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Michaelis-Menten kinetics: explicit dependence of
substrate concentration on reaction time
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The nonlinear dependence of the rate expressions associated with enzyme-
catalysed reactions on the concentration of substrate implies that the correspond-
ing integrated form of the substrate mass balance in a batch reactor cannot be
expressed as an explicit function of time..This paper addresses this problem for
the classical case of Michaelis—Menten kinetics by providing a self-pacing
exploration of the characteristics of a Taylor expansion of the substrate
concentration on time. The accuracy of such an approximation is discussed. The
procedure presented is appropriate to model situations of technological and
practical interest.

1. Introduction
Enzymes, the functional units of cell metabolism, are remarkable catalysts

because of their high specificity and activity towards their substrates at mild
operating conditions. Since there is a decreasing trend in the cost of producing
enzymes from microbial sources, enzymes are now available for industrial purposes
in higher quantities and with higher purities. However, before being able to tackle
the problem of designing enzyme reactors, one must postulate rate expressions and
fit the associated rate parameters to experimental data often obtained in batch
systems.

Traditionally, the kinetics of enzyme-catalysed reactions have been correlated by
a rate expression derived from the Michaelis-Menten mechanism [1]. This
mechanism can be schematically represented as

where S and P denote a substrate and a product molecule, respectively, E denotes an
enzyme active site, ES denotes the enzyme/substrate complex, kt is a bimolecular
intrinsic kinetic constant, and k^1 and kcat are unimolecular intrinsic kinetic
constants. The expression for the rate equation associated with this mechanism can
be derived using either the quasi-steady-state or the rapid equilibrium approaches
[2]. In either case the result reads

where r denotes the rate of production of product P and Cs denotes the molar
concentration of substrate. Here umai is the rate under saturation conditions of
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528 A. C. Freitas and F. X. Malcata

substrate (i.e. t>max = kcatCE, where CE is the total concentration of enzyme active
sites) and Km is the Michaelis-Menten constant (i.e. Km = k-l/k1 using the rapid
equilibrium approach, and Kms(k_i+kcat)lk1 using the quasi-steady-state
approach). The material balance to substrate which is consumed by a chemical
reaction in a well stirred batch reactor can be written as

dCs- — = r (3 a)

Cs{« = 0} = Cs,o (3 6)

where t denotes the time elapsed after start up of the reaction and C s o is the initial
concentration of substrate. Combination of equation (2) and (3 «)-(3 b) followed by
integration via separation of variables yields

•-S

which is of the form t = t{Cs). Equation (4) can be rearranged to give

t* = l-Cf-K*ln{Cf} (5)

where the dimensionless variables are defined as t* = (vmaxt)ICs 0, Cf = CS/CS 0, and
•^m -^m/ S,0*

For a number of purposes, this type of explicit dependence of the time (t*) on the
concentration of substrate (Cf) is not convenient. One example pertains to the design
of experiments involving enzyme-catalysed reactions: if one selects the D-optimal
criterion [3], the variable associated with the larger error (Cf) should be explicitly
given as a function of the variable associated with the smaller error (t*) in order to
obtain the Jacobians as univariate functions of the (desired) sampling times. Another
example encompasses the nonlinear fitting of the rate expression to experimental
data: the calculation of the predicted response, Cf, at a given value of the predictor,
t*, requires either (i) solution of equation (5) by a trial and error technique, or (ii)
numerical integration of equation (2) coupled with equations (3 a) and (3 b).
Although convergent to the solution within a known number of steps, the former is a
numerically inefficient procedure because each evaluation of the logarithmic
function (computed in the CPU via a Taylor series) is time consuming. On the other
hand, the latter requires involved quadrature methods able to provide a tight
control or error propagation and CPU requirements which are difficult to anticipate.
In both cases, it is impossible to obtain an analytical expression relating the Cf
explicitly with t*.

In the above (and other) situations, it would be more advantageous to have an
analytical approximation for the explicit dependence of the concentration of
substrate on time (i.e. it would be helpful to obtain Cf = Cf{i*}) which is
simultaneously simple, numerically efficient, and mathematically accurate. One way
of proceeding to achieve the aforementioned goal is to expand Cf {t*} about t* = 0
using a Taylor series, as explored in the following problem.

2. Problem statement
(1) Show that when Cf is expanded as a Taylor series about t* = 0 each

coefficient an of the expansion can be obtained as an = an{
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Michaelis-Menton kinetics: enzyme-catalysed reactions 529

(2) Write each derivative d'Cgldt*" as a function of Cf, n, K*, and bnJ (1 < i< n),
where bni denotes a positive integer, and compute the values of bn ,- for n = 1 to
« = 8.

