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Resumo 

 

A doença de Parkinson é uma condição degenerativa do Sistema Nervoso Central, 

relacionado com a perda de um neurotransmissor, a Dopamina. Os principais sintomas 

presentes são: os tremores nos membros assim como, o maxilar e a face; a instabilidade 

postural e a afectação do equilíbrio e coordenação. Em Portugal a doença de Parkinson afecta 

cerca de vinte mil de pessoas, enquanto na Finlândia são cerca de dez mil pessoas. Estes 

doentes são normalmente sujeitos a medicações que reduzem parte dos sintomas, como o 

caso da Levodopa (L-dopa), e também é comum estes doentes apresentarem problemas na 

marcha. 

Com este estudo é pretendido ver se a técnica Estimulação Magnética Transcraniana 

pode ser um tratamento alternativo para os doentes de Parkinson. Estas pessoas detêm uma 

actividade da banda de frequência Beta superior ao normal, e pretende-se que esta diminua 

após o tratamento. Para tal foram adquiridos dados de electroencefalograma (EEG) de 26 

pacientes previamente divididos em dois grupos, um dos quais receberia a estimulação e o 

outro seria o seu controlo. Este estudo baseia-se num protocolo duplamente cego, onde os 

pacientes foram distribuídos aleatoriamente, e nem os médicos ou técnicos têm conhecimento 

dos grupos. Os doentes de Parkinson seleccionados tinham idades compreendidas entre 40-80 

anos, classificados de acordo com os parâmetros de UK-PD-Brain-Bank-criteria Hoehn –Yahr-

stage (escala: 2-4), eram medicados com 300mg ou mais de Levodopa ou semelhante; e 

apresentavam dificuldades no andar (demorando 6 segundos ou mais a percorrer 10 metros). A 

técnica intermittent Theta Burst Stimulation (iTBS) foi aplicada no Córtex Motor e no Córtex 

Dorsolateral Prefrontal (DLPFC) dos pacientes pertencentes ao grupo experimental. 

Como tratamento dos dados de EEG foi usada a Análise de Componentes 

Independentes, assim como Fast Fourier Transform para o cálculo da Potência no domínio das 

frequências. No entanto a hipótese não foi confirmada, uma vez que os resultados obtidos não 

mostraram as diferenças significativas desejadas entre o grupo controlo e o grupo que sofreu a 

estimulação no que concerne a actividade da frequência Beta. 

  



  



Abstract 

 

Parkinson’s disease (PD) is a degenerative condition of the Central Nervous System, 

that is related with the loss of the neurotransmitter, Dopamine. The main symptoms are: tremors 

especially on limbs, jaw and face; the postural instability and loss of control of coordination and 

balance. In Portugal there are twenty thousand people that suffer from Parkinson’s disease, and 

ten thousand in Finland. Usually these people take medication to reduce the symptoms, such as 

Levodopa (L-dopa) and they also have problems walking. 

The study intended to verify if the technique Transcranial Magnetic Stimulation (TMS) 

may be an alternative treatment for Parkinson's disease patients. These patients have the 

activity of beta band higher than normal, and it is supposed to be lower after treatment. For that, 

electroencephalogram (EEG) data of 26 patients were acquired and divided into two groups: 

one that would receive the stimulation and the other would be its control. The study was 

designed to be a random, double-blind study. The PD patients included 40-80 years old, were 

classified according to UK-PD-Brain-Bank-criteria, Hoehn-Yahr-stage 2 to 4; also, these 

patients were medicated with a total dose of Levodopa or other Dopamine agonist agents of 

equal or more than 300 mg or more revealed problems with walking (taking 6 or more seconds 

to walk a 10 meter distance). Standard tests were performed before and during this study, to 

test walking capacity of patients. The intermittent Theta Burst Stimulation (iTBS) was applied to 

the Motor Cortex and Dorsolateral Prefrontal Cortex (DLPFC) of patients belonging to the 

experimental group. 

While processing the EEG data, the Independent Component Analysis (ICA), as well 

as Fast Fourier Transform (FFT) were used to calculate the band power in the frequency 

domain. However the hypothesis was not fully confirmed, since the results showed no 

significant differences between the sham group and the group that received stimulation as for 

the activity of Beta band was concerned. 
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1.Introduction 

 

Parkinson’s disease (PD) is an abnormal human condition, part of a degenerative state of 

the nervous system. This causes the loss of mobility, difficulties in speech and other symptoms; there 

is not a cure or prevention for this disease. Basically, there is a considerably reduction of the quality of 

life in its patients. In order to fill this need there has been a lot of evolution in the medical field through 

research.  

Many clinical trials published, in the last decades, about Parkinson’s disease since its 

prevalence among different populations. Clinical trials are designed and conducted by medical experts 

and scientists, who request patients to participate in the tests for the new therapy or treatment. This 

study is part of an extensive and more complex clinical trial.  

In this Clinical trial, patients were subjected to a plan of Transcranial Magnetic Stimulation 

(TMS), in order to control and monitor the results; exams were carried out such as, bradikynesia, 

mood, gait and electroencephalogram. In this part of the project, it was explored the collected data 

referring to electroencephalograms, obtained in the different stages of the process. 

 

1.1.Parkinson disease 

 

The Parkinson disease (PD) also known as Paralysis agitans or Shaking palsy, is part of a 

group called motor system disorders. This is a neurodegenerative disorder of the Central Nervous 

System (CNS). It is caused by the loss of Dopamine, a neurotransmitter (Seeley et al., 2003) which is 

a chemical substance produced by neurons, whose aim is to send information to other cells. 

Around the world there are six million people that suffer from Parkinson disease, in Portugal 

around twenty thousand and ten thousand in Finland. The statistics show that this is more common in 

men than in women (Medline Plus – Parkinson’s Disease, 2010). 

PD signs tend to appear around the age of 60, but it can be earlier, with 10% of the cases 

occurring before 50 years-old (European Parkinson’s Disease Association, 2010). The main 

symptoms are tremors of arms, legs, jaw, and face; rigidity of the limbs, slowness of movement 

(bradykinesia), postural instability and impaired balance and coordination. As these symptoms tend to 

evolve, the patients have more difficulty performing basic tasks, such as walking or talking. There are 

other symptoms that do not affect movement like depression and emotional changes, or difficulty in 

swallowing, chewing, speaking, urinary problems or constipation, skin problems and sleep disruptions. 
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There is no specific diagnose for Parkinson’s disease, it usually is made based on medical 

history and neurological examination, however the physician can order some laboratory tests and 

brain scans to rule out other diseases. 

 

1.1.1.Background 

 

To better understand the origin of this disease it is necessary to know the basics of the 

communication between nerve cells. These are responsible to gather information continuously, to 

evaluate and coordinate activities; this is done by impulses that are generated by chemical and 

electric phenomena. The electrical events allow the signal to travel trough a neuron, and the chemical 

allow the transition of the signal to another nerve or muscle cell. The process of interaction between 

neurons, and effector cells is designated by synapse. There are two different types of synapses: 

electrical and chemical. 

The electrical synapse consists in the transfer of an impulse to the next cell. The channels in 

the membrane open directly, so, cause of this current allowing the passage of ions to the cytoplasm 

from one cell to another. The channels consist mostly of small protein tubular structures, called gap 

junctions, which allow free movement of ions from the interior of one cell to the interior of the next. 

This transmission happens in great velocity, and the action potential in the pre-synaptic neuron is 

almost instantaneous (Guyton and Hall, 2000). 

The chemical synapse is the most common in the Central Nervous System of a human 

(Guyton and Hall, 2000). In the chemical synapse the incoming signal is transmitted when an amount 

of neurotransmitter is released into the synaptic cleft by the pre-synaptic neuron, it is detected by the 

second neuron (pos-synaptic neuron) through the activation of receptors (Cardoso, 2001) 

(figure1.1.1.1). The signal only travels in one direction.  
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Figure 1.1.1.1 – Illustration of the interaction of neurotransmitters in the synaptic cleft. 

