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a b s t r a c t

Aerobic granular sludge is extremely promising for the treatment of effluents containing

toxic compounds, and it can economically compete with conventional activated sludge

systems. A laboratory scale granular sequencing batch reactor (SBR) was established and

operated during 444 days for the treatment of an aqueous stream containing a toxic

compound, 2-fluorophenol (2-FP), in successive phases. Initially during ca. 3 months, the

SBR was intermittently fed with 0.22 mM of 2-FP added to an acetate containing medium.

No biodegradation of the target compound was observed. Bioaugmentation with

a specialized bacterial strain able to degrade 2-FP was subsequently performed. The reactor

was thereafter continuously fed with 0.22 and 0.44 mM of 2-FP and with 5.9 mM of acetate

(used as co-substrate), for 15 months. Full degradation of the compound was reached with

a stoichiometric fluoride release. The 2-FP degrading strain was successfully retained by

aerobic granules, as shown through the recovering of the strain from the granular sludge at

the end of the experiment. Overall, the granular SBR has shown to be robust, exhibiting

a high performance after bioaugmentation with the 2-FP degrading strain. This study

corroborates the fact that bioaugmentation is often needed in cases where biodegradation

of highly recalcitrant compounds is targeted.

ª 2011 Elsevier Ltd. All rights reserved.
1. Introduction among themfluorophenols,hasbeenscarcely investigated.They
The use of organofluorine compounds as aerosol propellants,

surfactants, agrochemicals, adhesives, refrigerants, fire retar-

dants, pharmaceuticals, among others, has increased during the

lastcentury (Keyetal., 1997).Theymayhavesignificantbiological

effects as enzyme inhibitors, modifiers of cellecell communica-

tion, disrupting membrane transport and processes for energy

generation. Biodegradation of fluoroaromatic compounds,
9; fax: þ351 22 5090351.
.pt (A.F. Duque), vsbessa
vanloosdrecht@tnw.tudel

ier Ltd. All rights reserved
are usually biodegraded via (halo)catechols (Haggblom, 1992;

Murphy et al., 2009). The conversion of these compounds is

often the rate limiting step and therefore they easily accumulate

in reactors (Carvalho et al., 2006a; Fava et al., 1995). Micro-

pollutants need to be removed efficiently from wastewater to

protect receivingwaterbodies fromtheir ecotoxicological effects.

The removal of (halo)aromatics fromwastewaters using biolog-

ical technologies has been shown before (Buitron et al., 2005;
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Carvalho et al., 2006b; Osuna et al., 2008). As these pollutants

occur inwastewatersdiscontinuouslyandat lowconcentrations,

maintenance of a good population of (halo)aromatics degraders

in bioreactors is highly desirable.

Bioreactor systems with high biomass retention are

extremely promising for the treatment of wastewaters con-

taining toxic compounds. The granular sludge SBR is such

a reactor type. The granular sludge SBR is a relative novel

design, which has especially gained interest after the recent

observation that under aerobic conditions biomass can be

grown in granules similar to anaerobic granular sludge reac-

tors (Beun et al., 1999, 2000, 2002; Morgenroth et al., 1997).

Aerobic granular sludge presents several advantages over

activated sludge, such as excellent settling properties, high

biomass retention and biosorption, ability to deal with high

organic loading rates and to perform simultaneously diverse

biological processes, such as COD, N and P removal (De Bruin

et al., 2004; De Kreuk et al., 2005; Xu et al., 2004). Aerobic

granular sludge can economically compete with the conven-

tional activated sludge systems. Recently, Carucci et al. (2010)

compared a granular sludge sequencing batch reactor (GSBR)

with a conventional sequencing batch reactor and

a membrane bioreactor for the treatment of 4-chlorophenol.

They reported the GSBR as themost suitable technology when

the critical parameters are low land requirement, system

simplicity/flexibility and short start up times. Furthermore, it

has been reported in literature that aerobic granular sludge

can successfully degrade and deal with the presence of phenol

and chlorinated compounds, suggesting that the granular

structure protects the microorganisms against toxicity

(Carucci et al., 2008, 2009, 2010; Jiang et al., 2002; Tay et al.,

2005a, b; Wang et al., 2007). Nevertheless, if unacclimated

sludge is not able to readily degrade a toxic or a poorly

degradable compound, bioaugmentation with specialized

strains can be an option, a strategy that is lately gaining more

interest (Quan et al., 2003; Rittmann and Whiteman, 1994; Yu

and Mohn, 2001). There are two main problems associated

with the augmentation of a bioreactor: (i) as toxic and/or

recalcitrant (micro)pollutants may appear intermittently and/

or may be present at very low concentrations, loss of

degrading capacity by the specialized strain may occur, due to

the absence of the selective pressure (ii) the presence of

protozoa can affect the success of the bioaugmentation, as the

added culture can be grazed by these microorganisms.

