Vancomycin and ciprofloxacin resistance in enterococci from a Hospital effluent and in the receiving Municipal Wastewater Treatment Plant

Ana Rita Varela^{*1}, Giovanna Ferro^{1,2}, Jana Vredenburg¹, Melike Yanik¹, Luigi Rizzo², Celia M Manaia¹

1- CBQF/Escola Superior de Biotecnologia – Universidade Católica Portuguesa, Porto, Portugal 2-Department of Civil Engineering, University of Salerno, 84084, Fisciano (SA), Italy *avarela@porto.ucp.pt

Scope and objectives

•Hospital effluents can be discharged to municipal wastewater treatment plants /MWWTP) without previous treatment;

•Enterococci are indicators of faecal contamination and recognized harbours of clinically relevant resistance phenotypes;

Approach

Water samples: Hospital – MWWTP (raw & treated) **Comparison of: Cultivable counts**

The major objectives in this study were:

•Assess if hospital effluents may be a source of ciprofloxacin and vancomycin resistant enterococci;

• Compare the enterococci loads and respective resistance rates in the untreated hospital effluent and in the raw inflow of the receiving municipal wastewater treatment plant (MWWTP);

• Characterize the most relevant enterococci species and antibiotic resistance patterns observed in hospital effluents and in municipal wastewater.

Antibiotic resistance prevalence Species diversity

-Isolation on mEnterococcus agar and on mEnterococcus agar supplemented with vancomycin or ciprofloxacin

-CFU/mL and percentage of resistance

-16S rRNA gene sequence analysis

-Antibiotic resistance phenotypes - disk diffusion method -- Detection of vancomycin-resistance associated genes

a

Hospita

Inflow

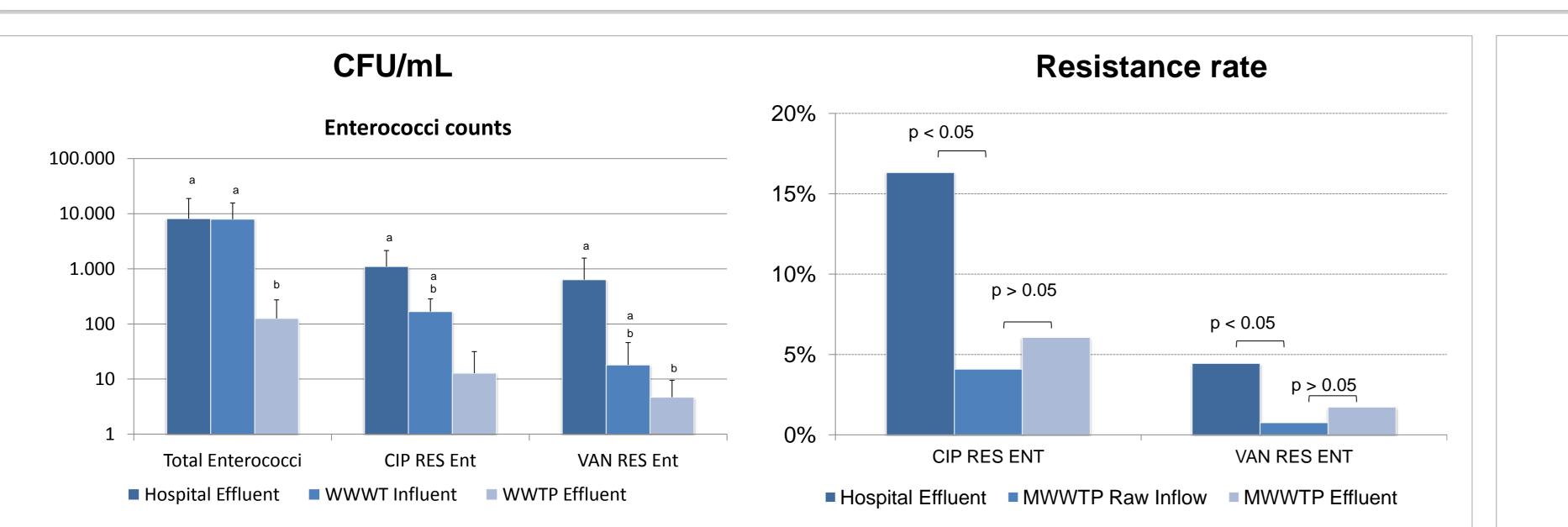
MWWTP

MWWTP Effluent

Others

WWTP Membrane **Filtration** Method

ERY


SXT TET

S

S

n/d

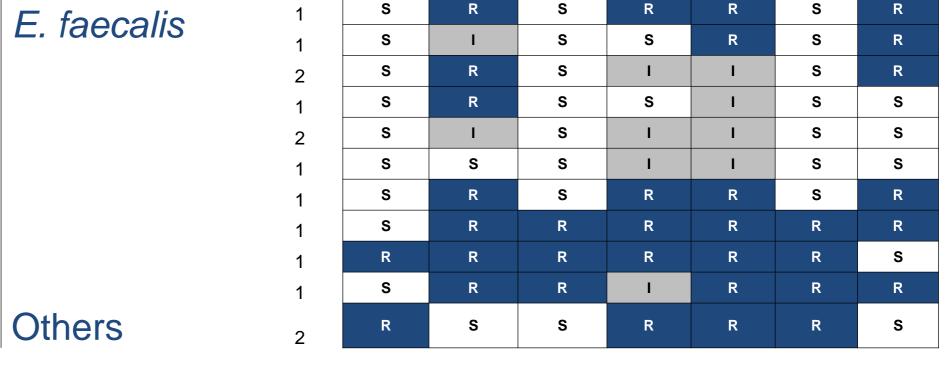
Results

Species (>99 % 16S rRNA sequence similarity)	(n)	AML	VAN	GEN	CIP
	1	S	R	R	R
	1	S	R	R	R
	1	S	R	R	I
	1	S	R	R	I
	1	S	R	R	R
	3	S	R	R	R
	1	S	S	R	R
	2	S	R	R	R

