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Abstract A search for the optimum fractional distribution of
an enzyme-rich stream to the various reactors of a cascade
of CSTR’s was implemented. A theoretical analysis, laid out in
dimensionless form and based on the assumptions that the
system is operated under steady state conditions, the enzyme
undergoes first order deactivation, and the reaction catalyzed
by the enzyme follows Michaelis-Menten kinetics, is reported.
The objective function utilised is the minimisation of the
overall volume of the cascade, and analytical expressions are
obtained for the concentration of active enzyme and substrate
in the outlet stream from each reactor. It is found that the best
option is to add the whole enzyme-rich stream to the first
reactor in the cascade irrespective of the operating and kinetic
parameters of the system.

List of symbols
CE, i mol ·m~3 concentration of active enzyme in

the i-th reactor
CS, i mol ·m~3 concentration of substrate in the i-th

reactor
C*

S, i — normalized concentration of sub-
strate in the i-th reactor

Dai — Damköhler number associated with
the i-th reactor using as reference
the volumetric flow rate of substrate
to the first unit

DY ai — Damköhler number associated with
the i-th reactor using as reference
the whole volumetric flow rate if all
enzyme stream were added to the
first unit

i — dummy integer variable
j — dummy integer variable
k s~1 deactivation constant
Km mol ·m~3 Michaelis-Menten constant
K*

m — dimensionless Michaelis-Menten
parameter

I — dummy integer variable
m — dummy integer variable
n — dummy integer variable
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N — number of CSTRs in the cascade
p — dummy integer variable
q — dummy integer variable
Q m3 ·s~1 volumetric flow rate of substrate-

rich stream
r — dummy integer variable
s — dummy integer variable
t — dummy integer variable
u — dummy integer variable
v — dummy integer variable
v
.!9 , i mol ·m~3 · s~1 maximum rate of reaction at the i-th

reactor
Vi m3 holdup volume of the i-th reactor

Greek symbols
ai — fraction of overall enzyme added to

the i-th reactor
b — ratio of overall volumetric flow rate

of enzyme-rich stream to volumetric
flow rate of substrate-rich stream to
the first reactor

Hi — auxiliary function associated with
the i-th reactor

qi s space time of the i-th reactor
N — ratio of time constants associated

with enzyme-catalyzed reaction and
deactivation reaction

1
Introduction
The steady state operation of a cascade of continuous stirred
tank reactors (CSTRs) performing a biochemical reaction
catalyzed by an enzyme in soluble form requires a constant
rate of addition of enzyme to the reactors. Although enzyme
may be directly added in powdered form, mixing constraints
usually indicate that the enzyme should be previously
solubilized in a more or less concentrated aqueous buffer and
hence should be added in liquid form rather than as
a particulate solid.

A number of previous reports have dealt with minimization
of the overall volume of isothermal cascades of micromixed
CSTRs performing enzyme-catalyzed reactions in the absence
of enzyme deactivation which follow irreversible Michaelis-
Menten kinetics [1], reversible Michaelis-Menten kinetics [2],
multisited, highly cooperative Michaelis-Menten kinetics [3],
and Ping Pong Bi Bi kinetics [4]; isothermal cascades of
macromixed CSTRs performing enzyme-catalyzed reactions in



Fig. 1. Schematic diagram of the cascade of CSTR’s with indication
of the volumetric flow rates and concentrations of substrate and enzyme
of each stream

the absence of enzyme deactivation which follow irreversible
Michaelis-Menten kinetics [5]; isothermal cascades of mi-
cromixed CSTRs performing enzyme-catalyzed reactions with
first order irreversible deactivation which follow irreversible
Michaelis-Menten kinetics [6]; and nonisothermal cascades of
micromixed CSTRs performing enzyme-catalyzed reactions
with first order irreversible deactivation which follow irrevers-
ible Michaelis-Menten kinetics [7]. Comparison between
the overall volume of a cascade made up of CSTRs designed
using the minimum overall volume as optimisation criterion
and the overall volume of a cascade containing CSTRs designed
using equal sized reactors was also made for a given overall
substrate conversion [8].