Nevertheless, Quan et al. (2003) has shown the success of

bioaugmenting a flocculated sludge SBR with an immobilized

mixed culture able to biodegrade 2,4-dichlorophenol.

The main aim of this study was to investigate the robust-

ness and performance of a laboratory scale SBR with aerobic

granular sludge toward shock loadings of 2-FP, using acetate

as the growth substrate, before and after bioaugmentation

with a specialized strain able to degrade this compound.
2. Material and methods

2.1. SBR set up and operation

A 2.5 L SBR with 110 cm height and an internal diameter of

6.5 cm was established. The experimental set up is
schematically shown in Fig. 1. The system was operated in

cycles using an automatic timer (Siemens Logo! 230RC) to start

and stop pumps for influent, aeration (4 Lmin�1; superficial air

velocity of 84.8 m h�1) and effluent withdrawal. The operating

conditions tested in the SBR are described in Table 1. Dis-

solved oxygen (DO) and pH were measured online. DO was

measured as percentage of the oxygen saturation concentra-

tion. The oxygen saturation level was monitored, but not

controlled during the cycle. The pH was maintained at

7.0 � 0.8 by dosing 1 M NaOH or 1 M HCl.

The reactorwas operated in successive cycles of 3 h (during

phases I and II), consisting of 60 min influent feeding (which

was introduced in the bottom of the reactor), 112 min aera-

tion, 3 min settling and 5 min effluent withdrawal. During

phases III and IV, the aeration periodwas increased to 652min

in the 12 h cycle and then decreased to 412min in the 8 h cycle

(phase V) and, afterward, to 172min in the 4 h cycle (phases VI

and VII), so that the cycle length would not represent a limi-

tation for all bioconversion processes (Table 1). In each cycle,

about 40% of the reactor liquid was withdrawn. The settling

time was chosen such that only particles with a settling

velocity larger than 6 m h�1 were effectively retained in the

reactor. The reactor was operated at a sludge retention time

(SRT) of 30 days.

Aerobic granular sludge (500 ml wet granules) was

collected from a pilot plant treating sewage, in the Nether-

lands. This biological phosphate removing sludge was used as

inoculum for the start up of the reactor.

2.1.1. Bioaugmentation with Rhodococcus sp. strain FP1
For bioaugmentation of the SBR, a bacterial strain able to

degrade 2-FP, named as Rhodococcus sp. strain FP1, previously

isolated in our laboratories, was used (HM210775) (unpub-

lished). FP1 pure cultures were grown in sealed flasks con-

taining a mineral salts liquid medium (Caldeira et al., 1999)

and 2-FP at a concentration of 50 mg L�1. The cultures were

incubated on an orbital shaker (100 rpm) at 25 �C. The optical

density at 600 nm (OD600) was followed to monitor growth.

The reactor was inoculated with 1.25 L of an FP1 pure culture

with an OD600 of 0.8.

2.2. Media

The composition of the SBR influent media was as described

by De Kreuk et al. (2005). During shock loadings, 2.38 mM

(phases II, III and VII) and 4.76 mM (phases IVeVI) of 2-FP was

added to the influent medium. From each media, 89 ml per

cycle were dosed together with 772 ml of tap water.

2.3. Analysis

The DO concentration in the reactor wasmeasuredwith a DO-

sensor (InPro 6820, Mettler-Toledo) and the pHwasmonitored

using a pH-electrode (InPro 3030, Mettler-Toledo).

Chemical oxygen demand (COD) was determined accord-

ing to Standard Method 5220 (APHA, 1998).

The concentration of fluoride ions in supernatants was

measured with an ion-selective combination electrode (model

CH-8902, Mettler-Toledo GmbH, Urdorf, Switzerland), which

was calibrated with NaF (0.01e5mM) inmineral salts medium

http://dx.doi.org/10.1016/j.watres.2011.10.033
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Fig. 1 e Schematic representation of the SBR.
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(SBR influent medium without the carbon sources). Biomass

was previously removed from culture samples by centrifuga-

tion at 7000 rpm for 10 min. The ionic strength of the stan-

dards and of the samples was adjusted with a buffer solution,

named total ionic strength adjustment solution (TISAB). The

composition of the TISAB solution was NaCl 1 M, CH3COOH

0.25 M, NaCH3COO 0.75 M and sodium citrate 0.002 M.

2-FP was analyzed by high performance liquid chroma-

tography (HPLC), on a System Gold 126 (Beckman Coulter,

Fullerton, USA) with a LiChroCART 25-4 LiChrospher 100 RP-

18 reversed-phase column, 5 mm particle size (Merck,

Darmstadt, Germany). The samples were filtered through

a 0.45 mm filter prior to HPLC analysis. The mobile phase

consisted of 50% (v/v) acetonitrile and water and was used

with a flow rate of 0.8 ml min�1. The run time was 10 min

(elution time about 5.1 min) and the volume injected was

20 ml. The compound was detected at 220 nm using a diode

array detector.
2.4. Analysis of the presence of Rhodococcus sp. strain
FP1 in the SBR

