
Organised Sound 10(3): 233–242 © 2005 Cambridge University Press. Printed in the United Kingdom. doi:10.1017/S135577180500097X

Public Sound Objects: a shared environment
for networked music practice on the Web

ALVARO BARBOSA

Music Technology Group (MTG), Pompeu Fabra University, Calle Ocata 1, 08003 Barcelona, Spain
Research Center for Science and Technology of the Arts (CITAR), Portuguese Catholic University, Rua Diogo Botelho 1327, 4169-005 Porto,
Portugal
E-mail: abarbosa@{iua.upf.es, porto.ucp.pt}

The Public Sound Objects (PSOs) project consists of the
development of a networked musical system, which is an
experimental framework to implement and test new concepts
for online music communication. The PSOs project
approaches the idea of collaborative musical performances
over the Internet by aiming to go beyond the concept of using
computer networks as a channel to connect performing
spaces. This is achieved by exploring the internet’s shared
nature in order to provide a public musical space where
anonymous users can meet and be found performing in
collective sonic art pieces.

The system itself is an interface-decoupled musical
instrument, in which a remote user interface and a sound
processing engine reside with different hosts in an extreme
scenario where a user can access the synthesizer from any
place in the world using the World Wide Web. Specific
software features were implemented in order to reduce the
disruptive effects of network latency, such as dynamic
adaptation of the musical tempo to communication latency
measured in real time and consistent sound panning with the
object’s behaviour at the graphical user interface.

1. INTRODUCTION

Research work in the networked music field has
recently been published in surveys by Álvaro Barbosa
(2003), Gill Weinberg (2002) and Dante Tanzi (2001)
which describe and categorise several different sys-
tems, following diverse architectures and practice
contexts. Networked music can extend the boundaries
of performance for practising musicians or in com-
munity practice performed by general and possibly
non-musician users.

Connecting performing spaces for practising musi-
cians to collaborate over long distances is the current
popular approach that has facilitated most work per-
formed and generally is implemented over a peer-
to-peer architecture. Many examples of bilateral
transmission of audio for geographically displaced
musical events can be found, such as the Sensorband
ISDN (Bongers 1998) concerts, the Hub remote con-
certs (Gresham-Lancaster 1998; Brown and Bischoff
2005) or the Internet 2 multi-channel music sessions
performed in several occasions over the United States
and Canada (Woszczyk et al. 2005). Some other

systems have been custom developed for similar col-
laborative scenarios, using control data for communi-
cation amongst performers instead of encoded digital
audio streams. Examples of such systems include the
transMIDI, which allows musical performers (and
listeners) to play together or to organise into multiple
session groups, by performing on their MIDI control-
lers, or a number of electronic music software imple-
mentations (MAX/MSP, PD, Reacktor, etc.) that
support Mat Wright’s Open Sound Control protocol
(Wright and Freed 1997).

Commercial solutions addressing the professional
recording and rehearsing studio paradigms, such as
the early 1999 ResRocket Surfer (Moller et al. 1994)
or the recent ejamming software (Nelson 2005), tend
to incorporate both types of communication data
(digital audio and MIDI), but since the intention of
such systems is to serve general communities of
users, a centralised shared system of community
groups for textual communication (chats) is usually
incorporated.

In fact, the idea of a shared sonic environment is
bounded to public musical practice performed by gen-
eral and possibly non-musician users on the Net. This
is a recent approach to networked music and therefore
existing examples are usually preliminary systems
based on diverse sonic aesthetics and user interaction
models; however, there is a tendency for implementa-
tions based on client-server topologies. This derives
from the fact that a shared virtual environment is an
ongoing instance wish that must be permanently avail-
able for users to login and interact with whoever is
present at that moment. Examples of projects that
follow this approach are Atau Tanaka’s mp3Q Piece
(Tanaka 2000), a shared online sound space on the
Web that streams multiple channels of mp3 audio
from different servers from which users can manipu-
late the sources by actuating over a graphical represen-
tation of the system behaviour, recent projects based
on TransJam Server (Burk 2000), such as Phil Burke’s
webdrum (Burke 2000), Chris Brown’s Eternal Net-
work Music (Brown and Bischoff 2003), Max Neu-
haus’ Oracle (Neuhaus et al. 2005), and the Public
Sound Objects project, designed since 2002 by the



234 Alvaro Barbosa

author at the Music Technology Group in Barcelona
with the purpose of providing an experimental study
framework for shared sonic environments in the
context of the Interactive Systems Group research
activities.

