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Abstract 

 

This study is designed to understand how investors risk preferences change, when faced by 

financial crisis. Option prices implied densities provide information about market movements 

and risk preferences. The data used are European call options prices on the DJIA with a time to 

maturity of four weeks.  This paper obtains the risk aversion estimates by the extraction of 

options implied risk neutral densities and their translation to real world densities,  applied to 

three crisis : Dotcom bubble in 2001; Subprime mortgage in 2008 and European sovereign debt 

in 2011. RND is achieved by the use of two parametric methods: mixture of lognormal 

densities (MLN); and generalised beta distribution of the second kind (GB2). The risk 

transformation procedure from RND to RWD (real world densities) is achieved by applying the 

power utility function. The RND empirical results imply that the GB2 method is disregarded 

due to inferior quality whilst the MLN produces results of higher uncertainty and expected 

future results of index levels corrected downward. The risk aversion estimates obtained from 

the RWD generation process do not present any evident pattern of evolution from a stable 

financial period to one of financial shock. It is also important to mention that for some periods 

the risk aversion reached negative values. This is a surprising result due to existent theoretical 

assumption of positive risk aversion. Overall, this study documents inconclusive results. 

Nevertheless, several important topics are left for future research. Interesting developments 

would consist: either replicating this study considering more expiration dates, bearing in mind 

that too many periods would imply an extremely generalised risk aversion estimate that would 

be counterproductive for achieving the objective of this paper; apply another method from the 

available literature; or testing the negative estimates with more sophisticated models that are 

beyond the focus of this paper.  

 

Key words: Risk Neutral Distribution, Real World Density, Mixture of Lognormal, Generalised 

Beta of the Second Kind, Power Utility Function 
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1. Introduction 

  
The purpose of this dissertation is to assess the impact of different crisis on investors’ 

preferences. In order to achieve this goal, this research focuses on how the aggregated risk 

aversion (i.e. how market participants behave towards uncertainty) evolves during financially 

troubling periods and understand if there is a specific pattern formation. This research 

comprises the last decade’s most troubling financial crisis: the dotcom bubble in 2000, the 

subprime mortgage crisis in 2008 and the European sovereign debt crisis in 2011.   

 

The process to accomplish this investigation requires the extraction of risk neutral densities of 

a meaningful index option market and its transformation into real world density. The rationale 

behind the option prices implied densities is the following: option prices contain information 

about investors’ future expectations on the underlying asset. More specifically, an option 

price, with a matching exercise price, represents the opinion of one investor about the 

outcome of the underlying asset at expiration date. Several option prices of a given underlying 

asset are different opinions of different market agents. When aggregated, they compile a set 

of weights of numerous outcomes that determine the terminal price of the underlying asset 

from the perspective of the representative risk neutral agent. Furthermore, by transforming 

the risk neutral density into real world density it is possible to obtain the risk aversion 

estimates.  

 

In this research, the considered option market index is the Dow Jones Industrial Average. 

Additionally, two parametric methods were selected to extract the risk neutral densities: 

mixture of lognormal densities and the generalised beta distribution of the second kind. In 

order to obtain the risk aversion estimates it was necessary to build the real world distribution, 

by applying a power utility function for the representative investor.  

 

According to Bliss and Panigirtzoglou (2004), intuitively, the expected conclusion would be to 

perceive a countercyclical risk aversion pattern. In other words, in response to market crashes 

the average investor, for a certain risky asset, would require higher returns when compared to 

an economic expansion period. The aggregate risk aversion would increase as a consequence 

of recession and drop during growth. The resulting risk aversion estimates are fully explained 

in the empirical results analysis section.  

 

The probability distributions’ forecast ability is the main reason why, many scholars decided to 

focus on this area of research: Taylor, (2005); Bliss and Panigirtzoglou (2004); Shackleton, et al. 

(2010); Jackwerth (2004). 

 

The next section provides a brief review of the available literature on extracting both risk 

neutral and real world densities from option prices, section 3 describes the data and 

methodology used, section 4 describes the obtained results, and Section 5 concludes. 
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2. Literature Review  
 

This section presents the basic concepts of risk neutral and real world distributions together 

with a non-exhaustive explanation of the main extraction methods for the two types of 

densities. The main objective is to understand which methodologies apply best to the 

execution of this research.  

 

The Risk Neutral Density (hereinafter “RND”) of an index option market provides a distribution 

of probabilities for the Index’s future prices at the maturity of the option. These probabilities 

are a reflection of the market uncertainty perceived by investors. One can build such a density 

function due to the fact that each strike price (with the same expiration date) of a specific 

index option, offers information on investors’ expectation about future market fragility and 

instability levels (Bahra, 1997). 

 

The risk neutral distribution is only equal to the real world density if investors have no specific 

reaction towards risk (risk neutral). As in reality this assumption does not hold, option prices 

will only incorporate the true beliefs about the future if a risk aversion measure is considered.  

With the corresponding coefficient of risk aversion, one may proceed with the forecasting 

activities (Bahra, 1997).  

 

“In summary, risk neutral probabilities in conjunction with actual probabilities tell us about 

implied utility functions and thus about the economy wide preferences that investors exhibit. 

This information provides a fascinating look at the economy” (Jackwerth, 2004:64). 

 

2.1 RND Extraction Methodologies 

The multitude of methods can be structured into two categories: parametric and non-

parametric. Both aim to generate models flexible enough to capture and explain the observed 

option prices.  

 

Parametric methods are highly restrictive procedures as they rely on a large number of 

assumptions to generate data. Due to their structured nature, the mathematic process is 

relatively easy since there are few parameters to estimate. The inherent problem of these 

techniques is that since there are so many assumptions that in case the model specification is 

not a perfect match with the option prices (probability distribution not sufficiently flexible to 

fit observed option prices) the results will be very misleading (Bondarenko, 2003).  

 

In contrast, the small number of assumptions and the many parameters that characterise the 

models produced by Non-Parametric methods allow an added flexibility that guarantees a 

superior fit of option prices. However, there is an implied cost to this extra generality. As 

models are too elastic and adjust to all the available information, they become exposed to 

market noise and individual options anomalies, causing overfitting and distorted results. It is 

also a complex and slow computing procedure (Jackwerth, 2004). 
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2.1.2 Parametric Methods 

From the available literature it is possible to allocate the Parametric methods in three main 

streams for RND extraction: The first approach specifies a distribution form for the RND and 

compares the differences between  the generated option prices and the observed option 

prices; the second requires defining an option pricing function and extracting the risk neutral 

density based on the Breeden and Litzenberger (1978) model; and the last type of extraction 

has a longer procedure by assuming  a specific relation between implied volatility and strike 

prices and then applying the Breeden and Litzenberger (1978) model to the indirectly 

interpolated call pricing function in order to obtain the RND (Jackwerth, 1999). 

 

Regarding the form assumption based methods: consists in defining a parametric assumption 

about the RND form. There are several ways to achieve this goal: (i) mixture methods create a 

potential RND function from a weighted average of several simple probability distributions, 

adding great flexibility to fit the option prices. (ii) expansion methods, as the name implies, 

expand elementary distributions by adding correction terms in order to control higher 

moments, improving their flexibility. (iii) generalized distribution methods use several 

distribution functions with parameters that go beyond the typical mean and volatility of 

normal and lognormal distributions, as limiting cases.   

