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The thermal inactivation kinetics of freeze-dried a-amylase in a solid matrix was studied at water contents ranging from 1.5 to
23.9 g water per 100 g dry solid. These conditions were obtained by equilibration in dry environments, with water activities
ranging between 0.11 and 0.88. Isothermal inactivation experiments in the range 135 to 150 °C were performed. Results were
analysed with both the Bigelow and Arrhenius models. It was concluded that there was no statistical significance to suggest that
the water content influenced the kinetic parameters. An activation energy of 128 kJ/mol and pre-exponential factor with a

logarithm of 33.9 described all the results well.

Introduction

It is known that dehydrated enzymes can withstand
temperatures in the range of 100 to 150 °C (1-5). For
applications where enzymes need to be strongly ther-
mally stable, dried enzymes are a good choice. This is
the case in the development of enzyme based time-
temperature integrators (TTIs) to assess thermal proc-
esses at sterilization temperatures (100 to 140 °C). The
fundamental problem in developing such a system is to
obtain the necessary inactivation kinetic parameters to
monitor a certain aspect. For thermal processing of low-
acid foods, the evaluation of microbial lethality requires
a z-value of 10°C (6) and an adequate D-value for
accurate measurements. To be effective at temperatures
higher than 100°C (sterilization), the TTI system has to
be very stable, i.e. the enzyme used must remain
partially active after the heat process.

Developing a TTI system implies accurately describing
the kinetic behaviour of the system. The correct
interpretation of inactivation kinetics depends both on
obtaining good experimental data and on their critical
interpretation. For first-order decay, two models are
widely used: the Bigelow model, using D and z factors,
more usual in thermal processing and microbiology, and
the Arrhenius model, using the pre-exponential factor
(ko) and activation energy (E,) concepts, commonly
used in chemical kinetics. Kinetic parameters obtained

with one model should not be directly converted to
those of the other (7,8).

a-Amylases [(1-4) glucan 4-glucanohydrolases, EC
3.2.1.1] catalyse the breaking of a-1,4-glucosidic bonds
in amylose and amylopectin molecules (9). This type of
enzyme is widely used in the sugar, textile and brewery
industries, one of its most important industrial applica-
tions concerning the liquefaction of starch to oli-
gossacharides for subsequent production of glucose
syrups by glucoamylases. Starch liquefaction must take
place at temperatures higher than the gelatinization
temperature, and the use of highly thermostable a-amy-
lases is therefore required. The search for new or
improved heat stable a-amylases has been the subject
of numerous works reported in literature (10,11).

The thermal stability of solid-phase a-amylase from
Bacillus amyloliquefaciens has not yet been studied. In
order to evaluate the possibility of using this enzyme to
develop a TTI to work between 100 and 140 °C its
irreversible thermal inactivation was studied as a
function of water content.

Materials and Methods

Lyophilization and equilibration

a-Amylase from B. amyloliquefaciens (EC 3.2.1.1,,
Sigma Co., St Louis, Mo 63158, U.S.A. — source
confirmed by the supplier) was lyophilized (130 g/L) in
small vials in a freeze-drier Secfroid (Lausanne, Swit-



zerland). The lyophilized enzyme was equilibrated for 6
d at 4°C in hermetically closed jars above the following
saturated salt solutions: lithium chloride, potassium
acetate, potassium carbonate, sodium chloride, ammo-
nium sulphate and potassium chloride, which establish
the water activities (a,,) of 0.11, 0.23, 0.43, 0.76, 0.82 and
0.88, respectively (12). Each equilibration establishes a
given water content in the enzyme, corresponding to
that in equilibrium over the saturated salt solutions. The
sorption isotherm was reported previously (13) and the
water contents corresponding to the six water activities
reported here were, respectively, 1.48, 2.64, 4.92, 16.02,
18.53 and 23.89 g per 100 g dry solid.

Thermal treatment

For each water content, the vials containing the enzyme
powder were tightly closed prior to the inactivation
experiments using aluminium caps and a hand crimper
from Chrompack International BV (Middelburg, The
Netherlands). This step was performed within about 5 s
to avoid atmosphere changes. The closed vials were
transferred directly from 4°C to an oil bath previously
stabilized at the temperature specified for the experi-
ment. At predetermined time intervals, the vials were
quickly transferred to an ice bath. After cooling, the
vials were opened, 0.625 or 0.5 mL (depending on
which procedure was used for the amylase activity
analysis) of Tris-HCI buffer (pH 7.2; 0.1 mol/L) was
added to each and they were kept in the ice bath until
analysis of residual activity. Experiments were dupli-
cated at each temperature for each water content. Since
the heating times were significant and the vials contain-
ing the enzyme powder very small, thermal lag was
neglected.

