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Abstract This communication consists of a mathematical kg i/s 
analysis encompassing the maximization of the average rate of 
monomer production in a batch reactor performing an 
enzymatic reaction in a system consisting of a multiplicity kcat, i 1/s 
of polymeric substrates which compete with one another for 
the active site of a soluble enzyme, under the assumption that K m mol/m 3 
the form of the rate expression is consistent with the L - 
Michaelis-Menten mechanism. The general form for the Mi - 
functional dependence of the various substrate concentrations N - 
on time is obtained in dimensionless form using matrix 
terminology; the optimum batch time is found for a simpler r~ mol/m3s 
situation and the effect of various process and system variables r~ mol/m3s 
thereon is discussed. The reasoning developed here emphasizes, ro~t - 
in a quantitative fashion, the fact that the commonly used 
lumped substrate approaches lead to nonconservative decisions S 
in industrial practice, and hence should be avoided when S~ - 
searching for trustworthy estimates of optimum operation. S~ - 
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reaction 
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loading, and unloading the batch 
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time interval leading to the maximum 
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eigenvectors associated with eigenvalue 
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: ( i j  mol/m3 
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arbitrary constant associated with 
eigenvalue )oi ( i=  1, 2 . . . . .  14 

j = l ,  2 . . . . .  Ui)  
generic eigenvalue 
i-th eigenvalue 

1 
Mathematical analysis 
Enzymes are the biological catalysts of nature. These catalytically 
active globular proteins possess, over the inorganic (or 
synthetic) catalysts, the advantages of extremely high activity, 
selectivity, and controllability [1]. Due to their in vivo 

requirements, some degradative enzymes show, nevertheless, 
considerable affinity to a wide variety of polymeric substrates 
provided that these substrates share a common type of labile 
covalent bond [2]. In this situation, the various reactants 
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compete with each other for the active site of the enzyme 
irrespective of their sequence of monomer residues or overall 
molecular weight. Examples documented in the literature 
include the action of such hydrolases as lysozyme on 
mucopolysaccharides of bacterial cell walls [3], and 
amyloglucosidase on amylose [4, 5]. 

Of particular interest here are the reactions effected by soluble 
exo-hydrolases (i.e. enzymes that cleave ester, glycosidic or 
peptide bonds next to the ends of polymeric carbon backbones, 
thus releasing monomeric subunits) which are not catalytically 
active on dimeric or monomeric subunits (e.g. exoproteases 
deprived of dipeptidolytic activity) on complex aqueous 
mixtures of substrates consisting of linear biopolymers of 
various chain lengths. The general reaction mechanism can be 
represented as follows: 

Km 
S I - S i + E  ~ E ( S I - S i )  

k~~ E+SI--Si_I+So, i=1,  2 , . . . ,  N--1 (1) 

Km kcat, 2 
SI--SI-}-E ~- E(S1-S1) ) E + S I + S  o 

where S~-SI denotes a substrate made of i detachable 
monomeric subunits (i.e. So) out of a total of i+1 subunits, 
S, denotes an inert moiety, E denotes an enzyme molecule, N is 
the maximum number of subunits in a single polymeric 
molecule, Km is the equilibrium constant associated with the 
dissociation of every type of enzyme/substrate complex 
(traditionally known as Michaelis-Menten constant), and kcat, i is 
the first order rate constant associated with the formation of 
substrate containing i - 1  total monomeric subunits. Assuming 
that (a) So does not bind to the enzyme, (b) $1 can bind to the 
enzyme but can not be transformed by it, and (c) S,-S~ 
(i = 1, 2 . . . . .  N) binds to the enzyme and can be transformed 
by it, the rate expression associated with each one of the above 
enzyme-catalyzed reactions can be written as [6] 

kcat, i Ca, tot Ci 
i=  2, 3 . . . . .  N, (2) 

h - - K m + E N ~  C:' 

where h (i = i, z ..... N- I) denotes the rate of the i-th reaction 

(i.e. the rate of consumption of substrate S~-S~, or, equivalently, 
S~+I), C~ the molar concentration of substrate Si, and Ca, tot the 
total concentration of enzyme molecules. The rate of formation 
of So is therefore given by 

