Breeding cut roses for better keeping quality: *first steps*

D. Fanourakis¹, D.R.A Carvalho², V. Gitonga³, A.W. van Heusden³, D.P.F. Almeida², E. Heuvelink¹, <u>Susana M.P. Carvalho^{1,2}</u>

¹ Wageningen University – Plant Sciences Department, Horticultural Supply Chains group (The Netherlands)
 ² Portuguese Catholic University – College of Biotechnology (Portugal)
 ³ Wageningen University – Plant Sciences Department, Laboratory of Plant Breeding (The Netherlands)

Introduction

- Production of <u>high keeping quality</u> plants is of utmost importance:
 - Increased competition in the ornamental horticultural sector
 - Key factor for consumers' satisfaction
- <u>Water stress</u> is the major post-harvest quality problem \Rightarrow shorter vase life

End of vase (at flower auction):

- 52% water stress
 - Bent-neck
 - Leaf and flower wilting
 - Leaf drying
- 33% Botrytis

• 15% natural senescence (source: Van Meeteren, pers. comm)

WAGENINGEN UNIVERSITY PLANT SCIENCES Horticultural Production Chains (HPC)

Objectives

Contribute to fasten the selection criteria and procedures for breeding for cultivars with longer vase life (better control of water loss)

- Screen a segregating tretraploid (K5) rose population for stomatal responses to leaf desiccation
- Analyse the variation existing in the gene pool for:
 - stomatal responses to leaf desiccation
 - cuticular transpiration
- Vase-life evaluation

M&M: Cut rose population screening (Expt. 1)

- 110 genotypes & 2 parents
 - Population created for studing resistence to powdery mildew
 - Shows segregation for many morphological traits
- Greenhouse cultivation

Response to leaf desiccation

- n = 12 terminal leaflets per genotype
- Detached and re-hydrated during 1 hr in light
- Desiccation in test room (RH: 50±3 %, T: 21°C, 50 µmol m⁻² s⁻¹)
- RWC after 4 hours desiccation

M&M: Cut rose population screening – cont.

$$RWC = \frac{\text{Fresh Weig ht} - \text{Dry Weight}}{\text{Saturated Fresh Weig ht} - \text{Dry Weight}} *100$$

Expt.1: Population screening

Large genotypic variation in response to leaf desiccation
 RWC 4h desiccation ranged 7-62% (parents: 20, 51% RWC)

Expt.2: Variation in the stomatal responsiveness (SR)

- Representative genotypes from each group (12 & 2 parents)
- Leaf desiccation (n = 12 per genotype)
- Transpiration rate <u>during</u> 4 hours (gravimetrically)

Variation in the stomatal responsiveness (SR) – cont.

- Initial transpiration rate (10min) is only slightly related to stomatal responsiveness
- Final transpiration rate (4h) is an irrelevant trait, since it corresponds to very different leaf hydration levels (RWC)

Variation in the stomatal responsiveness (SR) – cont.

 Speed of stomatal closure is strongly related to stomatal responsiveness (RWC stabilization high > moderate > low)

 Degree of stomatal closure at certain leaf hydration level (RWC) is strongly related to stomatal responsiveness (high > moderate > low)

Expt. 3 – Variation in the cuticular transpiration

8 genotypes (4+4) & 2 parents
n = 12 per genotype

Hypostomatous leaves

 Sealing lower leaf surface with wax and polyethylene sheet
 Desiccation in test room (RH: 50±3 %, T: 21°C, 2,5 µmol m⁻² s⁻¹)

Cuticular permeability (G): no screening value

Similar range of G in contrasting genotypes
Cuticular contribution to total water loss is minimal

Expt. 3 – Vase-life evaluation

6 genotypes (3+3)

n = 8 stems/genotype (normalized length & leaf area)

Harvest at stage 2 (VBN, 2001)

Standard solution (0.7mM CaCl₂, 1.5mM NaHCO₃, 5µM CuSO₄)
RH: 50 %, T: 20°C, 10-12 µmol m⁻²s⁻¹ (12h/d)
End of vase life according to VBN criteria (2001)

Importance of stomatal responsiveness on vase life

Low stomatal responsiveness (SR)

- Shorter vase-life (8 days \pm 0.5 / 15 days \pm 3.1)
- limited by the high water loss rates

WAGENINGEN UNIVERSITY PLANT SCIENCES Horticultural Production Chains (HPC)

Stomatal responsiveness & Flower opening

Low stomatal responsiveness
 hampered flower opening (end vase life without reaching stage 5)

Conclusions

- Large variation present in the gene pool for stomatal responsiveness → many possibilities for breeding for better control of water loss
- Key traits: speed & degree of stomatal closure (i.e. stomatal physiology)
 Cuticular permeability is not a relevant trait

Conclusions

RWC after 4h of leaf desiccation proved to be a <u>quick and relible screening method</u> suitable for large-scale screening of rose genotypes for stomatal responses to water stress

 Genotypes with lower RWC at 4h desiccation (i.e. lower stomatal responsiveness):

- Shorter vase life
- flower opening is hampered

Muito obrigada!!!

Thank you for your attention!

Why relative water content (RWC) after 4h desiccation?

Previous work has shown that RWC is a good indicator of the control of water loss

