Heat Treatment Effects on Physical-chemical and Microbiological Quality of Whole Tomato (Lycopersicum esculentum L.) Fruit during Storage

Joaquina Pinheiro1*, Carla Alegria2, Marta Abreu2, Isabel Fernandes2, Elsa M. Gonçalves2, Cristina L.M. Silva1 1 Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal ² Departamento de Tecnologia das Indústrias Alimentares, Instituto Nacional de Engenharia, Tecnologia e Inovação, Lisboa, Portugal * joaquina.pinheiro@mail2.ineti.pt

significant

colou

on

OBJECTIVE

Heat treatment (HT – 42 °C/30 min) effects on quality attributes of whole tomatoes (untreated and heat treated), at two ripening stages (turning and pink), during storage at 7 °C, 85% RH for 14 days.

INTRODUCTION

Tomato is a typical climacteric fruit characterized by a rapid softening, change in colour and fungal development, once the ripening process is initiated. These quality changes can be a limitation for the product shelf-life and commercialization.

Recently, studies on postharvest treatments, namely HT, applied on different whole fruits and vegetables demonstrated a decay control and a positive effect on the ripening process^(1,2,3).

MATERIALS & METHODS

Fig. 3 - TA-HDi Texture Analyser pH & soluble solids content (SSC, 6 replicates) Peroxidase⁽⁴⁾ & pectinmethylesterase activity⁽⁵⁾ (POD & PME, Abs.min.ml⁻¹, 6 replicates) Moulds and yeasts⁽⁶⁾ (Log₁₀ CFU.g⁻¹, 3 replicates).

Data Analysis:

✓ Analysis of variance (Statistic v.7.0) - significant differences after HT and during storage between turning and pink tomatoes were detected with Scheffé test (significant at p < 0.05).

Table 1 - Initials values of quality attributes of untreated turning and pink tomatoes (mean ± standard deviation)

	Ripening Stage	Ľ	a*	b*	MF (N)	SSC (°Brix)	рН	POD	PME	Moulds & Yeas
								(Abs.min.ml ⁻¹)	(Abs.min.ml ⁻¹)	(Lo ₁₀ CFU.g ⁻¹
	Turning	48.07 ± 2.25	-9.57 ± 1.18	22.90 ± 3.34	10.15 ± 1.77	3.98 ± 0.53	4.29 ± 0.04	5.45 ± 0.95	1.87 ± 0.19	3.02 ± 0.69
	Pink	48.64 ± 2.95	1.81 ± 0.36	21.99 ± 3.31	8.38 ± 1.84	4.05 ± 0.14	4.29 ± 0.03	2.56 ± 0.15	2.53 ± 0.34	3.02 ± 0.69

References

1 - Ali, Md.S., Nakano, K. & Maezawa, S. (2004). Combined effect of heat treatment and modified atmosphere packaging on the color development of cherry tomato Research note. Postharvest Biology and Technology, 34 (1): 113-116.

2 - Fallik, E. (2004). Review - Prestorage hot water treatments (immersion, rinsing and brushing). Postharvest Biology and Technology, 32(1): 125-134. 3 - Polenta, G., Lucangeli, C., Budde, C., González, C.B. & Murray, R. (2006). Heat and anaerobic treatments affected physiological and biochemical parameters in tomato fruits. LWT-Food Science and Technologies, 39 (1): 27-34

4 - Yahia, E.M., Soto-Zamora, G., Brecht, J.K. & Gardea, A. (2007). Postharvest hot air treatment effects on the antioxidant system in stored mature-green tomatoes Postharvest Biology and Technology, 44 (2): 107-15.

5 - Hagerman, A.E. & Austin, P.J. (1986). Continuous spectrophotometric assay for plant pectin methylesterase. Journal Agricultural and Food Chemistry, 34(3): 440-

6 - NP 3277 (1987) - Contagem de bolores e leveduras. Instituto Português da Qualidade

FCT Acknowledgements The author Joaquina Pinheiro would like to thank Fundação para a Ciência e a Tecnologia (PhD grant SFRH/BD/24913/2005).

Fig. 4 – Photographs of untreated and HT tomatoes at ripening stage, turning and pink (values CIELab parameters & maximum storage (p>0.05). force)

RESULTS

Fig. 6 - Evaluation of PME activity (Abs.min/ml) of unheated and heat treated turning tomatoes (HT_Turning) and heat treated pink tomatoes (HT_Pink) stored at 7°C for 14 davs

Moulds & Yeasts

Fig. 5 - Evaluation of POD activity (Abs.min/ml) of unheated and heat treated

turning tomatoes (HT_Turning) and heat treated pink tomatoes (HT_Pink) stored at 7°C for 14 days.

Fig. 7 - Evaluation of moulds and yeasts of unheated and heat treated turning tomatoes (HT_Turning) and heat treated pink tomatoes (HT_Pink) stored at 7°C for 14 days.

PH & SSC After HT and during storage: pH did not differ and SSC increased on HT tomatoes (0.3 units and 0.9 on turning and pink)

CONCLUSIONS

HT (42°C/30min) seems to be more effective on guality maintenance and decrease of fungal development compared with untreated tomatoes, during cold storage of whole fresh tomatoes