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Abstract 

 

Pine wilt disease (PWD), caused by the pinewood nematode (PWN; 

Bursaphelenchus xylophilus), damages and kills pine trees and is causing serious 

economic damage worldwide. Although the ecological mechanism of infestation is well 

described, the plant’s molecular response to the pathogen is not well known. This is due 

mainly to the lack of genomic information and the complexity of the disease. High 

throughput sequencing is now an efficient approach for detecting the expression of 

genes in non-model organisms, thus providing valuable information in spite of the lack 

of the genome sequence. In an attempt to unravel genes potentially involved in the pine 

defense against hereby report the high throughput comparative sequence analysis of 

infested and non-infested stems of Pinus pinaster (very susceptible to PWN) and Pinus 

pinea (less susceptible to PWN). 

High throughput sequencing allowed the identification of several candidate genes 

that may be involved in the response to the PWN. With regards to the gene function 

most commonly identified, the majority of the sequence functions were associated with 

protein metabolism and carbohydrate metabolism. However, a significant fraction of 

sequences associated with RNA metabolism were also highly represented. The 

sequences that were more commonly found in Pinus pinaster were transcription 

repressors and a translation machinery component: aminoacyl-tRNA synthetase. The 

cellulose synthase is also important in the disease response, as this gene was up-

regulated in infested Pinus pinaster. KEGG analysis revealed that the pathway more 

commonly found in this study were the pentose pathway, the pathway for glucuronate 

interconversion, the pathway for phenylanine metabolism, amino acid, sugar and 

nucleotide metabolism, phenylppropanoid biosynthesis, methane metabolism, and 

citrate cycle (TCA cycle).  
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Resumo  
 

A doença da madeira do pinheiro provocada pelo nemátodo do pinheiro (PWN; 

Bursaphelenchus xylophilus), provoca danos irreversíveis matando pinheiros e 

causando graves prejuízos económicos. Embora o mecanismo de infecção seja bem 

descrito, a resposta molecular da planta para o patogénico não é bem conhecida. Isto 

deve-se principalmente à falta de informação genómica e à complexidade da doença. 

A sequenciação de alta capacidade é atualmente uma rota eficiente para a detecção 

de genes de expressão em organismos não modelos, fornecendo assim informação 

valiosa. Na tentativa de descobrir genes potencialmente envolvidos na defesa do 

pinheiro ao agente patogénico, foi realizada a análise de transcriptómica total das 

sequências de amostras infetadas e não infetadas do caule de Pinus pinaster (muito 

susceptível ao nemátodo do pinheiro) e Pinus pinea (menos susceptíveis ao 

nemátodo do pinheiro), e comparado o seu perfil ao nível da transcrição.  

A pirosequenciação permitiu a identificação de diversos genes candidatos que 

poderão estar associados à resposta ao NMP. No que respeita à função do gene mais 

predominantemente identificado foi a função associada com o metabolismo de 

proteínas e metabolismo de hidratos de carbono. No entanto, uma fracção 

significativa de sequências associadas com o metabolismo de RNA foram, também 

altamente representadas. As sequências que foram mais comumente encontradas em 

Pinus pinaster foram repressores de transcrição e um componente de tradução: 

aminoacil-tRNA sintetase. A celulose sintetase é também importante na resposta da 

doença, uma vez que, este gene foi sobre regulado em infestado Pinus pinaster. A 

análise de KEGG revela que as vias metabólicas mais comumente representadas 

neste estudo estão relacionadas com a via das pentoses, com as interconversões do 

glucoronato, as vias do metabolismo da fenilalanina, do metabolismo dos 

aminoácidos e dos açúcares, biossíntese dos fenilpropanóides, metabolismo do 

metano e o ciclo do citrato (ácido cítrico). 
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1.  Introduction 

 

1.1 The host tree and the disease agent  

 

Pines are trees of medium size (20-25 meters) belonging to the family Pinaceae. 

The trunk is covered with a thick shell and the leaves have the shape of needles. 

Pines are very important because from them a wide variety of products can be 

obtained, such as lumber for construction, resin and many other important economic 

products (Mota et al., 1999).  

In the last decades pines have been dying because of an invasive pest that causes 

pine wilt disease (PWD) and that can destroy adult pine trees in a few months. The 

causal agent of this affliction is the pine wood nematode (PWN), Bursaphelenchus 

xylophilus, a nematode that feeds on fungi, plants, or both (Figure 1).  

Nematodes are simple worms with microscopic dimensions, normally not 

exceeding 1,5 mm in length, and have an elongated cylindrical body. The epidermis 

of a nematode is uncommon, in contrast to other animals, it is not composed of cells 

but of a mass of cellular material and nuclei without separate membranes that confers 

resistance and flexibility. Nematodes have complete digestive systems, no circulatory 

or respiratory systems have only sexual reproduction, and females are always larger 

than males. These worms can be free-living predators or parasites and are found in 

many habitats from land to sea and even in freshwater (Oliveira et al., 2008; 

Autoridade Florestal Nacional, 2012). 

Many nematodes are able to suspend their life processes when conditions become 

unfavorable; these states are resistant to drying, can survive extreme heat or cold, and 

then come back to life when conditions are favorable for their return. 
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Figure 1: Bursaphelenchus xylophilus, the pine wood nematode, taken from 

http://nematode.unl.edu/bursaphelenchusxylo.htm. 

 

The pine wood nematode is transmitted to the trees by an insect vector, a 

longicorn beetle whose scientific name is Monochamus galloprovincialis (Figure 2). 

This vector has one generation per year in Portugal and on average each female 

lays about 67 eggs during their lifetime. From the middle of April the adult insect 

feeds on the bark and phloem of the tree branches, transmitting the nematode which 

is housed in the trachea of the insect facilitating this way the infection in the pine. 

The propagation of the nematode is limited to the time of flight of the insect from 

April to October and, due to high temperatures, the disease is further spread in the 

summer (Autoridade Florestal Nacional, 2012). 

Figure 2: Insect vector Monochamus galloprovincialis, taken from http://gallery.new-

ecopsychology.org/en/photo/black_pine_sawyer_beetle_(monochamus_galloprovincialis).htm. 

 

Once infested and weakened, the female insect lays eggs on the trunk and 

branches of the tree at canopy level (Mota et al., 1999; Jones et al., 2008).  
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Longicorn larvae that develop in weakened trees become adult insects in the 

spring of next year, leaving the pines and carrying with them the nematode to a new 

tree. 

Also, the distribution of the nematode within the tree is not homogeneous and 

infection, which usually propagates from top to bottom, gradually blocks the vascular 

system which supplies water and nutrients to the branches. Without the ability to 

transport water and vital nutrients, the tree dies.  

The nematode of the genus Bursaphelenchus is native to North America causing 

heavy impact in Japan, China, South Korea and also in Portugal (Fukuda, 1997; 

Roriz et al., 2011). 

 

1.2 The pine wood nematode in Portugal  

 

In Portugal, B. xylophilus (Figure 1) was first found in 1999 in the in P. pinaster 

region of the Setubal peninsula. It is believed that they arrived in the country through 

lots of infested wood from Japan for the construction of Expo 98 (Autoridade 

Florestal Nacional, 2012).  

Pinus spp. are the main hosts of PWN and P. pinaster (extremely affected by 

PWN) and P. pinea (be less susceptible) are the predominant pine species occupying 

Portuguese forests. The reason for this susceptible is unknown but it has been shown 

that, although PWN can infect and kill P. pinea, the disease develops much less 

quickly than in P. pinaster (Roriz et al., 2011). 

Many hypotheses have been proposed about the PWN pathogenic mechanism, but 

it is still not well explained. What is known is that this nematode is transported by 

longhorn beetles of the Monochamus spp., as explained before, that are used as 

vectors by Bursaphelenchus. When the insect vector feeds off of the pine branches, it 

contributes to the nematode’s dispersion as they are deposited in the tree through the 

beetles’ feeding wounds. After infestation, the nematodes move rapidly through the 

resin canals of the xylem and cortex, feeding off their epithelial cells.  
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The following figure is an example of a PWN infested tree (Figure 3). 

 

Figure 3: Pine trees affected by the pine wood nematode in Japan (photography gently provided by Dr .Vasconcelos). 