(3) Find a recurrence relation relating bn + li with bni-1 and bni.
(4) Prove that the Taylor expansion is convergent when 0^iC*^l .
(5) Obtain the asymptotic behaviours of the Taylor series when /£* is very small

(pseudo-zero-order) and when K*, is very large (pseudo-first-order).
(6) Determine the variation of the quadratic error and the maximum local error

of the Taylor approximation with the number of terms of this expansion for
various values of i£*.

(7) Compare the CPU time required for a similar final error using (i) an interval
halving technique, (ii) an integration by finite differences, and (iii) a Taylor
expansion.

3. Problem solution
(1) The form of the Taylor series associated with C<f = C<f{i*} can be written as

CS=ta*"" (6)
n = 0

where each of the an coefficients may be calculated using the following relationship:

The first derivative of C<f with respect to t* can be easily obtained using the definition
of a derivative as a quotient of differentials, namely

(dCf\ _

Recalling equation (5), one obtains C | = l when t* = 0. Therefore, equation (8)
becomes

1 • - • ( 9 f l )

The higher-order derivatives can be obtained to advantage by recalling the rules of
chain differentiation

i d [d'-'cy]
dt*" )tt=0~7dF\

Combination of equations (7), and (9 a)-(9 b) finally allows one to write an = an
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530 A. C. Freitas and F. X. Malcata

(2) Recalling equation (9 a) and employing equation (9 6) for consecutively higher
values of n starting with n = 2, the results thus obtained for the derivatives are of the
general form

(10a)
dt* K* + C$

where 6nj are positive integer coefficients. The numerical values of the bni coefficients
for n between 1 and 8 are listed in Table 1. The functional forms of the derivatives
can then be easily obtained from combination of Table 1 and equations (10 a) and
(106), which result in dependencies of the derivatives on Cf, n, K*,, and bni.

(3) From the generic nth-order derivative as given by equation (106), one can
obtain the next order derivative equation (96), viz.

Equation (11) may be rearranged to read

dt*"+1

f—1Yl+'iA-,r?*i\ f2n-n6__ .C»"\
M^2

On the other hand, equation (106) can be rewritten as

dn+1cs* - (-\y+ib+ucf

Comparing the forms of equations (12) and (13), one may obtain the coefficients
6n + ll- via the following recurrence relations:

w

2
3
4
5
6
7
8

K

i 1

1
1
1
1
1
1
1

+ i,i = («-

2

3
10
25
56
119
246

+•»—1)&»,J-I-

i,n = (2«-l)4

3

15
105
490
1918
6825

H'&n,i :

'n,n-l '

4

105
1260
9450
56980

5

945
17325
190575

«^3

6

10395
270270

(146)

(14 c)

7

135135

Table 1. Numerical values of the coefficients bt „.
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Michaelis—Menton kinetics: enzyme-catalysed reactions

or, alternatively, for njsl, 6n l = l and

531

1=1

All the aforementioned expressions are of the form &„ +1,; = &„ +1,,•{&„_(_ i, bni} for
every value of n and i.

(4) The ratio of any two consecutive terms of the Taylor series in question is
given by

t*
<r+1cg\M (n-iK*)t*

Z (-i)"+I S
(15)

where advantage was taken of equations (106) and (11). The finite series in the
numerator can be obtained from the corresponding series in the denominator by
multiplying each term of the latter by (« — iK*)t*j[(n+1)(1 +K*,)2]. When
O^/C*<1, (M —i/C*) is always positive, so the following inequality can be easily
derived:

1-Cg- In {C$} (II - Q(l - Cg - In {Cj}) < (n - iK*)t* <n{\- Cj)
4 ( + l ) 4 ( + l ) " ( l ) ( l i ? * ) 2 ^ 1 ^

where t* is eliminated via equation (5). If equation (16) holds, then the following
relations can be written

1-Cg-In {Cg}
1 _ C*-In {C|}

4(n + l)

"y1 (-1
. = 1 (1 -

n - 1 ( j '

£l d +
r+i~\.i

" + '" 1 *n , i

(n-iK*)t*
(« + l)(l+K*)2

" + '"1*'n,i

•- (l+K*Y+i

"-1 (-l)n + i~1bnti

i = i ( 1 -hKgy+i

(«-i/qi)f*
(M+I) ( I+^*) 2

n - l

y ( 1

n - l

(Z (-
i \ n + i -

Kl
(\+K*

1

(1-

\n + i
)

bn,i

- Km)" '

n{\- C's)
n + \

n - l

Z (
i = l

n - l

(1 +

i K

Kgy + i

n + i n(\-Cg)
n+1

(176)
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532 A. C. Freitas and F. X. Malcata

