.0 15.0 20.0 25.0

slope/  

dm3 g-1

[(NH4)6Mo7O24.4H2O]/g dm-3
 

Figure 3.2. Study of the influence of the concentration of the reagent, ammonium heptamolybdate-tetra-hydrate, 

(NH4)6Mo7O24.4H2O, (�). The point in black represents the chosen concentration. 

 

Since a better sensitivity was obtained, the values of concentration chosen were of 16 g dm-3 and 

0.78 mol dm-3 for molybdate and sulfuric acid, respectively. 

After setting the ammonium heptamolybdate-tetra-hydrate and sulfuric acid concentrations, the 

content of potassium antimony (III) oxide tartrate hemihydrate was studied (Fig. 3.3). 
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Figure 3.3. Study of the influence of the concentration of the reagents, potassium antimony (III) oxide tartrate 

hemihydrate, C4H4KO7Sb, (�) and ascorbic acid, C6H8O6, (). The points in black represent the chosen 

concentrations. 

 

The antimony is introduced in the molybdate reagent as a catalyst (Going and Eisenreich, 1974; 

Wu and Růžička, 2001). In that way, it was included in the molybdate reagent as an attempt to 

improve the sensitivity of the reaction between phosphate and molybdate. As the sensitivity increased 

up to 0.1 g dm-3, this was the value chosen. 

Following the molybdate reagent optimization, the content of the ascorbic acid solution was also 

studied (Fig. 3.3). The purpose of ascorbic acid is to reduce the molybdenum yellow to molybdenum 
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blue (Wu and Růžička, 2001); therefore, it is important that this reagent is present in excess in order to 

assure the total reduction of the molybdenum yellow. Because of that, the concentration of 30 g dm-3 

was chosen and also for the reason that the sensitivity increased until that value. 

3.2.4. Sample volume 

A new study was performed in order to diminish the sample volume. The sample volumes studied 

were 501, 627, 752 and 877 mm3. The volume of 501 mm3 was chosen since it allowed to spend less 

volume of sample without compromising the sensitivity and linearity. 

3.2.5. Temperature 

According to previous studies (Wu and Růžička, 2001), the reduction of molybdenum yellow to 

the blue heteropoly compound, which is the rate-determining step, can be accelerated not only by 

adding the catalyst antimony, but also by increasing the temperature. Because of that, the effect of 

temperature was studied in order to obtain a faster reaction and a better sensitivity. In spite of that, no 

significant changes were observed when the temperature was increased from room temperature 

(approximately 20 ºC) to 30 and 35 ºC. 
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3.3. Alkaline phosphatase determination 

3.3.1. Preliminary studies 

3.3.1.1. Conventional batch determinations 

Preliminary studies were carried out with a stock solution of AP, 179.3 unit cm-3, that was 

prepared from the stock solution of alkaline phosphatase from bovine intestinal. A 0.441 unit cm-3 

solution was prepared by appropriate dilution and used to prepare the working solution (0.02 unit cm-3) 

for batch experiments. 

The procedure described in section 2.6.1. was followed. The increase in absorbance was 

measured during 5 minutes, for the enzyme working solution and can be observed in Fig. 3.4; the 

determination was performed in consecutive days. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.4. Absorbance records carried out for the colored product pNP to determine APA due to the enzymatic 

hydrolysis of the substrate pNPP. The � represents the enzymatic assay performed in day 10.12.10, � an 

enzymatic assay in day 11.12.10, � an enzymatic assay in day 12.12.10 and  an enzymatic assay in day 

13.12.10. 

 

As it can be observed, alkaline phosphatase has its maximum linear rate until 60 seconds. 

Activity values ranging from 1.02 – 1.50 min-1 were obtained for the assays performed in consecutive 

days. 

This method was applied to some water samples and no signal increase was observed. 

Therefore, this method did not present enough sensitivity for this purpose. As expected, a 

preconcentration step would be required. 

3.3.1.2. Immobilization on NTA Superflow beads 

Since alkaline phosphatase is present in waters at low values, an option was made to implement 

a preconcentration step. For that purpose, a NTA Superflow resin was used. This resin, as it has 



3. Results and Discussion 

40 

already been said, is known by its application in metals preconcentration (Lohan et al., 2005). Since 

AP is a metalloprotein that needs metal ions (Zn2+ and Mg2+) in its active site, the resin was used for 

the enzyme immobilization by previously forming a complex between zinc ions and NTA resin surface. 