 

Lognormal mixture, first suggested by Ritchey (1990), is the most commonly used method 

within the mixture category. It is a weighted combination of two lognormal distributions, 

allowing a large variety of flexible shapes due to the extra three parameters   (             ), 

(explained thoroughly in the methodology section) when compared to the single lognormal 

density. Once the probability density is established according to the form assumption, the 

option prices are then used to estimate the true parameters of the distribution. This process 

requires the application of the least square method between the generated option prices (with 

Black and Scholes (1973) option pricing formula as foundation) and the market option prices. 

The parameters that yield the lowest difference value will form the true risk neutral density of 

the underlying asset.  

 

There can be mixtures with three lognormal densities or more. Melick and Thomas (1997) use 

a mixture of three lognormal applied to American options on crude oil futures, during the 

Persian Gulf crisis, finding that the result of the estimated distributions were “consistent with 

the market commentary at the time” (Melick and Thomas, 1997, p. 92) and that it 

outperformed the simple lognormal assumption. However, the more lognormal distributions 

are added, the higher the number of parameters, which in turn creates tedious calculations 

procedures and is less interesting for the traditional options that are traded across a low range 

of strike prices (Bahra, 1997). 

 

In summary, the two lognormal mixture is quite appealing for researches which start with little 

information about the stochastic process of the options market. It is a method easy to 

implement and assures non-negative distributions (Bahra, 1997). Being directly linked to the 

Black and Scholes (1973) is just another evidence of its simplicity  (Cont, 1997). However, 

according to some authors there are some inherent disadvantages: yields too thin tails, which 

may create some difficulties in capturing higher statistical moments (Cont, 1997); there is no 
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theoretical background to assume that index option prices should follow such a distribution 

(Cont, 1997); is prone to overfitting when the number of distributions equals three or more 

(Jackwerth, 2004), and may return a bimodal density creating confusing analysis (Taylor, 2005). 

 

Regarding the second type of form assumption based methods, the expansion methods, are 

techniques built on the rationale that the Black and Scholes assumption about price dynamics 

(Geometric Brownian Motion) is unreliable. Therefore, these methods add to Black and 

Scholes (1973) natural risk neutral density (lognormal) a second term, the expansion measure. 

This term is considered as successive corrections to the original RND, providing more flexibility 

by permitting control over the parameters that correspond to skewness and kurtosis (Jarrow & 

Rudd, 1982). In a similar procedure to the mixture methods, from the new function (lognormal 

plus adjustments), a preliminary distribution is created, allowing the estimation of the 

parameters with help of the observed option prices, creating the final RND that represents the 

future density of the underlying security (Cont, 1997).  

 

Edgeworth series expansion (Jarrow & Rudd, 1982) is a good example of an expansion method. 

It is theoretically similar to the Taylor expansion (a function can be expressed by an 

approximated simpler polynomial), though instead of simplifying a function, this expansion is 

used to generate a more complicated RND in order to capture deviations from log-normality 

(Jondeau & Rockinger, 2000). 

 

Lognormal-Polynomial Density Functions or Hermite Polynomial, an alternative expansion 

method, was developed by Madan and Milne (1994). It assumes that standardized returns 

have a standard normal density multiplied by a polynomial function. Therefore the density of 

prices is a lognormal density multiplied by a polynomial function. In other words, they obtain 

the RND through a multiplicative perturbation of the simple lognormal density in order to 

allow a certain control of higher moments (Taylor, 2005). 

 

Both Hermite and Edgeworth expansion methods yield similar RND results when applied to 

exchange rate options (Jondeau & Rockinger, 2000). Even though they have a strong 

theoretical foundation, there is no guarantee that the generated densities will be strictly 

positive (Jackwerth, 2004). Additionally, when compared to the mixture of lognormal 

technique they present inferior abilities in capturing skewness (Jondeau & Rockinger, 2000), an 

essential statistical moment to capture the right movements of the underlying asset.  

 

The final category of the form based assumption methods is the generalised distribution 

methods. These type of methods use density functions which include higher statistical 

moments, more specifically skewness and kurtosis. GB2, the Generalised Beta of the second 

kind, is a well-known generalised distribution method, developed by Bookstaber and 

McDonald (1987), which gives origin to several other generalised methods. It is an extremely 

flexible method, due to the enclosure of a large number of known distributions as special or 

limiting cases (e.g. Log t, log Cauchy, gamma, exponential, lognormal), therefore allowing to 

change shapes drastically according to different combinations of parameters as it can roam 

across the included distributions limits. 
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GB2’s density function depends on four parameters (       )with no specific theoretical 

meaning. The parameters work interactively in determining the shape of the distribution. The 

great flexibility in shape creation permits large higher moments (skewness and kurtosis). Even 

though the four parameters have no theoretical meaning, some parameters have a specific 

role in the RND construction, for example:   is a scale parameter, having an ovious role in 

defining the height of the distribution; the product of     controls the fatness of the 

distribution (Bookstaber and McDonald, 1987). The density’s parameters are easy to estimate, 

the method allows a high degree of flexibility, a non-negative density is assured, it does not 

involve subjective choices, and the RND can be easily transformed into real world density. The 

main disadvantage is the lack of theoretical meaning of the parameters, which may cause 

some difficulties on defining the initial inputs for the estimation process  (Taylor, 2005).  

 

According to Taylor’s book on Price Dynamics (2005), GB2 is the only method that fulfils the 

necessary conditions to be a perfect RND generator: Positive densities are assured, allows 

general levels of the third and fourth moments; provides fatter tails than the single lognormal; 

there are analytic formulae for the density and the call price formula; discrete option prices do 

not affect results; easy parameter estimation; estimation does not require subjective choices; 

and the RND can easily be transformed into RWD.  

 

Moving to a different style of parametric methods, the price assumption based methods, are 

an RND extraction type which requires the specification of an option pricing function and the 

use of the Breeden and Litzenberger (1978) formula, which shows that the RND function can 

be learnt by the second derivative of the European call option pricing function with respect to 

the strike price. The simplest method of this group is based on the Black and Scholes (1973) 

pricing formula, which assumes that the underlying asset price follows a Geometric Brownian 

Motion (“GBM”) stochastic process. Based on this assumption, replacing the expected return 

of the underlying asset (µ) by the risk free rate  , and by applying the Breeden and 

Litzenberger (1978) model, their formula yields a lognormal RND function. Although the Black 

and Scholes assumption about price dynamics (GBM) (i.e. constant expected drift rate and 

constant volatility) is quite different from reality (Rubinstein, 1985), this pricing formula serves 

as basis for other methods that assume different stochastic processes for the underlying 

security price dynamics other than the GBM.  