2. THE PUBLIC SOUND OBJECTS PROJECT

The Public Sound Objects (PSOs) project is web-based
collaborative virtual environment focused on music
performance, developed at the Music Technology
Group of the Pompeu Fabra University. This
project has provided an experimental framework
in order to implement and test different approaches
for online music communication. A preliminary
specification of the system was published in Barbosa
and Kaltenbrunner (2002), and the first prototype
was implemented in December 2002. The PSOs
system is publicly available online from the URL:
http://www.iua.upf.es/~abarbosa/. Conceptually, it
explores the notion of a shared Web space for commu-
nity music creation, and that of an art installation,
bringing together physical space and virtual presence
in the Internet. The system aims to allow synchronous
interaction providing a platform for sonic joint
improvisation amongst Web users.

The overall system architecture was designed with
respect to the following key factors: (i) it is based on
a centralised server topology supporting multiple
users connected simultaneously and communicating
amongst themselves through sound; (ii) it is a perma-
nent public event with special characteristics appeal-
ing both to a ‘real world’ audience and to an online
virtual audience; (iii) the user interface and the sound
synthesis engine offer a constrained sonic creation
paradigm, which provides some coherence between
the individual contributions; and (iv) the system is
scalable and modular allowing future expansion and
different set-ups.

In this system the raw materials provided to the
users for manipulation during a performance are
sound objects. The definition of a sound object as a
relevant element of the music creation process goes
back to the early 1960s (Schaeffer 1966). Schaeffer
defined a sound object as ‘any sound phenomenon or
event perceived as a coherent whole (. . .) regardless
of its source or meaning’ (Chion 1983). From a psy-
choacoustic and perceptual point of view, Schaefer’s
definition is extremely useful, since it provides a very
powerful paradigm to sculpt the symbolic value
conveyed in a sonic piece.

In the PSOs system a server-side real-time sound
synthesizer triggers a sound object according to the
user’s action. Since the feedback from other user’s
performance is strictly auditory, the characteristic
which makes a sound object distinguishable from the
overall soundscape is the key element that permits the

awareness of the individual action of a user over his
sound object.

3. THE PSOS ARCHITECTURE

The PSOs system is composed of the PSOs server
and multiple PSOs clients. Clients control a visual
interactive interface, while the server controls all
computation regarding the sound synthesis and trans-
formation. It is an extreme example of an interface-
decoupled application where the synthesis engine is
separated from the user interface over a large area
network (Barbosa, Kaltenbrunner and Geiger 2003).

Clients communicate with the server through HTTP
by sending and receiving packets of data. There are
several types of data packets that the clients can send
but the most important ones are the ImpactPacket –
which informs the server that the bouncing ball has hit
one of the walls; the ControlPacket – which tells the
server that the user has changed the value of one of the
interface controls; and the PingPacket – which is used
to measure the network delay between the client and
the server.

The server packets are received by a Web applica-
tion that reroutes them to the interaction server – a
module of the PSOs server that manages clients,
instruments and the events generated by the PSOs
client. Depending upon the type of data packet
received, a sound can be generated by the synthesis
and transformation engine and then streamed back to
the client by the streaming audio server, or the visual
representation of the client can be updated at the
installation site by the local visual representation
engine, or both.

Server and clients are of different modules:

3.1. HTTP server

Clients connect to the PSOs server through standard
HTTP connections. Although our initial choice was to
implement UDP-based communications – faster than
a TCP-based protocol like HTTP – the idea had to be
abandoned for two main reasons:

• Most firewalls block all unknown UDP traffic,
which would mean that a great number of users
would not be able to access our server, also
increasing the difficulty of deploying the PSOs
server for the same reasons: UDP traffic would
have to be allowed at a specific port by the
firewall.

• Some browsers’ security policies for Java applets
only allow them to make connections using the
HTTP protocol.

