Phytoremediation as a biotechnological tool for environmental restoration

Paula M. L. Castro Ana P. G. C. Marques António O. S. S. Rangel Cristina C.S. Calheiros Rui S. Oliveira Albina R. Franco Miroslav Vosátka John C. Dodd

Layout of the presentation

I – Phytoremediation: scope of application to environmental restoration

II – Case study I – tannery wastewater treatment

III - Case study II – restoration of industrial sediments

IV - Case study III – metal uptake from contaminated soil

V - Case study IV – sustainable forestry

I – Phytoremediation: scope of application to environmental restoration

II – Case study I – tannery wastewater treatment

III - Case study II – restoration of industrial sediments

IV - Case study III – metal uptake from contaminated soil

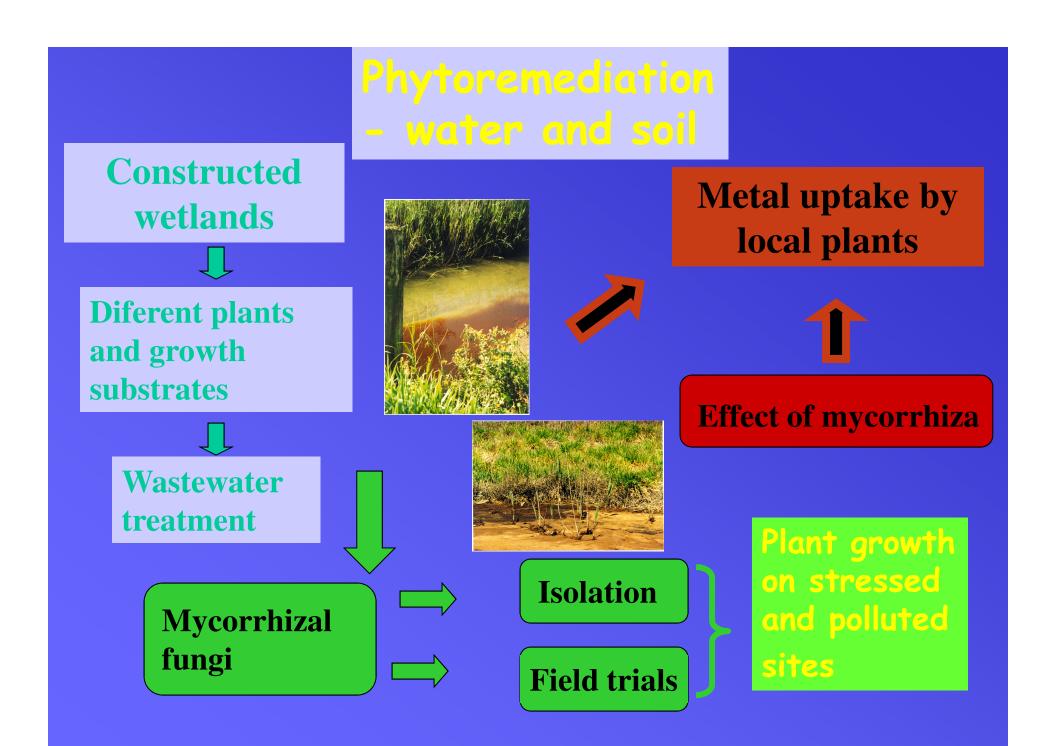
V - Case study IV – sustainable forestry

Phytoremediation

"...is an emergent technology that uses plants (and rhizosphere microorganisms) to remove, degrade or immobilize chemical contaminants from polluted soils, sediments and water".

Phytoremediation – Why?

