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Mathematical design of continuous, isothermal crystallizers
with homogeneous nucleation: a simplified approach

by F. XAVIER MALCATA
Escola Superior de Biotecnologia, Universidade Católica Portuguesa

Rua Dr. Antonio Bernardino de Almeida, 4200 Porto, Portugal
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A simplified, systematic approach to the mathematical simulation of
crystallizers is attempted by using the fundamental principles of mass
conservation, via a population balance to the solid phase and a solute balance to
both solid and liquid phases. A continuous, isothermal and isochoric crystallizer
is assumed to be described by the MSMPR model under transient operating
conditions with complete micromixing. The birth and death functions are
assumed nil. Homogeneous nucleation is considered at a rate which is
independent of the solution supersaturation. The growth rate of the crystals is
described by McCabe's law. The possibility of solving the population balance and
the mass balance independently is explored, and the conditions of validity for
such an approach are found. The maximum linear dimension of crystal and the
liquor concentration profile as functions of time are obtained. The approximation
is found to be generally good for a period of time right after start-up of the
crystallizer. A much wider range of time ensuring a satisfactory approximation
is possible provided that the system and operation-dependent parameter takes
small values.

1. Introduction
Crystallization, which consists in the recovery of a solute from a liquid solution

in solid, purified form, is one of the most important unit operations in the chemical
industry. Traditionally, crystals have been obtained by various methods, from batch
reservoirs via cooling by natural convection to multistage systems via forced
cooling/vaporization in the presence of ellutriation and recycling devices. Crystal-
lization possesses some advantages in terms of energy requirements when compared
with other separation processes [1].

Extensive progress has taken place encompassing the fundamental knowledge of
the physicochemical phenomena on the molecular scale which are associated with
crystallization. Such progress has made it possible to model some types of
crystallizers on the basis of involved systems of partial derivative equations [2-9];
although the integration of such equations demands powerful numerical methods,
some typical parameters relating to the crystallization process may be efficiently
determined from experimental data [10, 11]. Since in the predesign steps of pilot
scale or plant scale crystallizers the MSMPR type (i.e. mixed suspension, mixed
product removal) [10, 12] is frequently used, one will consider this model here for
the sake of mathematical simplicity [6, 13, 14]. In its simpler form, the modelling
of crystallizers using first principles consists of a balance to the population of crystals
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838 F. X. Malcata

of different size and an independent balance to the solute in the liquor and solid
phases [12]. In this fashion, a system of two coupled equations is obtained, where
the former is a partial derivative equation and the latter is an ordinary differential
equation with an improper integral. The solution requires simultaneous numerical
integration with two independent variables as well as an error estimating procedure.

The purpose of this communication is to attempt the uncoupling of the
aforementioned two equations leading to sequential solution, a process which allows
one to resort to the numerical integration of a single first order ordinary differential
equation. An a posteriori test of the accuracy of the procedure will also be provided.
This reasoning will lead to the natural definition of two (dimensionless) design
parameters, the product of which may be directly employed in the predesign steps
of crystallizing equipment.

2. Theoretical development
In the case of a MSMPR crystallizer, the ellutriation phenomena inside the unit

are negligible and the composition of the outlet stream at any time is equal to the
composition of the mother liquor remaining in the crystallizer. In this study, the feed
is considered exempt of crystals of any kind, and the birth and death functions of
the crystals are considered nil. The operation is furthermore assumed to take place
at constant volume under isothermal conditions, and the crystals are assumed to
retain geometric similarity throughout their growth process. Using these postulates,
the population balance can be written as

Qn+V^ = 0 (1)
at

where Q is the volumetric flow rate through the crystallizer, V is the volume of the
crystallizer, n is the population density, and t is the time elapsed since start-up of
the crystallizer. The total differential {dnjdt) may in turn be calculated through

(i
where L is the linear dimension of the crystal.

The material balance to the solute in the liquid and solid phases may be written
as

dC Q C •>
^ - = ̂ (C i n-C)-p$G n{L,t}L2dL (3)
dt VK Jo

where C is the solute concentration in the solution, subscript in denotes inlet
conditions, p is the mass density of the crystals, G is the growth rate of the crystals,
and the area factor associated with the crystals, $>, is defined as

(4)

(For hypothetical crystals with spherical shape, L would represent the radius of the
crystals, and hence <£ would be equal to 4;t.)

