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agro-industrial applications: An overview of current and 
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 Abstract 
 The types and sources of proteolytic enzymes, enzyme assays, strategies for fermentation yield improvement, and novel 
proteases and their applications in industrial sectors are widely covered in this review. We give a special focus on alkaline 
proteases for the textile and detergent industries, as well as for the degradation of keratin-rich wastes.   
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  Introduction 

 Proteolytic enzymes are ubiquitous; they are found 
in all living organisms and are essential for cell 
growth and differentiation. However, only those 
producing substantial amounts of extracellular 
protease(s) have been exploited commercially (Gupta 
et al. 2002b), and microorganisms, especially strains 
of  Bacillus  sp., currently dominate the industrial sec-
tor (Fujinami  &  Fujisawa 2010; Rao et al. 1998). 

 Various isolation methods have been described 
and discussed that enable screening and selection of 
promising organisms for industrial production. In 
addition, there are many possibilities for modifying 
biocatalysts through molecular approaches. For 
instance, improvement using mutagenesis and/or 
recombinant DNA technology has been applied to 
increase the effi ciency of the producer strain. The 
search for microbial sources of novel alkaline pro-
teases using metagenomic approaches has also 
revealed a wide molecular diversity (Gupta et al. 
2002b). These fascinating developments will eventu-
ally allow the biotechnological exploitation of uncul-
tured microorganisms, which far outnumber the 

species accessible by cultivation (regardless of their 
original habitat). 

 To develop effi cient enzyme-based processes 
suitable for industry, prior knowledge of various fer-
mentation parameters, purifi cation strategies and 
properties of the biocatalyst itself are of the utmost 
importance. Furthermore, the assay method, includ-
ing selection of substrate and analytical protocol, 
depends on the intended industrial application. 
While a large array of assays are available in the lit-
erature, with the advent of molecular approaches 
aimed at producing better biocatalysts, less conven-
tional substrates and assay protocols have become 
increasingly important  –  chiefl y those that can be 
conducted at micro/nano-scale (Gupta et al. 2002a). 

 Production of proteases in bioreactors is usually 
mastered by varying the C/N ratio, and the presence 
and level of metabolizable sugars, for example, glu-
cose. Successful scale-up has been achieved using 
fed-batch, continuous and chemostat approaches, 
by extending the stationary phase of the culture 
(Joshi et al. 2008). Conventional purifi cation strate-
gies include concentration by bulk chromatography, 
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or aqueous two-phase systems (solid/liquid via pre-
cipitation, or liquid/liquid via solvent extraction). 

 Keratinases form a unique group of proteolytic 
enzymes that display the ability to degrade the insol-
uble protein, keratin, which is composed of exten-
sively cross-linked structural polypeptides and is 
recalcitrant to most proteases (Gupta  &  Ramnani 
2006). Such enzymes are often produced in the pres-
ence of keratinous substrates, for example, hair, 
feather, wool, nail and horn. They form a class of 
particularly robust enzymes, with wide temperature 
and pH activity ranges; most of them are serine, or 
metallo-proteases. Sequence homologies exhibited 
by keratinases have indicated their relatedness to the 
subtilisin family (Ad ı g ü zel et al. 2009). 

 Keratinases fi nd applications in feather by-
product upgrading, towards feed and fertilizer for-
mulations, in the detergent and leather industries, 
where they serve as speciality enzymes (Gupta  &  
Ramnani 2006), and also in wool and silk clean-
ing. Their enhanced dehairing potential has led to 
development of less polluting hair-saving and 
dehairing technology in the leather industry, as 
well as of personal care products in the cosmetic 
industry.   

 Types and sources of proteolytic enzymes 

 Proteolytic enzymes (or peptidases, a synonymous 
term recommended by NC-IUBMB) constitute a 

class of hydrolases that can hydrolyse peptide 
bonds, thus forming a distinct subclass, EC 3.4. 
Peptidases are further sub-divided into exopepti-
dases (EC 3.4.11 – 19), which act only near the 
termini of polypeptide chains, and endopeptidases 
(EC 3.4.21 – 24 and EC 3.4.99), which act preferen-
tially away from termini (Table I). As a consequence, 
different proteins can be regarded as distinct 
peptidases, even when they express similar activities 
(Rao et al. 1998; Beynon  &  Bond 2001). 

 Recently, a third mode of classifi cation, MEROPS, 
has been proposed, which attempts to group 
peptidases according to structural features and evo-
lutionary relationships underlying those features 
(Rawlings et al. 2010). In the MEROPS system, each 
peptidase is assigned to a family on the basis of sta-
tistically signifi cant similarities in its amino acid 
sequence, and families thought to be homologous 
are, in turn, grouped together in a clan (Rawlings 
et al. 2010). 

 Due to their metabolic and commercial impor-
tance, there is a vast literature on the biochemical 
and biotechnological aspects of peptidases, including 
animal, plant or microbial sources (Anwar  &  
Saleemuddin 1998; Rao et al. 1998; Kumar  &  
Takagi 1999; Niehaus et al. 1999; Demirjian et al. 
2001; Gupta et al. 2002b; Ant ã o  &  Malcata 2005; 
Gupta  &  Ramnani 2006; Dubey et al. 2007; 
Brandelli 2008; Klomklao 2008; Esposito et al. 
2009; Brandelli et al. 2010; Fujinami  &  Fujisawa 

 Table I. EC system of classifi cation of peptidases, according to latest full publication list (Enzyme Nomenclature, 1992) and amended 
by 17 supplements (adapted from www.chem.qmul.ac.uk/iubmb/enzyme, accessed on March 2011). 