In order to overcome these restrictions, a communi-
cation system was realised using a ‘firewall generally
allow’ protocol: HTTP. For this a server application



Public Sound Objects 235

was implemented, using the Java servlet technology,
which acts as a proxy between the PSOs client applet
and the interaction server. Basically, this servlet
just passes data received from the PSOs client to the
interaction server and vice versa.

3.2. Interaction server

The interaction server is a central piece in the PSOs
server. It’s a pure data (PD) module that receives data

packets in the form of UDP datagrams from the cli-
ents (through the HTTP Server) and acts accordingly
to the type of packet received.

A custom PD object had to be implemented for
the reception of the UDP datagrams – which was
called extended netreceive [xnetreceive] – since existing
objects for this purpose don’t allow PD to acquire the
IP address and port number of the client that initiated
the communication. The packet types defined so far
are as follows:

Figure 1. The PSOs system architecture.



236 Alvaro Barbosa

• AvailableInstruments. When the interaction server
receives this type of packet it sends as response the
numbers of the instruments that are available.
Instruments were numbered 1 to 9.

• LockInstrument. This type of packet is sent to the
server when the user chooses one instrument to
play. The instrument number is specified in the
packet. The interaction server will check that
the instrument is still available and will respond
with a true/false result depending on whether the
instrument was successfully locked or not. When
an instrument is locked it can only be used by the
client that locked it.

• UnlockInstrument. Informs the server that the
user is done with the instrument specified by the
instrument number in the data packet. The inter-
action server will unlock the instrument, which
will then become available to other clients.

• ImpactPacket. This is the most used packet. It
tells the server that the bouncing ball has hit a wall
and that a sound should be generated. The inter-
action server passes these packets along to the

synthesis and transformation to the local visual
representation engines. Among other informa-
tion, these packets specify the instrument number,
the value of the wall sliders, the speed of the ball,
the ball’s size, the wall that was hit, what point of
the wall was hit, and the size of the ball’s trail.
This information is then used by the synthesis
and transformation engine to generate a sound
according to the parameters set by the user in the
PSOs client interface. It is also used by the local
visual representation engine to update the visual
representation of that user.

• ControlPacket. This type of packet is of interest
only to the local visual representation engine.
The information that is sent is the same as the
ImpactPacket but the events that trigger transmis-
sion are different. ControlPackets are sent when-
ever the user changes the speed, size or trail size of
the bouncing ball. The interaction server passes
these packets along to the local visual representa-
tion engine so that the installation site can be
updated.

Figure 2. PSOs client entry screen.



Public Sound Objects 237

• PingPacket. These packets hold no direct infor-
mation; their sole purpose is to allow the PSOs
client to determine the network delay between the
client and the server. The interaction server
merely sends back an empty reply to the client.

The other main task of the interaction server is to
manage the connected PSOs clients. If a client gets
disconnected from the network without having sent an
UnlockPacket, the instrument currently locked by that
client would never again be available. It is the job of
the interaction server to detect such situations and to
automatically free up the instrument. This is done with
timeouts, i.e. if a client remains more than a fixed
amount of time without contacting the server that
client is removed from the list of currently connected
clients and its instrument released.

3.3. Synthesis and transformation engine

The synthesis and transformation engine is respon-
sible for the sound generation in response to the PSOs
clients’ generated events. This engine is a PD patch
automatically loaded by the interaction server. It
receives ImpactPackets from the interaction server
(PD lists) and generates a sound according to the
values specified therein. The parameters taken from
these data packets are actually passed on to one of
nine synthesis modules.

At this time, the engine has nine modules that corre-
spond to the nine instruments available to users. Since
each module is different and independent, the same
parameter can have a different meaning for different
modules. These modules are:

Figure 3. PSOs client controller interface.



238 Alvaro Barbosa

• Karplus-Strong Guitar. As the name suggests, this
is an implementation of the Karplus-Strong algo-
rithm for a plucked string sound implemented in
PD.

• FM Synthesizer. A frequency modulation
synthesizer.

• Modal Impact Vibraphone. An attempt to pro-
duce vibraphone-like sounds using modal impact
physical models implemented for PD, available
from the Sounding Objects project (Rocheso and
Fontana 2003).

