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ABSTRACT

~;v

The transient behaviour of a fin used to remove heat from the sUlface of a
rectangular-shaped liquid food container is studied in dimensionless form
leading to a single-term equation for the heat transferred in relation to
time. For heat-sensitive foods the rate of heat removal is important so an
economic value can be ascribed to such removal to balance the capital
investment on finning the container. An optimal solution can be found in
order to maximize the net profit involved using the fin length as the inde-
pendent variable.

NOMENCLATURE
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specific heat capacity ofthe fin material (J kg-1 K-1)
heat transfer coefficient for convection from the fin (W m - 2K - 1)
thermal conductivityof the fin material (Wm- 1 K-1 )
thiclmess of the fin (m)
width of the fin (m)
length of the fin (m)
number of times the fin is used to remove heat

total heat lost via the base of the fin (J)
heat flux via the base of the fin (W)
elapsed time (s)
uniform temperature in cross section of fin (K)
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- pCpLx reference time (s)
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To
Tw
Vh
V.I
Vn
Z

ambient temperature (K)
temperature of the base of the fin for t> O(K)
economic value of the heat withdrawn via the fin ($ J-I)
capital investment cost of the fin material ($ m - 3)
net profit after havingfinned the surface ($)
linear dimension along which the conduction of heat is assumed to
occur (m)

Dimensionless groups
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1/2' dimensionless operating factor
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= k (Q )' dimensionless heat flux via the base of the finLy Tw- To

~
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Q*
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= , dimensionless average fluxvia the base of the fint*

Q*CO= lim Q* , dimensionless heat flux via the base of the fin in steady-
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= , 1menSlOness net pro 1t
LxLyLzV;

z* =~, dimensionlesslinear distance
Lx

Greek symbols
p absolute density of the fin material (kg m - 3)

INTRODUCTION

Before a steady state can be reached in any food process some time must
e1apse after the process is initiated to allow the transient conditions to
disappear. Such a time interval appears to be of relevance for heat trans-
fer operations involving heat-sensitive systems so an unsteady state
approach should be employed in such cases in order to be able to predict
their thermal behaviour. For the case where batch operations are to take
place in the cooling of heat-sensitive liquid foods placed inside con-
tainers (e.g. accumulation vessels linking continuous and batch opera-
tions in a food process), the heat removal may be of great economic
importance. This is the case for a number of liquid foods such as milk
after pasteurization or fruit juices after having been concentrated by
evaporation. Instead of allowing the liquid to cool by natural convection
between the container surface and the atmosphere an outer surface
finning might be employed to speed up the cooling. Such a procedure
requires a capital investment on fins which, however, can be recovered
the more quickly the greater the economic value of the cooling processo

This paper deals main1y with the heat-removal characteristics of fins
and the relationship between its size-dependent capital cost and the
operating costs of removing the same heat by an alterna tive way, with the
objective of maximizing the net profit achieved.

MATHEMATICAL ANALYSIS

A fin of length Lz is fitted to a given surface as shown in Fig. 1. The initial
temperature along the fin is assumed to be uniform and equal to the
ambient temperature To. At time t = O the surface temperature changes
sudden1y to temperature Twdue to liquid contacting the surface. A heat
balance to the fin gives (Eckert and Drake, 1959)
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(a) (b) (c)

Lx

z z+dz

Fig. 1. Schematicof the finned liquid food container. (a) Top view af the finned liquid
food container. (b) Cross-sectional view of a fino (c) Elementary control volume over

which enthalpy balanceis made.

heat input heat output heat output
by = by + by + heat accumulated

conduction conduction convection

A reasonably good description of the system, may be obtained by
approximating the true physical situation by a simplifiedmodel, assum-
ing the temperature presents a unidimensional variation, no heat is lost
from the end or from the edges of the fin and the heat flux at the surface
is given by Newton's law for convective heat transfer with constant heat
transfer coefficient (Bird et ai., 1960). The heat balance referred to
above can then be applied to a volume element L xLy dz, where L xand
Ly denote the thickness and width of the fin, respectively, and z the
linear dimension along which the conduction of heat is assumed to occur
(seeFig. 1),to give(Jakob, 1949)