Firstly, some batch studies were performed in order to see if AP was effectively retained in the NTA 

Superflow beads. 

3.3.1.2.1. Bead suspension 

The first study was done using the resin in a suspension. NTA Superflow beads were introduced 

in a cuvette and the diethanolamine assay was performed. It was possible to observe that there was a 

deposition of beads at the bottom of the cell. In spite of that, degradation of the substrate still occurred 

along with the formation of the colored product. In fact, a yellow coloration was observed at the bottom 

of the cuvette where the beads were located. In that way, it was possible to conclude that the enzyme 

was retained to the beads and catalyzed the substrate degradation, originating the colored product 

that remained close to the beads. 

3.3.1.2.2. Bead column 

Two options could be made about how to use the NTA Superflow resin in the flow system. Beads 

could be discharged after each measurement or reused. These two options have its advantages and 

disadvantages. By discharging the resin, new beads could be used between samples which can 

eliminate some possible interferences (Vidigal et al., 2011). In spite of that, this is a more expensive 

option. The reuse of beads allows to diminish its waste and makes this method less expensive. 

Because of that, the reutilization of beads was chosen and so the resin was introduced in an acrylic 

column. The diethanolamine assay was performed using the resin packed and the solutions were 

introduced in the column by means of a syringe. Firstly, the enzyme was introduced and the column 

was washed with water to remove the excess that was not retained. After that, the diethanolamine 

buffer was introduced followed by the substrate. The collected effluent presented a yellow color which 

means that the substrate was degraded when inside the column. This showed that the enzyme 

remained attached to the beads, and catalyzed the degradation of the substrate pNPP to the product 

pNP. With this study, it was possible to confirm the previously suspicions, that the enzyme was indeed 

retained in the NTA Superflow resin. 

 

3.3.2. Sequential injection determination 

3.3.2.1. Manifold configuration 

The previous studies confirmed the possibility of preconcentration of AP. In that way, an attempt 

to perform this procedure in a SIA system was done. 

Two configurations of the SIA system were studied in order to choose the best position for the 

column containing the NTA Superflow resin. The schematic representations of these two manifold 
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configurations are presented in section 2.5 and consisted in positioning the column in the path to the 

detector and in a lateral port of the selection valve. The diethanolamine assay was carried out in the 

SIA system in order to compare the two positions and the obtained signal (Fig. 3.5). 

 

 

 

 

 

 

 

 

Figure 3.5. Signal obtained for the AP assay with two manifold configurations. A, column positioned in a lateral 

port of the selection valve; B, column positioned in the path to the detector. 

 

The column positioned in a lateral port was chosen since it presented a less influence of the 

Schlieren signal as it is presented in Figure 3.5A. 

 

3.3.3. Elution study 

As previously explained, the packing of the resin in a column was chosen as a preconcentration 

approach. In that way, an eluting buffer had to be used to remove the enzyme from the beads 

between samples/standards. Therefore two elution approaches were tested: elution prior to 

determination and elution after determination. 

3.3.3.1. Elution prior to determination 

The buffer used for this approach was the NPI-250 buffer that allowed the elution of the enzyme 

in native conditions. In that way, the enzyme would be eluted from the resin previously to its 

determination. 

Firstly, to determine if the NPI-250 buffer influenced APA, a comparative study was made 

between the activity of AP when prepared in both diethanolamine buffer and NPI-250 buffer. For that 

purpose, the conventional batch procedure (section 2.6.1.) was performed. The increase in 

absorbance was recorded for five minutes and the results obtained for the assays performed are 

presented in Fig. 3.6. 

A

B Time/min 

A

A

Time/min 
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Figure 3.6. Study of the influence of the NPI-250 buffer in APA. The � represents an enzymatic assay using the 

enzyme prepared in diethanolamine buffer and the  represents an equal enzymatic assay using the enzyme 

prepared in NPI-250 buffer. 