 Sub-subclass Type of peptidase Mode of action Number of entries

3.4.11–  19 Exopeptidases Acting only near the ends of polypeptide chains 80
At a free N-terminus  

3.4.11 Aminopeptidases Liberating a single amino acid residue 21
3.4.14  Dipeptidyl-peptidases  Liberating a dipeptide or a tripeptide 9

At a free C-terminus  
3.4.15 Peptidyl-dipeptidases Liberating a dipeptide 4
3.4.16 – 18 Carboxypeptidases Liberating a single amino acid residue
3.4.16 Serine-type carboxypeptidases — 4
 3.4.17 Metallocarboxypeptidases — 20
3.4.18 Cysteine-type carboxypeptidases —  1

Specifi c for dipeptides
 3.4.13 Dipeptidases  — 12

Removing terminal residues that are substituted, 
cyclized or linked by isopeptide bonds

   3.4.19 Omega peptidases —  9

3.4.21–25  �  3.4.99  Endopeptidases Cleaving internal bonds in polypeptide chain  280
3.4.21 Serine endopeptidases — 99
3.4.22 Cysteine endopeptidases   —  58
3.4.23 Aspartic endopeptidases — 40
3.4.24 Metallo endopeptidases  — 81
3.4.25  Threonine endopeptidases  — 2
3.4.99  Endopeptidases of unknown type — 0
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2010). Plants produce many useful peptidases, viz. 
papain (Dubey et al. 2007), bromelain (Benucci 
et al. 2011) and fi cain (Devaraj et al. 2008), with 
applications in medicine and the food industry. 
However, the use of plants as sources of commer-
cially relevant peptidases is typically constrained by 
availability of land for cultivation and suitability of 
weather conditions for growth (Rao et al. 1998). 
Moreover, production of proteases from plants is a 
time-consuming process (Rao et al. 1998). The most 
commonly used peptidases of animal origin are gas-
trointestinal varieties, for example, pepsin, trypsin, 
chymotrypsin and rennin (Klomklao 2008; Esposito 
et al. 2009; Mendes et al. 2009). These peptidases 
are prepared in pure form to large amounts, but 
their production rate is critically dependent on 
the slaughter of livestock, which may be limited by 
political and agricultural policies (Rao et al. 1998). 

 Microorganisms from all three domains of life – 
Eukarya, Bacteria and Archae (Brandelli et al. 2010), 
are a much more favourable source for industrial 
applications owing to their much broader biochemi-
cal diversity, ease of genetic manipulation and ability 
to be cultured on a large scale (Gupta et al. 2002b). 
These microorganisms have been isolated from a 
number of habitats, ranging from Antarctic soils 
(Marshall 1998) to hot springs (Pillai  &  Archana 
2008), and from acidic (Yallop et al. 1997) to 
extremely alkaline environments (Singh et al. 1999; 
Genckal  &  Tari 2006), including both aerobic and 

anaerobic ecosystems. Isolation from harsh environ-
ments can be used to discover peptidases capable of 
withstanding similarly harsh industrial conditions. A 
number of reviews have focused on comparative 
analysis, emphasizing the microbial diversity among 
peptidase producers (Anwar  &  Saleemuddin 1998; 
Kumar  &  Takagi 1999; Niehaus et al. 1999; Gupta 
et al. 2002b; Haki  &  Rakshit 2003; Gupta  &  Ram-
nani 2006; Brandelli 2008; Brandelli et al. 2010). 
Information on the most relevant genera is summa-
rized in Table II, particularly those proteolytic 
enzymes that have emerged as useful in textile and 
agro-industrial processing. 

 A signifi cant fraction of commercially available 
bacterial peptidases is produced by the  Bacillus  
genus (Rao et al. 1998; Gupta et al. 2002b); these 
are predominantly neutral and alkaline. This should 
come as no surprise, since those species are known 
for their wide metabolic versatility including the 
ability to produce highly resistant dormant 
endospores, which has allowed them to survive in 
extreme environments (Alcaraz et al. 2010). In 
particular, several  Bacillus  spp. have recently been 
shown to synthesize highly thermostable and alkaline 
peptidases (Haddar et al. 2009; Cheng et al. 2010; 
Fujinami  &  Fujisawa 2010; Rachadech et al. 2010; 
Shrinivas  &  Naik 2011), which makes them useful 
for textile and agro-industrial applications, e.g. 
detergent additives, leather processing, silk degum-
ming and wool fi nishing, as well as general purpose 

  Table II. Genera reported encompassing microbial species able to produce proteolytic enzymes with potential industrial applications 
(adapted from Demirjian et al. 2001; Breithaupt 2001; Niehaus et al. 1999; Brandelli 2008; Brandelli et al. 2010; Gupta & Ramnani 
2006; Anwar & Saleemuddin 1998; Kumar & Takagi 1999; Gupta et al. 2002; Haki & Rakshit 2003).  