Activity analysis

The a-amylase activity was measured according to
procedure No. 576 or No. 577 of Sigma Diagnostics
(both procedures are based on the hydrolysis of a-1,4
glucosidic bonds by amylase in p-nitrophenyl-a-D-mal-
toheptaoside, releasing p-nitrophenol, which absorbs
maximally at 405 nm). The increase in optical density
(O.D.) at 405 nm was recorded (LKB 4053 Kinetics
Spectrophotometer, Cambridge, U.K.), and linear
regression was used to calculate the initial reaction rate
at 30°C (AOD/min), which was used to express enzyme
activity.

Data analysis
The inactivation kinetics of amylase were analysed,
considering a first-order reaction rate. For a constant
temperature:

= exp(-kxt)

Eqn [1
A, an [1]

where A = total residual activity of the enzyme (AO.D./

min), A, = total initial activity of the enzyme (AO.D./
min), k = rate constant (min™") and t=time (min).
The D-values were calculated according to the
definition:

k = LnI(DlO) Eqgn [2]

where D =decimal reduction time (min).
For the Bigelow model, rate constants are considered to
vary exponentially with temperature:

r

z

D = D,x10 Eqn [3]

where D,=decimal reduction time at a reference
temperature (min), T =temperature (K), T,=a refer-
ence temperature (K), z=z value (°C or K), defined as
the temperature increase needed to reduce the D-value
by one log unit. The reference temperature used was
140°C (413 K).

For the Arrhenius model, the rate constant is con-
sidered to vary exponentially with the reciprocal of
temperature:

E, /1 1
k:k'xex'o(_ R (T_T))
r

where k =rate constant at temperature T (min™), k, =
rate constant at a reference temperature (min™),
T =temperature (K), T,=reference temperature (K),
E,=activation energy (J/mol) and R=gas constant
(8.314 J/(mol.K)).

From Eqgns [2-4] it follows that:

Eqn [4]

RXTXT,xIn10
Ea = Ean [9]
z

This equation is only valid if T, is the same for both
models.

In chemical Kinetics, the Arrhenius model is usually
applied for an infinite reference temperature:

— E
k = ko exp ( a ) Eqn [6]

RxT

with Kk, being the pre-exponential factor. In that case,
conversion between E, and z cannot be obtained
directly. Datta (7), following a linearization around the
T, of the Bigelow model, also obtained Eqn [5], which
is exact only at the linearization point. Equation [5] is
useful because it highlights the basic difference of the
two models: if one is reality, the other suggests a
parameter varying linearly with temperature. However,



for the temperature range usually relevant in food
processing, it is normally impossible to distinguish
between them, both providing equally good fits.

There are two methods for estimating the model
parameters in both cases: one-step and two-step. With
the one-step method, all inactivation data are fitted to
Eqgn [1], after applying Eqn [3] (or [4]) to express the
temperature dependency of the rate constant, using a
non linear regression. The two-step method consists of
fitting the results of each isothermal experiment with
Egn [1] to obtain rate constants at different tem-
peratures, which are then fitted to [3] (or [4]). Loga-
rithmic forms of the equations allow for the use of
linear regressions in the two steps. This second method
is more commonly found in literature, although the first
one should be preferred because confidence regions are
much smaller and the statistical parameters are
straightforward to interpret, there being only one
regression.

Statistical analysis

The kinetic model has two parameters, both with a
given uncertainty. Each has its individual interval of
confidence, but these are not the best way to describe
uncertainty in a two-dimensional reality.