 

In Portugal, the nematode problem is so severe that several studies have been 

conducted to determine the diversity of species of Bursaphelenchus and their 

distribution in Portugal, as well as to understand the complete etiology of the disease, 

in order to prevent it's propagation but until now, no effective solution has been 

found (Jones et al., 2008). 

 

1.3 Symptoms 

 

Initially, the first signs of infection with PWN begin with the wilting of older 

needles, subsequently passing throughout the tree trunk and reaching the younger 

needles. This phenomenon is visible by the yellowing of leaves (foliage turns from 

green to yellowish green, red, and finally brown / yellow) (Fukuda, 1997).  

The dead needles tend to remain for prolonged periods of time in the plant and the 

branches tend to be more brittle. As the disease propagates quickly, and if climate 

conditions are favorable to the nematodes, an infested tree can die after a few weeks. 

Also, several weeks after infection, infested trees show a decrease of resin exudation, 

a decrease in photosynthesis, denaturing of the xylem and parenchyma cells of the 

cortex (Fukuda, 1997; Wang et al., 2009; Roriz et al., 2011; Autoridade Florestal 

Nacional, 2012).  
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1.4 Prevention and treatment - methods to combat 

 

Unfortunately, this disease has propagated to other parts of the country beyond 

Setubal peninsula, forcing the European Union to classify Portugal as a restriction 

zone, affecting the export of wood products, which led to vast losses of forest export 

products. Since then, this problem led to preventive measures that entail heat 

treatment of wood at very high monetary costs, which led to high economic losses of 

many Portuguese companies in the forestry sector. Namely, the furniture industry has 

started resorting to wood importation, which inevitably led to higher end prices for 

their products, and reduction of exportations.   

The PWD continues to evolve rapidly so there is an urgent need to develop 

techniques or methods of prevention / control of its propagation (Fukuda, 1997; 

Oliveira et al., 2008; Wang et al., 2009). 

As infection and propagation develops very rapidly, several strategies have been 

proposed in order to contain the disease: 

  Treatment of wood cuttings with chemical applications: the affected trees are 

felled and the branches and trunks are treated with insecticides. This technique is not 

very effective since it is necessary to apply the insecticides several times during the 

extended period of insect vector flight, and leads to adverse side effects, such as 

environmental pollution; 

  Bacterial symbiosis: it is thought that certain bacteria can enhance or diminish 

the virulence level of the nematode; this strategy has not been implemented yet.  

  Cultivation of resistant species: researchers are screening for naturally resistant 

pine genotypes, however, to date , no resistant P. pinaster tree-has been identified; 

  Biological control of the insect vector: it is a way to control or manage pests 

using, for example, natural enemies to reduce the population of insect vectors; this 

strategy has also not been implemented, as there are no readily identified natural 

enemies for M. galloprovincialis;  

  Crushing and burning of infested trees: this process should be conducted before 

the beginning of the insect flight in May, during which time the population of insect 
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vector is within the host- this is the most effective mean to reduce the population of 

insect and consequently, to avoid the propagation of the disease;  

  Application of nematicides in the tree: certain effective nematicides have been 

identified for B. xylophilus, however this strategy is expensive and laborious, only 

being feasible in protecting a limited number of high value trees. An example of a 

successful nematicide developed against B. xylophilus is Pursue of Syngenta;  

  A genetic approach: the study of genes that allow resistance to the disease, and 

use these resistance genes in programs of genetic transformation to create resistant P. 

pinaster trees;  

 

1.5 Sequencing and transcriptomic analysis  

 

The genome is composed of deoxyribonucleic acid (DNA), the molecule that 

contains the genetic information in the cells. DNA must be transcribed into 

ribonucleic acid (RNA), in order for protein synthesis to occur (Bai et al., 2010).  

A transcriptome is a set of all the transcripts present in a cell and represents the 

very small percentage of the genome that is transcribed into RNA molecules, but as 

one gene may produce many different mRNA molecules, a transcriptome is much 

more complex than the genome that encodes it (Yazdi et al., 2011). 

Analysis of the transcriptome is useful because it allows determining when and 

where each gene is turned “on” or “off” in the cells and tissues of an organism, it 

counts the number of transcripts and determines gene expression levels.  

By comparing transcriptomes of different cells types one can understand faster the 

specific constitution of each cell, how that type of cell normally functions, and how 

changes in the normal level of gene activity may reflect or contribute to a specific 

disease (Yazdi et al., 2011). 

In order to study the genomes that are expressed and involved in the disease 

response, several strategies can be utilized such as RT-PCR, QRT-PCR, suppressive 

subtraction hybridization, or high throughput sequencing (HTC), the later being the 

technique that provides the largest amount of transcript information. Different 

sequencing and transcriptomic technologies, have given us specific insights 
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regarding the pine genome and its response to biotic and abiotic stresses. A few 

examples include: 1) single nucleotide polymorphism genotyped using GoldenGate 

assay, where a consensus map was created for maritime pine (Chancerel et al., 

2012); 2) microarray technology, that identified 2,445 differentially expressed genes 

that were responsive to severe drought stress in roots of loblolly pine (Lorenz et al., 

2011); 3) LongSAGE technique, that provided a total of 20,818 tags, from which 38 

were differentially expressed in the resistant Japanese black pine and 25 in non-

resistant pine (Nose and Shiraishi, 2011); 4) and suppression subtractive 

hybridization, showing the up-regulation of stress response and defense related genes 

by pine wood nematode infestation (Hirao et al., 2012; Santos et al, 2012). 

 

High throughput sequencing  

 

DNA sequencing, as the name indicates, is a technique that determines the 

sequence of DNA, a process that determines the order of nucleotides in a DNA 

sample for further analysis at both structural and functional level (Ronaghi, 2001). 

Sequencing is important because it allows for a complete description of the 

molecular composition of organisms intended to study, once all required information 

is present in the genomic DNA (Ronaghi, 2001). 

Currently there are two widely used methods for high throughput sequencing: the 

sequencing method of Sanger (Horner et al., 2009) and the 454-pyrosequencing 

method (Vera et al., 2008). 

In this work the method used was 454-pyrosequencing, an approach to sequencing 

based on the detection of pyrophosphate, which makes use of a technique capable of 

capturing the light emission caused by the addition of a luciferase, coupled to 

polymerization of DNA previously fragmented and attached to microspheres, with 

the aid of adapter sequences (Ronaghi, 2001). 

The pyrosequencing method comprises a series of steps which will be described 

briefly. First, a sequencing primer is hybridized to a single-stranded DNA resulting 

from polymerase chain reaction (PCR) amplification, and is incubated with the 
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enzyme DNA polymerase, ATP sulfurylase, luciferase and apyrase and the substrates 

with adenosine 5'phosphosulfate luciferin (Vera et al., 2008).  

The first of the four deoxynucleotide triphosphates (dNTPs) is added to the 

reaction. DNA polymerase catalyzes the incorporation of dNTP in the DNA chain if 

there is an existing complementary base to the template strand. Each time a DNTP is 

incorporated, there is a release of pyrophosphate in an amount equimolar to the 

amount of incorporated nucleotide.  

The ATP sulfurylase is quantitatively converted to ATP pyrophosphate. The ATP 

provides energy for the luciferase to oxidize luciferin and generate light. The light is 

detected by a camera with a device which allows seeing a peak at the pyrogram. 

Each light signal is proportional to the number of nucleotides incorporated. Addition 

of dNTPs is carried out sequentially (Huse et al., 2007). As the process continues, 

the complementary DNA chain is constructed and the nucleotide sequence is 

determined by the peaks generated in a pyrogram.  

High throughput sequencing generates random tags that need to be assembled in 

order to produce the full length mRNA sequences found in the cell. 

Genome assembly is complicated because it is difficult to build a general 

assembly that is able to reconstruct the original sequence with high precision, 

especially when working with non-model organisms whose genome has not yet been 

sequenced. 

There are factors that can lead to errors in assembly; in particular, contamination 

of genetic material, density of the reads, the repetitive consensus sequences (SR), 

among others. After assembly of the sequences small sections will be generated, 

called contigs (Figure 4). Contigs are referred to as a set of overlapping DNA 

segments that together constitute a region of consensus DNA (Zhang et al., 1994). 
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 Figure 4: Illustration of the contig assembly process, a required step in transcriptome sequencing.  