Eukarya Bacteria Archae

 Thermonospora 
   Engyodontium (formerly Tritirachium)   

Gram positive Gram negative  Pyrococcus Staphylothermus 

 Conidiobolus  Bacillus  Vibrio  Thermococcus 
 Aspergillus  Lysobacter  Xanthomonas  Sulfolobus 
 Doratomyces  Nesternokia  Stenotrophomonas  Desulfurococccus 
 Myrothecium  Kocuria  Chryseobacterium  Halobacterium 
 Paecilomyces  Microbacterium  Thermotoga  Pyrobaculum 
 Seopulariopsis  Kurthia  Pseudomonas 
 Thrichoderma  Thermoanaerobacter  Fervidobacterium 
 Thricophyton  Clostridium  Alcaligenes 
 Cephalosporium  Kytococcus  Janthinobacterium 
 Chrysosporium  Nocardiopsis  Halomonas 
 Entomophthora  Streptomyces  Thermus 
 Fusarium  Thermoactinomyces 
 Penicillium  Coprothermobacter 
 Rhizopus  Microbispora 
 Scedosporium  Terrabacter 
 Dendryphiella  Oerskovia 
 Scolebasidium  Arthrobacter 
 Candida 
 Yarrowia 
 Aureobasidium 
 Malbranchea 
 Torula 
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formulations of food and feed. In fact, among alka-
lophiles,  Bacillus  species and their extracellular pep-
tidases have been the focus of several studies because 
of their non-pathogenicity (except for the  Bacillus  
 cereus  species) and ability to secrete peptidases across 
their single membrane system directly into the 
culture medium (Gupta et al. 2002b; Burg 2003; 
Fujinami  &  Fujisawa 2010). Despite the advantages 
of  Bacillus  secretory systems (Westers et al. 2004; 
Ara ú jo et al. 2008; Vavrov á  et al. 2010), their use to 
express heterologous proteins has a number of short-
comings. Their intrinsic cellular control systems for 
removal of misfolded or incompletely synthesized 
proteins can represent a bottleneck for production 
of heterologous proteins to signifi cant levels (Li 
et al. 2004; Zweers et al. 2008). 

 Fungi synthesize a wider variety of proteolytic 
enzymes than do bacteria, including acid, neutral 
and alkaline peptidases (Rao et al. 1998). Even 
though fungal peptidases (mainly keratinases) with 
interesting biochemical properties are produced by 
non-dermathophytic fungi (Brandelli et al. 2010), 
this group has attracted little commercial interest, 
probably because fungal peptidases exhibit low reac-
tion rates and poor heat tolerance when compared 
with their bacterial counterparts (Rao et al. 1998). 

 Keratinases (EC 3.4.21 – 24) constitute a special 
group among peptidases that have the ability to 
degrade insoluble keratin substrates (Gupta  &  
Ramnani 2006; Brandelli 2008). Potential applica-
tions have been claimed with uses in such tradi-
tional industrial sectors as detergent, leather and 
feed, but also in newer fi elds, viz. prion degradation, 
biodegradable plastic manufacture and feather meal 
production (Onifade et al. 1998; Gupta  &  Ramnani 
2006). Thermophilic and alkalophilic microorgan-
isms (mainly Bacteria and Archae, see Table II) 
are thus of great interest for industrial textile and 
agro-processing entailing keratin degradation, espe-
cially because the process is facilitated by high 
temperature and pH (Brandelli et al. 2010). 

 Commercially available peptidases for industrial 
applications are derived primarily from  Bacillus  spp. 
However, there is demand from the industrial side for 
novel proteases, which is not being matched by the 
supply capacity of most enzyme-producing compa-
nies. The vast majority of enzymes available have 
limited stability in extreme environments (pH, tem-
perature and organic solvents), which restrict 
their biotechnological applications (Breithaupt 2001; 
Mansfeld  &  Ulbrich-Hofmann 2007). Current attempts 
to address these limitations will be dealt with below, as 
part of application-oriented research programs. 

 Research strategies of enzyme companies have a 
major focus on the improvement of production yields 
rather than on fi nding new biochemical features in 

biocatalysts. This happens because the isolation of 
novel microbial enzymes is not an easy undertaking. 
Microbiologists estimate that only approx. 10% of 
all microorganisms in a given environment are actu-
ally cultivable (Breithaupt 2001). Several approaches 
have been followed in efforts to fi nd novel enzymatic 
systems, some of which will be discussed in the 
next section.   

 Search for novel systems  –  classical 
and improved approaches 

 New technologies for manipulation, coupled with an 
increased understanding of fundamental biology and 
bioinformatics, have been shaping the discovery, 
purifi cation and application of enzymes (Beilen  &  
Li 2002). The fi rst step is identifi cation of a target 
reaction within an existing industrial process that 
can benefi t from use of enzymes. An ideal biocatalyst 
is suggested and then actively sought, based on exist-
ing reaction constraints. For that purpose, biocata-
lyst screening or engineering (or a combination of 
both) is performed (Figure 1).  

 Biocatalyst screening 

 The genetic diversity of nature is still the major asset 
in terms of proteolytic enzymes to be used in textile 
and agro-industries (Burton et al. 2002). Many hab-
itats warrant comprehensive bioprospecting, espe-
cially the microbial communities established in 
environments with extremes of temperature, salinity, 
pressure and pH (Niehaus et al. 1999; Breithaupt 
2001; Demirjian et al. 2001; Burg 2003). Although 
thermophilic extremophiles have attracted most 
attention, psychrophiles are also interesting sources 
of industrial enzymes because of the ongoing efforts 
to decrease energy consumption worldwide (Burg 
2003). Thermophilic peptidases have found applica-
tion in detergent and controlled hydrolyses of food 
and feed, psychrophilic peptidases as detergent 
additives, halophilic peptidases in peptide synthesis, 
alkalophilic peptidases also in detergent formulation 
and acidophilic peptidases in feed formulation 
(Niehaus et al. 1999; Breithaupt 2001; Burg 2003; 
Fujinami  &  Fujisawa 2010). 