As it is possible to observe, alkaline phosphatase activity decreased significantly when prepared 

in the NPI-250 buffer. Because of that, the prior determination approach was discarded. 

3.3.3.2. Elution after determination 

For this approach the eluting buffer (buffer E) eluted the enzyme in denaturing conditions. In this 

way, enzyme elution was done after the activity determination was performed which corresponds to 

the final of the analytical cycle. In this way, the buffer had no influence in APA. The determination of 

the final product formed after incubation of the substrate with the immobilized enzyme was performed. 

Since it was possible to determine APA without decreasing its activity and to wash the column, 

between samples, with desorption of the enzyme, the approach of eluting after determination was 

chosen. 

 

3.3.4. Study of physical and chemical parameters 

3.3.4.1 Reagent volumes 

Using the diethanolamine assay (section 2.6.1), a study was performed to test the influence of 

reagents volume in alkaline phosphatase activity measurement. The diethanolamine assay (2700 mm3 

of buffer, 300 mm3 of pNPP and 100 mm3 of enzyme) was performed and compared with assays in 

which the volumes were changed (1350 mm3 of buffer, 150 mm3 of pNPP and 50 mm3 of enzyme; 

1350 mm3 of buffer, 150 mm3 of pNPP and 25 mm3 of enzyme; 1350 mm3 of buffer, 75 mm3 of pNPP 

and 50 mm3 of enzyme and 1350 mm3 of buffer, 75 mm3 of pNPP and 25 mm3 of enzyme). The results 

obtained are presented in Fig. 3.7. 



3. Results and Discussion 

43 

0.000

0.500

1.000

1.500

2.000

2.500

3.000

0 50 100 150 200 250 300 350

A

t/s  

Figure 3.7. Study of the influence of reagents volume in the determination of alkaline phosphatase activity. The 

� represents the conventional batch assay with volumes of: 2700 mm3 of buffer, 300 mm3 of pNPP, 100 mm3 of 

enzyme, � represents volumes of: 1350 mm3 of buffer, 150 mm3 of pNPP, 50 mm3 of enzyme,  represents 

volumes of: 1350 mm3 of buffer, 75 mm3 of pNPP, 50 mm3 of enzyme, � represents volumes of: 1350 mm3 of 

buffer, 150 mm3 of pNPP, 25 mm3 of enzyme and � represents volumes of: 1350 mm3 of buffer, 75 mm3 of 

pNPP, 25 mm3 of enzyme. 

 

It was possible to observe that with a decrease in the enzyme volume, APA decreased and that 

by decreasing the total volume of the assay a small influence in APA was obtained. With a decrease in 

buffer and enzyme volumes to half and in substrate volume to a quart, alkaline phosphatase activity 

determination was performed and no significant interference was observed. In that way, for the 

reproduction of the diethanolamine assay in the SIA system, the pNPP volume was decreased from a 

volume of 300 to 78 mm3.  

No further studies in the reagent volumes were performed since the purpose was to change, the 

less possible, the APA assay when performed in the SIA system.  

3.3.4.2. Sample volume 

The influence of sample volume in APA determination was studied. Since the goal was to 

preconcentrate the enzyme, higher volumes of sample had to be used to increase the immobilization 

factor. So higher volumes of enzyme, when compared to the conventional batch procedure, were 

studied using an enzyme standard of 0.044 unit cm-3. Values of 251, 376, 501 and 627 mm3 were 

experimented. The aim was to see if the immobilization process was improved and so an increase in 

the product formation would be obtained due to an increase in the substrate degradation. The results 

obtained are presented in Fig. 3.8. 
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Figure 3.8. Study of the influence of the sample volume in the immobilization process and in APA determination. 

The point in black represents the chosen volume. 

 

As it is possible to observe, no significant differences were obtained for the studied volumes. 

Because of that, a volume of 501 mm3 was chosen since with a sample volume of 627 mm3 no 

improvement in sensitivity was observed and with lower values, the step of preconcentration could be 

compromised. 

3.3.4.3. Reagents concentration 

A study of the influence of substrate concentration in alkaline phosphatase activity determination 

was performed. Values of 150 (used in the diethanolamine assay), 111, 72 and 30 mmol dm-3 were 

tested and the obtained results are presented in Fig. 3.9. 
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Figure 3.9. Study of the influence of the pNPP concentration in the APA determination. The point in black 

represents the chosen concentration. 