 

 

 

1.6 Objectives  

 

Given that P. pinaster and P. pinea have contrasting susceptibility to the PWN, 

the former being very susceptible and the latter being much less susceptible, it is 

important to determine if this difference in susceptibility is related with differential 

expression of specific genes. 

This study aims to identify resistance genes to the PWN, using two interlinked 

approaches: 1) conduct bioinformatic analysis of high throughput sequencing data 

obtained from 454-pyrosequecing of nematode infested and non-infested P. pinaster 

and P. pinea; and 2) to conduct functional analyses of this data, by comparing the 

two sets of transcriptomes and identifying which are the differentially expressed 

genes.   

The analysis of these expressed sequence tags is useful because: 1) the sequences 

will be made available to the scientific community via public repository databases, 

contributing to the genomic information available to plant researchers working on 

transcriptomics and genomics of pine; 2) it will  allow the discovery of genes that 

can underlie resistance to the nematodes, and 3) in the near future, via a collaborative 

project that is under way, create transgenic P. pinaster tree that can resist infestation 

by the nematode, thus possibly preventing the propagation of the disease.  
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2.  Material and Methods 

 

As previously mentioned, the main objective of this study is to identify genes 

involved in the plant defense against the PWN.  

It is known from previous studies, that nematodes can infect many species of pine, 

but that the most common and most susceptible host in Portugal is P. pinaster 

causing irreversible tree damage and death (Yan et al., 2012). 

In this study we used two types of pine: P. pinaster (susceptible host), and P. 

pinea (less susceptible host) in order to identify potential gene sequences that may 

explain why the nematode causes death in P. pinaster whereas P. pinea survives. 

The current study is a continuation of work that began in January of 2009, and the 

biological material had already been sent for 454 high-throughput sequencing at 

BIOCANT (Cantanhede, Portugal). The main goal of the current study was to 

perform the bioinformatic analysis of the data obtained by pyrosequencing. In order 

to better contextualize the project, a brief summary of the laboratory work that was 

previously performed will be described below. 

 

2.1  Plant material and nematode culture   

 

Twenty-eight potted 2-year-old (fourteen P. pinaster and fourteen P. pinea) trees 

were used in this study, kept in a climate chamber (Aralab Fitoclima 10000EHF), 

with relative humidity of 80% and with a photoperiod of 16h day (with 

photosynthetic active radiation of 490 µmol m
-2

 s
-1

 and temperature of (24-26 ºC) 

and 8h night (with temperatures of 19-20 ºC). Plants were watered every 2 days. 

Small, square pieces of Potato Dextrose Agar with Botrytis cinerea, grown at 

26ºC for 7 days, were transferred to test tubes with barley grains previously 

autoclaved. B. xylophilus geographical isolate HF (from Setubal Region, Portugal) 

was cultured on small squared potato dextrose agar, previously covered with B. 

cinerea mycelium for 7 days at 26°C, placed in test tubes and incubated at 26°C. The 

multiplied nematodes were extracted using the Baermann funnel technique prior to 
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inoculation. Only nematodes that had been extracted for less than 2 hours were used 

in the subsequent experiments.  

 

2.2 PWN inoculation and sampling time  

 

The twenty-eight plants were divided in four groups and were inoculated 

following the method of Futai and Furuno (Futai et al., 1979; Futai, 2003). In brief, a 

suspension of 1,000 nematodes was pipetted into a small 3-5 cm long longitudinal 

wound, about 40 cm above soil level. The inoculated wounds were covered with 

parafilm to prevent drying of the inoculum. The same conditions were applied to the 

control plants, inoculated with sterile water. Twenty-four hours after inoculation the 

entire pine tree stem was cut into small pieces and stored at -80 ºC until further 

analysis. 

 

2.3 RNA extraction and cDNA synthesis  

 

Four treatments were studied: P. pinaster and P. pinea inoculated with B. 

xylophilus strain HF and inoculated with water, as control. A pool of the seven plants 

from each treatment was made and total RNA was extracted. The extraction was 

performed according to an optimized method from Provost (Santos and Vasconcelos, 

2012) and the samples were stored at -80 ºC. RNA integrity and purity was checked 

by UV-spectrophotometry using a nanophotometer (Implen, Isaza, Portugal) and by 

fluorimetry.  

 

2.4 cDNA library construction and pyrosequencing  

 

The total mRNA quality was verified on Agilent 2100 Bioanalyzer with the RNA 

6000 Pico kit (Agilent Technologies, Waldbronn, Germany) and the quantity 

assessed by fluorimetry with the Quant-iT RiboGreen RNA kit (Invitrogen, CA, 

USA).  
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A fraction of 1-2 micrograms of total RNA was used as starting material for 

cDNA synthesis with the MINT cDNA synthesis kit (Evrogen, Moscow, Russia), a 

strategy based on the SMART double-stranded cDNA synthesis methodology with 

amplification of polyA mRNA molecules using a modified template-switching 

approach that allows the introduction of known adapter sequences to both ends of the 

first-strand cDNA. The synthesis was done with a modified oligodT containing a 

restriction site for BsgI. After synthesis, the polyA tails were removed through 

restriction enzyme digestion to tails and, in that way, minimize the interference of 

homopolymers during the 454-pyrosequencing run. 

Five hundred nanograms of non-normalized cDNA, quantified by fluorescence, 

were sequenced in a full plate of 454 GS FLX Titanium according to the standard 

manufacturer’s instructions (Roche-454 Life Sciences, Brandford, CT, USA) at 

Biocant (Cantanhede, Portugal). 

The transcriptome sequences of these four samples were made available on a 

website with the address http://transcriptomics.biocant.pt/pine/. This site has 

restricted access and can only be accessed by providing a password.  

 

2.5 Software’s utilized in the bioinformatics analysis  

 

Myrna - differential gene expression for RNA-seq 

 

Myrna is a computing tool for calculating differential gene expression and can be 

accessed from the following address: http://bowtie-bio.sourceforge.net/myrna. This 

tool calculates coverage for exons, genes, or coding regions and differential 

expression using either parametric or non-parametric permutation tests and integrates 

short read alignment with interval calculations, normalization, aggregation, statistical 

modeling in a single computational pipeline. The results are presented in the form of 

gene p-values and q-values for differential expression (Langmead et al., 2010). 

Myrna is a very useful tool that allows one to get the p-values and q-values for 

analyses. In other words, Myrna is a computing tool that calculates differential gene 

expression in large RNASeq datasets. In this study, Myrna was useful because it 

provided the outputs containing the p-values to assign a confidence level of the 
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differentially expressed genes with the number of reads in every sample that 

contributed to the construction of the genes in question.  

 

MG-RAST (Metagenomics Rapid Annotation using Subsystem Technology) 

 

In order to study the different taxonomies and functional analysis for nucleotide 

sequences of the four samples, MG-RAST software was utilized. This software can 

be accessed from the following address http://metagenomics.anl.gov/ (Meyer et al., 

2008). 

The criteria for the selection of this software was the familiarity with its favorable 

features and capabilities. The MG-RAST server is a very useful system in 

bioinformatics since it is an "open source" tool for annotation and comparative 

analysis of metagenomes (Meyer et al., 2008). 

Figure 5 is shows of the home interface of the software. 

 

Figure 5: Initial interface of MG-RAST (http://metagenomics.anl.gov/). 

 

The server provides several methods for accessing different types of data, 

including phylogenetic reconstructions and metabolic ability to compare the 

metabolism and annotations of one or more metagenomas and genomes. The data 

entered are mapped against a comprehensive, searchable, non-redundant database 

(NR- currently M5NR).  

Phylogenetic studies and metabolic reconstructions are computed from the set of 

hits against the NR database. The resulting data are made available for browsing, 

download, and most importantly, comparison against a comprehensive collection of 
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public metagenomes. MG-RAST allows analysis for sequence filtration, including 

both functional classification and functional annotation (Yu and Zhang, 2012). A 

simple search of similarities (BLAST, for example) allows the user to retrieve 

similarities with several other databases (NCBI, KEGGs etc.). The MG-RAST 

software provides automated analyses of phylogenetic context, performing the 

taxonomic evaluation based on the sequence data submitted. 

The selected parameters for the analysis in this study were: maximum e-value 

cutoff of 1e
-30

; minimum percentage identify cutoff of 50%; and minimum alignment 

length cutoff of 50%. The classification was based in the lowest common ancestor.  