 Despite intensive research efforts to fi nd and 
characterize new microbial sources of enzymes, only 
a small proportion of microbial species is currently 
cultivable, which restricts access to microbial 
genomes and gene products (Burton et al. 2002). 
Modern bioprospecting methods, for example, mul-
tiplex or metagenome cloning, have been increas-
ingly employed to directly access environmental 
genomes, either culturable or not (Burton et al. 
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2002), and constitute an alternative way to screen 
for biodiversity in nature. This demands high-
throughput screening methods for biocatalysts 
(Wahler  &  Reymond 2001), to inexpensively screen 
genomic DNA libraries previously obtained either 
from biosphere sampling (through classical or 
genomic approaches) or from diversity generation 
methods (e.g. error-prone PCR, or gene shuffl ing of 
an existing enzyme gene or gene family). Recent 
developments in high-throughput enzyme assays 
have included analytical instruments for parallel 
screening, thermistor arrays and new fl uorogenic 
and chromogenic substrates, as well as novel applica-
tions of pH indicator methods (Wahler  &  Reymond 
2001). High-throughput screening approaches incur 
a signifi cant cost, but this will reduce as robotics 
become more and more widely available. 

 Directed enzyme evolution techniques (see Figure 
1) have emerged as a tool to generate enzy mes with 
unconventional, improved features and tailored to pro-
duction processes; this has been demonstrated in aca-
demic and industrial settings (Arnold  &  Volkov 1999).   

 Biocatalyst engineering 

 Although search for novel proteolytic enzymes has 
been successful, several methodologies are available 
to improve existing ones (Breithaupt 2001). Enzymes 
found in nature are often not readily available in 

quantities suffi cient for industrial use, so use of 
homo- or heterologous gene expression systems 
to express recombinant proteins is required (Ara ú jo 
et al. 2008). In addition, protein engineering based 
on random or site-directed mutagenesis (Gupta et al. 
2002b) can give relatively rapid and inexpensive 
incremental improvements in selected enzyme fea-
tures, with a reduced risk of losing desirable enzyme 
characteristics along the process (Burton et al. 2002). 
Furthermore, rapid developments in DNA sequenc-
ing will permit the genomes of many more industri-
ally relevant microorganisms to be completely 
resolved in the near future (Beilen  &  Li 2002). 

 Despite the recent development of sophisticated 
molecular engineering and screening technologies, 
the ability to move around sequence space in search 
of the ideal biocatalyst for a given process is still 
limited (Burton et al. 2002). New technologies 
for biocatalyst screening and engineering will out-
compete classical ones, yet the combined use of 
rational protein engineering, directed evolution and 
nature ’ s own biodiversity will be far superior to any 
stand-alone technology (Kirk et al. 2002).    

 Peptidase assays 

 Textile and agro-industrial applications impose 
specifi c restrictions upon the desirable features 
of proteases, including robust, selective and highly 

Classical microbiological
and enzymological screening

New field: extremophiles

Multiplex or
metagenome

screening

Genomic
DNA libraries

Classical mutagenesis
(U.V. or chemical exposure)

Recombinant DNA technology

Nature’s biodiversity

Up-scalling

Commercial production

Gene
expression

Directed evolution

Non recombinant
methods

Recombinant
methods

Construction of libraries

Expression of enzyme variants

Screening for improved variants

Selection of desired
variants by means
of high throughput
screening assays

1GE

2GE

3GE

Iteration

    Figure 1.     Schematic representation of classical and novel  ‘ research-fl ows ’  leading to commercial protease production. 1GE, 2GE and 3GE 
correspond to fi rst, second and third generation enzymes, respectively (adapted from Kirk et al. 2002).  
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active enzymes (Beynon  &  Bond 2001; Gupta et al. 
2002a). Measurement of the products of protein 
hydrolysis or of residual protein itself constitutes the 
basis of any attempt to assay for peptidases (Gupta 
et al. 2002a). Quantifi cation of proteolytic activity 
then depends on the nature of the substrate and the 
sensitivity and precision needed (Beynon  &  Bond 
2001). Both natural and synthetic substrates can be 
used for relevant peptidase assays, but a few con-
straints may apply depending on the nature of the 
enzyme. 

 Natural substrates, viz. gelatin, casein and hemo-
globin, are commonly used in endopeptidase assays, 
but are not routinely used for assaying exopeptidases 
(Beynon  &  Bond 2001). One of the greatest prob-
lems in assaying endopeptidases is indeed appropri-
ate choice of substrate. The use of synthetic substrates 
is generally not recommended, so development of a 
suitable assay is more complex. However, if the 
nature of the enzyme is already suspected (e.g. based 
on bioinformatics) then a natural substrate best 
suited for the assay is usually available, for example, 
casein for caseinase, keratin for keratinase or gelatin 
for gelatinase (Beynon  &  Bond 2001). 

 Several methods have been proposed in the 
literature to assay for peptidase activity; an overview 
of the most relevant qualitative, semi-quantitative 
and quantitative methods in routine use is given in 
Tables III and IV.  

 Qualitative and semi-quantitative methods 

 In academic research on peptidases, qualitative 
methods are commonly employed in initial screen-
ing. Most assays resort to solid-phase matrices on 
which either the enzyme or the substrate are immo-
bilized; this is the case of electrophoresis and plate 
assays (Beynon  &  Bond 2001). 