• Piano, Percussion, Violin, Orchestra, Tabla and
Poet Samplers. These are in fact only one module,
loaded with six different sounds. The sampler was
implemented in PD and used six voices, which
proved to be enough not to overload the system,
for the worst-case scenarios (nine users connected
with high-tempo performances).

The sound generated by these modules is streamed
in MP3 format, using the [shoutcast~] PD object to
an audio streaming server. We use the Icecast2 stream-
ing server for Windows. Each user can choose one of
these modules as the sound-generating engine from the
PSOs entry screen at the client instance. Upon loading
the entry Web page, if a sound module is taken by
another user, its button on screen will be off and the
module will only be available when it is released.

3.4. The client user interface

Once the sound generating engine (instrument) has
been selected, the Web browser loads the controller
interface applet, which connects to the interaction
server, registers and initialises a user session. The
graphical user interface (GUI) can differ in future
developments.

A PSOs GUI implementation is developed to meet
the following requirements: (i) it should enable the
user to contribute to the ongoing musical performance
by transforming the characteristics of a visual sound
object representation, sending normalised parameters
to the synthesis engine over the network; (ii) the inter-
face application should be able to allow manipulation
of each of the modifiers’ parameters in the synthesis
engine in articulation with the specific installation
site set-up; (iii) the GUI itself should be a behaviour-
driven metaphorical interface, avoiding a flat mapping
of parameters, such as faders or knobs, since providing
automatic periodical behaviour for the graphic objects
as a sound controller will allow a larger timescale in
the user action, which tends to be more appropriate
for a system with delayed acoustic feedback.

The current implementation, presented in figure 4,
follows a metaphor of a ball that infinitely bounces on
the walls of an empty room. When the ball hits one of
the walls, a network message is sent to the central

Figure 4. Different interfaces for desktop, touch-screen and PDA hardware clients; The PSOs installation site graphic
prototype and photos from the installation at Porto School of the Arts in October 2004.



Public Sound Objects 239

server where the corresponding sound object is trig-
gered, played through a specific source speaker and
simultaneously streamed back to the user in a stereo
mix of all the sounds being triggered at the moment.

The ball moves continuously and the user can
manipulate its size, speed, direction, tail extension and
each wall’s acoustic texture. Values are then sent to
the server and mapped to synthesis parameters. The
wall’s acoustic texture matches the sound object’s
pitch (individual pitch values can be assigned to each
wall, allowing the creation of melodic and rhythmic
sound structures) and the ball’s tail extension corre-
sponds to the number of replicas of the delay applied
to the sound object.

 3.5. Local visual representation engine

The local visual representation engine outputs the
visual representation of the bouncing ball model of
all the connected PSOs clients, at the server’s physical
location. It consists of a PD patch that uses the graph-
ics environment for multimedia (GEM) external
for graphics output, using information from Impact-
Packets and ControlPackets to update the state
information for each client.

The visual set-up is composed of a video wall with
nine screens arranged in a 3x3 matrix and by local
installation of client instances with adapted ‘bouncing
ball’ interfaces for desktop computers, touch screens
and mobile PDAs. Each screen from the video wall is
assigned to an instrument in the same order that they
appear to the user in the PSOs client interface. The cli-
ents are represented at the installation site as spheres
with different colours, sizes and speed. Each client is
assigned to a screen in the video wall which also limits
the movement of the corresponding sphere, i.e. the
limits of each screen are mapped to the limits of the
PSOs client’s window. Whenever a new client con-
nects, a colour is randomly chosen to represent their
ball.

Two more parameters were chosen to provide visual
feedback: the speed of the ball and the events gener-
ated at the client’s interface. Although there is an
implicit visual feedback on the ball’s speed, i.e. the
sphere moves faster or slower on the screen, an addi-
tional feedback was added by changing the saturation
of the sphere’s colour. Sometimes when the bouncing
ball is set to a large size and occupies almost the whole
screen, it is hard to tell its speed because both a slow
ball and a fast one will bounce a lot. Mapping the
speed to the colour saturation – high saturation for a
slow ball, low saturation for a fast one – helps viewers
to distinguish these situations. When the local visual
representation engine receives a packet, meaning that
an event was fired at the PSOs client’s interface, the
client’s sphere is temporarily turned into a polygon
mesh representation.

