Spectrophotometric assay in a MSFIA system using a liquid waveguide capillary cell: application to zinc and copper determination in natural waters

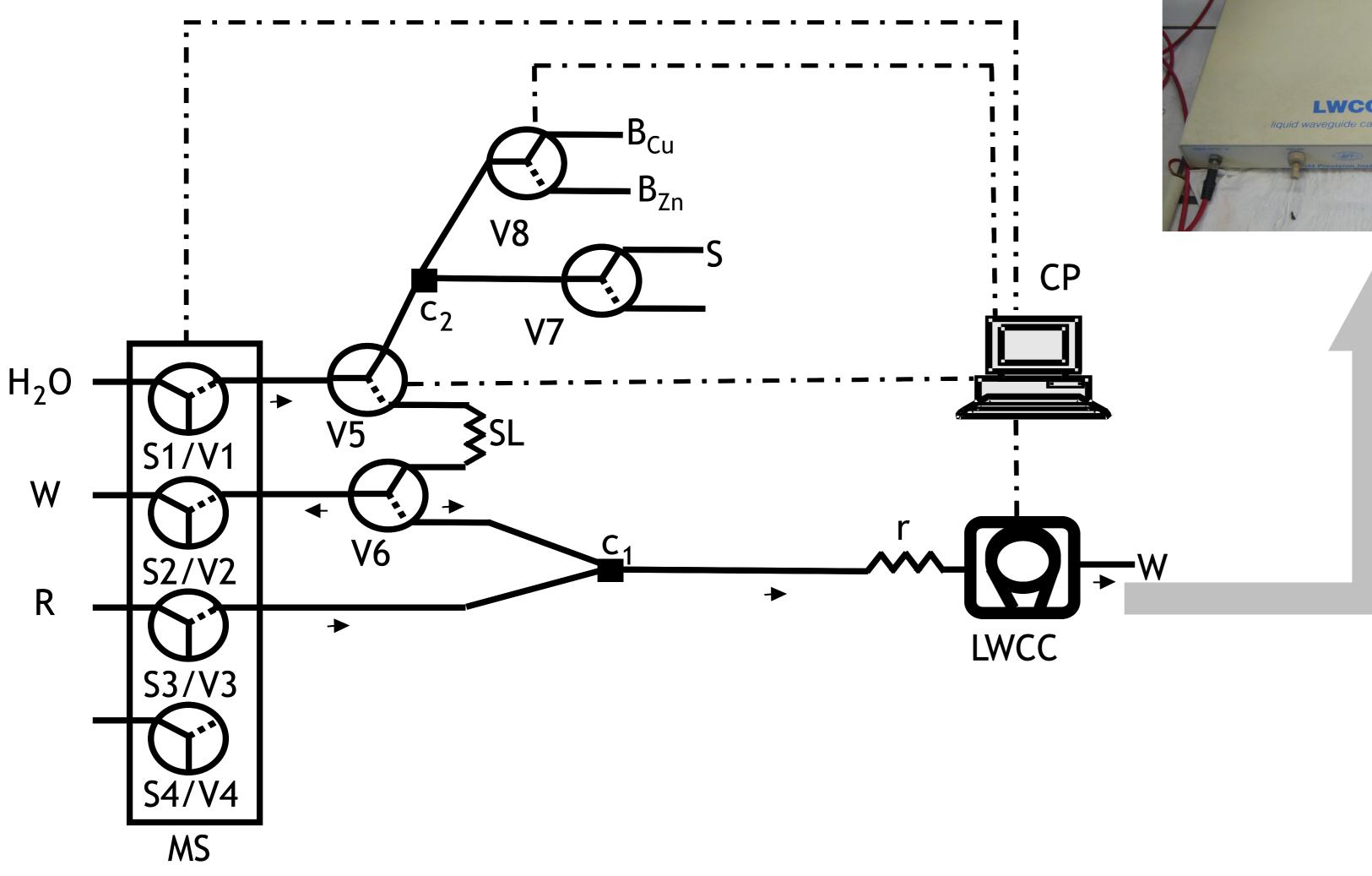
Ricardo N.M.J. Páscoa¹, Ildikó V. Tóth² and António O. S. S. Rangel¹ ¹ CBQF/Escola Superior de Biotecnologia, Universidade Católica Portuguesa Rua Dr. António Bernardino de Almeida, 4200-072 Porto, PORTUGAL ² REQUIMTE/Serviço de Química-Física, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha, 164, 4050-047 Porto, PORTUGAL

Introduction

Zinc and copper ions are essential for normal physiological processes of living organisms. Both are involved in various biochemical processes and are essential for the functioning of some enzymes. Therefore, it is crucial to develop simple, robust and low cost methods to accurately determine their concentration in water samples.

