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The problem of optimizing the thickness of a microporous slab containing an
immobilized enzyme is addressed, using an economic criterion as the objective
function. The steady-state material balance to the substrate as transported by
diffusion and depleted by a biochemical reaction following classical Michaélis—
Menten kinetics within the pellet is obtained. Taking advantage of a number of
algebraic manipulations and mathematical artefacts, one is able to solve the
resulting second-order, non-linear differential equation by an analytical method,
provided that an upper error bound for the solution in the order of 5 per cent is
acceptable. The validity of the approximation is tested, and useful applications
are reported.

1. Introduction

Enzymes are proteins with enhanced catalytic properties due to their power of
specific activation [1]. As proteins, enzymes constst of a linear chain of amino acid
residues bonded via peptide linkages. As catalysts, enzymes affect the rate of
biochemical reactions without themselves appearing as either reactants or products
of the global reaction, and without being consumed within reasonable time scales.
Being highly specific, enzymes act only upon some bonds of some substrates, thus
accelerating chemical reactions without formation of by-products. Furthermore,
enzymes are able to function in dilute aqueous solutions under very mild conditions
of temperature, pH and ionic strength [2]. These characteristics have emphasized
the industrial use of enzymes to bring about a number of relevant chemical reactions
within the food, pharmaceutical, and cleaning fields.

Immobilization of an enzyme on or within an insoluble solid matrix means that
the enzyme has been confined or localized so that it can be re-used continuously [3].
There are several reasons why immobilization may be desirable: no enzyme is
allowed to leave the reactor in the outlet solution (which avoids the need of extra
enzyme makeup, or of enzyme removal from the product where it might play the role
of an impurity); longer retention of catalytic activity is possible (so the enzyme
becomes intrinsically more stable and less sensitive to thermal denaturation); and the
control of the chemical process becomes more feasible and accurate (thus eliminating
unwanted variability and making it easier to meet the required product specifi-
cations). These characteristics make immobilized enzyme technology attractive if a
very large throughput is required and/or the enzymes involved are expensive. Three
notable examples of industrial processes that employ immobilized enzyme catalysts
are the production of high fructose corn syrups from corn starch, the manufacture of
L-amino acids by resolution of racemic amino acid mixtures, and the manufacture of
semi-synthetic penicillins [3].



Many methods are available for enzyme immobilization. Enzymes are typically
immobilized on the internal surfaces of porous supports, or entrapped in matrices
through which a substrate can diffuse. In such systems, calculation of the observed
rate of substrate disappearance requires evaluation of the concentration profile of
substrate within the pellet [3]. Fick’s law of diffusion can in principle be applied [4],
provided that the effective diffusivity is known. This parameter accounts for the fact
that some of the particle cross-section is occupied by solid and hence not available for
diffusive transport, and the pore network is complex and entangled so diffusion
occurs only in allowed, frequently changing directions [5]. On the other hand, the
kinetic equation describing the biochemical reaction occurring within the pellet
must be taken into account; this is usually done via the utilization of the classical
Michaélis—-Menten model [6], where the order of the reaction on the substrate
concentration increases gradually from zero (for high substrate concentrations) up to
unity (for low substrate concentrations).

A number of shapes for the pellets where the enzymes can be immobilized are
commercially available, the slab-shaped type being particularly easy to manufacture
and model. The development of a design methodology for optimal slab thickness in
heterogeneous, catalytic biochemical reactors is, then, undoubtedly both of
academic interest and commercial significance.