-kL L
(

aT

)
x y az z

(

aT
) (

aT
)= - kLxLy J8 + 2h(Lx + Ly)(T- To)dz + LxLypCp _a dz (2)

z z +dz t z

(1) 4

k being the thermal conductivity of the fin material, h the heat transfer
coefficient for convection fwm the fin surface, Cp the specific heat
capacity of the fin material, p the absolute density of the fin material and
T the uniform temperature of the cross section of the finoRearranging
eqn (2) leads to
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Introducing dimensionless variables defined as

(3)

T*= T- To
T. - 'T'w LO

a dimensionlesstemperature (4)

z
z*=-

Lx

t
t*=ot

a dimensionless linear distance (5)

a dimensionless e1apsed time (6)

tObeing a reference time, and combining eqns (4)-(6) with eqn (3) leads
to

(

a2T*

)

-
(

aT*

)
- Bi. Ge. T* = O

az*2 at*
(7)

where Bi is a Biot number and Gea geometrical shape factor defined as

h

Bi= (2kLx-l)
(8)

and

Ge~4(~+1)
(9)

The reference time, tO,is then given by

tO= LxLyLzpCp( Tw- To)
LyLz( Tw- To)/Lx

(10)

tObeing the time it would take to heat the fin from its initial temperature,
To, to the wall temperature, Tw,if all the heat necessary entered by con-
duction via one of the horizontal surfaces of the fin, the remaining
surfa6es being perfectly insulated, and the temperature gradient were
constant and given by (Tw- To)L; 1.

The following initial and boundary conditions are assumed for all real,
positivevalues of z* and t*
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at t* = O, T* = O

at z* = O, T* = 1

(11)

(12)
when

z*-- 00, T*--O (13)

Applying the Laplaee transform to eqn (7) in arder to eliminate the inde-
pendent variable t*, using eqns (11), (12) and (13), and then eonverting
to the real domain (seeArpaci, 1966), eqn (7)leads to

T*(z*, t*)~ ~ exp{- (Ei. Ge)'" z*) crfe L~~/2 - (Ei. Ge)W t*W)

+1. exp{(Bi. Ge)1/2z*} erfe
!

z: /2 +(Bi. Ge)1/2 t*1/2
)2 2~ (14)

where erfe is the eomplementary errar funetion (Kreyszig, 1979). The
heat fluxvia the base of the fin ean then be expressed as

Q* = (Bi. Ge)1/2
!
erf[(Bi. Ge. t*)1/2]+ exp[ - Bi. Ge. t*]

)(n. Bi. Ge. t*)1/2
(15)

Q* being a dimensionless heat flux defined by

Q*= Q
kLxLy(Tw- To)/Lx

where Q is the non-dimensionless eounterpart of Q*.
When t* tends to infinity then the operation tends to a steady state. In

that case the dimensionless heat lost via the base of the fin is given by
Q*oodefined as

(16)

Q*oo = (Bi. Ge)1/2 (17)

The ratio of Q* to Q*ooean be observed in Fig. 2.
The average heat lost via the base of the fin, Q*, ean then be written as

Q*=(B.i.Ge)l:
!(

Bi.Ge.t*+1.
)

erf[(Bi.Ge.t*)1/2]Bl. Ge. t 2

(

Bi. Ge. t*

)

1/2

)+ n exp{- Bi. Ge. t*} (18)
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Fig.2. Ratios of dimensionless heat lost via the base of the fin (Q*) and average
dimensionless heat lost via the base of the fin (Q*) to the dimensionless heat lost under

steady state operating conditions (Q*"").

The ratio of Q* to Q*cocan also be observed in Fig. 2 (National Bureau
ofStandards, 1954).

When dealing with the option of either finning a given surface ar not, a
cost estimation problem then arises which usually has to be solved for
the maximum net profit:

The net profit, Vn, may be expressed as the difference between the
economic value of the heat withdrawn, Vh,and the capital investment, ~,
as follows

Vn= NQVh - LxLyLz Vi (19)

Nbeing the number of times the fin is to be used to remove heat from the
stated initial conditions and Q the total heat lost via the base of the fin
after time t. U sing dimensionless variables in eqn (19) leads to

V:=( . Vo )1/2[(
Bi.Ge.t*+!