Most of flow analysis systems for the determination of zinc and copper use spectrophotometric detection (simple, fast, robust). In natural waters, they are present at very low concentrations and to avoid the use of a more complex

CATOLICA UNIVERSEDADE CATÓLICA PORTUGUESA PORTO


Interference studies

	Сор	per	Zin	Zinc			
Specie tested	Concentration (µg L ⁻¹)	Relative deviation (%)	Concentration (µg L ⁻¹)	Relative deviation (%)			
Iron	40	200	+3.6				
Aluminium	2000	-4.9	200	+4.9			
Cadmiun	20000	+4.8	40	+5.1			
Manganese	200	+4.8	20	+3.3			
Lead	20000	+5.1	1000	+5.4			
* using a stand	dard solution of 20 µg	g L ⁻¹ of copper or	zinc				
		ires of merit	s of merit				
			Coppe	r Zinc			
D	etection limit (ppb	0.1	2				
Q	uantification limit	0.8	4				
V	Orking range (ppb	Up to 10	00 Up to 100				
D	etermination rate	43	43				
	Reagent consum	say)					
1-	Zi	ncon	0.01	0.01			
	Sc	odium hydroxid	e	35			
9// PRIMA 2012/2012	Pc	tassium chlori	de	7			
T.	Bo	oric acid		18			
	So	dium acetate	140				
	Waste produ	ced (mL/assay)	3.75	3.75			

experimental set-up, a liquid waveguide capillary cell (1.0 m pathlength, 550 µm i.d. and 250 µL internal volume) was applied to increase the sensitivity of the spectrophotometric detection mode. The determination of zinc and copper is based on the colorimetric reaction with zincon at different pH values. For flow manipulation/programming a multi-syringe flow injection analysis (MSFIA) was applied.

The detection limits for copper and zinc were 0.1 and 2 µg L⁻¹, respectively. The system provided a linear response up to 100 µg L⁻¹ with a throughput of 43 h⁻¹, and low reagents consumption and effluent production. The developed work was applied to natural waters and the accuracy was assessed using three certified reference water samples.

Manifold



Figure 1. Multi-syringe flow injection analysis manifold for the determination of zinc and copper in waters. Si: syringes, Vi: solenoid valves; SL: sample loop (400 µL); r: reaction coil (200 cm); ci: confluences; LWCC: detector (100 cm of optical path); CP: computer; W: waste; S: sample or standard; B_{Cu} : Copper buffer solution; B_{Zn} : Zinc buffer solution; R: color reagent (zincon, 620 nm).

E	Protocol s	equence	
Step	Piston movement	Position of syringes and solenoid valves	Flow rate Description
		S1 S2 S3 V5 V6 V7 V8 (mL)	(mL/min)

* - assessed from three times the standard deviation from blank signal (n=10)

Application to water samples

			Recovery (%)						
Analyte	Sample number –	Concentration added							
		4 μg L ⁻¹	10 µg L-1	20 μg L ⁻¹					
	1	102 ± 6	96 ± 4	103 ± 6					
Zinc	2	96 ± 6	93 ± 2	104 ± 6					
	3	94 ± 7	107 ± 9	104 ± 3					
	4	104 ± 4	107 ± 5	105 ± 1					
Copper	1	97 ± 2	100 ± 2	102 ± 1					
	2	102 ± 1	102 ± 1	103 ± 1					
	3	102 ± 3	99 ± 1	104 ± 1					
	4	99 ± 5	95 ± 3	94 ± 1					

1 - well water; 2 - Spring water; 3 - Groundwater; 4 - Seawater; n=5;

NIST-SRM 1640

1	Pick up	0	1	0	1	1	1	1ª/ 0 ^b	1.4	5	Aspirate sample and buffer solution
2	Dispense	1	0	1	0	0	0	0	0.5 C 0.25 R	1.5 C 0.75 R	Propel carrier and color reagent to the detector
3	Dispense	1	0	0	0	0	0	0	2.0	4	Propel the mixture to the detecor and signal registration

Note: 0 - off; 1 - on; The volume and the flow rate are presented with respect to syringe 1. Syringe 1 and 2 have 5 mL of capacity and syringe 3 and 4 have 2.5 mL of capacity; C - carrier; R - color reagent; a - copper buffer solution; b - zinc buffer solution;

Acknowledgements: Ricardo Páscoa acknowledges financial support from FCT through the grants SFRH/BD/30621/2006. The authors also thank to FCT financial support through project PTDC/AMB/64441/2006. **FCT** Fundação para a Ciência e a Tecnologia

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR Portugal Financiamento de Fundos Estruturais e de Fundos Nacionais do MCES

PORTUGUESA

UNIÃO EUROPEIA Fundo Social Europeu

	Certified water samples							
	Copper	(µg L ⁻¹)	Zinc (µg L ⁻¹)					
Sample	MSFIA- LWCC	Certifed value ^d	MSFIA- LWCC	Certifed value ^d				
ERM-CA021a	2028 ±50 ^a	1975 ±54	669 ±231 ^a	514 ±9 ^a				

67 ±6^b

53.2 ±1.1

8.2 ±0.2^c 22.8 ±2.8^c **NWRI-TM-24.2** 7.3 ±0.1 20 ±0.5

87 ±2^b

^a standard deviation (n=20), dilution 50 times; ^b standard deviation (n=10), dilution 5 times; ^c standard deviation (n=10), no dilution; ^d mean and associated uncertainty

85.2 ±1.2