 

Blast2Go 

 

The Blast2Go (B2G) software is a web tool for bioinformatics with Java interface 

for functional sequence annotation (can write thousands of sequences) and sequence 

analysis of genes or proteins. The annotation was based on Gene Ontology (GO) and 

can be accessed through the address http://www.blast2go.com/b2ghome (Conesa and 

Götz , 2008). 

The B2G recently improved the functionality of the annotation process, so that 

currently this tool supports Gene Ontology, KEGG maps, codes and Enzyme 

InterPro. In general, B2G BLAST (Basic Local Alignment Search Tool) searches 

remote to similar sequences from one or several sequences of input and extracts the 

GO terms associated with each of the results obtained (Conesa and Götz , 2008).  

Figure 6 shows the general interface of B2G from where all the available features 

are accessible. 
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Figure 6: General Blast2GO interface (http://www.blast2go.com/b2ghome). 

 

Initially, the B2G searches similar sequences to a query set by Blast searching, 

however the annotation will ultimately be based on sequence similarity levels. At the 

end of the mapping process a set of candidate annotations from different hits of 

diverse similarity levels and various annotation sources is gathered (Götz et al., 

2011). 

Functional annotation is very useful because it allows characterization of genes in 

functional classes, understanding physiological meanings and assess functional 

differences (Conesa et al., 2005). With this tool several analisis were made, for 

example, performing BLAST searches mapping the terms GO Enzyme Code 

annotation with KEGG maps and Interpro annotation and graphical exploration.  
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KEGG (Kyoto Encyclopedia of Genes and Genomes) 

 

KEGG (Kyoto Encyclopedia of Genes and Genomes) is a platform that integrates 

multiple bioinformatic online databases, developed by Kanehisa Laboratories in 

1995 and which can be freely accessed via http:// www.genome.jp/kegg/ or 

http://www.kegg.jp/ (Kanehisa and Gotto, 2000; Kaneshia et al., 2006; Kanehisa et 

al., 2012).  

KEGG is characterized by being a user-friendly tool, which is composed of three 

major categories of molecular interaction networks (pathways), biological processes, 

information about the universe of genes and proteins, and information about a wide 

range of chemicals and chemical reactions (Figure 7) (Kanehisa and Gotto, 2000; 

Kanehisa et al., 2012). 

 

Figure 7: General KEGG Interface  (http://www.genome.jp/kegg/). 

 

Basically, this database is a set of sequenced genes and genomes which are 

registered and connected to networks in cells and molecular interactions in certain 

organisms (Winter and Huber, 2010). In the current work, KEGG database was used 

to determine which metabolic pathways were more present in the data, to study 
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possible relations between genes, and to compare these pathways between the four 

samples under study.  

 

2.6  Identification of candidate genes associated with resistance to 

the PWN  

 

In order to identify the differentially expressed genes between the four samples, 

the pyrosequencing results for the infested samples were pooled with the respective 

control samples and the expression levels of the latter were subtracted, in order to 

normalize the infested samples.  

An interface was implemented in the constructed site with the obtained sequences, 

to trim the search in SQL database, using the following algorithm parameters: only 

sequences with 8 minimum reads were considered and, to ensure the quality of the 

sequences, the pondered p-value was of 5e
-05

. These strict parameters were 

established to limit the search only to the most represented genes. 

After the application of this algorithm, all reads from the same sequences were 

grouped and the genes with unknown function were removed from the analysis. A 

ratio between the normalized infested samples was calculated, with which all 

sequences with a ratio inferior to 1 were excluded and hits with ratios higher than 1 

were considered to be overexpressed for the numerator sample. 
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3.  Results 

 

A cDNA library was constructed from RNA of pine stem tissues from P. pinaster 

and P. pinea inoculated with B. xylophilus and from uninfested controls. Following 454-

pyrosequencing, the quality trimming and size selection of the reads were determined 

by the 454 software after which the SMART adaptor sequences were removed from the 

reads using a custom script and the poly-A masked using Myrna, to assure correct 

assembly of raw sequencing reads. All quality reads were subjected to the gsAssembler 

(v2.6-Roche) assembler (version 3.2.0), with default parameters.   

Pyrosequencing of the four cDNA libraries generated a total of 1,393,970 reads, with 

an average length of 320 bp. Specifically, 450,053 reads differentially expressed by P. 

pinaster infested with nematode, which assembled into 12,157 contigs; 375,168 reads 

for P. pinaster control, assembled into 8,808 contigs; 342,141 reads for P. pinea 

infested with nematode, assembled into 9,555 contigs; and 226,608 quality reads for P. 

pinea control, that were assembled into 4,175 contigs. No singletons were obtained 

when the samples were compared, and the distribution of contig length and EST 

assembly by contig, for the four samples. 

This data is presented in Table 1.  

 

Table 1 – Summary of assembly and expressed sequence tag data in the four samples 

 

 

Infested 

P. pinaster 

Control 

P. pinaster 

Infested 

P. pinea 

Control 

P. pinea 

No. of Reads 450,053 375,168 342,141 226,608 

Total Bases 145,356,992 121,441,000 111,032,000 70,672,704 

Average read length 

after trim quality 

322 323 324 311 

No. of contigs 12,157 8,808 9,555 4,175 

Average contig length 806 738 783 636 

Range contig length 32-3,968 12-4,031 38-4,665 11-2,828 

No. of Contigs with 2 

reads 

8 0 0 0 
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No. of Contigs with > 

2 reads 

12,149 8,808 9,555 4,175 

Contigs with BLASTx 

matches  
(E-value  10

-6
) 

531 422 521 207 

*Contigs with 

BLASTx matches  
(E-value  10

-2
) 

3,532 2,169 2,339 1,436 

Contigs determined by 

ESTscan 

511 435 413 424 

Total no. of transcripts 13,003 9,250 9,968 5,516 

*Contigs without BLASTx matches at an E-value cut-off of 10
-6

 were queried 

again with BLASTx with an E-value cut-off of 10
-2

. 

 

 

The entire set of reads used for final assembly was submitted to the NCBI 

Sequence Read Archive under the accession n° SRA050190.1 (Control P. pinea), 

SRA050189.1 (Infested P. pinea), SRA050188.1 (Control P. pinaster) and 

SRA050187.2 (Infested P. pinaster).  

The translation frame of the contigs was determined through queries against the 

NCBI non redundant protein database using BLASTx with an E-value of 10
-6

 and 

assessing the best twenty five hits. Contigs without hits were submitted again to 

BLASTx homology searches against the NCBI nr database with a higher E-value 

cut- off set at 10
-2

. Sequences with a translation frame identification derived from the 

two previous searches were used to establish the preferential codon usage in P. 

pinaster and P. pinea based on which the software ESTScan detected further 

potential transcripts from the two previous sets of sequences with yet no BLASTx 

matches. This procedure originated a third set of sequences with putative amino-acid 

translation.  

The entire collection of sequences of at least 30 amino-acid long, resulting from 

the BLASTx and the ESTScan procedures, was processed by InterProScan for the 

prediction of protein domain signatures and Gene Ontology terms. All the results 

were compiled into a SQL database developed as an information management 

system. The distribution of sequences into GO categories was calculated at each level 
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and were passed to the parent GO at the top of the broad ontology domains, 

considering that each single assignment into a GO child was only counted once in the 

total sum. The positive hits were retrieved and translated into the taxon ID using the 

information provided by NCBI. 

 

3.1  Sample taxonomical classification 

 

In the initial phase of the analysis, the goal was to have the taxonomical 

categorization of the samples. In other words, understand the taxonomy and domains 

of the most predominant species in the samples. Since genomic information for the 

Pinus genus is very limited in publicity databases, we expected to obtained 

homology data to other coniferales, such as the Picea, wich has more abundant 

sequencing data. Thus, a taxonomical evaluation was conduted for the coniferales 

phyla of the samples, and this information can be observed in Figure 8.  

For this, first, sequences of the four samples were added in a single file with 

extension .txt and submitted to the MG-RAST software. Secondly, the species not 

belonging to the coniferales were excluded from the analysis, and a second MG-

RAST run was performed with the remaining sequences.  
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Figure 8: The most prominent genera of conifer plants identified in the samples under study. 