 

As it is shown in Fig. 3.9, the product formation increased with the decrease in substrate 

concentration. Actually, the lowest value of enzyme activity was obtained for the concentration value 
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of 150 mmol dm-3, that is the one used in the conventional batch procedure (diethanolamine assay). 

No significant differences were obtained for the concentration values of 111, 72 and 30 mmol dm-3. In 

that way, and in order to decrease substrate consumption, a value of 30 mmol dm-3 of pNPP was 

chosen to perform the alkaline phosphatase activity assay. 

Since pNPP concentration was decreased 5 times from a concentration of 150 to 30 mmol dm-3, 

diethanolamine buffer concentration was also decreased 5 times in order to maintain the proportion 

with the substrate according to the diethanolamine assay. Thus, a 0.2 mmol dm-3 diethanolamine 

buffer was used. 

Overall this study demonstrated that an excess of substrate was achieved. 

3.3.4.4. Incubation time 

The incubation time between the enzyme and its substrate was studied. A time of 0.2 minutes 

was taken as the minimal value for the incubation step. It was possible to conclude that there was no 

need for an incubation time of 5 minutes used in the diethanolamine batch assay. With a value of 0.2 

minutes it was already possible to determine alkaline phosphatase activity in enzyme standard 

solutions (0.022 – 0.441 unit cm-3) obtaining a linear calibration curve. 

 

3.3.5. Interferences 

According to Koncki et al. (2006), some ions inhibit alkaline phosphatase activity. For that reason, 

some possible interferences in APA from water samples were studied. The percentage of interference 

was calculated by comparing the peak heights of two enzyme standards (0.1 unit cm-3), one with the 

interfering specie and  the other one without it. The studied interfering ions, the tested concentrations 

and the interference percentages are shown in Table 3.1. 

 

Table 3.1. Potential interfering species and respective percentage of interference 
Tested 

ion 
Prepared from the 

reagent 
Concentration/ 

mg dm-3 % Interference 

Cl- NaCl 70.0 -3.3 

Ca2+ CaCO3 100 -0.3 

Ag+ AgNO3 0.010 -2.4 

Mg2+ MgN2O6.6H2O 50.0 1.8 

K+ K 1000 mg dm-3 12.0 0.8 

Na+ Na 1000 mg dm-3 50.0 1.6 

Al3+ Al 1000 mg dm-3 20.0 -4.4 

Pb2+ Pb 1000 mg dm-3 20.0 -8.1 

Fe3+ Fe 1000 mg dm-3 0.200 1.3 

H+ HNO3 1575 1.8 
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As it is shown in Table 3.1, no significant interferences were observed for the ions tested. This 

means that no interference was caused in the binding of the enzyme to zinc ions. 

3.3.6. Study of the pNP standards stability 

A study was made in order to assess the stability of the pNP standards. Calibration curves were 

performed monthly for two months with the same standards in the linear dynamic range of 19 – 280 

µmol dm-3. Firstly, a calibration curve was performed in the day of the pNP standards preparation. 

After that four calibration curves were performed one month and two months after the standards 

preparation. The sensitivity obtained for the calibration curves performed are presented in Fig. 3.10. 

 

 

Figure 3.10. Study of the stability of pNP standards. The  represents the slope of a calibration curve performed 

in the day of standards preparation, � and � represent the slope of two calibration curves performed one month 

after standard preparation and � and � represent the slope of two calibration curves performed two months after 

standard preparation. 

 

It was possible to conclude that pNP standards had to be prepared monthly since the sensitivity 

decreased significantly after two months from the preparation. Therefore, a sensitivity of approximately 

between 2.1 – 2.5 dm3 mmol-1 had to be obtained. 