(The use of absolute values is necessary in order to keep the signs of the inequalities
because although for sufficiently small positive values of K*, the coefficients an of the
terms of the Taylor expansion are all positive, for larger values of .K"* the values of an

tend to take positive and negative values almost at random.) Equation (17) is also
valid for n sufficiently large, so

I / * n + 1 l

n + 1

Kt*n\

(18)

which is valid for all values of C* with physical meaning (i.e. O<C*<1). According
to d'Alembert's ratio test [4], this result implies that the series with generic
term |ant*"| is convergent. Therefore, the series with generic term ant*

n is also
convergent [4].

(5) Recalling equations (6), (7), and (9 a), rewriting all terms in the summation in
equation (106) with a common denominator, and performing some algebraic work,
one concludes that all the terms of the Taylor expansion are of the form

(19 b)

1 K* ""!

" " - W ! ( I + A : * ) 2 " - 1 ^ 1
V "

where the positive integer coefficients, cni, are tabulated in Table 2. From this table,
it is obvious that cnl=(n — \)\ and cnn_1 = \.

If K*«C|< 1, then (1 + K*)~ 1 and

so using equations (6) and (19 a)—(19 c) one obtains

C*~\-t* + K* t — (20)
n = 2 fl

Equation (20) is approximately equivalent to

Ci=l-t* (21)

n

2
3
4
5
6
7
8

i 0

1
2
6
24
120
720
5040

1

.1
8
58
444
3708
33988

2

1
22
328
4400
58140

3

1
52

1452
32130

4

1
114
5610

5

1
240

6

1

Table 2. Numerical values of the coefficients cin.
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Figure 1. Log-lin plot of the integral quadratic error of the Taylor expansion, Ev as a
function of N for (a) K*=0\, (b) K* = l, and (c) K* = \0, for Cs*f = 0-l.

because K^ is assumed to be vanishingly small. Equation (21) is formally equivalent
to equation (5) when i£*—»0, i.e.

t* = \— C* ("??•>

If on the other hand, K*»l ^C§, then (1 +K*)~K* and

"Y, i-\rlcn<iK£-i~CnA^m

so using equations (6) and (19a)-(19c) one obtains

00 ( —11"
s ^ (23)
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Figure 2. Log-log plot of the integral quadratic error of the Taylor expansion, Ev as a

function of K* for (a) N= 1, (b) N= 2, (c) N= 3, (d) AT=4, (e) A^= 5, (/) JV= 6, (g) iV= 7,
and (h) N=8 for Cgf = 0-l.
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536 A. C. Freitas and F. X. Malcata

where the right-hand side is the Taylor expansion of an exponential function, namely

(24)

Rearranging equation (24), one gets

t*=-K*ln{C$} (25)

which is formally equivalent to equation (5) when iC*->co.

(6) The integral quadratic error of the Taylor expansion, Ev truncated after the
JVth term, defined as

( ( ? - < s s ! f ) ) ? ) <26>

is plotted in figure 1 as a function of N for various values of i£* and in figure 2
as a function of X* for various values of AT, in both cases with Cff set arbitrarily equal
to 01 .

In a similar fashion, the maximum local error of the approximation, Em, obtained
for Of = C*f (or, equivalently, for t* = if) via truncation after the N th term, defined

(27)

is plotted in figure 3 as a function of AT for various values of K*, when Cft is set
arbitrarily equal to 0-1.

As expected with a typical Taylor expansion, both the quadratic and the local
maximum error of the approximation exhibit a decreasing trend as the number of
terms in the series increases. When iC* tends to zero, both errors decrease
exponentially with N; for larger values of i£*, there are some fluctuations around this
behaviour which result from the fact that the values of an may take positive and
negative values almost at random (see Table 2 and equation (19 c)). In general the
errors tend to decrease with increasing /£* because the exponential behaviour, which
requires an infinite number of terms, is approached at the expense of a finite N. For
AT equal to, say, 8, both errors are sufficiently small to yield acceptable approxim-
ations for most practical purposes.