The solution obtained with a one-step regression is the
pair of values that gives the minimum residual between
the model predictions and the experimental points. The
confidence region in a two-dimensional space is defined
by the area containing all pairs of parameters that yield
a residual that is not significantly different from the
minimum. The boundary of this region is defined by the
sum of squares of the residuals, given by the following
equation, for the confidence level specified:

P
SSyo, = SSex [1+ N_Pp xFy, (PN - P)] Eqn [7]

where SS,% =sum of squares of residuals at y%
confidence level, SS;=sum of squares of residuals of
the estimated solution, P =number of parameters (in
this case 2), N=number of experimental points and
F,(P.N-P) =value of the F distribution for P and N-P.
The 90% joint confidence level is the most usual,
because the limits of 90% joint confidence regions are
close to the individual 95% confidence intervals (14)
(the probability of simultaneous occurrence of two
events, each with an individual probability of 95%, is
about 90%). Therefore, when analysing results with a
two-parameter model, this joint confidence region
should be determined for interpreting the possible
variability arising from the experimental error, rather
than using just the individual confidence intervals. This
aspect will be very well shown in this work.

A simple least squares, nonweighted residual was used.
A FORTRAN program was written to determine the
90% confidence region. The increment step used to
determine the isoresidual lines was 0.5 (min and°C or
kJ/mol). A pair of parameters immediately before and

after the 90% confidence region border was deter-
mined and the border calculated as the average of the
two pairs, which means that the maximum uncertainty
in its determination is 0.25. The shape of a joint
confidence region strongly depends on the type of
model, and therefore the Arrhenius model with infinite
reference temperature (Eqn [5]) was used, since it leads
to the greatest difference in relation to the Bigelow
model.

Results and Discussion

Verification of initial assumptions

Preliminary experiments indicated that the activity
increased linearly with enzyme concentration up to 0.70
AO.D./min and 0.33 AO.D./min for procedures No. 576
and 577, respectively. The experimental samples always
fell in these ranges.

Before performing the inactivation studies, the stability
of amylase during lyophilization and stability above
saturated salt solutions were analysed. The residual
activity after lyophilization was always higher than
95%. During equilibration at 4°C above saturated salt
solutions, corresponding to water contents of 1.5, 4.9
and 23.9 g per 100 g dry solid, the enzyme activity
varied less than 3% for up to 11 d of study.

The presence of certain cations (e.g. calcium and
sodium) is reported in literature to affect the thermal
characteristics of a-amylase in aqueous solutions
(11,15), and a similar effect should not be excluded in
the present case. For lyophilization, water was used
instead of a buffer to avoid the effect of the buffer ions
(on both water adsorption and inactivation
behaviour).

Activity regeneration of thermally inactivated enzymes
in aqueous solutions has been reported (e.g. peroxidase
(16)). For inactivation of dried a-amylase, no activity
regeneration was found after 24 h storage at 4°C.

Inactivation data

Table 1 shows the parameters obtained with the
Bigelow model and their individual 95% errors, using
the one-step procedure.

Figures 1 and 2 show typical results, for the experi-
mental data obtained with water contents of 2.6 and
16.0 g water per 100 g dry solid and the model
curves.

Table 1 Kinetic parameters for the Bigelow model obtained
with the one-step method (means+95% confidence interval,
for an average of 16 to 20 experimental points)

Water content D140°C z
(g per 100g dry solid) (min) (°C)
15 60.7+3.1 28.2+3.1
2.6 66.4+3.7 25.2+2.1
4.9 65.6+2.7 30.0+2.3
16.0 69.5+2.7 24.1+1.0
18.5 60.2+2.8 27.1+2.4
239 72.0+4.9 21.2+2.1
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Fig. 1 Inactivation data of a-amylase with 2.6 g water per 100
g dry solid at 135°C (@), 140°C (M), 145°C (#) and 150°C
(A), and the fits provided by the one-step (----) and two
step( ) methods, with Bigelow’s model

It should be noted that the activity decay of dehydrated
a-amylase clearly follows the first-order model con-
sidered. For soluble and covalentely immobilised B.
licheniformis a-amylase (at temperatures below 85°C),
a biphasic inactivation profile was reported (11,17). A
first-order inactivation kinetic was described for soluble
a-amylase from B. amyloliquefaciens (at 90°C (10,18)
and at temperatures between 70 and 85°C (19)).