 

3.3.7. APA assessment 

3.3.7.1. Direct method 

Alkaline phosphatase activity in this work, as it has already been said, was determined by means 

of two different methods (direct or indirect). The direct method was determining APA in samples 

directly by using an enzyme calibration curve (Fig. 3.11). A sensitivity in the range of 0.27 – 0.44 cm3 

unit-1 had to be obtained in order to accurately determine APA. 
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Figure 3.11. Alkaline phosphatase calibration curves. The � represents a calibration curve in day 02.03.11, � a 

calibration curve in day 09.03.11, � a calibration curve in day 11.03.11 and  a calibration curve in day 16.03.11 

 

3.3.7.2. Indirect method 

For the indirect method, product calibration curves were performed (Fig. 3.12A). After that, a 

relationship between enzyme standards and the corresponding formed product was performed (Fig. 

3.12B). 

 

 

 

 

 

 

 

Figure 3.12. Determination of APA by determining the final product concentration. A, product calibration curve. 

The � represents a calibration curve in day 140211, the � a calibration curve in day 150211 and the � a 

calibration curve in day 160211; B, relation between AP standards and the corresponding product concentration 

formed after incubation of the enzyme with substrate. The � represents a relation obtained for an enzyme 

calibration performed in day 160311 and the � represents a relation obtained for an enzyme calibration 

performed in day 020311. 

 

In spite of being more complex when compared to the direct method, the indirect approach allows 

the determination of APA with no need to perform an enzyme calibration curve every day. Since a 

linear relation between AP and pNP concentrations was established, it was only necessary to perform 

A B 
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the product calibration curve to determine APA. This possibility allowed to decrease the consumption 

of the enzyme solution which makes this approach less expensive. In that way, for the relation pNP = 

f([AP]), a sensitivity with a slope value between 0.14 x 10-3 – 0.21 x 10-3 mmol unit-1 had to be 

obtained in order to correctly determine values of APA. 

 

The two methods previously described for APA determination were used to determine the 

enzyme activity in spiked water samples and the results obtained are compared in Table 3.2. 

 

Table 3.2. Alkaline phosphatase activity determination by the two methods 

Direct method Indirect method 

Sample type [AP]/unit cm-3 
± SD [AP]/unit cm-3 

± SD %RD 

Well water 0.090 ± 0.006 0.090 ± 0.007 0.1 

Pore water 0.092 ± 0.003 0.088 ± 0.008 -4.1 

River water 0.091 ± 0.002 0.091 ± 0.003 0.1 

0.074 ± 0.010 0.074 ± 0.012 0.1 

0.088 ± 0.003 0.088 ± 0.004 0.1 

0.118 ± 0.004 0.118 ± 0.005 0.0 

0.102 ± 0.005 0.102 ± 0.005 0.0 

0.104 ± 0.002 0.105 ± 0.002 0.0 

0.096 ± 0.000 0.097 ± 0.001 0.1 

0.096 ± 0.006 0.097 ± 0.006 0.1 

0.080 ± 0.007 0.080 ± 0.009 0.1 

0.078 ± 0.002 0.078 ± 0.005 0.1 

0.085 ± 0.003 0.085 ± 0.005 0.1 

 

Equal values were obtained for alkaline phosphatase activity when determined by the two 

methods, with relative deviations between -4.1 and 0.1. This results show that both methods can be 

used in the determination of alkaline phosphatase activity. 

 

3.4. Features of the developed system 

Significant features of the developed system are demonstrated in Table 3.3. The LOD and LOQ 

for phosphate and pNP determination were calculated as three and ten times the standard deviation of 

ten consecutive injections of deionized water, according to IUPAC recommendations (1976; 1995). 

The LOD and LOQ for enzyme activity determination were calculated as three and ten times, 

respectively, the standard deviation of the mean intercept of three calibration curves, according to 

IUPAC recommendations (1976; 1995). 
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The phosphate calibration curve corresponds to the mean slope and intercept of six calibration 

curves in consecutive days with the respective standard deviations. The pNP calibration curve 

corresponds to the mean slope and intercept of three calibration curves in consecutive days with the 

respective standard deviation and the enzyme calibration curve corresponds to the mean slope and 

intercept of three calibration curves done in two weeks with the respective standard deviation. 

The determination rate was calculated based on the time spent per cycle. A complete analytical 

cycle for alkaline phosphatase activity determination took about 2.1 min. For phosphate determination 

an analytical cycle took about 1.4 min. An analytical cycle is the sum of the time needed for each step 

plus the time necessary for the port selection in the selection valve. 