2.4.1. Bacterial isolation and DNA extraction
In order to obtain a representative sample of the population

present in the SBR, a sample of aerobic granular sludge was

taken from the reactor during the aeration phase. The gran-

ules were then crushed using a sterile potter and pestle. Serial

dilutions in saline solution (0.85% w/v NaCl) were made and

0.1 ml of each dilution was spread onto nutrient agar (NA)

(LABM, UK). Plates were incubated at 25 �C for 3 days. Based on

size, morphology and pigmentation, different bacterial colo-

nies were isolated from NA plates using the streak-plate

procedure. Genomic DNA from each isolate was extracted by

picking a colony with a sterile loop, suspending the cells in

200 mL sterile ultrapure water and incubating the suspension

for 15min at 95 �C. Sampleswere then kept in ice for 7min and

vortexed. Subsequently, samples were centrifuged at

http://dx.doi.org/10.1016/j.watres.2011.10.033
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Table 1 e Operating conditions tested in the SBR.

Phase Length of
operation (days)

Days
of operation

Cycle
time (h)

Inlet carbon sources
concentrations (mM)

HRTa (h) OLRb (kg m�3 d�1)

Acetate 2-FP Acetate 2-FP

I 0e99 99 3 5.9 0 7.9 1.06 e

IIc 100e209 109 3 5.9 0.22 7.9 1.06 0.075

Bioaugmentation with Rhodococcus sp. strain FP1

III 210e222 12 12 5.9 0.22 31.6 0.26 0.019

IV 223e229 6 12 5.9 0.44 31.6 0.26 0.037

V 230e266 36 8 5.9 0.44 21.1 0.40 0.056

VI 267e400 133 4 5.9 0.44 10.5 0.79 0.112

VII 401e444 43 4 5.9 0.22 10.5 0.79 0.056

a HRT e hydraulic residence time.

b OLR e organic loading rate.

c Organic shock loadings with 2-FP applied 1 cycle/2 days.
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14,000 rpm for 5 min and the supernatant was transferred to

a new sterile microtube. DNA was stored at �20 �C.

2.4.2. DNA sequencing analysis
Isolates were subsequently identified by 16S rRNA sequencing

analysis. The amplification was carried out with the universal

primers f27 and r1492 (Lane, 1991) under standard polymerase

chain reaction (PCR) conditions (Rainey et al., 1996), with Taq

polymerase from Promega (Madison, WI). The amplified

fragments were sequenced by Macrogen Inc. (Seoul, Republic

of Korea). To determine the phylogenetic affiliation, similarity

analysis was performed using the BLAST program (Altschul

et al., 1997).

2.5. Fluoride adsorption tests performed on granular
sludge

In order to estimate the amount of fluoride adsorbed to the

aerobic granules, 20 ml of aerobic granular sludge was taken

from the bioreactor at the end of a cycle fed with 2-FP and was

added to 500 ml flasks containing 180 ml of SBR medium

without 2-FP. The flasks were incubated in an orbital shaker at

25 �C, 150 rpm. Samples for fluoride analysis were taken

periodically during 1 month.
3. Results and discussion

3.1. SBR performance

A SBR was operated in order to assess its performance when

treating a synthetic wastewater containing 2-FP. Several

operating scenarios, divided in 7 different phases, were tested

(Table 1).

3.1.1. Before bioaugmentation
The reactor was inoculated with aerobic granular sludge ob-

tained from a pilot SBR operating in the Netherlands and was

operated without oxygen control, which led to dissolved

oxygen concentrations during the aeration phase close to

saturation. At the SBR start-up the granules were smooth,

with a regular shape and dark (Fig. 2a). After 2e3 months of
operation (phase I) the granules became denser and with

irregular shape (Fig. 2b and c) and after 6 months (phase II)

they were larger and with “cauliflower” shape (Fig. 2d). At the

end of the experiment (after 1.5 year, phase VII), the granules

became very dense and small, looking like sand (Fig. 2e). Tay

et al. (2005b) reported that the compact structure of the

granules protects them against toxic compounds, minimizing

sludge wash out, which could well explain the evolution

observed here for the granule morphology.

