

Pine Wilt Disease in Europe

September 8th 2011

Searching for resistance genes to the PWN using SSH and High Throughput Screening

Carla Santos
Conceição Egas
Miguel Pinheiro
Marta Vasconcelos

The PWN

Ethiology

- Bursaphelenchus xylophilus
- Vector: Monochamus spp.
- Main symptom: wilting of leaves
- Primary host in Portugal: Pinus pinaster
- Less susceptible species?
 - Pinus pinea

Gene regulation

- Gene induction: hours
- Visible symptoms: days-weeks

What are the molecular players involved in disease response and plant defense?

- Shin et al (2009) Identification of genes upregulated by pinewood nematode inoculation in Japanese red pine. Tree Physiology 29: 411-421
 - SSH -21hai
 - upregulated genes from PWN-inoculated
 Japanese red pine (Pinus densiflora)
 - 33 DEGs and 2778 ESTs
 - pathogenesis-related proteins, pinosylvin synthases and metallothioneins

- M. Nose & S. Shiraishi (2010) Comparison of the gene expression profiles of resistant and non-resistant Japanese black pine inoculated with pine wood nematode using a modified LongSAGE technique. Forest Pathology 41: 143-155
 - 20 818 tags
 - 14 up-regulated (PR 2 and 4, osmotin, lipoxygenase, chalcone synthase) and 9 down-regulated (eukaryotic translation initiation factor, translationally controlled tumor protein, xyloglucan endotransglycosylase)
 - 38 in <u>resistant pine</u> (catalase, dienelactone hydrolase)
 - 25 in <u>non-resistant pine</u> (PR 1, 2, 3, and leucoanthocyanidin dioxygenase).

- N. HAMAMOUCH1, C. LI, P. J. SEO, C. PARK, E.L. DAVIS (2010) Expression of Arabidopsis pathogenesisrelated genes during nematode infection. Molecular Plant Pathology 12: 355-364
 - The expression pattern of pathogenesis-related genes PR-1 to PR-5 was examined in the roots and leaves of Arabidopsis thaliana plants on infection with beet-cyst (Heterodera schachtii) and root-knot (Meloidogyne incognita) nematodes
 - Over-expression of PR-1 reduced infection by both H. schachtii and M. incognita,
 - Over-expression of PR-3 reduced host susceptibility to
 M. incognita but had no effect on H. schachtii parasitism

- Kuroda et al. (July 2011) The expressed genes of Japanese red pine (*Pinus densiflora*) involved in the PWD severity. IUFRO Tree Biotechnology, Brazil
 - Megasort Megabead technology
 - 16 upregulated (transporters, thaumatin like proteins, PR proteins)
 - 13 downregulated

Our goal

1) To utilize **SSH** and **454 Pyrosequencing** to identify genes differentially expressed in *P.pinaster* and *P.pinea*

SSH: 3 hai

454: 24 hai

2) To select a candidate resistance gene for over-expression in *P. pinaster*

Analysis of differentially expressed genes:

> Forward subtraction: P. pinaster+HF

Differentially expressed genes

> Reverse subtraction: P. pinea+HF

> <u>Unsubtracted Tester</u>: *P. pinaster*+HF

> <u>Unsubtracted Driver</u>: *P. pinea*+HF

12 sequences

No homology in BlastN and BlastX searches of NCBI

Reverse Subtraction

33 sequences

5 had hits in BlastN and BlastX searches of NCBI

Similar to putative histones H4 of Picea spp.

- Constituent of chromatin
- Present in the nucleosome
- Undergoes diverse post-translational modifications

Is H4 histone protein expression one of the molecular players involved in the lower susceptibility of *P. pinea* when compared to the more susceptible species *P. pinaster*?