(Guyton and Hall, 2000) 

 

The pre-synaptic terminal has two important structures, mitochondria and transmitter 

vesicles. The vesicles carry the neurotransmitters with the objective to release them into the synaptic 

cleft, while the mitochondria is the provider of adenosine triphosphate (ATP) – energy supplies to 

synthesizing new transmitters. There are several neurotransmitters in order to facilitate the internal 

communication and signal transmission within the brain. The result is different if the pos-synaptic 

terminal has excitatory receptors or inhibitory receptors. 

When an action potential propagates to the pre-synaptic terminal, depolarization of it 

membrane causes a small number of vesicles to empty into the cleft. The released neurotransmitter 

changes the permeability characteristics of the pos-synaptic neuronal membrane, and becomes 

vulnerable to an excitation or inhibition.  

So far, more than 40 transmitters substances have been discovered, one of the most 

important is Dopamine (Guyton and Hall, 2000). A wrong quantity of Dopamine in the cleft, can disrupt 

the normal balance of neurotransmitters in the synapse, this would interfere with the coordination and 

smoothness of the movement.  

Dopamine is produced in the Substantia Nigra and the effect of this neurotransmitter is 

usually inhibition. (Seeley et al., 2003) The termination of these neurons is mainly in the Striatal 

Region of the Basal Ganglia (Guyton and Hall, 2000). In patients diagnosed with Parkinson’s disease, 

was noticed an asymmetric loss of Dopamine terminals, in the Striatum (WE MOVE - Worldwide 

Education and Awareness for Movement Disorders, 2011). In a study where the objective was to 

model the disease developments, the subjects were young drug addicts in MPTP (1-methyl-4-phenyl-
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1,2,3,6-tetrahydropyradine). This drug destroyed the dopaminergic neurons in the Substantia Nigra 

and caused an early Parkinson disorder (Byrne, 1997). 

 

1.1.2.Treatment 

 

Parkinson’s disease does not have a cure; however there is an effective treatment for the 

symptoms. Unfortunately, no therapy has the capacity to reverse or slow this disease; so far the 

medication subscribed has the purpose of deliver Dopamine to the brain. Usually, patients are given 

Levodopa (L-dopa) combined with carbidopa; this last is used to delay the conversion of Levodopa 

into Dopamine, until it reaches the brain (Seeley et al., 2003). 

This Levodopa treatment is the most effective treatment for the motor symptoms. However, 

this L-dopa treatment doesn’t apply to all patients, and some symptoms do not respond as it suppose 

to. Problems related with balance and tremors may not improve as expected, but the bradykinesia and 

the rigidity react better. Anticholinergics may help control tremor and rigidity (NINDS Parkinson’s 

Disease Information Page, 2011). Also the non-motor symptoms such as depression are very 

common and important targets of the therapy (WE MOVE - Worldwide Education and Awareness for 

Movement Disorders, 2011). 

There are other drugs such as Bromocriptine, Pramipexole and Ropinirole similar to 

Dopamine, and the neurons react to it in the same way; however these are still under investigation 

(Seeley et al., 2003). 

 

Figure 1.1.2.1 – Deep Brain Stimulation schematic figure and Implantable Pulse Generator. 

(WebMD, 2002; Parkinson’s Disease Society of the United Kingdom, 2009) 

 



5 

When the chemical treatment does not improve the patient condition, another therapy can be 

applied, and it is called Deep Brain Stimulation (DBS). In this technique, electrodes are placed in the 

brain and are connected to a small electrical device that generate a pulse, and it can be programmed 

externally. These stimulators last between three to five years, depending on the usage. In Parkinson’s 

disease different places of stimulation have different effects on the symptoms, thalamic stimulation in 

the ventral intermediate nucleus of the thalamus may reduce limb tremor. When the internal segment 

of Globus Pallidus (GPi) is stimulated most of the symptoms are reduced (Perlmutter and Mink, 2006), 

specially the dyskinesias. The subthalamic stimulation usually improves symptoms as tremors, 

slowness of movements and stiffness. These techniques of surgery vary between treatment centers 

some are carried with the patient under general anesthesia and some while the patient is awake. One 

of the three parts of the brain is stimulated with a small electric current and the response is monitored 

when the tremor is reduced, that confirms the correct target area (Parkinson ’s Disease Society of the 

United Kingdom, 2009). 

A wire is applied with the DBS technique; that is connected to a small unit (figure 1.1.2.1) 

named as Implantable Pulse Generator (IPG) which is implanted under the skin near the collarbone. It 

works similar to a pacemaker. The device contains a battery and it generates the electric signal for the 

stimulation. This stimulation is programmed by a clinician; however on a day to day the patient can 

control the stimulation with an “ON-OFF” mechanism, using a magnet. When the stimulation is 

switched “ON”, the electric signals are sent to the brain in order to reduce the PD symptoms 

(Parkinson’s Disease Society of the United Kingdom, 2009). 

DBS can reduce the amount of Levodopa needed, and it is possible to minimize side effects 

caused by this medicine. One of the side effects of Levodopa is the involuntary movements.  
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1.2.Anatomy and Physiology of the Motor Cortex 

 

 

Figure 1.2.1 – Segmentation of the brain, location of the Motor Cortex. Also can be seen the 

Primary Motor Cortex, Premotor Area and Supplementary Area. (Guyton and Hall, 2000) 

 

The Motor Cortex is a portion of the frontal lobe. It is shown in the figure 1.2.1 is divided into 

three areas: Primary Motor Cortex, Premotor Area and the Supplementary Motor Area. A stimuli 

applied in the Premotor Cortex or in the Supplementary Motor Area requires higher levels of current to 

have a movement, and commonly these are more complex movements than a stimulation of Primary 

Motor Cortex (Byrne, 1997). 

 

1.2.1.Primary Motor Cortex (M1) 

 

It is located in the first convolution of the frontal lobes anterior to the Central Sulcus. It begins 

laterally in the Sylvian fissure, spreads superiorly to the uppermost portion of the brain, and then dips 

deep into the longitudinal fissure.  

This area is the one that generates neural impulses that control the execution of movement. 

It does not control individual muscles directly, but appears to control individual movements or 

sequences of movements that require the activity of multiple muscle groups (Byrne, 1997). The 
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signals emitted from M1, travel across the midline of the body and activate the muscles in the opposite 

side. 

The Primary Motor Cortex controls different muscle areas such as face and mouth, arm and 

hands, trunk, feet and leg, dips into the longitudinal fissure, as indicated in the figure 1.2.1. This type 

of mapping was made based on tests performed during surgeries, stimulating the areas through 

electric stimulation (Guyton and Hall, 2000). 

 

1.2.2.Premotor Area 

 

Continuing to observe the image (1.2.1), anterior to the Primary Motor Cortex, extending 

inferiorly into the Sylvian fissure and superiorly into the longitudinal fissure, where it merges with the 

Supplementary Motor Area. This area is involved in the sensory guidance of movement, and controls 

the more proximal muscles and trunk muscles of the body. It performs more complex and task-related 

movement processing than Primary Motor Cortex (Byrne, 1997). 

The nerve signals from the Premotor Area are more complex than the ones generated from 

the Primary Motor Cortex (Guyton and Hall, 2000). 

 

1.2.3.Supplementary Motor Area 

 

This area lies above the Premotor Area, also in front of the Primary Motor Cortex. It is 

involved in the planning of complex movements and coordinates two-handed movements (Posit 

Science Corporation - Brain Connection). 
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1.3.Electroencephalogram (EEG) 

 

 

Figure 1.3.1 – Example of electroencephalogram (EEG), electrooculargram (EOG) and 

electromyogram (EMG) (LaBerge, 2008). 

