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On the appropriateness of use of a continuous formulation for the modelling 
of discrete multireactant systems following Micha lis-Menten kinetics 

T. R. Silva, F. X. Malcata 

Abstract The possibility of solving the mass balances to D 
a multiplicity of substrates within a CSTR in the presence of 
a chemical reaction following Michaelis-Menten kinetics using 
the assumption that the discrete distribution of said substrates is i 
well approximated by an equivalent continuous distribution on I 
the molecular weight is explored. The applicability of such j 
reasoning is tested with a convenient numerical example. In k 
addition to providing the limiting behavior of the discrete K,~ 
formulation as the number of homologous substrates increases, 
the continuous formulation yields in general simpler functional I 
forms for the final distribution of substrates than the discrete M 
counterpart due to the recursive nature of the solution in the M* 
latter case. M~o 

Hst of Symbols 
C{ N. AM} mol/m 3 

N 
concentration of substrate 
containing N monomer residues 
each with molecular weight AM 

C{ N. AM} - normalized value of C{ N. AM} N*oo 
C* { M} mol/m 3 da concentration of substrate of 

-x-  
C(i) 

C*{M} 
Co { N. AM} mol/m 3 

C0{ N. AM} - 

molecular weight M 
normalized value of C*{ M} at 
the i-th iteration of a finite 
difference method 
normalized value of C*{ M} 
inlet concentration of substrate 
containing N monomer residues 
each with molecular weight AM 
normalized value of Co { N. AM} 
normalized value of C~{ M} at 
the i-th iteration of a finite 
difference method 
initial concentration of substrate 
of molecular weight M 
(constant) overall concentration 
of substrates (discrete model) 
(constant) overall concentration 
of substrates (continuous model) 

C~" { M} mol/m 3 da 

Cot mol/m 3 

Ct*o, mol/m 3 
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N~o 

Q 

S 
Si 

V 

Vmax 

Vmax{ N. AM} 

Vmax { N .  A M }  

~m~ax { M}  

Vrnax 

~m*ax 

V~m~{M} 

9~x{ M} 

m 

mol/m 3 

m 

da 

da 

m 

m3/s  

m 3 

mol/m 3 s 

mol/m 3 s 

mol/m 3 s 

mol.da/m 3 s 

mol.da/m 3 s 

deviation of the continuous 
approach relative to the discrete 
approach 
dummy integer variable 
arbitrary integration constant 
dummy integer variable 
dummy integer variable 
Micha~lis-Menten constant for 
the substrates 
dummy integer variable 
molecular weight of substrate 
normalized value of M 
maximum molecular weight of 
a reacting substrate 
number of monomer residues of 
a reacting substrate 
maximum number of monomer 
residues of a reacting substrate 
total number of increments for 
the finite difference method 
volumetric flow rate of liquid 
through the reactor 
inert product molecule 
substrate containing i monomer 
residues 
volume of the reactor 
reaction rate under saturating 
conditions of the enzyme active 
site with substrate 
reaction rate under saturating 
conditions of the enzyme active 
site with substrate containing 
N monomer residues with 
molecular weight AM 
dimensionless value of 
Vmax{ N. AM} (discrete model) 
dimensionless value of Vm~ax{ M} 
(continuous model) 
molecular weight-averaged value 
of Vmax (discrete model) 
molecular weight-averaged value 
of Vmax (continuous model) 
reaction rate under saturating 
conditions of the enzyme active 
site with substrate with 
molecular weight M 
dimensionless value of Vm~x{ M} 
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Vm~ ax, 6) 

V0max mol/m 3 s 

dimensionless value of Vmax{ M} 
at the i-th iteration of a finite 
difference method 
reference constant value of Vm.x 

Greek symbols 
/3 

p,  

AM 

AM* 

E 

da 

dimensionless operating 
parameter (discrete distribution) 
dimensionless operating 
parameter (continuous 
distribution) 
(average) molecular weight of 
a monomeric subunit 
selected increment for the finite 
difference method 
auxiliary corrective factor 
(discrete model) 

I 

Mathematical statement 
Although most enzymes possess a very high degree of specificity 
towards their substrates due to their catalytic role in vivo, some 

conditions and absence of enzyme deactivation. In this type of 
reactor the ease of operation, low construction costs, and 
absence of concentration gradients of the stirred batch 
counterpart are coupled with the possibility of steady-state 
operation and lack of disturbance on the reacting fluid upon 
sampling which are characteristic of continuous flow reactors 
[6]. A state of perfect micromixing within the reacting fluid 
is assumed throughout [7], which eliminates the need for 
taking residence time distributions into account in the mass 
balances. The enzyme kinetics is assumed to be accurately 
described by a multisubstrate Micha~lis-Menten rate 
equation [a] for which the dissociation constant (also known 
as Micha~lis-Menten constant) associated with the enzyme- 
substrate complex, Kin, has the same value irrespective of the 
type of moiety bound thereto. This type of behavior, i.e., 
variable Vmax (where Vmax is the maximum rate of reaction 
under saturation conditions of substrate) and constant Kin, 
has been observed previouslyl e.g. in the hydrolytic action of 
horse liver esterase on fatty acid moieties of different chain 
lengths [8]. 