 

In this analysis the most prominent genera of conifer plants identified in the 

samples under study were Picea sitchensis (47.1%), Pinus massoniana (29.2%), 

Pinus taeda (6.7%) and P. pinaster (2.4%). 

 

Abundance of pine and nematode sequences  

 

Pine 

 

The MG-RAST software was also useful because it allowed a clear determination 

of the most prominent species in each individual biological sample. This step was 

necessary due to the fact that the biological samples were, in the case of samples 

“infested P. pinaster” and “infested P. pinea”, a mixture of plant and nematode 

samples. It was necessary to confirm that the preponderance of nematode-related 
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sequences in the samples was minimal, as we were interested in identifying the 

transcriptome sequences of P. pinaster and P. pinea. A small contamination from 

nematodes was expected, due to the fact that the samples were inoculated with B. 

xylophilus. Table 2 shows an overview on the percentage of sequences that belong to 

each taxonomical category, in each biological sample. 

 

Table 2 - Taxonomic distribution of the assembled data (percentage) ‘Not id’ 

represents the percentage of sequences that had hits in databases but could not be 

identified (unknown sequences) 

 

 Eukaryota 

Other Plantae 

Pinus spp. Picea spp. Not id 

Infested P. 

pinaster 

1.8 39.0 55.7 3.5 

Control P. 

pinaster 

2.7 37.8 52.6 6,9 

Infested P. 

pinea 

1.9 39.8 47.4 10.9 

Control P. 

pinea 

12.8 25.4 52.1 9.7 

  

The plant sequences most commonly identified belonged to the families Pinaceae, 

Cycadaceae and Liliopsidae. In the case of the Pinaceae, the most common genus, as 

predicted due to the composition of the samples, were Pinus, Picea, and Abies (Table 

2). The genus Picea was the one that showed the highest number of homologous 

sequences, ranging from 25.4% in control P. pinea to 39.8% in infested P.pinaster. 

Sequences belonging to the genus Pinus ranged from 12.8 % in control P. pinea to 

1.8% in infested P. pinaster. Regarding the Cycadaceae, the genus Cycas was 

predominant. In the case of the Liliopsidae, the most commonly found genus were 
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sequences belonging to the Poaceae and Oryzae (data not shown). These are grouped 

in the category “others” in the plant section of Table 2. This table also shows that the 

predominance of sequences homologous to nematode sequences was undetectable, 

with the exception of infested P. pinaster, and control P. pinea which presented an 

extremely small percentage of nematode-homologous sequences (0.1 and 0.2%, 

respectively). Bacterial species were also present, but in percentages ranging from 

0.2 to 0.7%.  

 

Functional annotation  

 

To annotate the transcripts, the putative frames were queried against the InterPro 

database of protein families and functional domains http://www.ebi.ac.uk/InterPro 

(Ashburner et al., 2000; Apweiler et al., 2001), and additionally annotated with GO 

terms, to assign Pinus contigs into the major GO annotation categories, namely, 

Biological Processes, Cellular Components and Molecular Functions in a species-

independent manner (Apweiler et al., 2001). Within the Biological Process, 29.37% 

and 49.36% (Annexes, Figure 16, 17) of assignments corresponded to “Cellular 

Process (GO:0008152) and “Metabolic Process” (GO:0009987) respectively, 

followed by the “Localization” (GO:0051179, 8.49%) and “Establishment of 

Localization” (GO:0051234, 8.40%) GO categories. Furthermore, the matches of 

Molecular Function terms were most prevalent within the “Binding” (GO:0005488, 

48.84%) and “Catalytic Activity” (GO:0003824, 36.86%) category, followed by the 

categories “Structural Molecule Activity” (GO:0005198, 3.52%) and “Transporter 

Activity” (GO:0005215, 3.62%) (Annexes, Figure 24, 25). Finally, for the Cellular 

Component GO the most evident matches were within the “Cell Part” (GO:0044464, 

34.72%) and “Cell” (GO:0005623, 34.72%) terms, followed by “Organelle” 

(GO:0043226, 13.33%) and “Macromolecular Complex” (GO:0032991, 10.76%) 

(Annexes, Figure 18, 19). Together, these GO classes accounted for most of the 

assignable transcripts, and may represent a general gene expression profile signature 

for Pinus spp. 
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3.2 General functional classification  

 

An analysis of the general functional classification of the obtained sequences was 

performed using MG-RAST. For this, all the sequences of the four samples were 

bulked and analyzed as a whole. Figure 9 shows these functions that were most 

commonly found in the biological samples under study. The data presented were 

normalized to values between 0 and 1 to allow comparison of samples of different 

sizes. 

 

Figure 9: Functional classification of the bulked sequences obtained from the pyrosequencing of the four samples 

under study. The data was obtained using MG-RAST. 

 

As shown in Figure 9, the most predominant function was related to protein 

metabolism, followed by carbohydrate metabolism, clustering based subsystems, 

amino acid and derivatives metabolism, co-factors, vitamins, prosthetic groups, 

pigments and RNA metabolism. A large fraction of the sequences fell also in the 

“miscellaneous” category. This category represents sequences whose function could 

not be identified via homology searches. The category with fewer sequences was of 

those related to motility and chemotaxis. Another of the most represented categories 

was related with virulence, disease and defense.  
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3.3  Sequence analysis for identification of resistance genes  

 

After evaluating the taxonomical composition of the samples and the general 

functional characterization of the genes, the data was processed for individual sample 

functional analysis. As mentioned earlier, this study consisted of four samples: 

infested P. pinaster, control   P. pinaster, infested P. pinea and control P. pinea. This 

was necessary in order to compare samples that had the same treatment (inoculated 

with nematode vs. non-inoculated) and to compare samples of the same species (P. 

pinaster or P. pinea). This is useful because, first it allows viewing more genes that 

are expressed for each sample and secondly, allows comparing the different genes in 

the two species. After combining the two samples, the genes that were expressed in 

common in both samples were discounted, and the genes that were differentially 

expressed could be more easily identified and quantified. 

 

Search Interface 

 

The application of a search interface was necessary to decrease the number of 

sequences in the final gene list. This interface can be found at the address 

http://transcriptomics.biocant.pt/ which is password restricted as mentioned above. 

Figure 10 represents the algorithm used 
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Figure 10: Search interface and algorithm utilized for the gene functional analysis. 

 

An interface was implemented in the constructed site with the obtained sequences, 

to trim the search in the SQL database, using the following parameters: 1) only 

sequences with a 8 minimum of reads were considered and, 2) to ensure the quality 

of the sequences, the selected pondered p-value was 5e
-05

. These strict parameters 

were established to limit the search only to the most represented and more 

homologous genes. This implies that in the end of the search, e.g., only the genes 

more expressed when the pine is infested will appear. The end result will be 

presented in the form of an excel file generated by the interface. 

The same analysis was also performed for the sample infested P. pinea and 

control P. pinea, in order to compare samples from the same species. 

 

B2G 

 

For the functional annotation and functional analysis of the sequences of interest, 

the B2G software was used. The system used by this ontology was the Gene 

Ontology tool.  
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With this tool, a Blast was carried out for annotation and comparison of local 

alignments. This displays advantages such as speed and identification of genes. In 

this study Blast provided the description of the sequence, its length and its GO 

number. 

Then a Mapping of the Gene Ontology terms (GO IDs) was performed. After this, 

the mapping used Interpro (InterProScan) in order to write down the sequence 

motives / domains. After the Interpro annotation was completed, the enzyme code 

(EC number) was available, and the annotation was based in accordance to the GO 

sequences. 

Lastly, an analysis was carried out with KEGG in order to obtain the metabolic 

KEGG maps from the selected the sequences.  

Figure 11 shows an example of the results obtained from the B2G tool analysis.  

Figure 11: Example of an output obtained from this analysis using Blast2Go.  
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The pathway database at KEGG is divided into various biological processes that 

are grouped into five principal categories: cellular processes, metabolism, 

environmental information processing (such as signal transduction), genetic 

information processing and human diseases. The metabolism group is further 

subdivided into carbohydrates, energy, lipids, nucleotides, amino acids, glycans, 

polyketides/non-ribosomal peptides, cofactors/vitamins, secondary metabolites and 

xenobiotics. Figure 11 shows an example of the annotations and analysis that were 

developed. In this case, the oxidative phosphorylation pathway is highlighted and all 

the gene functions related to this enzyme are present in the output. This provides a 

global picture on the enzymatic pathways that are associated with the selected 

sequence.    