 

Heston’s (1993) model assumes a mean-reverting stochastic volatility process for the 

underlying price and presents a closed form solution for the implied RND. One of its main 

features is the ability to capture the speed by which the market volatility reverts back to 

normal.  The generated option pricing formula has 5 parameters (   √       √  )1 to be 

estimated, and by using the Breeden and Litzenberger (1978) second derivative the RND can 

be inferred. In contrast to the simple GBM, this method displays plausible smile effects (i.e. 

implied volatilities plotted across strike prices) (Shackleton, et al., 2010). However, according 

to Jondeau and Rockinger (2000), it is a slow procedure as it implies high computational cost, 

                                                             
1 Where    captures the speed by which volatility is mean reverting; √   represents the long 

run volatility;   is the volatility of volatility;    correlation between the two implied Brownian 

motions; and √   the measure of instantaneous volatility.  
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and also it has difficulties in capturing skewness when compared to a mixture of two 

lognormal or expansion methods.  

 

Jump Diffusion process is another alternative for a stochastic based method that assumes price 

dynamics process as lognormal jump diffusion, which equals to a GBM plus a Poisson jump 

process. This method, usually applied to exchange rates (e.g. Malz,1995b or Jondeau and 

Rockinger, 2000), shows the likelihood of a possible jump on exchange rates based on 

investors’ perception. It derives a closed form solution for the terminal RND function 

corresponding to a mixture of two lognormal densities. According to Jondeau and Rockinger 

(2000) models comparison research, the Jump Diffusion model is the top performer for 

exchange rate options with long term maturities.  

 

Just as the previous type of methods (price assumption based), this group of techniques, 

implied volatility assumption based methods, define their RND extraction strategy based on 

the Black and Scholes failure: As previously mentioned, Black and Scholes (1973) assume a 

GBM for stochastic process and a single volatility for all the strike prices of the underlying 

asset, with the same expiration. As consequence, the implied RND is a simple lognormal 

distribution. By calculating the implied volatility based on option market prices, one can 

understand that each option with a certain strike price has a different implied volatility, which 

means that Black and Scholes assumptions are quite different from reality. By plotting the 

implied volatilities across strike prices, it is possible to perceive a “U” shape, called smile, as 

opposed to a flat line caused by the constant volatility of the Black and Scholes assumption 

(Bahra, 1997). 

 

Based on this reasoning, the implied volatility based methods interpolate the implied Black and 

Scholes volatility smile, defining a specific relation between the implied volatility and the strike 

price. This approach was suggested by Shimko (1993), assuming the implied volatility function 

as quadratic. Just as the flat smile corresponds to a lognormal RND, this implied volatility 

function reflects a certain form of RND with a higher degree of flexibility and better related to 

the market movements. Using the “Black and Scholes as a translation device” (Bahra, 1997:18), 

an indirectly interpolated call pricing function is generated. By applying the Breeden and 

Litzenberger (1978) formula to the pricing function, the RND can be obtained (Andersen & 

Wagener, 2002). The main drawback of Shimko’s approach is the fact that the distribution 

generated lacks smoothness in the tails area, therefore Shimko inserts lognormal tails, which 

are considered as unable to properly capture higher moments. Bahra (1997) criticises Shimko’s 

method, saying that: the quadratic assumption may be too restrictive; and that the lognormal 

tails is a fragile solution for the lack of smoothness at the both ends of the distribution. Bahra 

(1997) suggests the cubic spline (i.e. polynomial function that can be based on a simple form 

locally but, be globally flexible and smooth) as the best possible assumption for this approach, 

although this solution is considered as a non-parametric approach. In general, these methods 

have few parameters to estimate, however they may yield negative densities or smoothness 

problems, but the main drawback is that the function selection procedure may seem arbitrary. 

Other implied volatility functions may be linear, hyperbolic, parabolic and polynomial.  
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2.1.3 Non-Parametric Methods 

There are several types of Non-Parametric RND extraction techniques. They can be divided 

into three man groups (i) flexible discrete distributions obtain flexible shapes by adopting the 

least number of constraints, (ii) kernel regression methods, which consist of defining a non-

parametric function to fit the observed option prices, (iii) maximum entropy methods, fit a 

non-parametric probability distribution to explain the data.  

 

Flexible discrete distribution is a class of methods which includes two types of approaches: 

one uses a general equation to approximate a function of implied volatilities (the cubic spline 

applied to Shimko’s method as explained above) and a second one that estimates the RND 

directly with a general function. For the second type, according to Rubinstein (1994) it must be 

assumed that each stock price has a certain probability of occurrence. These probabilities, 

assuming a set of basic restrictions, compose the RND. Then a fixed difference between the 

different stock prices is assumed (Δ).  In consequence, probabilities become proportional to 

the price of a butterfly spread. These probabilities are then considered as parameters to be 

estimated. The parameters can be estimated by minimising the difference between observed 

and fitted option prices. According to Jackwerth and Rubinstein (1996) this function must 

incorporate a smoothness factor in order to provide probabilities closer to reality. It is 

important to mention that the minimisation procedure has a trade-off, as the lower the 

difference the lower the smoothness (Taylor, 2005). Both flexible discrete methods can 

generate flexible shapes, though they do not guarantee non-negative densities and imply long 

and complex calculations. It has been verified that for the FTSE100, densities estimated by 

spline methods have an inferior fit with the market option prices than the mixture of 

lognormal and the GB2 (Liu, et al., 2007). 

 

The kernel regression method is based on Ait- Sahalia and Lo (1995) finding that the Breeden 

and Litzenberger (1978) second derivative could also be applied in a discrete way, given a large 

enough information set (Cont, 1997). This class of methods is related to nonlinear regressions. 

However, instead of defining the form of the linear regression, the general logic is the 

following: each implied volatility, with a certain strike price, is a data point on the “smile” 

where the true volatility function should cross. The kernel measures how likely the function 

will pass away from that point. The further away the function is, the less weight is attributed to 

the specific strike price that contributes to the RND composition. There is an extra factor, the 

bandwidth, which controls the trade-off between smoothness of the kernel regression and 

fitting the data (Jackwerth, 2004). The densities obtained by Ait- Sahalia and Lo (1995), when 

applying this method to S&P future options, are constantly different from the erroneous single 

lognormal and present significant kurtosis and skewness (Cont, 1997). The drawback of this 

method is that it tends to be a complex and very data-intensive process (Cont, 1997). It 

requires large datasets and is unsuitable for data that presents large gaps between strike 

prices (Jackwerth, 2004).  

 

The maximum entropy method defines a prior distribution to find the risk neutral density that 

best fits the option prices, based on a special feature. This feature consists in assuming the 

least possible information about the prior distribution. It possesses solely the most basic 

constraints: positive probabilities that sum to one (Jackwerth, 2004) and that the set of option 
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prices are exactly represented by the theoretical option price formula. The inexistence of 

smoothness constraints has its disadvantages as it may yield multimodal densities (Cont, 

1997). 

 

2.2 Risk Aversion Recovery Methodologies 

Option prices provide insightful information about the future probability density of the 

underlying asset. However, since densities directly estimated from market option prices are 

proven to be risk neutral, due to the underlying assumption of risk neutrality of market 

participants, it is not possible to produce accurate forecasts (Bliss and Panigirtzoglou, 2004). In 

other words, as RNDs do not incorporate market participants risk aversion, or behaviour 

towards assets’ risk premium (i.e. the compensation investors require by tolerating excess risk 

in comparison to the risk free rate) they cannot be used as a reliable forecaster of market 

expectations (Anagnou et al.,2002). This is how the necessity of estimating densities that are 

able to include investors’ risk aversion (real world distributions) arises.  