If one uses the discrete, multireactant approach, the mass 
balance to every type of substrate reads 

Vmax{N. AM } C{N. AM}=o, N>N~, 

QCo{N. AM}+ 
VVmax{ (N+ 1). AM} C{ (N+  1). AM} 

K m Av Clo t 

VVmax{(N+I).AM } C{(N+I).AM} 

Kin+ Ctot 
QCo{N. AM}+ 

= QC{N. AM}+ 
VVmax{N. AM} C{N. AM} 

=QC{N. AM}, N=I. 

Kin+ C,o, 
2<~N<~N~, (2) 

enzymes exhibit a large affinity to a wide variety of polymeric 
substrates provided that these substrates share a common type 
of labile covalent bond [1]. In such situation, the various 
reactants compete with one another for the active site of the 
enzyme irrespective of their sequence of monomer residues or 
overall molecular weight. Examples documented in the literature 
include the action of such hydrolases as lysozyme on 
mucopolysaccharides of bacterial cell walls [2], amylo- 
glucosidase on amylose [3, 4], and peptidases on various 
peptides derived from paracaseins [5]. 

Of particular interest here are the reactions effected by soluble 
exo-hydrolases (i.e., enzymes that cleave ester, glycosidic or 
peptide bonds next to the ends of polymeric carbon backbones, 
thus releasing monomeric subunits) on complex mixtures of 
substrates consisting of bipolymers of various chain lengths. The 
general stoichiometry can be represented as follows: 

Si ---> S i - I -~ -S  ( 2 ~ i ~ N ~ ) ,  (1) 

where Si denotes a substrate consisting of i monomeric subunits 
and Noo is the number of subunits of the largest molecule 
existing in non-negligible concentration which is susceptible to 
enzymatic transformation. In this mechanism, both S~ and 
Si-1 can bind and be transformed by the enzyme, but the 
monomeric units S and $1 do not bind significantly to the 
enzyme (hence the enzyme is not active upon either of them). 

The chemical reaction is assumed to be carried out in 
a continuous stirred tank reactor (CSTR) under isothermal 

where Q is the volumetric flow rate of reacting fluid, subscript 
o denotes inlet conditions, V is the volume of the reactor, N is the 
number of monomeric subunits in each molecule, AM is the 
(average) molecular weight of each monomeric unit, C[ N. AM} 
and C{ (N+  1). AM} are the molar concentrations of molecules 
with molecular weights equal to N. AM and (N+I )AM,  
respectively, and Vmax{ N. AM} and Vmax{ (N-~ 1). AM} are the 
maximum rates of reaction under saturation conditions of the 
enzyme with molecules of molecular weights equal to N. AM and 
(N+  1)AM, respectively. The constant Clot is given by: 

N~ N~ 
C,o,-= Y~ C0{N.AM}= y__, CiN. AM}, (3) 

N=I N=I 

where advantage was taken from the one to one stoichiometry 
for the active reactants as depicted in Eq. (1). In Eq. (2) and 
for 1 <~N<~No~, the first term in the LHS represents the inlet 
molar flow rate of molecules with molecular weight equal 
to N. AM, the second term in the LHS represents the molar rate 
of production of molecules with molecular weight equal to 
N. AM [or, equivalently, of consumption of molecules with 
molecular weight equal to (N+ 1). AM], the first term in the 
RHS accounts for the outlet molar flow rate of molecules with 
molecular weight equal to N. AM, and the second term in the 
RHS (in the case where it exists) arises from the molar rate of 
consumption of molecules with molecular weight equal to 
N. AM. Equation (2) is equivalent to the following recursive 
relation: 



T. R. Silva, F. X. Malcata: On the appropriateness of use of a continuous formulation of modelling 

G{N/Noo} 
C{N/Noo}-l+flFmax{N/Noo}, N=Noo, 

G {N/Noo}+[3Pm~{(N+ I)/N~} C{(N+ I)/N~o} 
C{N/N~o}-- , 2<-GN<~Noo--1, 

C{N[Noo}=G{N[Noo}+flPmax{(N+l)[Noo}C{(N+l)/Noo}, N=I. 