 Screening procedures based on agar plate assays, 
in which enzymes diffuse into a gel matrix contain-
ing a hydrolysable substrate, have been in use for a 

long time, mainly for detection of extracellular 
proteolytic activity in microorganisms (Frazier  &  
Rupp 1928;  Š afa ř    í k  &   Š afa ř    í kov á  1994). However, 
detection is sometimes diffi cult due to the low con-
trast between un-hydrolyzed and hydrolyzed areas 
on the agar plate. Therefore, overlay of a suitable 
precipitating agent is recommended to improve res-
olution, even though some damage may result upon 
the colonies ( Š afa ř    í k  &   Š afa ř      í kov á  1994; Saran et al. 
2007b). When the aim of a given study is not only 
to fi nd protease producers but also to isolate them 
for  a posteriori  studies, use of a precipitating agent 
may be limited. 

 Many protein substrates have been employed 
in agar plate assays, viz. skimmed milk, casein, cal-
cium caseinate and feathers (Kanekar et al. 2002; 
Queiroga et al. 2007; Tatineni et al. 2008; Zhang 
et al. 2009), but the underlying principle is the same, 
that is, creation of a clearance zone as a result of 
enzyme-mediated substrate hydrolysis (Gupta et al. 
2002a). Several authors have used skimmed milk 
agar to screen for protease producers (Table III); 
one disadvantage is that acid-forming bacteria can 
produce clearance zones on such a medium that are 
not a result of proteolysis (Martley et al. 1970). 
Consequently, the use of distinct protein agar for-
mulations, for example, calcium caseinate agar, has 
been suggested (Queiroga et al. 2007) because 
this allows good visualization of the digestion halos, 
while their opaque regions are acid tolerant. A 
similar solid-phase qualitative (and even semi-
quantitative) method is the radial diffusion assay, 
whereby protease is detected via observation of the 
hydrolysis zone building around small wells cut in 
agar plates containing immobilized substrate (Gupta 
et al. 2002a). 

 Besides radial diffusion and protein agar plate 
assays, zymography is a semi-quantitative solid-phase 
technique that has been extensively used in attempts 
to detect proteolytic activity, owing to its simplicity 
and sensitivity (Quesada et al. 1996). Zymograms 

  Table III. Overview of qualitative and semi-quantitative assays for proteases reported in textile- and agro-industrial-related literature.  

Method Substrate References

Calcium caseinate Queiroga et al. (2007)
Protein agar plate Casein Tatineni et al. (2008)

Feather Mabrouk (2008); Zhang et al. (2009)
Radial diffusion assays Skim milk Mehrotra et al. (1999); Kanekar et al. (2002); Nadeem et al. (2007); Saran et al. 

(2007b); Devi et al. (2008); Tang et al. (2008); Abusham et al. (2009); Fang et al. 
(2009); Mala and Srividya (2010)

Liquid medium Intact feathers Tatineni et al. (2008); Xu et al. (2009); Jaouadi et al. (2010)
Azocasein Reddy at al. (2008a)
Casein Prakash et al. (2005); Tang et al. (2008); Moradian et al. (2009)
Feather meal Riessen and Antranikian (2001)

Zymography Gelatin Prakash et al. (2005); Kim et al. (2007); Tatineni et al. (2008); Chen et al. (2011)
Keratin Kainoor and Naik (2010)
Skim milk Kim et al. (2007)
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allow identifi cation of a protease of interest within a 
complex mixture of enzymes. It is essentially a gel 
electrophoresis method where the substrate is incor-
porated in a gel matrix; protease-containing zones 
will show up as areas where the proteinaceous 
substrate has been depleted from the gel. Several 
proteinaceous substrates have proven adequate for 
zymography, although gelatin and casein are used 
most frequently (see Table III). Proteases that pos-
sess the ability to renature and exert proteolytic 
activity on a copolymerized substrate, upon removal 
of SDS, can be analyzed by this method (Leber  &  
Balkwill 1997). While other qualitative and semi-
quantitative methods are used almost exclusively 
for screening purposes, zymography has been often 
employed when a certain degree of purifi cation had 
been previously attained to rapidly assess the pres-
ence and level of activity of proteases in the purifi ed 
extract.   

 Quantitative methods 

 Methods aimed at quantifying proteolytic activity 
actually measure the extent of proteolysis, and in 
general consist of liquid-phase assays: spectropho-
tometry, fl uorimetry, radiometry, chromatography 
(HPLC), capillary electrophoresis and enzyme-linked 

immunosorbent assays (ELISA) are commonly 
used, with natural or synthetic substrates. Several 
novel assays can be found in the literature, yet 
most research programs still persist in using older 
procedures for assay of proteases (Beynon  &  Bond 
2001). 

 Spectrophotometric techniques are probably the 
most widely accepted methods of assay for prote-
olytic activity, relying on differences in molar absorp-
tivity between substrate(s) and product(s). A range 
of spectrophotometric assay conditions for pepti-
dases of interest to textile and agro-industrial-related 
endeavors is suggested in Table IV. For measuring 
keratinase activity, keratin azure is widely accepted 
as substrate, and the most suited wavelength is 595 
nm (al-Sane et al. 2002; Cai et al. 2008; Mabrouk 
2008; Tatineni et al. 2008; Jaouadi et al. 2009; Syed 
et al. 2009; El í ades et al. 2010).    