 

The nervous cells communicate between each other trough electrical signals. These 

impulses fluctuate rhythmically in distinct patterns. These can be register for an 

electroencephalograph, which is an instrument that records brain-waves; it was invented in 1929 by a 

German scientist, Hans Berger. The Electroencephalography records (figure 1.3.1) the voltage 

changes that result from the ionic currents in the neurons. This technique is commonly used in 

research and also in diagnoses since it is a non-invasive process for the patient, and also can detect 

changes in brain electric activity with a good time resolution (figure 1.3.1) (Oostenveld, 2006). 

The recordings are made through the use of electrodes on the patient’s scalp, in special 

cases the electrodes can be subdural or even be in the cortex. The results of the EEG usually are 

bipolar, potential between two electrodes in different positions in scalp; or unipolar, when the potential 

is calculated with a neutral electrode or the average of all the channels. The signal is electrically 

amplified and appears as a graph on paper or in the computer screen.  

 

1.3.1.Electrode Location Systems 

 

In order to uniform the electrodes placement, and standardize reproducibility so that studies 

could be compared in the future, HH Jasper in 1958 created a system designated as 10-20 system or 

also known as International 10-20 system (figure 1.3.1.1). Since then, this has been the standard 
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system used in EEG studies with Event Related-Potentials (ERP). However, the progression to multi-

channels hardware systems and the need of topographic studies with ERP conducted to a need of 

standardize a larger number of channels, which could support between 21 to 74 electrodes. 

 

Figure 1.3.1.1 – Electrodes distribution through the scalp, with percentages. A lateral view 

(A) and a above the head view (B) (Malmivuo and Plonsey, 1995). 

This system is based on the relationship of the electrode location and the area of cerebral 

cortex. The numbers in the designation of the system, refer to the distance between electrodes, that 

are percentages as can be seen in the figure 1.3.1.1. After measuring the perimeter of the patient it is 

calculated 10% or 20% starting the central point in the skull, Cz. There are two anatomical landmarks 

for the placement, the Naison which is the point between the forehead and the nose, and the Inion the 

lowest point of the skull in the back of the head. 

 

Figure 1.3.1.2 – Scalp electrodes distribution (Wikimedia commons, 2010). 
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The electrodes are represented in the scalp map (figure 1.3.1.2), the letters F, T, C, P, A, 

and O stand for frontal, temporal, central, parietal, ear lobe and occipital, respectively (Oostenveld, 

2006). The “z” is to identify the electrodes in the midline, and the “p” means polar. The numbers are 

distributed as even numbers (2, 4, 6, 8) in the right hemisphere and the odd (1, 3, 5, 7) on the left.  

 

Figure 1.3.1.3 – 10-10 electrode system (Malmivuo and Plonsey, 1995). 

 

To add electrodes it is possible to locate them in the free spaces of the scalp map (figure 

1.3.1.3), that is how the others systems appeared, for example the 10-10 system. 

The 10-10 system is basically an alteration of the 10-20 system, but this one takes more 

electrodes using a 10% distance between the electrodes in the scalp, it can take up to 81 electrodes. 

The nomenclature used in this system was standardized by the American Electroencephalographic 

Society (Oostenveld, 2006). 
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1.3.2.EEG signal – Frequency bands 

 

With the EEG signal resulting from the electroencephalograph, it is possible to differentiate 

frequency bands, such as: Alpha (8-13Hz), Beta (13-30Hz), Delta (0,5-4Hz), Theta (4-8Hz), Gamma 

(30-100Hz) and Mu (8-13Hz). (see figure 1.3.2.1) The signal can be described as a rhythmic activity or 

transient activity; in the rhythmic activity the signal is divided into frequency bands, as for the transient 

activity it is divided as spikes and sharp waves. The frequency bands usually represent some type of 

physiologic event, as for the spikes can represent an event such as seizure activity. 

 

Figure 1.3.2.1 - Example of the waveforms for the different bands (Malmivuo and Plonsey, 

1995). 
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Table 1.3.2.1 – Frequency bands characteristics and respective locations. 

Band Frequency (Hz) Location Characteristics 

Delta 0.1-3.5 
Adults: frontal 

Children: posterior 

High amplitude waves, usually more 

present in deep sleep. 

Theta 4-7.5 

Temporal and occipital 

lobes (Van de Graaff, 

2002) 

In sleeping adults and infants. In 

walking adults the theta band seems 

small and no organized 

(Niedermeyer and Silva, 2004). 

Alpha 8-13 

Parietal and occipital 

regions of the head, (Van 

de Graaff, 2002) both 

sides; C3-C4 at rest 

Measure in awaken person with eyes 

closed. Associated with relaxation. 

Beta 14-30 
Both sides, more evident in 

front 

Related with alertness, arousal, 

problem solving, and concentration. 

Also when the person is experiencing 

visual activity. 

Gamma 30-100 Somatosensory cortex 

Related with short term memory 

recognizing objects, sounds and 

sensations. 

Mu 8-13 Sensorimotor cortex Associated with the Motor Cortex. 

 

The frequency range of the Gamma band is still debated and may lie between 30-60Hz. 

The signal can differ according with the activity and level of conscience of the subject. As the 

patient become more active, the EEG signal turns to be higher in frequency and lower in amplitude. If 

he closes his eyes the alpha activity will dominate the signal. Other situations can been observed in 

the EEG, for example when a person is dreaming and has active movement of the eyes, also called 

Rapid Eye Movement (REM). In deep sleep the Delta band turns to be more evident and in cerebral 

death there is no activity in the EEG (Malmivuo and Plonsey, 1995). 

 

1.3.3.Artifacts present in the Electroencephalogram 

 

The EEG artifacts can induce false conclusions if not removed. The contaminations can 

occur in different points during the recording. The technological evolution can improve the affectivity of 

these noise sources in the data, which are usually biological. For example, it will be mention six types 

of artifacts: eye blink, eye movement, 60 or 50 Hz line noise, muscle activity, pulse and 

electrocardiogram. 
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Figure 1.3.3.1 – Eye blink artifact (Knight, 2003). 

 

The artifact known as eye blink is common in EEG (Figure 1.3.3.1), it can be identified by 

having high amplitude that is usually superior to the signal of interest, also present in all electrodes 

even the ones in the back of the head. Frequently are recorded in the electrooculargram (EOG), as a 

pair of electrodes placed around the eye, but these channels cannot be simply subtracted from the 

contaminated ones since the EOG also have brain signals present (Knight, 2003). 

 

 

Figure 1.3.3.2 – Eye movement artifact (Knight, 2003). 

 

Also commonly present in EEG is the eye movement (Figure 1.3.3.2), caused by the 

reorientation of the retinocorneal dipole. The eyeball acts like a dipole with positive and negative 

poles, cornea and retina respectively. As the globe rotates it generates a large amplitude signal 

detectable by electrodes (Benbadis, et al., 2012). The eye blink and movement take place in small 

intervals of time, and with high amplitude (Knight, 2003). 

 

 

Figure 1.3.3.3 – 50 or 60 Hz line noise artifact (Knight, 2003). 
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Another noise type is the one introduced by the A/C power supplies (Figure 1.3.3.3). It 

modifies the data between the scalp electrodes and the recording device. It can be filtered with notch 

filters but for lower frequency line noise and harmonics this is often undesirable. When the noise or the 

harmonics are present, in the same frequency of a band of interest, the use of a notch filter for this 

band can affect negatively the result (Knight, 2003). 

 

 

Figure 1.3.3.4 – Muscle activity artifact (Knight, 2003). 