The overall performance of the SBR after 2-FP feeding is

shown in Fig. 3. During phase I (99 days), acetatewas fed as the

sole carbon and energy source with the objective of achieving

stable granules. In phase II, the SBR was exposed to inter-

mittent organic feeding with 0.22 mM of 2-FP (1 cycle/2 days)

with an HRT of 7.9 h, in order to evaluate the capacity of the

endogenous granule population to biodegrade 2-FP. By oper-

ating the SBR at a volume exchange ratio of 40%, the 2-FP

concentration inside the bioreactor was diluted to a concen-

tration of 0.09 mM. These intermittent 2-FP organic shocks

were applied along a period of 109 days. As it can be observed

from Fig. 3, 2-FP was not degraded during phase II, with no

fluoride release observed and with 2-FP being detected at the

outlet, indicating that there was no acclimatization of the

biomass to the toxic compound. It has been described in the

literature that acetate-fed aerobic granules can easily degrade

other recalcitrant compounds (Tay et al., 2005a). This was

clearly not observed in this work for 2-FP. Nancharaiah et al.

(2008) studied the bioaugmentation of aerobic microbial

granules with Pseudomonas putida carrying the TOL plasmid

and observed that granules grown in acetate may need long

adaptation periods before they can metabolize recalcitrant

compounds. Furthermore, they suggested that bio-

augmentation could be a rapid and efficient way to provide

aerobic granules with the adequate catabolic genes, thus

reducing the start-up time. Consequently, in the present

study, the SBR was bioaugmented with a bacterial strain able

to degrade 2-FP, indicated as Rhodococcus sp. strain FP1,

previously isolated in our laboratories (unpublished). As it is

known from the literature that the start-up time decreases

with the increase in inoculum size (Quan et al., 2003), a 50%

augmentation with a pure culture of Rhodococcus sp. strain FP1

cells was performed.

http://dx.doi.org/10.1016/j.watres.2011.10.033
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Fig. 2 e Morphology of the granules at the start-up of the SBR and during reactor operation. Granules used as inoculum for

the start-up of the SBR (a); granules appearance after: 2 months operation (b); 3 months operation (c); 6 months operation (d)

and 18 months operation (e). The size of the bar is 0.5 mm.
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3.1.2. After bioaugmentation
Bioaugmentation was performed using strain FP1 which is

able to completelymineralize 2-FPwith stoichiometric release

of fluoride ion in suspension cultures supplied with 0.44 mM

of the compound (unpublished). This strain is able to degrade

2-FP up to concentrations of 4 mM. When the bio-

augmentation was carried out, the SBR cycle time was

changed to 12 h and the settling time was increased to 20 min

(particles with a settling velocity larger than 0.9 m h�1 are

retained in the reactor). The settling time was then gradually

decreased back to 3 min (particles with a settling velocity

larger than 6 m h�1 are retained in the reactor) during the first
Fig. 3 e Biodegradation of 2-FP in the SBR before and after bioa

concentration measured after the 60 min feeding (3), 2-FP outlet

(B) and organic load based on acetate COD (L) are indicated.
3 months after augmentation. This strategy was chosen to

prevent loss of Rhodococcus sp. strain FP1, as its settling

velocity was much lower than that of the aerobic granular

sludge present in the reactor, and also to promote its attach-

ment to the granules. There are two main advantages in the

attachment and integration of the strain into the granules,

which are avoidance of wash out of the strain from the

system, resultant from the retention of the microorganism

within the granules, and providing higher protection from

protozoan grazing (Nancharaiah et al., 2008).

In phase III the SBR was continuously fed with 0.22 mM of

2-FP and 5.9 mM of the co-substrate, acetate. The 2-FP
ugmentation with Rhodococcus sp. strain FP1. 2-FP inlet

concentration (-), 2-FP degraded based on fluoride release

http://dx.doi.org/10.1016/j.watres.2011.10.033
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Table 2e Summary of the performance of the SBR for 2-FP
degradation.