 

There are three main streams of how to recover the real world density function.  The first 

thread is based on a risk transformation rationale that can be divided in (i) assuming a utility 

function for a representative agent that converts the artificial risk neutral density into real 

world density, or (ii) calibrating the RND to obtain the RWD. The second thread calculates the 

RWD from an historical time series of asset prices, which according to several scholars, such as: 

Shackleton, et al. (2010); Liu, et al. (2007), contrasts significantly from densities extracted from 

option prices. And finally the third thread, a more complex methodology, jointly uses both 

asset and option prices to estimate the relation between the RND and the RWD which encloses 

the risk premium and jump risks (Liu et al., 2007).    

 

From these three threads, this research considers only the first one: the risk transformation 

based methodologies which comprises the utility function methods and the calibration 

function methods. The second will be disregarded as throughout the available studies, it is 

possible to perceive that in general, results derived from option prices contain more 

information about the true densities than results estimated from historical time series of asset 

prices, with the exception of one day horizon estimates where they outrank option prices 

based densities (Shackleton, et al., 2010; Liu, et al., 2007). Although the third thread, the joint 

approach, has been proven to be a very satisfactory producer of RWD (Shackleton, et al., 2010) 

due to improvements for short term horizons, it will also be overlooked as it goes beyond the 

focus of this research.  

 

2.2.1 Utility Function based Transformation 

Under a certain set of assumptions, the risk neutral density can be mutated into the real world 

density by defining a risk preference function following Ait-Sahalia and Lo’s (2000) risk relation 

formulation. The utility function, is considered as the link between the RND and the risk 

adjusted density, embodying the representative agent behaviour towards risk, considered as 

the relative risk aversion measure (hereinafter “RRA”) (Bliss and Panigirtzoglou, 2004).  

 

The main utility functions that define the representative agent’s risk aversion considered in the 

available are: (i) power utility function and (ii) the exponential utility function.  Both functions 
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rely on the parameter γ. The power function has a constant relative risk aversion, therefore 

the RRA measure equals to the gamma (γ). On the other hand, exponential function is subject 

to a constant absolute risk aversion, which means the gamma parameter will vary according to 

the level of the index. The RRA measure for the latter utility function equals to γ   (Bliss and 

Panigirtzoglou, 2004). 

 

In order to build the actual density, the optimal parameter γ (i.e. the gamma which assures the 

best match between the real world density and the observed underlying asset prices), must be 

estimated. From the available literature there are two main methods to perform the 

optimisation procedure: Berkowitz LR3 test or the likelihood function maximisation that will be 

described in a following section. Once the adjusted densities are formed, their accuracy may 

be tested with the same evaluating methodologies. 

 

According to Bliss and Panigirtzoglou (2004), adjusting the artificial risk neutral densities into 

real world densities through both utility functions provided for the majority of cases an 

accurate forecast of the future price distribution for the underlying index. Additionally, within 

Bliss and Panigirtzoglou’s data set (FTSE 100 and S&P500), there is evidence that the 

exponential utility function yields RWDs with slight better fit than the power function. 

However, assuming a power utility function is more convenient due to the constant RRA which 

generates simpler calculations. For this reason and in addition to the fact that both functions 

generate similar (average) RRA measures, the preferable utility function to be implemented as 

utility based risk transformation techniques, would be the power function.  

 

2.2.2 Calibration Function based Transformation  

Calibration transformation method is another approach, which belongs to the first thread 

mentioned in section 2.2, which allows the transformation of risk neutral densities into real 

world densities. “The objective of statistical calibration is to transform forecast densities to 

probability assessment methods that generate reliable forecasts statements” (Ivanova and 

Gutierrez, 2013), in other words, the principle of statistical calibration is based on 

guaranteeing consistency between the density forecasts and the observations (Gneiting, et al., 

2007). The process is considered as tuning the risk neutral “scale” by applying a certain 

calibration function, obtaining a RWD. The most common calibration function used amongst 

the available literature is the cumulative density function of the Beta distribution, first 

suggested by Fackler and King (1990) while studying commodity option prices densities. While 

the utility based methods have only one parameter (gamma), this calibration function has two 

calibration parameters, j and k, which has the advantage of allowing extra flexibility. 

Nevertheless, according to Liu et al. (2007), even though the calibrated RWD provided a 

superior match with the observed option prices than the RWD based on utility function, the 

difference was not substantial, and since RWD has a more complex form for the calibration 

transformation, the utility function technique will be the type of transformation used in this 

research to obtain the representative risk aversion levels. More specifically, the power utility 

function for the reasons already mentioned.  
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2.2.3 Parameter Estimation and Accuracy Testing  

Berkowitz LR3 (2001) and the maximum likelihood are the main methodologies to estimate the 

optimal parameters that will generate the RWD. The rationale behind both procedures is 

simply choosing the risk aversion parameter that yields the most robust RWD in terms of good 

fit.  

 

Berkowitz (2001) developed an approach to evaluate the forecasting ability of option prices 

implied densities, the LR3 statistic. Besides this standard application, Bliss and Panigirtzoglou 

(2004), use this test to estimate the risk aversion parameter gamma. The rationale is the 

following: the gamma that generates the RWD with the most accurate forecast ability, is 

obviously the one that best represents the aggregate investors’ risk aversion level (choice of 

gamma is made by maximising the forecast ability of the RWD).  

 

Just as the Berkowitz LR3 statistic, the likelihood function can be used to test the accuracy of 

the PDFs and estimate the transformation parameters. The parameters can be estimated by 

seeking the maximum log likelihood function. According to Liu et al. (2007), the LR3 statistic is 

a good method for testing the goodness of fit, however, in terms of parameter estimation the 

log likelihood maximisation is the preferred technique. This research will follow the same 

preference regarding parameter estimation.   

 

3. Data and Methodologies used  
 

3.1 Data 

To investigate the risk aversion behaviour before and after the burst of financial crises, risk 

neutral and real world densities are evaluated for European call option contracts on the Dow 

Jones Industrial Average Index (hereinafter “DJIA”), with a time to maturity of four weeks.  

 

This research studies the prices of options on DJIA for three periods. Each period corresponds 

to approximately 10 months before and 10 months after the peak of the studied crises: 

dotcom bubble, the subprime mortgage crisis and the European sovereign debt crisis. In other 

words, this paper considers two risk aversion estimates for each crisis: the first right before the 

financial stress event reaches its peak, and the second while the market is still exposed to the 

crisis effects. The full calendar range for each crisis is the following: from February 1999 to 

March 2001 for the dotcom bubble, August 2007 to August 2009 for the subprime mortgage 

crisis and May 2010 to September 2012 for the European sovereign debt crisis.  

 

The reason for extracting options of 10 subsequent expiration dates for each analysed period, 

which correspond to the aforementioned 10 months, can be found in Bliss and Panigirtzoglou 

(2004) work on risk aversion estimation. They say that if focusing on single point estimates 

(recover the risk aversion from a single RND), the market degree of risk aversion would be too 

exposed to that period’s specific information. Therefore, by including 10 RNDs in the risk 

aversion recovery process, it is possible to avoid biased risk aversion estimates. 