(4) 

The situation of N >  No~ was no longer taken into account due to 
its inherent lack of practical interest here. The dimensionless 
operating parameter fi, which is the ratio of the time scale 
associated with convection through the reactor, V/Q, to the time 
scale associated with the enzymatic reaction, (Kin + Got)/~ . . . .  is 
defined as: 

f l=-Q(K, ,+ C,ot) " (5t 

where 0m~* is the molecular weight-averaged value of Vmax: 

N 
^ E N ~ I  Vmax { N .  d i M } .  AM 
Vmax ~--- ~ (6) 

~'N = 1 diM 

is a normalized concentration given by: 

C 
C--- Ctot' (7) 

and ~ .... is a dimensionless maximum rate of reaction defined 
a s :  

"Vma x 

Gax = fro.x" (8) 

Combination of Eq. (4) from N=Noo down to N =  1, one 
obtains [9]: 

with the generic reaction depicted in Eq. (1): 

dM V'max { M} 
dt - Km + Ct*ot' (ll) 

where V'max { M} dM is the maximum rate of reaction under 
saturation conditions of molecules with molecular weight 
comprised between M and M +  dM, and where the constant 
Ct*ot is given by: 

M~ M~ 

C~t = ~ Co*{M} dM = y C*{M} dM, (12) 
0 0 

where M~ denotes the limit in molecular weight above which 
either the substrate concentration is virtually nil or the enzyme is 
virtually inactive (Moo =Noo. AM as required for consistency). In 
Eq. (lo), the term in the LHS represents the net molar rate of 
production of molecules with molecular weight comprised 
between M and M +  dM or, equivalently, the difference between 
the molar rate of consumption of molecules with molecular weight 
comprised between M +  dM and M+2dM and the molar rate of 
consumption of molecules with molecular weight comprised 
between M and M+ dM. The first term in the RHS accounts for the 
inlet molar flow rate of molecules with molecular weight comprised 
between M and M+dM, whereas the second term in the 

Co{NINe} 
C{N/Noo]-l+fl?m~x{N/Noo}, N=No~, 

y i C{NINoo} C~176176 N~Z'nC~176176 [L=~176176 
- ~- 2 _ ,  

l+fiVmax{N/N~} j=l 1-[J=o(l+fiVma• 

~{N/No~}=ffo{N/N~o} + ~ Co{(N+j)/Noo} [}l=o(figm~x{(N+j--I)/Noo}) N = I  

j=~ Y[Jk=o(l+fiVmax{(N+j--k)/N~}) 

2 ~N~< N~o -- 1, (9) 

If a continuous formulation is employed, then the material 
balance under steady state conditions to the (infinity of) 
substrates should be mathematically expressed in terms of the 
local population density in a way similar to the population 
balance to a MSMPR crystallizer operating under steady state 
conditions [lo]: 

RHS represents the outlet molar flow rate of molecules with 
molecular weight comprised between M and M +  dM. 

Rearrangement of Eq. (lo) yields: 

d 
C* {M*}-- t*  ~ {  F'max{ M*} C* {M*}} = Co* { M*} 

V ~  ~ = Q(C~{M}--C*{M}), ( lo)  C* {M *} = Co* { M*} 
1 +fl* ~m*ax {M*} ' M * = I  

where C*{M} dM is the molar concentration of molecules with 
molecular weight comprised between M and M +  dM. The 
analogy between the continuous and the discrete distribution of 
substrate concentrations is apparent by making M =  N. AM in where 
Eq. (lo). The rate of variation of the molecular weight of 
a substrate with a given molecular weight is essentially equal to M ,  - M 
the negative of the pseudo-first order rate constant associated Moo' 

Pm*ax{M*} C*{M*}=O, M * > I  

(13) 

(14) 
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and, in a similar fashion to Eqs. (7), (5), and (8), one obtains: 

C ~- 
C* ~_ C~m, (15) 

V~.x 
fl*~ (16) M~ Q(K~+C~,)' 
and 

-2 Vmax 
Vm ax "~ ~ ,  

Vmax 07) 

respectively, under the assumption that: 

y~dM 

Equation (13) may be rewritten as: 

d 
dM* {fl* 9*m.x {M *} C* {M *}} 

08) 