Advantages

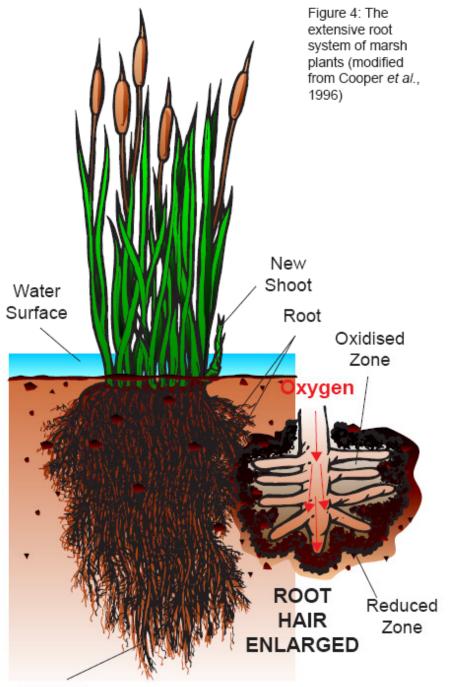

- Performed *in situ*
- ✓Cost reduction
- Acceptance from the public and regulatory agencies
- ✓No disturbance to the landscape

SUSTAINABLE TECHNOLOGY

Disadvantages

- High concentrations of the contaminant may become toxic to the plants
- Contamination risk of the food chain through animal consumption
- Takes long periods of time

• Uses plants to **IMOBILIZE** contaminants • Contaminants are absorped by roots and accumulated or precipitated within the phryingsphere in stable forms • Uses plangligable for water, soil contaminated spoils • Reduces risk of including • The contaminants are captured RHYZOFICFRAT •by seve prootes and Rtravisio cated Eto ntaminated wated und sparts of the • Contaminants are captured by the roots adation of organic • The process may be aided by rhizosphere microorganisms associated microorganisms


I – Phytoremediation: scope of application to environmental restoration

II – Case study I – tannery wastewater treatment

III - Case study II – restoration of industrial sediments

IV - Case study III – metal uptake from contaminated soil

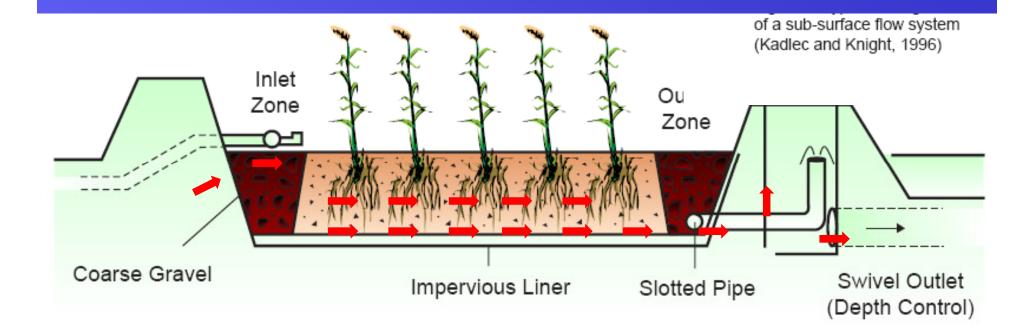
V - Case study IV – sustainable forestry

Removal of organic and inorganic contamination from wastewater

> Microbial degradation in bulk soil or rhizosphere

Rhizome

Case study: Tannery industry



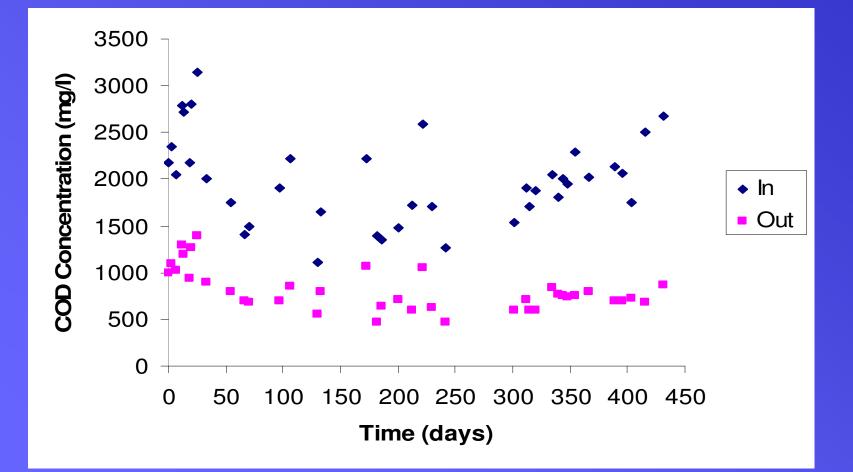
Wastewater:

- High organic loading
- Suspended solids
- Chromium

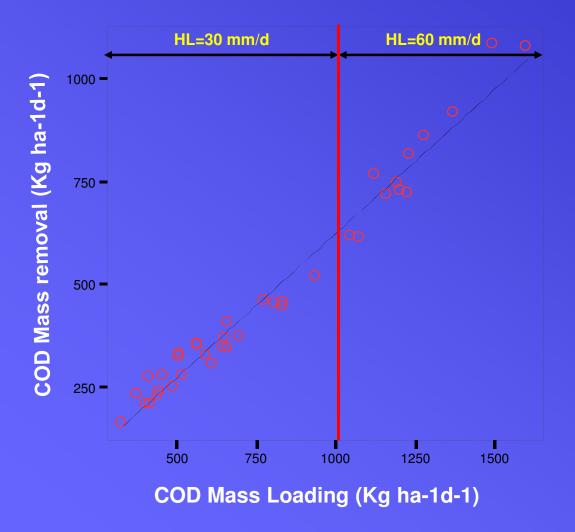
Constructed wetlands Sub-surface Horizontal Flow

Typical configuration of a sub-surface flow system (Kadlec and Knight, 1996)

Plant species



Phragmites australis (common reed)


Typha latifolia (cattail)

Iris pseudacorus

Efficiency of the pilot units - example

Removal efficency for organic loading

Pilot Units

Pilot Units in paralel

Typha latifolia

Phragmites australis

Pilot Units in series

Pilot Units – *Typha latifolia*

Water characterization Series I

3rd EUROPEAN BIOREMEDIATION CONFERENCE 4 - 7 July

2005

Hidraulic loading	60mm/d	> 480 Kg BOD ₅ ha ⁻	¹ d ⁻¹		
Parameters	In	Out 1		Out 2	
рН	6.57(8.46-5.25)	8.15(8.38-7.95)		8.11(8.25-7.90)	
COD, mgO ₂ l ⁻¹	1297(1455-1091)	523(600-480)	59%	240(268-225)	54%
BOD ₅ , mgO ₂ l ⁻¹	720 (800-660)	355 (390-320)	51%	175 (195-160)	51%
TSS, mg l ⁻¹	35(43-26)	10(12-8)	72%	5 (6-4)	52%
Total P, mgP l ⁻¹	0.66(0.95-0.26)	0.64(0.96-0.26)		0.62(0.82-0.27)	

4-7 July 2005 Series I Series I Side European Bioremediation Conference					
Hidraulic loading	180mm/d	1700 kgBOD₅ha	-1d-1		
Parameters	In	Out 1	u	Out 2	
рН	7.83(8.10-7.66)	8.23(8.65-8.09)		8.21(8.55-8.10)	
COD, mgO ₂ l ⁻¹	1579(2138-1082)	868(1200-570)	45%	595(840-380)	32%
BOD ₅ , mgO ₂ l ⁻¹	797(960-720)	570(670-520)	22%	446(523-410)	21%
TSS, mg l ⁻¹	54(63-42)	12(14-9)	78%	4(4-3)	66%
Total P, mgP l ⁻¹	0.24(0.30-0.15)	0.24(0.32-0.17)		0.27(0.40-0.16)	