 

The considered moments of occurrence for each crisis, that split in two (before and after) each 

of the above mentioned periods, are easily situated: The burst of the online bubble occurred 
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after the Nasdaq Composite index achieved its peak on the 10th of March 2000; regarding the 

housing bubble, even though the economy entered a recession at the end of 2007, the main 

effects were felt across the world after the bankruptcy of Lehman Brothers on the 14th of 

September 2008. The European sovereign debt crisis is an exception, since it does not have an 

evident “burst”. Nonetheless, the date considered is August 2011 when more stable European 

countries were downgraded by the rating agencies and the European stock markets suffered 

heavy falls exposing the rest of the world to fears of an unsolved sovereign debt crisis.  

 

According to the available literature, the most reliable option prices used are the average of 

the closing bid and ask quotation (Jondeau and Rockinger, 2000). To be able to compare 

different implied distributions, the analysed options must have the same time to maturity, 

which in this case for the DJIA four weeks options, they have the same expiry time: the third 

Saturday of every month. Together with the index dividend yield, the option quotations were 

extracted from the Wharton Research Data Services. Regarding the risk free rate, this paper 

uses the three month Euro interest rates obtained from Datastream.  

 

Concerning the moneyness, too deep in the money options are characterised by high 

illiquidity. As considering these options could probably lead into generation of biased results 

(Andersen and Wagener, 2002), a filtering procedure is applied consisting in excluding options 

with bid below 0,125.  

Summary statistics for the DOW Jones option data set for each of the analysed periods is 

presented in the Appendix. It includes the calendar range and number of filtered option prices 

for all expiration dates (10) considered in each pre and post burst periods for the three crises. 

It also identifies which expiration dates were considered as right before and right after the 

bursts, used for the single RND analysis. 

3.2 Methodologies used 

This succeeding subsection aims to explain the process undertaken to achieve the empirical 

results obtained in this dissertation.  

 

Before introducing the applied density extraction methods it is important to mention that the 

meaning of the used symbols have the standard meaning in option valuation:    is the call 

option price;   is the option’s strike price;   is the risk free rate;   is the expiration date of the 

option;    is the price of the underlying asset; and the risk neutral density and real world 

density are denominated as   ( ) and   ( ) respectively.  

 

3.2.1 RND Methodology  

Across the available literature there are different opinions regarding which method is the top 

performer. However, according to Jackwerth and Rubinstein (1996), given a large enough 

number of options, the RNDs produced from any reasonable methods tend to be rather 

similar. Hence, this paper will focus on both Mixture of Lognormal and GB2, mainly due to 

their straightforwardness and general relatively high performance: Taylor (2005); Liu, et al. 

(2007); Jondeau and Rockinger (2000); Bahra (1997). 
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The mixture of two lognormal densities method is a weighted average of two lognormal 

densities, that comprises five parameters   (             ), two parameters for each of 

the lognormal distributions, one based on the underlying asset price  (  ) and the other which 

defines the standard deviation ( ) of the distributions, and a fifth parameter ( ) which 

establishes the relative weight for each distribution. Denoting the single lognormal density 

function as: 
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The mixture of lognormal risk neutral density can be written as: 
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In order to estimate the parameters that allow the “mixture” to shape a curve that best fits the 

market option prices, it is necessary to minimise the squared errors of the difference between 

the observed option prices and the theoretical option prices. This theoretical option price can 

be achieved by the weighted average of the Black and Scholes (1973) call option prices of each 

of the lognormal densities, with their respective parameters: 
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The optimal minimisation, which yields the best parameters, can be reached by using the least 

square methodology:  

 

 ( )  ∑ (       (   )   (   | ))
  

   
  (4) 

 

Solver is the mathematical tool from Excel used to minimise the function  ( ) to estimate the 

optimal parameters.  

 

 

The generalised beta of the second kind method (GB2) is described by four positive 

parameters   (       ) which allow a great flexibility in shape creation due to a large 

variety of different combinations for the four statistical moments. The GB2 density function 

can be described as:  
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The   function included in the density function is defined by the following terms of the gamma 

function:  
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Additionally, the distribution is risk neutral merely if   is guaranteed to be: 
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From formula (7), it is possible to conclude that   can be obtained by: 
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Therefore, the parameters a, p and q can free roam while b is derived from the previous 

formula. Once this constraint is guaranteed, it is possible to assume that the theoretical option 

prices depend on the cumulative distribution function of the GB2 (    ), which in turn can be 

explained by the cumulative distribution function of the    denoted as incomplete   function: 
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With   defined by the following function: 
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Given that the density is risk neutral and that the parameter b is derived from a, p, q and S, the 

theoretical call option price can be written as: 
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Once it becomes possible to compare the market option prices and the obtained option prices, 

the four parameters   (       ), that generate the density curve closest reality, can then 

be estimated by minimising the function  ( ), defined in equation (4).  

 

3.2.2 RA Methodology  

Regarding the risk aversion recovery process, this research uses a parametric risk 

transformation method which follows Bliss and Panigirtzoglou (2004) power utility function. 

Their research focuses on estimating the representative agent’s relative risk aversion by 

adjusting the risk neutral densities, with the utility fucntion, and deriving the real world 

densities.  

 

Bliss and Panigirtzoglou (2004) work, is based on Ait-Sahalia and Lo’s (2000) formula that 

identifies the relation between RND (  ( )) and RWD (  ( ))  by a representative investor’s 

utility function ( ( )): 

 
  ( )

  ( )
  

  (  )

  (  )
  ( )  (12) 

 

With   as a constant and the function  ( ) the pricing kernel, the quantity proportional to the 

marginal rate of substitution between the risk neutral density function and the real world 
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density function (Ait-Sahalia and Lo, 2000), in other words it is the theoretical relationship 

between RND, the RWD and the risk aversion function.  

 

Bliss and Panigirtzoglou (2004) define the power utility function as: 

 ( )  
      

   
  (13) 

 

The implied RRA, measure of the degree of risk aversion, for this specific utility function is 

constant and equal to the gamma parameter: 
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Once the utility function is defined, it becomes possible to estimate the real world density 

function, solving the presented equation (12) for   ( ):   
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The denominator results in a constant value, which is a necessary term to guarantee that the 

density function is normalised and integrates to 1, with   simply different from  .  

 

Applying formula (15) to the mixture of lognormal risk neutral density function, the real world 

density function can be obtained with the following formula: 
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The risk aversion measure (gamma) is then selected in a way which allows the combination of 

real world parameters    (  
    

    ) that maximise the log likelihood function, which can 

be written as: 
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As it is possible to understand from the formula, several RND vectors (  ) and their respective 

observed price of the underlying asset from different periods are also taken into account. The 

main reason is to avoid specific period information to disturb the risk aversion estimate and 

therefore misleading the RWD parameters selection process.  
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The maximisation is achieved when the gamma generates a set of RWD parameters (  ) that 

guarantees the best match between the observed prices and the real world density. Therefore 

the selected gamma is the optimal measure of risk aversion. 