 

Table 3.3. Features of the developed SIA system for both determinations 

Parameter Dynamic range Calibration curvea LOD LOQ Determination 
rate (h-1) 

Phosphate 
0.98 – 49.9 
µmol dm-3 

Hb = 0.091 (±0.008) µmol 
H2PO4

- dm-3 - 0.089 (±0.057) 
0.29 µmol 

dm-3 
0.98 µmol 

dm-3 32 

AP activity 

19 – 280 µmol 
dm-3 pNP 

A = 0.00209 (±0.00002) µmol 
dm-3 pNP + 0.04957 (±0.01034) 

1.9 µmol 
dm-3 

4.5 µmol 
dm-3 

17 
0.044 – 0.441 

unit cm-3 
A = 0.296 (±0.025) unit AP cm-3 

+ 0.069 (±0.033) 
0.025 unit 

cm-3 
0.082 unit 

cm-3 
a Values between brackets correspond to the standard deviation of the equation parameters 
b Peak height (cm) 

 

The repeatability of the system for P determination was determined by calculation of the relative 

standard deviation obtained by the mean of ten consecutive injections of different water samples. RSD 

% ([H2PO4
-] µmol dm-3 ± SD), wastewater 0.85 (10.9±0.1); wastewater treated 1.82 (20.5±0.4); 

interstitial water 1.21 (9.12±0.11). 

With the developed methodology, the overall reagent consumption per APA determination was 

1.08 mg of pNPP, 60 mg of urea, 1.71 mg of potassium dihydrogen phosphate (KH2PO4), 1.97 mg of 

Tris-HCl, 0.0029 mg of magnesium chloride hexahydrate (MgCl2.6H2O) and 0.0030 mg of 

diethanolamine. 

The overall reagent consumption per phosphate determination was 2.00 mg of ammonium 

heptamolybdate-tetra-hydrate ((NH4)6Mo7O24.4H2O), 0.0125 mg of potassium antimony (III) oxide 

tartrate hemihydrate (C4H4KO7Sb), 0.940 mg of tartaric acid (C4H6O6), 5.64 mg of ascorbic acid 

(C6H8O6) and 9.59 mg of H2SO4 for phosphate determination.  

The effluent production per determination is 2.82 cm3 for alkaline phosphatase activity and 3.76 

cm3 for phosphate and the sample consumption for both determinations is of 501 mm3. 
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3.5. Application to water and root samples 

3.5.1. Validation of phosphate determination 

To determine the accuracy of phosphate determination, a certified reference river water (QC RW 

1, VKI-9-3-0702) was analyzed. The certified water was prepared in different water samples (river, sea 

and estuarine waters) in order to have a final phosphorus concentration of 98.7 µg dm-3. The relative 

deviations obtained for the different water samples are presented in Table 3.4. 

 

Table 3.4. Application of the developed sequential injection method to the phosphate determination in a certified 

reference water prepared in different water samples and comparison with tabulated value 

Sample type Sample ID 
Tabulated value/ 

µg P dm-3 

SIA 

µg P dm-3 ± SD RD (%) 

River water (Douro river) R1 

98.7 

101 ± 2 2.3 

Sea water 
P1 94.7 ± 3.1 -4.1 

P10 94.2 ± 3.4 -4.6 

Estuarine water (Cávado river) C3 94.8 ± 2.7 -4.0 

 

Relative deviations of 2.3; -4.1; -4.6; and -4.0 were obtained for the certified water prepared in 

different water samples which indicates that there is no significant interference from the different water 

matrices. This confirms what has been said about salinity interference. In spite of its high salinity 

values, sea water was used and the relative standard deviation obtained varied between –4.6 and -4.1 

which means that there was no significant interference. 

Two well water samples (sample ID, P7 and P11) were assessed with the reference procedure. 

For the P7 sample, the reference procedure obtained 5.61 mg dm-3 (RSD = 5.2±4.9%) and with the SI 

method 5.58 (±0.12) mg dm-3 was obtained resulting in a relative deviation of -0.5%. As for the P11 

sample the reference procedure obtained 9.40 mg dm-3 (RSD = 5.2±4.9%) and with the SI method 

9.56 (±0.07) mg dm-3 was obtained resulting in a relative deviation of 1.7%. 