Cristina S.C. CALHEIROS, António O.S.S. RANGEL, Paula M.L. CASTRO

Pilot Units - Phragmites australis

3rd EUROPEAN BIOREMEDIATION CONFERENCE

Cristina S.C. CALHEIROS, Paula M.L. CASTRO, António O.S.S. RANGEL

Water characterization Series IIStress of the second seco				
60mm/d	> 480 Kg BOD ₅ ha	1 ⁻¹ d ⁻¹)	
In	Out 1		Out 2	
6.57(8.46-5.25)	7.94(8.33-5.84)		8.17(8.38-7.99)	
1297(1455-1091)	530(590-500)	59%	249(265-235)	53%
720 (800-660)	363(400-333)	50%	181(200-160)	50%
35(43-26)	10(13-7)	71%	6(6-5)	52%
0.66(0.95-0.26)	0.62(0.86-0.25)		0.58(0.72-0.27)	
	Deries II 60mm/d In 6.57(8.46-5.25) 1297(1455-1091) 720 (800-660) 35(43-26)	Geries II 60mm/d 480 Kg BOD5 ha In Out 1 6.57(8.46-5.25) 7.94(8.33-5.84) 1297(1455-1091) 530(590-500) 720 (800-660) 363(400-333) 35(43-26) 10(13-7)	60mm/d 480 Kg BOD ₅ ha ⁻¹ d ⁻¹ In Out 1 6.57(8.46-5.25) 7.94(8.33-5.84) 1297(1455-1091) 530(590-500) 59% 720 (800-660) 363(400-333) 50% 35(43-26) 10(13-7) 71%	In Out 1 Out 2 6.57(8.46-5.25) 7.94(8.33-5.84) 8.17(8.38-7.99) 1297(1455-1091) 530(590-500) 59% 249(265-235) 720 (800-660) 363(400-333) 50% 181(200-160) 35(43-26) 10(13-7) 71% 6(6-5)

Cristina S.C. CALHEIROS, António O.S.S. RANGEL, Paula M.L. CASTRO

4 - 7 Water characterization July 2005 Series II **3rd EUROPEAN** BIOREMEDIATION CONFERENCE 180mm/d 1700 kg BOD₅ ha⁻¹d⁻¹ **Hidraulic loading Parameters Out 1** Out 2 In pН 7.83(8.10-7.66) 8.19(8.54-8.06) 8.25(8.61-8.07) 31% 628(820-450) COD, mgO, l⁻¹ 1579(2138-1082) 905(1189-650) 42% 21% 27% 456(550-412) $BOD_5, mgO_2 l^{-1}$ 797(960-720) 578(700-530) 80% 4(5-3) TSS, mg l⁻¹ 54(63-42) 11(15-8) **65%** 0.30(0.46-0.18)Total P, mgP l⁻¹ 0.24(0.30-0.15)0.25(0.32 - 0.20)

Cristina S.C. CALHEIROS, António O.S.S. RANGEL, Paula M.L. CASTRO

Instalação dos leitos


Carga hidraulica	Entrada (Kg/had)	saida U1	saida U2
180mm/d	3800-1950	48-41%	33-30%
60mm/d	870-650	66-52%	60-50%

Instalação dos leitos

unidades piloto: Phragmites australis

Carga hidraulica	Entrada (Kg/had) Conc	Conc saida U1	Conc saida U2
180mm/d	3800-1950	(47-39%)	(32-29%)
60	970 650	(61.500)	(56,5001)
60mm/d	870-650	(64-52%)	(56-50%)