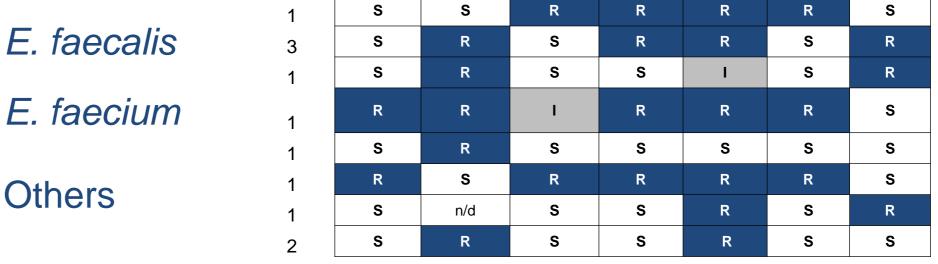
Figure 1 - Colony forming units of total and resistant enterococci in hospital effluent and MWWTP raw and treated wastewater; a-b, significantly different values (p>0,05).

Figure 2 - Percentage of bacteria able to grow in antibioticsupplemented media in the hospital effluent and MWWTP raw and treated wastewater.

General comments


•Strong temporal variations of cultivable counts, mainly in the untreated hospital effluent;

• Enterococci counts, including the ciprofloxacin and vancomycin resistant, were not significantly different in the hospital effluent and in the MWWTP raw inflow;


Nevertheless,

• The mean percentage of antibiotic resistant enterococci was at least three times higher in the hospital effluent than in the raw inflow;

• The prevalence of resistance in the raw and treated wastewater was not significantly different;

2 1 1 3 1 1 1 1 1 5 5 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	S	R	S	I	I	S	S	
	S	R	S	I	I	R	S	
	S	R	R	I	R	S	R	
	S	n/d	R	R	R	S	R	
	S	R	S	R	R	S	R	
	S	I	S	I	I	S	S	
	S	R	R	R	R	R	R	
	S	R	S	R	I	S	R	
	S	R	R	R	R	R	R	
	R	R	I	R	R	S	S	
	S	S	R	R	R	R	R	
	S	S	S	S	S	S	R	
	1	S	S	S	S	S	S	S
	1	S	S	R	R	R	R	S
E. faecalis	3	S	R	S	R	R	S	R
		e	D	e	e	1	6	D

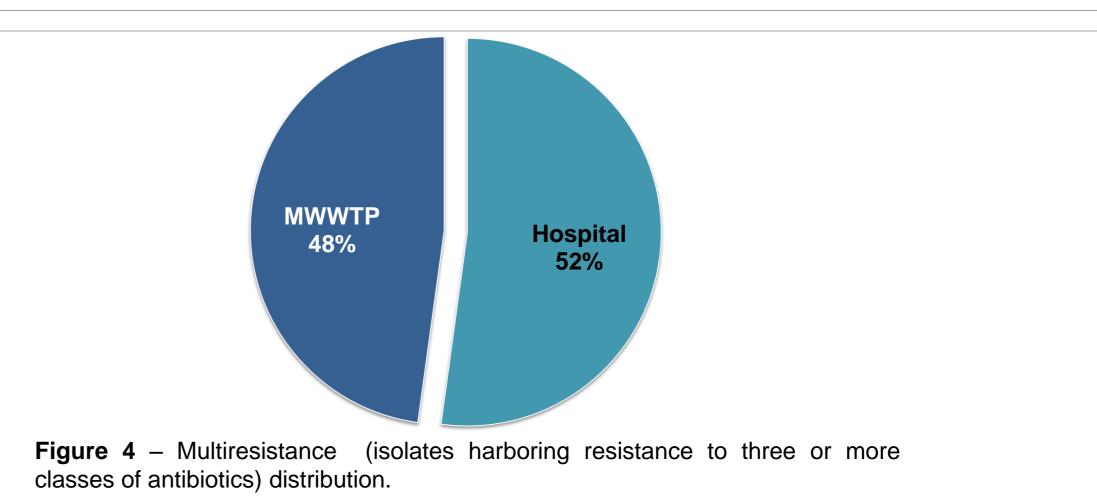


Figure 3 - Antibiotic resistance profiles: blue, resistant; grey, intermediary; white, susceptible.

• The final treated effluent had lower resistance rates than the hospital effluent.

However,

•The vanA gene was found in samples from the three types of water analysed, in 40% of the total isolates.

Acknowledgements

The authors gratefully acknowledge the engineers of the MWWTP and the Hospital for their support for samples collection. This study was financed by FCT, project PTDC/ AAC-AMB/113840/2009 and ARBV Grant SFRH/BD/70986/2010. FCT Fundação para a Ciência e a Tecnologia

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR Portugal