 Production of proteases 

 One of the major constraints in the industrial 
application of enzymes (and other metabolites, for 
that matter) from microbial sources is the low 
productivity typical of fermentation processes. To 
enhance the production of proteases, concerted 

  Table IV. Overview of peptidase spectrophotometric assay conditions reported in textile- and agro-industrial-related literature.  

Assay conditions (ranges)

Substrate Temp ( ° C) Wavelength (nm) Time References

Azocasein 25 – 55 340 – 450 6 min – 3 h Manczinger et al. (2003); Moreira et al. (2003); Najafi  et al. (2006); 
Olivera et al. (2006); Thys et al. (2006); Dienes et al. (2007); 
Meza et al. (2007); Chen and Wang (2008); Abusham et al. 
(2009); Infante et al. (2010); Chen et al. (2011)

Azokeratin 37 – 60 440 – 450 15 min – 30 min Riffel et al. (2003a); Xu et al. (2009); Zhang et al. (2009); Chen 
et al. (2011)

Casein 30 – 60 280 – 660 10 min – 1 h Kamal et al. (1995); Garcia-Kirchner et al. (1998); Matta and Punj 
(1998); Mehrotra et al. (1999); Riessen and Antranikian (2001); 
Geok et al. (2003); Banik and Prakash (2004); Gupta et al. 
(2005); Li et al. (2005); Prakash et al. (2005); Rahman et al. 
(2005); Genckal and Tari (2006); Tari et al. (2006); Zhang et al. 
(2006); Anandan et al. (2007); Kim et al. (2007); Nadeem et al. 
(2007); Queiroga et al. (2007); Saran et al. (2007a); Wang et al. 
(2007); Huang et al. (2008); Reddy et al. (2008a); Tang et al. 
(2008); Vonothini et al. (2008); Wang et al. (2008a, b); Jaouadi et al. 
(2009); Moradian et al. (2009); Syed et al. (2009); Zhou et al. 
(2009); Jaouadi et al. (2010); Mala and Srividya (2010); Manni 
et al. (2010); Romsomsa et al. (2010)

Keratin 37 – 75 280 – 660 10 min – 1 h Garcia-Kirchner et al. (1998); Cai and Zheng (2009); Kainoor and 
Naik (2010)

Keratin 
azure

28 – 50 595 30 min – 24 h al-Sane et al. (2002); Cai et al. (2008); Mabrouk (2008); Tatineni 
et al. (2008); Jaouadi et al. (2009); Syed et al. (2009); El í ades 
et al. (2010)

Other 
substrates

37 – 75 245 – 595 15 min – 1 h al-Sane et al. (2002); Manczinger et al. (2003); Riffel et al. (2003a, b); 
Anbu et al. (2005); Najafi  et al. (2006); Anandan et al. (2007); 
Jaouadi et al. (2009, 2010); Vishwanatha et al. (2010)
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efforts have focused on the physiology of the 
microorganisms or on the design of the bioreactors 
and bioprocesses (Burton et al. 2002). The key 
approaches encompass continuous fermentation 
bioprocesses, specifi c medium, innovative bioreactor 
implemen tation and overproduction in mesophilic 
hosts (Schiraldi  &  De Rosa 2002). It is beyond 
the scope of this review to explore in detail the latter 
two approaches, so an emphasis will be placed 
on improvement of bioprocesses and medium 
engineering.  

 Fermentation processes 

 Several commercially available enzymes are rela-
tively inexpensive, but many interesting ones are 
typically too costly for wide application (Beilen  &  Li 
2002). Since reduced production costs can con-
siderably expand the range and intensity of their 
applications as catalysts, efforts have been devoted 
to develop alternative technologies for peptidase 
production, especially solid-state fermentation (SSF) 
(Lazim et al. 2009; Rai et al. 2009; Vishwanatha 
et al. 2010). 

 SSF involves growth of microorganisms on moist 
solid substrate(s), in the absence of free-fl owing 
water (Mukherjee et al. 2008). Peptidases are gener-
ally produced by submerged fermentation (SmF) 
(Gupta et al. 2002a), but the use of SSF brings a 
number of advantages like lower production costs 
(lower water and energy requirements), less waste 
gen eration and increased product stability (Mukher-
jee et al. 2008; Lazim et al. 2009). This type of fer-
mentation is still not broadly implemented on a 
commercial scale, but advances in SSF technology 
are expected.   

 Medium design 

 Peptidase production from bacterial sources is 
usually constitutive or partially inducible (Gupta 
et al. 2002b), and controlled by various complex 
mechanisms that operate during transition between 
exponential growth and stationary phases, thus 
implying a strong dependence on medium ingredi-
ents (Gupta et al. 2002a), especially nitrogen and 
carbon sources. Optimization of the culture medium 
involves a large number of physiological and nutri-
tional parameters, so medium composition needs to 
be determined on a case-by-case basis (Brandelli 
et al. 2010). The presence of easily metabolizable 
sugars and divalent metal ions is crucial, coupled 
with optimal processing parameters, for example, 
pH, temperature, degree of aeration, density of inoc-
ulum and rate of stirring (Kumar  &  Takagi 1999). 

Optimization of processing parameters including 
medium components by changing  ‘ one-variable-at-
a-time ’  are extremely time-consuming and expensive 
when a large number of variables are to be tested 
(Rao et al. 2007). This approach also ignores inter-
actions among parameters, yet it is still frequently 
used in bioprocess engineering (see Table V). This 
approach is useful mainly at the early stages of pro-
cess optimization, when little is known about the 
factors that affect enzyme synthesis yield and rate. 