 

Selecting the data 

 

After the application of this interface, all reads from the same sequences were 

grouped and the genes with unknown function were removed from the analysis. A 

ratio between the normalized infested samples was calculated, with which we 

excluded all sequences with a ratio inferior to 1 and considered hits with ratios 

higher than 1 to be overexpressed for the numerator sample. 

Then a search based on literature and Interpro (http://www.ebi.ac.uk/interpro/) 

was conducted in order to identify the genes which were related to the defense 

mechanism or to the infection in pine. After these steps were conducted, an 

indication was obtained on which were the most highly expressed genes and under 

which conditions they were expressed. These data can be seen in Figures 12 and 13. 
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Figure 12: Up regulated genes by infested P. pinaster when compared to infested P. pinea. 

 

Figure 12 shows the more highly expressed genes by infested P. pinaster versus 

infested P. pinea. This comparison shows that the most differentially expressed 

genes were a transcription repressor and genes related to the synthesis of amonoacyl-

tRNA synthetase, whereas the less differentially expressed genes were the ones 

related to ammonium transport and with the synthesis of pyruvate 

carboxyltransferase. Genes associated with terpenoid metabolism were also 

differentially overexpressed by P. pinaster.  

 

Figure 13: Up regulated genes by infested P. pinea when compared to infested P. pinaster.  
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Figure 13 illustrates the most differentially expressed genes when comparing 

infested P. pinea and infested P. pinaster. From this this comparison it can be seen 

that the genes more expressed were related to the synthesis of a translation 

elongation factor and Pectin esterase, and the less differentially expressed genes were 

genes of the synthesis of a  U box domain and PNGse A.  

The up and down regulated genes in PWN infested P. pinaster and P. pinea are 

represented in figure 14. Data was pooled and a ratio of the number of reads for each 

differentially expressed gene was calculated for each comparison. Ratios >1 were 

considered to be up-regulated for the numerator sample and <1, down-regulated. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Differentially expressed genes. 

 

After selection of these genes, these were annotated using B2G. This information 

can be seen in Table 3.  
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Table 3: General gene function and correspondent genes found between the 

differentially expressed data.  

 

KEGG analysis 

 

In the current work, a preliminary KEGG analysis was performed in order to 

integrate the large-scale dataset that was generated by the high-throughput 

sequencing technology. KEGG pathways are manually drawn and derived from 

several sources, such as textbooks, literature and expert knowledge. The genomic 

General Function Genes 

Oxidative stress 

Aldo/keto reductase 

Multicopper oxidase 

2-hydroxyacid dehydrogenase 

6-phosphogluconate    dehydrogenase 

PB1 

Cytochrome c 

FMN reductase 

Malic enzyme 

Proline dehydrogenase 

Defense-related 

Sugar related proteins 

PAPS reductase 

PAR1 

Plant Lipid Transfer Protein 

Saposin-like 

Pectinesterase 

PUB-ARM protein 

WRKY protein 

UBA domain 

Transcription factors 

aminoacyl-tRNA synthetase 

ERp29 protein 

Translation elongation factor 

Secondary metabolites 

production 

HMB-PP reductase 

HDS 
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information in KEGG is retrieved from publicly available resources such as RefSeq 

data from the NCBI (Kanehisa et al., 2006).  

The metabolic pathways that were more prevalent in infested P. pinaster versus 

infested P. pinea were penthose and glucuronate interconversions, phenylanine 

metabolism, starch and sucrose metabolism, methane metabolism, and 

phenylpropanoid biosynthesis.  

The metabolic pathways that were more prevalent in P. pinea when compared to 

infested P. pinaster were: amino sugar and nucleotide sugar metabolism, citrate cycle 

(TCA cycle) and starch and sucrose metabolism (Figure 15).  

 

Figure 15: Example of a KEGG starch and sucrose metabolic pathway. The colored boxes represent the genes that 

were differentially expressed in the biological samples.  
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4.  Discussion  

 

454-Pyrosequencing 

 

In this study a very effective and rapid technique was utilized for whole 

transcriptome sequencing: 454-pyrosequencing. This technique provided all the 

sequences that were analyzed in this study. 454-pyrosequencing has several 

advantages over other high throughput sequencing techniques. These include 

accuracy, flexibility and parallel processing, as well as the possibility of generating 

larger reads. This is because it generates a great number of sequences and 

information about the sample in a short amount of time (Vera et al., 2008). 

Moreover, this approach can be applied in any ecosystem for the study of different 

types of organisms. 

But, like with other tools, this technique may have disadvantages such as high 

costs, and possible errors that are produced in the regions of homopolymers, mainly 

due to saturation of the signal during the sequencing process (Huse et al., 2007).  

Because PWD is a complex disease involving organisms of different taxons 

(plant, nematode and bacteria) a quantitative insight into the microbial and non-

microbial population of the samples was conducted. For this, the taxonomical 

affiliation of the annotated sequences was analysed using MG-RAST (Meyer et al., 

2008). Although about 50% of the sequences for each sample couldn’t be annotated, 

the annotated ones were taxonomically analysed. The majority of the sequences in 

the samples belonged to Eukarya Domain and, as expected, ‘Plantae’ was the 

Kingdom that had more related sequences, corresponding to 89.1% to 96.45% of the 

sequences. To notice that only 1.8% to 12.8% corresponded to Pinus spp. sequence, 

which reflects the scarce available information in public databases. As there is more 

genomic information in public databases available for Picea spp., a range of 25.44-

39.75% of the ‘Plantae’ sequences belonged to this category. Interestingly, P. pinea 

control sample was the one with higher percentage of Pinus spp. sequences 

compared to the other samples. 
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Comparing P. pinea and P. pinaster molecular responses to nematode infection 

 

Plants have evolved a complex network of defence responses often associated 

with a localized response, where defences are systemically induced in remote parts of 

the plant in a process known as systemic acquired resistance (Shi et al., 2010). 

These are usually stimulated by incompatible interactions between a pathogen and 

a resistant or non-host plant and result in two distinct types of hypersensitive reaction 

(HR): type I, which does not produce any visible symptoms and type II, that results 

in rapid and localized necrotic HR (Ulker et al., 2004), often eliciting de novo gene 

expression to acquire disease resistance. 

To identify the participants in PWD response, the most represented genes in each 

sample were identified and the number of up and down regulated genes were 

analysed (Figure 14). In response to infestation P. pinaster differentially expressed 

156 genes while the number of such genes in P. pinea was 300. When comparing 

between PWN infested P. pinaster with P. pinea, 257 genes had altered their altered 

expression levels and in the reverse comparison 105 genes were detected. Also, the 

expression varied between control treatments, which indicated that they were 

expressing different genes. This differential expression was also observed in other 

studies looking at the effect of B. xylophilus 24h after inoculation in susceptible and 

resistant pines (Hirao et al., 2012). There was a high percentage (around 53%) of 

unknown sequences that were differentially expressed – this fact could stem from the 

low genomic information available for Pinus spp.. Also, the contigs without any 

homology may correspond to novel or diverged amino acid coding sequences, or 

could represent mostly 3’ or 5’ untranslated regions (UTRs) lacking protein matches 

as they are non-coding.  

When the infested samples were compared against the controls, both presented a 

similar number of down-regulated genes, 21 by P. pinea and 33 by P. pinaster, but 

P. pinea up-regulated more than double the number of genes when compared to P. 

pinaster, which supports the hypothesis that these species respond differently to the 

nematode infestation. 

When comparing the infested samples against the controls, both presented a 

similar number of down-regulated genes, 21 by P. pinea and 33 by P. pinaster, but 
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P. pinea up-regulated more than double the number of genes when compared to P. 

pinaster, which supports the hypothesis that these species present different patterns 

of gene expression in response to nematode infestation. 

When comparing both infested samples, P. pinaster was the species with higher 

number of up-regulated genes, suggesting that, although P. pinea had a stronger 

reaction to the infestation, it differentially expressed less genes when compared to P. 

pinaster. 

Due to the differential susceptibility to the PWN, it is interesting to compare the 

genes expressed by both P. pinaster and P. pinea when subjected to PWN 

infestation. The genes that were more represented by P. pinaster were a transcription 

repressor and a translation machinery component, aminoacyl-tRNA synthetase. 