The engine only has accurate information when cli-
ents send packets to the server. The rest of the time, the
position of the bouncing ball has to be interpolated
based on the information from the last packet. It is not
possible to have a completely accurate representation
of the user’s bouncing ball due to network latency, dif-
ferent timing mechanisms on the clients and server,
and because we cannot predict the user’s actions.
Despite all this, it is possible to get a fairly good repre-
sentation of the various clients. The most noticeable
representation artefact is the occasional ‘jump’ of the
sphere, e.g. sometimes the representation is changing
more rapidly than the client’s bouncing ball, so when a
packet is received the position is suddenly updated to
the correct one causing the sphere to ‘jump’ back.

3.6. Network latency adapted tempo

When established over long distance, networked music
systems have a common problem. Network latency (or
Net-delay) is an impediment for real-time musical
communication. Using the laws of physics it can be
demonstrated that for distances that span continents,
current network technology will always introduce
higher latency than the minimum acceptable values for
real-time acoustic collaboration. A number of experi-
ments have been carried out with the purpose of deter-
mining the maximum amount of communication
latency which can be tolerated between musicians in
order to keep up with a synchronous performance.
Concrete results from research carried out in 2002 at
Stanford University by Natham Shuett (Schuett 2002)
established experimentally an ensemble performance
threshold (EPT) for impulsive rhythmic music lying
between 20 and 30 ms, which is consistent with the
outcome from research carried out by Nelson Lago in
2004 (Lago and Kon 2004) at São Paulo University.

Some results regarding the effects of time delay on
ensemble accuracy, which go beyond establishing an
EPT for a general scenario of rhythmic synchro-
nisation, were published in 2004 by Chris Chafe and
Michael Gurevish (Chafe et al. 2004). From the
experiment conducted at CCRMA it is clear that by
increasing the communication delay between pairs
of subjects trying to synchronise a clapping steady
rhythm, the subjects tend to slow down the tempo of
the rhythm.

Similarly, an experiment carried out by the authors
in June 2004 in the Sound and Image Department at
the Portuguese Catholic University aimed, amongst
other goals, to study the relationship between tempo
and latency. In the experiment, simulated network
latency conditions were applied to the performance of
four different musicians playing jazz standard tunes
with four different instruments (bass, percussion,
piano and guitar). In a studio set-up, musicians would
listen to the feedback from their own instruments



240 Alvaro Barbosa

through headphones with delay. Their performance
was synchronised with a metronome over several takes
with different tempos (beats per minute – BPM). For
each take the feedback delay was increased until the
musician was not able to keep up a synchronous
performance.

The figure 5 graphic shows that, regardless of the
instrumental skills or the musical instrument, all musi-
cians were able to tolerate more feedback delay for
slower tempos. The only exception to this tendency
occurs for the percussionist’s curve when raising to
160 BPM, which is related to a synchronous overlap
over the rhythmic structure of the music, together with
the fact that for percussion instruments it is very hard
to totally isolate the performer from the direct instru-
ment sound; therefore, it is clear that there is an
inverse relationship between tempo and latency. After
obtaining these results the authors proceeded to inte-
grate this concept into the Public Sound Objects
(PSOs) system, aiming to achieve a network-music
instrument that incorporates latency as a software
feature, by dynamically adapting its tempo to the
communication delay measured in real time.

The idea of a network music instrument which
dynamically adapts to Internet network latency was
implemented recently by Jörg Stelken in the peerSynth
software (Stelkens 2003). peerSynth is a peer-to-peer
sound synthesizer which supports multiple users dis-
placed over the Internet, measuring the latency
between each active connection and dynamically low-
ering the sound volume of each user’s contribution
to the incoming soundscape, proportionally to the
amount of delay measured in his connection. Stelkens
followed a real-world metaphor where, in fact, the
sound volume of a sound source decreases with
the distance to the receiver, which also implies increas-
ing acoustical communication latency. A similar

approach was followed in the AALIVENET System
(Spicer 2004).

The PSOSs system approaches this same idea,
addressing a less immediate, but equally relevant,
relation between musical characteristics and com-
munication latency. It implements a network tempo
adaptive latency feature, which dynamically reduces
the performance tempo according to the latency
measured in real time between the client and the
server.