Y~=2 G,,ic~,,o,c~ (3) 
r , -  K~+~ j~  1 Cj 

The chemical reaction is assumed to be carried out in a batch 
stirred reactor under isothermal conditions and absence of 
enzyme deactivation. Under these conditions, Eqs. (2) and (3) 
allow one to write the mass balance to the set of N species of 
form S~ ( i=  o, 1 . . . . .  N) in the following condensed fashion: 

dC 
- - = K C ,  
dt 

t=0,  C =  Co. 

where C -  ( Co 

(4) 

c 1 c 2 . . .  CN) T Co-~.(Co, 0 Cl,  o C2, o . . .  CN, O) T, 

matrix K is defined as 

K -  

"0 0 k 2 k3 k4 . . .  kN-2 KN-1 kN 

0 0 k2 0 0 . . .  0 0 0 

0 0 - k 2  k3 0 . . .  0 0 0 

0 0 0 - k 3  k4 . . .  0 0 0 

0 0 0 0 - k  4 . . .  0 0 0 

0 0 0 0 0 .. .  0 0 0 

0 0 0 0 0 . . .  kN_ 2 0 0 

0 0 0 0 0 . . .  - k lv -2  kN-1 0 

0 0 0 0 0 . . .  - k N - 1  kN 

0 0 0 0 0 . . .  0 0 --kN 

(5) 
and t is the time elapsed since startup of the batch reactor. The 
definition of the lumped rate constants is as follows: 

k i -  kcat'iCE't~ -- kcat'iCF't~ , i=2,  3 . . . . .  N. (6) 
Km-3V~'~;=l Cj Km"~_~jN=I q;,O 

Equation (4) may be rearranged via partition into submatrices, 
viz. (co) 

C-ol _ 0 C1 

dt 0 C-01 (7) 

C_o, / \C-o,,o 
where C-or is the (N-x)- th  order column vector defined as 
(C2 G . . .  cN)r; 0 is the (N--x)-th order zero column vector; 
a is the ( N -  1)-th order row vector with generic element ai = kl + , 
for 1 ~< i ~< N -  1; b is the ( N -  1)-th order row vector with generic 
element r  for i=1 and a i - o  for 2~<i~<N--1; A is the 
( N - 0 - t h  order square band matrix of generic element 
Aq--  - k i +  I for j= i ,  Ao=-ki+ 2 for j = i + l ,  and A/j---o for j~ai, 
i + 1; and Ci, o denotes the initial concentration of substrate S~. 

In the most general situation, the solution of Eq. (7) is given by 

N t 

Co=Co, o+ E k,~C, dt, 
i=2 0 

N 

c,=C,,o+ Z (C,,o-C~), 
~=2 (8) 

) C_ol = c~i: 5 ( A - ) . i I ) J v i ;  e x p { - k i t } ,  
i=1 j 

t=0,  C_ol=C_oLo 

where Mi is the multiplicity of 3~, L is the number of distinct 
values 2i, eij ( i=1, 2 . . . . .  L; j = l ,  2 . . . . .  Mi) are arbitrary 
integration constants associated with )o~, and I is the (N--1)-th 
order identity matrix; as expected, ~ = x  Mi=N--I"  The 2i are the 
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eigenvalues of matrix A, i.e. the 2 values which satisfy the 
condition 

I--4-211 =0. (9) 

Due to the upper triangular nature of A, the eigenvalues 
21, 22 . . . . .  2r are simply the distinct solutions of equation 
t r ( A -  2 I ) =  o, where tr denotes the product of all elements 
located on the main diagonal of the matrix in question. The 
vii (i=1, 2 . . . . .  L; j= I, 2 . . . . .  Mi) denote the Mi linearly 
independent (N-1)-th order eigenvectors of A associated with 
every eigenvalue 2 = - k i  (i= 1, 2 . . . . .  L) of multiplicity Mi [7]. 
Such eigenvectors can be obtained as nontrivial solutions of 

(A+kil)Jvo=O, j = l ,  2 . . . . .  Mi. (lo) 