 

The muscle activity also known as electromyogram (EMG) (Figure 1.3.3.4) provenience from 

facial and neck muscles are one type of noise, since the amplitude and the frequency are higher than 

the signal we desire to acquire. It can affect different sets of electrodes depending on the muscle 

source (Knight, 2003). Generally, the potentials generated are shorter in time, it can be easily identify 

by the duration, morphology and frequency (Benbadis, et al., 2012). 

 

 

Figure 1.3.3.5 – Pulse artifact (Knight, 2003). 

 

Another electric signal that can interfere with the capture of brain signals is the heart beat 

(Figure 1.3.3.5). It occurs when the electrode is positioned near a blood vessel. The movement of 

contraction and expansion introduces voltage into the recording, so it can appear as a sharp or 

smooth wave (Knight, 2003). 
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Figure 1.3.3.6 – ECG artifact. (Virtual Medical Centre
©
, 2002 – 2012) 

 

The last artifact description is the infiltration of Electrocardiogram (ECG), this must be 

removed in order to obtain a better signal quality. This ECG artifact is related to the heart potentials in 

the surface of the scalp. The voltage and its appearance vary according to derivation in use, and also 

montage of electrodes. It is possible to observe this artifact in referential montages using earlobe 

electrodes A1 and A2. ECG can be recognized by its rhythmicity and or regularity, (each sharp wave 

represents a QRS complex) (Benbadis, et al., 2012). 

 

1.4.Transcranial Magnetic Stimulation 

 

In the origin of this technique, is the Transcranial Electric Stimulation (TES), which has 

appeared to activate muscle directly, stimulating the small nerve branches in the muscle through a 

high voltage electric stimulator (Hallett, 2007). This practice was very promissory in many different 

purposes, but the subjects felt pain during the stimulation.  

A few years later, some difficulties were solved and the stimulation of the brain and 

peripheral nerves became possible through a magnetic stimulation (Miniussi et al., 2008) now without 

pain. Transcranial Magnetic Stimulation (TMS) is a noninvasive technique (Lefaucheur and Khedr, 

2007), to stimulate the human brain (Hallett, 2007) usually in the Primary Motor Cortex, on conscious 

subjects and intact scalp (Huang et al., 2005). The Transcranial Magnetic Stimulation can cause 

temporal and focal changes in the cortical activity (Lefaucheur and Khedr, 2007).  
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Figura 1.4.1 – Schematic representation of the field and currents involved in Transcranial 

Magnetic Stimulation. (Braga, 2010) 

 

To better understand how TMS works, observe the figure above (1.4.1), a high electric 

current (yellow line) produced in the wire coil also designated as magnetic coil, induces a magnetic 

field (red) perpendicular to the coil, this one placed originally in a way that is tangential to the scalp. 

This magnetic field can go till 2 Tesla, which is going to cause another perpendicular electric current 

(green) in the brain tissues. The voltage of the field may excite neurons, which occurs with the induced 

currents. 

There are two types of study with TMS; an online study where the subjects are performing a 

task while receiving the Transcranial Magnetic Stimulation, and an offline study, when the patient only 

executes a task after the TMS (Miniussi et al., 2008). 

1.4.1.Single, Paired and Repetitive variants of TMS  

 

There are several variants of Transcranial Magnetic Stimulation: single, paired, and 

repetitive. These produce different effects. 

Single pulse-TMS (s-TMS) is able to discharge through a wire coil a high peak and a really 

quick electric pulse. This means a non-repetitive stimulation. In this technique, the corticospinal 

neurons are activated trans-synaptically through excitatory interneurons (BioMag Laboratory, 2010; 

Cantello et al., 2002). 

Paired pulse-TMS (p-TMS), this method consists in apply two stimuli through the same coil, 

separated by interstimulus intervals (Cantello et al., 2002), the intensities of the stimuli can be different 

(Biomag Laboratory, 2010). 
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Figure 1.4.1.1 – Schematic representation of the different types of rTMS, 1Hz as Low-

frequency TMS, 5Hz as High-frequency TMS, and a patterned example – paired-pulse rTMS. The two 

patterns illustrated have 3 pulses of stimulation at 50Hz, repeated every 200ms. The difference 

between the pattern of iTBS and the basic pattern of TBS (cTBS): the iTBS pattern has a 2 seconds 

train of TBS is repeated every 10 seconds, while cTBS has 20 seconds or more train of an 

uninterrupted TBS. (Huang et al., 2010) 

 

The repetitive TMS (rTMS) as the name suggests is based in a repetitive stimulation to the 

brain, the stimulation trains are an opportunity to interact more effectively with the cortical tissue 

(Miniussi et al., 2008). The rate of repetition is very important to the physiologic effect, this is the 

motive of the parallel classification, according to frequency. If it is below 5 Hz, then it is consider Slow-

rate or Low-frequency TMS, above 5 Hz, it is designated as rapid-rate or High-frequency TMS (Huang 

et al., 2010) (figure 1.4.1.1). Several functional neuroimaging studies observed that during and after 

this stimulation is detected a suppression or an increase of the cerebral blood flow and metabolism in 

the stimulated area, for slow and rapid stimulation, respectively (Kobayashi and Pascual-Leone, 

2003). The slow r-TMS seems to induce a depressing effect in the motor cortical structures, and for 

this reason this is appointed to be a possible treatment for epilepsy syndromes. The repetition factor is 

also one of the main concerns about safety of the subjects, since it is possible to induce seizures 

(Hallet, 2007) even in normal people (Benninger et al., 2009). There are studies where slow rTMS has 

been applied to the Motor Cortex with focal, task-specific dystonia, and it restored normal intracortical 

inhibition and ameliorated function temporarily (Cantello et al., 2002).  

In the rTMS recently appeared another technique, named intermittent Theta-Burst 

Stimulation (iTBS). The basic pattern of Theta burst Stimulation (TBS) consists in a burst of 3 pulses 

of 50Hz magnetic stimulation at 80% of the active motor threshold given at 200ms. iTBS consists in a 
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pattern that can be observed in the figure 1.4.1.1, these patterns can produce opposite effects, but 

more investigations are needed for further conclusions (Huang and Rothwell, 2007). According to the 

investigation so far conducted, it might be more efficient than the conventional rTMS (Benninger et al., 

2009). iTBS can induce larger and longer-lasting changes than rTMS (Huang et al., 2005). 

 

1.4.2.Types of Coil 

 

There are different shapes of coils, this characteristic will influence the pattern of the electric 

field. 

  

Figure 1.4.2.1 – On the left an 8-figured and on the right a circular coil and respective 

magnetic field. (Gershon et al., 2003) 

 

The circular coil represented in figure 1.4.2.1 (left) has the strongest current near the 

circumference, which decreases while approaching the center till reaches zero. Most of these circular 

coils have a good penetration capacity; however the effect on Motor Cortex is generally asymmetric, 

(especially with monophasic pulse waveforms). Motor activation is substantially greater on the side in 

which the coil current flows (from posterior to anterior across the Central Sulcus). The coil is 

commonly placed at the cranial vertex in order to stimulate both hemispheres at the same time 

(Hallett, 2007). The stimulation given through this coil is more intensive and covers a larger area of the 

brain. The most used in clinical and research applications are the circular coils.  
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The eight-figured coil also known as butterfly consists in two round shapes side by side, as it 

can be seen in the figure 1.4.2.1 (right). As the current flows in the same direction at the junction point, 

in this point the induced electric fields are added making this point the maximum. This is the reason 

that this coil has a more focal stimulation (Cantello et al., 2002; Klein et al., 1999), at defined limit 

location. The eight-figured coil is a good compromise between efficiency and focability, but the 

penetration capacity of the induced electric field is limited then the circular coil, since the two side 

loops are usually smaller (Hallett, 2007). 