In the bouncing ball user interface the musical
tempo corresponds to the ball speed. The reduction
factor applied to the ball speed is presented in the user
interface and it is calculated so that it averagely guar-
antees that the ball will not hit the walls twice without
the sound being triggered by the time the first hit
arrives at the client. The main idea is that the ball will
go as fast as your connection allows it to go. This
way the effect of latency is much less confusing, per-
mitting the user to have a much better awareness of
the relationship between a hit on the wall and the
corresponding triggered sound.

Additionally, sound panning consistent with the
object’s behaviour at the graphical user interface was
introduced so that whenever a ball hits a left or right
wall the server triggers the corresponding sound object
through the left or right speaker, and when it hits the
top or bottom wall the sound object is triggered
through both speakers (central pan). This also helps
to subconsciously clarify the order of immediate
corresponding hits and sounds, especially when the
ball bounces on corners.

4. PSOS USER STUDY AND EVALUATION

The complete PSOs system, including the physical
set-up at the server site, was installed at the Portuguese
Catholic University Campus in Porto between 7 and
14 October 2004. During this trial period several client
instances were installed on campus and 109 subjects
tested the system and answered questionnaires. Some
of the average results extracted from this opinion pool
are presented in figure 6.

Some of these results met our expectations: (i) the
interface is effective at establishing a relation between
the user action and its effect on the corresponding
sound object; (ii) the sound objects available in the
current set-up allow acoustic differentiation in the
global soundscape; and (iii) it is a system accessible to
the general public, without requiring previous music
formation or previous GUI manipulation skills.

When asked for further comments about the system,
most of the users mentioned that the system is clearly
about ‘experimental music’ and the influence of other
users’ performances, as expressed by the following
quotes: ‘The system only seems to make sense when
used collectively’; ‘It is simple to be aware of the other

Figure 5. Self-test for latency tolerance in individual
performance of four different musicians.



Public Sound Objects 241

users’ actions by looking into the video-wall and use
it as reference when needed’; ‘Interacting with other
users makes you achieve different results than you
would get by yourself’. From these quotes and from
the full statistical corpus it seems that in general users
found the visual representation of other users’
behaviour useful, to enhance their own acoustic
awareness.

5. CONCLUSIONS AND FUTURE WORK

For over two years the Public Sound Objects project
has successfully functioned as an experimental frame-
work to implement and test different approaches for
online music communication. The system is intended
to be simple enough so that non-professional musi-
cians can engage in a collaborative sonic performance,
and in this sense the recent user study provided confir-
mation that this goal has been achieved. More than
half of the sample users considered that no musical
training or experience manipulating computer inter-
active interfaces was required in order to achieve
interesting results.

The System has a fast learning curve, since 90.6 per
cent of the sample users learned how to use the system

in less then five minutes and 41.1 per cent of this group
in less than a minute. This was mainly due to the
choice of experimental sound art as the musical aes-
thetic of the project and the fact that music is gener-
ated algorithmically, in the sense that even without a
user’s interference the ‘bouncing ball’ will trigger an
endless sequence of sounds with random tempo and
pitch.

In addition, even though the musical results of the
system do not have familiar rhythmic or melodic struc-
tures, the control parameters which the ‘bouncing ball’
interface present are pitch, tempo, dynamics and
delay, which are very basic traditional music control
parameters, and therefore fit better into what a regular
user would expect.

Further improvements are suggested by the evalua-
tions of the sample users regarding visual representa-
tion of other users at the client side, and in fact this
was the impression one received by performing at the
installation site, since it is inevitable to correlate the
visual representation of other users and their acoustic
contributions to the piece.

The network tempo adaptive latency and the
coherent sound panning, implemented in the PSOs
latest version, represent a significant improvement in

Figure 6. PSOs preliminary evaluation results.



242 Alvaro Barbosa

the system usability regarding the disrupting effect of
latency.

ACKNOWLEDGEMENTS

The Authors would like to thank Xavier Serra and
Sergi Jordà for their guidance and advice in the
project, Jorge Cardoso, Gunter Geiger and Martin
Kaltenbrunner for their work in the development of
the PSOs system, and Alexander Carôt for his col-
laboration in the delay vs tempo experiment. This
research is supported by the Portuguese institution
Fundação para a Ciência e Tecnologia.