For example, if ki @ k s for i ~j, then algebraic manipulation of 
Eq. (8) yields 

Co----Co, o+CN, o(1--exp{--kNt}), N=2, 
N - - l (  

Co=Co, o+C~,o(1--exp{--kNt})+ ~, ~(1-exp{-k~t})  
i=2 

N 

\ksV[s]((k_ks)j(1-exp{-kst}) , N>/3, 

C~=C,,o+CN, o(1-exp{-kNt}  ), N=2, 
N--1 

CI~-C1, 0 + C~o(1--exp{ --kNt) ) + i~=2 (Ci, o-O:, exp{ -kit} 
N 

-- ~,, (~ '~J~= i+ '  k = ~ e x p { - k j t ) ) ,  N>~3, 

C,=~,expl-k,tt, i=SV, N=2, 
N 

s=,+, \Hs,,~_'i (k.-kj) 
2 <~ i <~N--1, N>~ 3, 

CN=C~,oexp{-kNt}, N>~2. (11) 

Each arbitrary constant .~ may be eliminated using the following 
recursive relation derived from the initial condition included in 
Eq. (8): 

~N=Cn, o, N>~2, 

~ =  C~, o, i = 2, H =  2, (12) 

.i=Ci, o_ ~ .j i+l m "] 2<~i<~N--1, N>~3. 

Although Eqs. (11)--(12) are involved especially when N is 
large, a much simpler relationship is obtained if one assumes 
that kl = ks= k for every i@j; in this situation, Eq. (8) can be 
rearranged to read 

q0 Co=C0, o+~,  fexp{-kt}  ~ ( k t ) S - i d ( k t ) ,  N>~2, 
i=2 0 j=i tj--tl, 

C,= Ci, o - exp{-k t}  Cj, o ~ m! ' N>~2, (13) 
i j~2  m=O 

N C, 
C,=exp{-ktij~=i.=. ~ ( k t )  . 2<~i<.GN, N>~2. 

Assuming in addition that all true reactants were initially 
present at the same concentration (i.e. Co, 0 --- C1, 0 -- Ca. o -- 
. . . .  CN, o), then Eq. (13) reduces to [8] 

Co=Co, o+( l+(N-1 ) (1 -exp{ -k t } ) ) ,  N=2, 

Co=Co, o(l  +(N-1 )  (1-exp{-k t})  

N-, N ( ((kt)J-i 
+ ~, ~, 1-exp{-kt}  

i=2 j=i+l \ \ ( j - i ) !  

j--i (kt)J-i-m x ~ 

+~=1 (J-i-m)']}l l '  H~>3, (14) 

(N - k , }  ~2 J-2 (kt)m~, N>~2, C,=Co, o -exp{ .= m:o~" rn! J 

Ci=Co o exp{-kt] ~ (kt)J-i 2~i<,N, N>~2. 
" s:s ( j - i ) ! '  

The variation of the various normalized concentrations with kt 
for N--6 is highlighted in Fig. 1. 

If all polymeric substrates labile to enzyme action, i.e. $2, 
S 3 . . . . .  S N, were lumped together in a single, pseudo substrate 
S, the the overall reaction mechanism would simply be given by 

Km kcat) 
S+E ~ E.S E+SI+S o. (15) 

In this situation, the rate expression would read 

k~t C~,tot C 
r = , (16) 

Km+C 

where C denotes the molar concentration of S, whereas the mass 
balances would be given by 

d ( i  0 f i ) (  C! ) 
- -  0 

dt 0 k 

(17) 

,=o, I--F 'oI- 
I \Col 

Integration of Eq. (17) for the case of Co, o=Cl, o and 
C o = ( N - l )  Co, o would yield 

Co = Co, 0(1 + (N--1)(1 -exp { - k t }  )), 

C, = Co, o (1 + (N-- 1) (I --exp{ --kt } )), (18) 

C=(N-1)Co, oexp{-kt}.  

The variation of the normalized concentrations vs. the 
dimensionless time is depicted in Fig. 2. 