2. Problem formulation

Consider a control volume accounted for by a porous solid supporting an
immobilized enzyme, whose pores are completely filled with a liquid solution
containing the reacting substrate. A chemical reaction following Michaélis—-Menten
kinetics takes place within this porous pellet, with a 1:1 stoichiometry [7]. This
stoichiometry, coupled to the assumption that the solvent is virtually stagnant, leads
to a null molar average velocity, which is characteristic of an equimolar counter
diffusional process. The solute becomes available to the active sites inside the pellet
via a molar diffusion flux arising from a concentration gradient across the particle.
The physical medium is assumed to behave isotropically with respect to the global
mass density and to the resistance offered to the molecular transport of solute within
the pellet. The resistance to mass transfer of the liquid film surrounding the pellet is
considered negligible when compared with the intraparticle resistance. The average
pore size is taken as sufficiently low so that the external forced convection past the
pellet does not penetrate the pore network, and thus has no appreciable effect on the
intraparticle concentration profile [8]. The solution containing the substrate is
assumed to behave ideally, so no volume change of mixing occurs. Steady-state
conditions of operation have been reached. The process of diffusion and homo-
geneous reaction can then be described [9-12] by
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where C denotes the concentration of substrate, D is the effective diffusivity of
substrate within the pellet, v, is the maximum rate, and K, is the Michaélis—Menten
constant. In the case of a constant cross-sectional area, sealed-edge, catalyst slab of
half-thickness L in the direction of solute flow (the x-direction), fairly small when



compared with the other characteristic dimensions of the slab, the problem becomes
virtually unidimensional. Equation (1) can, thus, be simplified to
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A set of physically meaningful boundary conditions can be written as
dc
x=0, E=0 3)
arising from the symmetry condition at the centre plane of the slab [9], and
x=L, C=C; 4)

where the subscript ‘s’ stands for the conditions prevailing at the surface of the slab.
An analytical solution of equation (2) coupled to equations (3) and (4) has not been
reported to date [13], so 2a numerical method is required. Since one is dealing with a
double boundary value problem, an iterative procedure is in general needed [14]; the
integration is then performed through the construction of a eoncentration profile
from the initial point, given by equation (3), as many times as needed for
convergence be achieved to the final condition, equation (4). This method may be
cumbersome to implement and somewhat susceptible to cumulative errors because a
higher-order derivative exists; furthermore, no general conclusions can be drawn out
for the problem because each time the parameters are changed the numerical
procedure has to be restarted and carried over once more.

An interesting alternative approach can, nonetheless, be devised after a careful
inspection of equation (2). In fact, no explict functional dependence on variable x
exists; the independent variable can, therefore, be changed from x to C [13,15]
through the definition of the auxiliary dependent variable @
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Application of the chain rule of differentiation to equation (5) and use of the resultin
equation (2) eventually gives
do v, C
dC D K,+C

(6)

Equation (3) is now directly replaced by an equivalent boundary condition, namely
C=C, ®=0 @)

where the subscript ¢ denotes the conditions on the symmetry plane of the slab.
Adequate integration of equation (6) coupled to equation (7) leads to
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A suitable variable normalization is now apparent, according to
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which leads to the logical definition of the following dimensionless parameter
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usually known as the Thiele modulus [5]. Using equations (9) and (10) in equation
(8), and recalling equations (4) and (5), one finally converts the differential equation
to quadratures, namely
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where C#* is the current independent variable of interest. An artefact is now possible
with respect to the evaluation of the above integral. In fact, the integral term in

equation (11) can be partitioned into two integrals, and a new dummy variable of
integration can be defined according to

¢=In(/CH (12)
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thus leading to
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Expansion of the exponential term in equation (13) as a McLaurin series [15], and
truncation after the quadratic term yields
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The integral in equation (14) can be obtained as a finite combination of elementary
functions, provided that a Chebyshev change of variable of the third kind is
performed [16, 17] according to
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After integration, (14) finally becomes
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An estimate of the error implicit in the foregoing approximation can be obtained by
numerically integrating equation (13) by a trapezoidal rule, with a total number of



mesh-points equal to Ny, ., each one being located in the x-dimension according to
the formula
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The fractional error of the approximation can be depicted in Figure 1 for a few levels
of parameter C¥.