In all the aforementioned works one has hypothesized
that the whole enzyme stream available should be added to
the first reactor in the series in order to assume steady state
operation, but no rationale was ever provided for such
hypothesis from an applied point of view. However, if the rate
of total enzyme to be added to a given cascade of CSTRs is
previously fixed, then there might in principle be a fractional
distribution of the overall enzyme-rich stream to the various
reactors in the cascade that leads to the maximum value of the
overall conversion of substrate or, equivalently, that leads to
the minimum value of the overall reactor volume for a given
conversion of substrate. The existence of such optimum is
somewhat anticipated since there are two opposing factors: on
the one hand, the conversion per unit active enzyme should
increase when the enzyme molecules spend a longer mean
residence time in the reactor cascade; on the other hand,
adding the enzyme current earlier leads to higher dilutions of
the reaction stream (with concomitant decreases in the rate
of reaction) and increases the mean residence time of the
enzyme in the reactor cascade (with a higher chance for
deactivation of the enzyme).

It is the purpose of this communication to provide a
mathematical framework that will allow decision on which
distribution of the enzyme stream to the various CSTRs in
a cascade should be selected if one seeks a minimum overall
reactor volume able to achieve a given substrate conversion.

2
Mathematical analysis
Assume that an enzyme-catalyzed reaction takes place in
a series of CSTR’s with the feed of enzyme distributed by the
various units as depicted in Fig. 1.

The steady-state mass balance to active enzyme in such
a series of CSTR’s may be written as:
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where the enzyme is assumed to undergo thermal deactivation
characterized by the first order kinetic constant k. The
maximum rate of reaction at the i-th reactor is denoted by
v
.!9, i , the concentration of active enzyme in the same reactor

by CE, i , the fraction of the overall enzyme that is added to
the inlet stream of the i-th reactor as ai , and the ratio of the
overall volumetric flow rate of the enzyme-rich stream to the
overall volumetric flow rate, Q, of the substrate-rich stream
(which is all fed as inlet stream to the first reactor) as b. In
Eq. (1), qi{Vi/Q denotes the pseudo space time of the i-th
reactor (i.e. the average time a volume element would spend
in that reactor if the volumetric flow rate is equal to the flow
rate of the inlet substrate stream to the first reactor in the
series), where Vi is the holdup volume of the i-th reactor.

Algebraic manipulation of Eq. (1) finally leads to:
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Fig. 2. Plot of the volume of the CSTR cascade composed of two units
(Da1]Da2) as a function of the enzyme flow rate into the first CSTR (a1)
and the substrate concentration in the first CSTR (C*

S, 1) for K*m\0.1,
N\0.1, b\1, and C*
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where N{k .CS, 0/v.!9, i denotes the ratio of the time constant
associated with the enzyme-catalyzed reaction occurring in the
i-th reactor (i.e. CS, 0/v.!9, i , where CS, 0 is the inlet substrate
concentration to the first reactor) to the time constant
associated with enzyme deactivation (i.e. 1/k), and where
Dai{v

.!9, i . qi/CS, 0, or Damköhler number, is the ratio of the
time constant associated with the forced convection through
the i-th reactor (i.e. qi) to the time constant associated with the
enzyme-catalyzed reaction occurring in the i-th reactor (i.e.
CS, 0/v.!9, i).

The mass balance to the substrate in any reactor of the cascade
under steady state conditions of operation is then given by:
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where the substrate was assumed to undergo an enzyme-
catalyzed reaction described by Michaelis-Menten kinetics,
where the normalized concentration of substrate in the i-th
reactor is defined as C*

S, i{CS, i/CS, 0 (CS, i is the substrate
concentration in the i-th reactor), and where the dimensionless
parameter is defined as K*m{Km/CS, 0 (the Michaelis-Menten
constant is denoted as Km ).

Eliminating CE, i/CE, 0 in Eq. (3) for every i using the
corresponding forms of Eq. (2), solving each of the resulting
equations for Daj , and then using the value of each Dai in the
(i]1)-th equation, one obtains, after some algebraic manipula-
tion:
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The variation of the overall Damköhler number for a cascade
of two CSTRs versus a1 and C*

S, 1 is depicted in Fig. 2 for
a typical combination of parameter values with physical and
technological significance.