 

3.5.2. Recovery studies for AP determination in different types of water 

Since the initial enzyme concentrations in natural waters were below the detection limit, estuarine 

water samples were spiked with volumes of 0.1 cm3 of enzyme stock solution (0.441 unit cm-3) to a 

final volume of 10 cm3 of sample. The recovery results obtained are presented in Table 3.5. The 

calculation of the recovery percentage was made according to IUPAC (2002), and using the so-called 

indirect method. 
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Table 3.5. Application of the sequential injection system for the alkaline phosphatase activity determination in 

spiked estuarine water samples and respective recovery studies 

Sample ID 
Added Conc./unit 

cm-3 

Found 
Recovery (%) 

Conc./unit cm-3 SD RSD % 

XI - DOU FEV10 0.100 0.116 0.002 1.40 116 

III - FEI1 FEV10 0.100 0.102 0.005 4.75 102 

VI- PTE FEV10 0.100 0.105 0.002 1.55 105 

IX - CLUB FEV10 0.100 0.097 0.000 0.00 97 

VI - INH2 FEV10 0.100 0.097 0.006 6.72 97 

P11 3.2010 0.100 0.090 0.006 7.23 90 

DOU3 PW 030907 0.100 0.102 0.037 36.6 102 

 

The SIA methodology provided recovery ratios with an average of 101% (standard deviation 8.3) 

and a statistical test (t-test) was used to evaluate if that mean recovery value did not significantly differ 

from 100% (Miller and Miller, 1993). Results showed that for a 95% significance level the recovery 

values did not differ from 100% as the calculated t-value was 0.336 with a correspondent critical value 

2.969, thus indicating the absence of multiplicative matrix interference.  

 

3.5.3. Sequential determination 

After validation of the developed methodology for the alkaline phosphatase activity and 

phosphate determination, APA and phosphate were determined in different water samples. The values 

obtained are summarized in Table 3.6. Figure 3.13A shows the influence of phosphate concentration 

in alkaline phosphatase activity for different water samples. Nitrate and nitrite were determined in the 

water samples for further characterization. Figure 3.13B presents the obtained relation between APA 

and the ions nitrate and nitrite. 
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Figure 3.13. Influence of the concentration of ions in APA in different water samples. A, relation between alkaline 

phosphatase activity and phosphate concentration; B, relation between alkaline phosphatase activity and nitrate 

(square) and nitrite (circle) ions concentration. 

 

As expected, alkaline phosphatase activity was lower than the limit of detection for several water 

samples since it is present in waters at relatively low concentrations. 

It is possible to observe that for high levels of phosphate concentration, APA is lower while for the 

lowest levels of phosphate, generally, APA increases. In spite of that, for some samples this does not 

happens. This can be due to the fact that alkaline phosphatase activity is influenced by several factors 

and not only by P levels. According to Koch et al. (2009) APA is also influenced by carbon levels. It is 

as well known that enzyme activity is influenced by pH, temperature and by the immobilization 

process. 

A B 
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3.5.4. Alkaline phosphatase activity determination in root samples 

AP is also active in root plants or in microorganisms that are present in the rhizosphere. Because 

of that, several root samples were obtained and the protocol described in section 2.2 was followed. 

After root plant treatment (please see section 2.2.), APA was assessed in different types of plants 

with the developed SIA methodology. The values obtained are presented in Table 3.7 along with plant 

source that is presented as the plant species or family name. Also, some weed plants were obtained. 