 The latest decade has witnessed increased use 
of statistical design methods to overcome the afore-
mentioned inability to pinpoint interactions among 
processing parameters (Table V). Such improved 
screening methods include fractional factorial and 
Plackett – Burman designs, which are often used in 
screening for key response factors when more than 
three parameters are involved, and usually assume 
a suitable fractional experimental form to prevent 
an excessively large number of experimental runs 
(Myers  &  Montgomery 2002). 

 Response surface methodologies (RSM) are 
more suitable in the fi nal steps of medium optimiza-
tion. In essence, they are a collection of statistical 
and mathematical optimization techniques, which 
have accordingly experienced extensive applications 
in industry (Myers  &  Montgomery 2002). RSM 
allows experimenters to build polynomial models 
that can approximate the true response function 
within the vicinity of the true optimum (Puri et al. 
2002). A number of selected examples of RSM 
applied for optimization of fermentation media are 
listed also in Table V.   

 Purifi cation of proteases 

 Peptidases generally employed to commercial 
levels in the textile and agro-industries are crude 
extracts (Kumar  &  Takagi 1999), so purifi cation is 
needed to better know the operational features of 
those enzymes. There are no strict rules for purifi ca-
tion of peptidases, but a general scheme for purifi ca-
tion can be outlined: product recovery, isolation 
and purifi cation, and eventual stabilization (Gupta 
et al. 2002a). 

 An ideal process of enzyme recovery involves a 
small number of downstream steps (Burton et al. 
2002). Typically this involves removal of cells, solids 
and colloids from the culture medium, usually by 
fi ltration or centrifugation (Kumar  &  Takagi 1999). 
The large volume of water from which the product 
has to be removed creates the need for concentra-
tion steps, for example, ultrafi ltration, before purifi -
cation (Gupta et al. 2002a). To remove bulk protein 
and prepare the extract for subsequent chroma-
tography, salting out by solid ammonium sulphate, 
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or use solvent extraction using acetone and ethanol 
are often employed (Beynon  &  Bond 2001; Gupta 
et al. 2002a). 

 Following initial fractionation, the peptidase 
is either re-suspended in, or dialyzed against the 
buffer to be used in the next step. To further purify 
the enzyme, a combination of column chromato-
graphy techniques is the usual routine (Gupta et al. 
2002a). Commonly used chromatographic tech-
niques include affi nity chromatography, ion exchange 
chromatography, hydrophobic interaction chroma-
tography, gel fi ltration and FPLC (Kumar  &  Takagi 
1999; Gupta et al. 2002a). Ion exchange chromatog-
raphy typically precedes size exclusion chromatogra-
phy because of the limitation of sample size in the 
latter (Beynon  &  Bond 2001). A few dedicated tech-
niques for proteolytic enzymes, for example, cysteine-
type, trypsin-like and metallo-endopeptidases, have 
been described as well (Beynon  &  Bond 2001), but 
it is crucial to carefully inspect all steps of the puri-
fi cation protocol in order to promptly pinpoint less 
effi cient ones and thus conveniently design strategies 
for improvement.    

 Industrial impact of enzyme technology 

 Enzyme technology is a truly interdisciplinary fi eld 
and widely recognized as an important component 
towards white biotechnology. In agriculture, use of 
biocatalysts as feed additives has positive effects 
upon environment, animal health and metabolic effi -
ciency. For cleaning, enzymes are used as ingredients 
of detergents thus increasing stain removal at com-
petitive prices. Enzymes from extremophiles are 
used in paper and textile applications as well, with a 
positive environmental impact (Beilen  &  Li 2002).  

 Textile processing and agro-industrial applications 

 Textile processing and, more recently, agro-industrial 
processing have benefi ted greatly from the use of 
proteolytic enzymes, in terms of both environmental 
impact and product quality (Kumar  &  Takagi 1999; 
Ara ú jo et al. 2008). Peptidases remain the dominant 
hydrolytic type of enzymes in the industry due to 
their extensive use in detergent and dairy industries 
(Kirk et al. 2002). 

 A number of reviews have discussed the applica-
tions of proteolytic enzymes in these fi elds (Anwar  &  
Saleemuddin 1998; Rao et al. 1998; Horikoshi 1999; 
Kumar  &  Takagi 1999; Gupta et al. 2002b; Kirk et al. 
2002; Haki  &  Rakshit 2003; Maurer 2004; Saeki 
et al. 2007; Ara ú jo et al. 2008; Kumar et al. 2008). 
Recently, some authors have devoted their attention 
specifi cally to the applications of keratinases (Beilen 



164    A. C. Queiroga et al.      

 &  Li 2002; Gupta  &  Ramnani 2006; Brandelli 2008; 
Brandelli et al. 2010), so a brief overview is 
presented below.   

 Protease-based wool fi nishing and hide-dehairing 

 Wool is a complex proteinaceous matrix, the surface 
scales of which account for the distinctive felting and 
shrinking properties upon wet-processing. Since 
consumers prefer machine washability, the market 
value of wool has steadily decreased. Applications of 
enzymes to wool may bring added value since wool 
fi bers consist mainly of proteins and lipids. Proteases 
and lipases are therefore new promising processing 
routes (Queiroga et al. 2007). 