1 ) (fl* g ~  {M*} C* {M*}) = - ( ~  {M*} 
-- fl* V~ax {M "1 

09) 
C*{M*}- ~{M*} M*=I  

1 +Wm~{M*} ' 

where, as before, the situation of M>M~ was discarded. 
The above equation has the form of an ordinary first order 

liner differential equation with fl* 9~ax {M*} C* {M 2} as the 
dependent variable and M as the independent variable. The 
general solution of Eq. (19) can be written as [it]: 

fl* 9m*~x {M *} C* {M *} = 
( 1 r dM* 

I-jC0* {M*} exp ~-~-~J pm, E ~ ,  } }dM* 

{ 1 r dM* } ' 
exp - - ~ j ~ ,  {M*} 

C~ {M *} 
C * { M * } -  l+fl*Vm*ax{M*}' M * = I  (20) 

where I denotes an arbitrary integration constant. 
The general analytical form of Eqs. (9) and (2o) depends on 

the shape of the distribution of inlet concentrations of substrates 
susceptible to enzymatic action, i.e., C0 {M} and C~'{M}, 
respectively. If the following condition is satisfied: 

1 
C* {M *} - 9~*~ {M 2}, (21) 

then Eq. (2o) can be simplified to: 

~*~ {M *} C* {M "1 = 

I+ fl* exp -~-~ j ~m~a x {M *} 

, 1 fi e x p { - - ~  dM* 

1 
- -  M *  = 1 ( 2 2 )  

C* {M*} V~ax {M*} (1 q- fl* Vm*ax {M*}) ' 

Application of the limiting condition listed in Eq. (22) finally 
yields: 

~ .  {M*} C*{M*}=I-- (1 

If fix tends to zero, then Eq. (23) becomes: 

lim ~*m,~{M*} C*{M}= 1. 
fl*so 

(2a) 

Eq. (24) can also read: 

1 
lim C* {M *} = C~ {M*} (25) p,so - ~*.~ {M *} " 

This result is expected because the conversion in the reactor 
should be negligible when the reactor residence time is very 
small when compared with the time constant associated with the 
enzyme-catalyzed reaction; remember that, as discussed before, 
fl* is the ratio of these two time scales. 

In the general case, which encompasses Eq. (22) as a special 
situation, Eq. (13) can be solved by a finite difference method: 

C~,(i)AM* / , A M * \ - 2  
fi, ~-~17 . . . .  (i)--~fi~--)C(i) 

C('f- 1) = , l<.i<~N~ -2 Vrnax, (i - 1) 
(26) 

0(N~) 1 +fi*Vm*ax,(U~=) ' 

where AM* is the selected increment for the finite difference 
method, N* is the total number of increments, and (i) denotes 
the i-th iteration. 

2 
Numerical example 
Assume that: 

Ymax {N. AM} = v~ AM, (27) 

and, in a similar way: 

Ym~ax {M } = (V~ ~ )  N ~ ,  (28) 

where Vma xO denotes a reference value of the maximum rate of 
reaction. Under these circumstances, Eqs. (6) and (8) give: 

~max = "~ { N~ } 4N/Noo, 

where ~ is a corrective factor given by: 

N3/2 oo 

whereas Eqs. (17) and (18) give: 

Assuming in addition that: 

1 1 
G 

"Vmax {/~' gQo } ~, { Noo } N % ~  ' 

1 ) )1 1 + fix V'max {M *} exp -- S V'max {M *} ~?*ax {M*} " 

(29) 

(30) 

(31) 

(32) 

(23) 
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as well as 

1 2 
C~ = - -  - -  ( 3 3 )  

9m'a, {M*} 3 ~ x / ~ '  

and using Eqs. (z9), (3o), and (3z) in Eq. (9), and Eq. (31) in Eq. 
(23), one finally obtains: 

molecules increases). The deviation between the continuous and 
the discrete approximation, defined as: 

D = C*{M*} dM*-C{N/Noo} , (36) 
N=l \(N l)m~ 

is virtually zero due to the fact that the overall concentration of 

Vmax{N/Noo} C{NINo~}=O, N>Noo 
1 

eiNINJ--7~{Noo } x/N~m§ (NINe)' N=-N~ 

1 N~-n  flJE{Noo}J-~H~-~x/(n+j--l)lN~ 

C{ N/N~} -- "~ { Nm} x/NINoo 4- flTa2{ Noo } (NIN~o) ~- j=~ x/(N+j)INoo Hi=0 (1 + fiz{ Nm} x/(N+j-- k)/No~)' 

1 N~-N f lJZ{Noo}J-~l~{ - lo~/ (N+j - -1) /N~o 

e{N/N~o}= ~{Noo} # N - - ~  ~- j=~ ~ x/(N+j)/N~l~J=oO§ } x / (N§ IN~)' 
N = I  

2 <~ N <~ Noo -1, 

(34) 

and: 

9*m,x{M*} C~*a~{M*}=0, M * > I  ( {4 }) 3fi* e x p -  ( 1 - , f M  2) 
C*{M*}= 2 1 2 +3fi* ~fi7 

3,/v; 

(35) 

O < M * ~ I  

respectively. Equations (34) and (35) are graphically plotted in 
Fig. z for five values of N~ and three values of ft. 