 

4. Empirical results 
 

This section will present the results obtained from both risk neutral and real world densities 

estimations for the three crises considered. The first part will compare and select which RND 

recovery method is considered as more robust, followed by an illustration of how the RND 

densities change with the manifestation of financially stressful events. And finally, the main 

object of this research, to study the possible changes in the representative agent’s risk 

aversion, in financially stable periods and in financial crisis’ periods.  

 

4.1 Risk neutral densities  

The table below shows the results of the minimisation of the sum of squared errors ( ( ))that 

select the best possible parameters that generated the closest fit of the density curve to the 

market option prices.  

 

Table 1 
      Minimum of G(θ) function - sum of squared errors - for each of the RND extraction methods for the periods pre and 

post crises. 

Method Dotcom Subprime Sovereign 

  Before After Before After Before After 

MLN 0,062 0,157 6,935 0,307 0,475 0,223 

GB2 0,099 1,741 6,941 0,439 1,003 0,282 

Table 1 
Table 1 implies a superior performance for the mixture of lognormal method in fitting the 

observed prices in every single period. This higher ability of the MLN to capture the behaviour 

of the option prices is more evident for both periods of the dotcom crisis and for the pre 

sovereign debt crisis period. It is also possible to assume that the extremely high value of the   

function for the generated density of before the housing bubble in 2008, may be due to the 

timing selection of crisis peak (Lehman Brothers bankruptcy). The period before the dotcom 

crisis yields the lowest minimisation values.  
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Figure 1. (a) RND obtained from mixture of lognormal method for before and after of the dotcom bubble burst. (b) 

RND obtained from GB2 method for before and after the dotcom bubble burst. (c) RND obtained from mixture of 

lognormal method for before and after the subprime mortgage crisis. (d) RND obtained from GB2 method for 

before and after the subprime mortgage crisis. RND obtained from mixture of lognormal method for before and 

after the sovereign debt crisis. RND obtained from GB2 method for the sovereign debt crisis. 

 

By analysing the implied densities from the Dow Jones option prices, it should be possible to 

measure market participants’ perceptions of both market uncertainty and risks towards future 

market performance. Therefore we should expect some major differences between the pre 

crisis stage and the after burst period. As it is possible to see from Figure 1, risk neutral 

densities formed by the GB2 method, do not demonstrate to be able to measure investors’ 

expectations about market’s uncertainty as for both periods, they do not present a strong 

difference between the pre and post phases for each crisis, with the exception of the 2008 

stress event which shows a larger width (higher uncertainty) for after the bubble burst. The 

MLN curves, on the other hand, provide relevant differences and shall be examined in detail. 
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Overall, it is possible to conclude that even though the subprime mortgage crisis in 2008 of the 

GB2 yield a  ( ) almost as low as in the MLN, given that both online bubble analysed periods 

and the phase before of the European debt crisis demonstrate a big gap of fitting robustness, 

added to the fact that the RND GB2 graphs do not show significant differences in curve 

characteristics before and after each crisis, this research will solely focus on the mixture of 

lognormal method. 

 

As mentioned, the MLN risk neutral densities show considerable differences when comparing 

pre and post crises periods. These differences reflect the new information obtained by 

investors changing negatively their expectations about the month after the burst of each crisis, 

not taking into account any measure of risk aversion. Even though the fit varies from density to 

density, it is possible to perceive a trend from pre crisis period to post crisis, a movement of 

the probability masses to the left together with an expansion of the width of the densities. In 

other words, there is a general rise of uncertainty with a great number of market participants 

expecting lower index levels, which indicates an increased anxiety among investors for the 

future index level. 

 
Table 2 

      

Summary statistics of the mixture of lognormal risk neutral densities for the six analysed periods. 

Statistics Dotcom Subprime Sovereign 

 
Before After Before After Before After 

Mean 113,21 112,68 115,44 114,32 119,89 118,19 

Standard Deviation 5,76 6,25 5,69 8,29 6,59 7,67 

Kurtosis 0,22 0,25 5,56 -0,05 8,88 1,93 

Skewness -0,63 0,09 -0,18 -0,49 -2,05 -0,87 

Table 2 
Table 2 presents a range of summer statistics that will be carefully analysed, in order to better 

understand information contained by the MLN risk neutral densities and their specific changes 

caused by the burst of each crisis.  

 

From the values available on Table 2, it is possible to observe a substantial increase of the 

standard deviation (the measure of uncertainty around the mean) and the general fall of the 

mean (the expected value of the index), after the burst of each crisis, changes which confirm 

the aforementioned trend. However, in terms of the distribution of the probability masses, 

given by third and fourth statistical moments, each crisis has a specific combination of 

changes.  

 

Regarding these higher statistical moments it is important to know that kurtosis measures the 

probability that investors attach to extreme outcomes. High kurtosis would result from more 

likely extreme outcomes, or “fatter” tails. Skewness characterises the asymmetry of the 

density function.  In case the implied density is positively skewed, this means that the right tail 

is longer than the left, however there is less probability attached to outcomes above the mean. 

In more practical terms positive skewness indicates that there is a strong probability of the 
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underlying asset price to be below the mean, however, there is a remote possibility of having 

extremely positive results (Syrdal, 2002).  

 

For the online bubble, the kurtosis measure slightly increases, which shows that investors 

attach a slightly higher likelihood to extreme outcomes which may be a source for the added 

volatility. Skewness levels show that after the bubble burst, a large amount of probability mass 

moved from the right of the mean to the left, building a longer right tail. This means that after 

the crisis the density became positively skewed (longer right tail, but larger portion of 

probability mass on the left side of the distribution), which shows that more market 

participants expect the prices to be relatively below the expected index price. Nonetheless, the 

longer right tail indicates that a few investors also expect extreme positive outcomes, probably 

based on the thought that crises may generate new opportunities.  

 

Regarding the mortgage subprime crisis, there is a lower level kurtosis after the crisis and 

increase of skewness to the right. These results might indicate that the investors are aware of 

the pessimistic situations and do not expect an even worse development of the index, nor any 

sudden improvements (absence of extreme values). According to the higher negative 

skewness, the majority of market participants do not believe that the index can undergo slight 

negative changes, while a small number of some investors expect extreme negative outcomes.  

 

After the peak of the European sovereign debt crisis, common expectation regarding the index 

price moved to the left as skewness level became less negative. At the same time there are 

lower expectations towards extreme outcomes. Even though the uncertainty increased and 

the future prices are expected to be lower, from the summary statistics, it seems as the 

investors do not expect any dramatic changes.  

 

To conclude, the third and fourth moments did not present the expected evolution: higher 

kurtosis (ECB, 2011) and more negative skewness during the financially troubled periods 

(Dennis and Mayhew, 2002). However, characteristics such as increase of uncertainty and 

movement of the expected index level to the left were clear evidences that the risk neutral 

distributions could detect some of the effects crises impose to the financial markets.  

 

4.2 Risk aversion measure and real world densities  

By specifying a power utility function for the market’s representative investor, based on a set 

of RNDs, it is possible to estimate the market’s degree of risk aversion for each period 

analysed. Intuition, would suggest that the representative investor would become more risk 

averse as risk increases (Bliss and Panigirtzoglou, 2004). 
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Figure 2. Dow Jones Industrial Average Index returns from January 2000 to January 2013. 