REFERENCES

Auracle. 2005. Akademie Schloss Solitude. Developed
by Max Neuhaus, Phil Burk, Jason Freeman,
C. Ramakrishnan and Kristjan Varnik. http://
www.auracle.org/, accessed on 20 June 2005.

Barbosa, A. 2003. Displaced Soundscapes: a survey of net-
work systems for music and sonic art creation. Leonardo
Music Journal 13: 53–9.

Barbosa, A., and Kaltenbrunner, M. 2002. Public Sound
Objects: a shared musical space on the web. In Proc.
of the Int. Conf. on Web Delivering of Music
(WEDELMUSIC 2002). Darmstadt, Germany: IEEE
Computer Society Press.

Barbosa, A., Kaltenbrunner, M., and Geiger, G. 2003. Inter-
face decoupled applications for geographically displaced
collaboration in music. In Proc. of the Int. Computer
Music Conf. (ICMC2003).

Bongers, B. 1998. An interview with Sensorband. Computer
Music Journal 22: 13–24.

Brown, C., and Bischoff, J. 2005. Computer Network Music
Bands: A history of the League of Automatic Music
Composers and the Hub. In A. Chandler and N.
Neumark (eds.) At a Distance: Precursors to Art and
Activism on the Internet, pp. 372–91. Cambridge, MA:
MIT Press.

Burk, P. 2000. Jammin’ on the Web: a new client/server
architecture for multi-user musical performance. In Proc.
of the Int. Computer Music Conf. (ICMC 2000).

Chafe, C., Gurevich, M., Leslie, G., and Tyan, S. 2004.
Effect of time delay on ensemble accuracy. In Proc. of

the Int. Symp. on Musical Acoustics (ISMA2004). Nara,
Japan.

Chion, M. 1983. Guide des objets sonores. Pierre Schaeffer
et la reserche musicale.

EJamming. 2005. Developed by Tom Nelson. http://www.
ejamming.com/, Accessed 27 June 2005.

Eternal Network Music. 2003. Crossfade, developed by
Chris Brown and John Bischoff. http://www.transjam.
com/eternal/eternal_client.html, accessed on 21 June
2005.

Gresham-Lancaster, S. 1998. The aesthetic and history of
the Hub: the effects of changing technology on network
computer music. Leonardo Music Journal 8: 39–44.

Lago, N., and Kon, F. 2004. The quest for low latency. Proc.
of the Int. Computer Music Conf. (ICMC2004), pp. 33–6.

MP3Q. 2000. Developed by Atau Tanaka. http://fals.ch/Dx/
atau/mp3q/, accessed 12 May 2004.

ResRocket Surfer. 1994. Rocket Networks, developed by
M. Moller, W. Henshall, T. Bran and C. Becker. http://
www.resrocket.com/, accessed 17 April 1999.

Rocheso, D., and Fontana, F. 2003. The Sounding Object.
Schaeffer, P. 1966. Traité des objets musicaux.
Schuett, N. 2002. The Effects of Latency on Ensemble

Performance. Stanford University.
Spicer, M. 2004. AALIVENET: an agent based distributed

interactive composition environment. In Proc. of the Int.
Computer Music Conf. (ICMC2004).

Stelkens, J. 2003. peerSynth: a P2P multi-user software with
new techniques for integrating latency in real time
collaboration. In Proc. of the Int. Computer Music Conf.
(ICMC2003).

Tanzi, D. 2001. Observations about music and decentralized
environments. Leonardo Music Journal 34: 431–6.

Webdrum. 2000. SoftSynth, developed by Phil Burke.
http://www.transjam.com/webdrum/, accessed on 21
June 2005.

Weinberg, G. 2002. The aesthetics, history, and future chal-
lenges of interconnected music networks. Proc. of the Int.
Computer Music Conf., pp. 349–56.

Woszczyk, W., Cooperstock, J., Roston, J., and Martens,
W. 2005. Shake, Rattle and Roll: getting immersed in
multisensory, interactive music via broadband networks.
Journal of the Audio Engineering Society 53: 336–44.

Wright, M., and Freed, A. 1997. Open SoundControl: a new
protocol for communicating with sound synthesizers.
In Proc. of the Int. Computer Music Conf.