Rewriting Eq. (4) as:
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where the auxiliary functions are defined as:
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respectively. If one sets as the objective function minimisa-
tion of the overall volume of the cascade of CSTR’s, then
the necessary conditions for such optimum to exist are
given by:
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or, after consideration of Eq. (5), by:
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3
Results and discussion
The expressions obtained from combination, for several values
of N, of Eqs. (5) and (7) were, following algebraic rearrange-
ment, used in comprehensive trial-and-error searches of
solutions using factorial grids in a
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When implementing the aforementioned searches special
care was exercised in order to prevent violation of physical
restrictions; these restrictions arise from dilution considera-
tions, viz:
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from deactivation considerations, viz.:
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for i\1, 2,2, N, and from flow rate considerations, viz.
0OaiOb for i\1, 2,2, N and +N

i/1 ai\b. When the C*
S, i are

fixed then it is in general possible to find solutions for Eq. (7.2);
these solutions correspond to the distribution of enzyme feed
through the cascade that yields a local minimum for the overall
reactor volume for a given conversion in each reactor. By
a similar token, when the ai are fixed then it is in general
possible to find solutions for Eq. (7.1); these solutions
correspond to the profile of substrate concentrations through
the cascade that yields a local minimum for the overall reactor
volume for a given distribution of enzyme feed and for a given
overall conversion. The former loci and the latter loci do,
however, consistently intersect on a restriction, i.e. the
minimum of the minima lies always on a1\b and
a2\a3\2\aN\0. This interesting observation means that
all enzyme should be added to the first reactor in the cascade,
in which case the following asymptotic form of Eq. (4) can be
written:
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Since in this situation all enzyme is added to the first reactor in
the series (or, equivalently, to the inlet stream prior to
entrance in the first reactor), then the volumetric flow rate
through the reactor cascade (i.e. (1]b)Q) is constant. If this
flow rate is used in the definition of the Damköhler number,
and if the simplified counterparts of Eq. (2) are employed, then
Eq. (8) becomes:
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a form which is consistent with results reported elsewhere [9]
provided that DY ai{v

.!9 , i · Vi/((1]b)QCS, 0); in that report

numerical evidence was given for the existence of a maximum
overall conversion of substrate when all enzyme is fed to the
first reactor in the series (which accounts for the physical
constraint associated with deactivation introduced above),
whereas the actual optima of intermediate substrate concen-
trations in such asymptotic situation that lead to the minimum
overall volume for each given conversion is provided
elsewhere [6].

The major conclusion reached in this research work is
important from a practical point of view because it provides
the heuristic rule that all enzyme should be fed to the first unit
of a cascade of CSTRs irrespective of how dilute such enzyme
is added. Such conclusion is not, however, of a trivial nature.
In fact, it is commonly accepted (e.g. [10]) that series
combinations of given reactors always provide higher reaction
extents than parallel combinations, even if heuristics rule that
only outlet streams with the same composition should be
mixed. Since the type of reactor combinations suggested,
series with respect to the substrate streams but is parallel with
respect to the enzyme streams (see Fig. 1), then it would be
anticipated, from the point of view of the enzymatic reaction,
that such intermediate configuration would lead to lower
conversions than feeding all substrate and all enzyme to the

very first reactor in the series. However, deactivation of
enzyme exists, and for this reaction the same heuristic rule
applies, i.e. the highest extent of enzyme deactivation is
expected to take place when all enzyme is fed to the first
reactor in the series. Therefore, a compromise should in
principle be reached between such two opposing factors,
which means that the possibility of feeding the enzyme
fractionally to the various units would deserve further
consideration. The conclusion obtained thus suggests that the
increase in the deactivation extent brought about by feeding
all enzyme to the first reactor and the decrease in the
enzymatic conversion brought about by diluting the substrate

stream right from the first reactor (or, equivalently, by
decreasing the volumetric flow rate of substrate through the



cascade right from the first reactor) are always overbalanced
by the decrease in the deactivation extent brought about
by decreasing the enzyme concentration when it is diluted
with the substrate stream right in the first reactor (or,
equivalently, by decreasing the volumetric flow rate of enzyme
through the cascade right from the first reactor) and by
the increase in the enzymatic conversion brought about by
mixing the substrate with all the enzyme available right in the
first unit.
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