 

This figure shows Dow Jones Industrial Average Index returns over the past decade. Volatility, 

as easily observed, has not been constant over time, and the three dashed areas which 

highlight the periods post burst, present clear signs of higher volatility. Therefore it would be 

expectable that during these unstable periods, it would be possible to observe a higher risk 

aversion measure (γ) than the respective pre crisis phase.  

 

The risk aversion estimates, calculated with the maximisation process given in formula (19), 

are shown in table 3. From the presented values, it is possible to conclude that at least for the 

subprime mortgage and sovereign debt crises the gammas actually increase. However, both 

housing and online bubbles exhibit some negative risk aversion parameters, which is 

inconsistent with the usual assumptions of positive risk aversion.  

 

Table 3 
     Estimate of the risk aversion parameter γ. 

  Dotcom Subprime Sovereign 

Before After Before After Before After 

1,44 -0,14 -6,36 -0,19 5,13 5,51 

Table 3 
When studying the evolution of the risk aversion estimates from the more peaceful period to 

the highly unstable period that characterise the majority of crisis, one can perceive different 

paths. The dotcom bubble the most unexpected results: fall of risk aversion after the burst 

until a negative levels, even if close to zero. While for the housing bubble and the European 

sovereign debt crisis have results more in line with what was expected: rise of risk aversion. 

However the housing bubble yields negative estimates for both periods. There is no obvious 

reason that explains the difference of development in terms of direction between the dotcom 

and the two most recent crises. But it is important to remind that the considered bursts for the 

subprime and sovereign crises were selected after the crises had already begun, while the 

effects of the dotcom bubble were only felt after the selected burst. Unfortunately it is not 

possible to conclude that the average investor follows a certain pattern when crises strike the 

financial markets.  

 

In order to understand if the generated gammas are significantly different from zero, the 

likelihood ratio test with the null hypothesis γ = 0 was applied. It compares the improvement 
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on the log likelihood by using the selected gamma, with a chi square distribution with one 

degree of freedom. With a 10% critical point of 2,71 it fails to reject the null hypothesis for all 

the gammas. However, this may be a Type II error, as Merton (1980) argues that it is difficult to 

estimate the risk aversion for periods with high volatility, which is the current case. 

 
Figure 3. Comparison between pre and post curves of RND and RWD (given by “Before*” and “After*”) for (a) 
dotcom crisis. (b) subprime mortgage crisis. (c) European sovereign debt crisis. 

Figure 3 displays the comparison between the RNDs closest to the burst of each crisis with the 

real world densities generated by the optimal risk aversion parameter. The six RWD shapes are 

given by “Before*” and “After*”. For the dotcom case, the RWD before shows a slight 

movement to the right compared to the RND before. It shows the existence of risk premium 

due to the positive risk aversion of the representative investor at the time.  The curves that 
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represent the period after the burst do not show any difference, possibly due to the gamma 

close to zero. Regarding the subprime crisis, due to the strong negative risk aversion value on 

the pre burst period it is possible to perceive a negative risk premium (movement to the left) 

when the difference between the price of the underlying asset and the risk free asset (such as 

Treasury bills) is negative. The post burst period shows the same characteristics as the 

proportional period in the dotcom bubble. While these previous two crises present slight risk 

premium movements solely in the pre burst periods, the sovereign debt crisis shows a positive 

change on the post burst stage even though it would be expected to observe the same change 

in its matching period due to similar risk aversion estimates. 

 

According to previous literature the risk aversion parameter shows considerable variation, but 

ranging between positive values, even for different maturities and underlying assets: 

Rosenberg and Engle (2002) from 2,36 to 12,5 for power utility; Bliss and Panigirtzoglou (2004) 

average between 2,33 and 11,14 for S&P 500 and FTSE 100 in different time horizons; Epstein 

and Zin (1991) reported 0,4 to 1,4; Jorion and Giovannini (1993) from 5,4 to 11,9.   

 

Liu, et al. (2007) reseach focuses on estimating real world densities based on two parametric 

risk transformation methods, including the power utility fucntion. To calculate the risk aversion 

transformatio parameter (gamma) they use 126 consecutive expiry months, while in this 

research, only 10 are used for each analysed period. In Bliss and Panigirtzoglou (2004) paper, a 

similar number of periods was considered for the four weeks forecast horizon gamma 

estimation. Therefore, one possible action that could be taken to avoid obtaining negative risk 

aversion estimates would be to increase the amount of RNDs considered to generate the 

gammas. Including more periods would generate a more general risk aversion, which 

according to theory, should be positive. However, it is important to add that throughout the 

process of accumulation RNDs there was no specific pattern of improvement on the sign of the 

gammas from the first RND considered to the last, as it is possible to observe in table 4. 

Additionally, even if increasing the number of periods was a solution, there would be an 

evident trade-off, since having a too generalised measure would probably become useless to 

study any patterns created by crises or for any other purpose of comparison between periods.  
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Table 4 
      Evolution of accumulated gammas as more periods were considered. 

 Number of RNDs Dotcom Subprime Sovereign 

 
Before After Before After Before After 

 
-29,25 -0,92 4,75 -47,76 14,49 0,83 

1 -11,50 -1,22 -4,17 -5,66 0,35 1,40 

2 -11,76 -0,25 -11,11 -2,31 6,53 4,23 

3 -9,40 1,34 -8,08 -2,36 0,46 5,52 

4 -7,45 0,14 -6,69 -2,87 5,10 6,75 

5 -5,84 -0,59 -3,81 -2,49 7,51 4,93 

6 -4,29 1,13 -9,71 -1,46 9,31 2,05 

7 -2,82 0,16 -7,04 -1,25 10,33 3,37 

8 -2,21 -0,05 -7,62 -0,37 7,99 N/A 

9 -0,27 0,42 -8,12 -0,32 5,17 4,78 

10 1,44 -0,14 -6,36 -0,19 5,13 5,51 

Table 4 
Another potential reason for the negative gammas, besides the lack of RNDs, is the model’s 

high susceptibility to drops of index levels. Every time the price at expiry date was lower than 

at the option observation date, the gamma parameter would tend to be negative. This implies 

that the model based on the power utility function is capturing more than just the difference 

between the real world and risk neutral.  