Phase 2-FP mass balance (mmol)

2-FP fed 2-FP in the outlet 2-FP degradeda

I e e e

II 4.13 4.27 0.028

Bioaugmentation with Rhodococcus sp. strain FP1

III 1.53 0.08 1.64

IV 2.11 0.05 1.80

V 8.40 1.15 6.54

VI 17.90 0.18 18.07

VII 1.31 0 2.14

Total from phase III to VII

31.25 1.46 30.19

a 2-FP degraded based on fluoride release.
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concentration was then increased to 0.44 mM in phases IV to

VI. The results showed that 2-FP was completely degraded,

suggesting that bioaugmentation was successfully achieved

(Fig. 3, Table 2). During 2-FP degradation no intermediate

metabolites, such as catechols and/or fluorocatechols, were

detected in the samples. In some sampling days, such as in

days 237 (phase V), 246 (phase V) and 336 (phase VI), the

fluoride release obtained in the outlet of the SBR was higher

than expected. This was most probably due to the adsorption

of fluoride to the granules structure, which was then

released to the effluent. The adsorption of fluoride to the

aerobic granular sludge was studied in parallel with the SBR

experiment and the results showed that granular sludge

adsorb ca. 0.6 mmol F�/Lgranules (data not shown). In some

effluent samples, a small accumulation of 2-FP was observed

(ca. 0.02 mM of 2-FP). However, in the beginning of phase V,

2-FP presence in the effluent of the SBR was more significant,

which was most probably due to the decrease of the SBR

cycle time from 12 h to 8 h. This leads to a higher loading rate

of 2-FP.

The 2-FP biodegradation profile observed in phase IV

showed that this compoundwas degraded after 8 h and, based

on this result, in phase V the SBR cycle time was reduced to

8 h. Subsequently, it was observed that, during phase V, the 2-

FPwas completely consumedwithin 4 h (Fig. 4a), leading again

to a change of the cycle time to 4 h (Fig. 4b). The main differ-

ence between phases VI and VII is the 2-FP concentration fed

to the SBR (0.44 mM and 0.22 mM, respectively) (Table 1). The

2-FP conversion profile observed in phases VI and VII shows,

respectively, that 0.44 mM of 2-FP are consumed within a 4 h

period, with stoichiometric fluoride release after 4 h, and that

0.22 mM of 2-FP is consumed in just 2 h, with stoichiometric

fluoride release after 3 h, suggesting that in phase VII the cycle

time could have been further improved to a 3 h cycle.

The SBR bedvolume was measured along the different

phases of bioreactor operation (Fig. 5). The results showed

that immediately after bioaugmentation (phase III), the bed-

volume of the SBR increased, suggesting that Rhodococcus sp.

strain FP1 was attaching to the granules. From phase IV, a step

decrease in the bedvolume was observed, being more signifi-

cant between phases VI and VII. This was due to the total

length of reactor operation, which was 444 days, after which
the granules became very small, like sand, but still very dense

and with extraordinary settling properties (Fig. 2e).
3.2. Analysis of the presence of Rhodococcus sp. strain
FP1 in the SBR

In order to follow the success of bioaugmentation, here

defined as the capacity of the SBR to retain the degrading

strain, aerobic granular sludge was crushed and plated in NA,

close to the end of the experiment. After 3 days of incubation,

different bacteria were isolated and the isolates were char-

acterized through 16S rRNA gene analysis. According to Blast

http://dx.doi.org/10.1016/j.watres.2011.10.033
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results Rhodococcus sp. strain FP1 was recovered from the

reactor. This strongly indicates the success of the bio-

augmentation, suggesting that granular sludge is capable to

incorporate and retain specialized degraders. Furthermore,

this indicates that strain FP1 probably had a key role on 2-FP

degradation. Previous studies have shown unsuccessful flocs

bioaugmentation with labeled strains, indicating grazing by

protozoa and cell wash out as the main reasons (Eberl et al.,

1997; Van Veen et al., 1997), which did not happen in our

study. Containment of bioaugmented strains within GAC

biofilm reactors has been proven successful (Carvalho et al.,

2006b; Emanuelsson et al., 2008), but in granule technology

there is no physical immobilization material and, thus, we

could speculate that containment of the degrading strains

would have been more difficult. This further corroborates the

robustness of the granular technology for application in the

treatment of wastewaters.
4. Conclusions

This study showed that it is possible to biologically remove

toxic compounds, like 2-FP used in this study, from waste-

waters using granular sludge SBRs. The main conclusions

drawn from this work are:

� The aerobic granular sludge used to inoculate the SBR was

not able to degrade the 2-FP fed to the reactor;

� Bioaugmentationwith strain FP1 was successfully achieved,

as complete biodegradation of 2-FP was reached;

� Strain FP1 was successfully recovered from the aerobic

granules after 444 days of SBR operation, suggesting that

granular sludge can integrate specialized degraders;

� Granular SBRs are very promising for the treatment of

wastewaters containing toxic compounds as granulation

may help retaining inoculated specialized degrading strains;

� This study clearly reinforces the need for bioaugmentation

in cases where biodegradation of highly recalcitrant

compounds is targeted.
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