The z-value of amylase (see Table 1) is not as sensitive
to water content as in the case of peroxidase (5), but the
lowest value for both proteins occurs for the highest
moisture content: the z-value for peroxidase increased
from 18°C to 32°C and then decreased steeply to 17°C
at 0.88 a,. Results similar to those obtained for
peroxidase were reported for wheat grain ribonuclease
(2). Meerdink and van’t Riet (20) reported the activa-
tion energy as being an exponentially increasing func-
tion of the moisture content for a-amylase thermal
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Fig. 2 Inactivation data of a-amylase with 16.0 g water per 100
g dry solid at 135°C (@), 140°C (H), 145°C (#), 150°C (A)
and 155°C (4A), and the fits provided by the one-step (----)
and two-step ( ) methods, with Bigelow’s model

inactivation from B. licheniformis during drying, but
they worked at much higher moisture contents and
used maltodextrins as a support material, which makes
comparisons difficult. As far as it is known, no data
concerning the inactivation of solid-phase a-amylase
from any source have yet been reported, and no
comparisons can be made. The variation profile of the
z-value of dried a-amylase from B. amyloliquefaciens
with water content seems to be ‘random’ and therefore
less predictable than for peroxidase. The dried B.
amyloliquefaciens a-amylase lyophilized from water
clearly shows less sensitivity to temperature than in
aqueous buffer solution, which is revealed by the
z-value of 7°C obtained for its inactivation in aqueous
Tris-HCI buffer (0.1 mol/L), at pH 8.5 (21). Although
the temperature range of inactivation is about the same
for the a-amylase studied in this work and for
horseradish peroxidase (5), the former is slightly less
stable than the latter, with D-values at 140°C ranging
from 60 to 70 min for amylase and from 120 to 200 min
for peroxidase.

Some further comments should be made at this point
regarding enzyme stability. The temperature range of
inactivation (135 to 150°C) is much higher when
compared with inactivation in buffer aqueous solution
(the enzyme rapidly inactivates at 90°C) (18). Even for
more heat-resistant a-amylases from thermophilic
organisms, such as B. licheniformis, the inactivation
temperatures in solution are lower (90 to 100°C) (10).
The fact that enzymes are generally found to be
extremely stable when dried indicates that water has a
fundamental role in the thermal inactivation of proteins
and therefore that dehydration is a method of improv-
ing stabilization. This effect is certainly due to its
participation in the inactivation mechanism. In agueous
buffer, inactivation of a-amylase from B. amyloliquefa-
ciens is caused by a monomolecular conformational
process (formation of incorrect structures) (18).
Because the presence of water in protein increases its
flexibility and allows thermal unfolding (22), the
suppression of water should stabilize the enzyme.
However, the inactivation mechanism of a dried form
of the enzyme is not known, and other alternatives are
possible.

Model evaluation

Bigelow model. Figure 3 shows all the 90% joint
confidence intervals for the six different water contents.
The typical case for the water content of 18.5 g of water
per 100 g dry solid is highlighted, to show that the two
parameters have a low co-linearity and that the limits of
the individual 95% confidence intervals are close to the
limits of the 90% joint confidence region (this case is
precisely the one in which the difference was greater; in
other cases they were even closer). This results in the
fact that most pairs of values for D, and z between the
interval D, =AD and z + Az, where A represents the
95% individual confidence error, generate a set of
D-values at the various temperatures that model the
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Fig. 3 90% joint confidence regions for all the water contents
studied, for the Bigelow model. Water contents (g water per
100 g dry solid) are indicated in the graph, near the centre of
their respective region. In the top right-hand corner box are
the individual 95% confidence intervals for 18.5 g water per
100 g dry solid (the black circle indicates the solution)

whole set of experimental data with a residual smaller
than the 90% residual.

Arrhenius model. Table 2 shows the results obtained
with the one-step method and the Arrhenius model.
Once again, looking at these values, it would seem that
although there is apparently some influence of the
water content, there is no specific trend.