 

Negative gammas or negative risk aversion would mean that the representative investor is risk 

seeker. In other words, a risk lover investor would prefer an expected payoff lower than a 

certain payoff (e.g. prefer £100 with probability of 50% to guaranteed £60). It is normally 

assumed that investors are risk averse, mainly because if a decision maker is for some 

situations risk lover and for others risk averse, a competitor would take advantage of its 

irregular decision pattern by offering transactions that the decision maker would find 

appealing but would result in a net loss  (Alexander, 2008). However, this should not imply that 

there are no periods where the average investor is risk seeker, as to individuals’ lives specific 

situation and stimulus may provide the necessary reasons to act in a risky way. For example: 

cases where investors may have nothing to lose (Alexander, 2008). This situation has been 

previously identified by scholars such as Jackwerth (2000); and Boudoukh, et al. (1993). They 

provide direct or indirect evidences that negative risk aversion can be obtained and is being 

overlooked due to theoretical assumptions. Jackwerth (2000) finds negative estimates of the 

risk aversion after the crash of 1987, providing several explanations of why other scholars (Ait-

Sahalia and Lo, 2000; and Rosenberg and Engle, 1997) do not obtain similar results. Consistent 

mispricing in the option market after the crash is blamed as the main cause for as negative risk 

aversion functions. This theory of a constant difference of options implied distributions 

between the pre and post crash (1987) has also been presented (Jackwerth and Rubinstein, 

1996) even if concerning another topic than risk aversion. Boudoukh, et al. (1993) investigate 

the non-negativity restriction on the ex-ante risk premium (i.e. the spread between the 

expected return of a portfolio of stocks and the risk free rate). They find that the ex-ante risk 
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premium is negative in some market states. These states seem to be connected to periods of 

high Treasury bill rates. This is an indirect proof that risk aversion can be negative: risk 

premium only exists to compensate market participants to invest in risky assets, as they 

present a preference towards certain returns (existence of risk aversion); however, if the risk 

premium is negative, it means that investors are focusing too much on risky assets therefore 

increasing the premium in the risk free assets instead (negative risk aversion).  

 

5. Conclusion 
 

Option prices implied densities provide insightful information about future market movements 

and risk preferences. While the majority of papers concerning this topic aim to test the 

forecast ability of the distributions produced from different estimation methods, this research 

focus on a more practical application: understand how investors’ risk preferences change 

when faced with financial shocks. The goal is to gain a better understanding whether the 

representative investor’s risk aversion is countercyclical or not.  

 

The process followed to obtain the risk aversion estimates requires the extraction of options 

implied risk neutral densities and their respective translation into real world densities, applied 

to three different crises: the dotcom bubble in 2001, the subprime mortgage crisis in 2008, and 

more recently the European sovereign debt crisis.  

 

In order to build the risk neutral densities, two parametric methods are implemented: mixture 

of lognormal densities and the generalised beta distribution of the second kind. The empirical 

results for the Dow Jones imply that due to an inferior quality, the GB2 method is disregarded, 

while the MLN produces an evolution of density curves with the expected results: higher 

uncertainty and future expected index levels corrected downwards.  

 

The risk transformation procedure from RND to RWD is then accomplished by using the power 

utility function, previously applied by Bliss and Panigirtzoglou (2004). The resulting risk 

aversion estimates, do not present any evident pattern of evolution from a stable financial 

period to a more volatile period which characterises a financial shock. Additionally it is 

important to mention that for some periods, the risk aversion of the average investor reached 

negative values. This is a suprising result due to existent theoretical assumptions about 

positive risk aversion. The main possible cause for this event may be the large gap of 

consecutive expiration dates used in this study (10) and the ones used by Liu, et al. (2007) and 

Bliss and Panigirtzoglou (2004) for the risk aversion estimation (aproximately 120). However, 

even though the results are inconsistent with the majority of the available literature, some 

scholars (Jackwerth, 2000; and Boudoukh, et al., 1993) provide direct or indirect evidences 

that negative risk aversion can occur and that is being overlooked due to theoretical 

assumptions. 

 

Overall, this study documents inconclusive results. Nevertheless, several important topics are 

left for future research. Interesting developments would consist of either replicating this study 

considering more expiration dates, having in mind that too many periods would imply an 
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extremely generalised measure that would be useless to study any patterns; apply another 

method from the available literature; or testing the negative estimates with more 

sophisticated models that are beyond the focus of this paper.  
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V Appendix 
 

Appendix 1 
      Summary statistics for the Dow Jones options data set regarding the dotcom crisis. 

 

 
Dotcom 

 
Before After 

 
Obs date Exp date 

# of 
options Obs date Exp date 

# of 
options 

Base case 21-01-2000 19-02-2000 19 24-03-2000 22-04-2000 29 

t1 20-08-1999 18-09-1999 19 19-05-2000 17-06-2000 27 

t2 17-09-1999 16-10-1999 18 23-06-2000 22-07-2000 21 

t3 22-10-1999 20-11-1999 17 21-07-2000 19-08-2000 23 

t4 19-11-1999 18-12-1999 26 18-08-2000 16-09-2000 22 

t5 23-07-1999 21-08-1999 24 22-09-2000 21-10-2000 19 

t6 18-06-1999 17-07-1999 24 20-10-2000 18-11-2000 17 

t7 21-05-1999 19-06-1999 33 17-11-2000 16-12-2000 25 

t8 23-04-1999 22-05-1999 31 22-12-2000 20-01-2001 22 

t9 19-03-1999 17-04-1999 30 19-01-2001 17-02-2001 18 

t10 19-02-1999 20-03-1999 24 16-02-2001 17-03-2001 17 

 

Appendix 2 
      Summary statistics for the Dow Jones options data set regarding the subprime mortgage crisis. 

 
Subprime 

 
Before After 

 
Obs date Exp date 

# of 
options Obs date Exp date 

# of 
options 

Base case 18-07-2008 16-08-2008 44 19-09-2008 18-10-2008 45 

t1 20-06-2008 19-07-2008 51 24-10-2008 22-11-2008 54 

t2 23-05-2008 21-06-2008 51 21-11-2008 20-12-2008 52 

t3 18-04-2008 17-05-2008 43 19-12-2008 17-01-2009 49 

t4 22-02-2008 22-03-2008 50 23-01-2009 21-02-2009 41 

t5 18-01-2008 16-02-2008 44 20-02-2009 21-03-2009 35 

t6 21-12-2007 19-01-2008 52 20-03-2009 18-04-2009 54 

t7 23-11-2007 22-12-2007 51 17-04-2009 16-05-2009 61 

t8 19-10-2007 17-11-2007 54 22-05-2009 20-06-2009 61 

t9 21-09-2007 20-10-2007 55 19-06-2009 18-07-2009 46 

t10 24-08-2007 22-09-2007 58 24-07-2009 22-08-2009 52 
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Appendix 3 
      Summary statistics for the Dow Jones options data set regarding the European sovereign debt crisis. 

 
Sovereign 

 
Before After 

 
Obs date Exp date 

# of 
options Obs date Exp date 

# of 
options 

Base case 17-06-2011 16-07-2011 49 21-10-2011 19-11-2011 52 

t1 20-05-2011 18-06-2011 90 07-03-1900 00-01-1900 43 

t2 18-03-2011 16-04-2011 30 16-02-1900 00-01-1900 39 

t3 18-02-2011 19-03-2011 73 21-02-1900 00-01-1900 52 

t4 21-01-2011 19-02-2011 73 19-03-1900 00-01-1900 49 

t5 19-11-2010 18-12-2010 77 23-03-2012 21-04-2012 49 

t6 17-09-2010 16-10-2010 65 20-04-2012 19-05-2012 50 

t7 20-08-2010 18-09-2010 60 18-05-2012 16-06-2012 34 

t8 23-07-2010 21-08-2010 69 22-06-2012 21-07-2012 46 

t9 18-06-2010 17-07-2010 55 20-07-2012 18-08-2012 44 

t10 21-05-2010 19-06-2010 55 24-08-2012 22-09-2012 43 

 