Another configuration developed is the H form. It is a more specialized type of coil, since it 

was designed to reduce the field at the cortical surface while augmenting it at depth. However, this 

objective wasn’t met, since at equal power the penetration was the same as in the eight-figure coil 

(Hallett, 2007). 

The previous coils are used to apply stimulation, when the patient is marked as a placebo in 

research trials of TMS has led to the development of sham TMS coils. In some research trials, such as 

a double-blind study, where the sham coil and the real coil cannot be distinguished by the operator, 

nor the patient. In order to accomplish this requirement the external appearance, the lead wires, the 

auditory click and mechanical tapping when it fires, as the complex sensations of the scalp muscle 

contraction and electrical paresthesias that are present in real Transcranial Magnetic Stimulation must 

be equal or similar. 

The simplest form of sham stimulation is to tilt the coil on edge, outside the visual perception 

of the subject. However, the angle of the tilt and the type of coil may influence 24% to 72% of the 

resulting field, comparing to the normal positioning of the coil. In this approach it is possible to have 

the auditory click, but the contact sensation is different, and there is the concern that the reaching field 

is higher than the 70% of the stimulation, and can produce biological effects. 

Actually, there are more possibilities such as visually indistinguishable sham coil, which are 

placed in the same position as the normal ones. For example the 8-figured coil can be arranged so 

that the currents are opposite at the coil junction, reducing considerably the induced electric field. 
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2.State of Art 

 

Parkinson's disease (PD) progression is characterized by motor difficulties which usually 

respond less to dopaminergic therapy. The Transcranial Magnetic Stimulation has been showing 

interesting results with Parkinson’s disease. As mentioned before TMS is a recent and very promising 

technique since it is able to influence brain function if delivered repetitively (Hallett, 2007). The TMS 

can speed up the reaction time in PD patients (Gaynor et al., 2008). The same can be mentioned 

regarding the intermittent Theta-Burst Stimulation used in this study, Benninger et al. (2011) while 

studying the safety of iTBS in PD patients found beneficial effects mainly in the mood, however they 

did not notice any change in movement or other measures. This therapeutic potential has never been 

investigated in Parkinson’s disease. 

When the stimulus is delivered on the motor cortical areas it can result in a transient 

inhibition of cortico-motor output (Cunnington et al., 1996). TMS is capable of induce plastic changes 

in the brain, and is often used to evaluate that capacity (Hallett, 2007). If the repetitive Transcranial 

Magnetic Stimulation applied is equal or less than 1Hz, the effect predicted is a suppression of the 

Motor Cortex, while above 20Hz, the cortical excitability seems to be temporarily increased 

(Kobayashi, Pascual-Leone, 2003). This has an important significance since it can help on the cure or 

symptoms control of several diseases such as depression, dystonia, stroke and Parkinson’s disease. 

According to several authors repeated pulses of Transcranial Magnetic Stimulation (rTMS) can 

change the excitability for minutes or even hours of the corticospinal system. (Hallett, 2007; Thut and 

Pascual-Leone, 2010)  

The study from Khedr et al., (2006) concluded that the 25 Hz rTMS can lead to cumulative 

and long-lasting effects on motor performance; however there were two groups of patients, one 

received 25Hz stimulation and another got 10Hz, on early and late stages of PD. They concluded that 

the 10Hz group improved more than the occipital stimulation group but less than the 25 Hz group. This 

results were verified during one month, only with a slightly of efficacy. 

Another study made by Khedr et al. in 2003, used thirty-six unmedicated PD patients divided 

in two groups; one submitted to a real stimulation and the other to a sham rTMS. The technique 

improved several characteristics of movement after the treatments, and the effects lasted one month. 

Other studies showed successful results, as a study taken by Shimamoto et al. in 1999, where eight 

patients with a control group, all unmedicated. The stimulus applied consisted in 0,2 Hz, 30 pulses to 

the right then left cortex, once a week for 9 months, using a circular coil. It was recorded EEG at 3
rd

, 

6
th
 and 9

th
 month. (Cantello et al., 2002) 
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Another interesting study was taken by Tergau et al. in 1999, with seven subjects medicated 

without sham stimulation, using a circular coil stimulated at several frequencies. The patients were 

tested before and after the treatment, but no changes were detected. Similar occurred with Ghabra et 

al. in 1999, also failed having positive results, the eleven subjects were off medication 24hours before 

the treatment, both sham and real stimulation were used, but didn’t showed significant differences. 

(Cantello et al., 2002) 

It can be concluded that the studies involving the Motor Cortex have a highly variability from 

one individual to another, resulting in different outcomes.  

 

2.1.Objectives of the Study 

 

The objective of this study is to corroborate if the Transcranial Magnetic Stimulation is a 

possible alternative treatment for the Parkinson’s disease. As it was mentioned before, it is a very 

promising non-invasive technique, capable of stimulate the Motor Cortex and other brain areas. For 

that it was used intermittent Theta-Burst Stimulation, since it was suggested that a more powerful 

stimulation protocols could enhance efficacy, and would improve gait. A published work (Kuhn et al., 

2008) that had a similar purpose, which was inhibit the connection between the Premotor and the 

Motor Cortex that is abnormal in untreated PD patients. In order to see that, the Power of the Beta 

band should be lower in the channels C3-P3, F3-C3, Fz-Cz, Cz-Pz, this comparing the first EEG 

recording with the pos-treatment recordings, this should also reflect in improvements of the motor 

performance. 
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3.Materials and Methods 

 

In this study EEG recordings were collected from patients that suffer from Parkinson’s 

disease and treated with Intermittent Theta-Burst magnetic stimulation (iTBS). This project started with 

30 patients, of which only 26 actually participated, with their written consent. The subjects had 40-80 

years old; they were picked according with UK-PD-Brain-Bank-criteria, Hoehn-Yahr-stages 2-4 (“off” 

medication); they were included those who have the slowest gait defined as taking more or equal to 6 

seconds walking 10 meters. The exclusion criteria were if any inability or severe freezing detected 

during that walk distance, and/or also daily falls. Other exclusion parameter was medical or psychiatric 

illness, history of epilepsy or seizures, pregnancy or metal devices in the head. Screening included 

EEGs reviewed by epileptologists for pathological activity. 

The patients were under an optimal medication with Levodopa-equivalent-dose (LED) more 

or equal 30 mg, just to remain unchanged during the study.  

The stimulation was given to the Primary Motor (M1) and Dorsolateral Prefrontal Cortex 

(DLPFC) with a circular 90mm-coil, bilaterally. The patients were divided in two groups, one that would 

receive a real stimulation and another that would get a sham treatment, on both groups the stimulator 

was out-of-sight. The real stimulation groups of patients received the treatment from Magstim-Rapid 

stimulator from Whitland, UK; which induced an anterior/posterior – posterior/anterior biphasic current. 

On the other group there was a sham coil, which produced sound but no magnetic field.  

The real and sham iTBS treatments were applied in 8 sessions for 2 successive weeks, one 

session per day during 4 consecutive days each week. It was constituted in bursts of 3 pulses a 80% 

of active motor threshold at 50 Hz repeated at 200msec-intervals for 2 seconds, which were repeated 

20 times every 10 seconds. 

In order to monitor the effects, were recorded EEG data (based in the 10-20 electrode 

system) from the set of patients, resulting in 85 files, 50 of XLtek and 35 from Nihon Kohden 

machines. The XLtek machine produced files with a sampling frequency of 500Hz and amplitude 

measured in mV, while Nihon Kohden files were recorded at 200Hz sample frequency and an 

amplitude in μV. This measure difference was uniformed by a resampling and rescaling the XLtek files 

with a Matlab® code. All patients had a baseline recording (BL) recorded before the beginning of the 

treatment, the second recording (P1) was made after the first stimulation with the objective of check 

the acute effects of iTBS, and the third file (P2) were acquired after all the treatments, to observe the 

chronic effects of the therapy. In this study are present the data from 24 patients, since 2 subjects 

were excluded due to bad quality of the EEG recordings. 