When dealing with a chemical process aimed at the manufacture of a high-value
chemical compound via an enzyme-catalyzed biochemical route using fixed-bed
reactor technology, the choice of the thickness of the slab can be obtained as a
compromise between the market price of the product and the capital cost of the
pellet. This statement can be mathematically expressed via

Va=2AV D [E] t.—2ALV, (18)
dx x=L
where V, is the overall net profit associated with the operation of the reactor over the
entire service life of the enzyme, A is the cross-sectional area of the catalyst slab, I, is
the molar market price of the product, V, is the volumetric market cost of the
supported enzyme, and ¢, is the service life of the supported enzyme. Equation (18) is
equivalent to the dimensionless form
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Figure 1. Fractional error of the approximation used to compute Th, (Th,,,—~ Th)/Th,
plotted as a continuous function of C#* for various values of C¥.



where Ma is a dimensionless economic parameter defined as
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and the dimensionless net profit is obtained from
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Differentiating equation (19) with respect to’C¥, and setting the outcoming result
equal to zero, one obtains
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After the optimum value C¥,, for C¥ is found via equation (22) for any given Ma,
equation (16) can be used to obtain the corresponding value for Th,,, as depicted in
Figure 2. The calculation of the optimum value of the slab thickness is now apparent
from equation (10).

3. Discussion

The traditional approach to the optimal design of the thickness of slab-shaped
pellets catalyzing simple biochemical reactions is based on the calculation of an
effectiveness factor for the Michaélis—-Menten, rectangular hyperbola-type kinetic
expression [18,19]. A dimensionless parameter containing the Michaélis—Menten
kinetic constant appears to play an important role in such an analysis. The alternative
approach reported in this communication replaces that parameter by a dimension-
less concentration of substrate at the centre of the slab; this fact arises naturally from
the strategy followed during the integration of the differential mass balance to the
substrate within the pellet. Although introduced during the analysis in a way similar
to a boundary condition, C¥* is not truly required to specify any integration constant;
C#* turns out to be the actual, physically meaningful, independent variable in the
optimization procedure.

The expansion of the exponential function in equation (13) as a power series
presents obvious advantages relative to the expansion of the logarithmic function in
equation (11). In fact the former possesses an infinite radius of convergence, whereas
the latter has a considerably narrow, finite radius of convergence; thus, the expansion
actually employed leads to more general and powerful results.

The solution of equation (11) is accomplished at the expense of an approximating
function. The integrand of this equation possesses a singularity at the lower limit of
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Figure2. Plotof the values for Th,,, leading to the optimal economic design Th,, versus the
economic parameter Ma for various values of C¥.

integration which gives a major contribution to the value of the integral. The use of
the approximating function avoids numerical integration, which in this case might
be a notoriously error-prone process if no special precautions are taken in order to
deal with the aforementioned singularity. The approximation used consists of
expanding the exponential function in such a way as to become exact at the lower
limit of integration. In order to obtain an estimate of the error associated with the
approximation, the numerical integration of equation (13) was accomplished via a
trapezoidal rule, using a criteriously defined spacing for the mesh-points as
introduced in equation (17). The particular spacing formula employed clusters the
points near the lower boundary, where the singularity is more likely to affect the
mathematical behaviour of the function. Owing to the finite nature of the hardware
available for automatic calculus, integration can only be numerically started at a
positive value of 8, the lower boundary condition. The optimal  to be used, as well as
the total number of mesh points required were found by a trial-and-error procedure,
aiming at reaching the best compromise between low CPU time and high intrinsic
mathematical accuracy; a double-precision methodology was necessary in order to
release partly the constraint of additive error during the iterative numerical
evaluation of the integral. The percentual error does not exceed the 5 per cent level in
the range of physical interest. Larger values for C¥ lead to a monotonically
decreasing fractional error for the approximation. As C¥* increases, the fractional
error tends to become more sluggish with C¥, with the worst situation being
achieved at an intermediate range of the dimensionless surface concentration (about
11-:0). The highest interest lies on the case of having C*22:0, because this
corresponds to the physiological level where most enzymes exhibit the best operating
characteristics (i.e. C;~K,, leads to the largest efficiency coupled to the highest



control feasibility [1]). It is remarkable to note that the approximation resulting from
the truncation of the series expansion of the exponential function about zero after the
quadratic term always yields consistently positive deviations in the computation of
the Thiele modulus. Therefore, a conservative approach results, which makes
the approximation developed robust to inadequacies during modelling and/or
inaccuracies in the estimation of the parameters relevant for the operation.