(7) Setting tf and K* arbitrarily equal to 23-926 and 10, respectively, the exact
value of CjJ; f is obtained from equation (5) to be 0-1 (these values correspond to the
maximum errors Eq and Em within an acceptable working range). The corresponding
values of Cff obtained from the Taylor approximation with the first 8 terms,
OfT{f* = tf}, the interval halving technique with six iterations starting with the
search interval [0008, 0-992], O?ib{t* = /f*}, and the one-sided finite difference
method with 15 steps from the initial condition Of = 1, O?,A{'* = '*} were calculated
using a personal microcomputer. All these approaches yielded the same absolute
error, +0-082. The average CPU times required to compute CfT, C*>b, and C*tA

were 11-54,14-97, and 37-57 ms, respectively. Therefore, the Taylor expansion is the
most convenient method since it combines rapidity with accuracy.
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Figure 3. Log-lin plot of the local truncation error of the Taylor expansion, Em, as a function
of AT for (a) K* = 01, (b) iC* = l, and (c) K* = IO assuming that Cf>f = 0 1 .

4. Discussion
Several modelling (and optimization) problems associated with the implicit

dependence of the substrate concentration on the reaction time when the system is
well described by the Michaelis-Menten rate expression have been discussed in the
literature. Since there are no closed form analytical expressions for a number of
quantities related to the Michaelis-Menten rate expression (e.g. the efficiency
factor), some authors have attempted to correlate the behaviour of such systems as
combinations of the zero and first-order limiting behaviours of the aforementioned
rate expression (for which there are simple, closed forms for such quantities).
Examples include (i) expressing the efficiency factor of catalyst pellets containing a
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538 A. C. Freitas and F. X. Malcata

uniformly distributed immobilized enzyme as a combination of the efficiency factors
calculated analytically for the asymptotic zero-order and first-order kinetics [5] and
(ii) assessing the influence of diffusion limitations on the apparent rate of
deactivation of enzymes in immobilized states [6]. In the present case, attempts to
estimate the parameters of a linear combination of the zero and first-order explicit
expressions for Cf = Cf {<*} which yield the minimum value for either the integral
error or the integral quadratic error over the tentative range 0-1 < C * < 1 failed to
provide accurate approximants; hence the (more complex) Taylor approach was
tested.

The Taylor expansion is convergent for all possible values of Cf between 0 and 1,
irrespective of the value of iC*. Although this observation is easily consubstantiated
via the computation of the consecutive terms of the expansion, the general
mathematical proof of convergence is difficult when i £ * > l because in this case
(w — iK*) takes positive values when i is small and negative values when i is large
(assuming that n grows without limit). Hence, this subproblem was not considered
here for the sake of simplicity.

It should be emphasized that the asymptotic case of pseudo-zero-order rate
expression (i.e. small K*) requires only the linear term of the Taylor expansion,
whereas the asymptotic case of pseudo-first-order rate expression (i.e. large K*)
corresponds to an infinite number of terms, in a way that is formally equivalent to an
explicit exponential dependence on t*. For increasing intermediate values of K*,, an
increasing number of terms is necessary for a good approximation. The increasing
number of terms required for a good approximation is, thus, conceptually derived
from the fact that the Michaelis-Menten rate expression is a variable order rate
expression (which departs from zero order for high concentrations and evolves
towards first order for small concentrations of substrate), where each additional term
corresponds to an incremental increase in the apparent order of the reaction.

In general, the Taylor expansion provides the advantages of (i) being an
analytical, explicit relationship of Cf on t*, (ii) requiring a very small number of
terms not only for convergence but also for good accuracy, and (iii) using such simple
computational operations as additions and multiplications (which leads to small
running times when compared with alternative numerical approaches). Therefore, it
can be used safely in most practical applications where an enzyme-catalysed reaction
is carried out in either a stirred batch reactor or a plug flow continuous reactor.

Nomenclature
an = coefficient of the Taylor expansion
bn — auxiliary integer coefficient
eB = auxiliary integer coefficient

CE = molar concentration of enzyme
Cs = molar concentration of substrate

C s b = molar concentration of substrate computed using the internal halving
method

CS T = molar concentration of substrate computed using the Taylor expansion
CSA = molar concentration of substrate computed using the finite difference

technique
E = enzyme molecule

ES = enzyme/substrate complex
Em = maximum local error of the Taylor expansion
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Michaelis-Menton kinetics: enzyme-catalysed reactions 539

£q = integral quadratic error of the Taylor expansion
&!= kinetic constant associated with binding of substrate to the enzyme

ft_i= kinetic constant associated with dissociation of the enzyme/substrate
complex

kCM = kinetic constant associated with transformation of the enzyme/substrate
complex

Km = Michaelis-Menten constant
P = product molecule
J-= rate of reaction
S = substrate molecule
t = time of reaction

m̂ax = reaction rate under saturating conditions of the enzyme with substrate

Subscripts
0 = at the initial conditions
f=at the final conditions

Superscript
* = dimensionless variable or parameter
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