Another type of monitoring was performed on the previous day and after each stimulation, 

according to the study protocol. The tests consists in gait evaluations, similar to inclusion criteria; 
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bradykinesia where it was assess the time it takes to coordinate hand and arm movements; time of 

reaction, depression and quality of life appreciation. 

The study and data files were provided by National Institute of Health (NIH) in the United 

States of America (USA). All use of patient material was approved by the Internal Review Board of 

National Institute of Neurological Disorder and Stroke of National Institutes of Health (decision number 

08N0212). 

 

3.1.Preprocessing data 

 

The preprocessing phase is very important since it can affect the results obtained with the 

Independent Component Analysis (ICA), in the next step. EEGLAB, a computational tool available for 

Matlab
®
, was the open source software chosen for this step.  

Starting with the rejection of artifacts, were used two different methods, manual removal for 

the bigger bursts prominent from muscle noise (EMG), and only if present in all the channels at the 

same time. The EEGLAB allows the user to select a portion of data affected with artifacts and remove 

it, clipping the two pieces of data. 

 

3.2.Independent Component Analysis 

 

Another way to remove artifacts from data is applying Independent Component Analysis 

(ICA) to a multichannel EEG recording, removing several contributions of unwanted sources onto the 

scalp electrodes. Using linear decomposition concepts it assumes that:  

- Spatially stable mixtures of the activities of temporally independent cerebral and 

artifactual sources; 

- The potentials detected by the electrodes must be linear; 

- No time differences, this means the delays from sources are negligible. 

These assumptions are valid for EEG and EMG data. It is also important to have a 

reasonable amount of data. Since ICA uses spatial filters, does not need a reference channel. 

(Delorme and Makeig, 2004) 
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The best example to explain the capacity of Independent Component Analysis is a cocktail 

party, where there are N different people speaking at the same time in a room, and with N 

microphones capturing the sound, assuming that the microphones and the people are in the same 

place during the recording, and that there are no time delays or echoes, ICA can identify the voices 

(figure 3.2.1). 

 

 

Figure 3.2.1 – Schematic figure on the mechanism of ICA (Gosselin, et al., 2010). 

 

Independent Component Analysis (ICA) is a method capable for finding underlying factors or 

components from multivariate statistical data, as it can be observed in figures 3.2.2 to 3.2.4. The 

mechanism of ICA consists in, a piece of original data, from that is computed a linear component 

matrix, that is possible to plots scalp maps to help identify the component sources, that can be 

removed as desired. The result is the most corrected piece of data, without the components artifacted. 
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Figure 3.2.2 – Representation of the ICA decomposition of the signal in components and 

respective scalp plots (Jung and Makeig). 

 

 

Figure 3.2.3 – Representation of the ICA components to be rejected as artifact the result 

artifact corrected EEG (Jung and Makeig). 
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Figure 3.2.4 – Illustration of the mechanism of ICA : original EEG, time course ICA 

components and resulting EEG (Jung and Makeig). 

 

After the preprocessing described above, all the files were computed by this algorithm with 

the objective to remove other forms of artifacts such as EOG, focal EMG, ECG if present, and line 

noise at 60Hz. In order to confirm the efficacy of this step another ICA was run and different 

components could appear and be removed. 

 

3.3.Time Frequency Analysis  

 

In order to make a time frequency analysis it is needed to understand the basis about the 

main tool used, which was the Fast Fourier Transform (FFT). 

The Fast Fourier Transform (FFT) was a tool used during the data processing in this study 

and is a very complex algorithm, it will only be mention the basis. The FFT is a discrete Fourier 

transform (DFT) algorithm, which reduces the number of computations needed (Smith, 1997). The 
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Discrete Fourier Transform (DFT) decomposes a succession of values into components at different 

frequency, with a considerably big data set, it might take some time. The FFT gets the same results 

using other approaches, more efficiently and reducing the computation time.  

On a first step, the Fast Fourier Transformation decomposes an N points time domain signal 

into N time domain signals each composed of a single point. After this, it is calculated the N frequency 

spectra which corresponds to these N time domain signals. Lastly, the N spectra are synthesized into 

a single frequency spectrum (Smith, 1997). 

The FFT algorithm was used to transform the time domain of the EEG recordings to the 

frequency domain. To apply this to the data, were used a Matlab
®
 code, transforming all the channels 

acquired and preprocessed with the functions available in EEGLAB as mentioned before. 

To begin with the analysis the signal were divided in epochs of 10 seconds with a 50% 

overlap. To each epochs were applied a Hann window to eliminate the discontinuities in the pieces of 

signal. The epoched signal was transform into the frequency domain using a FFT, with a frequency 

resolution of 0.1Hz (2048points), in an interval of 0 – 100Hz. After this the mean of all frequency 

epochs were calculated to each channel, resulting in one epoch of mean values. The mean signal was 

divided in frequency bands and the total power computed.  

This process was performed by João Careiras, another student involved in the project. He 

built the Matlab
®
 code capable of the FFT transformation, the frequency bands division and posterior 

average. 

 

3.4.Statistical Methods 

 

Statistical methods were used in order to better interpret the adquired data. All this analysis 

was made in SPSS
®
 version 17.0.  

Regarding the type of data collected, the first statistical analysis used was a Repeated 

Measures ANalysis Of VAriance (ANOVA), which is an extension of the dependent t-test, for non 

independent samples. This test compares three or more group means where the participants are the 

same in each group in other words, i.e. associated samples. It is the proper test for situations when 

the subjects are measured multiple times to see changes to an intervention or when participants are 

subjected to more than one condition/trial and the response to each of these conditions is to be 

compared (Lund Statistics , 2010).  

This type of ANOVA analysis has some requisites such as: all samples must be normality 

distributed, all samples should have equal variances, and Mauchly test to reflect on the sphericity of 



29 

the data. The Repeated Measures ANOVA is especially susceptible to the violation of assumption of 

sphericity. It relates whether there are any differences between population means.  

The null hypothesis (H0) states that the means are equal (equation 1); μ represents the 

mean of population and k represents the number of related groups. The alternative hypothesis (Ha) 

states that the related population means are not equal (equation 2). 

                             (Equation 1) 

                                                       (Equation 2) 

However, the alternative hypotheses for the study represented below (equation 3); this would 

be translated as an unilateral test since it is intended to evaluate a decrease not differences. 

                                                   (Equation 3) 

The first step to use the ANOVA Repeated Measures or other parametric test is to assess 

the normality distribution of all data. To evaluate this was used the Shapiro-Wilk test was used, which 

is the proper test for samples under 50 elements. When p-value is under 0.05 (for a confidence level 

of 95%) there is a rejection of the null hypothesis, which means that the distribution is not normal. In 

this case, the samples must be mathematically transformed and reevaluated. If the transformation 

does not succeed and in turn the data does not follow the Gaussian distribution, then non-parametric 

must be employed. 

Another condition for this analysis is to study the homogeneity of variance also known as 

homoscedasticity, with Levene’s test. However this test is not absolutely indispensable to the analysis 

as Everitt proved in 1996, it was proved that the F test is robust to the violations of homoscedasticity 

when the number of observations in each group is the same or approximately to 1.5. 