1,00E+09 1,00E+08 **CFU/g fresh weight** 1,00E+07 1,00E+06 1,00E+05 1,00E+04

Culturable bacteria in the pilot units

Typha root

Typha substrate

Phragmites root

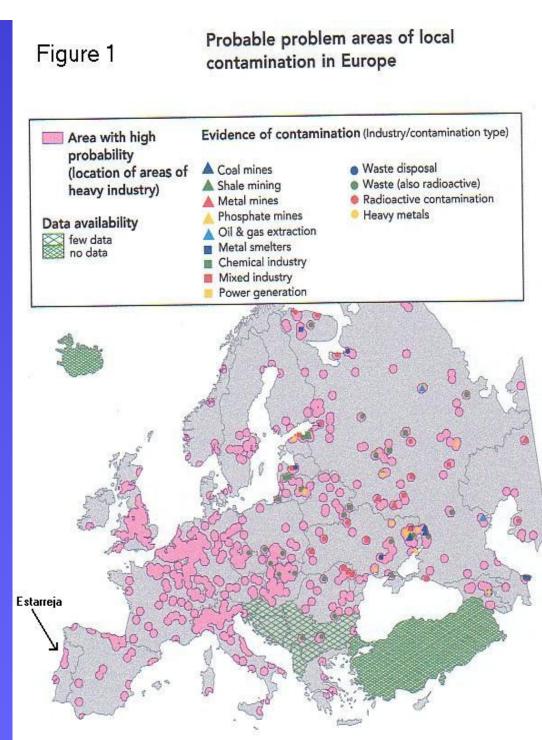
Phragmites substrate

control substrate

DGGE analysis is underway

I – Phytoremediation: scope of application to environmental restoration

II – Case study I – tannery wastewater treatment


III - Case study II – restoration of industrial sediments

IV - Case study III – metal uptake from contaminated soil

V - Case study IV – sustainable forestry

Estarreja – Industrial site

Cerca de 2 mil milhões ha de solo sofrem de degradação antropogénica na Europa e a recuperação de solos degradados pode tornar-se a "prioridade do século para a sustentabilidade"

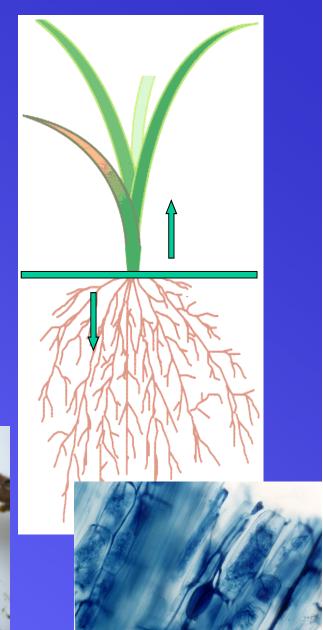
Industrial sediment

- Acetylene and PVC production
- Ca(OH)₂ residues
- 300 000 ton, 10 ha
- High pH (11.8-12.6) and salinity
- Low nutrient levels (ex. N e P)

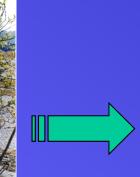
Scarce vegetation and limited plant diversity

Phytorestoration Phytomicrobial complexes

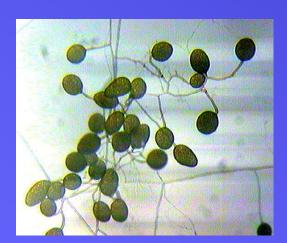
Phytotechniques

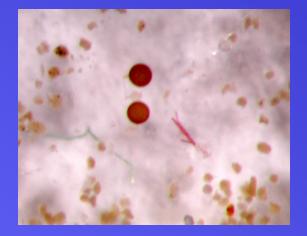

Plants have to grow under stress....

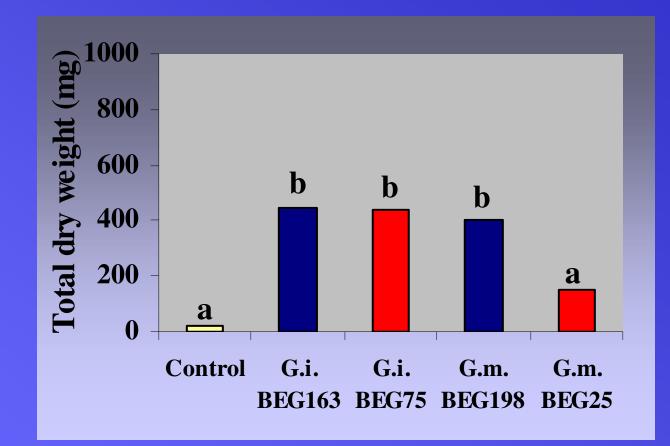
Symbiosis between adapted plants, bacteria and fungi...