Unsubtracted Tester (*P. pinaster*)

Putative alfa tubulin

Possible cytosolic Fe-S protein

Likely cytochrome oxidase subunit I

Putative thioredoxin

Putative translation elongation factor-1

Likely FMN-dependent alpha-hydroxyacid

Possible phenylalanine ammonia lyase

Non-specific lipid-transfer protein type 1

Hypothetical xyloglucan endotransglycosylase

Genes of (or related to) RNA recognition motif

Unsubtracted Driver (*P. pinea*)

Putative clavata-like receptor

Putative protein belonging to Class-II DAHP synthetase family

Possible s-adenosyl methionine synthetase 2

Likely copper resistance protein

mRNA up-regulated during drought stress

Probable RNA recognition motif

Sm-like protein

Protein similar to one belonging to DUF231 *Arabidopsis* proteins

NifU-like protein

Gene expression confirmation

A) P. pinea Histone B) P. pinaster Unknown C) P. pinaster drought stress D) PAL

SSH: conclusions

- The fact that 58% of the isolated sequences didn't have a significant homology in the NCBI database reveals that publicly available databases have very little information on the *Pinus* spp.genome sequences;
- 40% of the expressed genes were related to defense mechanisms;
- Oxidative stress was found to be a very important defense mechanism triggered by the infection;
- Histone H4 was the differentially expressed gene by P.
 pinea, which might contribute to its apparent resistance to
 the disease;

454 Pyrosequencing

- Main objective: pyrosequencing of transcriptome of P. pinea and P. pinaster infected and non-infected with B. xylophilus
- Strategy: inoculation of 2 year old plants and collecting samples at 24h
- Handling:
 - RNA extraction
 - Synthesis of ds cDNA from RNA
 - Pyrosequencing of cDNA libraries

454 Pyrosequencing

	Region 1	Region 2
	P. pinaster+HF	P. pinaster control
Number reads	650,733	574,456
Total number of bases	268,683,993	235,513,329
Average length	412.9	410

	Region 1	Region 2
	P. pinea+HF	P. pinea control
Number reads	494,604	366,237
Total number of bases	210,489,814	149,298,262
Average length	425.6	407.7

Assembly summary

(Ex: Pinus pinaster + nematode)

	Number
Number of Reads	479,467
Total Bases	153,567,000
Average read length after trimming	320.29
Number of contigs	34,739
Average contig length	587.85
Range of contig length	40-4,856
Number of singletons	1,814
Number of Contigs with 2 reads	8,427
Number of Contigs with >2 reads	24,498

Annotation scheme

GO Annotation

(Ex: *Pinus pinaster* + nematode)

GO cellular component

GO molecular function

structural molecule activity 3.99%

binding 49.25%

sequence-specific DNA binding trainological reservoir activity 0.43% nutrient reservoir activity 0.08% transcription regulator activity 1.01% enzyme regulator activity 1.03% metallochaperone activity 0.01% antioxidant activity 0.95% electron carrier activity 2.60%

catalytic activity 35.64%

GO Annotation

(Ex: Pinus pinaster + nematode)

Website

Logout | Login: (Marta Vasconcelos)

P.pinae(sample MV_04) P.pinae (sample MV_03) P.pinaster (sample MV_02) P.pinaster (sample MV_01) Pinus samples (MV_01, MV_02) Pinus samples (MV_01, MV_03) Pinus samples (MV_02, MV_04) Pinus samples (MV_03, MV_04) Select

Press Ctrl+mouse to choose more than one project simultaneously

Sample Collected:	Transcriptome of Pinus pinaster MV_01/MV_02
Region Collected:	Portugal
Specie:	Pinus pinaster
Description:	(Pinus pinaster + HF)/(Pinus pinaster + H2O). Assembled by gsAssembler 2.30
s multiple sample:	True

Differentially expressed genes

Four main comparisons:

Treatment

Up-regulated genes in P. pinaster HF vs control

Up-regulated genes in control vs *P. pinaster* HF

Up-regulated genes in P. pinaster HF vs P. pinea HF

Function

Up-regulated genes in P. pinea HF vs P. pinaster HF

Function

Up-regulated genes in control vs *P. pinea* HF

Up-regulated genes in Pinea HF vs control

Conclusions Pyrosequencing

Preparing material for genetic transformation

Photos kindly provided by Dra. Célia Miguel, IBET

Future work

- Validation of candidate genes via qRT-PCR
- Cloning of candidate gene
- Genetic transformation of Maritime pine in collaboration with IBET
- Testing transformed material for increased resistance to PWN

Acknowledgments

- Plantech group
- Dr. Manuel Mota and Dr. Pedro Barbosa
- Team IBET
- Team INRB
- AFN-IFAP, Ministry Agricultural Fisheries Rural Development
- Biocant

Thank you for your attention