Mauchly’s test is one particular requisite of the ANOVA Repeated Measures. It is the formal 

way to evaluate the assumption of sphericity of the data, and is available in the software chosen for 

the analysis. If the Mauchly’s test of Sphericity is statistically significant (p<0.05), it means the null 

hypothesis is rejected and the alternative hypothesis accepted, so the sphericity is violated. In case 

the sphericity of the data is violated according to the Mauchly test, other methods have been 

developed which means that can still proceed by using a correctional adjustment called Greenhouse-

Geisser (Lund Statistics, 2010). Another correction of the sphericity available is known as Huynh-Feldt 

test and it is equivalent to the Greenhouse-Geisser mentioned. Both of them adjust the degrees of 

freedom in the ANOVA test in order to produce a more accurate p-value. In order to use these 

corrections the estimate of epsilon must be checked, this will help to decide if the sphericity is violated 

according to the corrections (Pickering, 2011).  

As it was mentioned before, when the normality tests fail with the mathematical 

transformations, it is required to use non-parametric tests. The non-parametric tests are usually used 
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when the dependent variable is nominal or ordinal but it can also be used with a variable scale. These 

types of test do not require the normal distribution or the homogeneity of variance.  

The Friedman test is homologous to the Repeated Measures ANOVA in the non-parametric 

tests. It is specialized in more than 3 related samples, it analysis the variance according to rank. To 

apply this test it must be guaranteed that: the sampling method is random, the independent sample is 

nominal, and the data distribution for each group has a similar form according to a Box-and-whisker 

graph. 

 

Another analysis is the comparison between the groups, in order to achieve that a t-student 

test was performed between the specific groups on each desired pair of data. The t-student test 

performs a comparison between the means of two independent samples. In this test the null 

hypothesis is bilateral since it is pretended to know if there are any differences between the groups 

and not to know if the total power is higher or lower. One of the most important requisites for this test 

is to be normally distributed. 

The null hypothesis is represented in equation 4, while the alternative hypothesis tests the 

possibility of the means on different groups being different (equation 5). 

                                                  (Equation 4) 

                                                                  (Equation 5) 

In order to evaluate the groups on non-normally distributed samples, it was used the Mann-

Whitney U test, which requisites are: random sampling, independence of the samples, and two 

samples should be similar. 

Another used non-parametric test was Wilcoxon, which is the extension of the t-student test 

for related samples. This was applied when the requirement of normality was not fulfilled; in order to 

use this test the samples must be related. The null hypothesis is that the difference between both 

paired samples is zero. 
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4.Results and Discussion 

 

The objective of this study was to prove if there was a change in the observations post-

stimulations comparing two groups, the real stimulation and the sham group. In the first four figures 

(4.1 to 4.4) the difference between the time stimulations (Baseline, P1 and P2) for the different 

frequency bands can be seen. The channels chosen are F3-C3, C3-P3, Fz-Cz and Cz-Pz, in other 

words the ones near to the Motor Cortex and the vertex of the scalp. 
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Figure 4.1 - Plots of the total power (µV) results from the two types of stimulation, sham (left) and real (right), distributed in baseline (BL), first EEG recording 

(P1) and the second EEG recording (P2), for the channel F3-C3. 
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Figure 4.2 - Plots of the total power (µV) results from the two types of stimulation, sham (left) and real (right), distributed in baseline (BL), first EEG recording 

(P1) and the second EEG recording (P2), for the channel C3-P3. 
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Figure 4.3 - Plots of the total power results (µV) from the two types of stimulation, sham (left) and real (right), distributed in baseline (BL), first EEG recording 

(P1) and the second EEG recording (P2), for the channel Fz-Cz. 
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Figure 4.4 Plots of the total power (µV) results from the two types of stimulation, sham (left) and real (right), distributed in baseline (BL), first EEG recording 

(P1) and the second EEG recording (P2), for the channel Cz-Pz. 
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From the observation of figures (4.1 to 4.4), apparently there are no differences between the 

real stimulation and the sham stimulation. On the first figure regarding the channel (F3-C3), the bars 

P1 and P2 are slightly lower than the Baseline, except for the Gamma band, in real stimulation, as for 

sham stimulation the P1 is higher than the baseline and P2; also the standard deviation bars are 

higher which makes these results less significant. As for the channels C3-P3 the plots are leveled, 

which shows no difference between the control and the treated groups, as no differences are shown 

between the Baseline and the other recordings. Regarding the Fz-Cz channel the BL, P1 and P2 bars 

are leveled for the sham stimulation, however the real stimulation P1 is higher than the baseline, and 

P2 is lower than Baseline and P1. In the last figure, the channel Cz-Pz, the real stimulation, the 

frequency bars appears to be leveled especially on the beta band. 

 

In the trend plots (figures 4.5 to 4.8) it is interesting to observe the evolution of each patient 

on the three EEG recordings. Notice that every line is a patient. The Total Power was calculated and 

distributed for five frequency bands: delta, theta, alpha, low beta and high beta. 

 

 

Figure 4.5 – Here are represented the trends for the sham (red) and the real (blue) 

stimulation to the channel F3-C3. Y- axis: total power (µV). 
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Figure 4.6 - Graphic with EEG total power trends in the channel C3-P3, the red line 

represents the sham and blue line the real stimulation. Y- axis: total power (µV). 

 

 

Figure 4.7 - Representation of the trends in the channel Fz-Cz, in the different frequency 

bands. Real Stimulation in blue and Sham Stimulation in red. Y- axis: total power (µV). 
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Figure 4.8 – Here are represented the trends for the channel Cz-Pz, in both groups sham 

(red) and real (blue) stimulation. Y- axis: total power (µV).  

 

On the trend plots (figures 4.5 – 4.8) it can be seen that only the alpha band has a tendency 

to be steady along the recordings. This can be easily explained, since the subjects had to keep their 

eyes closed during the process, activating the alpha band. As for the Low and High Beta, it would be 

desirable to see in the real stimulation (marked in blue) that P1 and P2 would be below the Baseline 

level; however what can be seen is a leveled blue line, in most of the analyzed channels. However 

these intentions can be more clearly seen in figures 4.9 to 4.12, with the mean of all the patients, 

represented forward. 

 

A statistical analysis was computed.  

Initially, the Shapiro-Wilk test was performed with 5% of significance to verify the normality of 

the samples, which was confirmed after the mathematical transformation. This transformation use was 

a log10(x), which turn the data normally distributed as the ANOVA Repeated Measures require. If that 

did not turned the sample normally distributed it, the non-parametric tests described in the section 3.4 

to evaluate the significance were used. Also the homogeneity of variance was evaluated and 

confirmed for all samples. 

 



39 

 

Figure 4.9 – Mean tendency along time for each frequency, channel F3-C3. Y-axis is the 

total power mean (µV) on the band, and X-axis is the time analysis (BL, P1, P2). 

 

Figure 4.10 – Mean tendency along time for each frequency, channel C3-P3. Y-axis is the 

total power mean (µV) on the band, and X-axis is the time analysis (BL, P1, P2). 
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Figure 4.11 – Mean tendency along time for each frequency, channel Fz-Cz. Y-axis is the 

total power mean (µV) on the band, and X-axis is the time analysis (BL, P1, P2). 

 

Figure 4.12 – Mean tendency along time for each frequency, channel Cz-Pz. Y-axis is the 

total power mean (µV) on the band, and X-axis is the time analysis (BL, P1, P2). 
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The statistical analysis is based in the analysis of the Figures 4.9 - 4.12 and Tables 4.1 – 4.3 

in order to see if the alternative hypothesis has significance to be accepted. The figures help to 

understand how the response to treatment was in both groups of patients for each channel, and the p-

values in the tables to inform if the tendency is significant (α=0.05). 

On the first table (4.1) it can be observed if there are differences between the stimulation and 

the placebo at the same moment. Note the p-values on baseline real versus baseline sham, it would 

be expected that the p-value showed a higher value (>0,05) in order to confirm the null hypothesis. 

This would confirm that the patients tested were not treated at the time, in other words that the two 

samples were similar. On the other comparisons it would be expected to have lower p-values (<0.05) 

which would inform for a fall of the total power in those frequencies.  