Mycorrhizal fungi are crucial components

- Group of soil microorganisms
- Form symbiotic associations with plants roots
- Improve plant growth and reproduction
- Capture mineral nutrients from soil
- Receive carboh associated plan
 - Influence heav


Survey and isolation of arbuscular mycorrhizal fungi

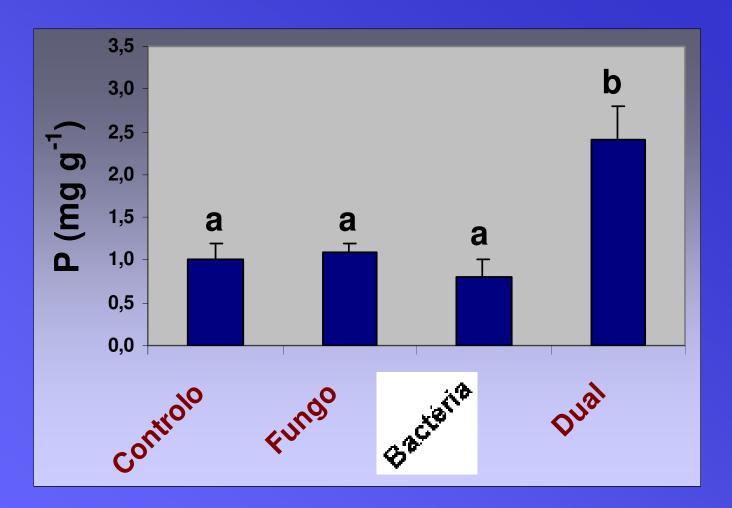



Glomus intraradices Glomus geosporum

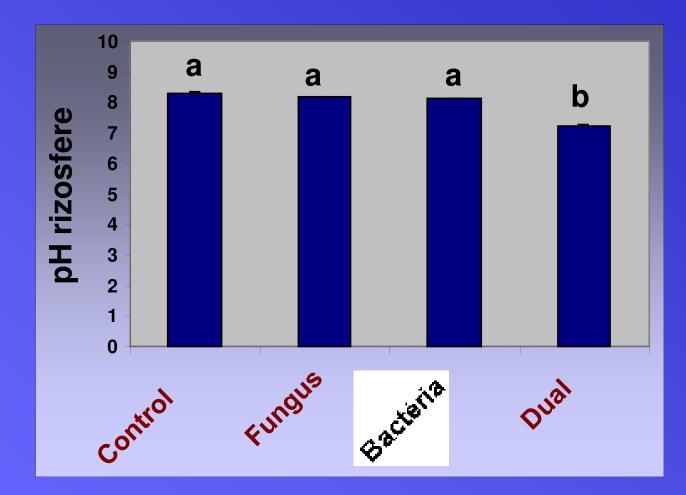
Study of the effect of native and non-native AMF on plant establishment in the industrial sediment

Inoculated with native and nonnative *G*. *intraradices* and *G. geosporum*

AMF play a critical role in the growth and establishment of native plant species (ex. *Conyza bilbaoana*)


The use of adapted AMF as inoculants is recommended for the phytorestoration of the highly alkaline anthropogenic sediment

Study of the effect of AMF and bacteria on plant establishment in the industrial sediment



Alnus glutinosa Glomus intraradices

Frankia sp.

Synergistic effect between AMF and nitrogen fixing bacteria (*Frankia*) led to improved plant benefit in phosphorus nutrition

Synergistic effect between AMF and nitrogen fixing bacteria (*Frankia*) led to an aliviation of high pH stress by reducing rizosphere pH