Figure 4 shows all the 90% joint confidence regions at
the various water contents, and it can be seen that, with
this model, there is a strong co-linearity between the
two parameters. The 90% joint confidence region has
consequently been squeezed down to a straight line.
The individual confidence intervals for the same case as
in Fig. 3 (water content of 18.5 g water per 100 g dry
solid) are also highlighted (lower right-hand corner box
of Fig. 4). Although it is still true that the limits of the
individual 95% confidence intervals are close to those
of the 90% joint confidence region, there is only a very
limited number of pairs of k, and E, that can be used to
generate model curves with a residual lower than the
90% residual. This graph clearly shows the importance
of analysing the error region of the results. Users might
consider that any pair of k, and E, within the Ink, +
Alnky and E, £ AE,, with A being the 95% individual
error range, would generate good predictions, but it can

Table 2 Kinetic parameters for the Arrhenius model
obtained with the one-step method (means+95% confidence
interval, for an average of 16 to 20 experimental points)

Water content Inkg E,

(g per 100g dry solid) (kd/mol)
15 31.0+3.7 117.7+12.0
2.6 35.1%3.1 132.2+10.8

49 28.9+2.4 110.7+8.3

16.0 37.2+1.8 139.5+6.4
18.5 32.7x3.1 123.4+10.9
23.9 41.8+4.5 155.5+15.8
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Fig. 4 90% joint confidence regions for all the water contents
studied, for the Arrhenius model. The limits for each water
content (g water per 100 g dry solid) are indicated in the
graph. In the lower right-hand corner box, the individual 95%
confidence intervals for 18.5 g water per 100 g dry solid are
shown (the black circle indicates the solution)

be seen in Fig. 4 that some pairs (in the inverse
inclination of the line of the 90% joint confidence
region) would yield very bad predictions. The co-
linearity of the parameters is so high that the whole
confidence region for 18.5 g of water in 100 g enzyme
water content could be fitted by a single straight line
(Ink,=-3.15 + [0.289 X E,) with a correlation
coefficient of 0.999. Moreover, all the confidence
regions are segments of the same straight lines. Fitting
all points of the different intervals in one single straight
line yields:

Ink = — (2.92+0.055) + (0.28780.00041) x E,
Ean [8]

This is a good description of the error region for all
results, with the start- and end-points being the only
difference between the different water contents: the
slopes and the intercepts are the same. Furthermore, all
regions overlap, except for 4.9 g of water per 100 g dry
solid. For a highly co-linear region such as this,
increasing the level of confidence from 90 to 95, 97.5 or
99% basically enlarges the joint confidence region by
moving along the line. This means that if the result for
4.9 g of water per 100 g dry solid is considered to have
been affected more by experimental error, we could
consider that one single pair of k, and E, might be used
to fit all results.

The most adequate way to calculate such value is not by
arithmetic average of individual results but by fitting
the whole set of experimental points with one single
regression. This procedure yielded Ink,=33.9 and E, =
128 kJ/mol. Furthermore, individual rate constants
estimated with these parameters should not be sig-
nificantly different from the various individual ones
obtained by the two-step method. The case in which the
individual rate constant is more different from the one
estimated with the global parameters is for the water
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Fig. 5 Inactivation data of a-amylase with 23.9 g water per 100
g dry solid at 135°C (@), 140°C (M), 145°C (#) and 150°C
(A), and the fits provided by the individual analysis ( )
and by the average parameters (----) using the Arrhenius
model

content of 23.9 g of water per 100 g dry solid at 150°C.
This case was considered to be an outlier and not
included in the determination of the global parameters
(robust fitting). Figure 5 shows the experimental points
and the model predictions using the average kinetic
parameters for this worst case. The larger error arises
mainly from the final point of the outlier temperature.
It can be seen that a larger deviation between model
and experimental data results from the initial fall of the
enzyme activity (particularly visible for the lowest
temperature: 135°C).

It is apparent that there is no statistical significance to
suggest that water content affects the kinetic behaviour
of the enzyme, in the range tested, when analysing the
Arrhenius model results.

Conclusions

The inactivation of freeze-dried a-amylase from B.
amyloliquefaciens follows first-order decay kinetics. The
inactivation temperatures (135 to 150°C) and the values
obtained for the decimal reduction times clearly show
that the enzyme is much more stable than in aqueous
solution. Analysing the results with Bigelow’s model
(using a reference temperature of 140°C) indicates a
small effect of water content on the z-value, which does
not follow any particular trend. However, the analysis
following the Arrhenius model (considering an infinite
reference temperature) shows that there is no statistical
significance to suggest that water content affects the
enzyme stability in these ranges. A pre-exponential
factor with a logarithm of 33.9 and an activation energy
of 128 kJ/mol satisfactorily fitted all results. For a TTI
development to assess sterilization processes, it is
necessary to reduce the z-value to 10°C and decrease
the stability of B. amyloliquefaciens a-amylase.
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