)
erf((Bi.Ge.t*)1/2}

Bl. Ge 2

(

B' G t*

)

1/2

]+ 1. ne. exp( - Bi .Ge. t*} - 1
(20)



* Vn
V=-

n Lx LyLz Vi

The variation of v: with (Bi. Ge. t*) can be observed in Fig. 3. Setting
the fin length, Lz, as the independent variable during the course of net
profit optimization, differentiating eqn (22) with respect to Lv putting
the resulting expression equal to zero and performing some algebraic
work final1yleads to

Of= exp{ - Bi. Ge. t*}+ (n. Bi. Ge. t*)l/2erf{(Bi. Ge. t*)1/2} (23)

Ofbeing a dimensionless operating factor given by

1/2 V;
OF n i
J=2 N C (T. - 'E)V t*1/2P p w o h
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I Vobeing a cost ratio defined by

NpCp( Tw - To) VhVo
V;1

and V: a dimensionless net profit given by

4

II/PJ
V /(BLGe) c...
o

* c
>
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o
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~
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Fig. 3. Dimensionless net profit, V:, versus factor Bi. Ge. t* for transient operating
conditions.
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Fig. 4. Maximumnet profit as a functionof dimensionlessoperating factor (Df)versus
factor Bi. Ge. t*.

The optimum points for maximum net profit are shown in Fig. 4 as Df
versus Bi. Ge. t*.

DISCUSSION

If a steady state approach had been made the followingresult would have
been obtained for the heat lost via the fin base

Q*= (Bi. Ge)1/2tanh{(Bi.Ge)1/2} (25)

The value for Q* referred to above is equal to that stated by eqn (17) as
long as the value of variable Bi. Ge is large. This constraint is in good
agreement with the validityof the currently accepted boundary condition
which assumes no heat is lost by the tip of the fin so its temperature must
be equal to the ambient temperature (Geankopolis, 1983).

When the heat removal process starts the temperature of the base
increases from its initia11yambient temperature to the wall actual tem-
perature. So the initial rate of heat removal is extremelyhigh,most of that
heat being sensible heat acquired by the fin itself.This behaviour can be
taken advantage of when designing the cooling fin system especially in
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cases where the liquid food container operates batchwise and it is fre-
quently filled up with fresh hot fluido

The analysis developed above assumes the walI temperature remains
constant after the container has been initially filled up with fresh hot
liquid food. However, the bulk temperature of the liquid decreases .as
time elapses, so the former ana1ysis seems to depart from physical
accuracy. One situation may occur which, however, ensures validity for
the assumptions made: the liquid food heat capacity is far larger than the
heat capacity of the metallic finned container, so the temperature of the
base of the fin decreases I:~lativelylittle with time leading to quasi-steady
state conditions along the finoThis is the case for most liquid foods with
high water contents and large capacity liquid food containers. Besides, as
the temperature of the liquid food decreases, the heat transfer coefficient
for natural convection inside the container decreases, so the quasi-steady
state assumption referred to above, becomes more and more validoIf the
temperature of the base of the fin decreases significantlyover the time
range chosen, Vo and Of are no longer constant so an operating line
crossing some of the lines sketched in Fig. 3 is obtained. In addition to t*,
the variation of (Tw- To)then also accounts for the actual variation of
Of.

In eqn (22) the economic value of the heat lost via the outer surface of
the container if there were no fins should have been subtracted. This
approximation is, however, in good agreement with physical evidence
because the main resistance to heat transfer is on the outside, the cross-
sectional area of each fin, LxLY'being usually negligiblewhen compared
to the actual area of the heat transfer surfacesof the fin, 2 LyLz.

A careful use of Fig. 4 enables the optimal fin length to be computed
in order to achieve maximum net profit. After havingdefined alI operat~
ing and geometrical conditions except the length of the fin a value for
factor Ofis obtained which corresponds to a certain value for Bi. Ge. t*.
The optimallength is then directly computed once t* and Bi and Ge are
known. For values of Of less than unity no optimization procedure is
possible. For existing fin equipment the fin length cannot be changed,
therefore the operating time for the coolingoperation should be adjusted
so that the working point is on the curve of Fig. 4, so maximizingthe
economic advantage of the existingfino
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