As the value of the product of the reaction increases with respect to the cost of the
supported enzyme, the optimal concentration of substrate at the centre of the slab
decreases, and the corresponding Thiele modulus increases (see Figure 2). This
analysis is valid on the assumption that the substrate concentration on the surface of
the slab is known and kept constant, as is the case of a continuous stirred tank reactor
with the slabs suspended in the solution of substrate. If a fixed bed reactor is to be
used, then the substrate concentration is expected to decrease along the reactor as the
conversion level increases downstream; in this case, a non-uniform profile of slab
thicknesses along the reactor coordinate based on the results plotted in Figure 2
should be considered for maximum net profit if it is feasible to do so. If not, then a
weighted average of the values obtained for the optimal slab thickness according to
the procedure outlined previously should be used instead.

The shape of the Th,, versus Ma plot shows a steep bend in a narrow range of
values for parameter Ma, located at lower levels of Ma as C¥* gets larger. In the
remainder of the scale, the behaviour approaches either a vertical or a horizontal
linear asymptote, for lower and higher values of Ma, respectively. In general, the
optimum Thiele moduli do not change appreciably with Ma at high values for Ma,
this finding being especially true under the condition of high dimensionless surface
concentrations. This is equivalent to saying that the actual value of Ma is not too
important for the selection of the optimum slab thickness in the diffusional regime.
When the kinetic regime (low Th) is reached, however, the optimal slab thickness
becomes extremely sensitive to the economic parameter. The analysis reported here
can then be ascribed a high value provided that its results are used as a designing tool
for the industrial biochemical practice.

References
[1] WHITAKER, J. R., 1972, Principles of Enzymology for the Food Sciences (New York: Marcel
Dekker).
[2] LEHNINGER, A. L., 1982, Principles of Biochemistry (New York: Worth).
[3] BaiLey, J.E.,and OLL1s, D. F., 1986, Biochemical Engineering Fundamentals (New York:
McGraw-Hill).
[4] GeankopoLis, C. J., 1983, Transport Processes and Unit Operations (Boston: Allyn and
Bacon).
[5] HiLy, C. G., 1977, An Introduction to Chemical Engineering Kinetics and Reactor Design
(New York: Wiley).
[6] MicHaAELls, L., and MENTEN, M. L., 1913, Biochem. Z., 49, 333.
[7] SeceL, 1. H., 1975, Enzyme Kinetics—Behavior and Analysis of Rapid Equilibrium and
Steady-State Enzyme Systems (New York: Wiley).
[8] Nir, A., and PisMmEN, L. M., 1977, Chem. Engng. Sci., 32, 35.
[9] Birp, R. B., Stewart, W. E., and LicHTFOoOT, E. N., 1960, Transport Phenomena
(New York: Wiley).
[10] DANckwERTs, P. V., 1951, Trans. Faraday Soc., 47, 1014.
[11] CraNk, J., 1956, The Mathematics of Diffusion (Oxford: Oxford University Press).
(12] Aris, R., 1975, The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts
(Oxford: Clarendon Press).



{13] Boas, M. L., 1983, Mathematical Methods in the Physical Sciences (New York: Wiley).

[14) KRreyszig, E., 1979, Advanced Engineering Mathematics (New York: Wiley).

[15] STEPHENSON, G., 1973, Mathematical Methods for Science Students (London: Longman).

[16] Piskounov, N., 1980, Differential and Integral Calculus (Moscow: MIR).

[17] BaraNeNnkov, G., DEminovitch, B., EFiMENKko, V., FroLov, S,, Kogan, S., Luntz, G.,
PorsNEva, E., SHosTAK, R., SitcHeva, E., and YanpoLski, A., 1977, Problems of
Mathematical Analysis (Moscow: MIR).

[18] HougeNn, O., 1961, Ind. Eng. Chem., 53, 509.

[19] BiscHorr, K. B., 1965, American Institute of Chemical Engineering Journal, 11, 351.



	Push Button0: 
	Push Button1: 
	Push Button2: 
	Push Button3: 