Transcriptional regulators are key factors in the expression of specific genes and 

ensure the cellular responses to internal and external stimuli (Ulker et al., 2004) and 

the expression of factors related to protein synthesis could be involved in the 

activation of defence genes in response to the nematode attack. An ERp29 protein 

was also up-regulated. This protein is an endoplasmic reticulum stress-inducible 

protein, that is activated by the accumulation of transport-incompetent, misfolded 

and/or underglycosylated secretory proteins (Mkrtchian et al., 1998), again related to 

protein regulation.  

Two component signalling elements have already been found to be present in A. 

thaliana and in rice, and here a possible histidine kinase was identified. These types 

of proteins are associated with signal transduction mediation in multiple pathways, 

acting like the hormones cytokinin and ethylene (Schaller et al., 2011). 

As already mentioned in the Introduction section (page 4), the main symptom of 

the disease – wilting of leaves, that ultimately leads to tree death - is caused by a 

decrease in water potential in B. xylophilus infested stems (Fukuda, 1997). After 

water conduction is disrupted, xylem tracheids fill with air and oleoresin due to the 

resulting cavitation (Fukuda et al., 2007). The cavitation becomes permanent once 

tracheids are refilled with hydrophobic terpenoids synthesized by nematode injured 

parenchyma cells. Therefore, it is understandable why terpene metabolism related 

proteins, like (E)-4-hydroxy-3-methylbut-2-enyl diphosphate (HMB-PP) reductase 

and thiolase like protein, both involved in terpenoid synthesis, could be differentially 

expressed by infested P. pinaster (Kim et al., 2008; Soto et al., 2011). Subsequently, 

35 



 

 

as the water potential decreases, pine trees suffer severe oxidative stress and here, 

likewise other PWD-related studies (Shin et al., 2009; Santos and Vasconcelos, 

2012), several oxidative-related genes were found, namely, a cytochrome c, found in 

the oxidation of phenolic elements in cell wall polymers under biotic stress, that has 

been associated with nematode infection in other studies (Shin et al., 2009), and an 

aldo/keto reductase, member of NADPH-dependent oxidoreductases, that intervenes 

in the elimination of reactive oxygen species produced by plant cells after suffering 

from a great amount of stress (Yamauchi et al., 2011).  

Another symptom caused by PWN infection is the enhancing of plants’ 

respiration and oxidative stress (Fukuda, 1997). A possible malate dehydrogenase 

(MDH) was found to be over-expressed by infested P. pinaster. MDH is responsible 

for the interconversion of malate and oxaloacetate, regulating respiratory rate in 

plants (Tomaz et al., 2010), which may be related to the disease. 

Nematodes feed off young differentiating phloem fibers and xylem ray 

parenchyma cells (Fukuda et al., 2007). A cellulose synthase was up-regulated in 

infested P. pinaster which could be explained by the fact that, as the damage caused 

by nematode feeding disrupts wood formation, this is an essential enzyme for 

primary and secondary cell wall biosynthesis (Nairn et al., 2008).  

Interestingly, several plant defense related genes were also up-regulated by P. 

pinaster in response to the infestation. These included: a probable photoassimilate-

responsive protein (PAR1) that displays features similar to pathogenesis-related 

proteins (Herbers et al., 1995); a putative plant lipid transfer protein (LTP), that may 

be involved in pathogen-defense reactions via inhibition of bacterial and fungal 

growth (Kader, 1997); sugar related proteins - like pyruvate-related proteins, GHMP 

kinase and a UDP-glucose pyrophosphorylase (Tadege et al., 1998; Yang et al., 

2009; Zeczycki et al., 2009) were up-regulated - have been shown to increase after 

pathogen infection and, in Arabidopsis thaliana, the expression of sugar transport 

proteins can be induced by wounding and pathogen attack, altering cell wall 

dynamics (Poschet et al., 2010); a phosphoadenosine phosphosulphate (PAPS) 

reductase, maily involved in sulphate assimilation, that may contribute to plant 

defense, since S-containing secondary metabolites act as compounds against 

pathogens and herbivores (Kopriva et al., 2004); and a sequence belonging to the 

saposin-like protein family that, as its members have membrane permeabilizing 
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activity, participates in the plant defence mechanism against fungal pathogens 

(Bryksa et al., 2011). 

In a recent study conducted in P. phumbergii defense response genes, an 

antimicrobial peptide, salicilic acid-responsive genes and jasmonic acid/ethylene-

responsive genes  were induced more quickly and to a higher level in susceptible 

than in resistant trees (Hirao et al., 2012). These gene classes were not the ones 

found to be more highly expressed by susceptible P. pinaster, possibly pointing out 

to a species-specific response in disease susceptibility amongst pine trees. 

Perhaps the most helpful information when aiming at identifying resistance genes 

to the PWN comes from the analysis of the genes expressed by PWN-infested P. 

pinea (less susceptible to PWN) when compared with PWN-infested P. pinaster. 

PWN-infested P. pinea had higher levels of expression in general and some of the 

most interesting findings included a plant disease resistance protein, which was not 

found to be expressed by P. pinaster and a ricin B-related lectin. Plant lectins have 

already been pointed out as participants in the general defence against a multitude of 

plant pathogens, including nematodes. 

The oxidative stress related multicopper oxidase, flavin mononucleotide (FMN) 

reductase and 6-phosphogluconate dehydrogenase (Shin et al., 2009; Pöggeler, 2011; 

Stover et al., 2011) were all up-regulated and these proteins have a crucial role in 

PWD since, as previously mentioned, they are believed to play an important role in 

the maintenance of intracellular redox balance and in stress response/tolerance in 

plants. Particularly, FMN reductase has already been identified in previous studies in 

our lab as possibly related to B. xylophilus infection (Yu and Zhang, 2012). Also, a 

phox/Bem1 (PB1) domain was found to be more represented by infested P. pinea 

and this domain is usually found in signalling proteins including oxidases and 

cytosolic factors (Hirano et al., 2005) and a 2-hydroxyacid dehydrogenase that is 

associated with 3-phosphoglycerate dehydrogenase and may play a role in the 

oxidation-reduction process (Ho et al., 1999). 

The malic enzyme (Liu et al., 2007) and a proline dehydrogenase are also 

involved in the oxidative stress, and believed to play an important role in plant 

defense.  
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The second one was recently found in Arabidopsis to affect cell death and disease 

resistance against biotic stress by altering cellular redox state, besides other 

mechanisms (Cecchini et al., 2011).  

The most up-regulated genes by infested P. pinea was a possible translation 

elongation factor, mainly involved in protein synthesis and in regulation of different 

cellular processes (Mateyak and Kinzy, 2010), and the defence related protein 

pectinesterase, that belongs to a group of methyl jasmonate inducible pathogenesis-

related proteins and has been correlated to cell wall extension (here justified by the 

need to replace the nematode feeding-damaged cell walls) and microbial pathogens 

inhibition ( Hothorn et al., 2004; Sabater et al., 2011). As pointed out by others, up-

regulation of cell wall-related genes contributing to the strength of cell walls would 

be a very effective defense against PWN infection, because these events might 

restrict PWN migration (Hirao et al., 2012). 

Other defence related proteins by PWN infested P. pinea, like a plant U-box 

(PUB) protein and a WRKY protein were also found. The first, involved in 

ubiquination, usually carries tandem armadillo repeats (PUB-ARM proteins) in 

eukaryotes. PUB-ARM proteins were identified as part in the pathogen response in 

tobacco and Arabidopsis (Drechsel et al., 2011; Li et al., 2012). The second are 

transcriptionally inducible upon pathogen infection and other defence-related stimuli 

and, although this may not be true for all WRKY genes, the overexpression of (for 

example) AtWRKY18 was shown to activate pathogenesis-related genes and to 

enhance resistance to certain pathogens (Ulker et al., 2004; Grunwald et al., 2008). 

Another hit possibly involved in ubiquination was detected, a UBA domain. In 

plants, ubiquitinated proteins were described to regulate, besides germination and 

flowering, cell cycle and processes of response to the majority of external stimuli 

(e.g. biotic and abiotic stresses) (Manzano et al., 2008). 

Due to the mechanism of action of PWD, as pointed out before, terpenoid 

metabolism is very important in pine trees defence. In P. pinea a terpenoid-related 

protein, namely, a 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase (HDS), 

participant in the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway was found. 