The rate of growth of the crystals is assumed to follow McCabe's law, namely

G = ~ = K(C-CS) (5)
dt
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Mathematical design of continuous, isothermal crystallizers 839

where Cs is the saturation concentration and K is a constant.
For the sake of using the chain differentiation rule, the population density,

n = n{L, t}, can be written as n = n{L,t,C}, thus yielding

dn_(dn\ (dn\ (dC\ (dn\ (dL

Tt~\Ttkc Ktckk*)+ lilUdF
If the time constant associated with the variation of the concentration of solute

in the solution is small when compared with the time constant associated with the
variation in the population density, i.e. if the following condition is satisfied

fdC\

and if this result is applied to equations (1) and (2), on obtains

= 0 (8)
fdn*\

n*+ —-)
\dt*/L.> >C' \dL

where the dimensionless variables are defined as

— (9)
"in

and

C — C
C* = iH% (12)

The solution of equation (8) can be obtained under the assumption of a pseudo
steady-state for the solute concentration in the liquor. The strategy is then: (i) solve
the population balance using equation (8) and obtain n* = n*{L*, C*, t*}; (ii) solve
the mass balance using the dimensionless counterpart of equation (3) and obtain
C* = C{L*, t*}; (iii) use C* = C{L*, t*} in equation (8) and obtain n* = n*{L*, t*};
and finally (iv) test the approximation criterion as given by equation (7).

In order to complete the solution, a boundary condition and an initial condition
are still required. In order to do so, one will consider homogeneous nucleation. Such
an assumption is based on the hypothesis of formation of temporary aggregates of
solute molecules when these molecules collide in their random movements, some of
which will eventually acquire regular spacing and thus form a new (crystal) phase.
The rate of homogeneous nucleation is considered independent of the concentration
of solute in the liquor. This fact may be mathematically expressed by the following
initial condition,

(13)

(where 5 is the Dirac pulse function), coupled with the following boundary condition

L* = 0,t*>0,n*=l (14)

Equation (8) may be solved in the Laplace domain together with equations (13)
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840 F. X. Malcata

and (14) using the appropriate integral transform [16]. The final solution then takes
the form:

^ ^ ^ ^ (15)

where H denotes the Heaviside step function. Using equation (15) in equation (3)
one obtains, after integration by parts,

dC* / ft*2 \ \
— =l -C*-2S*O/C*y- (^ -+ i*+ l j exp{- i*}J (16)

Parameters Si and Op are denned as

(17)

and

respectively. The physical significance of the aforementioned parameters is as
follows: Si is a characteristic parameter of the system, being proportional to the ratio
of the total mass concentration of crystals with (arbitrarily defined) reference linear
dimension Lref contained in a crystallizer and the supersaturation of the inlet mother
liquor, assuming that the population density with the reference linear dimension is
equal to the density of homogeneous nuclei (the proportionality constant is given by
the product of the shape factor by the cube of the linear reference dimension); Op
is a parameter characteristic of the system and equipment, and is equal to the increase
in the linear dimension of crystals during a time interval equal to one residence time
in the crystallizer (assuming that the supersaturation at the inlet stream remains
constant throughout the crystallization process), normalized by the reference linear
dimension.

Since equation (16) is not integrable analytically, an initial-value numerical
method has been employed from the following initial condition:

t*=\ C* = \ (19)

to obtain the variation of the concentration of solute C* in the mother liquor with
time t*; the results therefrom are depicted in Figure \{a) for five orders of magnitude
of the lumped design parameter Si Op*. The associated variation with time of the
maximum linear dimension of crystal, i.e. L*max = C* t*, is plotted in Figure 2 for
the same values of the design parameter Si Op4.

The size distribution in steady state may be obtained from the asymptotic form
of equation (15) for large time intervals:

«*ss{L*}=lim,.->ocn*{L*,<*}=exp| - — | (20)

whereas equation (3) becomes, under steady-state conditions,
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Figure 1. (a) Variation of the normalized concentration of solute with the dimensionless time

for various values of the design parameter. (6) Variation of the normalized steady-state
concentration of solute with the dimensionless design parameter.

Combination of equations (20) and (21) yields, after suitable integration,

?s*s4 + Cs
#
s - 1 = 0 (22)

Equation (22) cannot be solved in an exact fashion; however, implementation of a
Newton method from the starting estimate C*s = 1 converges in less than ten
iterations (using a maximum error estimate of 0-005); the variation with Si Op4 of
the steady-state value C*s thus obtained is available in Figure \{b).

The goodness of the approximation based on equation (7) can be tested a
posteriori through the evaluation of the dimensionless average error R defined as

2.0

3
h 1 0

0.0
0.0 0.5 1.0 1.5

dimensionless time, t*
2.0

Figure 2. Variation of the normalized maximum linear dimension of crystal with the
dimensionless time for various values of the design parameter.
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0.5 1.0 1.5
dimensionless time, t*

Figure 3. Variation of the average dimensionless error implicit in the approximation
developed with the dimensionless time for various values of the design parameter.

R =

3 M *

He*

Jo \\dt*)L.,c

(23)
dL*

(dn*\ /dC*\ (dn*\ (dL*

Recalling the definition of a Dirac pulse (i.e. 8{x} = 0 for x =£ 0 and the integral of
5{x} between zero and infinity equal to one), the fact that dH{x}ldx = 5{x}, and the
definition of the dimensionless variables, equation (23) becomes

- exp{ - t*} + t*exp{ - ' * } ( ^ -

- exp{ - t*} + **exp{ - t*}(J^-
(24)

-C*(l-exp{-f*})

The validity of the approximation plotted as R versus t* for various values of
Si Op* is depicted in Figure 3. In industrial practice, the value of parameter Si Op
is of the order of unity [10, 11].