Denoting as tl,g the (constant) time interval required for 
cleaning, loading and unloading the batch reactor, the existence 
of a maximum value for the average rate of monomer production 
[i.e. (Co-Co, o)/(t+ tza,)] is apparent from inspection of either 
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Fig. 1. Plots of the normalized concentrations of substrates So through $6 (i.e. 
C0/Co. 0 through CdCo, o) with the dimensionless batch time, kt, using the 
multisubstrate model 

Fig. 3. Plot of the average dimensionless rate of production of monomer 
So [i.e. ( Co - Co, o/Co ( kt + ktlag) ) ] with the dimensionless batch time, kt, for 
various values of the dimensionless lag time, kGg, using the multisubstrate 
model 
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Fig. 2. Plots of the normalized concentrations of substrates So and S~ and 
lumped substrate S [i.e. Co/Co, o through G/Co, o, and C/(N-1) Co, o), with 
N= 6] with the dimensionless batch time, kt, using the lumped suhstrate 
model 
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Fig. 4. Plot of the average dimensionless rate of production of monomer 
So [i,e. (Co - Co, o) l( Co ( kt + khag) ) ] with the dimensionless batch time, kt for 
various values of the dimensionless lag time, ktzag, using the lumped 
substrate model 

Fig. 3, which uses the true multisubstrate kinetic model, or 
Fig. 4, which uses the approximate lumped substrate kinetic 
model. The optimum operating batch time, top t (i.e. the time 
interval which leads to the maximum average rate of monomer 
production), can, thus, be obtained through 

/ 0,1 
d[ .  C~176 - -  

\k(t+tl"g)J=O. (19) 
d(kt) 

Combination of Eq. (14) with Eq. (19) yields, upon algebraic 
rearrangement [8], 

1-exp{-kt~ ktopt, N=2,  (20) 
ktlag exp{ -ktopt} 

which can be further simplified to give 

N(N-1)exp{ktop,} vN-2(N-- i ) (N-- i - -1 )  (ktopt)i 
--~i=o i! 

kGg-  
--N-EN--j--1 

2Ej=o f i  ( ktopY 

-k tom N>~2, (22) 

where advantage was taken from the properties of the arithmetic 
series therein. Plots of the dimensionless optimum batch time, 
ktow versus the dimensionless lag time, kGg, using the 
multisubstrate model are depicted in Fig. 5 for several values of 
N. The corresponding maximum value for the average 
dimensionless rate of production of monomer, ro~pt, may then be 

kGg = ( ( N -  1) (N + 1 -exp{-ktop,}  ) 
N(N+ 1) N-I~N ((ktop,) j-i  . w j - i  (ktopt)J-i-m~'~ 

F 1-exp{-kt0pt}  ~ i : 2  ; : i+1 ( j - i ) !  t - Z . m = l " ~  ) )  

- ktopt, N>13, 

1 ~N-1  N (ktopt)J-i~ 
exp{-ktopt} N -  + L i = 2  ~j=~+l  ( j - i ) !  ] 

(21) 
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Fig. 5. Plot of the dimensionless optimum batch time, ktopt, and the 
dimensionless average rate of production of monomer So, r~t (for N= 3, 
N=6, and N=9), versus the dimensionless lag time, kh,s, using the 
multisubstrate model 
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Fig. 6. Plot of the dimensionless optimum batch time, ktopt (for N=3, N= 6, 
and N= 9), and the dimensionless average rate of production of monomer So, 
ro~ (for N= 3, N= 6, and N= 9), versus the dimensionless lag time, kt~,g, 
using the lumped substrate model 

obtained via: 

C0{t=top~} 1 
C0,0 (N-2 ) 

lo~pt ~- ktopt+ktl~g - e x p { - k t o p t }  i~=o N - - i - - 1  i x, ~. ( ktopt) , 

N~>2, (23) 

which resulted from Eq. (22). Plots of r~t versus the 
dimensionless lag time, kt~,g, using the multisubstrate model are 
also depicted in Fig. 5 for several values of N. 