Long-term field trial on-going

Plants still growing on the site

I – Phytoremediation: scope of application to environmental restoration

II – Case study I – tannery wastewater treatment

III - Case study II – restoration of industrial sediments

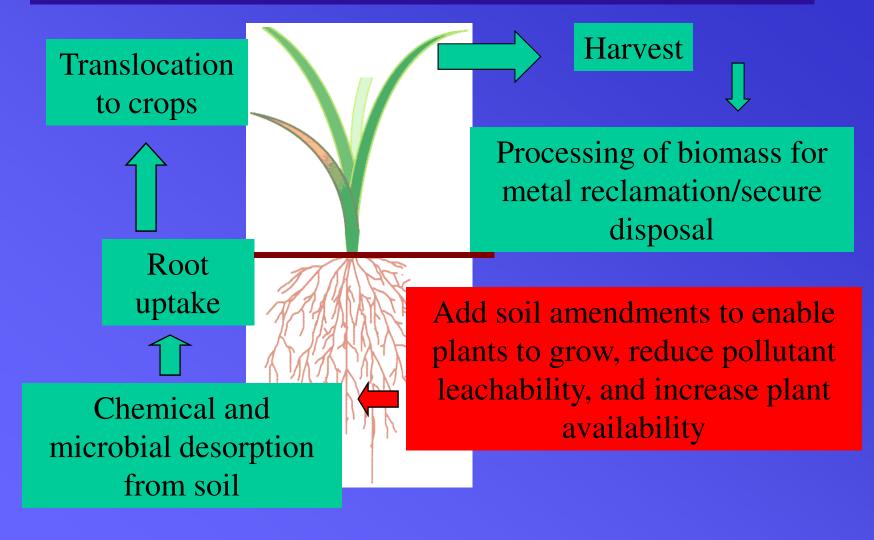
IV - Case study III – metal uptake from contaminated soil

V - Case study IV – sustainable forestry

Heavy metal contaminated soil

Discharge of solid residues in the surrounding area

Conducting of industrial wastewaters into a stream nearby ("Esteiro de Estarreja")



Total metal in the banks (mg/ Kg soil)

Zn	898.9 (125-3620)
Рb	835.4 (16-3740)
Hg	66.6 (0.3-275)
As	1495(45-5620)

Levels higher than European legislation

Plant based decontamination of Metal-contaminated soils

Factors to take in account

Plant

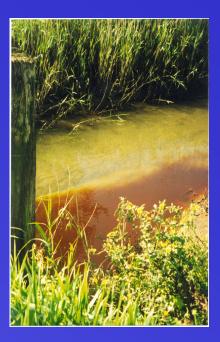
- Rapid growth
- High biomass rate
- Capacity to tolerate and accumulate the contaminant
 - Adequate root length
- Adequate to the nature of the contamination

Contaminant

 Bioavailability of the contaminant

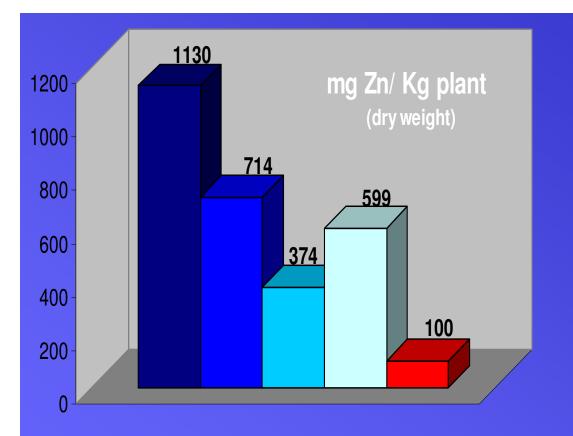
 Existence of multiple contamination

Survey of local plants


Rubus ulmifolius

Convolvulus sp.