3. Discussion
The growth of a crystal tends to occur through the deposition of a series of layers

[15]. According to a theory due to Frank [16], the growth takes place through cyclic,
spiral-shaped preferential paths. However, the utilization of the classical theories of
crystal growth allows a simpler, yet sufficiently accurate approach to the problem.
The use of the double film theory allows one to write balances to the solute in the
laminar layer next to the crystal surface [17] and in the turbulent layer from the bulk
of the solution to the solid/liquid interface [18]. The combination of these two
equations, coupled with the assumption that the shape of the crystal does not change
throughout growth (which is a consequence of Gibbs-Wulffs theorem [10] on the
assumption that the surface energy remains virtually unchanged from surface to
surface of the crystal), allows one to conclude that the rate of increase of the crystal
mass depends only on the degree of supersaturation of the solution, as first derived
by McCabe and coworkers [19-21]. This law is valid for low levels of supersatura-
tion. During the above theoretical development, it was assumed that the rate of
growth is not a strong function of the size of the crystal when Cm ~ Cs is
unconstrained [12].

The assumption of homogeneous nucleation is a simplification of the simulation
of the crystallization process which, in particular, requires the absence of impurities
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Mathematical design of continuous, isothermal crystallizers 843

within the bulk of the solution [10]. However, the existence of an activation energy
controlling the nucleation process as suggested by Tammann [22] for not too high
degrees of supersaturation places a system within the validity conditions referred to
previously provided that not too high temperatures are employed.

The shape of the curves of the variation of the dimensionless concentration with
dimensionless time are similar to each other, as apparent from inspection of Figure
\{a): they all start from unit C* (for t* = 0), with zero derivative, exhibit a decrease
(which is larger as the parameter Si Op* increases), and level off to a non-zero
asymptotic value when t* tends to infinity. This asymptotic value, C*s (which can
be obtained from Figure 1 (b)), is closer to unity for smaller Si Op4. Such a behaviour
is expected because smaller Si Op* correspond to smaller residence time, nucleation
rate, crystal growth rate or level of supersaturation, and hence the changes undergone
by the solution are less important.

The curves which represent the variation in the maximum linear dimension of
crystals with time start from zero, go through a transient which corresponds to the
time interval when the concentration decreases significantly, and tend, after this
period, to straight lines which retain the slope they had at the end of the transient
period (see Figure 2). For low values of parameter Si Op4, the transient does not
virtually exist, and hence the line is a straight line with unit slope.

The decreasing exponential for the distribution of crystal sizes under steady-state
conditions as given by equation (20) is expected because the size of a crystal at a given
time depends on its residence time in the crystallizer since its formation by
homogeneous nucleation, and it is known that the residence time distribution of a
perfectly mixed reservoir is described by a decreasing exponential [23].

The mathematical design of a MSMPR crystallizer using the equations derived
from first principles becomes greatly simplified whenever the equation describing
the population balance can be solved before solving the mass balance equation. For
short dimensionless times elapsed from the time at which the crystallizer is started
the approximation is valid (the initial range of validity is extended with decreasing
Si Op4); this permits a good simulation of the crystallizer in the start-up region (see
Figure 3). In general, though, the approximation is reasonable (i.e. leads to an
average error not above, say, 15%) in the whole range of operation times when Si Op4

is of the order of unity or smaller (which is also the range of higher practical interest);
in this situation, the approximation may become always valid until steady-state
conditions are reached. Due to these reasons, the uniparametric theoretical
development reported here acquires special interest (not only in educational but also
in practical terms) for the simulation of MSMPR isothermal crystallizers whenever
the crystallization process is due to supersaturation of the inlet mother liquor.

Nomenclature
C = concentration of solute (mol.m"3)
G = growth rate of crystals (m.s"1)
H = Heaviside step function ( - )
K = McCabbe's constant (m4.mol" 3.s"x)
L = linear characteristic dimension of the crystals (mol.m~3)
n = population density (m~4)
Op = dimensionless parameter characteristic of the system and equipment
Q = volumetric flow rate through the crystallizer (m3.s-1)
R = average dimensionless fractional error of the approximation
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844 Mathematical design of continuous, isothermal crystallizers

Si = dimensionless parameter characteristic of the system
t = time elapsed after startup of crystallizer (s)
V = volume of the crystallizer (m3)

Subscripts
in = inlet conditions
ref = reference value
s = saturation conditions
ss = at steady state conditions

Superscripts
* = dimensionless

Greek letters
S = Dirac's delta function
p = mass density of crystals (kg.m~3)
<£ = area factor associated with the crystals
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