Combination of Eqs. (18)-(19) yields 

kh, e = exp { ktopt} - 1 - ktopt. (24) 

Plots of ktop t vs. ktlag using the lumped substrate approach are 
available in Fig. 6. In a similar way as before, the corresponding 
maximum value for the average dimensionless rate of 
production of monomer, ro~t, may be obtained via 

Co{ t=topt} 1 
Co, o 

r~t= ktopt+ktl,g = (N-- 1) exp{-ktoet},  (25) 

which was, in turn, obtained from Eq. (23). Plots of r~t 
versus the dimensionless lag time, ktl,g, using the 

lumped substrate model are also depicted in Fig. 6 for several 
values of N. 

2 
Discussion and conclusions 
The general shape of the curves representing the variation of the 
dimensionless concentrations of the various substrates for 
a common initial concentration has one of two distinct 
behaviors: either (i) the concentration is a monotonically 
increasing function of time, which is the case of Co and C1, the 
values of which are a direct result of the decrease in 
concentration of all heavier substrate species; or (iii) the 
concentration is a monotonically decreasing function of time, 
which is the case of C2, C3 . . . . .  CN, each of which is described 
by the product of a monotonically increasing polynomial in 
time by a monotonically describing exponential of time, 
where the latter decreases faster than does the former, and 
tends to an asymptotic behavior for large times given by [recall 
Eq. (13)] 

(kt)  n - i  
lim Cr " e x p { - k t } ,  (26) 

kt-oo (N- - i ) !  

which gives rise to the approximately linear behavior of the 
logarithmic plots which is apparent in Fig. 1 (remember that the 
increase in log(kt) is much slower than the increase in kt itself 
for large kt) with a slope of negative unity. 

Based on inspection of Figs. 5 and 6, one concludes that the 
loci of the maxima for the average rate of monomer production 
decrease with the lag time whereas the loci of the corresponding 
optimum times increase with the lag time (also cf. Figs. 3 and 
4). This means that, as expected, the amplitude of the lag time 
plays a crucial role in the optimization of the operation of the 
batch enzyme reactor. For longer ktlag, it is also observed that 
ktopt becomes an essentially linear function in ktlas, with slope 
depending on the value of N. In addition, an increase in the size 
of the largest polymer (i.e. an increase in N) leads to increases in 
both ktopt and r~t for a given ktlai, hence, the overall production 
of monomer is accomplished in a better way if the monomer is 
released from substrate molecules with a wide range of sizes 
instead of being released from substrate molecules with the same 
(given) size and initial concentration equal to the sum of initial 
concentrations of all substrates in the former situation. It is 
interesting to note that ktopl is the same for a given kt1~g 
irrespective of N if the lumped substrate approach is employed, 
although this fact does not hold for ro~. 

The variation of r~t with ktl~g is actually more damped (cf. 
Fig. 5) than would have been predicted on the basis of the 
lumped substrate approach (cf. Fig. 6), and the difference 
between the two predicted behaviors is largest at lag times in the 
order of dk.  Furthermore, the true ktovt is always above the 
hypothetical ktop, if the lumped model were valid. Therefore, 
using the lumped approximation would consistently indicate 
that the batch reactor should be stopped before the true 
optimum, thus giving rise to a nonconservative decision (the 
inadequacy of the operation pattern based on the lumped model 
worsens as N increases). The aforementioned rationale 
corroborates previous works [9] on the suitability of simplistic 
lumped substrate approximations in mulfisubstrate reaction 
systems. 
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This communicat ion serves the practical purpose of 
providing simplified analytical criteria in dimensionless 
form able to support  optimal operat ion (from an engineering 
point of view) of biochemical  batch reactors, which 
are part icularly relevant for operat ion on an industr ial  
scale. Even if the various ki and k - i  values are different 
from one another (as in the most  general situation), the 
simple results outl ined in Eqs. (z2) and (23) still allow 
a better predict ion of the best  operat ing condit ions than the 
lumped substrate approach highlighted in Eqs. (24) 
and (25); in this respect, the reasoning developed here serves 
the useful goal of providing a simple overview of the effect 
of mult iple substrates in the opt imal  behavior  of a batch 
reaction system. 
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