3 
Discussion 
The constraint that the integrals and summations of Vrnax and 
Co in M remain upperly bounded for every value of M and N. AM 
in the range under scrutiny, which does not necessarily imply 
that Vmax and Co remain upperly bounded themselves in that 
range, can not be violated; otherwise the average values 9max (or 
0*max) and Cto t (or Cgt) may not be defined by Eq. (6) or Eq. (18), 
and Eq. (3) and (12), respectively. 

The continuous approximation is, in general, good for every 
value of fl, covering the range from small conversions (i.e. small 
fi, or, equivalently, kinetic control) to large conversions (i.e. 
large fl, or equivalently, convection control). In the case 
documented (see Fig. 1), the differences between the two 
approaches at high values of fl are particularly impressive for the 
concentrations of the monomeric substrate because, since all 
polymeric substrates will eventually be transformed into 
monomeric forms via the enzyme-catalyzed reaction, the peaks 
for the monomer will be very large although their areas can be 
balanced by the area below the continuous distribution, which is 
especially steep as it tends to infinity when M tends to zero. Note 
that the dimensionless concentrations can be higher than unity 
for certain ranges of molecular weights provided that in other 
ranges they are below unity. The normalizing factor is the total 
concentration of substrates rather than the maximum local 
concentration of any given substrate. 

The continuous approximation improves in accuracy as 
N~o increases (as expected, since the number of distinct substrate 

subs t ra tes ,  Cto t and  C~t , is in both cases a constant which is 
supposed to take virtually the same value. In general, it can be 
stated that if more than 50 substrates of a homologous series are 
considered as the feedstock, then the approximation of the 
continuous approach to the discrete approach is very good. 

Although it might be argued that at M * = I ,  
V*ax {M *} C* { M*} = 0, this boundary condition yields very 
poor results in terms of agreement of the continuous 
distribution with the discrete counterparts, because the 
imposition of a nil boundary condition at M * =  1 affects the 
behavior of C* {M*} in its neighborhood in a strong fashion 
since smooth, rather than steep changes are allowed in any 
vicinity; such effect gets attenuated as M* gets further apart 
from unity. Therefore, one has to resort to the alternative 
boundary condition that, at M*= 1 (or, in a more appropriate 
fashion, at M * =  1-}, C*{ M*} =fig{M*} /(1 +fl*9*m,x {M*}); 
the latter value is obtained as the limiting behavior in terms of 
substrate concentration of a CSTR characterized by parameter 
fl* where the substrate with a dimensionless molecular weight 
equal to unity is being converted to a substrate with 
a vanishingly smaller molecular weight. 

Continuous formulations of discrete problems have found 
some use in the past, e.g. in the simulation of distillation 
operations of multicomponent mixtures consisting of a great 
variety of homologous hydrocarbons. The advantage of using 
a continuous distribution instead of a discrete distribution for 
the case of enzymatic reactions is the ease of definition of 
a continuous solution rather than a recursive solution in several 
situations of practical interest. Although major differences 
between the simple form given by Eq. (35) and the involved form 
given by Eq. (34) are apparent, other concentration and 
maximum rate distributions might lead to not so dramatically 
distinct results especially if the recursive relations denoted as Eq. 
(4) and (z6) are to be employed in numerical algorithms. In any 
case, the method developed in this communication is relevant 
from the applied point of view because it suggests that the 
fractional accuracy in predicting the actual discrete distribution 
of concentrations is good especially for the larger substrates, i.e. 
the ones which often exist in larger concentrations. It should be 
noted that one of the most common goals underlying the 
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Fig. la c. Plots of the concentration distributions as continuous functions of (c) Noo = 2o, (d) N = lO, and (e) N~o = 5, for (la) fl = o.1, (zb) fi = 1, and (lC) 
the molecular weight for (a) N| = oo (continuous distribution), (b) No~ = 5o, fi = lO in all cases it was assumed that M = lOO, and hence fl*= fi/lOO 

utilization of a reaction system of the type described above is the 
general decrease in the degree of polymerization of the heavier 
substrates rather than the accurate description of the rates of 
production of monomers and dimers at the expense of such 
molecules. 
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