HDS and HD reductase are necessary to resin production and have been already 

proposed to be important in the physiological response to invasion by the PWD 
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nematode in P. densiflora (Kim et al., 2009), since PWN progression leads to the 

cessation of resin flow (Autoridade Florestal Nacional, 2012). 

One of the main symptoms of PWD is the decrease of photosynthetic rate, which 

leads to the wilting of leaves. As previous studies of our lab showed, after PWN 

infestation, the chlorophyll content suffers from a quick decline, especially in P. 

pinaster (Beale, 1999). Here, a porphobilinogen synthase, directly involved in 

chlorophyll synthesis, was identified (Beale, 1999). Maybe, with the differential 

expression of this gene, P. pinea is capable to somewhat compensate this decline. 

The protein L-isoaspartyl (D-aspartyl) O-methyltransferase (PIMT) is commonly 

present in seed tissues, however its activity is elevated under stressful conditions and 

in Arabidopsis it was hypothesised that this protein may be involved in plant stress 

response (Villa et al., 2006; Ogé et al., 2008). 

Among the up-regulated genes that cannot be directly associated with plant stress 

response, in P. pinaster sample, a ChacC-like protein, a knottin domain, a actin-

binding protein and a nitrogen-stress related ammonium transporter were identified; 

and, in P. pinea sample, both sugar-related phosphate-induced protein with unkown 

function and SPX domain, a putative aspartate aminotransferase, a SecY protein and 

a peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase A (PNGase A). Even 

though their association with plant disease defence or stress is not yet documented, 

the current study seems to indicate that they may have a role in the infestation 

response.  

High throughput sequencing allowed the identification of several candidate genes 

that may be involved in the response to the PWN. Like in other studies (Shin et al., 

2009), one day after infestation with B. xylophilus the plants triggered the expression 

of genes related to oxidative stress, abiotic or biotic stimulus, plant stress, 

transcription factors, transport, and secondary metabolites production. These genes 

can be useful targets in genetic transformation and breeding programs that aim at 

generating wild pine that is resistant to the PWN. 

The appearance of a small percentage of nematode sequences may be due to the 

fact that nematodes can be present in many environments, such as contaminated 

water, soil, compost beds, among others. Also, the genome of many nematodes, 

including B. xylophilus, is not yet well described in public databases, therefore the 

39 



 

 

results may reflect homology to the nematodes that have higher genomic information 

in publicly available sequence repositories.  

 

KEGG Analysis 

 

Tools that allow the analysis of metabolic pathways are very useful in order to 

obtain and analyze relationships between genes that encode specific enzymes, and to 

find strategies for diagnosis and treatment of complex diseases. It is important to 

note that metabolic reconstruction also induces the search for missing genes, 

encouraging the application of genomics (Winter and Huber, 2010). 

The pathway more commonly found in this study were the pentose pathway, the 

pathway for glucuronate interconversion, the pathway for phenylanine metabolism, 

amino acid, sugar and nucleotide metabolism, phenylppropanoid biosynthesis, 

methane metabolism, and citrate cycle (TCA cycle).  

The pentose pathway and glucuronate interconversions are related to the 

metabolism of carbohydrates and are present in various polysaccharides and 

glycosides being very commonly found in plants (Wood, 1986). 

The phenylalanine pathway is probably well represented due to the fact that 

phenylanine is the starting compound used in the flavonoid biosynthesis because it 

has an important role in activating various plant defense responses, including 

expression of the pathogenesis-related genes and resistance (Kachroo et al., 2001). 

Amino sugar and nucleotide sugar metabolism are pathways that contain the 

intermediates that produce some of the activated sugars needed for glycosylation 

reactions. Nucleotide sugar represents a group of enzymatic reactions by which 

plants synthesize monosaccharides for the incorporation into cell wall material and 

assist in the transport of nutrients (Reiter et al., 2001). 

Phenylpropanoid biosynthesis pathways are a group of plant secondary 

metabolites having a wide variety of functions both as structural, signaling molecules 

and play a key role in plant development and protection against environmental stress 

(Dixon et al., 2002).  
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Citrate cycle (TCA cycle) is an important aerobic pathway for the final steps of 

the oxidation of carbohydrates and fatty acids (Schnarrenberger and Martin, 2002).  

Starch and sucrose metabolism are highly represented probably because sucrose 

plays an important role in plant growth and development of plants. It is a main 

product of photosynthesis and functions as a carrier, as well as direct or indirectly 

regulating gene expression. Sucrose is synthesized in the cytosol, transiently stored 

in the vacuole and exported through the apoplast (Winter and Huber, 2010). 

Moreover the starch is the main source of reserve in plants that can be found in the 

roots and other plant organs.   
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5.  Conclusion  

 

This worked allowed a better understanding of the molecular responses of 

susceptible and less susceptible pines to the PWN.  

In our samples a very small amount of nematode related sequences were found, 

thus it can be concluded that during RNA extraction of the four samples, the protocol 

yielded mostly plant RNA and a very small fraction of nematode RNA.  

With regards to the gene functions most commonly identified, it can be concluded 

that the majority of the sequence functions were associated with protein metabolism 

and carbohydrate metabolism. However, a significant fraction of sequences 

associated with RNA metabolism were also highly represented. The sequences that 

were more commonly found in P. pinaster were transcription repressors and a 

translation machinery component: aminoacyl-tRNA synthetase. Transcriptional 

regulators are key factors in the expression of specific genes and ensure the cellular 

responses to internal and external stimuli and the expression of factors related to 

protein synthesis could be involved in the activation of defence genes in response to 

nematode attack. 

It can be concluded that cellulose synthase is also important in the disease 

susceptibility, as this gene was up-regulated in infested P. pinaster. 

Putative transcripts were identified using 454 sequencing technology, which 

showed that P. pinaster, a very susceptible species to the PWN, when infested with 

B. xylophilus, over-expresses genes related to terpenoid secondary metabolism 

(including some with nematicidal activity), defense against pathogen attack and 

oxidative stress (a common PWD consequence). 

On the other hand, P. pinea – believed to be less susceptible to this disease – up-

regulated transcription regulation related genes, that are needed to activate plant 

defense responses, and showed higher levels of expression in general of stress 

response genes such as SNARE proteins, ricin B-related lectin, and disease resistance 

proteins.  
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This study establishes a framework to the construction of knowledge about the 

molecular response of pine trees to PWN, and elucidates the defense mechanisms 

utilized by P. pinaster and P. pinea against PWN infection.  
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6.  Future work  

 

As future work, the selection of a subset of genes showing differential expression 

between samples and that can be responsible for the higher resistance to the pine 

wood nematode is underway. After selecting these gene targets, cloning of the 

complete sequences will be performed, and the entire cDNA fragment will be 

utilized in a program of genetic transformation, with a collaborating institute, in 

order to test if transgenic P. pinaster expressing these genes has lower susceptibility 

to B. xylophilus.  

Another possible study that could be undertaken would be to merge all the KEGG 

pathway analysis in order to obtain a single pathway relationship that would integrate 

the identified differentially expressed genes.  
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7.  Annexes  

Figures taken from http:// transcriptomics.biocant.pt/pine/. 

 

 

 

 

 

 

 

 

 

 

Figure 16: Biological Process GO by infested P. pinaster when compared to infested P. pinea. 

 

 

 

 

 

 

 

 

 

 

Figure 17: Biological Process GO by infested P. pinea when compared to infested P. pinaster. 
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Figure 18: Cellular Component GO by infested P. pinaster when compared to infested P. pinea.  

 

 

 

Figure 19: Cellular Component GO by infested P. pinea when compared to infested P. pinaster. 
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Figure 20: Number of contigs vs Length by infested P. pinaster when compared to infested P. pinea.  

 

Figure 21: Number of contigs vs Length by infested P. pinea when compared to infested P. pinaster.  
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Figure 22: Number of contigs vs Number of reads by infested P. pinaster when compared to infested P. pinea.  

 

Figure 23: Number of contigs vs Number of reads by infested P. pinea when compared to infested P. pinaster.  

ix 
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Figure 24: Molecular Function GO by infested P. pinaster when compared to infested P. pinea.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25: Molecular Function GO by infested P. pinea when compared to infested P. pinaster.  
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