 

Table 3.7. Alkaline phosphatise activity in root samples 

Plant source [AP]/unit cm3 ± SD 

Zantedeschia 
aethiopica 

0.244 ± 0.008 

0.369 ± 0.019 

Canna flacida 0.203 ± 0.015 

0.424 ± 0.003 

Agapanthus africanus 0.137 ± 0.008 

0.193 ± 0.014 

Canna indica 0.108 ± 0.008 

Trifolium 0.314 ± 0.003 

0.231 ± 0.011 

Mentha spicata 0.511 ± 0.013 

Plantago lanceolata 0.190 ± 0.016 

Geranium robertianum 0.079 ± 0.008 

Melissa officinalis 0.189 ± 0.005 

Allium cepa 0.793 ± 0.013 

Petroselinum crispum 0.241 ± 0.032 

Weeds 0.394 ± 0.010 

0.359 ± 0.002 

0.828 ± 0.005 

1.53 ± 0.04 

2.17 ± 0.05 

0.714 ± 0.065 

 

 

With the developed SIA system, alkaline phosphatase activity was determined in all root plant 

samples obtained. Comparing the results obtained for water and root samples, it is possible to 

observe that APA was higher in root plants than in water samples. 
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4.1. Conclusions 

The developed SIA methodology allowed the determination of alkaline phosphatase activity in 

water and root samples and inorganic phosphate in different types of water samples. 

The enzyme activity determination was accomplished using a separation/preconcentration device 

coupled to the sequential injection system. 

It was possible to separate the enzyme from its matrices by taking advantage of its metalloprotein 

characteristic. As far as we know, this is the first time that this enzyme was immobilized using the zinc 

ion as the mediator between the protein and the resin. 

In this work, NTA Superflow resin was used due to its capacity to bind metals. In that way, zinc 

was retained to the resin and used to immobilized AP that has a need for this metal in its active site.  

Very few works report the alkaline phosphatase activity determination using flow analysis. Most of 

them report a routine procedure that is laborious and time consuming. Also, the works that employ 

flow analysis use the FIA technique. Therefore, this was the first time (as far as we know) that 

sequential injection analysis was applied for APA determination. This technique allowed a time saving 

when compared to other routine analysis and, since this technique is controlled by a computer, human 

errors were avoided. It was also possible to couple a separation device and perform a sample 

pretreatment in-line which made APA determination possible in an automatic and miniaturized way. 

APA determination was possible with an incubation time of 0.2 minutes and with a determination 

rate of 17 det. h-1. When compared to previous works that present incubation times with a minimum of 

5 minutes, the system developed presented a lower time of incubation and because of that, APA 

determination was faster. Due to this characteristic, the developed system can give a real time 

analysis since it is not necessary to wait overnight for the product formation. 

The developed SIA methodology also allowed the determination of inorganic phosphate in 

different water samples by means of the molybdenum blue chemistry. This determination was done 

without the necessity of system reconfiguration which is an advantage of the SIA systems. APA and 

phosphate determination were possible with the same SIA manifold only by changing the reagents on 

the ports of the selection valve. 

When compared to previously reported colorimetric flow systems for the phosphate 

determination, the developed methodology allowed lower effluent production. 

Due to the multi-parametric determination, the system developed allows the determination of APA 

and P in the same sample in 3.5 minutes. In that way, a relation between alkaline phosphatase activity 

and inorganic phosphate in natural waters is possible to perform. This methodology could also be 

used for the determination of water P-status since APA is a good indicator of P levels. 
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When compared to the SIGMA’s diethanolamine assay, the system developed allowed a reagent 

saving. The SIA system developed is a robust and reliable alternative for the spectrophotometric 

determination of APA and phosphate. 
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4.2. Future Work 

As future work, it would be very interesting to miniaturize and compact the SIA system developed. 

This can be achieved by using a micro sequential lab-on-valve (SI-LOV) equipment (Fig. 4.1A). The 

selection valve, propulsion device and detector, are gather in the same box. This type of systems have 

advantages such as the use of volumes in the µL range. 

This technique also presents advantages in reagent and sample saving due to the incorporation 

of the detection system in the selection valve. Because of this down scale, SI-LOV is a perfect tool for 

enzymatic and bead injection assays (Fig. 4.1B). With BI, beads replace the reagent and the assay is 

carried on the surface. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. A, SI-LOV manifold; B, flow cell (Růžička, 2009). 

 

With SI-LOV, APA determination can be performed with lower sample and reagent consumption 

when compared to the SIA system developed in this work. It is not necessary to couple separation 

devices since the preconcentration and detection steps can be performed in the flow cell. SI-LOV also 

allows enzyme rate measurements since it is possible to stop the flow in the detector. In that way, 

measurements of absorbance through time can be performed. 

A B 
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