Phragmites australis



Solanum nigrum

Levels of elements in the plants

Metal Plant	Lead (mg/Kg dry weight)	Zinc (mg/Kg dry weight)	Arsenic (mg/Kg dry weight)	Mercury (mg/Kg dry weight)
Solanum nigrum	2.6	1130	5.4	9.1
Rubus ulmifolius	6.0	714	31.2	0.5
Phragmites australis	2.7	374	2.9	12.7
Convolvulus sp.	2.8	599	2.3	1.6

	Zn
Sdarum nigrum	1130
📕 Rhans sp.	714
Phragnites australis	374
Convolvulus sp.	599
Average maximum levels in plants not submitted to contamination	100

- Zn -

➢ High levels of Zn were detected in all the plants, especially on Solanum nigrum,

Growth experiments with *Solanum nigrum* **exposed to several Zn levels and different mycorrhizal fungi**

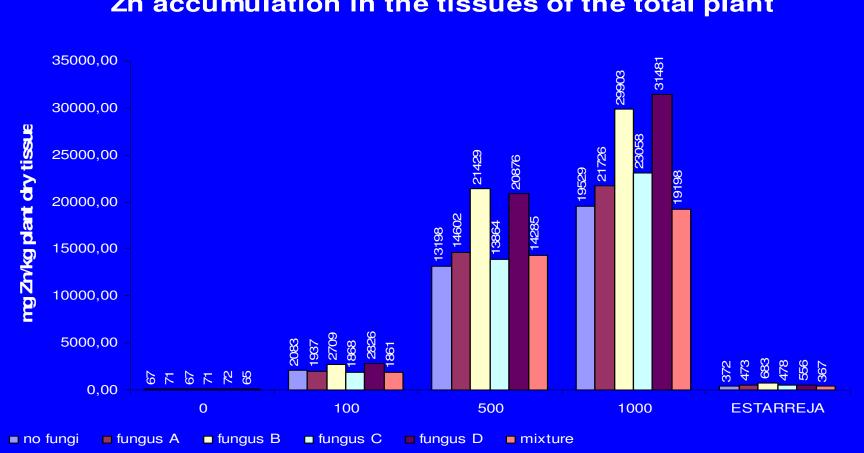
	Zn=	0 ppm	matrix=	sand	
fungus	fungus	fungus	fungus	fungus	No
A	B	C	D	E	fungi

	Zn= 1	00 ppm	matrix	=sand	
fungus	fungus	fungus	fungus	fungus	No
A	B	C	D	E	fungi

	Zn= 5	00 ppm	matrix	=sand	
fungus	fungus	fungus	fungus	fungus	No
A	B	C	D	E	fungi

	Zn= 10	000 ppm	matrix	k=sand	
fungus	fungus	fungus	fungus	fungus	No
A	B	C	D	E	fungi

Soil from the banks of "Esteiro de Estarreja" (426± 2 ppm)					
fungus	fungus	fungus	fungus	fungus	No
A	B	C	D	E	fungi


fungus A - *Glomus* sp. BEG140 isolated from a soil with high levels of Mn

fungus B - *Glomus claroideum* isolated from a soil with high levels of Cd and Zr

fungus C - *Glomus mosseae* isolated from a soil with high levels of Cd and Zr

fungus D - *Glomus intraradices* isolated from a soil with high levels of Pb

fungus E= mixture of all the isolates

Zn accumulation in the tissues of the total plant

Inoculation with G. claroideum and G. intraradices, enhanced zinc accumulation in S. nigrum.

 \subseteq

 $\boldsymbol{\varsigma}$

The stem tissues had the higher Zn content, followed by the roots, with the leaves registering the lowest values.

Zinc level in the	Percent increase in the Zn accumulation levels in the tissues (%)		
matrix	Glomus claroideum	Glomus intraradices	
100	30	36	
500	<u>62</u>	58	
1000	53	<mark>61</mark>	
Estarreja	<mark>83</mark>	49	

The application of *S. nigrum* with the assistance of the AMF *G. claroideum* and *G. intraradices* in the phytoremediation of contaminated soil from "Esteiro de Estarreja" is currently being tested in different conditions:

amendment with quelating agents(EDTA and EDDS)

 amendment with organic matter
sources (manure and sludges from wastewater
treatment)

I – Phytoremediation: scope of application to environmental restoration

II – Case study I – tannery wastewater treatment

III - Case study II – restoration of industrial sediments

IV - Case study III – metal uptake from contaminated soil

V - Case study IV – sustainable forestry

Sustainable plant production in forestry