All the comparisons showed results that were unexpected; there were no significant 

differences between groups in total power for the other comparisons performed.  

 

Table 4.1 – Comparison of samples between groups of stimulation in homologous samples, 

according to t-student test. 

p-values 

Channel Pairwise Comparisson Delta Theta Alpha 
Low 
Beta 

High 
Beta 

Gamma 

F3 - C3 

Baseline sham vs Baseline real 0,999 0,853 0,801 0,089 0,271 0,891 

P1 sham vs P1 real 0,424 0,664 0,269 0,107 0,394 0,522 

P2 sham vs P2 real 0,164 0,947 0,969 0,088 0,111 0,404 

C3 - P3 

Baseline sham vs Baseline real 0,741 0,837 0,321 0,067 0,122 0,889 

P1 sham vs P1 real 0,245 0,388 0,115 0,105 0,117 0,431 

P2 sham vs P2 real 0,606 0,667 0,859 0,811 0,436 0,370 

Fz-Cz 

Baseline sham vs Baseline real 0,783 0,114 0,288 0,954
a
 0,314 0,114 

P1 sham vs P1 real 0,984 0,941 0,413 0,195 0,502 0,729
a
 

P2 sham vs P2 real 0,176 0,937 0,262 0,789 0,975 0,937 

Cz-Pz 

Baseline sham vs Baseline real 0,449 0,541 0,636 0,790 0,412
a
 0,342

a
 

P1 sham vs P1 real 0,858 0,806 0,650 0,095 0,302 0,539 

P2 sham vs P2 real 0,069 0,124
a
 0,241 0,210

a
 0,105

a
 0,399 

a
 Mann Whitney-U test - non-parametric test. 

 

The following step is to observe the evolution of the treatment in time (Baseline, P1 and P2) 

on each stimulation group (Sham or Real Stimulation), this way it is possible to see if there is any 

decrease of the total power in each frequency band. Most of the p-values are above 0.05 which 

implies the rejection of the alternative hypothesis. It can also be observed some p-values marked in 

pink, which means that the null hypothesis was rejected with a 0.05 significance, reflecting a 

significant cut. 
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Table 4.2 – ANOVA Repeated Measures results and Friedman test, comparisons along time 

(BL, P1, P2) in the same type of Stimulation.  

 
p-values 

Channels Stimulation Delta Theta Alpha 
Low 
Beta 

High 
Beta 

Gamma 

F3-C3 
Sham 0.376 0.474 0.354 0.467 0.469 0.405 

Real 0.420 0.134 0.121 0.104 0.213 0.341 

C3-P3 
Sham 0.168 0.142

b
 0.197 0.373 0.261 0.398 

Real 0.358 0.216 0.198 0.230 0.378 0.349 

Fz-Cz 
Sham 0.122 0.216 0.211 0.184

a
 0.083

 b
 0.428 

Real 0.053 0.040 0.012 0.055
 b
 0.277 0.359

 a
 

Cz-Pz 
Sham 0.193 0.268 0.206 0.038

 a
 0.169

 a
 0.279

 a
 

Real 0.107 0.279
 a
 0.292 0.403

 b
 0.063

 a
 0.390

a
 

a
 Friedman test - non-parametric test. 

b
 indicates the failed the sphericity test and the used of Huynh-Feldt test. 

 

Table 4.3 below is a more detailed analysis in time, where were made comparisons were 

made, Baseline against P1 and P1 against P2, for each channel and stimulation type. It is intended to 

know which stimulation types have a lower total power along time, which is more significant; those are 

marked in pink. It can also be observed that the null hypothesis was rejected mainly in the channel Fz-

Cz for real stimulation, which is a part of the changes expected. 

 

Table 4.3 – Comparison of pairs of analysis time for both types of stimulation at all 

frequencies, through the ANOVA Repeated Measures analysis. 

p-value 

Frequency  Delta Theta Alpha Low Beta High Beta Gamma 

Stimu-
lation 

Channel BL vs 
P1 

P1 vs 
P2 

BL vs 
P1 

P1 vs 
P2 

BL vs 
P1 

P1 vs 
P2 

BL vs 
P1 

P1 vs 
P2 

BL vs 
P1 

P1 vs 
P2 

BL vs 
P1 

P1 vs 
P2 

Sham 
F3-C3 

0.405 0.154 0.287 0.189 0.070 0.490 0.471 0.282 0.483 0.166 0.376 0.282 

Real 0.406 0.123 0.308 0.053 0.483 0.071 0.439 0.145 0.307 0.386 0.127 0.351 

Sham 
C3-P3 

0.175 0.460 0.389 0.486 0.247 0.211 0.475 0.369 0.409 0.469 0.426 0.294 

Real 0.372 0.286 0.238 0.066 0.220 0.051 0.275 0.056 0.460 0.145 0.116 0.340 

Sham 
Fz-Cz 

0.087 0.087 0.429 0.153 0.067 0.195 0.068
a
 0.241 0.089 0.359 0.439 0.321 

Real 0.020 0.413 0.005 0.142 0.034 0.004 0.110 0.013 0.299 0.109 0.292
a
 0.377

a
 

Sham 
Cz-Pz 

0.431 0.152 0.376 0.237 0.086 0.373 0.028 0.347
a
 0.120

a
 0.407

a
 0.154 0.328 

Real 0.376 0.237 0.230 0.068
a
 0.494 0.153 0.463 0.329 0.173

a
 0.068 0.107 0.500

a
 

a
 Wilcoxon test - non-parametric test. 
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After all the analysis it can be seen that the hypothesis proposed was not fully confirmed, 

and the power of the beta bands are not significantly lower as desired, due to large variation of the 

data as seen in the trend plots (figures 4.5-4.8) and the observation of the tables 4.1-4.3. 
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5.Conclusions and Recommendations  

 

In this study made for Parkinson’s disease patients, it was intended to verify a decrease of 

the power of the beta band, when comparing the EEG results from before and after the iTBS 

application. However, this hypothesis by Kuhn et al. (2008) was not confirmed, since the results did 

not show the desired statistically significant difference. 

These results were expected, other tests, such as physical tests and also psychological, 

made to the same set of patients also did not show improvement (Benninger et al., 2011). The gait, 

mood and bradikynesia assessed during the project also showed no significant results. The treatment 

had no effects on bradykinesia, still movements became faster. The mood improved, but this effect 

appeared short-lived and selective since mental and physical well-being remained unchanged. 

(Benninger et al., 2011). The significant changes on the time analysis can be explained as quantitative 

methodology to assess the evolutions of patients. 

A limitation of this study is the fact that the change in the real stimulation group would be in 

the first minutes of the recordings, and the use of recordings with approximately 20 minutes could 

average the effects. However, due to time limitations and EMG infiltrations in the beginning of the 

recordings this path was not possible. 

There were several difficulties along the data treatment, such as the slowness of all the pre-

processing procedure, the amount of EMG contaminations that were present in all the channels (for a 

considerable sum of time) in each recording, and the ICA algorithm was not working as desired, 

sometimes introducing itself spiky noise. Another important detail about ICA is that is crucial to choose 

the right components to reject, since it is possible to eliminate an important part of the signal. The fact 

of using two EEG recorders could have influenced the results, especially as it has happened when the 

same patient had his recording in different machines. 

One of the possible explanations for the fail of the hypothesis besides the poor data quality, 

(which is understandable since the patients have difficulties to relax); might be that the medication 

even if a low dose could mask the effect of the Transcranial Magnetic Stimulation.  

As for future work, it would be positive to continue the investigation with the potentials of the 

iTBS, in Parkinson’s disease. Also it would be interesting to use smaller samples from the EEG 

recordings (BL, P1 and P2), since the result of iTBS can be present in the first minutes of the 

recording. 
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