 The potential of proteolytic enzymes has recently 
been assessed with regard to removal of wool 
fi ber scales for improvement of the anti-felting 
behaviour of wool (Montazer  &  Ramin 2010; Raja 
 &  Thilagavathi 2010; Cai et al. 2011). However, an 
enzyme-based industrial process for fi nishing has not 
yet been established. This is mainly due to techno-
logical diffi culties in controlling fi bre damage by 
proteases. Proteolytic enzymes are able to penetrate 
the fi bre cortex due to their small size, thus compro-
mising the inner parts of the wool structure (Ara ú jo 
et al. 2008). Efforts have been made to increase the 
size of the enzyme to reduce penetration, by chemi-
cal cross-linking or attaching synthetic polymers 
(Schroeder et al. 2004, 2006; Silva et al. 2004). 

 Alkaline proteases, and especially keratinases, 
without collagenolytic activity but with mild elas-
tolytic activities, offer the possibility of an effective 
biotreatment of leather, particularly in terms of 
dehairing and bating of skins and hides, as a suitable 
alternative to conventional tannery processes that 
resort to sulfi de (Brandelli et al. 2010). In the tradi-
tional process, hair is gelatinized and converted into 
a pulp, whereas hair remains intact in the enzymatic 
process. Proteolytic enzymes able to meet these 
specifi cations should help break down the keratin 
tissue in the follicle, thereby removing intact hair 
without affecting the tensile strength of the leather 
(Gupta  &  Ramnani 2006). This would result in pro-
duction of higher-quality leather and would also lead 
to improvement in wastewater quality, thus reducing 
pollution. A number of studies have been successful 
in using proteolytic enzymes for leather tanning 
(Riffel et al. 2003b; Macedo et al. 2005; Giongo 
et al. 2007; Jaouadi et al. 2009).   

 Protease-based laundry detergents 

 The use of proteases as detergent additives still rep-
resents the largest single use of industrial enzymes 
(Kirk et al. 2002). Over several years, subtilisins have 

been established as suitable detergent proteases because 
they effi ciently hydrolyse insoluble protein-based stains 
in alkaline thermophilic environments and several 
improvements have resulted from use of various forms 
of enzyme technology (Maurer 2004). Alkaline ther-
mophilic microorganisms are preferred sources of pro-
teolytic enzymes for this purpose, since their 
thermophilic enzymes are claimed to hasten the hydro-
lysis process and diminish the risk of contamination, 
while withstanding harsh washing conditions (e.g. agi-
tation, and presence of surfactants and oxidizing 
agents). However, processes using mesophilic ones are 
less energy-consuming (Brandelli et al. 2010). 

 In the future, the detergent market is expected 
to redirect toward cooler washing steps that will 
decrease the effi ciency of traditional ingredients, so 
enzymes from psychrophilic microorganisms 
may be in demand for detergent formulation (Burg 
2003). Extensive research has been conducted on 
the use of alkaline thermostable proteases; however, 
cold-active enzymes are very poorly studied despite 
the market needs for cold washing processes (Wang 
et al. 2008a; Yang et al. 2010).   

 Protease-based processing of keratin-rich wastes 

 Microbial keratinases have attracted a great deal of 
attention in the past decade, due to their ability to 
improve several industrial processes. When compared 
to other proteolytic enzymes, industrial app lications 
of keratinases are limited, but they have found use in 
processing keratin residues, for example, production 
of feed hydrolysates, feed supplements and nitrogen 
fertilizers (Brandelli et al. 2010). 

 Of particular interest are spent feathers, which 
can be converted to feather meal under high 
temperature and pressure and then used as animal 
feed supplement (Gupta  &  Ramnani 2006). How-
ever, this is an expensive approach and their poor 
digestibility and low nutritional value have suggested 
the use of keratinases to pre-hydrolyze feather into 
a better nutritional ingredient (Onifade et al. 1998). 
The protein-rich hydrolysate generated from poultry 
can be useful in the preparation of nitrogen fertil-
izers or soil amendments (Brandelli 2008), and the 
potential conversion of keratinous wastes into bio-
degradable fi lms and glues, for compostable packag-
ing or edible fi lm applications, has been reported as 
well (Gupta  &  Ramnani 2006).    

 Constraints on large-scale 
application of proteases 

 Despite extensive research, there are still numerous 
gaps in our understanding of proteases in relation to 
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their application to the textile and agro-industries 
(Rao et al. 1998). The stability of proteases remains 
a critical issue; both storage and operational stabili-
ties affect the usefulness of enzymes as processing 
aids (O ’ Fagain 2003). Protein engineering, chemical 
modifi cation and addition of stabilizing compounds 
are the main techniques employed at present for 
enzyme stabilization. 

 Immobilization may lead to enhanced stability 
gains, but it is generally undertaken to prevent loss 
of a biocatalyst or to improve bioreactor operation 
(O ’ Fagain 2003). Prevention of autoproteolytic inac-
tivation, change of substrate specifi city and improve-
ment of yield are important issues to be addressed 
(Rao et al. 1998).   

 Final considerations 

 Many research studies have demonstrated the poten-
tial role of proteolytic enzymes in textile and agro-
industrial applications. Nevertheless, commercial 
applications (and subsequent industrial market 
demand) for such enzymes are still in their infancy, 
chiefl y because of scale-up and downstream process-
ing constraints. Since proteases featuring unique 
physicochemical characteristics already play impor-
tant roles in industry, research toward development 
of more robust proteases, especially keratinases, 
should be encouraged. 
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